Three Solutions to a Simple
Commons Problem
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We compare the equity and incentive properties of three
efficient solutions to a simple problem of cooperative production
with binary demands for a homogeneous service, when marginal
cost is either monotonically increasing or monotonically decrea-
sing.

The solutions are the familiar competitive equilibrium with
equal incomes, the Shapley value of the stand alone cooperative
game, and the virtual price solution, applying the egalitarian
equivalence idea to this particular model.
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I. Introduction

The “problem of the commons” is a time-honored conundrum of
economic theory. When a production technology is the common
property of its potential users, how should we organize its
exploitation so as to achieve simultaneously i) an efficient utiliza-
tion of the resources (Pareto optimality), ii) an equitable distribution
of the surplus (fairness) and iii) simple decentralized choices for the
potential users compatible with dispersed information about private
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characteristics (incentive compatibility)?

Familiar examples of commons include pastures, fishing grounds
and other exhaustible resources (Dasgupta and Heal 1979).

In the last decade, congested networks have been successfully
analyzed as commons where each user requests a service and
waiting until service is completed is costly to the users (see Demers
et al. (1990); Shenker (1990); Moulin and Shenker (1999); and Cres
and Moulin (1999) and references therein).

At the heart of the commons problem is the fact that the returns
of the technology vary with the intensity of usage. For instance,
average waiting time for a homogeneous service by single server
(who serves one user per unit of time) increases linearly in the
number of jobs: each new user increases the average cost to all
other users. Consequently, in the free access regime where everyone
chooses freely to request service or not and costs are shared
equally, the commons will be inefficiently overutilized, a central
difficulty known as the tragedy of the commons (Hardin 1968).

In this paper, we look at the simplest conceivable model of the
commons, where each potential user wants one unit of a
homogeneous service, users only differ by their willingness to pay
for service, and total cost varies either as a supermodular (convex)
or a submodular (concave) function of total demand. A good
supermodular example is the queuing problem just mentioned (each
user may or may not need one job; the server processes one job
per unit of time; see Creés and Moulin (1999)). A good submodular
example is the connection to a cable network (each users may be
connected or not; the costs of connecting one more user to the
network decreases with the number of existing connections; see
Moulin and Shenker (1999)).

We explore three simple solutions, namely three mechanisms
defining the property rights of the various agents (those who end
up using the commons as well as those who don’t) to the overall
surplus. Each solution is first best efficient and proposes a
different distribution of the surplus across agents; solutions also
vary with respect to their incentives properties. We submit that the
comparison of these three solutions articulates the central difficulties
of the commons problem. Which solution is a more satisfactory
answer to what concrete example of the commons problem? The
empirical work on the commons gives no simple answer to this
question, yet it demonstrates the relevance of our axiomatic
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approach to the actual institutions governing the commons: see the
discussion of the monitoring costs in Orstrém (1991).

The three solutions are inspired respectively by the three most
important ideas of the recent literature on axiomatic fair division.
One solution applies the Shapley value (Shapley 1953) to the stand
alone cooperative game; another is the familiar competitive
equilibrium with equal incomes; and the third solution applies the
idea egalitarian equivalence (see Thomson and Varian (1985)).

II. The Model

There is a large population of potential users of the commons,
and each agent is describes by his willingness to pay for the
(homogeneous) service produced by the commons. We set d(p) to be
the number of agents willing to pay at least p for the service. We
make the wusual microeconomic assumptions on the demand
function d: it is decreasing continuous and differentiable, from p=0
to p for which d(p)=0.

The production technology is described by the marginal costs
function mc(q). We shall only discuss the two special cases of
increasing marginal costs (imc: the function mc is continuous and
increasing) and of decreasing marginal costs (dmc: the function mc
is continuous and decreasing). The more complicated case of mixed
returns (where mc is not monotonic) has not received any attention
in the mechanism design literature.

We start with the familiar tragedy of the commons, namely the
utilization of the technology in the free access regime. Every agent
decides freely and independently to demand one unit of service; if q is
the number of active users (i.e., those who request service), each active
users pays the average costs ac(g) (inactive users pay nothing).

If the marginal cost is constant at every level of production (so
that aclq)=mc(q)= r for all q) the free access equilibrium is fully
efficient and there is no tragedy. As shown on Figure 1, the
equilibrium production level is g.=d(y), and this is the efficient
level as well. All efficient agents (i.e., those with willingness to pay
p=>7) and only chose are active, and agent p receives a surplus p— 7.

Suppose next that the marginal costs function is increasing, as
on Figure 2. The free access equilibrium output is qn, at the
intersection of the ac and d curves (i.e., dlaclqw)=q), larger than
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the efficient outputs level g., at the intersection of mc and d (ie.,
d(mc(qe)) =qe). Free access entails overutilization of the commons. A
Pareto improving move above the free access equilibrium requires
that all agents between pp=aclqn) and p.=mc(qe) do not request
service, and receive instead a cash compensation of at least p—py
for agent p.1

Turning to the case of a decreasing marginal cost function,
illustrated on Figure 3, we see that the free access equilibrium
entails a production level gn smaller than the efficient level g.. The
tragedy here is the underutilization of the common property
resources. A Pareto improving move from the free access equilibr-
ium requires each agent p between p. and pp to become active,
and pay at most p—p. for service.2

"The virtual price solution discussed in the next section is a simple way
to compute a profile of such compensations.

*The virtual price solution makes them pay exactly this amount: see
Section IV.
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III. Increasing Marginal Costs

Our first efficient solution views the technology as the single
asset of a firm of which all potential users (all agents described by
the demand function) own an equal share. It is the competitive
equilibrium with equal incomes (CEEI) familiar to the fair division
literature (Young 1994; and Moulin 1995). The firm charges the
competitive price p. for service, so that the buyers are exactly the
efficient agents. The firm’'s competitive profit is r=p. - g.—Cl(q.),
depicted on Figure 4. It is equally split among all shareholders, i.e.,
all potential users of the commons. Thus the surplus oee(p)
received by agent p is:

r
Uce(p]:(pfpe]Jer% (1)

Note an alternative definition of the CEEI solution, as the only
efficient allocation where no agent is envious, namely no agent
prefers another agent’s allocation to her own.

The CEEI solution awards a share of surplus to every agent, no
matter how low his willingness to pay for the service. An agent p



THREE SOLUTIONS TO A SIMPLE COMMONS PROBLEM 251

such that p<mc(0) cannot get any surplus from using the
commons, even if he is the sole user — and pays the lowest
conceivable cost. Such an agent receives a rent from his share of
ownership, and this rent is independent of his willingness to pay.
This may or may not be normatively desirable. One important
consequence is that membership to the set of potential users must
be carefully monitored: declaring oneself a potential user is profit-
able, irrespective of one’s ability to use the commons.

On the other hand, the CEEI solution is fully incentive compat-
ible among a given set of potential users. Because every single
agent is negligible with respect to the overall population, mis-
reporting one’s willingness to pay is useless. No matter how
dispersed the information about the demand (each agent knows her
own parameter p; other agents may or may not share this
information), the direct revelation mechanism induces every part-
icipant to reveal p truthfully, and the CEEI solution is faultlessly
implemented. This mechanism simply asks everyone to bid a
willingness to pay p, computes the corresponding competitive
output, price and profit, and implements the corresponding CEEI
allocation.

The virtual price (VP) solution divides total efficient surplus ¢, in
such a way that every agent is indifferent between his actual
allocation and the opportunity to buy service at the (common)
virtual price p,. Thus agent p must receive a surplus share o,(p)=
(p—py+, and p, is determined by the “surplus-balance” condition,
namely the total surplus distributed equals the available efficient
surplus o¢e:

S o-pd.- 1d1wdp=ge=r+ [Tdp)dp < [ dpdp-r @)

On Figure 5, p, is characterized by the equality of the areas
covered by the two shaded triangles.

The actual VP allocation makes all efficient agents p, p>p., pay
p» for service, while every agent p, p,<p<p., receives a per-
sonalized cash transfer (p —p,) and agents below p, receive nothing.
In particular, all agents below mc(0) receive no cash,3 which reflects
the reasonable principle that benefit from the commons is derived
from (potential) usage, and that an agent who “has no business

5The inequality mc(0)<p, holds true, as discussed four paragraphs below.
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using this technology” should not receive any rent. In particular, an
open membership policy is feasible, because only those agents who
can actually increase total surplus will show up.

The downside of the VP solution has a normative and an
incentive component.

On the normative side, all agents between mc(0) and p, receive
no share of the overall surplus. These agents refrain from using
the commons for the sake of efficiency, but they are willing to use
it if it is not too crowded. They reduce crowding by stepping aside,
hence have a legitimate claim to some share or surplus. Both the
CEEI and the Shapley solution below respond to this claim, but
the VP solution does not.

On the incentive side, the personalized transfers to the agents
between p, and p. rule out decentralization by direct revelation (in
contrast to the successful direct implementation of the CEEI
solution). Indeed the agents just below p. (the barely inefficient
agents) receive the largest cash transfer p.—p,, and other inefficient
agents will increase their own payment by reporting a willingness
to pay just below p.. This applies to all inefficient agents, including
those below mc(0). In the equilibrium of the direct revelation game
corresponding to the VP solution, the efficient agents report some
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p>pe and all inefficient agents report just below p., so they all get
an identical cash transfer. It is easy to check on Figure 5 that the
corresponding outcome is precisely the CEEI solution of the true
economy.

An interesting observation, illustrated on Figure 6, is that the
virtual price p, is always smaller than the free access equilibrium
price, and larger than the average cost at the competitive level:

ac(qe) <po<pa=aclqs) <pe 3)

These inequalities follow by comparing on Figure 6 the areas of
the two shaded triangles (Figure 5) when p=aclql) and p=ps
respectively.

In the free access equilibrium outcome, the surplus awarded to
agent p is (p—p)- and (3) implies (p—pr)+ <(@P—ps)+. Therefore the
VP allocation is Pareto superior to the free access equilibrium, and
the free access mechanism “subimplements” the VP solution. That
is, in those configurations of d and mc where the free access
equilibrium does not lose much surplus (moderate tragedy), it offers a
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good approximation of VP, with the same distributive implications.

A proper implementation of the VP solution requires a
mechanism more complex than the direct revelation one, as well as
some specific assumptions about the dispersion of information
among the agents (See Moulin (1995, Chapter 6)).

The third and last solution applies to our commons problem the
familiar Shapley value of cooperative games with transferable utility.
For each subset S of the potential users, we write v(S) for the
stand alone swrplus of S, namely the efficient surplus of the
commons problem with the same technology but only S for
potential users. Thus for S=N containing all agents accounted for
in d, we have v(N)= ¢g.. For S={p} containing a single agent willing
to pay p for service, we have v(S)=(p—mc(0)).4

The Shapley value assigns to agent p a share of surplus os(p)
computed as the expected value of v(SU{p})—v(S), when all potential
users are randomly ordered — with uniform probability on all
orderings, and S is the random set of agents preceding p in the
ordering. The function o5 is fairly easy to compute, thanks to our
assumption of a continuum of agents, and to the law of large
numbers:

min{p,pe}

6s(p)=(p—pd-+ 0 (p), where ¢ (p)=[

me(0)

me !
T(t)dt, for all p>mc(0) (4)

The derivation of this formula is explained in the Appendix.
Figure 7 shows a slice [t,t+dt] of the competitive profit r, for mc(0)
<t<pe. This slice is equally divided among all agents willing to pay
t or more: hence each gets a share (mc '/d)(t). For t>p., the slice
of ge—r is equally divided among all agents not smaller than ¢t
summing up between p. and p yields a share p—p. for agent p.

The Shapley solution charges the same price for service to each
efficient agent, namely p.— 60 (pe). It gives a cash transfer 6 (p) to an
inefficient yet potentially active agent p, mc(0)<p<p.. Agents p, p<
mc(0), receive nothing: these agents are not active even if they are
standing alone. Observe that the cash transfer to an inefficient
agent p decreases when p decreases, and vanishes for p=mc(0).
Thus every potentially active agent (p>mc(0)) receives a positive

‘We identify mc(0)=mc(1) in view of the large number of agents.
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share of surplus (like in CEEI, but unlike in VP), and only the
potentially active do (unlike in CEEI).

That the Shapley solution strikes an appealing compromise
between VP and CEEI is also clear when we compare the three
surplus distribution functions ¢e (formula (1)), ¢s (formula (4)) and
ov(P)=(@P—py)+. Figure 8 depicts these three functions in the
numerical example of Figure 2. The following facts hold true for
any (decreasing) demand and (increasing) marginal cost functions:

efficient agents prefer VP to Shapley, and the latter to CEEI:

P=pe = 0u(P)> 0s(P)> 0celp) (5)

barely potentially active agents prefer CEEI to Shapley, and the
latter to VP:

p=mc0)+ & = oclp)> 7s(p)> 0u(p) (6)

inactive agents prefer CEEI, and are indifferent between Shapley
and VP:

p< mc(O) = Uce(p] > Gs(p] = (ju(p) =0 (7)
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Another general fact is that any two of our three surplus
functions cross exactly once: the supporters of one or the other
method partition the demand around a critical threshold. This
implies for instance that voting by majority to select one of the
three methods will never generate a cycle.

The proof of the claims is given in the Appendix.

The Shapley solution distributes personalized cash payment to
the inefficient yet potentially active agents. This create the same
incentives to misreports in the direct revelation game as for the VP
solution. Each potential user reports p, and the Shapley allocation
is computed and implemented on the basis of the reported values:
the inefficient agents will report that they are barely inefficient in
order to maximize their cash reward. The equilibrium of the
reporting game, once again, is just the (true) CEEI allocation.

On the other hand, the Shapley solution is “sub-implemented” by
a very simple mechanism called the random priority game (Crés and
Moulin 1999). An ordering of all potential users is randomly
selected (with uniform probability on all orderings) and the agents
are successively offered to buy (one unit of) service at the “current”
marginal cost: when the turn of agent p comes, if exactly q agents
before her did buy service, she is offered price mc(q). Naturally, she
accepts if and only if p>mc(q).
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Thanks to the law of large numbers, it is not difficult to compute
the probability that agent p does buy and her expected payment.
The formula for the resulting (expected) surplus is given in the
Appendix. The interesting property is that the random priority
equilibrium allocation is Pareto inferior to the Shapley solution.
When the efficiency loss of the former allocation is small, this
means that it is a good approximation of the latter.

The numerical example of Figure 2 illustrates the two subimple-
mentation properties. The free access equilibrium outcome over-
produces by 25% (as qu=75 and g.=60) but the surplus loss is
only 6.25% as ¢.=3,000 and ¢u=2,812.5.

The random priority equilibrium overproduces by 21.6% (gp=
73.0) and its surplus loss is only 8%.

IV. Decreasing Marginal Costs

Under decreasing marginal costs, when the service is offered at
the competitive price p. (defined by mc(d(p.)) =p.; see Figure 9), the
revenue collected p. - g. falls short of the actual cost. The competitive
deficit y'=C(qd —pe - ge is depicted as the shaded area on Figure 9.
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The CEEI solution divide 7’ equally among all potential users, so
that the surplus of agents p is cgelp)=(pP—pd+—(7'/d(0)). Thus all
agents pay the tax 7y'/d(0), and service is offered for the additional
fee p.. This is the “public service” solution, where all agents are
forced to subsidize the firm in order that it charges the price
generating the efficient demand.

In the imc case, the CEEI solution gives a rent even to agents
who are not potentially active (p<mc(0)), which seems excessively
generous. In the dmc case, on the contrary, the solution is
excessively harsh on all inefficient agents. As before, the CEEI
solution is incentive compatible in the sense of strategyproofness:
in the direct revelation mechanism, no one benefits by reporting
untruthfully his or her willingness to pay. However, implementation
of the solution requires to carefully monitor the set of agents who
share the ownership of the “firm.” In the dmc case, the issue is to
prevent anyone from leaving the sceneS: the participation of the
inefficient agents is not voluntary.

The virtual price solution is defined by precisely the same
equation (2), but the virtual price p, is now larger than the efficient

5 . . . . + .
In the imc case, monitoring was necessary to prevent immigration
instead of emigration.
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price pe, Figure 10 illustrates the equation:
[ldp)dp=»'

by the property that the two shaded triangles have equal area.

The VP allocation gives one unit of output to all efficient agents
(p=pd). It charges the price mini{p, p.,} to agent p. That is, all agents
pP>py Pay p», and an agent p, p.<p<p,, pays exactly p: he is
indifferent between buying service or not, and receives zero surplus.
All inefficient agents get no service and pay nothing.

It is normatively appealing to leave the inefficient agents out and
to ask no money from them. After all, they are “dummies” (in the
terminology of cooperative games), namely their presence never
improves the stand alone surplus of any coalition. On the other
hand, they are not required to pay anything, which ensures
voluntary participation, and allows an open membership policy. One
objection to the VP solution is the rough treatment of the “low”
efficient agents — those between p. and p,. The solution squeezes
out all surplus by charging exactly their own valuation, thus
making them indifferent between participating or not. Under CEEI,
the barely efficient agents net a surplus loss, which is worse.

The incentives properties of the VP solution are worse under dmc
than under imc. The difficulty is the same, namely the personalized
payments for the same service. In the direct revelation game, every
efficient agent wants to pretend that he is barely efficient so as to
pay (almost) p.. But if all efficient agents pretend to “be” p.+ ¢, the
VP solution based on these reports is the zero production: no one
gets any service and no money changes hand! The strategic
instability in the misreporting game is that of a Battle of the Sexes
situation. Decentralized behavior can wipe out the cooperative
surplus entirely (when too many agents deflate their willingness to
pay).

As in the imc case, the VP allocation is Pareto superior to the
free access equilibrium allocation. This results from the following
inequalities, of which the geometric proof is just as easy as in the
case of inequalities (3):

Pe<aclqe) < pu<pra=acl(q) (8)
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The Shapley solution is defined, exactly as in the previous
section, by its surplus distribution os(p), the Shapley value of the
stand alone cooperative game. The explicit formula is as follows:

min(p.meO)} FNC !

os(p)=p—(pe+ 0'(p)) where ¢'(p)=/, 2

(tdt, for all p>p.

os(p)=0 for p<pe. 9)

Thus every efficient agent is charged p. plus the personalized
surcharge 0'(p) for service. An important fact is that ¢' increases
in p, from 0'(p’)=0 to ¢'(p)= ¢'(mc(0)) for all p>mc(0). A second
key observation is p.+ 6'(p)<p for all p>p. — purchase of service
by agent p is voluntary. And finally the surplus function o5
increases with p, which correctly rewards a high willingness to pay,
whose contribution to overall surplus is larger.6

Figure 11 depicts the surplus functions of our three solutions
CEEI, VP and Shapley in the numerical example of Figure 3.
Several features of this figure are perfectly general:

5The last two observations follow at once from the fact that me '<d in
the interval where the integral is defined.
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agents who are active even when standing alone prefer CEEIL:
p=mc(0) = cee(p)> 0u(p), 0s(p)

barely efficient agents prefer Shapley to VP, and the latter to
CEEL

P=Pe+ 6:>Gs(p)> Gu(p]> Uce(p)

inefficient agents are indifferent between Shapley and VP, and
CEEI is worst:

P<Pe = 0s(p) = 0u(p) =0> 0eelp)

The single crossing property of any two of the three surplus
functions is a general fact as well.

Turning finally to the implementation of the Shapley solution, we
note that the direct revelation game is strategically similar to the
revelation game of the virtual price solution. Every efficient agent
wishes to report a willingness to pay barely above p., so as to pay
almost nothing for service. If too many agents do this, the efficient
output under the reported demand function falls to zero and all
surplus is lost. Therefore the situation is a generalized Battle of the
Sexes where efficient agents seek to commit to underreporting so
as to prevent other efficient agents from doing the same.

The random priority mechanism is defined as before and still
delivers a subimplementation of the Shapley solution. In the
numerical example of Figure 3, both the free access and random
priority equilibrium outcomes produce 20% less than the efficient
output, and collect all but 5% of the overall surplus:

a o} o
gfe —80% -2 =96% 1—T-=79% 1~

5-=95%

e

These figures are encouraging, however the good performance of
the random priority mechanism depends on the fact that a large
fraction of the demand lies above the highest marginal cost mc(0).
If the highest willingness to pay p is below mc(0) (or if only a small
fraction of the potential users is above mc(0)), the random priority
mechanism either is a non starter, as no one is ready to buy the
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first — most expensive — unit, or it collects a small fraction of the
overall surplus.

V. Conclusion

Our three solutions offer three conflicting interpretations of the
property rights to the surplus generated by a one input — one
output commons. The CEEI solution is captured by the simple
tests of No Envy (in combination with efficiency); it distributes the
competitive profit (imc case) or loss (dmc case) uniformly among all
agents, efficient and inefficient alike.

The virtual price solution distributes the surplus as if everyone
was charged the same price for service, although the actual
allocation gives a personalized cash transfer to the barely inefficient
agents (imc case) or charges a personalized price to the barely
efficient ones (dmc case). It gives no surplus whatsoever to many
potentially active agents (imc case) and even to some efficient
agents (dmc case).

The Shapley solution strikes a reasonable compromise between
the above two solutions, giving a positive share of surplus to all
potentially active agents (imc case) and to all efficient agents (dmc
case). However, it is the hardest to implement of the three.

Finally we mention two popular equity tests from the fair division
literature (see e.g., Moulin (1995) or Young (1994)), the Population
Monotonicity (PM) and Resource Monotonicity (RM) properties. PM
states that when new agents join the set of potential users, the
welfare of no existing agent should increase (imc case) or decrease
(dmc case). RM states that when the technology improves, in the
sense that the function mc is replaced by a smaller function mc’
(mc'(g@)<mcl(q) for all g), the welfare of no agent should decrease.

It is ease to check that the CEEI Solution fails both tests
whereas the VP and Shapley solutions meet both tests.

Appendix

1. Proof of Formula (4)
Fix an agent p and let S be the (random) see of agents preceding
p, when all orderings of N are equiprobable. Let A be the size of
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relative to N : A =1|S|/d(0).

The law of large numbers (see, e.g., Feller (1971)) implies that the
demand function generated by the set S of agents is simply Aid. We
call p(2) the efficient price in the economy (S,mc). Thus p(1) is the
unique solution of the following equation with unknown p:

me !
d (p)

me(2-dp))=p & 1=

The marginal surplus contributed by p to coalition S is v(SU{p})—
v(S)=(p—p(A))+. Therefore the surplus share awarded to agent p by
the Shapley solution is:

o) =/, p—p(A1)-dA

Upon setting f=mc '/d and changing variable A to t such that
A =flt), the above integral becomes:

osp) = [ (o~ 0 -fdt=["  (p—1fidt where p,—minip, pel
Integrating by parts yields:

Gs(p) = [(p - tlﬂt)]:L'(O) + ,,[:.(0) ﬂt)dt
which is precisely formula (4).
Note that the proof of formula (9) in the dmc case is entirely
similar.

2. Proof of Statements (5), (6), (7) and the Single Crossing

Property

Both functions ¢, and oc. are made of two linear pieces with
successive slopes 0 and 1 and their integral over [0, p] are equal.
The single crossing property follows at once.

From (4) it is clear that the slope &s(p) is increasing, remains
between O and 1 and equals 1 for p>p.. Taking into account the
relative position of our three functions at p=p and p=0 (properties
(5) and (7)), we see that os and ¢, as well as ¢s and ¢c, Cross
only once.
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In order to establish property (5), it is cleanly enough to show:

» me ! r

<Pe— <Pe—
s T

First we prove the right-hand inequality:

me '(p) ﬁfpfmc ! 1 fp o r

®)=""70) o d ~ do) " do)

for all p, mccl

Next we use the definition of p, (equation (2)) to show:

nme! | 1 . o
_— — df
L == d(p,) Jy me dipy Jo @me )

This implies:

1 1

»mec - MC
f 0 d g f P d + d(pv)

1 1
d(p,) _T)}

d—mc ! pe

= {1+@-me - |

Between p, and p., d>mc ' and 1/d(p,)<1/d, therefore the right-
hand integral is bounded above by p.—p,, as was to be proven.
The straightforward proof of properties (6) and (7) is omitted.

3. The Random Priority Equilibrium Allocation

The computation of the equilibrium allocation is adapted from
Crés and Moulin (1999).

Given a random ordering of N, and a number A, 0<A<1, we
denote by S the set of the first Ad(0) agents. By the law of large
numbers, the numb g( 1) of units purchased by the agents in S, is
deterministic. We compute (1), namely the total output at the
equilibrium allocation of our mechanism.

Clearly g(A) is non-decreasing in 1 and g(l1)<mc '(p), because
nobody is willing to pay more than p for service. The probability
that the first agent after S buys service at price mc(q( 1)) is d(mc(q
(1))/d(0) therefore g( A)=d(mc(q( 1)) and

atn 1
———ds= 2 forall 1, 0<a<1
fo d(me(s))
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Two cases arise:

me'(p) 1 q(1) 1
if fo <1 then q(1) is the solution of fo =1
d(mc) d(mce)
if [ >1 then g(1)=mc '(p)
° ame) d P

Observe that ge<q(l): the random priority equilibrium ineffici-
ently overproduces. Indeed d(mc(q))>qe. for all g<gqe., implying
f(;'"(l/d(mc])< 1, and the claim.

We compute next the equilibrium allocation of agent p. Let 1 be
the relative size of the random set of agents preceding her. Agent p
buys service if mc(q(A))<p < q(A)<mc '(p). Therefore the overall
probability r (p) that our agent is served is:

minfme ™ (p). g(1)} 1
7 (p)= fo amo)
and her expected payment y (p):
smime . g TTIC(S)

1 (p)= ﬁ] “melg( 2)d A =f o l d(mc(s)) °

(where the right-hand equality follows the change of variable s=
q(2)).

Therefore the surplus o(p) awarded to agent p in the random
priority equilibrium is:

mingme ). g P — MC(S)
onl) = J, d(me(s))

Finally we check that the above surplus is not larger than the
Shapley surplus os(p), which is the announced subimplementation
property. Rather than comparing the above integral with that in (4),
we consider the surplus share of our agent when the relative size
A of the coalition preceding her is fixed. Her Shapley surplus is
p—p(A), where p(A) is defined in the proof of formula (4). Her
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random priority surplus is p—mc(q(1)). We showed above that the
random priority equilibrium overproduces: g(1)>qg. © mc(q(1))> pe.
Applying this to the economy (S,mc) gives me(q(2))>p(A) and the
desired conclusion.

(Received 9 June 2001; Revised 22 October 2001)
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