저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

- 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건을 명확히 나타내야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer
A study on the component analysis method using laser based spectroscopy

2015년 8월

서울대학교 대학원
기계항공공학부
최 재 준
레이저를 활용한 비접촉식
분광 분석법 연구

A study on the component analysis method
using laser based spectroscopy

지도교수 여재익

이 논문을 공학석사 학위논문으로 제출함

2015년 4월

서울대학교 대학원
기계항공공학부
최재준

최재준의 공학석사 학위논문을 인준함

2015년 6월

위원 장 정인석
부위원장 여재익
위원장 고승환
초 록

레이저 유도 플라즈마 붕괴 분광 분석법(LIBS)는 원자 방출 분광법 (AES)의 한 종류로써 높은 에너지를 가지는 펄스 레이저를 샘플의 표면에 조사하여 생긴 플라즈마를 분광하여 샘플의 화학 조성 및 원소 구성의 정성, 정량적으로 분석할 수 있는 기법으로 원자 검출에 장점을 가진다. 레이저 유도 플라즈마 붕괴 분광 분석법은 해저 탐사, 폭발물 검출, 환경오염 감시 등과 같은 다양한 분야에 적용되고 있으며, 원격검출이 가능하다는 장점을 활용하여 최근에는 우주 탐사 분야에도 적용하기 위하여 활발한 연구가 진행되고 있다. 기존의 원거리 레이저 유도 플라즈마 붕괴 분광 분석법의 경우 화성 탐사를 주 목적으로 하여 7 torr, CO₂ 대기에서 많은 연구들이 진행되어 왔다. 본 연구에서는 다양한 표준물질을 활용하여 기존에 고려되지 않았던 달 탐사까지의 적용 가능한 10⁻² torr의 압력환경 모사 를 통해 원거리 LIBS기술의 활용 가능성에 대하여 분석하였다. 또한, 고분자 및 암석 샘플을 활용하여 분자 신호 측정에 강점을 가지는 라만 분광법에 대한 연구를 함께 진행하였으며, 각 분광 분석법의 강점을 융합하고 약점을 극복하고자 두 분광 시스템을 하나의 장비로 구성하기 위한 Raman-LIBS 융합 기술에 대하여 기초연구를 수행하였다.

주요어 : 레이저 유도 플라즈마 붕괴 분광 분석법, 라만 분광법, 원거리, 저압, Raman-LIBS 융합 기술

학번 : 2013-23091
목차

초 록 .. i
목 차 .. ii
표 목차 .. iv
그림 목차 ... iv

제 1 장 서 론 .. 1
 1.1 LIBS (Laser-Induced Breakdown Spectroscopy) 1

제 2 장 실험 방법 및 장비 구성 .. 3
 2.1 실험 구성 개요도 ... 3
 2.1.1 원거리 LIBS 시스템 ... 4
 2.1.2 Raman 분광 시스템 ... 5
 2.1.3 Raman-LIBS 융합 시스템 ... 5
 2.2 실험 샘플 .. 6
 2.2.1 원거리 LIBS 시스템 실험 샘플 ... 6
 2.2.2 라만 분광 시스템 실험 샘플 ... 8
 2.2.3 Raman-LIBS 융합 시스템 실험 샘플 8

제 3 장 실험 결과 및 분석 .. 9
 3.1 원거리 LIBS 결과 분석 .. 9
 3.1.1 신호 세기 ... 9
 3.2.1 신호 대 잡음 비 ... 13
 3.2.2 검량선 ... 16
표 목차

표 1 표준물질 샘플 목록 및 성분 .. 7
표 2 원소별 1차 이온화 에너지 및 전기 음성도 11
표 3 표준물질의 압력별 선폭 및 전자 수 밀도 16

그림 목차

그림 1 원거리 LIBS 시스템 개요도 .. 3
그림 2 라만 분광 시스템 개요도 .. 3
그림 3 Raman-LIBS 융합 시스템 개요도 3
그림 4 원거리 LIBS 샘플 (금속, 현무암, 파우더) 7
그림 5 Raman 샘플 (나프탈렌, 섬석, 황) 8
그림 6 Raman-LIBS 동시검출 시스템 샘플 (섬석, 백운석) 8
그림 7 압력별 금속샘플(654b,1128,1243)의 신호세기 10
그림 8 압력별 현무암(BCR-2G) 샘플의 신호세기 11
그림 9 압력별 파우더(1573a) 샘플의 신호세기 12
그림 10 압력별 금속샘플(654b,1128,1243)의 신호 대 잡음 비 14
그림 11 압력별 현무암(BCR-2G)의 신호 대 잡음 비 14
그림 12 압력별 파우더(1573a) 샘플의 신호 대 잡음 비 15
그림 13 금속 샘플의 알루미늄 검량선 18
그림 14 현무암 샘플의 칼륨 검량선 .. 18
그림 15 파우더 샘플의 칼슘 검량선 ... 19
그림 16 고분자, 암석, 황 샘플의 압력별 라만 스펙트럼 20
그림 17 섬석의 에너지별 라만 스펙트럼 21
그림 18 백운암의 라만 스펙트럼 ... 22
그림 19 선석의 에너지별 LIBS 스펙트럼 22
그림 20 백운암의 LIBS 스펙트럼 23
그림 21 선석의 에너지별 Raman-LIBS 스펙트럼 23
그림 22 백운암의 Raman-LIBS 스펙트럼 24
제 1 장 서론

LIBS(Laser-Induced Breakdown Spectroscopy)는 레이저 유도 플라즈마 붕괴 분광 분석법의 약자로, 높은 에너지의 펄스 레이저를 활용하여 샘플의 표면에 조사시킨 후 생성된 플라즈마의 빛을 분광하여 구성 원소의 성분을 정성, 정량적으로 분석할 수 있는 기법이다. 또 기법 대비 LIBS의 장점은 샘플의 전처리 과정이 필요하지 않아 샘플 오염을 예방할 수 있으며, 상대적으로 짧은 분석 시간과 다양한 원소를 동시에 검출할 수 있다는 장점이 있다. 또한, 망원경을 활용하여 수 m 이상의 원거리에서도 검출이 가능하다는 장점이 있으며, 근거리 검출에 제약이 많은 폭발물 탐지, 해저 탐사, 우주 탐사 분야 등과 같은 다양한 분야에서 활용도가 높아지고 있다. 원거리 LIBS는 1987년 Cremer에 의해 처음으로 이루어졌으며, 0.5~2.4 m의 거리에서 금속성분을 구성하고 있는 원소를 성공적으로 검출한 바 있다 [1]. 2004년 Salle는 화성 대기 조건을 모사하여 3~12 m의 거리에서 원거리 LIBS 연구를 수행함으로써 우주탐사로써의 기술 적용 가능성 확인하였다 [2]. 2005년 프랑스 및 미국의 연구 그룹은 표준 토양 샘플 군(group)을 활용하여 화성 대기 조건에서의 원거리 LIBS 연구를 진행한 바 있다 [3]. 2011년에는 Cousin이 3 m의 거리에서 휘석샘플들을 활용하여 화성의 LIBS 데이터베이스를 구축하는 실험을 진행하였으며, 대기압에서 얻은 LIBS 데이터베이스와의 비교를 통해 의미 있는 결과를 도출한 바 있다 [4]. 최근에는 Lasue가 1.5 m의 거리에서 표준 파우더 물질을 활용하여 달 탐사의 원거리 LIBS 기술 적용가능성에 대해 연구를 진행한 바 있다 [5]. 또한, Palanco는 알루미늄과 티타늄 샘플을 활용하여 대기압조건의 다양한 거리에서 원거리 LIBS 계측 실험을 통
해 신호의 질(quality)은 측정 거리, 레이저의 파장과 광학기기의 배치에 따라 크게 영향을 받을 수 있다는 것을 확인 하였으며, Laserna는 대기조건 따라 원거리 LIBS 신호에 섭동이 생길 수 있음을 확인 하였다 [6,7].

LIBS의 분자 신호 측정 약점을 보완하기 위한 라만 분광법은 1928 년 인도의 과학자 찬드라 세카르 라만이 발견한 효과로, 레이저광과 같은 강력한 단색의 여기 광(excitation source)를 쬐었을 때 분자의 진동수만큼 차이가 있는 산란광이 생기는 현상인 라만효과(Raman effect)에서 분자의 진동수를 구하는 분광법으로써, 생명 과학, 재료 과학, 화학 과학, 지구 과학 등과 같은 다양한 분야에서 응용되고 있으며 비파괴적인 검사기법으로 분석시간이 짧다는 특징이 있다. 본 연구에서는 LIBS와 라만의 각 분광 분석법의 강점을 융합하고 약점을 극복하고자 두 분광 시스템을 하나의 장비로 구성하기 위한 Raman-LIBS 복합 기술에 대해 기초연구로 고분자, 암석, 금속, 파우더 샘플을 활용하여 실험적 연구를 수행 하였다.
제 2장 실험 방법 및 구성

2.1 실험 구성 개요도

본 연구에서는, Nd:YAG 레이저, 오실로스코프, 펄스 생성기 및 광학기기를 활용하여 원거리 LIBS, 라만, 그리고 Raman-LIBS 융합 연구에 필요한 시스템을 그림 1 ~ 그림 3과 같이 구축 하였다.

그림 1 원거리 LIBS 시스템 개요도

그림 2 라만 분광 시스템 개요도

그림 3 Raman-LIBS 융합 시스템 개요도
2.1.1 원거리 LIBS 시스템

1064 nm의 기본파장을 가지는 Nd:YAG 레이저(Quantel, Ultra 50) 및 17 ~ 50 mJ/pulse의 에너지를 사용하여 샘플표면에서 레이저 유도 플라즈마가 발생하도록 하였다. 또한, 원거리에서의 효과적인 플라즈마 생성을 위해 4 배율의 beam expander를 사용하였으며, 초 점거리가 5 m인렌즈를 활용하여 샘플 표면에 레이저가 조사되도록 하였다. 생성된 플라즈마는 3.5 인치의 망원경을 활용하여 5.5m의 거리에서 집광 하였으며, 집광 된 빛은 200 µm 의 광섬유를 통해 ICCD와 연결된 분광기(Mechelle and iStar, Andor)로 보내진다. 분광기의 분광범위는 200 nm에서 975 nm 이며, 펄스 생성기 및 오실로스코프와의 시간동기화를 하였다. 최적의 신호 검출을 위해 7 ~ 760 torr 에서는 1 µs, 0.01 torr ~ 1 torr 에서는 0.5 µs의 지연시간을 두었으며, Gate의 폭은 20 µs로 고정하였다. 저압환경 모사를 위해 진공 챔버를 사용하였으며, 압력 조건은 760, 100, 7, 1, 0.1, 0.01 torr의 5가지 조건을 사용하였다. 샘플 표면의 3지점에 각 5발씩 레이저를 조사하여 신호를 획득 하였으며, 정밀한 실험을 위해 압력을 디지털 압력계를 활용하여 모니터링 하였다. 또한, 압력이 낮아지게 됨에 따라 플라즈마가 빠르게 팽창하여 소멸하게 되므로, 망원경을 레이저와 동축에 두어 저압에서도 효율적인 신호검출이 가능하도록 하였다.
2.2 Raman 분광 시스템

LIBS와 동일하게 Nd:YAG(Surelite I, Continuum)를 사용하였으며 파장은 532 nm, 펄스에너지지는 9 ~ 21 mJ/pulse가 사용되었다. 샘플 표면에서 발생한 라만산란광은 초점거리 300 mm를 가지는 plano-convex 렌즈를 통과한 후 notch 필터를 지나 200 μm의 광섬유로 집광되도록 하였다. 집광된 라만 산란광은 분광기(Dongwoo Optron, DM320i)로 전달되며, 신호 검출의 최적화를 위해 분광기의 지연시간은 0 ns, 게이트 폭은 0.1 ms로 설정하였다.

2.3 Raman-LIBS 융합 시스템

Raman-LIBS 동시검출 시스템은 4배율 beam-expander와 초점거리 50mm를 가지는 0.5 인치의 소형렌즈로 구성되어 있다. 9 ~ 21 mJ/pulse의 에너지를 사용하여 샘플표면의 국소부위에는 레이저 유도 플라즈마가 발생하도록 하였으며, 플라즈마 주변에는 라만산란이 발생하도록 하였다. 라만신호는 조사된 레이저광을 측면에서 초점거리 300 mm를 가지는 2인치의 plano-convex 렌즈를 사용하여 집광하였으며, LIBS 신호는 동일한 렌즈를 사용하여 레이저광의 중심을 바라봄으로써 신호를 획득하였다. 집광된 광신호는 200 μm의 광섬유를 지나 분광기(Dongwoo Optron, DM320i)로 전달되었다. LIBS 신호 측정시 분광기의 지연시간은 0.5 μs, 게이트폭은 1 ms, 라만신호 측정시 지연시간 및 게이트폭은 0 ns, 1 ms, 그리고 Raman-LIBS 신호의 동시측정은 0 ns의 지연시간과 1 ms의 게이트폭을 사용하여 실험을 진행하였다.
2.2 실험 샘플

2.2.1 원거리 LIBS 시스템 실험 샘플

원거리 LIBS 실험에는 3가지의 표준물질 그룹(금속, 암석, 파우더) 샘플이 활용되었으며, 각각의 구성성분은 표 1에 자세히 나와 있다. 이러한 샘플들은 실제 탐사 시 마주칠 수 있는 중요한 샘플로서의 가치가 있으며, 샘플의 물리화학적 특성에 따른 원거리 저압 검출 효과의 차이를 확인하고자 하였다.

표준 금속 샘플은 티타늄베이스의 합금으로 1.23 ~ 6.34 % 농도의 알루미늄을 주 원소로 가진다. 표준 암석 샘플은 Columbia River, Hawaiian Volcanic, Icelandic 현무암 샘플들이 사용 되었으며, 탐사 시 빈번히 마주칠 수 있는 샘플이다. 또한, 실험에 사용된 암석 샘플은 타 샘플 대비 다양한 원소를 함유하고 있으며, 실제 달 표면을 구성하고 있는 화학조성과 매우 유사하다는 특징이 있다 [5]. 마지막으로, 홀과 먼지를 모사할 수 있는 4가지의 표준 파우더 샘플이 사용 되었으며 실험의 용이성을 위해 탄소와 수소만으로 이루어진 파라핀 바인더(C_nH_{2n+2})를 사용하여 펠렛(pellet) 형태로 제작 하였다. 이를 위해 최대 35톤의 힘으로 분말을 압축할 수 있는 X-press(SPEX3635)를 사용하여 10톤의 압력으로 2분 30초간 누른 뒤 1분 30초간 서서히 풀어주는 방식으로 제작하였다. 한편, 파우더 샘플은 압력이 낮아짐에 따라 쉽게 흩날리게 되어 신호 획득이 어려움이 있다는 특징이 있다.
표 1. 표준물질 샘플 목록 및 성분

<table>
<thead>
<tr>
<th>Sample</th>
<th>Al</th>
<th>Ca</th>
<th>Fe</th>
<th>K</th>
<th>Mg</th>
<th>Na</th>
<th>Si</th>
</tr>
</thead>
<tbody>
<tr>
<td>654b</td>
<td>6.34*</td>
<td>0.23*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.05*</td>
</tr>
<tr>
<td>1128</td>
<td>3.06*</td>
<td>0.01*</td>
<td>0.13*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1243</td>
<td>1.23*</td>
<td>0.78*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.02*</td>
</tr>
<tr>
<td>BCR-2G</td>
<td>7.14*</td>
<td>5.09*</td>
<td>9.66*</td>
<td>1.49*</td>
<td>2.16*</td>
<td>2.34*</td>
<td>25.3*</td>
</tr>
<tr>
<td>BHVO</td>
<td>7.17*</td>
<td>8.18*</td>
<td>8.37*</td>
<td>0.43*</td>
<td>4.36*</td>
<td>1.62*</td>
<td>23.3*</td>
</tr>
<tr>
<td>BIR-1G</td>
<td>8.20*</td>
<td>9.18*</td>
<td>7.91*</td>
<td>0.03*</td>
<td>5.85*</td>
<td>1.35*</td>
<td>22.4*</td>
</tr>
<tr>
<td>1515</td>
<td>286</td>
<td>1.53*</td>
<td>83</td>
<td></td>
<td></td>
<td>0.27</td>
<td>24.4</td>
</tr>
<tr>
<td>1547</td>
<td>249</td>
<td>1.56*</td>
<td>218</td>
<td></td>
<td></td>
<td>0.43</td>
<td>24</td>
</tr>
<tr>
<td>1573a</td>
<td>598</td>
<td>5.05*</td>
<td>368</td>
<td>2.70*</td>
<td>1.20</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>1575a</td>
<td>580</td>
<td>0.25*</td>
<td>46</td>
<td></td>
<td></td>
<td>0.11</td>
<td>63</td>
</tr>
</tbody>
</table>

(mg/kg 단위이며 * 표시는 % 단위임)

그림 4 원거리 LIBS 샘플 (금속, 현무암, 파우더)
2.2.2 Raman 분광 시스템 실험 샘플

라만 실험에는 그림 5와 같이 고분자, 암석, 그리고 황 샘플이 사용되었다. 고분자 물질은 탄화수소계열인 나프탈렌\(C_{10}H_{8}\)이 사용되었으며, 암석으로는 선석(blue aragonite, \(CaCO_3\)) 그리고 LIBS로 검출하기 어려운 황(sulfur ring)을 사용하였다.

그림 5 Raman 샘플 (나프탈렌, 선석, 황)

2.2.3 Raman-LIBS 융합 시스템 실험 샘플

Raman-LIBS 동시검출 연구에는 그림 6과 같이 선석(blue aragonite, \(CaCO_3\))과 백운석(dolomite, \(CaMg(CO_3)_2\))를 사용되었다

그림 6 Raman-LIBS 동시검출 시스템 샘플 (선석, 백운석)
제 3장 실험 결과 및 분석

3.1 원거리 LIBS 결과 분석

3.1.1 신호 세기

각 샘플에 대해 압력별 신호세기 비교를 위해 50mJ/pulse의 에너지를 사용하였다. 첫 번째로 금속을 구성하고 있는 주요 원소인 알루미늄에 대한 압력별 원거리 검출 효과를 그림 7과 같이 분석하였다. 샘플 내 알루미늄의 함유량은 1.23 ~ 6.34 %이며, 알루미늄은 상대적으로 신호세기가 낮은 저압에서도 높은 신호세기를 방출하여 압력별 원거리 검출 효과를 이해하는데 도움을 줄 수 있다 [8]. 알루미늄의 최대 원자 방출 peak은 Al I 396.15 nm으로 검출 되었으며, 농도와 상관없이 모든 금속 샘플에서 100 torr 근방에서 나타나는 것을 확인하였다. 또한, 점차 압력이 감소함에 따라 신호세기가 급격하게 감소하는 것을 확인하였다. 특히 압력이 1 torr 이하인 저압환경에서는 최대신호대비 수십 배 이상 감소하는 것을 확인 할 수 있다. 모든 압력구간에서 알루미늄 농도 차이에 따른 신호세기의 차이가 두터하게 나타날을 이용해 원거리 LIBS를 활용한 정량 분석 가능성을 또한 예측해 볼 수 있을 것으로 판단된다. 고려된 압력에서 알루미늄 신호를 얻기 위한 최소 에너지는 17.2 mJ/pulse로 계측되었다.
그림 7. 압력별 금속샘플(654b, 1128, 1243)의 신호세기

두 번째로, 실제 달 표면의 화학조성과 매우 유사한 암석 샘플에 대한 압력별 신호세기를 분석하였다. 그림 8은 현무암(BCR-2G) 샘플의 압력별 신호세기를 나타낸다. 결과에서 확인할 수 있듯이, 금속과 유사하게 암석을 구성하고 있는 대부분의 원소의 신호세기는 100 torr 근방에서 최대세기를 나타내었으며, 알루미늄은 396.15 nm, 칼슘은 396.84 nm, 칼륨은 769.89 nm, 마그네슘은 448.11 nm, 나트륨은 588.99 nm에서 원소별 최대 방출 신호가 나타남을 확인하였다. 한편, 나트륨과 칼륨의 경우 대기압 조건에서 최대 신호세기를 나타내는 특이 현상을 보였으며, 이러한 현상은 나트륨과 칼륨의 물리화학적인 성질을 이용하여 설명될 수 있다. 표 2에 나타나 있는 것처럼, 나트륨과 칼륨은 타 원소 대비 낮은 전기 음성도와 이온화 에너지를 가진다. 따라서 대기압 조건에서도 다른 원소와 비교하여 이온화가 쉽게 되며 주변 공기와 제결합이 상대적으로 더디게
일어남으로 강한 신호가 유지 될 수 있다. 또한, 금속샘플과 유사하게 압력이 0.01 torr까지 감소함에 따라 신호세기는 최대신호세기 대비 수십 배 가량 감소하는 것을 확인 하였다. 또한, 다양한 원소를 함유하고 있는 현무암 샘플의 성분분석을 위한 최소 에너지는 30mJ/pulse로 계측 되었다. 결과를 통해 원거리 LIBS 기술이 실제 달 표면 탐사에 적용될 수 있는 가능성을 확인 하였다.

그림 8. 압력별 현무암(BCR-2G) 샘플의 신호 세기

표 2. 원소별 1차 이온화 에너지 및 전기 음성도

<table>
<thead>
<tr>
<th>원소</th>
<th>1차 이온화 에너지</th>
<th>전기 음성도</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>5.98 eV</td>
<td>1.61</td>
</tr>
<tr>
<td>Ca</td>
<td>6.11 eV</td>
<td>1.00</td>
</tr>
<tr>
<td>Fe</td>
<td>7.90 eV</td>
<td>1.83</td>
</tr>
<tr>
<td>K</td>
<td>4.34 eV</td>
<td>0.82</td>
</tr>
<tr>
<td>Mg</td>
<td>7.64 eV</td>
<td>1.31</td>
</tr>
<tr>
<td>Na</td>
<td>5.13 eV</td>
<td>0.93</td>
</tr>
<tr>
<td>Si</td>
<td>8.18 eV</td>
<td>1.90</td>
</tr>
</tbody>
</table>
마지막으로 홍면지를 모사할 수 있는 표준물질 파우더 샘플 1573a를 활용하여 압력별 신호특성을 확인하고자 그림 9와 같이 분석을 진행하였다. 칼륨과 나트륨의 경우 Ca II 396.84 nm와 Na I 589.99 nm에서 최대 원자 신호 방출 세기를 나타내었으며, 암석샘플에서 나타난 현상과 동일하게 낮은 이온화 에너지 및 전기음성도로 인해 대기압조건에서 최대 신호 세기를 나타내었다. 알루미늄과 칼슘은 598 ppm과 136 ppm의 미량의 농도를 가짐으로 신호 세기가 매우 낮아 1 torr와 10 torr를 제외한 압력구간에서는 신호 구분에 어려움이 있었다. 또한, 압력이 감소함에 따라 원소의 종류와 농도에 관계없이 신호가 급격히 약해지는 것을 확인 하였으며, 파우더 내의 성분을 분석하기 위한 최소 에너지는 40mJ/pulse로 계측 되었다. 이는 고려된 샘플 중 성분분석을 위해 요구되는 에너지가 가장 높으며, 이러한 이유는 압력이 낮아짐에 따라 샘플이 흩날리게 되어 신호 획득에 큰 영향을 미쳤기 때문이라 판단된다.

그림 9. 압력별 파우더(1573a)샘플의 신호 세기
3.1.2 신호 대 잡음 비

신호 대 잡음 비(signal to noise ratio) 계산을 통해 원거리 LIBS 시스템을 통해 획득한 신호의 질을 가늠할 수 있다. 원소의 최대 방출 peak의 면적과 주변 잡음의 면적을 계산하여 나누어 줄으므로써 각 샘플의 원소별 신호 대 잡음 비를 그림 9 ~ 그림 11과 같이 도시화 하였다. 금속샘플(654b, 1128, 1243)의 경우 압력이 감소함에 따라 신호 대 잡음 비가 점차 증가하는 경향을 보였으며 0.01 torr에서 약 50 ~ 80으로 최대값을 가지는 것을 확인하였다. 암석 (BCR-2G)의 경우 최대 신호 대 잡음 비는 1 torr 근방에서 나타남을 확인하였으며 이후 점차 감소하여 대기압과 비슷한 크기를 가지는 것을 확인하였다. 마지막으로 파우더 샘플(1573a)의 경우 0.1 torr에서 최대 신호 대 잡음 비를 가지는 것을 확인하였다. 결과적으로 신호 대 잡음 비의 크기는 샘플이 함유하고 있는 원소의 농도에 따라 크게 변화하는 것을 확인하였으며, 압력에 따른 전체적인 경향은 샘플의 밀도, 끓는점 등과 같은 물성치에 영향을 더 크게 받는 것을 간접적으로 확인할 수 있었다. 한편, 압력이 감소함에 따라 신호세기는 감소하였지만 신호 대 잡음 비는 전반적으로 증가하는 경향을 보였으며, 이러한 결과는 레이저에 의해 생긴 유도 플라즈마내의 전자밀도와 관계가 깊다 [9]. 플라즈마 내의 전자 수 밀도는 스타르크 증폭(Stark broadening)에 의한 원소 방출 선폭 (emission line width)을 측정함으로써 계산할 수 있다 [10].
그림 10. 압력별 금속샘플(654b, 1128, 1243)의 신호 대 잡음 비

그림 11. 압력별 현무암(BCR-2G)의 신호 대 잡음 비
그림 12. 압력별 파우더(1573a)샘플의 신호 대 잡음 비

여기서 $\Delta \lambda_{1/2}$ 는 방출 선폭을 반치폭(Full width half maximum, FWHM)으로 나타낸 것이고, w 는 전자충돌 폭 변수(electron impact width parameter)로써 플라즈마 온도의 함수이다. N_e 는 플라즈마내의 전자 수 밀도, N_r 는 기준 전자밀도 이다 [10].

$$\Delta \lambda_{1/2} = 2w \left(\frac{N_e}{N_r} \right)$$

전자 수 밀도를 계산하기 위한 파라미터들의 값들은 NIST의 데이터 베이스 및 관련 문헌을 활용하여 구하였다 [10,11]. 본 실험 결과를 사용하여 계산한 샘플별 전자밀도를 표 3에 나타내었다.
표 3. 표준물질의 압력별 선폭 및 전자 수 밀도

<table>
<thead>
<tr>
<th>Pressure [Torr]</th>
<th>Alloy (654b)</th>
<th>Rock (BCR-2G)</th>
<th>Powder (1573a)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Al I 396.15 nm</td>
<td>Ca II 396.84 nm</td>
<td>Ca II 396.84 nm</td>
</tr>
<tr>
<td>FWHM [nm]</td>
<td>N_e [10^{8} cm$^{-1}$]</td>
<td>FWHM [nm]</td>
<td>N_e [10^{8} cm$^{-1}$]</td>
</tr>
<tr>
<td>0.01</td>
<td>0.659</td>
<td>0.675</td>
<td>0.203</td>
</tr>
<tr>
<td>0.1</td>
<td>0.676</td>
<td>0.807</td>
<td>0.300</td>
</tr>
<tr>
<td>1</td>
<td>0.763</td>
<td>0.918</td>
<td>0.303</td>
</tr>
<tr>
<td>7</td>
<td>0.725</td>
<td>0.874</td>
<td>0.315</td>
</tr>
<tr>
<td>100</td>
<td>0.894</td>
<td>1.111</td>
<td>0.369</td>
</tr>
<tr>
<td>760</td>
<td>0.885</td>
<td>1.087</td>
<td>0.416</td>
</tr>
</tbody>
</table>

계산된 압력별 전자밀도를 참고하면 모든 샘플에서 압력이 감소함에 따라 전자밀도가 급격하게 감소하는 것을 확인 할 수 있으며, 이는 곧 스펙트럼내에 존재하는 노이즈 레벨의 감소로 이어진다 [9]. 따라서 압력이 감소함에 따라 신호세기는 크게 감소하였지만, 신호대잡음비는 오히려 증가하거나 대기압 상태에 준하는 결과를 얻을 수 있었다. 이러한 결과는 화성, 달과 같은 매우 낮은 압력에서도 원거리 LIBS 기술을 활용한 성분 분석이 가능함을 입증한 결과이다.

3.1.3 검량선

원거리 LIBS를 활용한 정량분석 가능성을 확인하기 위하여, 3가지의 샘플(금속, 암석, 파우더)에 대해 검량선을 작성 하였다. 동일한 실험 조건에서 농도가 주어진 다수의 샘플과 농도에 따른 신
호세기를 선형 회귀(Linear regression)를 사용하여 fitting하여 그림 13 ~ 그림 15와 같은 결과를 얻을 수 있다. 농도와 신호세기 사이의 상관관계의 정도를 나타내는 상관계수(correlation coefficient)를 제공한 값인 결정계수(coefficient of determination, R^2)를 통해 검량선의 정확도를 검증 할 수 있다. 즉, 결정계수가 1에 가까울수록 검량선이 정확하다는 의미가 된다. 이와 같이 농도라는 한가지의 변수만을 사용하여 검량선을 작성하는 기법을 단변량 분석 (univariate analysis)이라 한다. 한편 다양한 변수를 사용하는 PLS(partial least square), PCS(principal component analysis)와 같은 다변량 분석 (multivariate analysis) 기법은 높은 정확도를 가지지만 추가적인 통계적기법이 요구되며 상대적으로 시간이 오래 걸리며 복잡하다는 단점이 있다. 이에 반해 단변량 분석법은 쉽고 빠르게 적용할 수 있으며 적절점이라는 장점이 있다. 결과에서 볼 수 있듯이, 알루미늄, 칼륨, 칼슘 농도차이에 따른 신호세기 차이를 활용하여 대기압과 0.01 torr에서 성공적으로 검량선을 작성 하였으며, 0.9 이상의 높은 상관계수를 얻을 수 있었다. 또한, 압력이 감소함에 따라 대기압에 비해 상관계수가 높아짐을 확인 하였으며, 이러한 결과는 압력감소에 따른 매트릭스(matrix effect) 효과의 감소로 추정된다. 매트릭스 효과는 샘플의 물리화학적 성질에 의해 주로 기인하며 정량분석의 정확도에 큰 영향을 미친다 [12]. LIBS의 경우 매트릭스 효과는 플라즈마 내에 존재하는 들뜬 이온 및 원자들이 서로 부딪히며 상호 작용을 하며 발생하게 되는데, 압력이 감소함에 따라 플라즈마 내에 존재하는 입자들의 상호작용 시간이 감소하게 되어 높은 상관계수를 얻은 것으로 추정된다. 따라서 화성 및 달과 같은 낮은 압력조건 이 LIBS를 활용한 정량분석에 더 유리할 것으로 추정된다.
그림 13. 금속 샘플의 알루미늄 검량선

그림 14. 현무암 샘플의 칼륨 검량선
3.2 라만 분광 결과 분석

그림 16은 나프탈렌, 선석, 황 샘플의 압력조건에 따른 라만 신호 변화를 나타낸 스펙트럼이다. 첫 번째로, 고분자 물질인 나프탈렌의 경우 513 cm\(^{-1}\), 817 cm\(^{-1}\), 1068 cm\(^{-1}\), 1422 cm\(^{-1}\), 1504 cm\(^{-1}\), 1614 cm\(^{-1}\)에서 발생한 분자 진동 peak을 검출하였다. 나프탈렌에서는 1422 cm\(^{-1}\)에서 가장 강한 신호강도를 나타내는 것을 확인하였으며, 고려된 모든 압력조건에서 peak 위치 및 신호세기의 변화는 없는 것으로 확인되었다. 선석의 경우 710 cm\(^{-1}\)과 1087 cm\(^{-1}\)에서 internal mode의 peak이 관측되었으며, 분자 고유 구조에 따른 lattice mode에서 나타나는 172 cm\(^{-1}\)와 229 cm\(^{-1}\)의 peak을 검출 하였다. 선석 또
한 압력 변화에 따른 peak의 변동은 없는 것으로 확인 되었다. 마지막으로, LIBS로는 검출하기 어려운 황의 경우도 라만 분광법을 활용하면 저압환경에서도 쉽게 성분을 알아낼 수 있음을 확인하였다. 결론적으로, 라만분광법을 활용하면 LIBS의 분자 측정 약점 및 황과 같이 검출하기 어려운 원소에 대한 보완이 가능함을 확인하였다.

그림 16. 고분자, 암석, 황 샘플의 압력별 라만 스펙트럼

3.3 Raman-LIBS 결과 분석

그림 17과 그림 18은, 532 nm의 파장을 이용하여 샘플의 표면에 레이저 유도 플라즈마 및 라만 산란광을 발생시킨 후, 라만 산란광이 발생하는 beam의 측면에서 신호를 집광한 결과이다. 석석의 경우 100 ~ 350 cm⁻¹의 낮은 진동수에서 선석 고유의 lattice mode에
의한 방출 신호를 검출 하였으며, internal mode의 신호는 1000 ~ 1100 cm\(^{-1}\)에서 검출 되었다. 백운석 또한 100 ~ 350 cm\(^{-1}\)에서 lattice mode의 신호를, 1000 ~ 1100 cm\(^{-1}\)에서 internal mode에 의한 분자 신호를 성공적으로 계측하였다. 또한, 기존 선행연구 데이터베이스 와의 비교를 통해 검출한 라만 신호는 10 cm\(^{-1}\) 이내의 오차로 일치 하는 것을 확인 하였다 [13]. 이를 통해 샘플 표면에 동시에 발생한 레이저 유도 플라즈마 및 라만 산란 광 에서도 원하는 분자신호만 을 분리하여 획득할 수 있음을 확인 하였다. 두 번째로 그림 19와 20은 beam의 중앙에서 발생한 레이저 유도 플라즈마의 신호를 집중 한 결과이며, 넓은 파장을 영역에서 샘플을 구성하고 있는 칼슘 및 마그네슘 신호를 성공적으로 획득할 수 있음을 확인 하였다. 마지막 으로, 그림 21과 그림 22는 실험 최적화를 통해 라만신호에서 방출 되는 분자의 진동 peak 과 원자 방출 peak의 신호를 획득한 결과 이다. 일부 peak은 신호간의 상호 간섭효과에 의해 검출에 어려움이 있었지만, 주요한 분자의 진동 및 원자 방출 peak은 여전히 검출이 가능함을 확인 하였다. 결론적으로, 하나의 분광시스템을 통해 샘플 을 구성하고 있는 원자와 분자신호를 모두 획득할 수 있음을 확인 하였다.

그림 17. 선석의 에너지별 라만 스펙트럼
그림 18. 백운암의 라만 스펙트럼

그림 19. 선석의 에너지별 LIBS 스펙트럼
그림 20. 백운암의 LIBS 스펙트럼

그림 21. 선석의 에너지별 Raman-LIBS 스펙트럼
제 4 장 결론

본 연구에서는 1 torr 이하 낮은 압력 환경에서의 원거리 LIBS 및 라만 기초연구와 Raman-LIBS 융합 시스템 구축 가능성에 대한 연구를 진행 하였다. 먼저, 금속, 암석, 파우더의 3가지 표준 물질 그룹을 활용하여 760 torr, 100 torr, 7 torr, 1 torr, 0.1 torr 0.01 torr의 압력 조건에서 원거리 LIBS 계측 능력에 대한 실험적 연구를 수행 하였다. 샘플을 구성하고 있는 대부분의 원소들은 10 ~ 100 torr에서 최대 신호세기를 나타내는 것을 확인 하였으며, 나트륨과 칼륨의 경우 낮은 이온화 에너지와 전기음성도로 인해 대기압 조건에서 최대 신호세기를 나타내었다. 또한, 압력이 감소함에 따라 신호세기가 최대 신호대비 약 수십 배 이상 감소하는 것을 확인 하였으며.
신호 대 잡음비의 경우 압력이 감소에 따라 증가하는 경향을 나타내었고 이를 플라즈마 내에 존재하는 전자 수 밀도로 설명하였다. 농도차이에 따른 신호세기를 활용하여 알루미늄, 갈륨, 갈슘에 대한 검량선 쓰성을 통해 원거리 정량분석이 가능함을 확인하였으며 매트리스효과의 감소로 인해 저압환경에서의 정량분석이 더 용이함을 확인하였다. 두 번째로, LIBS의 단점을 보완하고자 고분자, 암석, 황 샘플을 활용하여 압력변화에 따른 라만 분광법의 기초연구를 수행하였으며 고려된 압력조건에서의 분자신호의 변화는 없는 것으로 확인되었다. 마지막으로, 섬석과, 백운암의 두 가지 암석 샘플 표면에 라만 산란 및 레이저 유도 플라즈마를 발생시켜 Raman 및 LIBS 신호를 독립적 또는 동시측정을 시도하였다. 분자 및 원자 신호를 독립적으로 측정한 경우 기존의 각 분광법의 결과와 크게 상이 하지 않았음을 확인 하였으며, 동시측정의 경우 일부 peak은 원자 및 분자 방출 peak의 상호 간섭에 의해 계측에 어려움이 있었지만 주요 원소 및 분자의 신호들은 계측할 수 있음을 검증하였다. 결론적으로 0.01 torr에 근접한 낮은 압력 환경에서도 실제 탐사 시 마주칠 수 있는 금속, 암석, 홍먼지, 고분자와 같은 샘플에 대해 원거리 LIBS 및 라만 분광법을 적용한 성분 분석이 가능함을 본 연구를 통해 검증 하였으며, 각 분광 분석법의 장점을 융합한 Raman-LIBS 시스템의 기초발판 또한 마련하였다.
참고문헌

Abstract

A study on the component analysis method using laser based spectroscopy

Jae Jun Choi

Department of Mechanical and Aerospace Engineering
The Graduate School
Seoul National University

Laser-induced breakdown spectroscopy (LIBS) is an atomic emission spectroscopy that uses a highly irradiated pulse laser to generate plasma from target surface which allows determining the chemical composition of sample based on its elemental emission peaks. LIBS has wide applications on various fields such as underwater exploration, explosive detection, space exploration and etc. One of the main advantage of LIBS is that it can analyze samples from a distance, especially when sample is physically inaccessible. In this research, we demonstrate a stand-off LIBS from a distance of 5.5 m under pressure conditions reaching down to 0.01 torr using a set of certified reference materials to study the effect of remote detection at various pressures. Also, we demonstrate Raman spectroscopic system that can analyze molecular structure of a target using polymer, and rock samples regarding with building a basis for developing combined Raman-LIBS system. Finally we configure and demonstrate a feasibility of combined Raman-LIBS system which can be used in future space exploration.
Keywords : Laser-Induced Breakdown Spectroscopy, Stand-off,
 Low pressure, Raman spectroscopy, Combined Raman-LIBS

Student Number : 2013-23091