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ABSTRACT

To ensure the structure to be safely maintained in flight
phase, it is important to design and optimize the structures
including aerospace system such as flight wing, launch
vehicle and satellite. The structures of aerospace system are
usually configured with stiffener and panel. Since panel is
surrounded by stiffener, it can be seen that local
characteristics in a particular analysis such as buckling
analysis. Because load path does not change significantly,
panel is suitable to perform the local buckling analysis
because the buckling mode i1s present in the local area
surrounded by the stiffener. This buckling analysis is time
consuming work in the structural design optimization. To
perform the structural design optimization effectively, it is
essential that separate the optimization problem into the
global optimization problem and the local optimization
problem.

In this study, the global—local structural optimization
problem was configured for the effective optimization of the
structures including aerospace system structures. Particle
swarm optimization algorithm which is useful for structural
design optimization was used. To apply the global—local
scheme into  particle swarm  optimization  algorithm,
optimization module was developed. This module is called the
global—local PSO module. This module was constructed with
three interface dialog. One 1is for setting optimization
problem. And other one is for setup optimization

environmental parameter. Third interface dialog is to start



optimization and monitoring. All of these functions were
realized in DIAMOND/IPSAP which is being developed by
Aerospace  Structures Laboratory in  Seoul National
University.

To evaluate a performance of the particle swarm optimization
algorithm using the global—local PSO module, Stiffened shell
box and launch vehicle models were designed and were
optimized by the global—local PSO algorithm. In case of
stiffened shell box, local static buckling analysis was
performed. Critical buckling load was used for constraint of
the local optimization. Last example was the optimization of
the launch vehicle.

The significance of this study was that it was possible to
faster optimization by using the global—local PSO algorithm
which is appropriate approach for the structures which are
able to separate into the global and local area. Also, using
the computer aided engineering including the high
performance solver named IPSAP and the optimization
module with in—house pre/post tools, the time and effort for
finding the optimal design variables which are used in the
aerospace system structures including flight wing box, launch

vehicle, etc are decreased efficiently.

Keywords : Structural design optimization, Particle swarm
optimization, Localization, Launch vehicle, Stiffened shell
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1. Introduction

In this chapter, background of this study was suggested and
recent research which are related with this area are
summarized. Research which study on structural optimization
and application with improving the particle swarm
optimization algorithm are especially referred. At the same
time, research concept and scope were determined based on
this prior investigation and the particle swarm optimization
algorithm via global—local scheme for the aerospace system

structures was suggested.

1.1. Background

Aircraft and space launch vehicle is almost impossible to
repair during the operating environment. So, it is important
that the structural reliability and robustness. Especially,
launch vehicle has a extreme load during launching sequence
and flight phase. For structural safety, there are methods
which are that change materials and include stiffeners. When
additional structure i1s added on the launch vehicle, a
structural ratio will be increase. So, the optimization 1is
necessary for decreasing a cost of development and a
structural ratio.

Computer aided engineering has being used for the
structural design because of it's convenience and availability.
As the computer resources development, a large structure

problem could be solved using FEM in short time. Under the



environment for fast iterative calculation, the structural
optimization problem could be used with FEM for detail
structural responses. In the other hand, the complex and
large structure which including many design variables needs
proper  optimization algorithm. Traditional optimization
algorithms which are a quasi—newton method, gradient
descent and conjugate gradient, are a gradient—based
method. These are given true solution for the problem which
has continuous, linear and convex design space. But the
structure optimization problem has nonlinear, nonconvex
design space usually. Heuristic search technique ia one of
the method for solving a large structural optimization
problem which has nonlinear, nonconvex design space. Unlike
gradient—based methods in a convex design space, heuristic
techniques are not guaranteed to find the true global optimal
solution in a single objective problem, but should find many
good solutions. Genetic algorithm, simulated annealing and
particle swarm optimization are heuristic search
technique [1].

Particle swarm optimization (PSO) algorithm was developed
by Kennedy and Eberhart in 1995 [2]. This algorithm is
inspired by the behavior of the swarm of birds. For the
complex and large function alike evolutionary computation,

PSO is able to find the global optimization value.

1.2. Research Status

Improving PSO algorithm and optimization for the structural

design were proceeded by several researchers, and their



studies are summarized in Table 1. J. Kennedy et al (2002)
evaluated the performance of PSO as topology of the particle
swarm. A. Ratnaweera et al (2004) improved the
performance of PSO as changing the acceleration coefficient
over time. Moon et al (2007) performed the virtual optimal
design of satellite adapter using PSO in parallel computing
environment. Y. Toyoda et al (2007) improved the PSO with
a neighborhood search algorithm. Park et al (2009)
performed the evaluation of benchmark function and the
optimal design of the satellite using genetic algorithm and
PSO. A low cost PSO wusing metamodels and inexac
pre—evaluation was suggested by C. Praveen et al (2009).
Yoon et al (2012) developed an asynchronous PSO and
improved the fast convergence. They performed the optimal
design of satellite adapter—ring using asynchronous PSO. A.
Kaveh et al (2014) developed a democratic PSO for truss

layout and size optimization.

Table 1. Recent optimization analysis studies related to particle

swarm optimization.

I e A T

2002 ) Kennedy etal [3] BenchmarkFunctions  Particle Swarm Optimization PSQ Performance

Improvement
2004 A Ratnaweera et al [4] Benchmark Functions  Particle Swarm Optimization PSQ Performance
Improvement
2007 Moon et al [5] Satellite Particle Swarm Optimization S[.;:;m;g:ra* Optimal
2007 Y. Toyoda et al [6] Benchmark Functions  Particle Swarm Optimization PSQ Performance
Improvement
Benchmark Functions  Genetic Algorithm Structural Optimal
el Patketalle Satellite Particle Swarm Optimization Design
2009 C. Praveenetal [8] Flight Wing Particle Swarm Optimization SDt;l;g::raW Optimal
2013  Yoon et al [9] Satellite Particle Swarm Optimization 150 Berlormance
Improvement
2014  A. Kaveh et al [10] Truss Structure Particle Swarm Optimization SDI'.;:;:;::raW Optimal
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1.3. Concept and Scope

In this study, the PSO algorithm using global—local scheme
which named global—local PSO algorithm was suggested and
structural optimizations of stiffened shell box, launch vehicle
using global—local PSO algorithm were performed. Analysis
results which are linear static analysis, failure analysis,
static buckling analysis were used for objective function and
constraints. Examples which were stiffened shell box and
launch vehicle were performed and were compared with
results using other optimization algorithms. Computational
environment of structural design optimization was
constructed for development of global—local PSO algorithm.
This study based on a virtual analysis and structural
optimization can help an initial design of structures under

various load conditions.

1.4. Overview

As previously mentioned, optimization process will be
performed for stiffened shell box and launch vehicle using
finite element methods with localized PSO algorithm.

In the second chapter, the numerical schemes implemented
in the optimization module are discussed. design objects are
was decoupled by localized systems. To do that, PSO
procedure are revised to global—local PSO algorithm. In the
third, fourth and fifth chapters, various numerical simulation
examples are solved using global—local PSO optimization

module. Stiffened shell and launch vehicle FEM model are



solved by the module. All of results are compared with

standard PSO algorithm.

2. Development of Global—Local PSO
Module

PSO module with global—local optimization (global—local
PSO module) are developed based on C++ language. The
module was integrated in the DIAMOND/IPSAP, which is
pre/post processor of structural analysis solver IPSAP. PSO
algorithm in the DIAMOND/IPSAP are revised with

global—local scheme.
2.1. Structural Design Optimization

General structural optimization problems can be described as

follow.

Minimize Mz, zy, .., y)
Subject to
C(;)S 0 (1)
- 1

max(f(m))< <7

A= SF

while A7 is mass, S.F means safety factor and # is variable
vector, Major objective function of structural optimization 1is

minimize mass. Constraint functions are consist of



geometrical constraints of design variables C‘(;) failure index
f and critical buckling load coefficient A. Maximum failure
index of whole domain should be smaller than unit meanwhile

first mode of buckling analysis should be larger than unit.

In the aerospace industry, most of structures are consist of
thin wall strucure with stiffener as aircraft wing panel,
launch vehicle skin. For this reason, thickness of a shell
affects small effects to other shell beyond stiffener. Buckling
mode also localized for the same reason. The optimization
problem was approached by separating the global and the
local based on these concepts. Global—local optimization

problem can be described as follow.

Global Optimization:

Minimize M(xl,:vz,...,x,l,tl,t2,.. t )

7 ¥m

(2)
Subject to

Az, 1)< 0

Local Optimization:

min| M)+ fi(t;)+
b

Subject to @)

while z is global variable vector, i is local veriable vector.

Total number of design variable is N, the number of global

-6 - -":r-\.;! 'Cl::l' 1_-.li ‘-'ll
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design variable is n, the number of local design variable is
m. Objective functions and constraint function is divided
respectively into global and local optimization. As before,
Objective function in global optimization is minimize mass.
Geometrical constraints is remained by constraint functions
of global optimization. For local optimization, objective
function is minimize the sum of failure index and the inverse
of critical buckling load for j—th local variable t;. Constraint
function is failure index and critical buckling load coefficient
of j—th local area while global variable vector 7 is fixed.

Approaching with global—local scheme, three effects can be
expected. First, constraint function which critical buckling
load is separated. A buckling analysis for the global area is
performed for applying the critical buckling load constraint
on the general structural optimization problem. In order to
determine the critical buckling load in the optimization
problem, static buckling analysis is repeated until the
eigenvalue comes out positive from the first buckling mode.
If positive eigenvalue comes out lately, it needs much time
for buckling analysis. Especially, change in the thickness
sensitively affects the buckling mode. The buckling mode can
be disappear while changing the thickness. In this case,
buckling analysis is performed from beginning and it is a
time—consuming work. On the other hand, buckling occurs
locally in structure which consist of stiffener and shell. By
separating the local area which only a compressive force is
applied and performing buckling analysis, the time required
for optimization can be shorten. A prerequisite is that the

displacement in the boundary of the local area is



substantially same when the thickness of local area is
changed.

The second effect will be expected to lower the dimension
of the search space. It is particularly effective in the
population—based method such as genetic algorithm or PSO
algorithm. These algorithms generate randomly candidate
solutions called particles and trying to improve them with
regard to a given measure of quality. The convergence
speed and optimization quality is influenced depending on the
quality of the particle generated at the initial step. When the
particle finds the optimality region, a small volume of the
search space surrounding the global optimum, it can be able
to see that optimized. Simply, the probability of generating a
particle indise the optimality region is the volume of the
optimality region divided by the volume of the search space.
Increasing the volume of the search space, this probability
will decrease exponentially[11]. Reducing the dimension of
the search space by separating design variables into the
global area and the local area can be expected to have a
positive impact on the convergence speed.

The last effect is to break the relationship between the
design variables. The particles are composed of a vector of
design variables in the PSO algorithm. Since fitness
evaluation of the particle is performed, the sensitivity of the
individual design variable are not evaluated. Although it
appears that the design variable have a relationship with
other design variables, it is not. So, the design variables
which have low sensitivity are hard to move optimal position

than high sensitive design variables. It makes the PSO



algorithm to find the optimal position difficult in the early
step. Since the sensitivity of fitness evaluation of local area
i1s depend on the local design wvariable only, it can be
expected that the local design variables are not affected by

the sensitivity of the global design variables.
2.2. Overview of Particle Swarm Optimization

In 1995, Kennedy and Eberhart introduced the PSO
algorithm. It is a heuristic search technique such asd the
genetic algorithm, simulated annealing. Heuristics are
typically used to solve complex(large, nonlinear, nonconvex)
multivariate combinatorial optimization problems that are
difficult to solve to optimality. Heuristics are good at dealing
with local optima without getting stuck in them while
searching for the global optimum.

The behavior of the PSO algorithm 1is based on the
influence of the attraction index which towards the global
best position (gbest) and local best position (pbest) and

some irregulars. It is described as equation (4).

o= av§+blrl(p§_w§>+ 527”2(‘1_ xf) )

k+1
i

Here, w i1s a velocity of i—th particle in next step, k is
current step. ¢ is momentum coefficient to control the effect
of a current velocity. Attraction coefficients, b, and b,, affect

on the attraction toward optimal position. r and r, are



uniformly distributed random numbers between O and 1. p! is
the optimal position of i—th particle in current step. ¢ is the
best position of the swarm. In equation (4), the velocity of
the particles in next step 1s determined by the current
velocity, pf, ¢. These are affected by momentum coefficient,
attraction  coefficient and random number coefficient
respectively. The position of the particle is determined by

equation (5).
o =l + dof ! (5)

In each step, the position of the next step is affected by
current position and the velocity of the next step. In here, ¢
i1s the position affect coefficient, d is the velocity affect
coefficient. The behavior of the standard PSO(SPSO)

algorithm is shown in figure 1.
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Figure 1. Particle behavior in SPSO.

Figure 2 illustrated the flowchart of SPSO. The swarm is
initialized with random—valued particles. In here, the velocity
and position of the particles are determined. Initial position
and velocity is randomly generated within a range of design
variable. To prevent over—range, Maximum velocity is
limited to 10% of a range of design variable. In the next, the
velocity and position of the particles are updated. Verify that
the generated particles are satisfied with the range and
constraint in following step. If the particle is not available,
this particle is regenerated. In order to determine the gbest
and the pbest, fitness is evaluated by objective function.
After the gbest and the pbest are wupdated, termination
condition is checked. There are a tolerance and a number of
step for termination condition. All the progress iterative until

satisfying the termination condition.
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Figure 2. Flow chart of SPSO.

2.3. DIAMOND/IPSAP

DIAMOND/IPSAP is the integrated pre/post processor of

_‘|2_



structural analysis using solver IPSAP which is developed by
Aerospace  Structures Laboratory of Seoul National
University. DIAMOND 1is the software based on MFC and
IPSAP i1s the solver of DIAMOND. DIAMOND provides
functions of pre/post process, automatic mesh generation
module, aircraft generation module, optimization module.
[PSAP is the sovler based on FEM. It has linear static
analysis, vibration analysis, buckling analysis, thermal
analysis and acoustic analysis[12]. To solve the linear static
analysis and static buckling analysis, the global—local PSO
module 1s developed as optimization module of
DIAMOND/IPSAP.

DIAMOND/IPSAP use the multi—frontal method for linear
solver and the block Lanczos algorithm for eigen solver. In
the frontal method, global stiffness matrix i1s not constructed
in the sequence of computation, while other general methods
assemble it. Stiffness matrix of element is expressed as

equation (6),

[Kll KlZ
K21 KZZ

=17

In here, subscript 1 is assembled parts and subscript 2 is

the others. If assembled parts are removed,
(K22 _K21K1711K12)U2 = fo— Ky Ky lfl = f—2 (7)

equation (7) is derived. Like this, frontal method assemble

B 13 _ -__:I'H ! _'\-\.I.-I_ -I_-li -__.:.I ;



the stiffness matrix of each element and then decrease the
degree of freedom by removing the assembled terms. In the
parallel multi—frontal method, each CPU processor assembles
frontal independently and then communicates each other to
remove all boundary degree of freedom between frontal.
Domain—wise multi—frontal method is depicted in figure 3
briefly, and it is applied in IPSAP[13].

Proc 0 Froc 1 Froc 0.1 Proc 0,1.2.3

Factorization, Factorization,
Forward- — Forward-
substitution substitution

Back- Back-

substitution — substitution

- rhe
Decompose Ky to LLT * *

Compute M=L"1K,, e Parallel BLAS & LAPACK required |

Compute K;;-M™M

Figure 3. Parallel implementation of the domain—wise
multifrontal method [14]

2.4. Global—Local Particle Swarm Optimization
Module

As referred in the previous section, the global—local PSO
module was developed in DIAMOND/IPSAP. Construction and
details of the global—local PSO algorithm were described in
this section.

A map of DIAMOND/Optimization module is shown in figure

- 14 - ) .H {l L'.” '{fﬂr T



4. Optimization module 1s performed on the master
processor. A description which includes FE model file path,
material property, design variable, objective function,
constraint function 1s generated and 1s delivered to the
worker processor. Worcker processor perform the linear
static analysis and the buckling analysis which were
described on description. The master processor can deal
with the wvarious worker processor according to the

computation environment.

DIAMOND

Master
Processor

Job scheduler or CMD L i .
>

e

//
IPSAP
Static
Analysis
Solver

Worker

Processor
#n

Figure 4. DIAMOND/Optimization module map.

Detail interaction between the master processor and the
worker processor is shown in figure 5. In the master
processor, the global optimization which deal with the global

design variables is performed using the PSO algorithm. Each

s A eYsE
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particles which are generated by the PSO algorithm are
evaluated in the worker processor. At the same time, the
local optimization is performed using the PSO algorithm in
the worker processor. The worker processor perform the
linear static analysis with the global FE model which is
described in a description. A stress and displacement for
each node is output. With these result and description
including the local FE model informations which are element
ID, the local design variable and optimization functions which
are the local objective function and the local constraint
functions, the worker processor start the local optimization.
The local FE model is generated using local element ID by
the worker processor and boundary condition 1s obtained
from the linear static analysis result of the global FE model.
The linear static analysis and the static buckling analysis of
the local FE model are performed and these results are used
for objective function and constraint function of the local
optimization. The local fitness is evaluated and the best
position of swarm and particles is updated. The local
optimization 1is repeated until satisfying the termination
condition. In each repeat, the global FE model and the linear
static analysis result are wupdated with the local design
variables which are optimized in current repeat and the
boundary condition of the local FE model also updated with
the updated displacement. When the termination condition is
satisfied in the local optimization, the worker processor pass
the evaluation values for the global optimization to the
master processor. The master processor update the best

position of the particles using evaluation values which were
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passed by worker processors.
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Update velocity & Analysis of Variable
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Figure 5. Interaction between master and worker processor.

The global—local PSO module has three interface dialog. It
is shown in figure 6. (a) is a dialog for setup the
optimization script and enter the design variable. The
optimization script is the description which mentioned above.
This script includes the FE model file path, the design
variables, objective function, constraint function. After setup
the optimization script and click ‘Setup Variable’ button,
the maximum and minimum values of the design variable
which were described on the optimization script are
calculated and are entered in the table automatically. In
default, the minimum value is 10% of initial value, the
maximum value is 150% of initial value. These values are
able to change by the wuser. The local design variables,

element ID of the local FE model, the objective function and

- 17 - ,{ﬂ __3- t‘_” -:j'# T]-'r_
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contratint function are also entered. To apply all the setup,
click ‘Apply’ button. (b) is a dialog for setting the PSO
parameter and the termination condition. In default, a number
of particle is 30, the momentum coefficient is 0.8, the
attraction coefficients are 0.5 respectively. The position
affect coefficient and the velocity affect coefficietn are 1.0
respectively. For the termination condition, a number of step
is 200 and the tolerance of the design variable is 0.000001
To apply all the setup, click ‘Apply’ button. (c) is a dialog
for starting the optimization and monitoring. Clicking the
'Optimization Start' to start the optimization. On the left side
of the dialog, the current step and an optimized evaluation
value 1s output. The optimization history graph is output to
the center of the dialog. On the right side of the dialog,
optimize processes such as the evaluation value and the
current generated particles are output. Optimization is
continued until it reaches the termination condition entered in
(b). A pop—up window will be appeared when the

termination condition is satisfied.
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Figure 6. Preprocessor for optimization module in DIAMOND. (a)

setup range of variables dialog,

optimizatio

n output dialog

(b) set environment dialog,

2.5. Objective Function and Constraint

In this

chapter,
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constraints are derived. Static failure analysis and buckling

analysis are considered for that.
2.5.1. Objective Function

In the structural optimization problems, mass is typically
used as objective function. In the case of finite elements are
used, it can be obtained as sum of each element mass. It

can be expressed as follow

minimize M(;f): f] 0.V, (8)

e=1

where p, is density of element and V, is volume of element.
In the every step of optimal process, thickness of shell and
cross section information of beam can be changed. Above
equation is necessary because mass should be minimized for

most of structural optimization.
2.5.2. Constraint: Critical Buckling Load

The cross sections of aerocraft/launch vehicle structure
tend to consist of an assembly of thin plates. When the
plates is subjected to large compressive stresses, the thin
plates that make up the cross section may buckle before the
full strength of the member is attained if the thin plates are
too slender. When a cross sectional element fails in buckling,
then the member capacity is reached. Therefore, local

buckling becomes a limit state for the strength of the
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structure subjected to compressive stress rather than
strength—based failure criteria.

In this chapter, constraints about buckling analysis is
derived. In advance, governing equation of static buckling

analysis is expressed as follow
[+ N[5, ]{s}= {0} 9

where K, is stiffness matrix which is referred in the
previous chapter. K, is geometric stiffness matrix. § is nodal
displacement vector. This problem 1is general form of
eigenvalue problem. The first mode of equation (15) is

critical buckling load coefficient. &, is described as follow.
[KS]ZfJB]T[(J] [B) | J| dgdnd¢ (10)
14

where B is an interpolation matrix obtained by imposing the
considered set of shape functions, C is constitutive matrix, J
+ the determinant of the Jacobian matrix.

Otherwise, K, is formulated as follow

1&,)= [[ 1G] on] [Glnl Ada,
+ [[ 1) oul [Gilnl Jlaa,

+f/[Gsl]T[00b][Gsl]il—;lJldAe
+//[G*2]T[%b] [G;Q]?—;|J|dfle

(11)
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where h is shell thickness. It is consists of in—plane,
bending and transverse shear terms, this equation is
effective only for shell elements.

After obtaining stress vector from static analyis results,
geometric stiffness matrix can be assembled by above
equation. Then the equation (15) can be solved by eigen
solver like block lanczos algorithm. If the structure is
subjected to tensile load, their eigen value will be smaller
then zero. Therefore, it should be iterated until smallest
positive eigen value is found. X of equation (1) is the eigen

value of static buckling analysis results.

2.5.3. Constraint: Failure Index

In structural problems, where the structural response may
be beyond the initiation of nonlinear material behaviour,
material i1s of profound importance for the determination of
the integrity of the structure. For ductile materials, yield
criteria  like von Mises vyield criterion or maximum
stress/strain criterion is commonly used. For anisotropic
material like composite material which is frequently used for
aerospace systems, quadratic failure criterion also can be
considered. Hashin, Tsai—wu, Tsai—hill are popular failure
criteria.

As results of failure analysis, failure index can be obtained.
Failure analysis is composed of performing stress analysis
and applying failure -criterion. Following linear equation 1is

typical static analysis problem.
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Ku=F 12

where K is stiffness matrix, » is displacement vector, F is
force vector. K matrix can be assembled by structural
domain and boundary condition. If external force is exist, F
is given. Then w vector can be obtained by inversing the
stiffness matrix. Design variables of structural optimization
problem are used for calculating the stiffness matrix.

Strain—displacement relationship can be expressed as

following equation (13).

1 ou,; Buj o
€. = (8xj+ 81‘2-) (z,]—1,2,3) (13)

where ¢;, is strain tensor. u; is tensor notation of u vector

j
and =z, is tensor of nodal position. Finally, stress can be

obtained by stress—strain relationship as equation (14)

3 3
O = > Zcijklekl (i,j=1,2,3) (14)
F=1=1

where ¢;; is stress tensor and ¢;;, is elasticity tensor. Stress

J

tensor can be expressed engineering notation as follow.

ij-J
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It is composed of three normal stress components and
three shear stress components. For beam elements, only
axial stress exist while shell element has two component of
normal stress and one shear stress component.

For two dimensional elements, failure criterion can be

expressed as follow.

Maximum Stress Failure Criterion:

f=%<1 when o, >0 (16a)
t
|C’1|
f=- <1 when o, <0 (16b)
p)
f: 7< 1 when 09 >0 (16¢)
t
_ |0
f=-5—<1 when 0, <0 (16d)
|06|
= <1 (161)
1=,

where o, and o, are normal stress of each direction. o4 is
shear stress. X,, Y, are tensile strength of each direction
while X,, Y, are compressive strength. If the value of f
exceed unit, failure is occurred. Maximum stress failure
criterion is simplest form of failure criteion and no
interaction between the stress components are considered. If
it is assumed as isotropic material, all strength normal
direction strength will have same value and then only two
strength components, normal direction and shear direction

strength, are required.
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On the other hands, Tsai—Wu failure criterion can be

expressed as following equation

Tsui—Wu Failure Criterion:

Fo,+Fo0; <1 17

F. are strength

where o, o, are stress tensor, F, i

i J
components. When the left side of equation (17) exceed
unity, then failure is occurred.

For isotropic material like metal, maximum stress or von
Mises failure criterion can be used rather than quadratic
form. For applied failure criterion, maximum component of
failure index can be obtained. constraint function f(;) of
equation (1) indicate the index. Therefore, one failure index

per load case is obtained.

3. Optimization of Stiffened Shell Box
using Global—Local PSO

3.1. Optimization of Stiffened Shell Box

As referred in section 2.1, the global—local scheme can be
applied on the structural optimization which constructed with
the stiffener and the shell. In this section, the mass
minimization of the stiffened shell box, which is a simple
shape of the part of flight wing box, is considered. The

stiffened shell box is consist of 4 spars, 2 ribs and 6 panels.
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A fixed boundary condition is applied on 4 node in a corner
the back. Vertical upward force of 5400 N at node in corner
the front. The stiffened shell box FE model is shown in

figure 8. Table 2 shows a material property of this example.

Node : 5028
Element :
_Quadd = 5120

Figure 7. Finite element model of stiffened shell box.

Table 2. Material properties of stiffened shell box FE model.

(Pa] ratio (kg!m (Pa)

Panel 7.31E+10 0.33 2.84E+03 3.59E+08
Rib, Spar 1.95E+11 0.27 8.00E+03 6.656E+08

The design variables are the thickness of spars, ribs and
panels. The initial values for the thickness and a range is
shown in table 3. Constraints are imposed in terms of failure
index of each element and critical buckling load coefficient.
The allowable failure index is 0.5 applying 1.0 of M.O.S
(margin of safety). The allowable critical buckling load
coefficient is unit. For the global—local PSO algorithm, each

panel has been set to a local area for the local optimization.
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The thicknesses of panels are the local design variables.
Failure index are constraints for the global optimization and
the local optimization. Critical buckling load coefficient are
constraints for the local optimization in upper surface panels
only. Because of three panels which located on upper
surface are subjected to compressive stress. Table 3 shows
the design variables of stiffened shell box FE model. A
number of particles is 100 and a number of steps is 200.
For the global—local PSO algorithm, a number of particles in
the global optimization is 48, a number of particles in the
local optimization i1s 7 for each local area. Total number of
particles i1s same with the SPSO algorithm. Parameter o is

0.8, b, and b, are 0.5, ¢ and 4 are 1.

Table 3. Design variables of stiffened shell box FE model.

Design Variable Max
(Thickness) (m)

Upper Surface g 0005  0.0075  0.005

w
o ty i3
2
m
g+ LowerSurface 9905 0.0075 0.005
Sy Lyt
°
= g Stiffener 0.0005 0.0075 0.005
_g_t:u X7~
o=

3.2. Optimization Results

Table 4 and 7 show the optimization results of the stiffened
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shell box FE model. The optimized mass using the SPSO
algorithm is 84.6 kg. The optimized mass using the
global—local PSO algorithm is 82.1 kg. The elapsed time per
particle using the SPSO is shorten than the global—local PSO
algorithm. But total elapsed time using the global—local PSO
algorithm is much faster than the SPSO algorithm. The mass
optimization history is shown in figure 8. It can be seen that
a lot of mass is dropped in early step in the global—local
PSO algorithm. This effect can be seen as the local

optimization.
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Table 4.

model.

Local
Variables

Global
Variables

Design
Variable

(Thickness)

x10
X131

X1

5.062E-03
5.888E-03
5.917E-03
5.316E-03
4.008E-03
4.460E-03
4.295E-03
2.016E-03
4.774E-03
1.996E-03
3.960E-03
5.047E-03
3.211E-03
5.664E-03
2.893E-03
5.184E-03
2.314E-03
4.495E-03

_29_

Optimized design variables of stiffened shell box FE

Global-Local

PSO

2.468E-03
3.381E-03
2.704E-03
5.000E-04
5.000E-04
5.000E-04
5.950E-03
2.166E-03
6.489E-03
6.730E-03
5.846E-03
6.186E-03
1.413E-03
6.542E-03
4.243E-03
2.226E-03
1.426E-03
3.157E-03
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Table 5. Optimized results of stiffened shell box FE model.

Global-Local
PSO

Optimized mass 84.6 82.1

Number of step 52 7
for optimal position

120 | . )
— 8PS0

1151 — Global-Local Scheme

110} _

Mass (kg)
o
o

85} 3

800 50 100 150 200

Number of Step

Figure 8. Mass optimization history of stiffened shell box FE

model.

4. Optimization Analysis of Launch
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Vehicle using Global—Local PSO

4.1. Optimization of Launch Vehicle

In this section, the mass minimization of the launch vehicle,
which is a virtual model of the KSLV—II, is considered. The
launch vehicle has 2 liquid engine, a kick engine and 4
nozzle in 1st stage rocket. A shape of each engine is
simplified to control total degree of freedom. Cylinder which
has been reinforced by the stiffener is realized. Table 6

shows a material property of this example.

- ] -1



Fairing

2nd
Stage

131
Stage

Node : 142546

X4 Element :
Quad4 = 140883
Trid = 4776
Beam2 = 172
Local
Area 2
Local Top View

Area 3

Bottom View

Local
Area 1

Figure 9. Finite element model of launch vehicle FE model.
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Table 6. Material properties of launch vehicle FE model.

Young's Poisson's| Densi @ Tensile

100000002 7.17E+10 0.33 2.81E+03 2.45E-05 4.00E+08
100000005 7.31E+10 0.33 2.84E+03 2.44E-05 3.59E+08
100000008 7.31E+10 0.33 2.80E+03 2.44E-05 4.27E+08
100000011 2.05E+11 0.29 7.85E+03 1.17E-05 5.25E+08
100000014 1.95E+11 0.27 B.00E+03 1.B7E-05 6.65E+08
100000015 1.10E+11 0.31 4.43E+03 8.50E-06 9.23E+08

The design variables are the thickness of the propellant
tanks, cylinders, stiffeners, nose, ribs and pipes. The initial
values for the thickness and a range is shown in table 7.
Constraints are imposed in terms of failure index of each
element. The allowable failure index is 0.869 applying 0.15
of M.O.S. For the global—local PSO algorithm, the local areas
are set as figure 10. The local variables t;, t4 and ts have
the high sensitivity in mass evaluation but not critical in
failure index. Failure index are constraints for the global
optimization and the local optimization. A number of particles
i1s 60. For the global—local PSO algorithm, a number of
particles in the global optimization i1s 42, a number of
particles in the local optimization is 6 for each local area.

Total number of particles is same with the SPSO algorithm.

HO
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Table 7. Design variables of launch vehicle FE model.

Design Variable
(Thickness)

Local Variables

Global Variables

Local
Area 1

Local
Area 2

Local
Area 3

X1
X2
X3
Xy
X5

X5

0.001

0.002
0.002
0.001

0.001

0.002

0.001
0.002
0.002
0.002
0.002
0.001

_34_

0.003

0.006

0.006
0.003

0.003

0.006

0.003
0.006
0.006
0.006
0.006
0.003

0.002

0.004

0.004
0.002

0.002

0.004

0.002
0.004
0.004
0.004
0.004
0.002

-



[

Figure 10. Finite element model of local area. (a) 1st stage, (b)

fairing (c) 2nd stage.

In this example, load condition during fligh phase is
considered. There are aerodynamic load, aerodynamic heating
and acceleration force. To assume the flight environment, the
launching history of the KSLV-I is referred. Selection of a
total of 9 cases, depending on time was calculated. Pressure
distribution and temperature distribution are predicted by
aerodynamic analysis and thermal analysis using CFD with
[22], [23] and [24]. Acceleration force is calculated by

- 35 - S e ki)



slope of velocity from launching history. At the time of 140
seconds after launch which is most high load case among
nine cases, the altitude is 67 km, mach number is 6.25,
acceleration is 44.325 m/s?. Th load of this cases was

carried out to optimized the launch vehicle FE model.

4.2. Optimization Results

Table 8 and 11 show the optimization results of the launch
vehicle FE model. The optimized mass using the SPSO
algorithm i1s 7550 kg. The optimized mass using the
global—local PSO algorithm is 7080 kg. Since the initial mass
si 10260 kg, it can be seen that the global—local PSO found
a mass which lower than the SPSO. Figure 11 shows the
mass optimization history. As the result of the stiffened shell
box, it can be seen that a mass is highly dropped by the
global—local PSO in early step. Total elapsed time using the
global—local PSO is much shorten than the SPSO whereas

the elapsed time per particle is not.
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Table 8. Optimized design variables of launch vehicle FE model.

Local
Variables

Global
Variables

Design
Variable

(Thickness)

1.000E-03
2.000E-03
2.888E-03
1.468E-03
1.613E-03
4.570E-03
1.881E-03
2.173E-03
2.197E-03
3.265E-03
3.485E-03
3.572E-03

Global-Local
PSO

1.000E-03
2.000E-03
2.000E-03
1.000E-03
1.000E-03
2.000E-03
1.978E-03
2.050E-03
4.180E-03
3.529E-03
3.528E-03
2.416E-03

Table 9. Optimization results of launch vehicle FE model.

Global-Local
PSO

Optimized mass

Number of step
for optimal position

_37_

7550
161

7080
71



10500 .

—SPSO
10000} — Global-Local Scheme ||
9500 '
S 9000 I
&
< 8500 |
8000 ]
7500 —
7000 ' L .
0 50 100 150 200
Number of Step

Figure 11. Mass optimization history of launch vehicle FE model.

5. Conclusion

In this study, the global—local scheme was applied into the
PSO algorithm for the structural design optimization. And
structural design optimizations were performed for stiffened
shell box and launch vehicle models. All analysis works were
based on DIAMOND/IPSAP.

The conventional structural optimization problem was
separated to the global optimization problem and the local
optimization problem using the global—local scheme. The
global—local PSO module for the global—local PSO algorithm,
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the PSO algorithm wusing the global—local scheme, was
developed to solve the global—local optimization problem.
Failure index and critical buckling load coefficient were
consider for constraints. To linear static and static buckling
analysis works, IPSAP was used to solve the problem faster
and to use the memory effectively. Pre/post processors were
developed in order to define the structural optimization
problem and monitor the progress.

The stiffened shell box was optimized for mass, with
considering thickness as design variable. In this example, the
local area was a panel surrounded by the stiffener. Since
load path does not change significantly even if the local
optimization 1s performed, stiffened structure is suitable to
perform the local buckling analysis because the buckling
mode 1s present in the local area surrounded by the
stiffener. Critical buckling load coefficient was used to
constraint for the local optimization. Total elapsed time for
searching the global optimal position using the global—local
PSO algorithm was shorten than the SPSO algorithm even
though the elapsed time per each particle was longer. It was
confirmed the benefits of dividing the design area by the
global and the local. The last example was perform for mass
optimization of launch vehicle. The local was divided by
three. Each local area has a two design variables. As a
result of performing the optimization, mass reduction of 26%
by the SPSO algorithm and mass reduction of 30% by the
global—local PSO algorithm were output. Total elapsed time
for optimal position using the global—local PSO algorithm was
33% faster than the SPSO algorithm.
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This study has the significance that it 1s constructed
computational environment for the  structural design
optimization using the global—local PSO algorithm. By
develope pre/post processor for easy handling the structure
optimization problem, computational environment is
constructed for the optimal design of various structures.
Since it provide the reasonable and good solutions
determining the initial design, cost and time consumption to
develop the aerospace system structures are able to

decrease effectively.
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