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Abstract

Many recent studies aim to redupellutant emissions and improve
efficienciesin Cl enginesby adopting the state of art combustion strategies
to meet the more shfjent regulationss years go by Among thenoble
combustion strategiesfjomogeneous charge compression ignition (HCCI
uses well mixed fuehir mixture to reduce NOx and PM simultaneously.
Dieselgasoline blending fuel was also studiddr NOx and PM
simultaneous reduction by prolonging ignition delay of diesel fuel. However,
those studies have critical defectberefore JR8 combustionn a Cl engine

was investigated as one of theethods to forming homogeneous faél



Abstract

mixture.Since JPB jet fuel has lower Cetane Number than that of diesel fuel,
ignition delay is extendedespite higher votdity and low viscosity ofthe

fuel. Although JP8 has already been used at both military aircrafts and
ground vehicles by NATO nations as a part of Single Fuel Concept (SFC)
through sufficient studies, further studies are needed to ewstdnd
combustion process of the fuel. In this study;8JBnd diesel fuel were
combusted in a Cl engine with four cylindensd two pilot injection. And

the effect of boost pressurmjection pressure, main injection timing, and
EGR rats underthe sametorque condition on combustion and emissions
were investigated to determine combustion optimization. Results show that
JR8 hassimilar combustion chargeristics to diesel fuel except for longer
ignition delay caused by higher Cetane Number. Therefdfeemission is
considerablydecreasedwithout noticeable NOx increasand efficiency
losses. Moreover, simultaneous reductiom NOx and PM would be

achieved byncreasingeGR rate.

Keywords: Cl engine, diesel fuel, JF8, "E'E, PM

Student Number: 201222550
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Chapter 1. Introduction

Chapter 1. Introduction

1.1 Background

With the increasing concern about the environmental pollution and
more stringent emission regulations, many recent studies have made efforts
to reduce exhaust emissions and improve thermal efficiency. Exhaust
emission reduction habeen attempted bywo primary methods; one is
reducing engine out emissions from cylinders by adopting advanced
combustion strategies and the other is reducing exhaust gas by using after
treatment dvices such as DPF and DOC

Homogeneou£harge Compression Ignition (HCCI) redgritasbeen
studied among theavious noblecombustion strategies to reduce NOx and
PM emissionsimultaneouslyHCCI has a characteristibat fuel and air are
mixed before combustion staristhereby makes homogeneous mixture.
Although HCCI has severalefects such as higher CO/HC erivoss and
combustion phasing control difficulty [1], forming homogeneous mixture is
still promising method for breakroughthe NOx-PM tradeoff relation

Prolonging ignition delay period is an effective way to make
homogneous mixture. Ignition delay can bgended by adding different
kind of fuel with lower Cetane Number to diesel fuel, which provides
sufficient mixing time for homogeneous mixture formatiéimr example,
diesetpropane kending was investigated and itsgnition delay was

prolonged with theincrease of propane fraction][Zasolinediesel blending
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was also investigated for prolongingnition delay.Reactivity Controlled
Compression Ignition (RCCI) is a kind of dtfakl PCCI, whichblends air
and fuel n a cylinder.In this concept, gasoline is injected throtigle port
fuel injectos and diesel fuel is injected into the cylindedirectly at
advanced timing. Thignition delay of gasolinglieselmixture is prolongd
as a result ofthe ga®line additionto diesel fuel [R Gasolinediesel
blending prior to the injection was also studied and the igndelay of the
mixture was prolongd with theincrease of gasoline fraction][4

Blending two fuels are effectivevay to extendignition delay and
reduce NOx and PM. However, using two fuels in road wodds is
impractical becausef complex fuel distribution system needs and high cost.
But extension of ignition delay by lowering Cetane Number is worth
investigating. Therefore, 3®jet fuel was considered this study as a single
fuel because of its lower Cetane Number than dieseldndl has similar
characteristics to gasolirttesel blendinduel. Moreover, JB8 is being used
in military vehicles as well as military aircrafts by NATO nations as a part of
Single Fuel Concept (SFC).

SFCis a policy whichwas arisen to solve fuel coagulation problem of
diesel fuel at low temperatyrand to makeonveniencef logisticsbecause
avast amount and various types of fuel are consumed for military usage. In
terms of management and logistics, dealing with different kinds of fuel
requires extra cost, time and labor. Moreover, military vehicles and
equipment that used diesel fuel expecmsh fuel coagulation at low

temperature due to their high paraffin hydrocarbon content. Therefe8e, JP
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(NATO F-34) wasusedin military vehiclesas well, due to its lower freezing
point andlower viscositythan that of diesel fuellhis policy designatecs
the Single Fuel Conceqiy U.S. Department of DefenéBOD) in 1988and
NATO adopted the concept I998[5, 6].

Before the decision to adopt the SFC, the NATO nations have carried
out sufficient experimental studies in Compression Ignition (Cl) engines to
find out if there were any problems in replacing the fuel from diesel-& JP
However, further studies are need for better understanishg about
combustion characteristics, in order to prevent problaeasised by
replacement of fueldvloreover, it maycontribue for military vehiclesto
meet the emission regulations, even though the military vetdckegganted
a waiver for the greenhouse gas standards by ERA hereby, SFC quality

can be improved angbllutant emissionwould be reduced.

1.2 Objective

The main objective of this study is tovestigate the effects of B6 s
basic properties on combustieend emissioncharacteristics. Then, by
evaluatingthe possibility of combustion optimizan for JR8 in a direct
injection Cl engineto give a reference to researchers who are going to study
abou JR8 combustion is the aim\s mentioned above, FPcomlustion in a
Cl engine has already been studied by many researcherany caintries
However, papers or reports which studied the effect of combustion parameter
variations on JB combustion wereat found Especially,a study oneither

EGR rates or multiple injection strategy variations is nonexistent.
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Therefore, test cases were determinedthtestigate as many as parameters

are included.

1.3 Description of Fuels

Cetane Number (CN) is a measure of a fuel's ignition delay, which
means time period between the start of injection (SOI) and the start of
combustion (SOC). In compression engines, lower CN fuels have longer
ignition delay than higher CN fuels. In other wsy the lower the CN, the
later the fuel ignites automatically at the compression stroke. This affects
PM and NOx emissions. The longer the ignition delay, the longer the time
for forming homogeneous mixture, so PM formation can be reduced.
However, NOx enssion is increased because increased mixing time result

in higher combustion temperature.

Density affectsinjection pressure and injectddel massduring the
same injection periodzuel injection during the same time period indicates
that same volumefduels are injected. However, injected fuel masses are
different with respect to their densities. Fuel temperature also have to be
considered when calibrate the injected fuel mass because fuel density varies
with its temperature. Therefore, fuel densiffects fuel efficiency and
engine performance. Moreoveiyel density also affects the other fuel

properties such as CN, viscosity and volatility indiref8ly
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Viscosity is a measure of its resistance to deformation by external forces.
Fuel's viscositydepends on the size and shape of its particles and the
attractions between the particles. Viscosity effects on the other properties
such as volatility and density to some degrees. Lower viscosity results in
easier evaporation and shorter liquid spray lengecause it has weak
surface tension. However, fuel pump of engine can be worn because lower

viscosity fuel has poor lubricity.

Lower heating value (LHV) is the amount of heat released by
combusting a specified quantitfigher LHV makes the tendency togher
pressure rise rate amnigherengine output. However, the effect of density
on the heating value on a volume basis also needs to be considered.
Although JP8 has higher LHV compared to that of diesel fuel on a mass
basis,LHV on a volume basis is Wer thanthat of diesel fuel due to its

lower density.

Higher volatility means that the fuel boils at lower temperature. For
example 50% distillation temperature indicates that the temperature where
50% of the fuel will be boiled off. Usually, the highewolatility, the shorter
is the ignition delay. However, #Phas longer ignition delay than diesel fuel
despite its higher volatility due to its lowelNCIt shows that volatility has

minor effects on the ignition delay compared to CN.

JP-8(Jet Propellant type 8)s a kerosene type turbine fuekhich
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contains fatic dissipator, corrosion iifhitor, lubricity improver,fuel system
icing inhibitor, antioxidant and metal deactivatdt is specified by MIk
DTL-831335 technical specificationarnd is equivalentto commonly used
civil JetAl, except fothe alreadymentionedadditives for military purpose
It is designatedas theofficial aviation fuel by US army, US Air Force and
Republic of Korea Air Forc€ROKAF) to useless hazardous fuel fdretter
safety and combat survivability

Both JR8 anddiesel fuel weraefined to given specifications for their
fuel class, but there are variations even within a certain fuel specification.
Therefore, the fuels used in this study do not cover the eatigeof other
JR8 and diesel fuel. But there are significant differencas the
characteristics betweehetwo fuels

JR8 used in this studyvas supplied by th&@ROKAF and diesel was
commonuse fuel The basic characteristics thiefuelsaregiven in Tablel.
The tablewas filled withdataon the basis ofest report provided from the
manufacturg MIL -DTL-831335, and B]. As showed in Table 1, 3®hasa
lower Cetane Numbedensity,and viscositywhereasslightly higher LHV

andhighervolatility than diesel fuel.
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Table 1. Basiccharacteristicsof JP-8 and Diesel fuel

JR8 Diesel
Cetandndex 45.9 53.6
Density(15°C kg/ ) 7924 8324
Freezing Poin{6C) -48.5 -7.5
Flash Poin{PMCC 6C) 44.0 45.5
Viscosity (4@®C cSt) 14 2.6
LHV (MJ/kg) 43.3 425
Distillation
50% (©C) 195.7 275.0
90% (©C) 236.5 344.4
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Chapter 2. Experimental Setyp and Test Case

In order to evaluate engimerformance and exhaust emissiofsiR8
and desel fuelcombustionexperimeng wereconductedn adirect injection

Cl engine at the auth@rlaboratory.

2.1 Experimental Setup

The specifications of theengineused in this experimerare listed in
Table 2 The engine useid a common use foucylinder Cl enginewhich is
named asR-enginewith a displacementvolume of 2.2L. The engine is
equippedwith turbo charger and exhaust gas recirculation (EGR) with EGR
cooler. A common railinjection system withBosch piezo injectors which
enable the fuels to be injected by 1,800was usedFuel is injectedhree
timesat the conventional condition as shown Figure.I{hg case witlone
pilot injectionanda main injectioris shown Figure 1(b).

The fuels used were stored in separated fuel tanke fuel pipes
and tanks wereised onlywith the designateckinds of fuels The residual
guantity of fuelsn common rail and injectorsere completely removed by
sufficient washing not to mixwith the other fuel. The lubricity improver
produced byinfineum International Ltdwas added to 3B to compensate
for its lower lubricity, which is attributed toits lower viscosity for
preventing abrasiomn the fuel pums. However, the lubricity improver

didn't effect on the egine performance and emissidmecausets quantity is
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very small quantit about250ppm. The enginevascouplal toa 190kW AC
dynamometernd it was controlledy torqueso as tabe the same engine
output. The coolanttemperaturevas controlled to maintain approximately
363K.

#/, CO, THC and. / were measured via HORIBA 7100DEGR
PM was measured via AVL 415S smoke meter and fast particulate
spectrometer DM$00. A mass burette type flow meter, ONO SOKKI X
203P, was used to meas the rate of the fuels.

The EGR rate was calculatéyy measuring the concentration #f/
in the exhaust gas and the intake. da@mnic orifices and pressure regulators
were usedd control the amount of air and maintain constant flofn
absolute pressure transducer @lier 4045A5) and relative pressure
transducer (Kistler 6055Bspyvere used in order to measureexternal
pressuresand cylinder pressurerespectively The schematicdiagram of

experimentaketup is shown in Figure 2
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Table 2. Specification

Displacement (L) 2.199

Stroke (mm) 96

Bore (mm) 85.4

Cylinder Number 4

Compression ratio 16.0

Fuel injection system Piezo 0 =1,800bar)
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(a) Two pilot injection

1.1m
1 1.3mg g

300 310 320 330 340 350 360 370 380
Crank angle

(b) One pilot injection

1.3mg

0

300 310 320 330 340 350 360 370 380
Crank angle

Figure 1. Injection paraneters: (a) 2 pilot injections and a main injection(b) 1-

pilot injection and a main injection
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Figure 2. Schematic diagram of experimental setup
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2.2 Test Case€Examined

The experiments were performedfalfowing stages:

1. Preliminary diesel fuel combustioriess were performedht the
conventional engine operation msdand by adjusing operation
conditions of the modesin order to analyze engine operating
characteristics and emission tendencies as the comparison group
All of the preliminary test cases are listed in Table 3.

2. Single injectioncombustion was testefbr investigating engine
performance and emission characterist€€N differencebetween
JR8 and diesel fuel. Andnain injection timing was adjustedto
maintain the sam#FB50 of both fuels in order tooptimize with
the single injection strategy.

3. One pilot injection combustion was tested tevaluate the
differences of thengine performance and emissidromtwo pilot
injectiors.

4. In a decision to experiment with theo pilot injection strategy
from the above evaluations,-8ombustion testvereperformed at
the same casewith diesel combustiotestin order to determine
optimal JR-8 operation conditionsTests were adjusted wariation
of boost pressure, injection pressure, main injectionin, EGR
rates and engine load in order to determine optimal operation

conditions of JF8B.

All test cases were measured for many consecutive cyclethartthta
werecalculated as average values.
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Table 3. Test cases examined

1,500rpm / 4bar

2,000rpm / 6bar

Main SOI(BTDC, 0) 1.13.1,51 3.252,7.2
Rail Pressuré¢bar) 528,628 728 -
Boost Pressurgbar) 1.04,1.08 1.13 -
EGR (%) 27,30, 32, 33 23,25, 27, 30

Under bar. Conventional operation condition
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Chapter 3. Results and Discussion

To analyze the effects of fuel 6s
combustion characteristics, bo#r8 and desel fuel weretested at the
conventional operating conditions of the eng{ié00rpm / 4bar /30%
EGR /1.1 °BTDC main injection timing) Only theinjection parameter was
changed frontwo pilot injection to single injection without pilot

Figure 3(a) shows the heat release cwoé JR8 anddiesel fuel at
the conventionaloperatingconditions.Since JR-8 has longer ignition delay
due to its lowerCN, the heat releaserate (HRR) of JFB combustion is
retardeccompared tahat ofdiesel fuel combustioAs shown infigure 3(H,
PM and NOx emissiontor JR8 are decreasedompared tdhose ofdiesel
fuel. PM reduction is attributed tgrolongedignition delay and higher
volatility of JR8, which reducessoot formation.Since late auto ignition
causéd by prolonged ignition delay onhe expansion stroke process
contributes to lower combustion temperafiM©x emissioris also reduced.
However,as $iown in Figure 3(d)fuel conversiorefficiency is dereased
due to late start of combustidn.the case othe samévViIFB50, as illustrated
in Figure 3(b), fuel conversiorefficiency is slightly increasedwhile NOx

and PMemissions are increasedmsttedat Figure3(b).
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Figure 4(a)(c) show emission characteristics arfdel conversion
efficienciesof two pilot injectiors, onepilot injection anda single injection
without pilot at equal MFB50 valueBlOx emission is decreased withe two
pilot injection strategy @mpared toone pilot injection strategy while PM
emission is increased. And there isubtle difference infuel conversion
efficiencies.These results are attributed to befensitivityto pilot injection
for JR8 as shown in Figure.5The peak of heat release rate of8JB
advanced by 7 CA degrees, while that of diesel fuel is less advanced by 5 CA
degrees.

From above results, combustion optimization of8Rith two pilot
injection strategy was attempteéigure §a)(d) presentthe behaviors of
NOx and PM emissionsverboost pressure variatioasthe sameoperating
paraneterswith abovec onvent i onal suniquel about MOx s . What
emissionbehavioris reduction of NOx emission for both fuels, when boost
pressure is increase®ince NOx emission is reduced in the unit of mass
(approximately 29% in g/kwWh) as well as in the unit of concentration
(approximately 32% in ppm), increasf oxygen concentratioasthe boost
pressure increasis not the main reason of theBEwven ifNOx concentration
reduction is affected biyncrease imair fraction, mass reduction means actual
decrease in NOx emissioin the case of diesel fudhis is attributed to
ignition delay reduction caused [air concentratiorincreag of in-cylinder
with respect to boost pressure increasirftgerefore combustion temperature
is lowered.PM emissionincrement is also explained with the same reason.

However, in the case of B the reason is different from that of diesel fuel.
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It is likely due to theincrementin A/F ratio caused by boost pressure
increasing.The more air concentration is increasta keaner the charge of
in-cylinder. Sincethe extra air absorb released heat as Quifecylinder
temperature is lowere@herefore NOx formation is reducedlong with low
combustion temperatureMeanwhile, a& a result of lower combustion
temperaturePM emission is increased due R oxidationrates reduction.
CO emissiors for both fuels are almost equal and slightly incréasih
boost pressure increasings shown inFigure 7(a) Although subtle
differencesare shownin fuel corversion efficienciegFigure 7(c))and HC

emissiongFigure 7(b) the differences are imeasuremergrror range.
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Figure 8(a)(d) shows emission characteristics as injection pressure
increasing at 1,508om and 4barbmep NOx emission is increased due to
rapid airfuel mixing rate caused by higher injection pressure. Thus, PM
emission is decreased due to shorter ignitidaydd®M emission reduction
rate of JPB is low as well as its number is considerably low, while that of
diesel fuel ishigh. This demonstratethat JR8 is less sensitive to injection
pressure than dieseldldue to its lower CNCombustion efficienies for
both fuels are to be deteriorateldngwith increase in théjection pressure.
CO and HC emissions of diesel fuel are gradually decreasihé gection

pressure increas whereas those of BPare ot that significant.
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Figure 9(a)(d) depict emission characteristicgt 1,500rpm and 4
bar bmep with variation of main injection timing. And Figure D(a)-(d)
shows the same kind dfrendat 2,000rpm and6 barbmep.The pealof heat
release rate iadvancedsignificantly with advancedmnain injection timing
while ignition delay isquite similar between two fuelsSince in-cylinder
temperature is low at ¢hearlier timing from TDC, fuehir mixing is better
to form the homogeneous mixture at that conditidimnerefore NOXx
emissiors areincreased athe main injection timingis advancedand the
amount of the emissions are almost same. PM emissionis also increased
along with advanced injection timingAnd PM emissionof JR8 is
considerably lower than that of diesel fuel arehrlynot affected by main
injection timing Fuel conversionefficiency is improved as the main
injectiontiming is advanced due textension of time for fuehir mixing. CO
emissiors of both fuels are reducedwith advanced injection timing.
However, HC emissionsf JR8 and diesel fuehow opposite tendepc
respectivelyHC emission of JB is reduced as injection timing is advanced,
while that of diesel fuel is increaseficcordng to the previous researc,
direct injectioncompressiorignition engines have primary two reasons for
forming HC. Overlean mixture and rich mixture caused by sac volamee
the reasons. In the case of injection timing variatiotlh constant engine
speed and constant sac volume, HC is primarily formed byleaarregions.
From the review of the previsuresearch, HC emission of diesel fuel is
likely due to ovedlean mixture with regard to advanced injection timing. By

the way, HC emissiographof JR8 is likely due todecreasedoverrich
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regions with respect to advanced injection timindgruel conversion
efficienciesof the fuels are almost equal in arror range of measurement
devicesand curves of them decline gradually with advanced injection timing
This indicates thafuel conversionefficiency is better at earlier injection
timing. At 2,000rpm and 6barbmep the emission behavior and efficiency
variation are quiteisiilarto characteristics of,500rpm and 4barbmep as
shownin Figure D(a)(d).

According toHeywood[10], Exhaust Gas Recirculatias used to
reduce NOx emission by recirculating a portion of exhaust back to cylinders.
EGR reduces flame temperature by increasing heat capacityebéir
mixture. Since NOxis formedprimarily athigh temperature, lower cylied
temperature caused by EGR reduces the amount ofibi@mation. However,
PM emission is increaseatlie toredudng oxygen concentratioand burnt
gas temperaturi the cylinder The tradeoff between NOx and PM is well
known and the state of the art camsbon strategies try to move the
combustion curves to the lower left corner.

Figure11(a)(d) shows emission characteristics as a function of EGR
variations at 1,500pm engine speed and Bar engine loadht the same
MFB50. NOx emissionis reduced significantly with EGR rate increment
whereas PM emission is increasmhtrastively However, the PM emission
curve of JP8 is inclined gently ampared to that of diesel fuel dueite
faster evaporatioandlongerignition delay CO and HCemission curves of
both JP8 and diesel fuel have similar tendencies, which are increased with

increasing EGR rate3his is because lower oxygen concentration caused by
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EGR results in rich fuehir mixtures. Thisheterogeneous mixture does not
combust comletely and attributes to higher HC and CO emissiéigure
12(a)(d) shows emission characteristics of the same operation condition
with above EGR variation case, except for engine el engine load as
2,000rpm and4 bar bmep The results show almbthe similar tendencies,
more or less, between two operating conditidrigure 13(a)-(d) showsfuel
conversiorefficienciesand totalheat releaséor the fuelsat both 1,500pm

/4 bar and 2,000pm / 6bar conditionsFuel conversion efficiencies for both
fuels are deterioratedith EGR rates increasingHowever, as shown in
Figure 13(d), fuel conversion efficiency for-8Rs slightly lower than that of
diesel fuel at 2,0060m / 4bar condition.

The tradeoff curves between NOand PM of 1,500rpm / 4bar and
2,000rpm / 6bar are illustratédl Figure ¥(a) andFigure H(b), respectively.
NOx-PM tradeoff curve forJR-8 is movedoward lower side in both cases.
That is, compared to diesel fuel, N®¥ simultaneous reduction would be
achievedwhen EGR ratds increased at 1,50pm/4 bar condition. In the
2,000rpm/6 bar condition, NOx reduction can be achieved along with EGR
rate increasing from 25% to 27%ith the same PM emission level of diesel

fuel.
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Figure 13. Fueling ratesat (a) 1,500rpm / 4bar(b) 2,000rpm / 6barand Total

LHV at (c) 1,500rpm / 4bar(d) 2,000rpm / 6bar





















