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Abstract 

 
Recent researches on indoor localization have achieved a rapid 

progress, thanks to advances in mobile devices and networks. 

Related into simultaneous localization and mapping (SLAM) 

problems, several researchers apply different approaches, such as 

Wi-Fi, IMU sensors, and ultrasonic sensors. However, more 

intuitive and accessible system for indoor localization is required in 

order to achieve high-rate recognition of the current pose. In this 

paper, we propose the system that has the combination of visual 

data from a camera and inertial data from IMU sensors in indoor 

localization. Pre-learning of landmark images and setting up the 

database is the first part of our proposed localization method. Using 

TLD tracker and sensor data simultaneously, selected image areas 

are tracked and approximation of the device location can be 

extracted. EKF-SLAM, which uses extended Kalman filter to 

estimate device locations with sensor data, leads to real-scale 

estimation of the device approximately. From the characteristics of 

the camera and scale estimation from vision data and sensor data, 
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camera poses are estimated and the landmark locations are matched. 

Even though abrupt changes of camera movement and angles cause 

errors on trajectories of the mobile device, camera pose estimation 

is successfully estimated, and the errors has a range from -0.1m to 

0.4m, compared to the ground truth of the movement.  

Key Words : Monocular camera, object tracking, indoor 

localization, extended Kalman filter, and 

simultaneous localization and mapping.  

Student Number : 2014-22492                           
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Chapter 1. Introduction 
 

In recent years, development of mobile devices and networks 

brings rapid technical advance in navigation system and augmented 

reality. Mobile platforms and environments provide a high rate of 

accessibility to information near the area where the users stand. 

For instance, GPS system is using in outdoor navigation system and 

it is easily accessible for mobile phone users. As far as indoor 

navigation is concerned, there are many applications developed with 

inertial measurement unit sensors [1,2,3], Wi-Fi [4,5], and 

ultrasonic sensors[6]. Those simultaneous localization and mapping 

(SLAM) methods have led to a lot of interests to many researchers 

and companies because the demand of indoor space navigation rises. 

The challenge of SLAM is high-rate recognition of the current pose 

and access of local information with a small amount of calculations.  

Monocular SLAM research, which is highly related into Structure 

from Motion (SfM) [7] in computer vision, has a rapid progress due 

to hardware development. However, although hardware 

enhancement provides real-time systems to users, error 

compensation and calculation time problem are still remaining. 
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Matching the features on frame by frame can also require high 

computation power if there are so many features to match in images.  

Many methods in [8], [9], [10] are recently proposed in 

monocular case, while the scaling issues causes inaccurate results 

from image sequences. In order to reduce errors and to solve a 

scaling problem, sensors that attached in the device can be used. In 

[11], visual data and sensor data are combined to calculate the 

scale factor, and, even in SfM, sensor data in mobile phones are 

simultaneously extracted at the time when visual frames are 

available. However, physical positions of the device do not link any 

information on landmarks nearby. Building 3d point clouds with 

extracted features can provide the realistic maps and scenes, but 

detecting landmarks and other features in the images might not be 

effective.  

In our proposed method, combination of object tracking method 

and sensor data with given landmark images and location dataset is 

provided for indoor localization on mobile phones. SfM in multiple 

images is applied, and at the same time pixel positions of detecting 

landmarks in 2D images provide the moving trajectories of the 
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landmarks, which give estimates of camera poses. Also, the 

characteristics of a camera reflect how far the landmarks are 

located from the camera, and the device orientation and location 

from sensor data are fused with the estimates for resolving the 

scale factor problem. In this case, one of the SLAM algorithm, 

called EKF SLAM[12], is used for estimating the location from 

sensor data. 
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Chapter 2. Related Works 
 

 

There are many SLAM algorithms proposed in several 

researches. Especially, monocular SLAM methods, proposed in [8], 

[9], and [10], have been researched variously in robotics and 

computer vision. Those researches use different descriptors to 

extract features in images, such as ORB, SIFT, and SURF. The 

features are matched on frame by frame, and the distance between 

the same features in consecutive frames can be measured, so that 

camera positions in certain frames are estimated. However, 

coordinate systems used in monocular SLAM methods do not reflect 

a real scale. For scaling, the distance between the camera and the 

features should be known, which is not possible while the images 

are taken. Therefore, various sensors and techniques are applied to 

scale the objects or moving trajectories. 

In [1], for augmented reality system, several sensors are used 

to check poses of the device at a certain time. The authors built 

their own devices which consist of IMU sensors and cameras, and 

the devices are connected with computers to build augmented 
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reality environment. Even though the algorithm proposed in [1] 

shows how to extract the device poses in real-time cases, there 

are issues on accessibility and usability on the devices. Also, for 

indoor localization, several sensors, including Wi-Fi, ultrasonics, 

and lasers, can be applied in many researches, but the weight and 

size of the devices are not suitable for general users.  

One of the most interesting SLAM methods presented in [12] 

and [17] is EKF-SLAM. Extended Kalman filter has been used 

here for nonlinear system models, such as GPS and navigation. In 

these researches, inertial measurement unit sensors (IMU) 

measure accelerations and angular velocities that are considered as 

the state vector. Using the maximum likelihood algorithm for data 

association, EKF-SLAM successfully calculates the route of the 

device where IMU sensors are attached. However, if the posterior 

includes uncertainty more than noises assumed, EKF-SLAM fails to 

estimate the location.  

To reduce errors in SLAM algorithms, the combination of vision 

data and other sensor data has been researched in [2] and [3]. The 

interesting part of those researches is absolute scale estimation. 
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Compared with IMU sensor data and vision data, real scaling of the 

moving trajectories can be estimated. Even though the devices used 

in [2] and [3] are customized by the authors, the chance of the 

mobile phones using in the real life has shown, because IMU 

sensors and the camera are built in the mobile phones.  

In our proposed system, the disadvantages of monocular SLAM 

are attempted to resolve. The scaling problems of the SLAM 

algorithms and the reducing uncertainty from EKF-SLAM are the 

most interesting factors in our system. Compared to the previous 

researches, our algorithms consider the physical locations of 

landmarks and the poses of the mobile devices in a real scale.  
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Chapter 3. System Overview 
 

 

In our proposed system, there are three different parts that 

work for estimating device location and orientation: pre-learning, 

object tracking, and camera pose estimation, as shown in Figure 1. 

First, landmarks are selected in pre-learning stage from image 

sequences with orientations from mobile phones. The landmark 

locations in world coordinates should be defined, and neighborhoods 

of one landmark can also be found from landmark information. 

Orientations from mobile phones indicate camera orientation and 

possible camera angle, so that we realize which landmark can be 

detected in the object tracking stage. Camera parameters are also 

recorded in camera calibration with a chessboard marker. 

Second, object detection and tracking is used for tracking pre-

learned landmarks and estimating their locations. TLD tracker [13] 

uses ferns descriptors that can learn an image in a certain selected 

area easily and draws trajectories of detected landmarks in order to 

re-detect landmarks after the tracking is lost. The selected 

landmarks are found in the bounding box form in image sequences. 

While the landmarks are tracked, camera orientation and 

acceleration are extracted from mobile devices. They are used for 
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scale compensation and error correction by comparing with camera 

pose in structure from motion in the next part. The acquired sensor 

data are used for EKF SLAM[12] which applies extended Kalman 

filter to estimate device location and a heading angle.  

 

Figure 1. System overview diagram. Pre-learning of landmark 

images and setting up the database is the first part of our proposed 

localization method. Using TLD tracker and sensor data 

simultaneously, approximation of device location can be extracted. 

From the characteristics of the camera and scale estimation from 

vision data, camera poses are estimated with the collected data from 

previous sections. 
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Finally, camera poses in several images can be estimated with 

different sources. EKF SLAM brings estimated poses from sensor 

data, and camera back-projection [14] and structure from motion 

[15] provide camera poses estimated from the image sequences. 

Camera orientations and locations information are compared with 

these two different methods, but sensor data might be more reliable 

than non-scaled information from structure from motion algorithm, 

since depth and scale information is lost. When those two results 

are compared by solving least-square method, the scale factor can 

be estimated. The distance between the device and the landmarks is 

measured after applying the scale factor.   
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Chapter 4. Methods 
 

4.1. Pre-learning 
 

4.1.1. Landmark location dataset 

 

Figure 2. Landmark dataset and selection in the 2D map. Landmark 

images are also stored and learned via TLD tracker. 

Before going through our algorithm, we need to set up landmark 

information and correlation of selected landmarks. For instance, if a 

2D map and image sequences from mobile phones are available, the 

fixed landmarks can be selected in the map and the images, as 



 

 １１ 

shown in Figure 2. There are conditions for landmark selection as 

follows:  

 

1. Landmarks should be fixed in certain positions and remarkably 

shown, such as logos and signs. For tracking, landmark images 

should have comparable features in camera angles. While using TLD 

tracker, this conditions prevent the tracker from losing tracking of 

the selected landmarks. 

2. Landmark position should be determined in the 2D map. The 

relations among landmarks are defined with respect to the origin 

chosen. Hence, the 2D location of the landmarks will be used in 

pose estimation of the device.  

3. Physical locations of the landmarks should be easily measured. 

Laser distance sensors are using in order to measure physical 

locations and geometrical calculation may define 2D landmark 

locations.  

 

A single landmark is selected by the conditions above. Each 

landmark has more than one neighbor landmark and the distance 
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between the landmark and the neighborhood is measured by laser 

distance sensors. When the device is moving around the landmarks, 

the landmark information nearby the camera will provide 

approximate camera location at time. More considerations in 

landmark data will be followed in camera pose estimation.  

 

4.1.2. Device orientation 

 

Figure 3. Coordinate systems using in Android mobile phones: device 

coordinate system(above) and the world coordinate system(below). 

In recent mobile phones, several sensors are included, such as 
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an accelerometer, a gyroscope, and a magnetometer. Device 

orientation can be calculated with those sensors, using filters and 

combination of extracted data. Android system has own orientation 

extraction function [19], which is fused with IMU sensors. 

Depending on the device, different fusion methods can be applied. 

Android system has functions that extract sensor data and fuse data 

to calculate device orientation based on the world coordinate 

system. Using getOrientation() and getRotationMatrix() function, 

orientation and rotation matrices at a certain time are returned in 

world coordinate. The coordinate system of calculated orientation is 

different from device coordinate, as seen in Figure 3. This figure 

explains the coordinate system of device orientation and the 

difference between device coordinate and the world coordinate. 

From the orientation, it is possible to estimate approximate camera 

angle so that chances of detecting landmarks can be approximated. 

In samples of the initial image sequence, it is possible to record 

what landmarks are detected in a certain orientation of the device. 

Those records are reused in camera pose estimation when the 

device orientation is close to the recorded orientation. Calculation of 
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camera poses in structure from motion and camera back-projection 

will be explained in 4.3.1 and 4.3.2.    

 

4.1.3. Camera parameters 

For camera back-projection and bundle adjustment in 4.3, 

camera parameters from camera calibration are required. Intrinsic 

parameters, including a focal length and a principal point, are the 

information required since camera pose estimation from image 

sequences is based on camera parameters and physical landmark 

information. In this paper, camera calibration with chessboard 

markers is used to obtain camera intrinsic parameters. Especially, 

the principal point is important information because it is considered 

as an image center which camera Z coordinate axis passes through. 

Using functions in MATLAB, the calibration has been completed 

with a chessboard pattern. The pattern is a 7 x 9 chessboard which 

has 30mm for each square. The parameters obtained from camera 

calibration are saved in a camera parameter variable and will be 

used in camera pose estimation. 
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4.2. Object tracking and data acquisition 

4.2.1. TLD tracker 

   Kalal et al.[13] suggests a novel real-time object tracking 

method using ferns descriptors and Lukas-Kanede tracker. 

Tracking-Learning-Detection framework and the new learning 

method called P-N learning [16] are the contribution on their 

papers. In order to apply the methods in our work, we rewrite the 

open source codes to display landmark location and information in 

image frames. The tracker estimates the detected object 

trajectories among consecutive image frames. P-N learning method 

identifies false positives and false negatives effectively, so that the 

errors are compensated while the moving trajectory of the target 

image is estimated. When the initial target is selected in a single 

image, the trajectory of the selected area can be estimated in the 

next image frame. Also, the position of the selection in 2D images is 

estimated. When the selection occurs, we add the process to link 

landmark information with the part of the image. For instance, when 

the landmark #1 is selected in the first frame, landmark information 

is displayed and saved in the variable to make a comparison with 
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sensor data position. Figure 4 shows how to compare the 2D image 

features with 3D landmark location in order to calculate the camera 

motion. Later, camera back-projection process will lead to the 

method of camera pose estimation with the result in the TLD 

tracker.  

 

Figure 4. Conversion between 2D features and the 3D points. 

 

4.2.2. Sensor data acquisition 

While the device is collecting vision data via a camera, it is 

possible to extract sensor data as well. However, camera frames 
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and sensor data may not be collected at the same time. To check 

the motion of the camera at the time when sensor data is extracted, 

integration of fused sensor data is needed. In order to estimate 

displacement of camera movement, linear acceleration, which rid of 

gravity, is extracted by fusing data from a magnetometer and an 

accelerometer.  Because of difference in data acquisition time, 

sensor data should be rearranged with the same time. However, a 

frequency of data acquisition is higher in orientation, compared with 

5Hz frequency in linear acceleration. Hence, we find orientation 

data at the same time when linear acceleration is extracted. All 

sensor data including rotation matrices and orientation of the device 

can be used after matching extraction time. 

After matching extraction time, the system in which only sensor 

data lead to current pose is applied in our work, called an inertial 

navigation system (INS). The system performs a double integration 

of acceleration over time to estimate position. In our test case, the 

accelerations are measured in the device frame of reference, while 

the orientation and the rotation matrices are aligned with the world 

frame of reference. When the device is moving, the dynamics of the 
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sensor system [14] can be defined as follows:  

 

  𝑥𝑡+1 =  Φ𝑥𝑡 + 𝑁(0, 𝑄)   (1) 

 𝑦𝑡
𝑖  = H𝑥𝑡 + 𝑁(0, 𝑅)     (2) 

 

The state vector 𝑥 indicates system pose and the derivatives in 

the world coordinate. The other vector 𝑦 is the observation vector 

which contains the outputs of the sensors, such as acceleration and 

angular velocity. Acceleration and angular velocity are collected 

from the accelerometer and the gyroscope. Φ  and H  are the 

matrices for the state model and observation model, respectively. 

Also, noises from the sensors and measurement are 𝑁(0, 𝑄) and 

𝑁(0, 𝑅), where 𝑄 and 𝑅 are the covariance matrices of the noises.  

While the device is moving, the acceleration is integrated with a 

decaying velocity model of handheld motion [11] as follows:  

 

  𝑣𝑖
𝑘+1=  𝑣𝑖

𝑘 +  𝜏 Δ𝑡 𝑅(𝑎𝐵
𝑘 − 𝑔)  (3) 

 

   𝑣  is the velocity and 𝜏  stands for inaccuracies of timing and 

sensor to avoid drift in acceleration data, and 𝑅  is the rotation 

matrix with respect to the world coordinate. The last term (𝑎𝐵
𝑘 − 𝑔)   
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means linear acceleration, which can be calculated by sensor fusion 

algorithm. The velocity values and the state vectors from this 

process will be used in the next step.  

 

4.2.3. EKF SLAM 

EKF SLAM [12] is one of the localization and mapping methods 

that are widely used in robotics. Baileys et al. [17] present this 

SLAM method which uses extended Kalman filter, and test various 

environments in common places. With known landmarks and 

waypoints in world coordinate, the device movement can be 

estimated, based on the preconditions, such as heading angle and 

initial velocity. From equation (1) and (2), the state vectors are 

estimated by extended Kalman filter with a constant velocity model, 

which considers the device movement is at constant velocity such 

as walking steps. In our algorithm, a decaying velocity model is 

applied and the velocity at each time step can be integrated with 

velocity verlet algorithm. Hence, errors by double integration of 

acceleration and drift errors are resolved, and the device location 

errors are reduced.  
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4.3. Camera pose estimation 

4.3.1 Structure from motion in multiple images 

Structure from motion [7], called SfM, is one of the techniques 

that refine the 3D coordinates in the scene geometry, the relative 

motions, and the camera characteristics when a set of images from 

different viewpoints are given with many 3D points. In our algorithm, 

structure from motion in acquired image sequences brings camera 

poses using only camera vision when scaling and depth estimation 

are not available. In our test case, landmark features in different 

images can be extracted, and they are compared to the features in 

the next consecutive frame. SURF features [18] are extracted and 

the matching points calculated by point tracker are used for 

estimating fundamental matrices and epipolar inliers. The two 

results lead to device orientation and translation motion with 

respect to the previous device pose. In this part, camera 

parameters obtained from camera calibration in 4.1.3 are recalled 

and applied. The calculated camera pose does not apply a scale 

factor, so compensation with sensor data should be engaged, 

explained in section 4.3.3.   
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4.3.2. Camera back-projection 

In order to clarify landmark locations, while detecting landmarks 

by camera vision, camera back-projection estimates camera pose 

in world coordinate. First, magnetic north is measured by the 

magnetometer, and rotation matrix between the world coordinate in 

the 2D map and in the earth map. Landmark locations are reset with 

respect to the new world coordinate system. From the previous 

orientation data, rotation matrices are applied to change the 

coordinates from device to world. Figure 5 also describes how 

camera back-projection is applied to check landmark location. The 

pin-hole camera model and prospective projection are assumed in 

our case. P reflects in the image plane and p(u,v) is shown in the 

image. In [14], the projection points are related with 3D points by 

the perspective relations: 

 

 u =  𝑆𝑢 𝜆 
𝑋

𝑍
+ 𝑢0   (4) 

 v =  𝑆𝑣  𝜆 
𝑌

𝑍
+  𝑣0   (5) 

 

, where ( u0, v0) is the pixel position of the image center, 𝑆𝑢 and 𝜆 

are indicated as camera focal length, and Sv  is the scale factors 



 

 ２２ 

associated with the physical dimensions of the pixels. Since we 

know the given camera parameters from section 4.1.3, X/Z and Y/Z 

can be estimated. In the landmark database, X and Y positions of 

landmarks in the world coordinate are already saved, so the 

combination of landmark database and estimation of X/Z and Y/Z 

generates approximate Z values. However, the scale factor is the 

missing information in this case, and this problem will be solved in 

the next section. 

 

Figure 5. Camera projection and relations between the points in the 

image plane and the 3D world point. 

If the pixel position of the detected landmark is known in the 

image, the landmark in the next image is tracked using TLD tracker 

in 4.2.1. The trajectory of the landmark position in the images is 

presented. For the time when the images are divided, device 
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orientation data are matched. 

 

4.3.3. Scale factor estimation 

   The collected data from section 4.2.3 and 4.3.1 are compensated 

for camera pose estimation. The collected data from 4.2.3 and 4.3.1 

are compensated for camera pose estimation. We apply the least-

square method to compensate for the data from EKF SLAM and 

structure from motion. In [11], if camera positions are available 

from both sensors and the camera, the scale factor can be 

calculated by the least-square method as follows:  

 

  arg 𝑚𝑖𝑛𝜆 =  ∑  ‖𝑥⃗𝑖 − 𝜆𝑦⃗𝑖‖2
𝑖∈𝐼     (6) 

 

, where  λ is the scale factor,  x⃗⃗i is the displacement hypothesis by 

the accelerometer, and y⃗⃗i is the displacement measured by vision. 

The distance between the consecutive camera locations estimated 

in SfM is compared to the measurement by sensors. When 𝜆  is 

calculated, the value can be applied to the equation (4) and (5) in 

4.3.2 for calculating Z values.  
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Chapter 5. Results 
 

 

In our test case, we use an Android smartphone Samsung Galaxy 

S III (SHV-E210K) with OS 4.4.4 version. Sensor list and camera 

specification are available in Table 1. Video frame rate with 22 fps 

is applied and 640 x 360 pixel size video has been taken. In pre-

learning process, learning landmark images takes time to check 

bounding box size and center point. Landmark dataset is based on 

the measurement by a laser distance module, and x and y positions 

are arranged in the 2D floor plan. The test place is at 302-209, 

Seoul National University, Seoul, and landmarks are defined in 

Figure 2.  

Sensor Resolution Range MinDelay Unit 

Accelerometer 0.010 19.613 10000 μs m/s^2 

Gyroscope 0.000 8.727 5000 μs Rad/s 

Magnetometer 0.060 2000.00 10000 μs μT 

RotationVector 0.000 8.727 10000 μs quat 

LinearAcceleration 0.010 8.727 10000 μs m/s^2 

Table 1 Sensor list from the test device (Android mobile phone, 

GSIII, OS 4.4.4.) 
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Parameters Values 

Focal length [ 545.1967 , 546.1751 ] 

Principal points [ 316.3669 , 238.6514 ] 

Radial distortion [ 0.2011 , -0.2549 ] 

Tangential distortion [ 0, 0 ] 

Skew 0 

MeanReprojectionError 0.5593 

Table 2. Camera parameters from camera calibration. 

In Table 1, the list of sensors indicates the type of the accuracy, 

data extraction delay, units of the results, and the range. Camera 

parameters from camera calibration are also determined by the 

image sequences that include the chessboard in the image. The 

values are presented in Table 2.   

The selected landmark is tracked while sensor data is collected 

in the device. An image set in image sequences is provided in 

structure from motion. Camera poses are estimated by structure 

from motion in 198 images and the trajectory of the motion is 

extracted in a ply file. Camera poses from SfM are defined in Figure 

7. In our test case, about 200 seconds calculation time is spent for 

sparse reconstruction by SfM. If we build server-client system to 

reduce extraction time, the time spent for SfM will decrease. The 
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data in Figure 7 and Figure 8 are used in the least-square methods 

in order to calculate the scale factor. The difference of the shape of 

the trajectories in Figure 7 and Figure 8 indicates the abrupt change 

in the heading angle of the device and rotation matrices with 

respect to magnetic north. EKF SLAM does not reflect loop closure 

algorithm; that is, when the device is moving in a loop, the 

trajectory does not connect with the point where the device already 

passed through. 

 

 
Figure 6. Landmark Selection from camera using TLD tracker. The 

linked information of landmarks is shown and the distance between 

the bounding box and the principal point is represented. 



 

 ２７ 

 
Figure 7. Camera pose estimation from structure from motion ( A 

line segment ) 

 

Figure 8. Camera pose estimation from EKF SLAM. When the 

heading angle changes more than 90 degrees, discontinuity of the 

estimation (black line) occurs. A green line stands for ground truth. 
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Figure 9 shows the difference between the estimated poses to 

which the scale factor is applied and the ground truth of the device 

movement. In the linear movement the error is not notably 

increasing before the heading angle is suddenly changed. Sudden 

changes in heading angles may cause that the difference bounces up 

and down because the sudden change of the device cause noises in 

all directions and absence of loop closure algorithm might affect the 

calculation in EKF SLAM.  

 

 
Figure 9. Error calculation between the estimates of camera poses 

and the ground truth after the scale factor is applied. When the 

heading angle changes to 180 degrees, error range is increasing. 
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Chapter 6. Conclusion 
 

 

In our proposed system, the scaled camera poses can be 

extracted by using visual and inertial data. Sparse 3D 

reconstruction from SfM algorithm brings non-scaled camera poses, 

which has the trajectory of the camera movement. More 

consideration on calculation time will be needed because SfM needs 

high-level computation power, which the mobile phone may not 

have. During the tests, we have noticed that storing landmark data 

and camera parameters are very critical in our algorithm. We will 

continue to test our proposed system with various environments, 

such as school buildings and shopping malls. Unless the sudden 

change in the heading angle occurs, the errors between the 

estimates and the ground truth are in the range of -0.1 m to 0.4 m. 

However, after abrupt angle change, the error comparison does not 

work due to bounce the values. It can be assumed that loop closure 

algorithm may work critically if there is an overlap on the moving 

trajectory. In our future work, applying outlier rejections and loop 

closure method will provide better results. Also, a large portion of 
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calculation time is spent when SfM reconstruction occurs. In the 

future work, server-client network for our system will be 

considered in order to reduce calculation time.
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초 록 

  

최근 모바일 기기와 네트워크의 발전을 통해서 실내 위치 기반 서비

스 관련 연구가 빠르게 이루어지고 있다. SLAM 이라고 불리는 위치 및 

맵핑 문제와 관련된 여러 연구들은 Wi-Fi, IMU 센서, 초음파 센서와 

같은 다양한 기기들을 통해서 해당 문제에 접근하고 있다. 하지만 보다 

직관적이고 접근성이 편한 실내 위치 기반 서비스에 대한 필요성이 대두

되고 이를 통해 현재 위치와 기기의 자세에 대한 높은 인식률을 요구하

고 있다. 본 연구에서는 핸드폰의 카메라를 통한 비전 데이터와 IMU 센

서를 통한 관성 데이터를 결합한 위치 정보 확인 시스템을 제시하고자 

한다. 지정된 랜드마크의 이미지 세트와 위치 정보 데이터 베이스를 생

성을 포함하여 미리 학습하는 과정이 우선 이루어진다. 이후 TLD 추적

기라고 불리는 이미지 추적 알고리즘을 센서데이터와 함께 동시에 사용

하여 사용자의 기기의 위치를 예측할 수 있다. 기존에 얻은 카메라의 파

라미터들과 비전 데이터로부터 얻은 스케일 팩터를 통해서 실제 크기에 

가까운 카메라 및 기기의 위치 및 자세를 추정할 수 있다. 비록 기기의 

급작스러운 움직임이 기기 이동을 예측하는데 심한 오차를 내는 경우도 

있지만, 미리 측정한 기존 이동 경로와 비교하여 -0.1m 에서 0.4m 내

의 오차로 기기의 위치 추정이 가능하다.  
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