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Abstract 

 

Salivary gland epithelial cells (SGEC) release several cytokines that play 

important roles in the inflammatory process. Muscarinic receptors, particularly 

the type 3 subtype (M3R), play an important role in exocrine secretion. 

However, the regulatory mechanism of the inflammation and the functional 

expression of M3R in SGEC remains to be elucidated. 

In chapterⅠ, I examined whether capsaicin can modulate the cytokine 

release in SGEC. These findings demonstrated that the increases in TNFα and 

IL-6 mRNA transcripts were highest at 3h and 1h after incubation with poly(I:C) 

and LPS, respectively. Pretreatment of the cells with 10 μΜ capsaicin, however, 

significantly inhibited mRNA transcripts and its protein levels. The 

simultaneous application of 10 μΜ capsazepine with capsaicin did not block the 

inhibitory effect of capsaicin. Furthermore, the inhibitory effect of capsaicin 

was also shown in primary cultured cells from TRPV1
−/−

 mice. I found that 

both poly(I:C) and LPS induce IκB-α degradation and phosphorylation, which 

results in NF-κB activation and capsaicin inhibits this NF-κB pathway. These 

results demonstrate that SGEC release pro-inflammatory cytokines by TLR 

stimulation, and capsaicin inhibits this process by inhibiting the NF-κB 

pathway. 

In chapter Ⅱ, I examined A253 cells derived from human salivary gland 

tumor tissue, in which muscarinic receptor function is suppressed. In this study, 

I examined whether M3R function is suppressed by epigenetic modulation of 

the receptor. I found that A253 cells expressed all subtypes of muscarinic 

receptors, except subtype 3, at the mRNA and protein level. However, 

treatment of cells with 5-aza-2'-deoxycytidine (5-Aza-CdR) restored the 
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functional expression of the M3R. Treatment of cells with 5-Aza-CdR 

completely restored the carbachol-induced calcium response, which was not 

observed in untreated A253 cells. Global methylation levels in A253 cells were 

also reduced by 5-Aza-CdR-treatment. I also examined whether 5-Aza-CdR 

treatment induced demethylation of the M3R CpG island, and found that one of 

the methylated CGs was demethylated by bisulfite sequencing. Thus, I conclude 

that suppression of M3R function in A253 cells results from hypermethylation 

of the CpG island; moreover, M3R function can be restored by DNA 

demethylation. 

This study suggests that capsaicin could potentially alleviate the 

inflammation and 5-Aza-CdR could potentially be used to restore function to 

the M3R, which is suppressed in salivary gland epithelial cells. 

 

Key words: salivary gland, capsaicin, TNFα, IL-6, capsazepine, NF-κB, 

epigenetic, muscarinic receptor, A253, hypermethylation, 5-Aza-CdR 
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General Introduction 

 

Pattern recognition receptors that detect specific molecular motifs are 

decisive factors for activation of immune system (Roach et al., 2005). Toll-like 

receptors (TLRs) are a type of pattern recognition receptors, and play a major 

role in activation of innate immune responses against microbial pathogen. So 

far, ten TLRs have been identified in human (Chuang & Ulevitch, 2001; Tabeta 

et al., 2004). They bind to distinct components of various pathogens such as 

bacteria, fungi or viruses known as pathogen-associated molecular patterns 

(PAMPs) (Xu et al., 2000). For instance, double-stranded RNA (dsRNA) which 

is generated during viral replication are recognized by the TLR3 that binds to 

poly(I:C) (Alexopoulou, Holt, Medzhitov, & Flavell, 2001). Gram-negative 

bacteria-derived LPS in the cell walls are also recognized by the TLR4 (Takeda, 

Kaisho, & Akira, 2003). 

TLR signaling is an essential mechanism that causes initiation of 

inflammatory responses. After TLR recognizes microbial pathogens, they 

trigger intracellular signaling pathways through the induction of pro-

inflammatory cytokines, chemokines, and type I interferon (IFN) (Han et al., 

2003; Kawai et al., 2001). Moreover, signaling from TLRs allows upregulation 

of costimulatory molecules on specialized antigen-presenting cells. Furthermore, 

TLR triggering actively participates in the pathogenesis of autoimmune 

disorders. It promotes organ-specific autoimmune lesions such as Sjögren 

syndrome (SS), which is a chronic autoimmune inflammatory disease that 

primarily affects salivary glands, resulting in their functional impairment 

(Spachidou et al., 2007). 
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Deteriorated inflammation can promote cancer development and progression. 

For instance, persistent infection of Helicobacter pylori is closely related to 

gastric cancer and mucosa-associated lymphoid tissue (MALT) lymphoma 

(Karin, 2006). In general, as a part of normal host defense system, the main 

function of inflammatory response triggered by infection is to prevent tumor 

development. However, tumorigenic pathogens debase host immunity and lead 

to persistent infections implicated in inflammation (Rakoff-Nahoum & 

Medzhitov, 2009). 

Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide) is known as a colorless, 

pungent, and irritant compound extracted from hot and red chili peppers. 

Capsaicin is used to help relieve neuropathic pain, itching, and exhibits anti-

cancer or anti-inflammatory effects (Morre et al., 1996). Furthermore, it has 

been reported to selectively suppress the growth of a number of human tumor 

cells (Morre, Chueh, & Morre, 1995). Its immunosuppressive effects have been 

linked to its ability to suppress NF-κB activation. Nuclear transcription factor 

κB (NF-κB) is a heterodimeric factor that regulates genes involved in immunity, 

inflammation and malignant diseases (Liu & Chen, 2011). Links between NF-

κB activation and cancer have been found, and it has officially been revealed 

that the stimulation of muscarinic receptors can trigger NF-κB activation (Kim, 

Hawke, & Baldwin, 2006; Lee, Jeon, Kim, & Song, 2007). 

Salivary gland tumors can be developed in a wide range of histological 

locations. The submandibular gland-derived tumor cell line A253 presents 

characteristics of differentiated epithelial cells, and it is considered a useful tool 

to study the mechanisms of saliva modification, chloride transport, and 

intracellular signal transduction pathways, which could be activated by different 

stimuli or agonists (Trzaskawka et al., 2000). 
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The components of the cholinergic system were detected in non-neuronal 

cells and tissues, which comprise of the non-neuronal cholinergic system. It is 

composed by acethylcholine, the neurotransmitter at neuromuscular junctions, 

synapses, and other biological regions within the central nervous system. It is 

the organic molecule that is synthesized and degraded by nicotinic and 

muscarinic receptors (Wessler, Kirkpatrick, & Racke, 1999). 

According to several types of experiments and observation in molecular 

levels, five subtypes of muscarinic receptors have been discovered to date. 

Muscarinic M1, M3 and M5 receptor subtypes couple to Gq/11 and can activate 

phospholipases (Eglen, 2006). Muscarinic M2 and M4 receptor subtypes favor 

interactions with the Gi protein family and decrease adenylate cyclase activity, 

reducing intracellular levels of cAMP (Caulfield, 1993). Changes in the 

expression and/or function of muscarinic receptors have been shown to be 

implicated in many pathophysiological processes, like degenerative nervous 

diseases, chronic inflammation and cancer (Koch, Haas, & Jurgens, 2005). 

Activation of the muscarinic receptors has been associated with proliferation, 

angiogenesis and tumor growth (Espanol, de la Torre, Fiszman, & Sales, 2007). 

In epigenetic perspectives, factors that affect salivary gland carcinoma uniquely 

sensitive to inflammation are currently unknown. Since the field of epigenetics 

continues to shed light on the importance of clinical treatments and further 

researches, it is significant to inquire the questions about how we can efficiently 

cope with inflammatory defects and diseases in epigenetic cancer studies. 

Epigenetic modifications may play a role in the development of tumors. 

Changes in DNA methylation including both hypomethylation and 

hypermethylation may affect transcriptional inactivation of tumor suppressor 

genes in human cancer. In actively transcribed genes, the CpG sites in CpG 
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islands of promoter regions are unmethylated, whereas increased cytosine 

methylation in the CG sites within CpG island is associated with reduced gene 

expression and possible gene silencing (Ehrlich, 2009). 

DNA methylation has been reported to play a fundamental role in a large 

spectrum of biological processes, including aging, infectious diseases, and 

human cancers including salivary gland cancer (Herman & Baylin, 2003). CpG 

hypermethylation is critical for silencing the expression of certain tumor 

suppressor genes, and influences comprehensive regulations resulting in 

differentiated programs in numerous types of tumor. For that reason, the levels 

of CpG methylation is effectively used to subclassify tumors, predict response 

to chemotherapeutic agents that are metabolized or antagonized by cellular 

enzymes regulated by promoter methylation, and to assess the effects of 

methylating and demethylating therapies (Herman & Baylin, 2003). 

There are two major purposes in this thesis. First, it is essential to reveal that 

capsaicin is involved in anti-inflammatory effect. Second, the function of the 

M3R is suppressed by epigenetic modulation in salivary gland epithelial cells. 

 

 

 

 

 

 

 

 

 

 



５ 

 

 

CHAPTERⅠ 

 

Capsaicin regulates the NF-κB pathway 

in salivary gland inflammation 
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1. Introduction 

 

Toll-like receptors (TLRs), known as pathogen-associated molecular patterns 

(PAMPs), are a conserved family of type I transmembrane receptors. The TLRs 

comprised by 11 mammalian proteins play an essential role in activating both 

innate and adaptive immune responses, which recognize the molecular patterns 

associated with microbial pathogens. Toll-like receptor 3 (TLR3) recognizes 

double-stranded RNA (dsRNA) associated with viral infection by binding viral 

polyinosine-polycytidylic acid (poly[I:C]). Toll-like receptor 4 (TLR4) 

recognizes bacterial infection by binding lipopolysaccharides (LPS) derived 

from gram-negative bacteria (Takeda et al., 2003). 

Epithelial cells expressing various TLRs may initiate an immune response 

(Greene and McElvaney, 2005). Salivary gland epithelial cells (SGEC) from 

patients with Sjögren’s syndrome (SS) express much higher levels of mRNA 

for pro-inflammatory cytokines, such as TNFα and IL-6 (Fox et al., 1994). Both 

IL-6 and TNFα seem to be highly associated with salivary gland inflammation, 

since these cytokines are overexpressed in saliva of patients with SS but not 

patients with drug-induced xerostomia (Vucicevic Boras et al., 2006). 

Transient receptor potential vanilloid subtype 1 (TRPV1) is a ligand-gated, 

selective cation channel expressed in nociceptors (Caterina et al., 1997). 

Capsaicin is a colorless irritant phenolic amide C18H27NO3 found in various 

capsicums that gives hot peppers their hotness. Capsaicin is used in topical 

creams for its analgesic properties (Karnka et al., 2002). Vanilloid receptor 

signaling induced by either capsaicin (Su et al., 1999) or heat (Kirschstein et al., 

1999) was completely blocked by capsazepine, one of the most competitive 

TRPV1 antagonists, against capsaicin (Szallasi and Blumberg, 1999). TRPV1 
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also induces pain, desensitization, neurotoxicity, and neurogenic inflammation 

responses (Oxholm et al., 1992). It was originally identified in nociceptive 

neurons, but recent evidence has identified functional TRPV1 in various cell 

types, including bladder epithelial cells (Birder et al., 2001), bronchial epithelial 

cells (Veronesi et al., 1999), and synovial fibroblasts (Engler et al., 2007). 

Capsaicin has been associated with anti-inflammatory properties (Joe et al., 

1997). Capsaicin induce an intracellular signaling in neuronal cells via vanilloid 

receptors (Su et al., 1999), but the mechanism of the anti-inflammatory action 

in non-neuronal cells by capsaicin is not fully understood. Salivary epithelial 

cells can also initiate inflammation, but whether capsaicin has an anti-

inflammatory activity in salivary glands remains unknown. This prompted us to 

evaluate possible mechanisms of anti-inflammatory activities of capsaicin in 

SGEC. 
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2. Materials and Methods 

 

Reagents 

Poly(I:C) and LPS (Escherichia coli 0111:B4) (Sigma Aldrich, St. Louis, 

MO, USA); Capsaicin and capsazepine (Sigma Aldrich); Antibodies to TRPV1, 

IκB-α, and phospho-IκB-α (p-IκB-α) (Santa Cruz Biotechnology, Santa Cruz, 

CA, USA; Cell Signaling Technology Danvers, MA, USA), respectively, were 

used in this study. 

 

Cell culture 

HSG cells, originating from human submandibular ducts, were cultured in 

Dulbecco’s modified Eagle’s medium (Welgene, Daegu, South Korea), 

supplemented with 10% (v/v) fetal bovine serum (Welgene,) and 1% 

penicillin/streptomycin (Life Technologies, Seoul, Korea) at 37 ℃ in a 

humidified atmosphere of 5% CO2 and 95% air. HSG cells and acinar cells 

were pre-incubated for 3 h or 1 h with poly(I:C) and LPS at the concentrations 

indicated for each experiment. 

 

RT-PCR 

HSG cells were treated with 10 μg/ml of poly(I:C) or 1 μg/ml of LPS, and 

harvested for RNA extraction. Total RNA was purified using Trizol (Invitrogen, 

Carlsbad, CA, USA). Reverse transcriptase with an oligo-dT primer (Invitrogen) 

was used to prepare cDNA from 1 μg of total RNA. PCR with specific primers 

was performed using 1 μl of cDNA. The primer sets were as follows: TNF-α: 

forward 5’-CCAGGCAGTCAGATCATCTTC -3’ and reverse 5’-

T T G A T G G C A G A G A G G A G G T T - 3 ’ ;  I L - 6 :  f o r w a r d  5 ’ -
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C A C A C A G A C A G C C A C T C A C C - 3 ’  a n d  r e v e r s e  5 ’ -

A G C T C T G G C T T G T T C C T C A C - 3 ’ ;  an d  T R P V 1 :  f o r w a r d  5 ’ -

T T T C A G G C A G A C A C T G G A A G A - 3 ’  a n d  r e v e r s e  5 ’ -

T T G A A G A C C T C A G C G T C C T C T - 3 ’ ;  G A P D H :  f o r w a r d  5 ’ -

G A A G G T G A A G G T C G G A G T C - 3 ’  a n d  r e v e r s e  5 ’ -

G A A G A T G G T G A T G G G A T T T C - 3 ’ .  

PCR conditions were as follows: 35 cycles of denaturation at 95℃ for 30 s, 

annealing at 55℃ for 30 s, and extension at 72℃ for 30 s; and a final step at 

72℃ for 10 min. (PTC-1148C; Bio-Rad Laboratories Inc., Hercules, CA, 

USA). PCR products were separated by using a Mupid® -2 plus electrophoresis 

system (OPTIMA, Tokyo, Japan) on 1.5% agarose gels (Sigma Aldrich) 

containing 0.1 μg/ml ethidium bromide (Sigma Aldrich) and were visualized 

under UV light with a bioimaging system (TS-312R; Spectroline, Westbury, 

NY, USA). 

 

Quantitative real-time PCR 

Total RNA was extracted from HSG cells and mouse SMGs using Trizol 

(Invitrogen) according to the manufacturer’s protocol. One microgram of total 

RNA was converted to cDNA using Superscript ІІ reverse transcriptase 

(Invitrogen) and oligo-(dT) primers according to the manufacturer’s protocol. 

The primers were based on the mouse TNFα and IL-6 cDNA sequences. The 

primers were TNFα: forward 5’-TCCCAGGTTCTCTTCAAGGGA-3’ and 

reverse 5’ GGTGAGGAGCACGTAGTCGG-3’; IL-6: forward 5’-

A A C G A T G A T G C A C T T G C A G A - 3 ’ ;  a n d  r e v e r s e  5 ’ -

G G A A A T T G G G G T A G G A A G G A - 3 ’ ;  G A P D H :  f o r w a r d  5 ’ -

T T C A C C A C C A T G G A G A A G G C - 3 ’ ;  a n d  r e v e r s e  5 ’ -
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TCATGACCACAGTCCATGCC-3’. Quantitative real-time PCR was 

performed in a reaction containing cDNA and SYBR PCR master mix (Applied 

BioSystems, Foster City, CA, USA). Samples were analyzed with the ABI 

PRISM 7500 sequence detection system (Applied BioSystems). All PCRs were 

performed in triplicate, and the specificity of the reaction was determined by  

melting curve analysis at the dissociation stage. 

 

MTT assay 

Cells were subcultured into coated multiwell cell culture plates (SPL 

Lifescience, Pocheon, Korea) and allowed to reach ~80% confluence over 24 h. 

The cells were washed once with sterile phosphate-buffered saline and treated 

for 3 h with capsaicin. Cell viability was assessed using the C-Chip DHC-NO1 

(iNCYTO) (Digital Bio Technology, Suwon, Korea), according to the supplier 

recommendations. Cell viability was determined by spectrophotometrically 

assaying the production of water-soluble formazan dye (Sigma Aldrich) by 

active mitochondrial dehydrogenase enzymes in viable cells. Data are expressed 

as the percentage of viable cells relative to untreated control cells. 

 

Enzyme-linked immunosorbent assay for cytokines 

Cell culture media were collected at various time points in each experiment. 

The cytokine levels secreted into the medium were measured using TNFα and 

IL-6 ELISA kits (R&D Systems, Minneapolis, MN, USA) according to the 

manufacturer’s protocol. Serum was used immediately after thawing from -

70℃. 
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Experimental animals and cell preparation 

All procedures were conducted in accordance with the Institutional Animal 

Care and Use Committee at the School of Dentistry, Seoul National University. 

TRPV1
−/−

 mice were obtained from the Jackson Laboratory (Bar Harbor, ME, 

USA). The salivary phenotype of this mice looks normal; the average weights 

for SMG and flow rate were not significantly different to those of littermate 

(data not shown). Mouse SMG samples were finely minced into small pieces in 

KRH (Krebs-Ringer Hepes) solution (120 mM NaCl, 5.4 mM KCl, 1 mM 

CaCl2, 0.8 mM MgCl2, 11.1 mM glucose, 20 mM HEPES, pH 7.4) (Sigma 

Aldrich), aerated with 95% O2, and then digested in KRH solution containing 

100 units/ml of collagenase (Worthington, Lakewood, UK) and 1% BSA 

(Sigma Aldrich) for 60 min with continuous agitation (MSH-20A; Daihan 

Scientific, Seoul, Korea). After the incubation by shaking water bath (SWB-10; 

Jeio Tech, Seoul, Korea), dissociated cells were harvested by filtering the 

suspension through a nylon mesh (200 μm) (Lockertex, Warrington, Cheshire, 

UK) followed by centrifugation (Micro 17R centrifuge; Hanil Science industrial 

Co., Ltd., Incheon, Korea). 

 

Western blotting 

Cultured cells were collected and protein concentration was measured using 

the BCA protein assay kit (Pierce, Rockford, IL, USA) with BSA as standard. 

Protein samples were separated by 8% SDS-PAGE (Bio-Rad, Hercules, CA, 

USA). After electrophoresis using a Power-PacTM Basic system (Bio-Rad), the 

proteins were transferred to nitrocellulose membranes (Whatman, Dassel, 

Germany). The membranes were blocked with 5% non-fat milk (Seoul-milk, 

Seoul, Korea) and probed with the following antibodies: anti-TRPV1 antibody 
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(1:200 dilution) (Santa Cruz Biotechnology), anti-IκB-α/p-IκB-α antibodies 

(1:1000 dilution) (Cell Signaling Technology Danvers), then incubated with 

HRP-conjugated secondary antibody (Santa Cruz Biotechnology). The 

immunoreactive protein was visualized by ECL reagent (iNtRON 

Biotechnology, Sungnam, Korea). 

 

Statistical Analysis 

All experiments were conducted in triplicate. Statistical analysis was 

performed by t-tests using Graph Pad Prism5 software (GraphPad Software, 

Inc., La Jolla, CA, USA). Asterisks indicate that P values of less than 0.05 are 

considered statistically significant (
*
P < 0.05).  
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3. Results 

 

Expression of pro-inflammatory cytokines induced by poly(I:C) and LPS 

in HSG cells 

I examined whether TLR stimulation induces expression of pro-inflammatory 

cytokines, TNFα and IL-6, using RT-PCR and real-time PCR (Fig. 1). HSG 

cells were treated with 10 μg/ml of poly(I:C) or 1 μg/ml of LPS for up to 48 h. 

TNFα and IL-6 mRNA levels are significantly increased, particularly at 3 h or 1 

h incubated with poly(I:C) or LPS, respectively (upper panels in Fig. 1A and B). 

The increased mRNA levels of both cytokines were further confirmed by real-

time PCR (lower panels in Fig. 1A and B). The maximal increase of TNFα and 

IL-6 mRNA expression was also observed at 3 h or 1 h after incubation in real 

time PCR, which corresponded well to the RT-PCR time course. Thus, 3 h 

poly(I:C) treatments and 1 h LPS treatments were carried out throughout the 

experiments. My results demonstrate that poly(I:C) and LPS up-regulate TNFα 

and IL-6 mRNA expression in HSG cells. 
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Figure 1. TNFα and IL-6 mRNA levels in HSG cells stimulated with 

poly(I:C) or LPS. 

The expression levels of TNFα and IL-6 mRNA in HSG cells using RT-PCR 

(upper panels in Fig. 1A and B) and real-time PCR (lower panels in Fig. 1A 

and B). Total RNA was extracted from HSG cells stimulated with poly(I:C) or 

LPS. Vertical bars in the graphs indicate mean ± standard deviation (SD) 

mRNA levels calibrated to the amount of GAPDH mRNA as determined using 

real-time PCR (n=3). Experiments were repeated three times with essentially 

identical results. I compared the maximum value with the control at prestimulus 

time indicated by "0" in horizontal axis. P-values of less than 0.05 were 

considered statistically significant (
**

P < 0.01, 
***

P < 0.001). 
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Expression of transient receptor potential vanilloid 1 (TRPV1) 

I next examined whether TRPV1 is expressed in HSG cells and human 

submandibular gland (SMG) tissues using RT-PCR and Western blot analysis. 

TRPV1 mRNA and protein in both cells were detected with primers or 

antibodies specific for human TRPV1 (Fig. 2A). I then performed MTT assay 

to check the viability of cells after incubation with capsaicin. In MTT assay, 

cells treated with 10 μM of capsaicin for 3 h were >95% viable (Fig. 2B). I also 

examined whether 10 μM of capsaicin affects cytokines level in HSG cells by 

real-time PCR (Fig. 2C). Although there were transient increases of TNFα and 

IL-6 mRNA transcripts after 0.5 and 1 h incubation, expression levels of TNFα 

and IL-6 mRNA after 3 h incubation with capsaicin were not significantly 

different from the prestimulus group (P > 0.1, indicated by “0”). The result 

demonstrates that 10 μM capsaicin alone does not affect cell viability and levels 

of cytokines at least in 3 h incubation time. 
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Figure 2. Expression of TRPV1 and application of capsaicin. 

(A) Expression of TRPV1 mRNA in HSG cells and human submandibular 

gland (SMG) tissue using RT-PCR (the upper panel) and Western blot (the 

lower panel). (B) Effects of capsaicin on the cell viability, which was estimated 

by MTT assay. The HSG cells (7.7×10
3
/well) were grown in 96-well plates in 

media supplemented with capsaicin (5 μΜ, 10 μΜ, 30 μΜ, 50 μΜ, 100 μΜ) for 

24 h. No significant suppression of cell growth was detected in 5 μΜ or in 10 

μΜ capsaicin. (C) Expression of TNFα and IL-6 in 10 μΜ of capsaicin-treated 

HSG cells. Capsaicin-induced expression levels of TNFα and IL-6 mRNA were 

compared with the expression levels of those in the pre-stimulus group. 
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Effect of capsaicin on TNFα and IL-6 expression in HSG cells 

The ability of capsaicin to inhibit TNFα and IL-6 mRNA expression induced 

by poly(I:C) or LPS was evaluated by real-time PCR (Fig. 3A and B, P < 0.05). 

TNFα and IL-6 mRNA expression levels were increased by poly(I:C) or LPS. 

However, simultaneous application of capsaicin with poly(I:C)- or LPS 

significantly decreased TNFα and IL-6 mRNA levels. Interestingly enough, the 

inhibitory effect of capsaicin was not blocked by capsazepine. Capsazepine was 

ineffective to reverse recover the decreased TNFα and IL-6 mRNA level 

induced by capsaicin. To confirm the effect of capsaicin, we measured levels of 

TNFα and IL-6 protein released into the medium induced by poly(I:C)- or LPS 

using ELISA (Fig. 3C and D, P < 0.05). The amount of TNFα and IL-6 protein 

in poly(I:C)- or LPS-treated cells also significantly reduced by capsaicin. 

Simultaneous application of capsazepine with capsaicin does not reverse the 

decreased TNFα and IL-6 protein level induced by capsaicin, either, suggesting 

that capsaicin may not act through TRPV1. 
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Figure 3. Effect of capsaicin on TNFα and IL-6 mRNA expression and 

protein level in poly(I:C) and LPS-stimulated HSG cells. 

(A, B) Effect of 10 μΜ capsaicin on the poly(I:C)- and LPS-induced 

expression levels of TNFα and IL-6 mRNA transcripts using real-time PCR. 

After stimulation with 10 μg/ml poly(I:C) for 3 h or 1 μg/ml LPS for 1 h, the 

cells are further incubated with capsaicin for 3 h with or without 10 μΜ 

capsazepine. (C, D) Effect of 10 μΜ capsaicin on the poly(I:C)-and LPS-

induced expression levels of TNFα and IL-6 proteins. The amount of proteins 

were measured from the incubation medium using ELISA kits. CAP, capsaicin; 

CZE, capsazepine (
*
P < 0.05, 

**
P < 0.01, 

***
P < 0.001). 
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The inhibitory mechanism of capsaicin through IκB-α degradation 

To ensure whether the inhibitory effect of capsaicin is mediated by TRPV1 

or not, I repeated the same experiment using primary cultured SMG acinar cells, 

which was immediately used after harvest from TRPV1
−/−

 mice. I obtained the 

similar results from TRPV1
−/−

 mice compared to the TRPV1
+/+

 mice. Capsaicin 

also significantly inhibited TNFα and IL-6 mRNA expression in SMG acinar 

cells not only from TRPV1
+/+

 (Fig. 4A, 
*
P < 0.05) but also from TRPV1

−/−
 mice 

(Fig. 4B, 
**

P < 0.01, 
***

P < 0.001). The results strongly suggest that the anti-

inflammatory effect of capsaicin in salivary epithelial cells is not mediated by 

TRPV1. Thus, I further investigated the mechanism of capsaicin inhibition of 

cytokine release. NF-κB is a major transcription factor that regulates expression 

of cytokines such as TNFα and IL-6 (Beinke and Ley, 2004; Novotny et al., 

2008). Thus, I examined whether NF-κB signaling is responsible for capsaicin 

inhibition of cytokine release. An immunoblot analysis shows that poly(I:C) 

and LPS induce IκB-α phosphorylation and degradation (the second lanes both 

in Fig. 4C and D), which lead to NF-κB activation. Interestingly, simultaneous 

incubation of cells with capsaicin almost completely inhibited IκB-α 

phosphorylation and degradation induced by poly(I:C) or LPS (the third lanes 

both in Fig. 4C and D). Furthermore, the reduced IκB-α phosphorylation 

induced by capsaicin was not recovered by capsazepine. Consecutive three 

different experiments showed similar results. These results strongly suggest that 

anti-inflammatory effect of capsaicin was associated with IκB-α/NF-κB 

signaling pathway in salivary gland epithelial cells. 
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Figure 4. Inhibitory effect of capsaicin in TRPV1
−/− 

mice and IκB-α/NF-κB 

signaling pathway. 

The expression levels of TNFα and IL-6 mRNA in primary cultured acinar 

cells from the TRPV1
+/+ 

(A) or TRPV1
−/− 

mice (B) using real-time PCR. After 

stimulation with 10 μg/ml poly(I:C) for 3 h or 1 μg/ml LPS for 1 h, the cells 

further treated with 10 μΜ of capsaicin for 3 h. The results are mean ± SD of 

three independent experiments. CAP, capsaicin; CZE, capsazepine (
*
P < 0.05, 

**
P < 0.01, 

***
P < 0.001). (C, D) Western blot analysis for IκB-α and p-IκB-α 

(phosphorylated form) in HSG cells. The cells were stimulated with poly(I:C) 

for 3 h (C) or LPS for 1 h (D) followed by capsaicin treatment for 3 h with or 

without capsazepine. 
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4. Discussion 

 

The TLR family plays an essential role in innate immune responses as 

pathogen-recognition transmembrane receptors expressed on various cells types, 

including macrophages and dendritic cells. So far, ten TLRs have been reported 

in humans, all of which recognizes distinct molecular patterns of bacteria, 

viruses, and fungi (Takeda et al., 2003). One of mechanisms that activate 

salivary gland epithelial cells is mediated by TLRs (Alexopoulou et al., 2001; 

Zeuke et al., 2002). Activation of TLR-mediated immune response in Sjögren’s 

syndrome also has been reported (Kawakami et al., 2007). Thus, viral and 

bacterial infections of the salivary glands can trigger localized inflammatory 

chemokine and/or cytokine production. Activation of these TLRs give rise to 

multiple signaling pathways that produce pro-inflammatory chemokines (Li et 

al., 2010) and/or cytokines, such as TNFα, IL-6, IFN-α, and IFN-β 

(Vercammen et al., 2008). Localized and swift pro-inflammatory cytokine 

production forms the first line of defense against invading viruses and bacteria. 

However, chronic or repeated infection’s results lead to persistent inflammatory 

response that might cause organ dysfunction or autoimmune disease (Roescher 

et al., 2009). 

My study demonstrated that treating cells with poly(I:C) or LPS, increase 

inflammatory cytokine production in SGEC. Poly(I:C) and LPS can activate 

innate immune responses by binding TLR3 (Alexopoulou et al., 2001) and 

TLR4 (Zeuke et al., 2002). Respectively, In my experiments showed that the 

stimulation of the cells with poly(I:C) or LPS increase TNFα and IL-6 mRNA 

levels, and peaked maximum at 3 h or 1 h after incubation with poly(I:C) or 

LPS, respectively. Apoptosis and glandular destruction, due to localized 
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autoimmune responses, are considered to be major factors in salivary gland 

hypofunction (Jonsson et al., 2007). However, non-apoptotic mechanisms, such 

as an inflammatory cytokine inhibition of the salivary secretion, also play an 

equally important role for salivary gland hypofunction (Dawson et al., 2006). 

These cytokines are not only generated by infiltrating lymphocytes but also 

activated by SGEC (Manoussakis and Kapsogeorgou, 2007).  

Capsaicin has analgesic and anti-inflammatory properties in primary sensory 

neurons (Gonzalez et al., 1993; Joe et al., 1997). Capsaicin receptors, called 

vanilloid receptors, plays a fundamental role in the signal transduction of 

peripheral tissue injury and inflammation responses (Planells-Cases et al., 

2000), but repeated application results in anti-inflammatory properties (Lee et 

al., 2007). It was found that capsaicin also has anti-inflammatory effect in 

SGEC. Capsaicin not only reduced TNFα and IL-6 mRNA expression but also 

inhibited their release at the protein levels. Interestingly enough, however, our 

data showed that capsazepine does not block capsaicin inhibition of TNFα and 

IL-6 release by capsaicin. 

NF-κB, a family of inducible transcription factors, regulates the expression of 

specific genes involved in various pathological conditions, including 

inflammation. Extracellular signals, such as inflammatory cytokine or oxidative 

stress, stimulate the IκB-α/NF-κB signaling pathway that produce pro-

inflammatory mediators. These signals activate IκB-α degradation leading to 

NF-κB activation (Yamamoto and Gaynor, 2001). Thus, the inhibitory action of 

capsaicin in SGEC may be mediated by inhibition of IκB-α/NF-κB signaling 

pathway rather than TRPV1 and my results also showed that capsaicin effect on 

SGEC was not mediated by activation of TRPV1, conventional signaling 

pathway for capsaicin. First, capsazepine did not antagonize the inhibitory 
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action of capsaicin on the cytokine release induced by poly(I:C) or LPS. Second, 

such an inhibitory action of capsaicin was also shown even in the TRPV1
−/−

 

mice. Finally, capsaicin inhibited the poly(I:C) and LPS-induced IκB-α 

phosphorylation and degradation process, a different signaling pathway from 

TRPV1 activation. Capsazepine, again, has little effect on this IκB-α 

phosphorylation process. 

At the moment, it is not certain why the capsaicin did not act on the TRPV1. 

It is speculated that although TRPV1 is barely expressed in HSG cells at the 

protein level, TRPV1 is found to have no function. In fact, we could not see the 

[Ca
2+

]i response to capsaicin, which was observed in most of cells expressing 

TRPV1 including sensory neurons (Ding et al., 2010). My study demonstrates 

that capsaicin inhibition is associated with NF-κB inactivation in SGEC, which 

differs from primary sensory neurons. Capsaicin might be one of potential 

drugs to alleviate the inflammation in salivary glands, although it is uncertain at 

the moment whether the capsaicin also effect on the chronic inflammatory 

condition, such as Sjögren’s syndrome. 
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CHAPTER Ⅱ 

 

Epigenetic modulation of the muscarinic 

type 3 receptor in salivary epithelial cells 
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1. Introduction 

 

Epigenetic regulation by CpG methylation plays an important role in 

tumorigenesis, and is also crucial to mounting a successful response to cancer 

therapy. Recent studies have indicated that hypermethylation of CpG islands 

within the promoter and 5' regions of genes is an important epigenetic 

mechanism for suppressing gene expression (Baylin et al., 1998; Jones and 

Laird, 1999; Laird and Jaenisch, 1996). DNA hypermethylation may directly 

affect the basal transcriptional machinery by altering the secondary structure of 

DNA, thereby leading to transcriptional repression (Di Croce et al., 2002). 5-

Aza-2'-deoxycytidine (5-Aza-CdR, decitabine) is a prodrug that is 

phosphorylated by deoxytidine kinase activation. 5-Aza-CdR is a nucleotide 

analog that can irreversibly inactivates DNA methyltransferase after 

incorporated into DNA, thus results in the demethylation of DNA (Momparler, 

2005). Therefore, 5-Aza-CdR can reactivate many genes that have been 

inactivated by hypermethylation (Cameron et al., 1999; Chen et al., 2003; 

Daskalakis et al., 2002; Kaneda et al., 2002; Zhu et al., 2002). 

Muscarinic cholinergic receptors are members of the heterotrimeric G 

protein-coupled receptor (GPCR) superfamily. Muscarinic cholinergic receptors 

are abundant in the central nervous system, as well as in non-neural tissues that 

are innervated by the parasympathetic nervous system. There are 5 subtypes of 

muscarinic receptors, M1–M5, which encode muscarinic receptor proteins that 

exhibit a rhodopsin-like architecture with seven transmembrane domains 

(Hulme et al., 2003; Wess et al., 2007). Changes in the expression and/or 

function of muscarinic receptors were involved in many pathophysiological 

processes such as degenerative nervous diseases, chronic inflammation, and 
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cancer (Koch et al., 2005; Paleari et al., 2008; Sales, 2010). In addition, 

muscarinic receptor activation were also involved in proliferation, angiogenesis, 

and tumor growth (Espanol and Sales, 2004; Espanol et al., 2007). However, 

the functional expression of the muscarinic type 3 receptor (M3R), a subtype 

which plays a key role in secretory epithelia, has not yet been rigorously studied 

in pathological condition. In particular, the role of this subtype in cancer cells 

remains to be elucidated.  

In this study, I investigated the extent to which epigenetic modulation 

determines the expression of the M3R in A253 cells. These cells were 

originally derived from a submandibular gland carcinoma. In A253 cells, 

functional expression of the M3R has not yet been described, even though these 

cells originate from secretory epithelia and the M3R is known to play an 

important role in secretion in this tissue. In contrast to HSG cells, a [Ca
2+

]i 

response to the typical muscarinic agonist is not observed in A253 cells. Thus, 

we hypothesized that M3R function may be suppressed on the epigenetic level, 

which may also contribute to the development of submandibular gland tumors. I  

identified a causal relationship between hypermethylation of the CpG island 

and the expression level of the M3R in A253 cells. I also found that 

demethylation at CG sites may directly activate transcription of the M3R in 

A253 cells, indicating that the M3R CpG island is hypermethylated. 

 

 

 

 

 

 



３１ 

 

2. Materials and Methods 

 

Reagents 

5-aza-2'-deoxycytidine (5-Aza-CdR) was obtained from Sigma Aldrich (St. 

Louis, MO, USA). Antibodies against M3R were purchased from Abcam 

(Cambridge, UK). 

 

Cell culture 

HSG and A253 cells, originating from human submandibular ducts, were 

cultured in Dulbecco’s modified Eagle’s medium (Welgene, Daegu, South 

Korea) supplemented with 10% (v/v) fetal bovine serum (Welgene) and 1% 

penicillin/streptomycin (Life Technologies, Seoul, Korea). Cells were 

propagated at 37℃ in a humidified atmosphere of 5% CO2. 

 

RT-PCR 

HSG and A253 cells were harvested for RNA extraction. Total RNA was 

purified using Trizol (Invitrogen, Carlsbad, CA, USA). Reverse transcriptase 

with an oligo-dT primer (Invitrogen) was used to prepare cDNA from 1 μg of 

total RNA. PCR with specific primers was performed using 1 μl of cDNA. The 

p r i m e r  s e t s  u s e d  w e r e  a s  f o l l o w s :  M 1 R :  f o r w a r d  5 ’ -

A C G G A G C T C C C C A A A T A C A G - 3 ’ ,  r e v e r s e  5 ’ -

T A G C A C A T G G G G T T G A T G G T - 3 ’ ;  M 2 R :  f o r w a r d  5 ’ -

A G C C T T C T A T T T G C C A G T G A - 3 ’ ,  r e v e r s e  5 ’ -

G C A A C A G C A C T G A C T G A G G T - 3 ’ ;  M 3 R :  f o r w a r d  5 ’ -

G T T A C C C T C A T C G G A C A A C C T - 3 ’ ,  r e v e r s e  5 ’ -

T T A C C C A C T G A G G A G T T G A C G - 3 ’ ;  M 4 R :  5 ’ -
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C A G T T T G T G G T G G G T A A G C G - 3 ’ ,  r e v e r s e  5 ’ -

G T A C A G C A C C G T C A T G A T G A - 3 ’ ;  M 5 R :  5 ’ -

G A C C C A A G A G T C A G A A A T G T G - 3 ’ ,  r e v e r s e  5 ’ -

A G A A G G T A G A A A C C A G G A C C A - 3 ’ ;  G A P D H :  f o r w a r d  5 ’ -

G A A G G T G A A G G T C G G A G T C - 3 ’ ,  r e v e r s e  5 ’ -

GAAGATGGTGATGGGATTTC-3’. PCR conditions were as follows: 35 

cycles of denaturation at 94℃ for 30 s, annealing at 55℃ for 30 s, and 

extension at 72℃ for 30 s, followed by a final extension at 72℃ for 7 min on 

a PCR thermocycler (PTC-1148C; Bio-Rad Laboratories Inc., Hercules, CA, 

USA). PCR products were resolved using a Mupid® -2 plus electrophoresis 

system (OPTIMA, Tokyo, Japan) on 1.5% agarose gels containing 0.1 μg/ml 

ethidium bromide. PCR products were visualized under UV light with a 

bioimaging system (TS-312R; Spectroline, Westbury, NY, USA). 

 

Membrane preparation and western blotting 

Cultured cells were collected and lysed. Cell lysates were spun by 

centrifugation at 600 x g at 4℃, and the resultant supernatants were spun again 

at 20,000 xg at 4℃ (Popova and Rasenick, 2004). The pellets were solubilized 

and then subjected to SDS/PAGE and immunoblotting. After electrophoretic 

separation using a Power-PacTM Basic system (Bio-Rad, Hercules, CA, USA), 

the proteins were transferred to nitrocellulose membranes (Whatman, Dassel, 

Germany). The membranes were then blocked with 5% non-fat milk (Seoul-

milk, Seoul, Korea) and probed with anti-M3R antibodies (1:1500 dilution) 

(Abcam, Cambridge, UK). After washing, membranes were then incubated with 

HRP-conjugated secondary antibodies (Santa Cruz Biotechnology, Santa Cruz, 
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CA, USA). Immunoreactive bands were ultimately visualized using ECL 

reagents (iNtRON Biotechnology, Sungnam, Korea). 

 

Immunofluorescence confocal laser microscopy 

To visualize the M3R, HSG and A253 cells (treated with or without 5-Aza-

CdR) were grown on cell culture slides. Cells were washed three times with 

PBS, fixed in 4% paraformaldehyde at room temperature for 15 min, and 

incubated overnight at 4℃ with anti-human M3R antibodies (1:200; Abcam, 

Cambridge, UK). Cells were then washed three times with PBS containing 1% 

bovine serum albumin, and then incubated for 1 h with Alexa Fluor®  488 goat 

anti-rabbit IgG antibodies (1:200). All slides were mounted using 

VECTASHIELD H-1200 with DAPI (Vector Laboratories, Burlingame, CA, 

USA), and images were captured on a laser scanning confocal microscope 

(Fluoview300; Olympus, Tokyo, Japan). 

 

Measurement of [Ca
2+

]i 

HSG and A253 cells, treated with or without 5-Aza-CdR, were loaded with 

the Ca
2+

-sensitive fluorescent probe, fura-2/AM (Molecular Probes, Eugene, 

OR, USA) for 45 min at room temperature. A MetaFluor®  imaging system 

(version 6.1; Universal Imaging, West Chester, PA, USA) was used for 

recording and analysis. Approximately 15-20 cells were recorded at 37℃ and 

analyzed in each experiment. Fura-2 fluorescence was recorded at excitation 

wavelengths of 340 and 380 nm, with an emission wavelength of 510 nm. 

Results are presented as 340 nm/380 nm ratios (Ca
2+

 fluorescence ratio, 

F340/F380). 
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Determination of 5-methylcytosine DNA content 

Genomic DNA was extracted from HSG and A253 cells, treated with or 

without 5-Aza-CdR, using a Qiagen Blood and Cell Culture DNA Kit (Qiagen, 

Valencia, CA, USA) according to the manufacturer’s recommendations. The 

global DNA methylation levels were then examined in the DNA samples 

isolated from these two salivary gland epithelial cell lines. The relative degrees 

of methylation in the DNA samples were quantified using a MethylFlashTM 

Methylated DNA Quantification Kit (EPIGENTEK, Farmingdale, NY, USA) 

according to the manufacturer’s instructions. 

 

Methylation-specific PCR and 5-aza-2'-deoxycytidine treatment 

Bisulfite modification of genomic DNA was carried out using an EpiTect 

Bisulfite Kit (Qiagen). Methylation-specific PCR was performed using 

bisulfite-treated DNA as template, using specific primer sequences for either 

the methylated or unmethylated form of the gene. HSG and A253 cells were 

seeded in 100-mm culture dishes one day prior to treatment. Cells were then 

treated with 5-aza-2'-deoxycytidine (Sigma Aldrich) at a final concentration of 

10 μM for 1, 2, 3, and 4 days. Culture medium was renewed daily, and treated 

cells were harvested at the end of the fourth day. Genomic DNA and total RNA 

were then isolated using a QIAamp DNA Blood Mini Kit and an RNeasy Mini 

Kit (Qiagen), respectively. The following methylation-specific primers were 

used: M forward, 5’-GGTTTGTGTCGATTTGATTATC-3’; M reverse, 5’-

A C T C G A T A C G T A A A C G A C C T C - 3 ’ ;  U  f o r w a r d ,  5 ’ -

T T T G G T T T G T G T T G A T T T G A T T A T T - 3 ’ ;  U  r e v e r s e ,  5 ’ -

T T A A C T C A A T A C A T A A A C A A C C T C - 3 ’ . 
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Bisulfite sequencing 

In total, 2 μg of genomic DNA isolated from A253 cells, treated either with 

or without 5-Aza-CdR, was modified with sodium bisulfite. The modified 

genomic DNA was then amplified with the following primers: forward, 5’-

G G T A T T T T G G T T T T G G T G A T T A - 3 ’ ;  r e v e r s e ,  5 ’ -

TCTTTCCAACAAAATATTACCAA-3’. PCR reactions were performed as 

follows: 94℃ for 5 min, followed by 35 cycles of 94℃ for 40 s, 55℃ for 40 s, 

and 72℃ for 1 min. The resultant PCR products were purified with a PCR 

Purification Kit (Qiagen) and ligated into pCR2.1-TOPO using the TA cloning 

system (Invitrogen). Five separate clones from treated cells and five separate 

clones from untreated cells were chosen for sequence analysis. 

 

Statistical analysis 

All experiments were conducted in triplicate. Statistically significant 

differences in the data were determined by Student’s t-test, using GraphPad 

Prism 5 software (GraphPad Software, Inc., La Jolla, CA, USA). P values less 

than 0.05 were considered statistically significant (designated with an asterisk;
 

*
P <0 .05, 

**
P <0 .01, 

***
P <0 .001). 
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3. Results 

 

Muscarinic receptor subtypes in HSG and A253 cells 

I first examined the expression levels of various muscarinic receptor subtypes 

in two different salivary gland epithelial cell lines, HSG and A253. RT-PCR 

was used to determine the mRNA expression levels of various muscarinic 

receptors. HSG cells, employed as a positive control, expressed all subtypes (1 

to 5) of muscarinic receptors. A253 cells also expressed all subtypes of 

muscarinic receptors, with the exception of type 3. The type 3 muscarinic 

receptor (M3R) was expressed only at extremely low levels in A253 cells (Fig. 

1A), as summarized in Fig. 1B (n=3, 
***

P < 0.001). These results indicated that 

expression of the M3R is suppressed in A253 cells. I next examined whether 

the low level of M3R mRNA expression is related to DNA methylation of the 

M3R CpG island. 
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Figure 1. mRNA expression levels of various muscarinic receptor subtypes 

in HSG and A253 cells. 

(A) Total RNA was extracted from HSG and A253 cells, and RT-PCR was 

used to examine the mRNA expression levels of various muscarinic receptors. 

HSG cells were used as a positive control. A253 cells expressed all muscarinic 

receptor subtypes except type 3 (M3R). The muscarinic receptor subtype 3 

(M3R) was expressed only at an extremely low level in A253 cells. (B) 

Quantitative analysis of band densities. The intensity of each band was 

measured by densitometry, and showed that the mRNA expression level for the 

M3R was greatly reduced in A253 cells. The vertical bars in the graphs indicate 

mean ± standard deviations (SDs) of mRNA levels, normalized to the amount 

of GAPDH mRNA, as determined using RT-PCR. Experiments were repeated 

three times with essentially identical results; a summarized result is shown (n=3; 

***
P < 0.001). 
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Induction of the M3R in A253 cells by treatment with 5-Aza-CdR 

I next examined whether the low expression level of the M3R is increased by 

5-Aza-CdR treatment. A time course analysis of RT-PCR data is shown in Fig. 

2A. Cells were incubated with 10 μM of 5-Aza-CdR, a well-characterized 

demethylating agent. At 24 h after 5-Aza-CdR treatment, the mRNA expression 

level of the M3R was significantly increased. Furthermore, the expression level 

of M3R mRNA gradually increased in proportion to the length of the incubation 

period tested for 4 days. After 3 days of treatment with 5-Aza-CdR, the 

expression level of M3R mRNA in A253 cells was nearly the same as in HSG 

cells, as summarized in Fig. 2B (n=3, 
*
P < 0.05; 

**
P < 0.01). The increased 

expression level of the M3R was further confirmed at the protein level using 

Western blot analysis (Fig. 2C). Before 5-Aza-CdR treatment, only a relatively 

small amount of M3R protein was expressed in A253 cells. However, the 

amount of M3R protein increased significantly, in proportion to the length of 

the incubation period with 5-Aza-CdR, as summarized in Fig. 2D (n=3, 
*
P < 

0.05). These results demonstrate that expression of the M3R is markedly 

suppressed in A253 cells, and indicate that this suppression is due to 

hypermethylation of the M3R gene. 
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Figure 2. Induction of M3R mRNA expression and protein production by 

5-Aza-CdR. 

A253 cells were treated with 5-Aza-CdR (10 μΜ) for 24, 48, 72, or 96 h. The 

expression of M3R mRNA in HSG and A253 cells was then determined by RT-

PCR (A, B) and Western blot analysis (C, D). Before 5-Aza-CdR treatment, 

only a small amount of M3R protein was present. However, the amount of M3R 

protein increased proportionally with the length of the incubation period with 5-

Aza-CdR. A protein with an apparent molecular weight of 66 kDa, 

corresponding to the M3R, was clearly observed in lysates from A253 cells 

after treatment with 5-Aza-CdR for 24 to 96 h. All experiments were performed 

in triplicate (
*
P < 0.05; 

**
P < 0.01). 
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Rescue of M3R function by 5-Aza-CdR-treatment 

The increased level of M3R protein upon 5-Aza-CdR treatment was further 

confirmed by confocal microscopy imaging. Although the M3R was highly 

expressed in both membrane and cytosolic preparations of HSG cells (Fig. 3A), 

the M3R was barely little expressed in A253 cells (Fig. 3B). However, after 3 

days of treatment of A253 cells with 10 μM 5-Aza-CdR, the expression level of 

the M3R was markedly increased in both membrane and cytosolic preparations 

(Fig. 3C). I next measured the magnitude of the intracellular free Ca
2+

 ([Ca
2+

]i) 

response in fura-2 loaded cells to verify that the M3R regained its function, 

even after demethylation by 5-Aza-CdR treatment. HSG cells exhibited a robust 

response to 10 µM carbachol (CCh), a known M3R agonist, as evidenced by the 

increased [Ca
2+

]i response (Fig. 4A). In contrast, CCh exerted no effect on the 

calcium response in A253 cells (Fig. 4B). Importantly, A253 cells responded 

well to the control stimulus (100 μΜ ATP, a known purinergic agonist), as 

shown by the increased [Ca
2+

]i response. After 3 days of treatment with 10 μM 

5-Aza-CdR, CCh consistently evoked a calcium response in A253 cells; the 

amplitude of this response was not much different to that in HSG cells (Fig. 4C), 

as summarized in Fig. 4D (n=3, 
***

P < 0.001). These results demonstrate that 5-

Aza-CdR treatment rescues the expression of the M3R, as well as its function in 

A253 cells. 
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Figure 3. Immunocytochemical staining of the M3R before and after 5-

Aza-CdR treatment. 

The subcellular localization of the M3R was determined by immunostaining 

in HSG and A253 cells, both before and after 5-Aza-CdR treatment. (A) 

Ubiquitous expression of the M3R, both at the plasma membrane and in the 

cytosol, in HSG cells which were used as a positive control. (B) Expression of 

the M3R in A253 cells. (C) Expression of the M3R in A253 cells after 5-Aza-

CdR-treatment. (Original magnification, 400; scale bar, 50 µm) 
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Figure 4. Rescue of M3R function by 5-Aza-CdR treatment. 

Measurements of intracellular free calcium concentrations ([Ca
2+

]i) in fura-2 

loaded cells. The magnitude of the [Ca
2+

]i response induced by carbachol (CCh), 

a typical M3R agonist, was used to assess the extent of M3R function in HSG 

cells, untreated A253 cells, and treated A253 cells. (A) A typical [Ca
2+

]i 

response to 10 μΜ CCh in HSG cells. (B) A representative [Ca
2+

]i response to 

10 μΜ CCh and 100 μΜ ATP in A253 cells. (C) A representative [Ca
2+

]i 

response to 10 μΜ CCh in A253 cells treated with 5-Aza-CdR. (D) Summary of 

all experiments, each of which was performed in triplicate (
***

P < 0.001). 
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Hypermethylation of the CpG island in A253 cells 

My data demonstrate that hypermethylation, possibly in CpG islands, may 

have occurred in the M3R gene in A253 cells. Thus, I next examined the global 

DNA methylation levels in A253 cells, both before and after treatment with 5-

Aza-CdR. We extracted genomic DNA from 5-Aza-CdR-treated and untreated 

A253 cells, and then quantitatively determined the 5-methylcytosine content in 

the isolated genomic DNA. Untreated A253 cells exhibited significantly higher 

5-methylcytosine content compared with HSG cells (Fig. 5A). However, 

treatment of A253 cells with 5-Aza-CdR reduced their 5-methylcytosine 

content; moreover, this reduction was proportional to the length of the 

incubation period. After 2 days of treatment with 5-Aza-CdR, the 5-

methylcytosine content of A253 cells was significantly reduced to a level 

similar to that detected in HSG cells (n=3, 
*
P < 0.05; 

**
P < 0.01; 

***
P < 0.001). 

This result indicates that A253 cells (a salivary gland tumor cell line) are 

hypermethylated compared with HSG cells. The methylation status of the M3R 

CpG island was further investigated by methylation-specific PCR using DNA 

isolated from HSG, A253, and 5-Aza-CdR-treated A253 cells. 5-Aza-CdR 

treatment induced a strong unmethylation-specific band, which was not 

observed in untreated A253 cells (Fig. 5B). This finding suggests that the 

expression level of the M3R is at least partially regulated by the methylation 

status of the M3R CpG island region. 
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Figure 5. Methylation levels in total DNA and the M3R CpG island upon 

treatment with 5-Aza-CdR. 

(A) Global DNA hypomethylation in A253 cells upon 5-Aza-CdR treatment. 

Total DNA was extracted from HSG cells (as a control) and A253 cells, both 

before and after 5-Aza-CdR treatment. The 5-methylcytosine content of each 

preparation of DNA was then determined quantitatively. The 5-methylcytosine 

content decreased proportionally to the length of the incubation period with 5-

Aza-CdR. (B) Induction of hypomethylation by 5-Aza-CdR in hypermethylated 

A253 cells. Methylation-specific PCR was performed with sodium bisulfite-

modified DNA samples, obtained from either 5-Aza-CdR-treated or untreated 

A253 cells. M, methylated M3R CpG island PCR products. UM, unmethylated 

M3R CpG island PCR products. 5-Aza-CdR treatment induced an 

unmethylation-specific band in A253 cells. All experiments were performed in 

triplicate (
*
P < 0.05; 

**
P < 0.01; 

***
P < 0.001). 

 

 

 

 

 

 

 

 

 

 

 

 



５０ 

 

Bisulfite sequencing of the M3R CpG island, both before and after 5-Aza-

CdR-treatment 

I next studied the methylation pattern within the M3R CpG island in A253 

cells, both before and after treatment with 5-Aza-CdR. PCR products were 

cloned into pCR2.1-TOPO, and five separate clones were sequenced. The DNA 

methylation status of each clone was determined by analyzing the sequence of 

the CpG island in the human M3R. I observed 14 CG pairs, located +235 to 

+649 base pairs away from the start codon of exon 8, a coding region in the 

M3R gene (Fig. 6A). In untreated A253 cells, these CG pairs were heavily 

methylated, from the 1st to 14th CG pair, as expected. However, 5-Aza-CdR-

treatment demethylated one of the methylated CG pairs in untreated A253 cells 

(Fig. 6B). In my study, the 4th, 7th, 8th and 11th methylated CG pairs were 

demethylated by 5-Aza-CdR-treatment in A253 cells; moreover, M3R function 

was completely restored in these cells, as evidenced by their calcium responses 

to CCh. 
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Figure 6. Bisulfite sequencing of the M3R CpG island before and after 5-

Aza-CdR-treatment. 

(A) The M3R CpG island (GenBank no. NM_000740) was analyzed. This 

sequence spans from base pair +235 to +649 (relative to the start codon), and 

includes 14 CG pairs inside exon 8, a coding region. The start (ATG) and stop 

(TAG) codons in exon 8 are shown. The CG sites within this sequence are 

underlined and shown in bold. TSS indicates transcription start site. (B) DNA 

isolated from either 5-Aza-CdR-treated or untreated A253 cells was treated 

with bisulfite, and the M3R CpG island was PCR amplified. The resultant PCR 

product was ligated into pCR2.1-TOPO using the TA cloning system. Five 

clones from control cells and five clones from 5-Aza-CdR-treated cells were 

picked and sequenced. Symbols: , unmethylated cytosines; , methylated 

cytosines. Demethylation was observed at one of the 14 CG pairs. 
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4. Discussion 

 

Epigenomic studies are well-established, and have been successfully applied 

to screen for novel candidate genes in many types of human cancer (Glazer et 

al., 2009; Hoque et al., 2008; Smith et al., 2009; Yamashita et al., 2002). 

Abnormal gene expression in tumor cells may result from alterations in copy 

number, sequence mutations, and/or epigenetic dysregulation (McCabe et al., 

2009). 

Here, I employed an epigenetic strategy to compare the A253 and HSG cell 

lines. The A253 cell line was originally derived from a human submandibular 

gland tumor (Giard et al., 1973), and has been used to study secretory 

mechanisms such as chloride transport (Roomans, 1998) and intracellular signal 

transduction pathways (Sugita et al., 1999). Although A253 cells possess β-

adrenergic and P2-purinergic receptors, they lack the functional expression of 

α-adrenergic or muscarinic cholinergic receptors (Marmary et al., 1989; Zhang 

et al., 1997). Thus, in contrast to HSG cells, A253 cells do not respond to 

carbachol, which normally increases [Ca
2+

]i. The M3R, a G protein-coupled 

receptor (GPCR), belongs to the largest transmembrane receptor superfamily of 

muscarinic receptors, and is expressed in both human and mice. The M3R is 

characterized by a seven-transmembrane α-helix structure, and is comprised of 

8 exons with the receptor-coding sequence located within exon 8 (Forsythe et 

al., 2002; Pierce et al., 2002). In general, the binding of a ligand to its cognate 

GPCR elicits Ca
2+

 and/or PKC signaling cascades that induce the expression of 

genes required for multiple fundamental functions, including exocrine and 

endocrine secretion, smooth muscle and cardiac muscle contraction, pain 
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transmission, fluid homeostasis, blood pressure regulation, and immune 

responses (Pierce et al., 2002). 

The M3R is well established to play a key role in fluid secretion by 

increasing [Ca
2+

]i. However, the expression pattern and function(s) of the M3R 

are still poorly understood, especially in salivary gland tumor cells such as 

A253 cells. I hypothesized that the mechanism of suppression of M3R function 

might involve hypo and/or hypermethylation of the M3R gene in salivary gland 

tumor cells. In our study, one methylated CG pair at the 4th, 7th, 8th, and 11th 

sites was demethylated by 5-Aza-CdR-treatment. This treatment also rescued 

M3R function, as demonstrated by the CCh-induced calcium response observed 

in A253 cells. My results are also consistent with previous studies. The CpG 

island of the 14-3-3 σ gene in salivary gland adenoid cystic carcinoma cells was 

found to be methylated inside the exon, whereas HSG cells showed very limited 

pattern of hemimethylation in the 14-3-3 σ gene. Methylation occurring at CpG 

sites inside the exon, a coding region, has been shown to significantly reduce 

the expression of 14-3-3 σ (Uchida et al., 2004). Therefore, it is highly likely 

that internal methylation within an exon, a coding region, can affect the DNA-

binding activity of transcription factors; moreover, inhibition of this 

methylation is likely to correlate with increased expression of the relevant gene. 

Of particular note in our study, I found that any demethylation occurring at 

even only one site among a total of 14 methylated CG sites was sufficient to 

increase the transcriptional activity of the M3R gene, resulting in increased 

M3R protein expression and increased M3R function. However, it is not yet 

clear whether these four CG sites among the 14 CG sites are functionally 

specific, or if any site of CG unmethylation is sufficient to restore M3R 

function. 



５５ 

 

To the best of in my knowledge, this is the first study reporting that 5-Aza-

CdR can epigenetically regulate the expression and function of the M3R found 

in salivary gland tumor cells. 5-Aza-CdR is a pyrimidine nucleoside analog that 

strongly inhibits DNA methyltransferase activity, and is one of the strongest 

known inhibitors of DNA methylation. Several lines of evidence have indicated 

that demethylation of gene-specific sequences is associated with cell 

differentiation (Lubbert et al., 1996). At low concentrations of 5-Aza-CdR, an 

immortalized normal human salivary gland duct cell line lacking the expression 

of aquaporin 5 was shown to acquire aquaporin 5 expression (Motegi et al., 

2005). 

In conclusion, the results of this study strongly suggest that 5-Aza-CdR-

mediated demethylation in the M3R CpG island induces M3R gene expression 

in A253 cells, a salivary gland tumor cell line, thereby increasing the level of 

the M3R protein. This increased level of M3R protein restores M3R function, 

as evidenced by the increased [Ca
2+

]i response to CCh stimulation. Since low 

doses of 5-Aza-CdR have been used to treat patients with myelodysplastic 

syndrome, and have been shown to be well-tolerated by this group of patients 

(Wijermans et al., 2000), this drug might be an effective therapeutic option for 

patients with salivary gland tumors. Thus, My results may provide a clue for 

developing new therapeutic drugs for cancer. 
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국문 초록 

 

타액선 상피세포 내 염증 및 무스카리닉 수용체 조절기전 

 

 

신 용 환 

 

 

서울대학교 대학원 

치의과학과 신경생물학 전공 

(지도교수: 박경표) 

 

 

정상적인 타액분비는 구강건강을 유지하는데 필수 조건이다. 타액

선에서 염증이 있을 경우 이는 타액분비에 영향을 미쳐 구강건강을 

해치게 된다. 하지만, 타액선에서 일어나는 염증기전에 대해서는 잘 

알려져 있지 않다. 타액분비 시 가장 큰 역할을 하는 것은 콜린 동작

성 무스카리닉 수용체이다. 따라서, 본 연구에서는 TRPV1 수용체와 

그 효현제인 캡사이신 (capsaicin) 을 중심으로 한 타액선 염증기전 및 

무스카리닉 수용체 조절기전을 후성유전학적인 연구 방법을 통해 규

명해 보았다. 

본 연구 결과, 타액서 상피세포는 poly(I:C)나 LPS와 같은 Toll-like 
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receptors (TLRs) 의 효현제에 의해 자극을 받으면, pro-inflammatory 사

이토카인인 TNFα와 IL-6가 유리됨을 관찰하였고, 캡사이신은 이들 사

이토카인의 유리를 유의하게 억제시켰다. 이러한 캡사이신의 항염증

효과는 길항제인 캡사제핀 (capsazepine) 에 의해 억제되지 않았으며, 

이는 TRPV1 Knock Out을 이용한 생쥐 실험에서도 확인되었다. 결론적

으로 캡사이신에 의한 항 염증효과는 NF-κB를 통한 신호전달 경로를 

조절함으로써 일어남을 밝혀내었다. 

무스카리닉 수용체 조절기전에 관한 연구에서는, A253세포의 경우 

무스카리닉 수용체 타입 3 (M3R) 유전자가 과메틸화 (hypermethylation) 

되어 있음을 밝혀내었다. A253 세포에서 과메틸화된 M3R은 DNA 

demethylating agent인 5-aza-2-deoxycytidine (5-Aza-CdR) 처리에 의해 

M3R 단백질의 발현량이 증가하고, M3R의 기능도 회복되는 것을 관찰

할 수 있었다. 끝으로 5-Aza-CdR처리에 의해 실제로 M3R이 

demethylation 된 것을 bisulfite sequencing 분석실험을 통해 확인하였다. 

이러한 연구를 통해 타액선 상피세포내 캡사이신이 염증 조절기전에

관여함과 무스카리닉 수용체의 조절기전에 있어 후성유전학의 한 분

야인 DNA 메틸화가 영향을 미친다는 것을 알 수 있다. 

 

주요어: 타액선, 캡사이신, TNFα, IL-6, 캡사제핀, NF-κB, 후성유전학, 

무스카리닉 수용체, A253, 과메틸화, 5-Aza-CdR 
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