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Abstract 

 Even with recently increased awareness of the environmental 

conservation, the degradation of tropical forests are still becoming the major 

source for carbon emission to the atmosphere. The aboveground biomass (AGB) 

of these forests are, therefore, a vital role in global carbon sequestration. As the 

initial step of the forest conservation in Myanmar, the aboveground biomass of 

South Zarmani Reserved Forest in Bago Yoma region were estimated using 

Landsat 8 OLI after the evaluation with 100 sample field inventory plots. 

Multiple linear regression (MLR) model of band values and their principal 

component analysis (PCA) model were developed to estimate the AGB using 

the spectral reflectance from Landsat images and elevation as the input 

variables. The MLR model had r2 = 0.43, RMSE = 60.2 tons/ha, relative RMSE 

= 70.1%, Bias = -9.1 tons/ha, Bias (%) = -10.6%, and p < 0.0001, while the 

PCA model showed r2 = 0.45, RMSE = 55.1 tons/ha, relative RMSE = 64.1%, 

Bias = -8.3 tons/ha, Bias (%) = -9.7%, and p < 0.0001. The AGB maps of the 

study area were generated based on both MLR and PCA models. The estimated 

mean AGB values were 74.74±22.3 tons/ha and 73.04±17.6 tons/ha and the 

total AGB of the study area are about 5.7 and 5.6 million tons from MLR and 

PCA, respectively. In conclusion, we were able to generate solid regression 

models from Landsat 8 OLI image after ground truth and two regression models 

gave us very similar AGB estimation (less than 2%) of South Zarmani Reserved 

Forest, Bago Yoma, Myanmar.  
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1. Introduction 

Land cover change, which has accounted for ~20% of total CO2 

emission into atmosphere since the industrial revolution (Van Bodegom, 

Savenije, Wit, Boot, & Saile, 2009), decreased dramatically in temperate forest 

with recently increased awareness on environmental conservation and 

protection (Chakravarty, Ghosh, Suresh, Dey, & Shukla, 2012; FAO, 2010). 

However, deforestation in tropical forests are still occurring in many 

developing countries including Myanmar, mainly due to the economic reasons 

resulting about 13 million ha of tropical forests loss every year (FAO, 2010) 

and 6% - 17 % contribution of the global anthropogenic CO2 emissions to the 

atmosphere (Baccini et al., 2012). As a consequence, tropical deforestations are 

significant net sources of CO2 (e.g., J. T. Houghton, Meira Filho, Callander, 

Harris, and Kattenberg (1996); Watson et al. (2000)), even though tropical 

forests are considered as potential sinks of CO2 due to their high capacity in 

photosynthesis (Malhi & Grace, 2000). In addition, tropical forests are home to 

more than half of the world’s species and essential for global biogeochemical 

cycles (Nageswara-Rao, Soneji, & Sudarshana, 2012; Thomas & Baltzer, 2002). 

Therefore, tropical forests are important for both conservation and production. 

For the protection of tropical forests, the accurate and efficient estimate 

of forest biomass, especially above ground biomass (AGB), is necessary. 

Conventional method using allometric equations and field collected data such 

as diameter at breast height (DBH) and tree height is considered as the most 

accurate method for AGB estimation, but it is time and labor consuming (Lu, 

2006; Vicharnakorn, Shrestha, Nagai, Salam, & Kiratiprayoon, 2014; Zhu & 
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Liu, 2015). Therefore, remote sensing (RS) techniques after solid evaluation 

with ground truth are becoming the common and practical for AGB estimation, 

especially in large and remote areas (Avitabile, Baccini, Friedl, & Schmullius, 

2012; Lu, 2006; Main-Knorn et al., 2011; Maynard, Lawrence, Nielsen, & 

Decker, 2007). For the estimation of AGB using RS data, a variety of direct and 

indirect approaches have been developed including multiple regression analysis 

(Steininger, 2000; D. Zheng et al., 2004), K nearest neighbor (Tomppo, Nilsson, 

Rosengren, Aalto, & Kennedy, 2002) , neural network (Foody, Boyd, & Cutler, 

2003), principal component analysis (Ji et al., 2012), stochastic gradient 

boosting (Dube & Mutanga, 2015), Phua and Saito (2003) and Popescu, Wynne, 

and Nelson (2003) used canopy diameter and tree height which are derived 

from RS data to estimate biomass using multiple regression analysis. Although 

no methods can perform completely to estimate AGB (Vicharnakorn et al., 2014; 

Zhu & Liu, 2015), direct methods rather than indirect methods are widely used 

to estimate AGB in practice. 

However, majority of studies have focused on AGB estimation in 

tropical forest in North and South America such as Amazon (e.g., Drake et al. 

(2003); R. A Houghton, Lawrence, Hackler, and Brown (2001); Lu (2005); 

Steininger (2000)) and relatively small number of studies were conducted in 

Africa and Asia (e.g., Baccini, Laporte, Goetz, Sun, and Dong (2008); Carreiras, 

Vasconcelos, and Lucas (2012); Dube and Mutanga (2015); He, Chen, An, and 

Li (2013); Manna et al. (2014)). Further, most of the studies in Asia were 

conducted in Bornean forest (e.g., Indonesia and Malaysia), which belongs to 

tropical rain forests (Foody et al., 2001; Kronseder, Ballhorn, Böhm, & Siegert, 
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2012; Morel et al., 2011). Only a few studies have conducted in tropical 

deciduous forests (e.g., Foody et al. (2003); Vicharnakorn et al. (2014)). About 

37% of the Myanmar forest area, which covers about 47% of the country, is 

composed of tropical mixed deciduous forests (FD, 2010) and they are 

economically important since they include many valuable timber species, such 

as Tectona grandis (teak), Xylia xylocarpa (Pyinkado in Myanmar), Terocarpus 

macrocarpus (Padauk in Myanmar).  

 Recent fast growth of Myanmar economy since the change from 

socialism to capitalism in 2010 caused the increase of illegal logging and land 

cover change of forest areas, especially in tropical deciduous forest. Although 

there are several studies focus on AGB estimation in Myanmar, most of the 

studies conducted using destructive methods and they have limitations 

expending their outputs for the AGB estimation of large areas. Therefore, the 

objectives of our study are; (1) to develop the models to estimate the AGB of 

tropical deciduous forest in the Bago Yoma Region using RS techniques with 

ground truth evaluation, (2) to compare the performance of the multi linear 

regression analysis of bands value and principle component analysis models to 

estimate AGB in the study area, and (3) to generate the AGB distribution maps 

of the study area. 
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2. Literature Review 

2.1. The role of tropical forests in climate change 

Tropical forests are located in the ‘tropics’ which lie between the Tropic 

of Cancer and Capricorn, approximately between 23° N and 23° S latitudes 

(Thomas & Baltzer, 2002). Tropical Deciduous forests, about one-tenth of the 

world’s land area (Nageswara-Rao et al., 2012) are rich in diversity and are 

important for both conservation and production. It is also important in terms of 

global biogeochemical cycles and are home to more than half of the world’s 

species (Thomas & Baltzer, 2002). 

Climate change is one of the major challenges of environmental 

concern in this century. Forests stored a lot of carbon from the atmosphere and 

the loss of forest tend to almost 20 percent of total emissions of carbon dioxide 

(Van Bodegom et al., 2009). Therefore, climate change and forests are closely 

related. The forestry sector plays a vital role in the global climate change 

mechanism. They have the potential to provide the several multi-benefits 

including biodiversity conservation, carbon sequestration and sustainable rural 

development (Fearnside, 1997). 

Due to tropical forests play crucial role in determining the current 

atmospheric concentration of CO2, as both sources of CO2 following 

deforestation and sinks of CO2 probably resulting from CO2 stimulation of 

forest photosynthesis (Malhi & Grace, 2000), these forests are ecologically and 

environmentally important.  

 In recent years, the tropical forests are decreasing rapidly rate to 

deforestation and convert to other lands. These forests are being felled for 
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timber production and cleared for farming. Figure (1) showed estimated 

deforestation of tropical forests and temperate forests (FAO, 2012). 

Nowadays, tropical forests ecosystems also face many potential threats 

due to climate change, including changed precipitation regimes and the 

increased incidence and severity of pests, diseases, fires and storms (ITTO, 

2008). Climate change is becoming one of the greatest challenges in recent 

years. The impacts of climate change on tropical forests could affect the loss of 

natural resources, such as reducing the availability of forest products, 

traditional medicines for human well-being, and other services. Besides, the 

loss of tropical forests are alarming due to timber production, conversion to 

agriculture land, construction of roads and dams, pasture, firewood. 

The forests (green plants) take carbon dioxide from the atmosphere and 

stored as carbon during photosynthesis. Hence, the forests are making a major 

contribution to mitigate the climate change. When the forests are burned or cut 

down, stored carbon is released into the atmosphere as carbon dioxide. Every 

year, more than 15 million hectares of tropical forests are cut down and millions 

of carbon tons is releasing into the atmosphere (www.nature.org). As a 

consequence, tropical forests are the major source of carbon emission to the 

atmosphere. Tropical forests, therefore, must be protected from deforestation 

and forest degradation if carbon emissions want to reduce from global warming. 

Many of the world’s tropical forests will be lost alarming rate without 

protection now. The natural resources and important tropical species will be lost 

if the tropical forests lost. 

http://www.nature.org/
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Figure 1. Estimated deforestation by the forest type and time period 

2.2. Remote sensing approaches to estimation of AGB  

 Recently, remote sensing techniques are becoming useful tool in 

estimating forest structure and AGB production of forest and plantations. It also 

provides distribution of forest biomass from local, continental to global areas 

(Baccini, Friedl, Woodcock, & Warbington, 2004; R. A. Houghton et al., 2007; 

Lu, 2006; Zhang & Ni-meister, 2014; D. Zheng et al., 2004). Most of the studies 

in different parts of the world have examined the relationship between remote 

sensing and AGB. Landsat, LiDAR (light detection and ranging), MODIS 

(moderate resolution imaging spectroradiometer), and SAR (synthetic aperture 

radar) were used in estimating AGB as remotely sensed data. 

 Accurate estimates of biomass play a vital role in understanding the 

carbon cycle. Direct measurement of AGB require destructive sampling of 

trees(Brown, 1997). However, this method is not available to carry out for a 

large area. Hence, allometric equations which are developed from destructive 

method were used to estimate the AGB. Field surveys provide the most accurate 

method for obtaining vegetative data, but it is too time consuming and costly to 
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cover large expenses (Xie, Sha, Yu, Bai, & Zhang, 2009). Therefore, remotely 

sensed data acquired from satellite or aerial platforms has provided a practical 

and economical means to measure and monitor vegetation cover and structure, 

especially over a large areas (Xie, Sha, & Yu, 2008). 

 Three types of remote sensing data are often used to estimate AGB; 

passive optical remote sensing, radar (radio detection and ranging, microwave) 

data, and LiDAR (light detection and ranging) data. Optical spectral reflectance 

are sensitive to vegetation structure (leaf area index, crown size and tree 

density), texture and shadow, which are strongly correlated with AGB (Zhang 

& Ni-meister, 2014). Radar data are related to AGB through measuring 

dielectric and geometrical properties of forests (Le Toan et al., 2011). LiDAR 

remote sensing is promising in characterizing vegetation vertical structure and 

height which are then associated to AGB (Drake et al., 2002; Lefsky, Hudak, 

Cohen, & Acker, 2005).  

 The optical remote sensing data are commonly used for land cover 

mapping, biomass estimation, tree density. The forest biomass is estimated 

using spectral reflectance and vegetation indices from various satellite 

instruments of optical remote sensing. The empirical regression approaches 

(Hall, Skakun, Arsenault, & Case, 2006; Powell et al., 2010; D. Zheng et al., 

2004) and nonlinear nonparametric approaches (Baccini et al., 2004; Fraser & 

Li, 2002) are developed to estimate forest biomass. The most frequently used 

optical remote sensing data may be the time series Landsat data, which have 

become the primary source in many applications, including AGB estimation at 

local and regional scales (Foody et al., 2003; Lu, 2005; Roy & Ravan, 1996; 
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Steininger, 2000; D. Zheng et al., 2004).  

 NOAA AVHRR (National Oceanic and Atmospheric Administration 

Advanced Very High Resolution Radiometer) and MODIS (Moderate 

Resolution Imaging Spectroradiometer) datasets at a spatial resolution from 

250 m to 1.1 km are frequently used to produce biomass estimates at long term 

and global scales (Baccini et al., 2004; Baccini et al., 2008; Dong et al., 2003; 

Zhang & Kondragunta, 2006) while Landsat TM, Landsat ETM, Landsat 8 OLI, 

and Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER) with a spatial resolution of 30 m are the most frequently used to 

estimate biomass at local and regional scales (Dube & Mutanga, 2015; Hall et 

al., 2006; Ji et al., 2012; Lu, 2005; Muukkonen & Heiskanen, 2005; G. Zheng, 

Chen, Tian, Ju, & Xia, 2007). The high resolution satellite imager (HSRI) on 

QuickBird with a spatial resolution of 2.44 m in multispectral and 0.61 m in 

panchromatic at nadir and IKONOS with a spatial resolution of 3.2 m in 

multispectral and 0.82 m in panchromatic are usually used to calculate the local 

tree biomass (Gonzalez et al., 2010; Leboeuf et al., 2007; Palace, Keller, Asner, 

Hagen, & Braswell, 2008). 

 Radar data physically measure biomass through the interaction of the 

radar waves with tree scattering elements (Zhang & Ni-meister, 2014). The 

widely used active radar data are from spaceborne synthetic aperture radar 

(SAR) sensors, such as the L-band ALOS PALSAR, the C-band ERS/SAR, 

RADARSAT/SAR or ENVISAT/SAR and the X-band TerraSAR-X 

instruments, which transmit microwave energy at wavelengths from 3.0 (X-

band) to 23.6 cm (L-band). The proposed ESA Earth Explorer Mission 
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BIOMASS is the prime candidate to be the first P-band SAR satellite (Le Toan 

et al., 2011). The major advantage of all SAR systems is their weather- and 

daylight-independency. The ability of radar sensors to measure biomass mainly 

depend on how deep the radar signals can penetrate into the canopy. The longer 

the wavelength, the deeper the penetration (Englhart, Keuck, & Siegert, 2011; 

Le Toan et al., 2011). 

 Different radar data have their own characteristics in relating to forest 

stand parameters (Leckie & Ranson, 1998; Lu, 2006). For example, radar 

backscatter in the P and L bands is highly correlated with major forest 

parameters, such as tree age, tree height, DBH, basal area, and AGB. The SAR 

L-band data have proven to be valuable for AGB estimation (Kurvonen, 

Pulliainen, & Hallikainen, 1999; Luckman, Baker, Kuplich, Yanasse, & Frery, 

1997; Sun, Ranson, & Kharuk, 2002). However, the SAR C-band and X-band 

were shown low correlations with AGB (Englhart et al., 2011; Le Toan, 

Beaudoin, Riom, & Guyon, 1992) while the higher correlation were found 

between SAR P-band backscatter and AGB (Le Toan et al., 2011). 

 Airborne LiDAR data are also used for estimating AGB (Baccini et 

al., 2012; Gonzalez et al., 2010; He et al., 2013; Kronseder et al., 2012). LiDAR 

is one of the most promising remote sensing technologies for estimating various 

biophysical properties of forests. LiDAR data are well suited to biomass 

estimation, as point clouds generated from forest canopies can accurately depict 

the physical characteristics of the canopy surface (Zhao, Guo, & Kelly, 2012). 

AGB is strongly related to LiDAR measured tree height, crown diameter, crown 

shape (He et al., 2013). In comparative studies, LiDAR has produced more 
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accurate estimates of forest biomass than optical satellite sensors (Gonzalez et 

al., 2010) and synthetic aperture radar sensors (Asner et al., 2012; Sexton, Bax, 

Siqueira, Swenson, & Hensley, 2009). 

 The radar or LiDAR data have important roles in AGB estimation, 

especially in study areas with frequent cloud conditions. However, the data 

analyses involved in pre-processing, removal of noise, and image processing 

require more skills, knowledge, and specific software. Also, the use of LiDAR 

data for large area monitoring is challenging because of operational 

considerations that limit widespread use, such as high data acquisition costs, 

aircraft scheduling and logistics, and large data volumes although accurate 

(Wulder, Bater, Coops, Hilker, & White, 2008). 

 The remote sensing data are commonly correlated to forest biomass 

using empirical regression models, non-parametric methods, and physically-

based allometric models. Although LiDAR produced high accuracy in 

estimating AGB than Landsat data, LiDAR data have a limitation, such as high 

costs, availability. However, Landsat data can available get free and better to 

get cloud free or cloud least images. Hence, most of the research in different 

parts of the world were used Landsat data in estimating AGB. 
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3. Materials and Methods 

3.1. Description of the Study Area 

 This study was carried out in South Zarmani Reserved Forest which 

belong to the tropical deciduous forest in Bago Yoma Region of Myanmar (Fig. 

2). Geographic coordinates of this study area are 16° 50' 51'' N and 96° 45' 28'' 

E and the average elevation is about 300 m above sea level. There are two dam 

reservoirs, namely Zaungtu dam reservoir and Shwe Laung Kodu Kwe dam 

reservoir, inside the study area.  This area is one of major timber producing 

area in Myanmar including valuable commercial timber species such as teak 

(Tectona grandis), pyinkado (Xylia xylocarpa), padauk (Terocarpus 

macrocarpus), etc. And also, local communities rely on forest products as the 

primary sources, such as timber, fuelwood, fodder. The study site covers an area 

of approximately 77000 ha. According to the nearest meteorological station, 

the mean annual temperature and rainfall of this area are 27.8 °C and 1323.2 

mm. Alluvial soil is common in this study area (FD, 2012). 
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Figure 2. Location of the South Zarmani Reserved Forest 

 

3.2. Remote Sensing Datasets 

 In this study, for the estimation of AGB, Landsat 8 OLI (2014) 

imagery was used. Because satellite goes over the same place on every 16 day, 

and it is better to get cloud free or cloud least image, Landsat image on clear 

day and about the same day of year in dry season were selected from 2014. 

Landsat 8 OLI image with less than 10% cloud cover were acquired on 24 Dec 

2014. Conveniently, the study area was covered by one Landsat image (WRS-

2, Path 132 and Row 48). Landsat 8 carries two instruments: the Operational 

Land Imager (OLI) sensor including nine spectral bands with a spatial 

resolution of 30 meters for Bands 1 to 7 and Band 9, while the spatial resolution 

 
 

 



 13 

of Band 8 (panchromatic) is 15 meter and Thermal Infrared Sensor (TIRS) 

consisting of thermal bands 10 and 11 with a spatial resolution of 100 meters. 

The spectral bands and spatial resolution of Landsat 8 OLI image was expressed 

in Table 1.  

At first, the Landsat images were georeferenced to the coordinate 

system of the study area (WGS 84, UTM projection, Zone 47 Q).The Landsat 

image was obtained in digital number (DN) and these DN value was 

transformed to reflectance value. The DN values of the Landsat 8 OLI were 

converted to the radiance data using the following equation given by 

https://landsat.usgs.gov/ Landsat8_Using_Product.php.  

Lsat = ML * Qcal + AL 

Where, Lsat is the at-satellite radiance, ML is the band-specific multiplicative 

rescaling factor from Landsat metadata (RADIANCE_MULT_BAND_ x, 

where x is the band number), AL is the band-specific additive rescaling factor 

from Landsat metadata (RADIANCE_ADD_BAND_x, where x is the band 

number), and Qcal is the quantized and calibrated standard product pixel values 

(DN). 

 The USGS was also described that Landsat 8 images are provided with 

band-specific rescaling factors that allow for the direct conversion from DN to 

top of atmosphere (TOA) reflectance. However, the effects of the atmosphere 

should be considered in order to measure the reflectance at the ground. 

Therefore, the surface reflectance, ρ, was calculated using the dark object 

subtraction (DOS) equation described by Song, Woodcock, Seto, Lenney, and 

Macomber (2000); 

https://landsat.usgs.gov/%20Landsat8_Using_Product.php
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 ρ = (π (Lsat – Lp)) / Tv (E0 cos (θz) Tz + Edown) 

where, Lp is the path radiance, Tv is the atmospheric transmittance from the 

target toward the sensor, E0 is the exoatmospheric solar constant,  Edown is the 

downwelling diffuse irradiance, θz is the solar zenith angle, and Tz is the 

atmospheric transmittance in the illumination direction. The assumption value 

of Tz, Tv and Edown in DOS are 1, 1, and 0, respectively according to (Song et 

al., 2000). 

 The path radiance Lp is calculated using the following equation; 

Lp = G*DNmin + B – 0.01[E0 cos (θz)Tz + Edown] Tv/π 

Where, G is the sensor gain and B is the bias used for converting the sensor 

signals (DN) to at-satellite radiance. DNmin is the minimum darkest DN value. 

 The exoatmospheric solar constant, E0, is estimated using the 

following equation; 

E0 = (πd2)* RADIANCE_MAX / REFLECTANCE_MAX 

Where, d is the sun-earth distance, RADIANCE_MAX and 

REFLECTANCE_MAX are band-specific rescaling factors provided by image 

metadata. 

 Topographic correction is also necessary process in remote sensing 

technique for a mountainous areas (Gao et al., 2014; Gu & Gillespie, 1997; Wei, 

Qingjiu, & Liming, 2008). Due to the Bago Yoma is a mountainous region, 

topographic effect should also be considered one of the important factor. 

Therefore, topographic correction was done  as below using the Sun-Canopy-

Sensor correction model (SCS) provided by Gu and Gillespie (1997).  

L/L0 = A/A0 = cos θ / cos θs cos α 
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Where, L is the radiance reflected from the direct solar irradiance of sloping 

pixel, L0 is the radiance reflected from the direct solar irradiance, A is the total 

sunlit area of sloping pixel, A0 is the total sunlit areal of level pixel, θ is the 

solar radiance incidence angle, θs is the sun zenith angle, and α is the terrain 

slope angle. 

 The solar radiance incidence angle, θ, can be calculated from 

cos θ = cos θs cos α + sin θs sin α cos φ 

where, φ is the relative azimuth between the sun and the slope. 

 

Table 1. Landsat 8 OLI spectral and spatial resolution 

Landsat 8 OLI 

Bands Wavelength 

(micrometers) 

Resolution (meters) 

Coastal  0.43 – 0.45 30 

Blue 0.45 – 0.51 30 

Green 0.53 – 0.59 30 

Red 0.64 – 0.67 30 

NIR 0.85 – 0.88 30 

SWIR 1 1.57 – 1.65 30 

SWIR 2 2.11 – 2.29 30 

Pan 0.50 – 0.68 15 

Cirrus 1.36 – 1.38 30 

TIRS 1 10.60 – 11.19 100 

TIRS 2 11.50 – 12.51 100 
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3.3. Field Biomass Measurement  

The sample plots covering wide range of biomass were selected based 

on the normalized difference vegetation index (NDVI). Stratified random 

sampling design was used to determine the location of 100 sample plots using 

the global positioning system (GPS) in this study area (Fig. 3a) (Table 2). Each 

plot has a size of 900 m2 (30 m x 30 m) and in this plot, trees with DBH ≥ 10 

cm were recorded their diameter at breast height (DBH) and height (H) of all 

trees. At the center of each plot, sub plot 100 m2 (10 m x 10 m) were established 

for measuring DBH and H of all trees with DBH ˂ 10 cm. The sample plot 

design used in this study area was expressed in Figure 3b and the sample plots 

located in this study area was shown in Figure 3a. For each tree, the species 

names, diameter at breast height and height at ground level were recorded. Tree 

diameters were measured using diameter tape and tree heights were measured 

using Haglof ECII electronic clino meter. Data collection for this study were 

carried out from January to February 2015 in the dry season.  

(a)      (b) 

 

 

 

 

 

 

Figure 3. (a) Sample plots located in the study area and (b) Sample plot design 

used in this study   
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10 m
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Table 2. Representative sample plots in each NDVI classes 

No. NDVI Classes Stratified areas (ha) No. of Sample Plots 

1 Class 1 72.27 Water 

2 Class 2 527.22 5 

3 Class 3 719.01 5 

4 Class 4 4556.34 15 

5 Class 5 62777.34 55 

6 Class 6 8876.88 20 

  Total 77529.06 100 

 

 

3.4. AGB Estimated from Field data 

 The total AGB for each plot were estimated using site specific 

equation for Bago Yoma Mountain which developed by Chan, Takeda, Suzuki, 

and Yamamoto (2013) using 68 tree species – covering most of our study trees 

- with the diameter greater than 1 cm. The allometric equation used for this 

study was as follow; 

W = 0.064 x (D2H)0.862 

Where, W = biomass per tree in kg, D = diameter in breast height in cm and  

H = tree height in m. After generating tree level biomass, AGB of each sample 

plot was summed and converted into stand level total AGB (tons/plot and 

tons/ha). 
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3.5. Generating Regression Models for RS Biomass 

Estimation 

 To estimate the AGB of Bago Yoma region from RS, 56 out of 100 

sample plots were used as the training plots for two different biomass 

estimation models. The first multiple linear regression model was developed 

using multiple satellite band values (Ripple, 1994; Xie et al., 2009; D. Zheng 

et al., 2004) and the second principle component regression model used its 

principle component values (Ji et al., 2012). Here after we call them MLR 

model and PCA model, respectively. The rest of 44 plots were used as test plots 

to check the validation of our models. The same training plots and testing plots 

were used for both MLR and PCA models. After the model development, AGB 

maps were generated from MLR and PCA models. For the model development, 

one dependent variable (AGB) and seven independent variables (B2, B3, B4, B5, 

B6, B7, and elevation data generated from the SRTM-90 m DEM downloaded 

from USGS) were used and went through stepwise regression analysis for 

selection of necessary variables. To reduce the error caused by the uncertainties 

in GPS, we used reflectance values, which were averaged within 3 x 3 window 

pixels centered on the GPS point of each field plot.  

 

3.5.1. Multiple Linear Regression model (MLR)  

 MLR model for AGB estimation is based on the relationship between 

AGB and spectral bands. 

 Y = α + β1B2 + β2B3 + ….. + β6B7 + β7Elevation 

Where, Y is the calculated AGB of training samples, α is the intercept, β1-7 is 
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the slope coefficient of independent variables and B2-7 is the Landsat bands 2 to 

7.  

High collinearity between independent variables show statistical 

problem and therefore, collinearity between independent variables were 

examined by the variance inflation factor (VIF) and tolerance. High collinearity 

between independent variables occurs when tolerance < 0.20 or VIF > 4. To 

linear the relationship, AGB were converted to natural logarithmic form. The 

logarithmic regression is expressed as 

 Ln (Y) = α + β1B2 + β2B3 + ….. + β6B7 + β7Elevation 

 

3.5.2. Principal Component Analysis (PCA)  

 Principal component analysis is a statistical procedure that the original 

correlated predictor variables were converted to new set of values of linearly 

uncorrelated variables, called the principal components (Jolliffe, 2002). The 

AGB estimation model is based on the AGB and spectral bands. 

 Y = f (B2, B3, B4, B5, B6, B7, Elevation) + e 

Where, Y is AGB, B1-9 is the spectral bands from Landsat image and e is error 

term. If the multicollinearity between independent variable occurs, it means that 

the high correlation among them. Therefore, to avoid multicollinearity between 

independent variables, PCA method were used. Thus, the regression is 

described as 

 Y = f (PC1, PC2, PC3, PC4, PC5, PC6, PC7) + e   

Where, PC1-7 are principal component transformed from the seven independent 

variables. After that, to linearize the relationship between dependent variable 
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and independent variables, dependent variable (AGB) were converted to natural 

logarithmic form. Therefore, the regression is reconstructed to 

Ln(Y) = b0 + b1PC1 + b2PC2 + ………..+ b7PC7 + e 

Where, Ln(Y) is natural logarithmic of AGB, b0-7 are the regression coefficient 

of independent variables. 

 The same training plots and testing plots were used for both MLR and 

PCA analysis. Training plots were used to generate MLR and PCA regression 

models and testing plots were used for model validation. 

 

3.6. Model Validation 

 For the reliability of models performance, for both MLR and PCA 

models, the coefficient of determination (r2), root mean square error (RMSE), 

relative RMSE, bias and bias (%) between observed values and predicted values 

were calculated using the following equations; 

𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 = � 𝟏𝟏
𝒏𝒏
� (𝑿𝑿𝒐𝒐𝒐𝒐𝒐𝒐 −  𝑿𝑿𝒎𝒎𝒐𝒐𝒎𝒎𝒎𝒎𝒎𝒎)𝟐𝟐

𝒏𝒏
𝒊𝒊=𝟏𝟏   

Relative RMSE = (RMSE / 𝑿𝑿𝒐𝒐𝒐𝒐𝒐𝒐������� ) * 100   

𝑩𝑩𝒊𝒊𝑩𝑩𝒐𝒐 =  𝑿𝑿𝒐𝒐𝒐𝒐𝒐𝒐������ −  𝑿𝑿𝒎𝒎𝒐𝒐𝒎𝒎𝒎𝒎𝒎𝒎��������� 

Bias (%) = (Bias / 𝑿𝑿𝒐𝒐𝒐𝒐𝒐𝒐������ ) * 100  

Where, 𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜 is the observed AGB value using allometric equation, 𝑋𝑋𝑚𝑚𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 is 

the modeled estimation from RS, 𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜������  is the mean of the observed value, and 

𝑋𝑋𝑚𝑚𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚��������� is the mean of the predicted value. 

 

 



 21 

4. Results and Discussion 

4.1. Forest characteristics 

 There are total 3376 trees greater than 10 cm in diameter which belong 

to 110 species and 43 families from 100 (30m x 30m) sample plots. The ten 

most common species composition in 30m x 30m plots was shown Figure 4 and 

the all of the tree species are list in Appendix 1. Tectona grandis was the 

dominant species and it was followed by Derris robusta and Lagerstroemia 

speciosa. 73 species and the total of 679 trees were found from 100 (10m x 

10m) sample plots. The ten most common species composition in 10m x 10m 

plots was shown in Figure 5 and the all of them are list in Appendix 2. 

Mitragyna diversifolia was the most dominant species and it was followed by 

Lagerstroemia speciosa and Tectona grandis. 

 

 

 

 

 

 

 

 

 

Figure 4. Ten most common species composition within 30m x 30m plots of 

the South Zarmani Reserved Forest  
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Figure 5. Ten most common species composition within 10m x 10m plots of 

the South Zarmani Reserved Forest 

  

The basal area and stand density of the study area were 26.42±1.02 

m2/ha and 1054±72.86 trees/ha, respectively. Figure (6) and (7) show the 

distribution of basal area and distribution of tree numbers in the study area. 

These numbers are similar to other tropical Asia. Aye, Pampasit, Umponstira, 

Thanacharoenchanaphas, and Sasaki (2014) reported that the basal area and 

stand density of Popa Mountain Park in Myanmar were 27.5 m2/ha and 1061 

trees/ha, respectively. Kronseder et al. (2012) mentioned the basal area and 

stand density were 25.3±11.0 m2/ha and 1074±819 trees/ha of lowland 

dipterocarp forest in Central Kalimantan, Borneo. Compared to tropical area in 

temperate forests, Gasparri, Parmuchi, Bono, Karszenbaum, and Montenegro 

(2010) showed the basal area ranged between 2.7 and 12.2 m2/h and stand 

density ranged from 74 to 265 trees/ha in Argentina. Gonzalez et al. (2010) 

resulted the stand density of 329±153 trees/ha, 333±157 trees/ha and 326±172 

trees/ha in Garcia, Mailliard, and North Yuba, USA, respectively.   
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Figure 6. Distribution of basal area in the South Zarmani Reserved Forest 

 

 

 

 

 

 

Figure 7. Distribution of tree numbers in the South Zarmani Reserved Forest 

 

The numbers of trees and diameter distribution of all the trees in the 

30m x 30m plots is given in Figure 8. It can be seen that the number of trees is 

decreasing when DBH gets larger. Therefore, it shows typical inverse J shape 

in the DBH distribution. Inside the 10m x 10m plots, the largest numbers of 

trees were occurred in 6-7.9 cm DBH class (Fig. 9). Figure 10 showed the 

height distribution of trees in the 30m x 30m plots. The number of trees 

categorizing in 5 to 9.9 m height class were greater than other height classes. 

Figure 11 represented the number of tress and height distribution of all trees in 

the 10m x 10m plots. 
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Figure 8. Diameter distribution within 30m x 30m plots of the South Zarmani 

Reserved Forest 

 

Figure 9. Diameter distribution within 10m x 10m plots of the South Zarmani 

Reserved Forest 

 

Figure 10. Height distribution within 30m x 30m plots of the South Zarmani 

Reserved Forest 
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Figure 11. Height distribution within 10m x 10m plots of the South Zarmani 

Reserved Forest 

 

4.2. AGB from Field Data 

 The AGB from field inventory data were estimated using site specific 

allometric equation from Chan et al. (2013). The results showed that high AGB 

and low AGB from field data were 330.54 tons/ha and 15.02 tons/ha, 

respectively. The descriptive statistics of training and test plots was expressed 

in Table 3. Compared with the previous studies, our study had a higher AGB 

value than other studies that were conducted in temperate and sub-tropical 

regions. Dube and Mutanga (2015) reported that the maximum value of AGB 

from field inventory data was 298.04 tons/ha in Africa. He et al. (2013) resulted 

the high value of AGB 174.88 tons/ha in China. Roy and Ravan (1996) 

mentioned 129.95 tons/ha as the high value of AGB from field data in India. 

However, our study had a lower AGB value when compared with the AGB 

value varies from 110 tons/ha to 500 tons/ha in Amazon (Lu, 2005).  
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Table 3. Descriptive Statistics of Training and Test Plots 

Sample Plots Min Max Mean SD 

Training Plots (56 plots) 15.02 252.99 82.26 26.74 

Test Plots (44 plots) 21.66 330.54 85.95 34.29 

 

4.3. Regression Models for AGB Estimation 

 When stepwise multiple regression was run to estimate the regression 

model using SPSS, high collinearity occurs between reflectance values of the 

spectral bands of the Landsat images (bands 2, 4, 6, and elevation). Therefore, 

these spectral bands were excluded from the independent variables. After that, 

the regression model were generated to estimate AGB from MLR. The 

regression model from MLR is expressed in Table 4. 

 

Table 4. Regression models used for AGB estimation  

 

 In the PCA analysis, the results showed the eigenvalues of the first 

three PCs were 98.62% (70.90%, 15.91%, and 11.81% for PC1, PC2, PC3, 

respectively) of the total variance, while the remaining four PCs were a little of 

Regression Model R2 P-
Value 

RMSE 
(tons/ 
ha) 

RMSE  
(%) 

Bias 
(tons/
ha) 

Bias  
(%) 

ln(AGB) = 31.103 – 161.882B3  

+ 7.589B5 + 43.866B7 

0.43 0.0001 60.2 70.1 -9.1 -10.6 

ln(AGB) = 4.254 - 0.043PC1  

– 0.89PC4 + 16.698PC5  

0.45 0.0001 55.1 64.1 -8.3 -9.7 



 27 

variance. Table 5 showed the correlation between variables and PCs 

(component matrix). 

 According to Table 5, PC1 showed the highest loadings among all 

variables. The regression model for estimating AGB were calculated from PCA. 

This regression is described in Table 4. 

 

Table 5. Component matrix of the principle components and variables 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 

Blue 0.978 0.143 -0.058 0.124 -0.012 0.064 0.003 

Green 0.992 -0.010 0.053 0.042 -0.100 -0.039 0.009 

Red 0.980 0.147 -0.083 0.079 0.059 -0.034 -0.029 

NIR 0.300 -0.745 0.594 0.042 0.024 0.002 0.001 

SWIR_1 0.973 -0.018 0.111 -0.198 -0.019 0.022 -0.018 

SWIR_2 0.985 0.135 -0.044 -0.059 0.065 -0.012 0.035 

Elevation -0.235 0.706 0.668 0.009 0.001 -0.002 0.000 

  

 

The relationship between observed AGB from field inventory data and 

predicted AGB from remote sensing based on MLR model and PCA model 

were moderately reliable showing y = 0.4635*observed ln(AGB) + 2.2954 (r2 

= 0.43, p < 0.0001) and y = 0.3709*observed ln(AGB) + 2.6614 (r2 = 0.44, p < 

0.0001), respectively (Fig. 12). Dube and Mutanga (2015) estimated AGB 

using Landsat 8 OLI in Africa and reported an r2 of 0.42. Gasparri et al. (2010) 

revealed an r2 of 0.37 using Landsat images to estimate AGB in Argentina. 
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Compared with these previous studies using Landsat images, our study have a 

higher accuracy in estimating AGB.  

 

 

 

 

 

 

 

Figure 12. One to one relationship between observed ln(AGB) and predicted 

ln(AGB) based on: (a) MLR model and (b) PCA model 

 

However, as shown in the regression relationship, the slope of the 

equations were significantly lower than one. Therefore, our models tended to 

underestimate the AGB at high biomass value at -10.6% in MLR model and -

9.7% in PCA model (Table 4). However, the underestimation at high-end are 

common in other studies. For examples, Powell et al. (2010) developed three 

models to estimate AGB with underestimated value at -3% and -2.4% in 

gradient nearest neighbor (GNN) model and random forest (RF) model, 

respectively and overestimated value at 5.4% in reduced major axis (RMA) 

model in Minnesota, USA. Labrecque, Fournier, Luther, and Piercey (2006) 

reported that the BioCLUST model to estimate AGB was underestimated the 

value at -17 tons/ha when using the validation plots and -4 tons/ha when using 

the baseline map in Canada.   
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Our models RMSE (60.2 and 55.1 tons/ha in MLR and PCA, 

respectively) had a lower RMSE when compared with previous studies. 

Vicharnakorn et al. (2014) reported estimated AGB with RMSE 81.87 tons/ha 

in Lao PDR. Xie et al. (2009) described the RMSE 79.36 tons/ha for AGB 

estimation in Inner Mongolia. Luther, Fournier, Piercey, Guindon, and Hall 

(2006) revealed estimated AGB with a RMSE value of 63.6 tons/ha in the 

western Newfoundland ecoregion. Dube and Mutanga (2015) using Landsat 8 

OLI images, showed estimated AGB with RMSE 66.41 tons/ha in South Africa. 

 Some other studies showed higher accuracy than our models; r2 = 0.67 

resulted by D. Zheng et al. (2004), r2 = 0.64 described by Foody et al. (2001). 

The site specific allometric equation based on the DBH and height were only 

used in calculation of AGB estimation for this study. Therefore, the species 

specific allometric equation could be useful to improve the estimation of AGB. 

In order to improve the accuracy of AGB estimation, the leaf area index (LAI) 

and stand age should also be used in future estimation of AGB calculation. 

Other studies including leaf area index (LAI) and stand age as independent 

variable, showed the high accuracy in their model estimation. G. Zheng et al. 

(2007) described R2 of 0.89 using LAI and stand age to estimate AGB in China. 

D. Zheng et al. (2004) revealed the AGB estimation model (R2 = 0.82) using 

stand age and vegetation indices in USA. Therefore, we can assumed that the 

accuracy of AGB estimation can effectively improve using LAI and stand age.  

The data collection were carried out during a limited time and therefore, the 

LAI cannot measured in this study. 

 



 30 

4.4. AGB Estimation Maps from Two Models 

 The regression model generated from MLR was first applied to 

produce AGB estimation map of the South Zarmani Reserved Forest. The 

results showed that estimated AGB is the range of values from 2.78 tons/ha to 

236.69 tons/ha for the study area. There are totally about 5.7 million tons with 

the mean AGB of 74.74 tons/ha for the study area. Thematic AGB estimation 

map after classifying into four biomass categories was generated by using the 

regression results. 

 The AGB estimation map for the South Zarmani Reserved Forest was 

further generated using the regression model developed by PCA. The results 

showed that the value of estimated AGB varied from 0.000021 tons/ha to 

214.67 tons/ha and the mean AGB is 73.04 tons/ha. There are totally about 5.6 

million tons in the study area according to the estimation results and the four 

biomass categories were reclassified from the thematic AGB estimation map 

generated by using PCA model.  

The highest biomass value 236 tons/ha from MLR model is a relatively 

high when compare the highest value 214 tons/ha from PCA model. Figure 13 

shows the comparison of thematic AGB estimation map between MLR and 

PCA models. The areas of representative biomass categories analysis from 

MLR and PCA were shown in Table 6. 
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Figure 13. Comparison of AGB estimation map developed from MLR and 

PCA 

 

Table 6. Representative areas of four biomass categories from MLR and PCA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Biomass Categories Area(ha) 

Less than 50 tons/ha 6917.40 

50 - 100 tons/ha 57600.18 

100 - 150 tons/ha 12142.80 

> 150 tons/ha 796.41 

Total 77456.79 
 

Biomass Categories Area(ha) 

Less than 50 tons/ha 10907.64 

50 - 100 tons/ha 46828.80 

100 - 150 tons/ha 17215.02 

> 150 tons/ha 2505.33 

Total 77456.79 
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Similarly in both MLR and PCA, AGB estimation using field inventory 

data and Landsat 8 OLI, had the highest proportion in the category of 50 – 100 

tons/ha and that of more than 150 tons/ha biomass category was relatively low 

(Table 6). The mean AGB from MLR is 74.74 tons/ha and the total AGB of the 

study area was about 5.7 million tons. The mean AGB from PCA is 73.04 

tons/ha and the total AGB was about 5.6 million tons, which is similar with 

MLR. Although the highest biomass (tons/ha) was more than 330 tons/ha 

calculated from field inventory data, MLR generated 236 tons/ha and PCA 

generated 214 tons/ha as highest biomass values. Although the MLR model was 

generated the highest estimated AGB value than PCA model, PCA model had 

a lower RMSE, relative RMSE, bias and bias (%) than MLR. The results found 

that the value of estimated AGB using Landsat images was relatively lower 

than the biomass value calculated from field inventory data.  

 In compare with other AGB estimation of different study area, the 

results found that the mean value of estimated AGB 74.74 tons/ha derived from 

MLR and 73.04 tons/ha generated from PCA were similar to other studies. 

Dube and Mutanga (2015) showed that the mean value of estimated AGB 55.32 

tons/ha using Landsat 8 OLI in South Africa. Roy and Ravan (1996) resulted 

estimated mean AGB 45.49 tons/ha in India. The estimated mean AGB values 

82.71 Mg/ha in Bornean forest described by Englhart et al. (2011). 

 In this study, the calculation of estimated AGB depends only on the 

two dimensional approaches such as Landsat images, so there should be used 

three dimensional approaches such as aerial photo, radar and LiDAR images to 

improve the accuracy of the AGB estimation. He et al. (2013) described an R2 
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of 0.74 using LiDAR data to estimate AGB in China. Kronseder et al. (2012) 

mentioned that the AGB were estimated an R2 of 0.71 using LiDAR data in 

Borneo. Although these instruments have more powerful to accurate the 

estimation of AGB, these datasets have a limitation due to high costs, 

availability, huge data-volume as well as high data pre-processing costs (Dube 

& Mutanga, 2015). The Landsat images, therefore, are more suitable to estimate 

AGB for regional scale. 
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5. Conclusion 

 South Zarmani Reserved Forest is an important forest type which 

producing the valuable timber species in Myanmar. However, due to 

overexploitation and illegal logging, deforestation and forest degradation were 

increasing rapidly rate in this area. However, there is no systematic studies to 

estimate the AGB and to produce AGB map for this area till now. Therefore, 

AGB estimation and AGB map were generated for this area using field 

inventory data and Landsat data. Mapping the aboveground biomass for this 

area is an important to support the study of the deforestation and forest 

degradation and social-economic environment.  

 Moreover, this study has developed two models, MLR and PCA, for 

predicting aboveground biomass. Both models gave a good precision for 

estimating AGB and are applicable to map AGB for the study area. In 

comparing two models, PCA model generated lower RMSE, relative RMSE, 

bias and bias (%), higher r2, and more accuracy in estimating AGB than the 

MLR model. The MLR and PCA models to estimate the AGB were based on 

the spectral bands derived from Landsat images and elevation. According to 

Figure 12, the results showed that the observed AGB from field inventory data 

is correlated fairly with the predicted AGB from Landsat images. The AGB 

maps derived from PCA and MLR model are useful for future forest 

management in Myanmar. 

The highest value of estimated AGB was more than 330 tons/ha 

calculated from field inventory data, while 214 tons/ha were generated from 

PCA model and 236 tons/ha from MLR model as the highest estimated AGB 
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value, respectively. The results revealed that the estimated AGB value from 

PCA model were relatively lower than estimated AGB value from MLR model, 

whereas both models were estimated the AGB value lower than the field 

inventory data. However, other studies suggested that our models can be 

improve if other independent variables such as LiDAR based canopy height, 

stand age, and LAI are included, aerial photos datasets.  

In conclusion, aboveground biomass is an important variable for 

national greenhouse inventory and carbon mitigation projects, particularly tree 

based projects. AGB can be used indicator for the degraded state of the forest 

ecosystem and also, correlated to the carbon content of the tree species. 

Therefore, AGB is useful for estimating the effectiveness of ecosystems as 

carbon sink. This study can provide to estimate the carbon emission due to 

deforestation and forest degradation. Moreover, this kind of study would also 

be applicable for the CDM and REDD+ mechanism in Myanmar, especially in 

Bago Yoma Region.  
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Appendix 1 

List of species found inside 30m x 30m plots of South Zarmani Reserved Forest 

Myanmar Names Botanical Names Family Names 

Aukchinsa Amoora wallichii King Meliaceae 

Baing Tetramales nudiflora R, Br. Tetramelaceae 

Bamaw Elaeocarpus wallichii Kurz Elaeocarpaceae 

Bantbway Careya arborea Roxb. Lecythidaceae 

Bepya Cratoxylum neriifolium Kurz Hypericaceae 

Binga 
Mitragyna rotundifolia (Roxb.) 

Kuntze 
Rubiaceae 

Chinyoke Garuga pinnata Roxb. Burseraceae 

Danyin Abarema bigemina (L.) I.C.Nielsen Leguminosae 

Didu Bombax insigne Wall. Bombacaceae 

Dwabok Kydia calycina Roxb. Malvaceae 

Gwe Spondias mangifera Willd. Anacardiaceae 

Gyo Schleichera oleosa (Lour) Oken. Sapindaceae 

Hman Xeromphis spinose Lamk. Rubiaceae 

Htamachauk Gomphostemma lucidum Wall.ex Benth.  Lamiaceae 

Htamasok Glochidion glaucifolium Muell. Arg. Euphorbiaceae 

Htaukshar Vitex canescens Kurz Lamiaceae 

Hteinkala Nauclea sessilifolia Roxb. Rubiaceae 

Kabaung Strychnos nux-blanda A.W.Hill Loganiaceae 

Kalaw Gynocardia odorata R. Br. Achariaceae 

Kanazo Heritiera fomes Wall. Sterculiaceae 
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Myanmar Names Botanical Names Family Names 

Kanyin Dipterocarpus alatus Roxb. Dipterocarpaceae 

Kathit Erythrina stricta Roxb. Fabaceae 

Kaunghmu Anisoptera curtisii Dyer ex King Dipterocarpaceae 

Kokko Albizia lebbek (L.) Benth Fabaceae 

Kuthan Hymenodictyon orixense Mabb. Rubiaceae 

Kyana Xylocarpus moluccensis (Lamk.)M.Roem Meliaceae 

Kyaungsha Oroxylum indicum (L.) Kurz Bignoniaceae 

Kyetmauk Litchi chinensis Sonn. Sapindaceae 

Kyetyo Vitex limnifolia Wall. Verbenaceae 

Kyun Tectona grandis Linn.f. Verbenaceae 

Kyun bo Premna pyramidata Wallich Verbenaceae 

Lein Terminalia pyrifolia Kurz Combretaceae 

Letkok Pterygota alata (Roxb.) R.Br. Sterculiaceae 

Letpan Bombax ceiba L. Bombacaceae 

Leza Lagerstroemia tomentosa Presl. Lythraceae 

Linyaw Dillenia parviflora Griff. Dilleniaceae 

Madama Dalbergia ovata Grah. Fabaceae 

Magyipauk Gardenia sessiliflora Wall.ex C.B.Clarke Rubiaceae 

Mahlwa Markhamia stipulate Seeme.ex K. Bignoniaceae 

Maniauga Carallia brachiate (Lour.) Merr. Pinaceae 

Mau Anthocephalus morindifolius Korth. Rubiaceae 

Mayanin Pittosporum napaulensis Rehder W. Pittosporaceae 

Myaukchaw Homolium tomentosum Benth. Flacourtiaceae 
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Myanmar Names Botanical Names Family Names 

Myaukngo Duabanga grandiflora Walp Lythraceae 

Myaya Microcos paniculata L. Malvaceae 

Nabe Lannea coromandelica (Houtt).Merr. Anacardiaceae 

Nage Pterospermum semisagittatum Buch-Ham. Sterculiaceae 

Ngahlaing bo Mallotus repandus Euphorbiaceae 

Ngu Cassia fistula L. Fabaceae 

Ondon Litsea glutinosa (Lour) C.B.Rob. Lauraceae 

Padauk Pterocarpus macrocarpus Kurz Leguminosae 

Panga Terminalia chebula Retz. Combretaceae 

Pauk Butea monosperma (Lam.) Kuntze Fabaceae 

Phet-kyan Quercus lindleyana Wall. Fagaceae 

Phetthan Heterophragma adenophyllum Wall Bignoniaceae 

Phetwun Berrya mollis Wall.ex Kurz Tiliaceae 

Pokethinma Derris robusta (Roxb. ex DC.) Benth. Fabaceae 

Pyaukseik Holoptelea integrifolia Planch. Ulmaceae 

Pyinkado Xylia xylocarpa (Roxb.) Toub. Mimosaceae 

Pyinma Lagerstroemia speciose (L.) Pers. Lythraceae 

Sawbya Sterculia campanulata Wall. Sterculiaceae 

Seikchi Bridelia retusa (L.) A.Juss. Euphorbiaceae 

Shaw Sterculia angustifolia Jack Sterculiaceae 

Sit Albizzia procera (Roxb.) Benth. Mimosaceae 

Swedaw Bauhinia acuminate L. Fabaceae 

Taukkyant Terminalia crenulata (Heyne) Roth Combretaceae 
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Myanmar Names Botanical Names Family Names 

Taung-gangaw Mesua nervosa Guttiferae 

Taung-gwe Spondias pinnata (L.) Kurz. Anacardiaceae 

Taunggyi Barringtonia racemose (L.) Spreng Barringtoniaceae 

Taung-karamet Cordia fragrantissima Kurz Boraginaceae 

Taung-khaya Dialium indum Noronh. Leguminosae 

Taung-kyetmauk Xerospermum noronhianum Blume Sapindaceae 

Taung-mayo Alstonia scholaris R.Br. Apocynaceae 

Taung-nage Pterospermum lanceifolium Roxb. Sterculiaceae 

Taung-ohnshit Arenga saccharifera Labill. Arecaceae 

Taung-peinne Artocarpus chaplasha Roxb. Moraceae 

Taung-phetwun Pterospermum acerifolium Willd Sterculiaceae 

Taung-thayet Mangifera caloneura Kurz Anacardiaceae 

Taw-shaut Citrus medica L. Rutaceae 

Thabye Syzygium tetragonum (L.) Skeels. Myrtaceae 

Thadi Protium serratum Engl. Burseraceae 

Thakhut Dolichandrone serrulata Seem. Bignoniaceae 

Thakhutpo Stereospermum fimbriatum DC. Bignoniaceae 

Thanakha Hesperethusa crenulata (Roxb.)Roem Rutaceae 

Thande Stereospermum colais Mabb. Bignoniaceae 

Thanzat Albizia lucidior Nielsen Mimosaceae 

Thaputgyi Miliusa velutina Hool.f.&Thomson Annonaceae 

Thayet Mangifera indica L. Anacardiaceae 

Thayingyi Croton roxburghianus N.P.Balakr Euphorbiaceae 
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Myanmar Names Botanical Names Family Names 

Thingadu Parashorea stellata Kurz Dipterocarpaceae 

Thinwin Millettia pendula Benth. Fabaceae 

Thitkala Pentace griffithii King Tiliaceae 

Thitmagyi Albizia odoratissima (L.f.)Benth. Mimosaceae 

Thitnima Amoora cucullata Roxb. Meliaceae 

Thitpagan Millettia brandisiana Kurz Fabaceae 

Thitpayaung Lophopetalum wallichii Kurz Celastraceae 

Thitpok Dalbergia kurzii Prain Fabaceae 

Thitpyu Wendlandia glabrata DC Rubiaceae 

Thitsat Beilschmiedia roxburghiana Wall. Lauraceae 

Thitseint Terminalia belerica Roxb. Combretaceae 

Thitsi Melanorrhea usitata Wall. Anacardiaceae 

Thitwa Linociera terniflora Wall. Oleaceae 

Wunthaechay Lithocarpus kingianus (Gamble)A.Camus Fagaceae 

Yemane Gmelina arborea Roxb. Verbenaceae 

Yindaik Dalbergia cultrata Grah. Leguminosae 

Yinzat Dalbergia fusca Pierre Fabaceae 

Yon Anogeissus acuminata Wall. Combretaceae 

Zaungbale Lagerstroemia villosa Wall.ex.Kurz Lythraceae 

Zepyu Emblica officinalis Gaertn. Euphorbiaceae 

Zinbyun Dillenia pentagyna Roxb. Dilleniaceae 
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Appendix 2 

List of species found inside 10m x 10m plots of South Zarmani Reserved Forest 

Myanmar Names Botanical Names Family Names 

Aukchinsa Amoora wallichii King Meliaceae 

Bamaw Elaeocarpus wallichii Kurz Elaeocarpaceae 

Bepya Cratoxylum neriifolium Kurz Hypericaceae 

Binga 
Mitragyna rotundifolia (Roxb.) 

Kuntze 
Rubiaceae 

Chinyoke Garuga pinnata Roxb. Burseraceae 

Danyin Abarema bigemina (L.) I.C.Nielsen Leguminosae 

Didu Bombax insigne Wall. Bombacaceae 

Gwe Spondias mangifera Willd. Anacardiaceae 

Gyo Schleichera oleosa (Lour) Oken. Sapindaceae 

Htamachauk Gomphostemma lucidum Wall.ex Benth.  Lamiaceae 

Htamasok Glochidion glaucifolium Muell. Arg. Euphorbiaceae 

Htaukshar Vitex canescens Kurz Lamiaceae 

Kabaung Strychnos nux-blanda A.W.Hill Loganiaceae 

Kalaw Gynocardia odorata R. Br. Achariaceae 

Kanazo Heritiera fomes Wall. Sterculiaceae 

Kanyin Dipterocarpus alatus Roxb. Dipterocarpaceae 

Kaunghmu Anisoptera curtisii Dyer ex King Dipterocarpaceae 

Kyetmauk Litchi chinensis Sonn. Sapindaceae 

Kyetyo Vitex limnifolia Wall. Verbenaceae 

Kyun Tectona grandis Linn.f. Verbenaceae 
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Myanmar Names Botanical Names Family Names 

Lein Terminalia pyrifolia Kurz Combretaceae 

Letkok Pterygota alata (Roxb.) R.Br. Sterculiaceae 

Madama Dalbergia ovata Grah. Fabaceae 

Magyipauk Gardenia sessiliflora Wall.ex C.B.Clarke Rubiaceae 

Mahlwa Markhamia stipulate Seeme.ex K. Bignoniaceae 

Mau Anthocephalus morindifolius Korth. Rubiaceae 

Mayanin Pittosporum napaulensis Rehder W. Pittosporaceae 

Myaukchaw Homolium tomentosum Benth. Flacourtiaceae 

Myaukngo Duabanga grandiflora Walp Lythraceae 

Myaya Microcos paniculata L. Malvaceae 

Nabe Lannea coromandelica (Houtt).Merr. Anacardiaceae 

Nage Pterospermum semisagittatum Buch-Ham. Sterculiaceae 

Ngahlaing bo Mallotus repandus Euphorbiaceae 

Ngu Cassia fistula L. Fabaceae 

Panga Terminalia chebula Retz. Combretaceae 

Phet-kyan Quercus lindleyana Wall. Fagaceae 

Phetthan Heterophragma adenophyllum Wall Bignoniaceae 

Phetwun Berrya mollis Wall.ex Kurz Tiliaceae 

Pokethinma Derris robusta (Roxb. ex DC.) Benth. Fabaceae 

Pyinkado Xylia xylocarpa (Roxb.) Toub. Mimosaceae 

Pyinma Lagerstroemia speciose (L.) Pers. Lythraceae 

Sawbya Sterculia campanulata Wall. Sterculiaceae 

Seikchi Bridelia retusa (L.) A.Juss. Euphorbiaceae 
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Myanmar Names Botanical Names Family Names 

Sit Albizzia procera (Roxb.) Benth. Mimosaceae 

Taukkyant Terminalia crenulata (Heyne) Roth Combretaceae 

Taung-gangaw Mesua nervosa Guttiferae 

Taunggyi Barringtonia racemose (L.) Spreng Barringtoniaceae 

Taung-khaya Dialium indum Noronh. Leguminosae 

Taung-mayo Alstonia scholaris R.Br. Apocynaceae 

Taung-nage Pterospermum lanceifolium Roxb. Sterculiaceae 

Taung-ohnshit Arenga saccharifera Labill. Arecaceae 

Taung-phetwun Pterospermum acerifolium Willd Sterculiaceae 

Taung-thayet Mangifera caloneura Kurz Anacardiaceae 

Taw-shaut Citrus medica L. Rutaceae 

Thabye Syzygium tetragonum (L.) Skeels. Myrtaceae 

Thadi Protium serratum Engl. Burseraceae 

Thakhut Dolichandrone serrulata Seem. Bignoniaceae 

Thakhutpo Stereospermum fimbriatum DC. Bignoniaceae 

Thande Stereospermum colais Mabb. Bignoniaceae 

Thanzat Albizia lucidior Nielsen Mimosaceae 

Thaputgyi Miliusa velutina Hool.f.&Thomson Annonaceae 

Thayingyi Croton roxburghianus N.P.Balakr Euphorbiaceae 

Thinwin Millettia pendula Benth. Fabaceae 

Thitkala Pentace griffithii King Tiliaceae 

Thitpagan Millettia brandisiana Kurz Fabaceae 

Thitpyu Wendlandia glabrata DC Rubiaceae 
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Myanmar Names Botanical Names Family Names 

Thitsat Beilschmiedia roxburghiana Wall. Lauraceae 

Thitseint Terminalia belerica Roxb. Combretaceae 

Yindaik Dalbergia cultrata Grah. Leguminosae 

Yinzat Dalbergia fusca Pierre Fabaceae 

Yon Anogeissus acuminata Wall. Combretaceae 

Zepyu Emblica officinalis Gaertn. Euphorbiaceae 

Zinbyun Dillenia pentagyna Roxb. Dilleniaceae 
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ABSTRACT IN KOREAN 

 

위성영상과 지상부 바이오매스 자료를 이용한  

미안마 방고 요마 지역의 열대림 지상부 바이오매스 추정 

 

최근 환경보존의 중요성에 대한 인식 증가에도 불구하열대우림의 

파괴로 인한 대기 중 이산화탄소배출은 중요한 문제이다. 특히, 

열대림의 지상부바이오매스(Above Ground Biomass, AGB)는 전지구적 

탄소저감의 중요한 역할을 한다. 따라서 변화하고 있는 열대림 

AGB의 정확한 측정이 중요하다. 미얀마의 산림보전의 일환으로 Bago 

Yoma 지역 Zarmani 보존림 남쪽에 100개의 실험구를 설치하여 

AGB를 측정 후, Landsat 8 Operrational Land Imager (OLI)와 측정값을 

이용 하여 추정한 값과 비교였다. 다중선형회귀분석(Multi Linear 

Regression, MLR)값과 주성분분석(Principal Component Analysis, PCA)은 

Landsat 위성 이미지와 분광 반사율(spectral reflectance), 고도를 입력 

변수로 이용하여 AGB 추정을 위하여 개발하였다. MLR은 r2 = 0.43, 

RMSE (Root Mean Square Error) = 60.2 tons ha-1 로 RMSE = 70.1%, Bias = 

-9.1 tons ha-1, Bias (%) = -10.6%를 나타냈고, 반면 PCA는 r2 = 0.45, RMSE 
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=  55.1 tons ha-1, RMSE = 64.1%, Bias = -8.3 tons ha-1, Bias (%) = -9.7%, p < 

0.0001 을 나타내었다.  실험대상지의 AGB 지도는 MLR과 PCA를 

이용하여 생성하었다. AGB의 예상 추정값은 74.74 ± 22.3 tons ha-1, 73.04 

± 17.6 tons ha-1 으로 실험지의 총 AGB는 MLR과 PCA에서 각각 약 

5.7만 톤, 5.6만 톤 으로 각각 나타났다. 본 연구는 미얀마의 Bago 

Yoma 지역 Zarmani 보존림 남쪽 지역을 대상으로 Landsat 8 OLI 

이미지와 실측자료를 이용하여 AGB 추정 회귀모델을 생성하였고, 이 

모델을 이용한 AGB 추정은 2%이내로 가능하다.  

 

 

주요어: 지상부 바이오매스, Landsat 8 OLI, 다중선형회귀분석(MLR), 주

성분분석(PCA), 열대 활엽수림 

학 번: 2013-23876  
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