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Effect of the Forebody Curvature

on the Drag of an Axi-symmetric Body

Yunsik Jang

School of Mechanical and Aerospace Engineering

Seoul National University

Abstract

In the present study, we investigate the effect of forebody curvature on a

drag of an axi-symmetric body by numerical simulation. Curvature is applied on

ellipsoid with 4:1 aspect ratio and results are compared with 4:1 ellipsoid. The

Reynolds number considered are 103 and 104 based on the free-stream velocity

(u∞) and minor axis of body (d).

At Re = 104, 4.5% of drag reduction is achieved compared to that of 4:1

ellipsoid. However, at Re = 103, variation of total drag is little. At both

Reynolds number, as curvature increases, pressure drag increases because low

pressure occurs around forebody curvature. Contrary to pressure drag, friction

drag decreases as curvature increases due to the formation of recirculation bub-

ble on the concave region of curvature. Therefore, reduction of total drag is

determined by amount of pressure drag increase and friction drag decrease.

Keywords: Forebody, Curvature, Drag, Ellipsoid

Student number: 2010-24071
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2
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t time
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ux, ur, uθ streamwise, radial and azimuthal velocity components, respec-

tively

x, r, θ cylindrical coordinate (streamwise, radial and azimuthal direc-

tions, respectively)

x, y, z Cartesian coordinate (y and z correspond to θ = 0◦ and θ =

90◦, respectively)

Greek Symbols

φs separation angle

Superscripts
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Subscripts

( )∞ free-stream

Abbreviations

CD second-order central difference scheme

LES large eddy simulation

RK3 third-order Runge-Kutta method

QUICK quadratic upwind interpolation for convective kinematics
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Chapter 1

Introduction

Flow control for reducing drag of a bluff body is a challenge in many engi-

neering problems. Various approaches have been conducted to reduce drag of a

bluff body. Geometric modification is one of these approaches. Recently, many

attempts to reduce the drag on vehicles have been suggested via bio-mimetic

engineering. For example, bionic concept car that mimics the shape of boxfish

and Shinkansen bullet train from kingfisher, both experience reduced drag over

their non-biomimetic counterparts.

In nature, Emperor penguin shows excellent hydrodynamic properties. Their

bodies are best described by their multiply-curved outlines (forebody curva-

ture), not observed in other swimming animals. Clark and Bemis (1979) mea-

sured drag coefficient of gliding Emperor penguin and suggested that low drag

can be attributed to their unique body shape. Bannasch (1998) also performed

experimental studies on both live penguins and real-size models of their trunk

in a water tank revealing an extremely low drag coefficient. He concluded that

viscous drag was reduced by characteristic stepwise pressure and velocity dis-

tribution developed along the multiply-curved outlines of body. However, he

focused on flow characteristics around penguin, not the effect of forebody cur-

vature. Therefore, the objective of present study is to investigate the effect of

forebody curvature on the flow around an axi-symmetric body and to examine

the possibility of drag reduction.
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The present thesis is organized as follows. Numerical details and model of

forebody curvature used in this study are explained in Chapter 2. Results for

laminar flow over a forebody at Re = 103 and turbulent flow at Re = 104 are

presented in Chapter 3. Finally, summary and conclusion are given in Chapter

4.
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Figure 1.1. Forebody curvature of Emperor penguin.
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Chapter 2

Numerical Details

2.1 Governing equations

The governing equations of unsteady incompressible viscous flow are conti-

nuity and Navier-stokes equations:

∂ui
∂t

+
∂uiuj
∂xj

= − ∂p

∂xi
+

1

Re

∂2ui
∂xj∂xj

+ fi, (2.1)

∂ui
∂xi
− q = 0, (2.2)

where xi’s are the cylindrical coordinates, ui’s are the corresponding velocity

components, p is the pressure, fi and q, respectively, are the momentum forcing

and the mass source/sink defined on the immersed boundary or inside the body

(Kim et al. (2001)).

The governing equations of unsteady incompressible viscous flow for large

eddy simulation are the filtered continuity and Navier-stokes equations:

∂ūi
∂t

+
∂ūiūj
∂xj

= − ∂p̄

∂xi
+

1

Re

∂2ūi
∂xj∂xj

+
∂τij
∂xj

+ f̄i, (2.3)

∂ūi
∂xi
− q̄ = 0, (2.4)

where ¯(•) indicates the filtering operation. Dynamic global model proposed by
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Park et al. (2006) and Lee et al. (2010) are used for obtaining the sub-grid scale

stress tensor τij = uiuj− ūiūj. All the variables are non-dimensionalized by the

minor axis of body d, and the free-stream velocity u∞. The Reynolds number

is defined as Re = u∞d/ν, where ν is the kinematic viscosity.

A staggered grid system is employed in this study, and thus ui and fi are

defined at the cell face, whereas p and q are defined at the cell center. The time-

integration method used to solve governing equations is based on a fractional-

step method. Hence a pseudo-pressure is used to correct the velocity field and

then the continuity equation is satisfied at each computational time step.

In this study, numerical simulations are performed for laminar flows at

Re = 103 and turbulent flows at Re = 104. Large eddy simulation is con-

ducted for turbulent flows at Re = 104. We use a second-order semi-implicit

time advancement scheme as in Akselvoll & Moin (1996). Consequently, third-

order Runge-Kutta method (RK3) is used for the terms treated explicitly and

a second-order Crank-Nicolson method is used for the terms treated implicitly.

The second-order central difference scheme is used for the spatial derivative

terms at Re = 103. On the other hand, hybrid scheme is used for spatial

derivative terms at Re = 104: third-order QUICK scheme used at laminar ac-

celerating region (x/d ≤ 1) and second-order central difference elsewhere (Yun

et al. (2006)).

2.2 Computational domain and boundary conditions

Figure 2.1 shows the coordinate system, domain size and boundary condi-

tions. As explained before, we use the cylindrical coordinate system, where

x, r and θ, respectively, denote the streamwise, radial and azimuthal direc-

tions. A Cartesian coordinate system (x, y, z) is also used in order to define

5



the drag and lift forces. The computational domain used is −15 ≤ x/d ≤ 15,

0 ≤ r/d ≤ 15, and 0 ≤ θ ≤ 2π, where (x/d = 0, r/d = 0) corresponds to the

center location of the body. Non-uniform meshes are used with dense resolution

in the vicinity of body (−2 ≤ x/d ≤ 2, 0 ≤ r/d ' 0.5) for accurate capturing

the boundary layer around the body. Consequently, the number of grid points

used is 489(x) × 161(r) × 2(θ) at Re = 103 and 673(x) × 233(r) × 40(θ) at

Re = 104. A Dirichlet boundary condition (ux = u∞, ur = 0, uθ = 0) is used

at the inflow and far-field boundaries (r/d = 15), and a convective boundary

condition (∂ui/∂t + c∂ui/∂x = 0) is used for the outflow boundary, where c is

the space-averaged streamwise velocity at the exit.

2.3 Forebody curvature shape

To investigate the effect of forebody curvature, curvature is applied at fore-

body of 4:1 ellipsoid (−2 ≤ x/d ≤ −1). Three points (x/d = −1.75, −1.5,

−1.25 for p1, p2, p3, respectively) are used as design parameters. Figure 2.2

shows the placement of the three control points on the forebody of 4:1 ellipsoid.

Location of three control points varies in y direction and curvature between the

control points is defined by cubicspline interpolation. To investigate the effect

of forebody curvature on drag coefficient, the volume of body with forebody

curvature is maintained as same as that of 4:1 ellipsoid. Figure 2.3 shows the

shape of curvatures. Forebody curvature shapes, Case1, Case2 and Case3, are

obtained by varying y position of p2 by 0.02, 0.04 and 0.06, respectively, and

that of p1 and p3 is changed to maintain the constant volume. As shown in

Figure 2.3, curvature increases as variation of y position of p2 increases (from

Case1 to Case3).
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Chapter 3

Numerical Results

3.1 Effect of forebody curvature at Re = 103

To investigate the effect of forebody curvature in laminar flow, two-dimensional

simulation of laminar flow is performed at Re = 103. The simulation re-

sults, time-averaged drag coefficient (Cd), time-averaged pressure drag coef-

ficient (Cdp), time-averaged friction drag coefficient (Cdf ) and separation angle

(φs), are summarized in table 3.1. The separation angle φs is measured from a

stagnation point and averaged in the azimuthal direction and time.

Separation angle (φs) shows little difference depending on shape of forebody

curvature, indicating that forebody curvature does not affect on flow separation.

Figure 3.1 shows the contours of instantaneous spanwise vorticity at Re = 103.

Steady axi-symmetric flow is represented and there is no discernible difference

Cd Cdp Cdf φs

Ellipsoid 0.364 0.0636 0.3 171◦

Case1 0.364 0.0727 0.291 171◦

Case2 0.362 0.0912 0.271 171◦

Case3 0.365 0.122 0.243 171◦

Table 3.1. Parameters of flow over forebody curvature body at Re = 103.
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in spanwise vorticity contour for all simulation cases.

Figure 3.2 shows streamlines around the forebody curvature for all studied

curvatures at Re = 103. Separation does not occur on the forebody for 4:1

ellipsoid (figure 3.2 (a)) and Case1 (figure 3.2 (b)). However, local separation

occurs at x/d = −1.5 and recirculation bubble is formed as curvature increases

from Case1 to Case2 (figure 3.2 (c)). Due to the recirculation bubble and the

reverse flow generated by it, skin friction is negative on the concave region of

curvature, and this contributes to the reduction of friction drag. Larger recir-

culation bubble is observed as curvature increases from Case2 to Case3 (figure

3.2 (d)), indicating lower skin friction for broader region in Case3 compared to

Case2.

Time-averaged pressure coefficient (Cp) and time-averaged friction coeffi-

cient (Cf ) are shown in figure 3.3. As shown in figure 3.3 (a), favorable and

adverse pressure gradient occurs along forebody and pressure coefficient shows

little difference after x/d = 0 for all forebody curvature shapes. As curvature

increase from 4:1 ellipsoid to Case1, Case2 and Case3, width of low pressure

region around forebody and magnitude of the lowest pressure drag coefficient

are increased. Therefore, pressure drag increases as curvature increases because

formation of low pressure region on the frontal part of the body indicates larger

pressure drag. On the other hand, friction coefficient of the body with fore-

body curvature at −1.5 < x/d < −1 is lower compared to that of 4:1 ellipsoid

(figure 3.3 (b)). The position for the lowest friction coefficient is located near

x/d = −1.25, the lowest point of concave region. Also, width of low friction

drag region and magnitude of the lowest friction drag coefficient increase as

curvature increases from Case1 to Case2 and Case3, indicating lower friction

drag, as expected previously.

In table 3.1, we can check pressure drag increases but friction drag decrease

11



as curvature increases from Case1 to Case2 and Case3 as previously mentioned.

Interestingly, total drag does not change even though both pressure and friction

drag changed depending on forebody curvature. It is because magnitude of

increment of pressure drag and decrement of friction drag are equivalent for all

cases at Re = 103 as shown in table 3.1.

3.2 Effect of forebody curvature at Re = 104

In the present section, we investigate the effect of forebody curvature in

turbulent flow at Re = 104. The simulation results are presented in table

3.2. Separation angle shows little difference depending on forebody curvature,

which is similar trend with laminar flow. Figure 3.4 shows the contours of

instantaneous azimutal vorticity at Re = 104. Separation occurs at similar

location and vortex shedding occurs in the wake.

Figure 3.5 shows streamlines around the forebody curvature for all the stud-

ied curvatures at Re = 104. The pattern of streamline is quite similar to that

observed in laminar flow over forebody curvature. Local separation does not

occur around forebody for 4:1 ellipsoid and Case1, but it occurs for Case2 and

Case3. However, size of recirculation bubble is larger compare to that in laminar

flow case. In Case3, especially, recirculation bubble is formed over the concave

region (Figure 3.5 (d)), whereas it exists inside the concave region at Re = 103.

This affects on shear layer passing over concave region. Also, location for the

core of a recirculation bubble moves streamwise direction as curvature increases

from Case2 to Case3. This is closely related to skin friction distribution, which

is explained in figure 3.6 (b).

Figure 3.6 provides time-averaged pressure coefficient and time-averaged

friction coefficient at Re = 104. The lowest pressure coefficient occurs at

12



Cd Cdp Cdf φs

Ellipsoid 0.121 0.0409 0.0798 161◦

Case1 0.121 0.0467 0.0746 161◦

Case2 0.116 0.0570 0.0585 161◦

Case3 0.124 0.0748 0.0487 162◦

Table 3.2. Parameters of flow over forebody curvature body at Re = 104.

x/d = −1.5 and magnitude of it becomes larger as curvature increases, which is

similar to laminar flow (figure 3.6 (a)). However, in Case2 and Case3, pressure

coefficient does not recover gradually after lowest pressure point. Instead, pres-

sure coefficient remains almost constant in concave region, and recovers around

convex region. This means that strength of recirculation bubble is stronger

compared to laminar flow. Friction coefficient at Re = 104 also shows similar

trend with that of laminar case (figure 3.6 (b)). As curvature increases, region

of low skin friction is enlarged. Similar with pressure coefficient, friction coef-

ficient remains almost constant in concave region. A remarkable trend is that

location for the lowest friction coefficient moves streamwise direction as curva-

ture increases. This is closely related to the movement of core of recirculation

bubble because reduction of friction drag occurs due to the generated reverse

flow by recirculation bubble.

In table 3.2, we can see the relation of curvature with pressure drag and

friction drag. Similar to laminar flow, pressure drag increases as curvature

increases, whereas friction drag decreases as curvature increases. However, total

drag changes depending on forebody curvature contrary to laminar flow. As

curvature increases from 4:1 ellipsoid to Case1 and Case2, total drag decreases

gradually because decrement of friction drag is larger than increment of pressure

13



drag. However, when curvature increases more from Case2 to Case3, amount of

pressure drag increase is larger than that of friction drag reduction which results

in total drag increase. Therefore, it can be concluded that drag decreases as

curvature increases to certain amount, but it increases when curvature is too

large. Maximum drag reduction is achieved in Case2, about 4.5%

14



(a)

(b)

(c)

(d)

Figure 3.1. Contours of the instantaneous spanwise vorticity in x-y plane at
Re = 103: (a) 4:1 ellipsoid; (b) Case1; (c) Case2; (d) Case3.
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(a) (b)

( ) (d)(c) (d)

Figure 3.2. Time-averaged streamline and pressure contours at Re = 103: (a)
4:1 ellipsoid; (b) Case1; (c) Case2; (d) Case3.
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Figure 3.3. Flow variables along the body surface at Re = 103: (a) pressure
drag coefficient (b) friction drag coefficient. —, 4:1 ellipsoid; - - -, Case1; – · –,
Case2; · · · Case3.
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(a)

(b)

(c)

(d)

Figure 3.4. Contours of the instantaneous azimuthal vorticity in x-y plane at
Re = 104: (a) 4:1 ellipsoid; (b) Case1; (c) Case2; (d) Case3.
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(a) (b)

( ) (d)(c) (d)

Figure 3.5. Time-averaged streamline and pressure contours at Re = 104: (a)
4:1 ellipsoid; (b) Case1; (c) Case2; (d) Case3.
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Figure 3.6. Flow variables along the body surface at Re = 104: (a) pressure
drag coefficient (b) friction drag coefficient. —, 4:1 ellipsoid; - - -, Case1; – · –,
Case2; · · · Case3.
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Chapter 4

Summary and Conclusions

In the present study, we investigated the effect of forebody curvature of

an axi-symmetric body by numerical simulation. Curvatures were applied to

forebody of 4:1 ellipsoid, maintaining volume of body. Flow around body in

laminar flow at Reynolds number 103 and turbulent flow at 104 were considered.

At Re = 103, we found little difference on drag of body with forebody

curvature compared to 4:1 ellipsoid. As curvature increased, pressure drag

increased due to low pressure around the forebody curvature. On the other

hand, friction drag decreased as curvature increased due to the formation of

recirculation bubble on concave region of curvature. The amount of increase in

pressure drag and decrease in friction drag are similar.

At Re = 104, total drag changed depending on forebody curvature. Total

drag decreased as curvature increased in certain range, but it increased when

curvature became too large. The maximum drag reduction is about 4.5%. Pres-

sure drag and friction drag showed similar trend to laminar flow at Re = 103. As

curvature increased, pressure drag increased but friction drag decreased. Recir-

culation bubble on the curvature expanded over concave region and it had much

larger size compared to that of laminar flow, resulted in total drag variation.
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요약 
 

본 연구에서는 전두부 곡률 형상이 축대칭 물체의 항력에 미치는 

영향을 수치적으로 분석하였다. 곡률 형상은 종횡비가 4:1 인 타원체에 

적용되었으며 물체의 단축과 자유유동속도를 기준으로 한 레이놀즈 수 

103 과 104 에서 계산을 수행하였다.  

레이놀즈 수 104 에서는 4.5%의 총 항력 감소를 얻었다. 하지만 

레이놀즈 수 103 에서는 총 항력의 변화가 거의 없었다. 두 레이놀즈 수 

모두에서 곡률이 증가할수록 전두부 곡률 주변에서 낮은 압력이 

형성되어 압력 저항이 증가한다. 마찰 저항은 곡률의 오목한 부분에 

생성되는 재순환 보텍스에 의하여 곡률이 증가할수록 감소한다. 따라서 

총 항력의 감소는 전두부 곡률 형상에 따른 압력 저항의 증가량과 마찰 

저항의 감소량의 크기에 의해 결정된다. 

 

주요어: 전두부, 곡률, 항력, 타원체 
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