저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

- 귀하는 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건을 명확하게 나타내야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(\textit{Legal Code})을 이해하기 쉽게 요약한 것입니다.

\textit{Disclaimer}
A study on the direct dehydrogenation of n-butane over Pt/Sn/Al₂O₃ catalyst: Effect of promoter
요 약

본 연구에서는 노르말-부탄의 직접 탈수소화 공정을 통해 노르말-부텐 및 1,3-부타디엔을 제조하기 위한 촉매 연구를 수행하였다. 먼저 기본 촉매로 Pt/Sn/Al₂O₃ 촉매를 선정하였고, 비활성화를 억제하고 활성을 증가시키기 위해 다양한 조축매를 탐색하였다. 먼저, 담체의 산점을 조절하기 위하여 알칼리 금속을 조축매로 도입한 Pt/Sn/M/Al₂O₃ (M=Li, Na, K, Rb) 촉매를 순차적 함침법으로 제조하였으며, 상기 촉매의 알칼리 금속의 도입이 촉매의 반응 활성에 미치는 영향을 조사하였다. XRD, ICP-AES 및 XPS 분석을 통하여 촉매가 성공적으로 제조된 것을 확인하였으며, 촉매의 산특성이 반응 활성에 미치는 영향을 살펴보기 위하여 암모니아 농담탈착실험을 수행하였다. 그 결과, Pt/Sn/M/Al₂O₃ (M=Li, Na, K, Rb) 촉매의 산량이 감소함에 따라 코크 형성이 감소하고 부텐 및 1,3-부타디엔의 생성량이 증가하는 경향을 보였다. 또한, 활성금속의 활성중전을 위하여 알칼리 금속외에 다양한 전이 금속을 조축매로 도입한 Pt/Sn/M/Al₂O₃ (M=Zn, In, Y, Bi, Ga) 촉매를 순차적 함침법을 이용하여 제조하였고, 직접 탈수소화 반응에 적용하였다. 상기 촉매는 XRD, ICP-AES 및 XPS 분석을 통하여 촉매가 성공적으로 제조된 것을 확인하였다. 또한 금속-담체간 상호작용을 알아보기 위하여 승온환원 분석을 수행하였고, 활성금속의 분산도와 활성금속의 표면적을 확인하기 위하여 수소 화학흡착 분석을 수행하였다. 그 결과, 상기 촉매의 경우 금속-담체간 상호작용이
강할수록 활성금속 입자크기가 감소하며, 담체 내에 고루 분산되어 촉매의 활성이 증가하고 부텐 및 1,3-부타디엔의 생성량 또한 증가하는 경향을 보였다. 따라서 상기 실험 결과로부터, 촉매의 금속-담체간 상호작용 및 활성금속의 표면적과 반응 활성 사이의 상관관계를 규명하였으며 본 반응에 적합한 촉매 시스템을 확립하였다. 또한 조촉매로서 검토한 다양한 금속들 중, Zn 금속을 조촉매로 도입하였을 때 촉매 활성이 가장 우수함을 확인하였다.

다음으로, 탐색한 조촉매 중 가장 활성이 우수하였던 Pt/Sn/Zn/Al₂O₃ 촉매에서 Zn의 함량 변화가 노르말-부탄의 직접 탈수소화 반응에서의 촉매 활성에 미치는 영향을 알아보기 위해 Pt/Sn/XZn/Al₂O₃ (X=0, 0.25, 0.5, 0.75, 1.0) 촉매를 순차적 합합법을 통하여 제조하였다. XRD, ICP-AES 및 XPS 분석을 통하여 촉매가 성공적으로 제조된 것을 확인하였다. 또한 금속-담체간 상호작용을 알아보기 위하여 중온환원 분석을 수행하였고, 활성금속의 분산도와 활성금속의 표면적을 확인하기 위하여 수소 화학흡착 분석을 수행하였다. 그 결과, 금속-담체간 상호작용과 활성금속의 분산도 및 표면적이 노르말-부탄의 직접 탈수소화 반응에 있어서의 반응 활성을 결정하는 중요한 인자로서 작용함을 다시 확인하였다. 제조된 촉매들 중에서 가장 큰 활성금속 표면적을 가진 Pt/Sn/0.5Zn/Al₂O₃ 촉매가 노르말-부탄의 직접 탈수소화 반응에서 가장 높은 촉매활성을 보였다.

주요어 : 백금-주석 촉매, 노르말-부탄, 직접 탈수소화, 부텐, 1,3-부타디엔
학번 : 2012-23267
목 차

1. 서 론 .. 1

2. 이론 및 배경 .. 4

 2.1. 노르말-부탄 및 1,3-부타디엔 제조 공정 .. 4
 2.2. 탈수소화 반응 촉매 및 공정 ... 10
 2.3. 직접 탈수소화 반응 ... 14

3. 실험 .. 20

 3.1. 촉매 제조 ... 20
 3.1.1. 시약 .. 20
 3.1.2. Pt/Sn/\(\text{M}/\text{Al}_2\text{O}_3\) (\(\text{M}=\text{Li, Na, K, Rb}\)) 촉매의 제조 .. 20
 3.1.3. Pt/Sn/\(\text{M}/\text{Al}_2\text{O}_3\) (\(\text{M}=\text{Zn, In, Y, Bi, Ga}\)) 촉매의 제조 .. 21
 3.1.4. Pt/Sn/XZn/\text{Al}_2\text{O}_3 (X=0, 0.25, 0.5, 0.75, 1.0) 촉매의 제조 22
 3.2. 촉매 특성 분석 .. 23
 3.2.1. XRD (X-Ray Diffraction) ... 23
 3.2.2. ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectroscopy) .. 23
 3.2.3. \(\text{N}_2\) adsorption-desorption measurement ... 23
 3.2.4. \(\text{H}_2\) Chemisorption .. 24
 3.2.5. \(\text{NH}_3\)-TPD (Temperature Programmed Desorption) 24
 3.2.6. CHNS .. 25
 3.2.7. TPR (Temperature Programmed Reduction) .. 25
 3.2.8. XPS (X-ray Photoelectron Spectroscopy) ... 26
 3.3. 노르말-부탄의 직접 탈수소화 반응 .. 27
 3.3.1. 직접 탈수소화 반응 시스템 ... 27
3.3.2. 촉매를 통한 직접 탈수소화 반응의 구성 ... 28

4. 실험 결과 및 고찰 ... 33

4.1. Pt/Sn/M/Al₂O₃ (M=Li, Na, K, Rb) 촉매를 통한 노르말-부탄의 직접 탈수소화 반응 .. 33
 4.1.1. Pt/Sn/M/Al₂O₃ (M=Li, Na, K, Rb) 촉매의 제조 및 결정 구조 확인 .. 33
 4.1.2. 노르말-부탄의 직접 탈수소화 반응 활성 ... 34
 4.1.3. 촉매의 전화 특성과 반응 활성 사이의 상관관계 34

4.2. Pt/Sn/M/Al₂O₃ (M=Zn, In, Y, Bi, Ga) 촉매를 통한 노르مال-부탄의 직접 탈수소화 반응 .. 45
 4.2.1. Pt/Sn/M/Al₂O₃ (M=Zn, In, Y, Bi, Ga) 촉매의 제조 및 결정 구조 확인 .. 45
 4.2.2. 노르말-부탄의 직접 탈수소화 반응 활성 ... 46
 4.2.3. 촉매의 금속-담체간 상호작용 및 환원 특성과 반응 활성 사이의 상관관계 .. 47
 4.2.4. 촉매 활성금속의 분산도 및 표면적과 반응 활성 사이의 상관관계 .. 49
 4.2.5. 환원된 촉매의 전자적 특성 ... 50
 4.2.6. 촉매의 환원 특성 및 활성금속의 특성과 반응 활성 사이의 상관관계 .. 51

4.3. Pt/Sn/XZn/Al₂O₃ (X=0, 0.25, 0.5, 0.75, 1.0) 촉매를 통한 노르말-부탄의 직접 탈수소화 반응 .. 63
 4.3.1. Pt/Sn/XZn/Al₂O₃ (X=0, 0.25, 0.5, 0.75, 1.0) 촉매의 제조 및 결정 구조 확인 .. 63
 4.3.2. 노르말-부탄의 직접 탈수소화 반응 활성 ... 64
 4.3.3. 촉매의 금속-담체간 상호작용 및 환원 특성과 반응 활성 사이의 상관관계 .. 65
 4.3.4. 촉매 활성금속의 분산도 및 표면적과 반응 활성 사이의 상관관계
4.3.5. 환원된 촉매의 전자적 특성 ... 67
4.3.6. 촉매의 환원 특성 및 활성금속의 특성과 반응 활성 사이의
 상관관계 .. 69

5. 결론 ... 78

참고문헌 ... 81

Abstract ... 87
List of Figures

Fig. 2.1.1. Scheme for the naphta cracking process .. 9
Fig. 2.1.2. Direct dehydrogenation of n-butane ... 9
Fig. 2.3.1. Equilibrium constants for n-paraffin dehydrogenation at 500 °C 9
Fig. 2.3.2. Temperature required to achieve 10 and 40 % conversion of C2-C15 n-paraffins at 1 atm. .. 9
Fig. 2.3.3. Reaction by platinum and acid sites in light paraffin dehydrogenation with unmodified catalyst .. 22
Fig. 3.3.1. Scheme for the direct dehydrogenation reactor system 30
Fig. 4.1.1. XRD patterns of reduced Pt/Sn/M/Al2O3 (M=Li, Na, K, Rb) catalysts 37
Fig. 4.1.2. Catalytic performance of Pt/Sn/M/Al2O3 (M=Li, Na, K, Rb) catalysts in the direct dehydrogenation of n-butane at 550 °C ... 39
Fig. 4.1.3. Selectivity for TDP with time on stream over Pt/Sn/M/Al2O3 (M=Li, Na, K, Rb) catalysts in the direct dehydrogenation of n-butane .. 40
Fig. 4.1.4. NH3-TPD profiles of Pt/Sn/M/Al2O3 (M=Li, Na, K, Rb) catalysts in the direct dehydrogenation of n-butane ... 41
Fig. 4.1.5. A correlation between acidity and yield for TDP after a 360 min-reaction 43
Fig. 4.2.1. XRD patterns of reduced Pt/Sn/M/Al2O3 (M=Zn, In, Y, Bi, Ga) catalysts 48
Fig. 4.2.2. Catalytic performance with time on stream over Pt/Sn/M/Al2O3 (M = Zn, In, Y, Bi, Ga) catalysts in the direct dehydrogenation of n-butane 50
Fig. 4.2.3. Catalytic performance of Pt/Sn/M/Al2O3 (M = Zn, In, Y, Bi, Ga) catalysts in the direct dehydrogenation of n-butane after a 360 min-reaction 51
Fig. 4.2.4. TPR profiles of Pt/Sn/M/Al2O3 (M = Zn, In, Y, Bi, Ga) catalysts 52
Fig. 4.2.5. XPS spectra of Sn 3d5/2 of reduced Pt/Sn/M/Al2O3 (M = Zn, In, Y, Bi, Ga) catalysts ... 53
Fig. 4.2.6. Correlations between yield for TDP after a 360 min-reaction and TPR peak temperature, and between yield for TDP after a 360 min-reaction and Pt surface area .. 54
Fig. 4.3.1. XRD patterns of reduced Pt/Sn/XZn/Al2O3 (X = 0, 0.25, 0.5, 0.75, 1.0) catalysts ... 58
Fig. 4.3.2. Catalytic performance of Pt/Sn/XZn/Al₂O₃ (X = 0, 0.25, 0.5, 0.75, 1.0) catalysts in the direct dehydrogenation of n-butane.......................... 65

Fig. 4.3.3. TPR profiles of Pt/Sn/XZn/Al₂O₃ (X = 0, 0.25, 0.5, 0.75, 1.0) catalysts.... 67

Fig. 4.3.4. XPS spectra of Zn 2p₃/₂ level of reduced Pt/Sn/XZn/Al₂O₃ (X = 0, 0.25, 0.5, 0.75, 1.0) catalysts. ... 68

Fig. 4.3.5. Correlations between yield for TDP after a 360 min-reaction and TPR peak temperature and between yield for TDP after a 360 min-reaction and Pt surface area. .. 69
List of Tables

Table 2.1.1. C-H binding energy of hydrocarbon .. 10
Table 2.2.1. Oleflex process performance ... 10
Table 3.3.1. Components and composition of C4 mixture .. 31
Table 4.1.1. Atomic ratios and BET surface areas of Pt/Sn/M/Al₂O₃ (M=Li, Na, K, Rb) catalysts ... 38
Table 4.1.2. Acidity of Pt/Sn/M/Al₂O₃ (M=Li, Na, K, Rb) catalysts 38
Table 4.1.3. Carbon deposition of Pt/Sn/M/Al₂O₃ (M=Li, Na, K, Rb) catalysts after a 360 min-reaction ... 38
Table 4.2.1. Atomic ratios and BET surface areas of Pt/Sn/M/Al₂O₃ (M=Zn, In, Y, Bi, Ga) catalysts ... 38
Table 4.2.2. Catalytic performance of Pt/Sn/Al₂O₃ and Pt/Sn/M/Al₂O₃ (M = Zn, In, Y, Bi, Ga) catalysts in the direct dehydrogenation of n-butane after a 60-min reaction and a 360 min-reaction .. 49
Table 4.2.3. Hydrogen chemisorption results for reduced Pt/Sn/M/Al₂O₃ (M = Zn, In, Y, Bi, Ga) catalysts ... 38
Table 4.2.4. Binding energies of Pt 4f7/2 and Sn 3d5/2 and surface atomic ratio of Pt/Sn/M/Al₂O₃ (M = Zn, In, Y, Bi, Ga) catalysts .. 38
Table 4.3.1. Atomic ratios and BET surface areas of Pt/Sn/XZn/Al₂O₃ (X = 0, 0.25, 0.5, 0.75, 1.0) catalysts ... 59
Table 4.3.2. Hydrogen chemisorption results for reduced Pt/Sn/XZn/Al₂O₃ (X = 0, 0.25, 0.5, 0.75, 1.0) catalysts ... 66
Table 4.3.3. Binding energies of Pt 4f7/2, Sn 3d5/2, and Zn 2p3/2 of Pt/Sn/XZn/Al₂O₃ (X = 0, 0.25, 0.5, 0.75, and 1.0) catalysts ... 66
1. 서 론

석유화학산업 중 에틸렌, 프로필렌 및 부타디엔 등의 경질 올레핀 제조산업은 국가적인 기간산업으로서, 전 세계적으로 수요가 급증하는 고분자 제품인 PE, PP, SBR, BR, ABS, SBL 등의 제품을 생산하기 위한 기초 원료인 경질 올레핀의 생산 및 확보가 매우 시급하다 [1-4]. 이 중 에틸렌과 프로필렌은 폴리에틸렌 (Polyethylene), 폴리프로필렌 (Polypropylene)을 제조하기 위한 원료로서 사용되며, 부탄은 알킬레이트 (Alkylate), 폴리부탄을 제조하기 위한 단량체. 선험방식폴리에틸렌 (LDPE)등의 합성수지를 제조하는데 있어서 공중합을 위한 단량체로 사용되고 있고, 부타디엔은 스타이렌-부타디엔 고무(SBR), 폴리부타디엔 고무(BR), 아크로니트릴-부타디엔 고무(ABS) 등 합성 고무의 원료가 되는 매우 중요한 기초 유분이다 [5].

현재, C4 올레핀은 에틸렌이나 프로필렌에 비해 원료확보가 어렵고 확실한 공급원이 없어서 장기적인 수급 불균형이 우려되는 상황이며, 가격적인 측면에서도 에틸렌이나 프로필렌에 비해 상대적인 강세가 지속될 것으로 보인다. 이와 같은 이유는 중국과 인도 등 신호국의 타이어 생산급증과 동유럽 자동차 수입증가로 부타디엔의 주요 수요처인 합성고무의 수수가 증가된 것으로 보이고, 전 세계적으로 셰일가스 (Shale gas)의 폭발적 성장에 따라 에탄 크레커 설비확대로 C4 올레핀 (부탄, 부타디엔) 생산
비중이 더욱 줄어들 것으로 보이기 때문이다. 또한, 에틸렌과 프로필렌과 달리 부탄과 부타디엔은 새로운 루트의 생산방법이 제한되어 있기 때문이다.

노르말-부탄 및 1,3-부타디엔을 제조하는 공정에는 남사 크레킹 공정과 노르말-부탄의 산화적 탈수소화 공정, 노르말-부탄의 직접 탈수소화 공정이 있으며, 노르말-부탄 및 1,3-부타디엔 생산량의 대부분이 남사 크레킹 공정에 의해서 얻어지는데, 남사 크레킹 공정은 최근의 급격하게 변화하는 시장상황에 대처할 수 없어, 노르말-부탄 및 1,3-부타디엔을 확보하기 위한 기술로서 노르말-부탄의 직접 탈수소화 반응이 많은 관심을 받고 있다 [6, 7]. 상기 반응을 위한 촉매로는 크로미아-알루미나 계열 촉매, 백금 계열 촉매, 바나데이트 계열 촉매 등 다양한 금속 및 금속 산화물을 통한 촉매 공정이 연구되고 있으며, 그 중에서도 백금 계열 촉매는 높은 활성으로 인해 상기 노르말-부탄의 직접 탈수소화 반응에 의해 노르말-부탄 및 1,3-부타디엔을 제조할 수 있는 촉매로 적합한 것으로 알려져 있다 [8].

그러나 노르말-부탄의 직접 탈수소화 반응에 적응되는 백금 계열 촉매에 대한 지속적인 연구에도 불구하고, 백금 계열 촉매를 통한 직접 탈수소화 반응의 기제는 아직 명확하게 밝혀지지 않고 있다. 또한 노르말-부탄의 직접 탈수소화 반응에서 생성되는 노르말-부탄 및 1,3-부타디엔의 선택도 저하 및 백금 계열 촉매의 비활성화 문제 등이 해결해야할 과제로 남아있다 [9-12]. 따라서 조류를 도입한 백금 계열 촉매들의 제조, 특성분석 및 반응성 탐색에 대한 체계적인 연구를 통해 촉매의 반응 기제에 대한 근본적인 접근
및 반응 기제 이해에 의한 반응성 향상 등의 효과를 얻을 수 있을 것으로 판단된다 [13-15].

이에 본 연구에서는 다양한 조촉매를 도입한 백금-주석 계열 촉매를 제조하고, 노르مال-부탄의 직접 탈수소화 반응에 적용해보았다. 또한 촉매의 활성 금속에 대한 관찰 및 직접 탈수소화 반응 활성과의 상관관계 탐구를 통해 촉매의 반응 기제를 이해하고자 한다.
2. 이론 및 배경

2.1. 노르말-부텐 및 1,3-부타디엔 제조 공정

노르말-부텐 및 1,3-부타디엔은 무색, 무취의 가연성 기체로 압력을 가하면 쉽게 액화되며, 또한 인화되기 쉬운 물질이다. 노르말-부텐 중 1-부텐은 플라스테일렌 제조를 위한 공단량체로 주로 사용되며, 1-부텐 뿐 아니라 2-부텐은 알킬레이트 등의 원료로 이용된다. 1,3-부타디엔의 경우에는 스타이렌-부타디엔 고무 (SBR), 폴리부타디엔 고무 (BR), 아크릴로니트릴-부타디엔-스타이렌 고무 (ABS) 등 합성고무의 원료가 되는 매우 중요한 기초 유분이다 [16]. 노르말-부텐과 1,3-부타디엔을 제조하는 방법에는 크게 남사 크래킹, 노르말-부탄의 산화적 탈수소화 반응, 노르말-부탄의 직접 탈수소화 반응이 있다. 이 중 남사 크래킹 공정을 이용하여 노르말-부텐 및 1,3-부타디엔을 생산하는 것이 가장 일반적인 방법이다 [17]. 남사 크래킹은 원유의 상압 중류장치에서 얻은 가수전 유분의 남사를 750~850 ℃에서 열분해하여 석유화학제품의 기초 원료를 생산하는 반응으로, 긴 반응관에 남사와 수중기를 넣고 관의 바깥쪽을 가스버너로 가열하여 흡열 반응열을 공급하는 고정층 반응법과 가열한 고체 입자모양의 열매체를 유동상태에서 접촉시키면서 남사를 분해하고 열매체 위에 침착한 카본을 연소・재생시키면서 반응열을 공급하는 유동층 반응법이 있다. 남사 크래킹 설비로부터 노르말-
부텐과 1,3-부타디엔 등을 포함한 유용한 기초 유분의 선택적 추출 과정을 Figure 2.1.1에 도식화하여 나타내었다. Figure 2.1.1과 같이 나프타 크레킹 설비로부터 C2, C3, C5+ 물질들을 분리하고 난 이후의 C4 유분으로부터 그 가치와 분리 공정의 이점에 따라 1,3-부터디엔, 이소부틸렌, 1-부텐 등의 순서로 얻어지고 있다. 하지만, 나프타 크레킹 설비는 에틸렌, 프로필렌 등의 기초유분 생산을 주목적으로 하여, C4 을레핀의 수요에 최적화 할 수 없고 에틸렌, 프로필렌 등의 수요에 맞추어 가동된다. 진술한 바와 같이, 나프타 크레킹 공정은 C4 을레핀을 생산하기 위한 단독 공정이 아니며, 이에 따라 나프타 크레킹 설비를 무작정 신·증설하여 C4 을레핀 생산 확대를 기대하는 것은 어렵고, 나프타 크레킹 설비가 증설되더라도 C4 을레핀 이외에 다른 기초유분이 얕여로 생산되는 문제점을 지니고 있다. 이처럼, 현재의 나프타 크레킹 공정에 의한 C4 을레핀 제조방법은 에너지 집중형 공정일 뿐만 아니라, C4 을레핀 자체 수요에 따라 생산 공정을 최적화할 수 없기 때문에 C4 을레핀 제조를 위한 공정으로서 근본적인 방법이 되지 못한다. 또한 이러한 열분해 방식은 하기 Table 2.1.1에 나타낸 바와 같이, 경질 알칸 자체가 갖고 있는 강한 C-H 결합에너지 때문에 활성화가 매우 힘들고, 700~850℃의 높은 반응온도와 에너지 소모를 필요로 하며, 알려진 반응의 열역학적 평형 제약 때문에 60~65%의 비교적 낮은 알칸 전환율로 운전되고 있다. 따라서 나프타 크레킹을 통하지 않는 C4 을레핀의 생산기술에 대한 연구가 다양하게 요구되었고, 저렴한 노르말-부탄으로부터 수소를 빼어내어
C4 옐레핀을 얻는 탈수소화 반응이 최근의 시장변화에 빠르게 대처할 수 있는 C4 옐레핀 생산을 위한 단독 공정으로서 주목을 받고 있으며, 현재 관련 연구가 활발히 진행되고 있는 중이다.

노르말-부탄의 탈수소화 반응은 노르말-부탄으로부터 수소를 제거하여 C4 옐레핀을 생성하는 것으로, 노르말-부탄으로부터 직접 수소를 제거하는 직접 탈수소화 반응과 단소를 이용하여 노르말-부탄으로부터 수소를 제거하는 산화적 탈수소화 반응 두 가지로 나눌 수 있는데, 노르말-부탄의 산화적 탈수소화 반응은 발열반응이고 반응 후 안정한 물이 생성되기 때문에 열역학적으로 유리하지만, 산소의 사용으로 인해 산화반응을 통한 일산화탄소 및 이산화탄소 등의 부산물이 생성되며, 노르말-부탄의 직접 탈수소화 반응보다 선택도 및 수율 측면에서 불리하다.

반면에 노르말-부탄의 직접 탈수소화 반응은 Figure 2.1.2과 같이 흡열반응으로써 산화적 탈수소화 반응보다 고온의 반응조건이 요구되고 백금과 같은 귀금속 촉매가 사용되며, 촉매는 그 수명이 매우 짧은 경우가 많아 재생공정을 수행해주어야 하는 단점이 존재하지만, C4 옐레핀의 선택도 및 수율 등의 생성 측면에서는 유리한 공정으로 알려져 있다.

따라서 노르말-부탄의 직접 탈수소화 반응 공정은 나프타 크레킹 설비와는 달리 단독 공정에 의해 C4 옐레핀을 생산할 수 있고, 적합한 고효율의 촉매 공정이 개발될 경우, 이 공정은 에너지를 절감할 수 있을 뿐만 아니라 단독으로 C4 옐레핀을 생산할 수 있는 효과적인 대안이 될 수 있다.
Fig. 2.1.1. Scheme for the naphta cracking process.
Table 2.1.1. C-H binding energy of hydrocarbon

<table>
<thead>
<tr>
<th>Hydrocarbon</th>
<th>C-H binding energy (kJ/mol)</th>
<th>Atomic charge on H</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₄</td>
<td>440</td>
<td>+0.087</td>
</tr>
<tr>
<td>C₂H₆</td>
<td>420</td>
<td>+0.002</td>
</tr>
<tr>
<td>C₃H₈</td>
<td>401</td>
<td>-0.051</td>
</tr>
<tr>
<td>iso-C₄H₁₀</td>
<td>390</td>
<td>-0.088</td>
</tr>
</tbody>
</table>
CH₂=CHCH₂CH₃
CH₃CH=CHCH₃
(노르말-부텐)
+ H₂
CH₂=CHCH₂CH₃
CH₃CH=CHCH₃
(노르말-부탄)

or

CH₂=CHCH=CH₂
(1,3-부타디엔)

Fig. 2.1.2. Direct dehydrogenation of n-butane.
2.2. 탈수소화 반응 촉매 및 공정

노르말·부탄을 포함한 경질 과라핀의 탈수소화 반응에 사용되는 주요 촉매는 수소에 의해 산화·환원되기 어려운 금속 산화물인 크로미아-알루미나 촉매와 백금을 포함한 귀금속 촉매로 크게 구분할 수 있다. 크로미아-알루미나 계열 촉매는 제 2 차 세계 대전 중 연료의 옥탄가를 높이기 위한 옥탄을 생산하는 과정 중에 사용되어 부탄으로부터 부텐을 제조한 공정이 개발된 것을 시초로, 다양한 연구가 진행되었다 [18]. 크로미아-알루미나 계열 촉매를 사용한 대표적인 공정으로는 노르말-부탄으로부터 노르말-부텐 생산을 목적으로 하는 Houdry process 와 이 Houdry process 를 바탕으로 개발되어 노르말-부탄으로부터 1,3-부타디엔을 생산하는 것을 목적으로 하는 UCI-ABB Lummus Crest 의 Catadien™ process 가 대표적이다. 또한 담체인 알루미나 대신 지르코늄이 연구되었으며, 지르코늄을 담체로 하였을 경우, 알루미나에 비해 산량이 감소하고 열적 안정성이 증가되는 경향을 보였다. UCI-ABB Lummus Crest 사는 Chromia-Alumina 촉매를 사용하는 순환공정인 Catofin 공정을 개발하여 상업화하였고, 이를 초기에 부타디엔을 생산하는 공정으로 사용하다가 최근에는 프로판 및 부탄의 탈수소화 반응을 통한 프로필렌과 이소부틸렌의 생산 공정단위도도 활용하고 있다. 순환 공정으로 상용화된 다른 Process 에는 Phillips 의 STAR 공정을 들 수 있는데, 프로판 전환율은 30-40 %, 부탄 전환율은 45-55 %인 것으로 알려져 있으며, 이외에도 PACOL 공정,
Snamptogti-Yashintez의 FBD 공정 등이 노르말-부탄으로부터 노르말-부텐/1,3-부타디엔을 얻는 공정으로 전 세계적으로 사용되고 있다.

금속촉매의 경우, 금속을 총매로 사용하는 탈수소화 공정은 1960년대 말부터 개발되어 1970년대 초반 금속촉매 장치를 연속적으로 재생하여 공정 유닛의 shut down 없이 장시간 운전할 수 있는 탈수소화 반응 공정인 UOP의 Oleflex 공정을 개발하였으나, 현재는 프로필렌과 이소부틸렌 생산에 적용중이다. 구체적인 Oleflex 공정의 전환율 및 생성물 선택도는 아래 Table. 2.2.1과 같다.

Pt를 근간으로 한 총매의 경우 사용되는 지지체의 종류로는 Al₂O₃[19,20], 제올라이트[21], SBA-15[22], MgAl₂O₄, ZnAl₂O₄[23] 등이 있으며 증진제[24,25]로는 Sn, Zn, Ce, Ga, In, Ge 등이 사용되며 상호 조합에 따라 활성의 변화가 존재한다. 백금과 증진제 사이의 고유한 상호작용과 더불어 지지체와의 상호작용은 백금의 전자구조와 더불어 물리적인 입자크기와 결정구조를 달라지게 한다. 입체기하학적 효과로는 증진제 물질이 고온의 반응조건에서 백금입자의 소결현상을 막아주므로써 높은 분산도를 유지할 수 있는 역할을 하는 것으로 인식되고 있으며, 또한 백금의 입자크기를 작게 유지시켜 분산도를 증진시키므로써 탈수소화 반응에 대한 활성점의 양을 높여 주며 탄화수소의 수질분해반응을 저해하고 탄소침적을 억제함으로써 원하는 선택도를 증진시키고 총매의 안정성을 높여주는 역할을 한다. 증진제를 첨가함으로써 백금 자체가 가지고 있는 전자적 밀도를 변화시킬 수
있는 Pt-증진제 간의 합금을 형성함으로써 백금의 전자구조의 배치를 달라지게 하여 활성을 증진시키고 있다. 이러한 영향은 백금 및 증진제의 전구체 종류, 촉매 제조 방법에 대해 많은 영향을 미치게 된다. 또한, 반응물에 첨가되는 비활성 기체의 비율, 촉매의 비활성화를 억제하기 위하여 추가되는 수소의 양, 반응 온도등의 실험 변수 등을 원하는 알켄 화합물의 수율에 많은 영향을 미치게 된다.
Table 2.2.1. Oleflex process performance

<table>
<thead>
<tr>
<th>Feed</th>
<th>Conversion (%)</th>
<th>Selectivity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₃H₈</td>
<td>40</td>
<td>90</td>
</tr>
<tr>
<td>n-C₄H₁₀</td>
<td>50</td>
<td>85</td>
</tr>
<tr>
<td>iso-C₄H₁₀</td>
<td>50</td>
<td>92</td>
</tr>
</tbody>
</table>
2.3. 직접 탈수소화 반응

일반적인 파라핀의 탈수소화 반응은 � localVarle반응으로 진행되며, 아래와 같이 탈수소된 올레핀 화합물인 에틸렌, 프로필렌, 부텐 등의 생성물과 수소를 방출해 내는 부피가 증가하는 반응으로 진행된다. � localVarle반응이기 때문에, 반응 중에 온도 조절이 전체적인 올레핀 화합물 생산에 있어 중요 인자가 되며, 고온의 반응 조건으로 인하여 반응 중에 생성되는 탄소 침적으로 인해 촉매의 비활성화를 피할 수 있는 다양한 방법이 시도되고 있다.

Alkane ⇌ Olefin + Hydrogen

C-C 결합에너지 약 246 kJ/mol로 C-H 결합에너지 약 363 kJ/mol 보다 낮기 때문에 파라핀의 탈수소화 반응에 필요한 에너지는 크래킹 반응에 필요한 에너지보다 더 큰 에너지를 필요로 한다. 그러나 적절한 촉매 존재하에서 C-C 결합이 깨지지 않고 최대한 유지되면서 탈수소화 반응이 일어날 수 있다. 강한 C-H 결합은 옥사이드 형태의 촉매나 메탈 촉매를 통해 활성화될 수 있는데, 옥사이드는 C-H 결합보다 강한 O-H 결합을 형성하기 때문에 C-H 결합을 활성화시킬 수 있다. 하지만 메탈 촉매의 경우, M-H 결합은 C-H 결합보다 훨씬 약하기 때문에 탈수소화하는 것은 어렵다. 하지만 M-H 결합력과 M-C 결합력의 합은 C-H 결합력보다 크기 때문에 메탈 촉매에서 탈수소화 반응이 열역학적으로 가능해진다 [26].
파라핀의 탈수소화 반응에서 탄소 수가 증가할수록 반응의 평형상수는 상당히 증가한다. 에탄에서부터 펜타데칸에 이르는 파라핀의 탈수소화 반응의 평형 상수를 Fig. 2.3.1에 나타내었다. Fig. 2.3.2에는 위의 평형 상수를 기반으로 10-40 %의 평형 전환율을 얻기 위해 요구되어지는 반응 온도를 나타내었다. 예를 들어 부탄의 탈수소화 반응에서 40 %의 전환율을 얻기 위해서는 적어도 반응 온도는 약 550 ℃가 유지되어야 하며, 도데كان의 경우에는 동일한 전환율을 얻기 위하여 약 450 ℃ 정도의 반응 온도가 필요하다. 온도가 증가함수록, 평형전환율은 증가하지만, 부반응과 코크 형성반응 및 촉매 비활성화가 가속화된다. 따라서 shutdown없이 장시간동안 높은 수율로 올레핀을 생산할 수 있도록 하는 촉매개발이 필요하다.

촉매를 이용한 탈수소화 반응에서 주 반응경로는 반응물인 파라핀으로부터 모노 올레핀을 생성하는 반응이다. 이 외에도 연속적인 부반응들이 일어난다. Fig. 2.3.3에는 백금촉매를 이용한 탈수소화 반응에서 백금과 산점에서 일어날 수 있는 반응 경로들에 대해서 나타내었다. 파라핀으로부터 올레핀을 생성하는 반응은 주로 백금 사이트에 의해 촉진되고, 크래킹 반응 및 이성질화 반응 등은 산점에 의해 촉진되는 것을 확인할 수 있다.

탈수소화 촉매의 가장 큰 역할은 파라핀으로부터 올레핀을 생성하는 반응을 촉진하면서 다른 부반응들은 억제하는 것이다. 알루미나에 담긴 백금 촉매는 높은 활성을 가지지만, 탈수소화 생성반응에 대해 선택적으로

15
작용하지는 않는다. 따라서 Fig. 2.3.3에 나타나있는 다양한 부산물의 생성을 야기한다. 따라서 이러한 부반응을 억제하고 촉매 안정성을 증가시키기 위하여, 백금과 알루미나 담체의 성질을 변화시킬 필요가 있다.

백금과 올레핀의 결합력이 파라핀과의 결합력보다 강하기 때문에, 백금 사이트에서 올레핀의 반응이 파라핀의 반응보다 빠르게 일어난다. 백금 modifier의 역할은 백금-파라핀의 인력에는 영향을 주지 않으면서 선택적으로 백금-올레핀의 인력을 약하게 할 필요가 있다. 비소, 주석, 케르마늄, 납, 비스무스 등이 백금의 활용을 증가시키는 modifier로 잘 알려진 금속들이다. 또한 이러한 modifier를 통하여 부산물에 의한 fouling을 억제하여 촉매의 안정성을 증가시킬 수 있다.

백금은 높은 활성을 가지는 활성금속이며, 높은 표면적을 가지는 담체에 고무 분산되어진다면, 반응을 촉진하기 위하여 많은 양이 필요하지 않다. 크래킹 반응과 같은 부반응보다 탈수소화 반응을 선택적으로 수행하기 위하여 활성금속의 높은 분산이 요구된다. 또한 담체로는 알루미나가 전형적으로 사용되는데, 열적 안정성과 기계적 강도가 높을 뿐 아니라 높은 표면적 때문에 활성금속의 분산을 용이하게 하기 때문이다. 반면, 알루미나 담체는 부반응을 촉진시키고 코크 형성을 증가시키는 산점을 가지고 있어 산점 조절을 위하여 알칼리 금속 및 알칼리 토금속 등을 이용하여 그 단점을 보완할 수 있다.
Fig. 2.3.1. Equilibrium constants for n-paraffin dehydrogenation at 500 °C.
Fig. 2.3.2. Temperature required to achieve 10 and 40 % conversion of C2-C15 n-paraffins at 1 atm.
Fig. 2.3.3. Reaction by platinum and acid sites in light paraffin dehydrogenation with unmodified catalyst.
3. 실험

3.1. 촉매 제조

3.1.1. 시약

백금/주석/알루미나 촉매를 제조하기 위한 금속의 전구체로서 $H_2PtCl_6 \cdot 6H_2O$와 $SnCl_2 \cdot 2H_2O$를 사용하였고, 담체의 경우 alfa aesar사의 γ-Al$_2$O$_3$ (S_{BET}: 220 m2/g)를 사용하였다. 또한, 추가적으로 주석 외에 다른 금속을 증진제로 도입한 백금/주석/금속/알루미나 촉매를 제조하기 위하여 알칼리금속 및 전이금속의 전구체를 사용하였는데, 구체적으로는 LiNO$_3$, NaNO$_3$, KNO$_3$, RbNO$_3$, Zn(NO$_3$)$_2 \cdot 6H_2O$, In(NO$_3$)$_3 \cdot xH_2O$, Y(NO$_3$)$_3 \cdot 6H_2O$, Bi(NO$_3$)$_3 \cdot 5H_2O$, Ga(NO$_3$)$_3 \cdot xH_2O$를 사용하였다. 또한 촉매 제조시 필요한 염산 수용액 (35~37%)은 Samchun사의 시약 제품을 사용하였다.

3.1.2. Pt/Sn/M/Al$_2$O$_3$ (M=Li, Na, K, Rb) 촉매의 제조

백금/주석/알루미나 촉매는 추가적으로 알칼리 금속을 증진제로 도입함으로써 알루미나 탄체의 산점을 감소시키는 긍정적인 효과를 기대할 수 있다. 연속 함침법 (sequential impregnation method)을 통해 제조된 백금/주석/금속/알루미나 촉매의 제조 방법은 다음과 같다 [27].

우선 다양한 알칼리 금속의 전구체 (LiNO$_3$, NaNO$_3$, KNO$_3$, RbNO$_3$)를 각각
0.5 중량%가 되도록 정량하여 증류수에 용해시켜 금속 전구체 용액을 제조하였다. 제조한 금속 전구체 용액을 상용 알루미나 담체에 함침하였다. 얻어진 결과물을 80 ℃ 오븐에서 12 시간 건조한 후, 600 ℃에서 4시간 소성하여 금속/알루미나를 제조하였다. 다음으로 주석 전구체인 SnCl₂·2H₂O를 증류수와 1 M의 염산 용액의 혼합용액에 녹여 주석 전구체 용액을 제조하고, 이를 용액을 금속/알루미나에 함침하였다. 또한 80 ℃ 오븐에서 12 시간 건조한 후, 600 ℃에서 4시간 소성하여 주석/금속/알루미나를 제조하였다. 마지막으로 백금 전구체인 H₂PtCl₆·6H₂O을 증류수에 용해시켜 백금 전구체 용액을 제조하고, 백금 전구체 용액을 상기 제조한 방법으로 제조된 주석/금속/알루미나에 함침하였다. 얻어진 결과물을 80 ℃ 오븐에서 12 시간 건조한 후, 550 ℃에서 4시간 소성하여 최종적으로 백금/주석/금속/알루미나를 제조하였다. 상기에서 제조된 촉매는 Pt/Sn/M/Al₂O₃ (M=Li, Na, K, Rb)로 기재하였다.

3.1.3. Pt/Sn/M/Al₂O₃ (M=Zn, In, Y, Bi, Ga) 촉매의 제조

백금/주석/알루미나 촉매는 추가적으로 증진제를 도입할 경우 촉매 자체의 비활성화를 감소시키는 긍정적인 효과를 기대할 수 있다. 연속 함침법 (sequential impregnation method)을 통해 제조된 백금/주석/금속/알루미나 촉매의 제조 방법은 다음과 같다.

우선 다양한 전이금속의 전구체 (Zn(NO₃)₂·6H₂O, In(NO₃)₃·xH₂O,
Y(NO$_3$)$_3$·6H$_2$O, Bi(NO$_3$)$_3$·5H$_2$O, Ga(NO$_3$)$_3$·xH$_2$O를 각각 0.5 중량%가 되도록 정량하여 증류수에 용해시켜 금속 전구체 용액을 제조하였다. 제조한 금속 전구체 용액을 상용 알루미나 담체에 함침하였다. 얻어진 결과물을 80 ℃ 오븐에서 12 시간 건조한 후, 600 ℃에서 4 시간 소성하여 금속/알루미나를 제조하였다. 다음으로 주석 전구체인 SnCl$_2$·2H$_2$O를 증류수와 1 M의 염산 용액의 혼합용액에 녹여 주석 전구체 용액을 제조하고, 이 용액을 금속/알루미나에 함침하였다. 또한 80 ℃ 오븐에서 12 시간 건조한 후, 600 ℃에서 4시간 소성하여 주석/금속/알루미나를 제조하였다. 마지막으로 백금 전구체인 H$_2$PtCl$_6$·6H$_2$O을 증류수에 용해시켜 백금 전구체 용액을 제조하고, 백금 전구체 용액을 상기 제조한 방법으로 제조된 주석/금속/알루미나에 함침하였다. 얻어진 결과물을 80 ℃ 오븐에서 12 시간 건조한 후, 550 ℃에서 4 시간 소성하여 최종적으로 백금/주석/금속/알루미나를 제조하였다. 상기에서 제조된 촉매는 Pt/Sn/M/Al$_2$O$_3$ (M=Zn, In, Y, Bi, Ga)로 기재하였다.

3.1.4. Pt/Sn/XZn/Al$_2$O$_3$ (X=0, 0.25, 0.5, 0.75, 1.0) 촉매의 제조

상기 3.1.2에서 제조된 Pt/Sn/M/Al$_2$O$_3$ (M=Zn, In, Y, Bi, Ga) 촉매 중 반응 활성이 가장 우수한 Pt/Sn/Zn/Al$_2$O$_3$ 촉매를 선택하여 최적의 Zn 담지량을 확인하기 위하여 다음과 같이 촉매를 제조하였다. 아연 나이트레이트를 각각 0, 0.25, 0.5, 0.75, 1.0 중량%가 되도록 정량한 다음 증류수에 용해시켜 아연
전구체 용액을 제조하여 상용 알루미나 담체에 함침하였다. 다음은 3.1.2와 동일한 방식으로 주석과 백금 전구체를 각각 담지하여 최종적으로 다양한 함량의 야연이 도입된 Pt/Sn/XZn/Al₂O₃ (X=0, 0.25, 0.5, 0.75, 1.0) 촉매를 제조하였다.

3.2. 촉매 특성 분석

3.2.1. XRD (X-Ray Diffraction)

제조된 백금/주석/금속/알루미나 촉매의 결정성을 확인하고 결정 구조를 알아보기 위하여 XRD 분석을 수행하였다 (Rigaku, D-MAX2500-PC, Cu-Kα radiation (λ= 1.54056 Å), 50 kV and 100 mA).

3.2.2. ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectroscopy)

제조된 백금/주석/금속/알루미나 촉매의 화학적 조성을 확인하기 위하여 ICP-AES 분석을 수행하였다. (Shimadz, ICP-1000IV)

3.2.3. N₂ adsorption-desorption measurement

제조된 백금/주석/금속/알루미나 촉매의 표면적 및 기공 특성을 분석하기 위하여 질소 흡-탈착 실험을 수행하고, BET (Brunauer-Emmett-Teller) 방법을 적용하여 촉매의 표면적을 측정하였다. (Micrometics, ASAP-2010)
3.2.4. \(\text{H}_2 \) Chemisorption

제조된 백금/주석/금속/알루미나 축매의 활성금속인 백금의 분산도 및 백금의 비표면적을 확인하기 위하여 BELCAT (BEL Japan) 장치를 이용하여 수소 화학흡착 실험을 수행하였다. 분석 방법은 다음과 같다. 수소 화학흡착 실험 이전에, 각각의 축매 50 mg을 570 °C에서 3 시간 동안 수소(2.5 ml/min)와 알곤(47.5 ml/min)으로 이루어진 혼합가스를 흐려주면서 충분히 환원시켰다. 그 후에 알곤(50 ml/min)을 흐려주면서 축매를 50 °C까지 냉각시켰다. 5 mol% 수소와 95 mol% 알곤으로 구성된 화학가스를 자동밸브를 거쳐 환원된 시료에 주기적으로 주입하면서 수소흡착량을 측정하였다. 백금 분산도와 백금 비표면적은 백금원자 하나당 수소원자 하나가 화학흡착한다는 가정하에 계산하였다.

3.2.5. NH\(_3\)-TPD (Temperature Programmed Desorption)

제조된 백금/주석/금속/알루미나 축매의 산 특성을 조사하기 위하여 암모니아 승온탈착분석(NH\(_3\)-TPD)을 BELCAT(BEL Japan) 장치를 이용하여 수행하였다. 암모니아 승온탈착분석 이전에, 각각의 축매 50 mg을 570 ℃에서 3시간 동안 수소(2.5 ml/min)와 알곤(47.5 ml/min)으로 이루어진 혼합가스를 흐려주면서 충분히 환원시켰다. 환원과정을 거친 축매를 U자형 퀴즈 반응기에 투입한 후 축매 표면에 물리흡착되어 있는 유기물을 제거하기 위해 분당 50 ml의 헬륨을 흐려주면서 1 시간 동안 200 ℃에서 열처리하였다. 반응기를
50 ℃까지 냉각 한 후, 5.05 %의 암모니아를 포함한 헬륨기체를 30분 동안 분당 50 ml의 속도로 흘려주어, 촉매의 산점이 암모니아로 포화되도록 하였다. 이후 촉매의 산점에 화학흡착된 암모니아 외에 물리흡착된 암모니아를 제거하기 위해 반응기의 온도를 100 ℃에서 1시간 동안 유지하면서, 물리흡착된 암모니아를 제거하였다. 전처리가 끝난 반응기는 가열로 이용하여 상온에서부터 900 ℃까지 분당 5 ℃의 속도로 승온하여, 화학흡착된 암모니아가 탈착되도록 하였으며, 탈착된 암모니아를 TCD 검출기가 장착된 가스크로마토그래피장치를 이용하여 분석하였다.

3.2.6. CHNS

백금/주석/금속/알루미나 촉매의 반응 후 탄소 질적량을 분석하기 위해 LECO CHNS-932 장비를 이용하여 CHNS 원소분석을 수행하였다.

3.2.7. TPR (Temperature Programmed Reduction)

제조된 백금/주석/금속/알루미나 촉매의 금속-달체간 상호작용을 조사하기 위하여 이산화탄소 승온환원 분석(TPR)을 수행하였다. 분석 방법은 다음과 같다. 촉매 0.1 g을 U자형 퀴즈 반응기에 충전한 후 수소와 질소 기체를 각각 분당 2 ml, 20 ml의 유량으로 주입을 하면서, 승온 온도를 분당 5 ℃로 상온부터 900 ℃까지 TCD 검출기가 장착된 크로마토그래피 장치를 이용하여 온도에 따른 수소의 흡착량을 분석하였다.
3.2.8. XPS (X-ray Photoelectron Spectroscopy)

제조된 백금/주석/금속/알루미나 촉매들 내 각각의 금속 이온의 결합에너지지를 조사하기 위하여 X-선 광전자 분광분석(XPS) 실험이 수행되었다. 촉매 적당량을 유압기에 넣고 펠렛 형태로 만들어 XPS (Thermo VG, Sigma Probe) 분석을 수행하여 C 1s 이온의 결합 에너지 (284.5 eV)를 기준으로 촉매 내 각각 금속 이온의 결합에너지를 정리하였다.
3.3. 노르말-부탄의 직접 탈수소화 반응

3.3.1. 직접 탈수소화 반응 시스템

본 연구에서 사용된 노르말-부탄의 직접 합성 반응 시스템은 Fig. 3.3.1의 개략도와 같다. 그림에 나타낸 바와 같이, 직접 탈수소화 촉매 반응기는 기상 반응기로서 촉매가 고정된 고정층 반응기를 기상 반응물들이 통과하면서 반응이 일어나고, 생성물 및 미반응물들이 밸트로 빠져나가는 구조이다. 가스봄베로부터 나온 기체는 저항 유속 조절기를 통해, 고정된 유량으로 반응기로 들어간다. 노르말-부탄의 직접 탈수소화 반응은 해당 온도와 압력에서 반응물 및 생성물이 기체로 구성되어 있기 때문에, 본 연구실에서는 기상반응을 위하여, 노르말-부탄의 직접 탈수소화 반응을 위한 반응기로서 400~700℃ 온도에서도 견딜 수 있는 퀘츠 제질의 연속 흡착식 일차형 고정층 반응기를 선정하고, 고정층 반응기가 가열로 원에서 통과하도록 하여 반응온도를 유지하는 반응 시스템을 구성하였다. 반응기는 내경 8mm의 필터 위에 촉매가 충전되는 구조로서, 반응기에 유입된 기체들은 촉매를 통과하면서 반응하게 된다. 반응기는 촉매 반응을 위해 가열로에 의해서 충분히 가열되며, 반응이 끝난 후의 생성 기체 및 미반응물들은 밸트로 빠져나가게 된다. 노르말-부탄의 직접 탈수소화 반응이 수행되는 동안 반응물 기체 및 반응 후 혼합기체들은 스테인리스 제질의 라인을 통하여, 고정층 반응기와 컨덴서를 거쳐, 홈 후드로 배출되는 식으로 반응장치가
제작되었으며, 컨덴서 후단에 가스 분석을 위한 포집장치를 구성하여 혼합가스를 포집하도록 하였으며, 포집된 혼합가스는 FID (Flame Ionization Detector, CP-3380, Varian) 검출기가 장착된 가스크로마토그래프 장치를 통하여 분석되도록 하였다. 이들 성분들은 연소를 통해 태울 수 있는 성분들로 50 m 길이의 GS-alumina가 충전된 칼럼을 통해 분리하고, FID 검출기를 이용하여 분석하고, 반응 전후 변화량을 계산하였다. 노르말-부탄의 직접 탈수소화 반응 후 생성된 혼합가스에 포함되어 있는 물질은 미 반응물인 노르말-부탄, 주요 생성물인 노르말-부텐과 1,3-부타디엔, 이소-부탄과 이소-부텐과 같은 C4 물질, C4 물질들의 크래킹을 통해 생성되는 부산물인 메탄, 에탄, 에틸렌, 프로판, 프로필렌의 C1~C3 물질 등으로 구성된다.

3.3.2. 촉매를 통한 직접 탈수소화 반응의 구성

본 연구에서는 상기 3.3.1의 직접 탈수소화 촉매 반응 시스템을 이용하여 백금/주석/금속/알루미나 촉매를 사용하여 직접 탈수소화 반응을 수행하였다. 촉매반응을 위해 일자형 퀴즈 반응기에 촉매 분말을 고정시키고, 반응기를 가열로 안에 설치하여 촉매 온의 반응온도를 일정하게 유지한 후, 반응물이 반응기안의 촉매층을 연속적으로 통과하면서 반응이 진행되도록 하였다.

본 연구에서 노르말-부탄의 직접 탈수소화 반응에 필요한 반응물인 노르말-부탄, 환원기체인 수소, 계생에 필요한 공기, 캐리어 가스인 질소를 각각의 질량유속기를 통하여 노르말-부탄의 직접 탈수소화 반응을 수행하는데
사용될 수 있도록 설계하였다. 이때 탈수소화 반응을 위한 노르말-부탄의 반응물은 대부분 노르말-부탄으로 이루어진 혼합가스로서, 10 L의 용기에 3 kg의 노르말-부탄 혼합물이 액화증진되어 있는 봄배를 사용하여 반응을 수행하였다. 혼합기체로서 사용한 C4 혼합물은 99.65%의 노르말-부탄 및 0.35%의 기타 C4 화합물을 포함한다. 상기 소량의 기타 C4 화합물에는 이소부탄, 1-부텐, 2-부텐 등이 포함된다. 본 연구에서 사용한 C4 혼합물의 조성을 Table 3.3.1에 나타내었다. 본 연구실에서 직접 탈수소화 반응에 사용된 반응물로 사용된 C4 혼합물의 대부분은 노르말-부탄으로 이루어져 있으며, 99.65%의 높은 함량으로 나타나고 있기 때문에, 본 반응물을 사용하여 직접 탈수소화 반응을 수행하였을 때, 생성되는 모든 생성물은 노르말-부탄으로부터 전부 생성되는 것으로 간주하였다. 이에 따라 반응물로 사용한 C4 혼합물에서 노르말-부탄 외의 다른 물질들은 반응에 관여하지 않는 물질로 판단하여, 촉매를 통한 노르말-부탄의 직접 탈수소화 반응에의 활성을 계산할 때에 반응 전후 기타 물질들의 변화는 없는 것으로 처리하였다.

백금/주석/금속/알루미나 촉매를 통한 직접 탈수소화 반응을 진행시키기 위해서, 백금/주석/금속/알루미나 촉매를 반응물을 주입하기 전, 570 °C에서 수소:질소의 비율을 1:1로 흘려주면서 3 시간 동안 환원시켰다. 환원과정을 거친 후, 반응물을 주입하였으며, 반응물을 주입한 후의 반응온도는 550 °C를 유지하였다. 반응이 진행되는 동안, 노르말-부탄을 기준으로 공간속도 (GHSV: Gas Hourly Space Velocity)가 600 ml/h•g-cat이 되도록 하였으며, 반응물의 구성
비율은 노르مال-부탄을 기준으로 노르말-부탄:질소의 비율을 1:1로 설정하여 C4 혼합물과 캐리어 가스인 질소의 혼합 기체가 반응기로 주입되도록 하였다. 반응이 진행되는 동안, 반응의 결과를 확인하기 위해, 반응기 통과 후의 혼합기체를 일정한 간격으로 샘플링하여 가스 크로마토그래피를 이용하여 분석하였다. 노르مال-부탄의 직접 탈수소화 반응에서 노르말-부탄의 전환율, 탈수소화 생성물(노르مال-부텐, 1,3-부타디엔) 선택도는 탄소 밸런스에 기초한 다음의 식 1,2에 의해 계산하고, 탈수소화 생성물의 수율은 전환율과 선택도를 곱하여 구하였다.

<식 1>

\[
\text{Conversion of n-butane} = \frac{\text{moles of n-butane reacted}}{\text{moles of n-butane supplied}}
\]

<식 2>

\[
\text{Selectivity for TDP} = \frac{\text{moles of n-butene formed} + \text{moles of 1,3-butadiene formed}}{\text{moles of n-butane reacted}}
\]
Fig. 3.3.1. Scheme for the direct dehydrogenation reactor system.
Table 3.3.1. Components and composition of C4 mixture

<table>
<thead>
<tr>
<th>Components</th>
<th>Chemical Formula</th>
<th>Mol%</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-Butane</td>
<td>C₄H₁₀</td>
<td>99.65</td>
</tr>
<tr>
<td>Isobutene</td>
<td>C₄H₁₀</td>
<td>0.27</td>
</tr>
<tr>
<td>1-Butene</td>
<td>C₄H₈</td>
<td>0.03</td>
</tr>
<tr>
<td>cis-2-Butene</td>
<td>C₄H₈</td>
<td>0.05</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>
4. 실험 결과 및 고찰

4.1. Pt/Sn/M/Al₂O₃ (M=Li, Na, K, Rb) 촉매를 통한 노르مال-부탄의 직접 탈수소화 반응

4.1.1. Pt/Sn/M/Al₂O₃ (M=Li, Na, K, Rb) 촉매의 제조 및 결정 구조 확인

연속 합침법에 의해 제조된 Pt/Sn/M/Al₂O₃ (M=Li, Na, K, Rb) 촉매의 결정상을 알아보기 위해 환원된 촉매의 X-선 회절 분석을 수행하였으며 그 결과를 Fig. 4.1.1에 나타내었다. 그림에서 볼 수 있듯이, 감마-알루미나에 해당하는 특성 피크만 관찰되었으며, 백금, 주석 및 기타 금속에 관련된 특성 피크는 관찰되지 않았다 [28]. 각 금속에 해당하는 특성 피크가 관찰되지 않은 것은 각 금속이 고루 분산 되었거나, 각 금속의 함량이 매우 작기 때문이다 [29].

ICP 원소분석을 통해 관찰된 서로 다른 알칼리 금속을 중전체로 사용한 촉매들의 각 구성원소의 비율을 Table 4.1.1에 나타내었다. 모든 촉매에서 감마-알루미나 담체에 담가진 Pt의 중량%가 이론값 1에 가까운 0.98-1.03 정도의 Pt 중량% 값을 보였고, Sn의 경우에도 이론값 1에 가까운 Sn 중량% 값을 보였다. 또한 알칼리 금속의 경우에도 그 중량%가 이론값 0.5에 가까운 0.52-0.59 정도의 중량% 값을 보여 모든 촉매가 의도한 바대로 제조되었음을 확인할 수 있었다. Table 4.1.1에 5종의 Pt/Sn/M/Al₂O₃ 촉매의 BET 표면적을 확인한 결과를 보았다.
함께 표기하였다. 표면적 측정은 재현성 확인을 위해 여러 번 측정하여, 그 값들의 평균 값을 나타내었다. Pt/Sn/M/Al₂O₃ (M= Li, Na, K, Rb) 촉매의 표면적은 약 162-185 m²/g의 값을 가지며, 촉매 간 큰 차이는 발견하지 못하였으며, 반응활성도도 주목할 만한 상관관계를 보이지 않았다.

4.1.2. 노르말-부탄의 직접 탈수소화 반응 활성

제조된 Pt/Sn/M/Al₂O₃ (M= Li, Na, K, Rb) 촉매를 이용한 노르말-부탄의 직접 탈수소화 반응 활성 결과를 Fig. 4.1.2에 나타내었다. 또한 Fig. 4.1.3 에는 각 촉매를 노르말-부탄의 직접 탈수소화 반응에 적용시켰을 때 반응 시간에 따른 선택도의 변화를 나타내었다. 360분 후의 반응 실험 결과를 보면, 알칼리 금속을 증진제로 도입하였을 때, 탈수소화 생성물의 선택도가 증가하면서 탈수소화 생성물 수율 또한 증가하는 것을 확인할 수 있었다. Pt/Sn/Rb/Al₂O₃ 촉매의 경우 가장 높은 반응활성을 나타냈고 Pt/Sn/Rb/Al₂O₃ > Pt/Sn/K/Al₂O₃ > Pt/Sn/Na/Al₂O₃ > Pt/Sn/Li/Al₂O₃ > Pt/Sn/Al₂O₃ 순서로 반응활성이 증가하는 것을 확인할 수 있었다. 따라서 도입된 알칼리 금속의 종류에 따라 이러한 반응 활성 차이를 보이는 것을 설명하기 위하여 암모니아 승온탈착 실험을 수행하였다.

4.1.3. 촉매의 산 특성과 반응 활성 사이의 상관관계

탈수소화 반응의 경우, 담체의 산점에 의해 크래킹 반응, 이성질화 반응
등의 부반응이 촉진되어진다. 따라서 이러한 부반응을 최소화하기 위하여 알칼리 금속을 첨가하였고, 알칼리 금속을 첨가함으로써 촉매 표면의 산점에 어떠한 영향을 미치는지 알아보기 위하여 Pt/Sn/Al₂O₃ 촉매 및 Pt/Sn/M/Al₂O₃ (M= Li, Na, K, Rb) 촉매에 대해 암모니아 승온 탈착 실험을 수행하였다. Fig. 4.1.4에 각각의 촉매에 대해 암모니아 승온탈착 실험 결과를 나타내었다. 암모니아 승온탈착 실험 결과를 비교해 보면, 5 종의 촉매 모두 유사한 프로파일을 가지며, 약 180~200 ℃, 300 ℃ 부근과 600 ℃ 이상에서는 넓게 탈착 피크가 나타나는 것을 확인하였다. 또한 촉매의 산량을 알칼리 금속을 첨가한 승온 탈착 개선의 피크 면적을 통해 계산하여 Table 4.1.2에 나타내었다. 촉매의 산량은 다음과 같은 순서로 감소하였다; Pt/Sn/Rb/Al₂O₃ < Pt/Sn/K/Al₂O₃ < Pt/Sn/Na/Al₂O₃ < Pt/Sn/Li/Al₂O₃ < Pt/Sn/Al₂O₃.

Fig. 4.1.5에 Pt/Sn/M/Al₂O₃ (M= Li, Na, K, Rb) 촉매의 부텐 및 1,3-부타디엔의 생성 수율과 산량 사이의 종합적인 상관관계를 나타내었다. 알루미나 담체에 존재하는 산량이 감소함수록 부텐 및 1,3-부타디엔의 생성 수율은 증가하는 상관관계를 보이며 가장 작은 산량을 나타낸 Pt/Sn/Rb/Al₂O₃ 촉매에서 가장 높은 부텐 및 1,3-부타디엔 수율을 보였다. 이러한 관계성은 촉매의 산량이 촉매의 생성 수율과 밀접하게 관련되어 있음을 보여준다. 즉, 촉매의 산량이 노르말-부탄의 직접 탈수소화 반응에서 촉매의 활성을 결정짓는 중요한 역할을 한다는 사실을 나타낸다. 보고된 바에 따르면 Li, Na, K, Rb의 이온 반경은 각각 0.068, 0.097, 0.133, 0.152 nm이며, 이온 반경이 클수록 담체의
산점을 막는 정도가 크다고 알려져 있는데 이와 유사한 결과를 얻을 수 있었다 [15]. 그러므로 담체의 산량이 적은 촉매가 높은 부텐 및 1,3-부타디엔 수율을 나타낼 수 있다는 점에서 알칼리 금속의 도입이 매우 유용함을 알 수 있다. 즉, Pt/Sn/Al₂O₃ 촉매에 알칼리 금속을 도입함으로써 알루미나 산점에 의해 일어나는 cracking, isomerization, coke formation과 같은 불필요한 부반응을 억제함으로써 부텐 및 1,3-부타디엔의 선택도를 높여 반응에 유리하게 작용함을 확인하였다 [30-32]. 추가로 CHNS 분석을 통하여 제조된 촉매의 반응 후 점적된 카본 양을 확인하였고, 그 결과를 Table 4.1.3에 나타내었다. 예상했던 바와 같이, 촉매의 산량이 작을수록 부반응 억제로 인하여 점적된 카본양이 작은 것을 확인할 수 있었다.
Fig. 4.1.1. XRD patterns of reduced Pt/Sn/M/Al$_2$O$_3$ (M=Li, Na, K, Rb) catalysts.
Table 4.1.1. Atomic ratios and BET surface areas of Pt/Sn/M/Al₂O₃ (M=Li, Na, K, Rb) catalysts

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Atomic ratio</th>
<th>BET surface area (m²/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pt (wt%)</td>
<td>Sn (wt%)</td>
</tr>
<tr>
<td>Pt/Sn/Al₂O₃</td>
<td>0.99</td>
<td>1.04</td>
</tr>
<tr>
<td>Pt/Sn/Li/Al₂O₃</td>
<td>0.98</td>
<td>1.13</td>
</tr>
<tr>
<td>Pt/Sn/Na/Al₂O₃</td>
<td>1.02</td>
<td>1.09</td>
</tr>
<tr>
<td>Pt/Sn/K/Al₂O₃</td>
<td>1.03</td>
<td>1.05</td>
</tr>
<tr>
<td>Pt/Sn/Rb/Al₂O₃</td>
<td>1.01</td>
<td>1.06</td>
</tr>
</tbody>
</table>

a Determined by ICP-AES measurement

b Calculated by the BET equation within the range of relative pressure (P/P₀) of 0.05-0.30
Fig. 4.1.2. Catalytic performance of Pt/Sn/M/Al$_2$O$_3$ (M=Li, Na, K, Rb) catalysts in the direct dehydrogenation of n-butane at 550 °C.
Fig. 4.1.3. Selectivity for TDP with time on stream over Pt/Sn/M/Al$_2$O$_3$ (M=Li, Na, K, Rb) catalysts in the direct dehydrogenation of n-butane.
Fig. 4.1.4. NH₃-TPD profiles of reduced Pt/Sn/M/Al₂O₃ (M=Li, Na, K, Rb) catalysts in the direct dehydrogenation of n-butane.
Table 4.1.2. Acidity of Pt/Sn/M/Al₂O₃ (M=Li, Na, K, Rb) catalysts

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Acidity (μ mol−NH₃/g−catalyst)(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt/Sn/Al₂O₃</td>
<td>976</td>
</tr>
<tr>
<td>Pt/Sn/Li/Al₂O₃</td>
<td>952</td>
</tr>
<tr>
<td>Pt/Sn/Na/Al₂O₃</td>
<td>792</td>
</tr>
<tr>
<td>Pt/Sn/K/Al₂O₃</td>
<td>752</td>
</tr>
<tr>
<td>Pt/Sn/Rb/Al₂O₃</td>
<td>728</td>
</tr>
</tbody>
</table>

\(^a\) Determined by NH₃-TPD measurement
Table 4.1.3. Carbon deposition of Pt/Sn/M/Al$_2$O$_3$ (M=Li, Na, K, Rb) catalysts after a 360 min-reaction

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Amount of carbon deposition (wt%)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt/Sn/γ-Al$_2$O$_3$</td>
<td>8.8</td>
</tr>
<tr>
<td>Pt/Sn/Li/Al$_2$O$_3$</td>
<td>5.8</td>
</tr>
<tr>
<td>Pt/Sn/Na/γ-Al$_2$O$_3$</td>
<td>4.0</td>
</tr>
<tr>
<td>Pt/Sn/K/γ-Al$_2$O$_3$</td>
<td>3.8</td>
</tr>
<tr>
<td>Pt/Sn/Rb/γ-Al$_2$O$_3$</td>
<td>3.3</td>
</tr>
</tbody>
</table>

a Determined by CHNS measurement
Fig. 4.1.5. Correlation between yield for TDP after a 360 min-reaction and acidity.
4.2. Pt/Sn/M/Al₂O₃ (M=Zn, In, Y, Bi, Ga) 촉매를 통한 노르مال-부탄의 직접 탈수소화 반응

4.2.1. Pt/Sn/M/Al₂O₃ (M=Zn, In, Y, Bi, Ga) 촉매의 제조 및 결정 구조 확인

연속 함침법에 의해 제조된 Pt/Sn/M/Al₂O₃ (M=Zn, In, Y, Bi, Ga) 촉매의 결정상을 알아보기 위해 환원된 촉매의 X-선 회절 분석을 수행하였으며 그 결과를 Fig. 4.2.1에 나타내었다. 그림에서 볼 수 있듯이, 감마-알루미나에 해당하는 특성 피크만 관찰되었으며, 백금, 주석 및 기타 금속에 관련된 특성 피크는 관찰되지 않았다 [28]. 각 금속에 해당하는 특성 피크가 관찰되지 않은 것은 각 금속이 고무 분산 되었거나, 각 금속의 함량이 매우 작기 때문이다 [29].

ICP 원소분석을 통해 관찰된 서로 다른 전이금속을 증진제로 사용한 촉매들의 각 구성원소의 비율을 Table 4.2.1에 나타내었다. 모든 촉매에서 감마-알루미나 담체에 담지된 Pt의 중량%가 이론값 1에 가까운 0.88-1.02 정도의 Pt 중량% 값을 보였고, Sn의 경우에는에도 이론값 1에 가까운 Sn 중량% 값을 보였다. 또한 전이금속의 경우에는 그 중량%가 이론값 0.5에 가까운 0.52-0.57 정도의 중량% 값을 보여 모든 촉매가 의도한 바대로 제조되었음을 확인할 수 있었다. Table 4.2.1에 6종의 Pt/Sn/M/Al₂O₃ 촉매의 BET 표면적을 함께 표기하였다. 표면적 측정은 재현성 확인을 위해 여러 번 측정하여, 그 값들의 평균 값을 나타내었다. Pt/Sn/M/Al₂O₃ (M=Zn, In, Y, Bi, Ga) 촉매의
표면적은 약 174-185 m²/g의 값을 가지며, 촉매 간 큰 차이는 발견하지 못하였으며, 반응활성도도 주목할 만한 상관관계를 보이지 않았다.

4.2.2. 노르말-부탄의 직접 탈수소화 반응 활성

제조된 Pt/Sn/M/Al₂O₃ (M=Zn, In, Y, Bi, Ga) 촉매를 이용한 노르말-부탄의 직접 탈수소화 반응 활성 결과를 Fig. 4.2.2에 나타내었다. 구체적으로 제조된 Pt/Sn/M/Al₂O₃ 촉매들을 통해 노르말-부탄의 직접 탈수소화 반응을 6 시간동안 수행한 결과와 반응 6 시간 후의 노르말-부탄의 전환율, 탈수소화 생성물 선택도 및 탈수소화 생성물의 수율을 비교하여 Fig. 4.2.3에 나타내었다. 반응 실험 결과, 6 종의 촉매 모두 시간이 지남에 따라 비활성화를 나타내었고, 이는 파라핀의 직접 탈수소화 반응의 전형적인 양상과 같다. 그러나 촉매의 활성과 촉매의 안정성은 증진제로 도입된 전이금속에 따라 각기 다른 반응 활성을 나타내며, 전이금속의 성질에 의존적임을 알 수 있었다. Pt/Sn/Al₂O₃, Pt/Sn/Y/Al₂O₃, Pt/Sn/Bi/Al₂O₃, 및 Pt/Sn/Ga/Al₂O₃ 촉매의 경우, Pt/Sn/Zn/Al₂O₃ 와 Pt/Sn/In/Al₂O₃ 촉매의 실험결과와 비교했을 때, 촉매 활성에 급격하게 감소하는 것을 확인할 수 있었으며, 증진제가 추가 도입되지 않은 Pt/Sn/Al₂O₃ 촉매와 비교하였을 때에도, 비활성화가 심함을 확인하였다.

추가적으로 반응 초기 및 360 분 후의 전환율 및 각 생성물에 대한 선택도를 Table 4.2.2에 구체적으로 나타내었다. Table 4.2.2에 나타내었듯이, 목적 생성물인 1-부텐, 2-부텐, 1,3-부타디엔 외에도 이소부텐, 이소부탄,

서울대학교
C1-C3 혼합물, C5-C6 혼합물등이 부산물로 생성되었다. C1-C3 혼합물의 경우 하이드로크래킹 산물이며, C5-C6 혼합물은 탄화수소의 올리고머화 반응 및 공중합 반응에 의한 산물이다. Pt/Sn/Al₂O₃ 촉매에 Zn 금속을 증진제로 도입할 경우, 2-부텐을 포함한 목적 생성물에 대한 선택도가 가장 높게 나타났으며, 1-부텐, 2-부텐, 1,3-부타디엔에 대한 각각의 선택도는 20.7 %, 42.4 %, 5.2 %로 나타났다. 게다가, Pt/Sn/Zn/Al₂O₃ 촉매상의 반응에서 노르말-부탄에 대한 전환율이 가장 높았고, 반응 360 분 후를 기준으로 비활성화 정도도 가장 낮음을 확인하였다. 부텐과 부타디엔에 대한 수율을 기준으로 반응 활성을 비교하여 보면 Pt/Sn/Zn/Al₂O₃ > Pt/Sn/In/Al₂O₃ > Pt/Sn/Al₂O₃ > Pt/Sn/Y/Al₂O₃ > Pt/Sn/Bi/Al₂O₃ > Pt/Sn/Ga/Al₂O₃ 순서로 반응활성이 증가하였다. 따라서 도입된 전이금속의 종류에 따라 이러한 반응 활성 차이를 보이는 것을 설명하기 위하여 승온환원실험 및 수소 화학흡착 실험을 수행하였다.

4.2.3. 촉매의 금속-담체간 상호작용 및 환원 특성과 반응 활성 사이의 상관관계

Pt/Sn/Al₂O₃ 촉매 및 Pt/Sn/M/Al₂O₃ (M=Zn, In, Y, Bi, Ga) 촉매에서 금속-담체간 상호작용 및 환원 거동을 조사하기 위하여 승온 환원 실험을 수행하였고, 그 결과를 Fig. 4.2.4에 나타내었다. 일반적으로 Pt/Sn/Al₂O₃ 촉매의 경우 2 개의 수소 소모 정도를 나타내는데, 약 150~280 ℃에서 나타나는 환원
피크는 백금 옥사이드의 환원과 관련된 것이며, 담체와 약한 상호작용을 하는 백금 종의 환원 피크라고 할 수 있다. 또한 500 °C 이상에서 나타나는 환원 피크는 주석 4 가의 옥사이드에서 주석 2 가의 옥사이드로의 환원 또는 주석 2 가의 옥사이드에서 주석 금속으로의 환원에 해당한다 [25,33]. 본 연구에서도 전이금속을 조촉매로 도입한 Pt/Sn/M/Al₂O₃ 촉매에서도 유사한 경향을 나타내었고, 백금, 주석과 기타 조촉매가 모두 관련되어 있어 각각의 피크를 어느 하나의 금속에 대한 피크라고 정의하기는 어렵다. Fig. 4.2.4를 보면, 높은 환원 분석 결과의 개형은 6 종의 촉매에서 유사하게 나타났고, 250 °C 부근의 피크는 주로 백금 옥사이드의 환원이며, 일부 주석 옥사이드와 조촉매로 사용된 금속의 옥사이드의 환원이 동시에 일어났다고 판단되었다 [34]. 또한 500 °C 이상에서 뚜렷한 피크는 관찰되지 않지만 수소 소모가 넓은 영역에서 약하게 관찰되었는데 이것은 주석 옥사이드와 일부 조촉매로 사용된 금속 옥사이드의 환원에 관련된 것으로 보여진다. 250 °C 부근의 피크 온도를 비교해보면 Pt/Sn/Zn/Al₂O₃ > Pt/Sn/In/Al₂O₃ > Pt/Sn/Al₂O₃ > Pt/Sn/Y/Al₂O₃ > Pt/Sn/Bi/Al₂O₃ > Pt/Sn/Ga/Al₂O₃ 순서로 높은 환원 분석 피크 온도가 감소하는 것을 알 수 있었다. 즉, Zn와 In이 조촉매로 사용된 경우, 약 250 °C 부근에서 나타나는 백금 종의 환원 피크가 고온 영역으로 이동한 것이다. 특히 Pt/Sn/M/Al₂O₃ 촉매에 Zn의 도입은 금속 구성성분의 공간적 배치를 향상시키며 백금-알루미나 간 상호작용과 주석-알루미나 간 상호작용을 증가시킨다 [35]. 이러한 경향은 촉매 활성 경향과도 동일하며, 따라서, 금속-
담체간 상호작용과 환원 특성이 촉매의 활성과 관련이 긴밀함을 알 수 있다.

4.2.4. 촉매 활성금속의 분산도 및 표면적과 반응 활성 사이의 상관관계

추가적으로 노르말-부탄의 직접 탈수소화 반응에 대한 촉매들의 활성차이를 설명하기 위해 활성 금속의 분산도 및 활성 금속의 표면적을 측정하기 위해 수소 화학흡착 실험을 수행하였다. Table 4.2.3에는 전이금속 조촉매로 도입한 Pt/Sn/M/Al₂O₃ 촉매들의 환원 후 수소 화학흡착 결과를 나타내었다. 앞서 언급한대로, H/Pt의 화학흡착량은 Pt의 활성화도를 반영하고, therefore. Table 4.2.3에는 전이금속 조촉매로 도입한 Pt/Sn/M/Al₂O₃ 촉매들의 환원 후 수소 화학흡착 결과를 나타내었다. 앞서 언급한대로, H/Pt의 화학흡착량은 Pt의 활성화도를 반영하고, Pt/Sn/Al₂O₃ 촉매와 전이금속을 조촉매로 도입한 Pt/Sn/M/Al₂O₃ 촉매의 수소 화학흡착 결과로부터 백금의 분산도와 백금의 표면적은 Pt/Sn/Zn/Al₂O₃ > Pt/Sn/In/Al₂O₃ > Pt/Sn/Al₂O₃ > Pt/Sn/Y/Al₂O₃ > Pt/Sn/Bi/Al₂O₃ > Pt/Sn/Ga/Al₂O₃ 순서로 감소하는 것을 알 수 있다. 이러한 결과는 앞선 승온환원 분석 결과와 일치하는데, 금속-담체간 상호작용이 강할수록 백금이 담체위에 고무 분산되며, 백금의 입자 크기는 감소한다. 즉, 강한 금속-담체간 상호작용은 백금 입자의 분산을 방해하기 때문에, 백금의 표면적은 증가하게 되는 것이다. Pt/Sn/Zn/Al₂O₃ 촉매와 Pt/Sn/In/Al₂O₃ 촉매의 경우 높은 백금 분산도를 가지는데, 백금, 주석, 아연 (또는 인듐) 사이의 화학적 인력이 소성과정 동안 백금의 소결정도에 영향을 주거나 백금 표면 성질을 변화시킨다는 보고가 있다 [36]. 따라서 Zn는 효과적인 spacer로 작용하여 활성금속 집단의 크기를 감소시킨
4.2.5. 환원된 촉매의 전자적 특성

환원된 촉매의 각 금속 성분의 화학적 결합상태를 확인하기 위하여 X-선 광전자분광 분석 실험을 수행하였다. Sn 3d_{5/2}에 해당하는 X-선 광전자분광 스펙트라를 Fig 4.2.5에 나타내었고, 측정된 Pt 4f_{7/2}의 결합 에너지와 Sn 3d_{5/2}의 결합 에너지, 활성금속인 Pt의 표면 원자 비율을 계산하여 Table 4.2.4에 나타내었다. Table 4.2.4의 X-선 광전자분광 분석 결과에서, 백금의 결합에너지가 71.7~72.3 eV 사이에서 하나의 값을 가지는 것으로 보아, 모든 촉매에서 백금은 금속 산화물이 아닌 금속의 형태로 존재한다는 것을 알 수 있으며, 환원시 모든 백금이 환원된다는 것으로 판단할 수 있다 [38]. 또한 주석의 경우 두 개의 결합에너지 값을 나타내는데, 이 중 485.3-486.2 eV 범위의 값을 가지는 주석은 합금을 형성하는 주석에 해당하며, 487.1-487.6 eV 범위의 값을 가지는 주석은 금속 산화물 형태의 주석에 해당한다 [39]. 따라서 주석은 촉매 환원시에 전부 환원되지 못하고, 일부만 환원되어 백금과 합금을 형성하며 나머지는 담체인 알루미나와 결합하는 주석 욕사이드 상태로 존재한다. Pt/Sn/Al₂O₃ 촉매에 조촉매가 도입되었을 때, 각각 금속 성분의 결합에너지가 증가하거나 감소하는데, 이를 통해 백금이 주석과 합금을 형성하거나, 조촉매에 의해 전자적 특성이 변한다고 추론할 수 있다. 또한 기존 Pt/Sn/Al₂O₃ 촉매보다 촉매 활성이 우수한 Pt/Sn/Zn/Al₂O₃ 촉매와
Pt/Sn/In/Al₂O₃ 촉매의 경우, 주석이 합금을 형성하는 비율이 주석 용사이드로 존재하는 비율보다 그 양이 많았으며, 비량이지만 표면에 존재하는 백금의 비율도 높게 나타남을 확인할 수 있다. Fig 4.2.5를 보면 각 촉매들에 존재하는 Sn 3d₅/₂에 해당하는 X-선 광전자분광 스펙트럼을 deconvolution 하였는데, Pt/Sn/Zn/Al₂O₃ 촉매와 Pt/Sn/In/Al₂O₃ 촉매에서 합금으로 존재하는 주석의 비율이 주석 용사이드의 비율보다 확연하게 많은 것을 확인할 수 있다.

4.2.6. 촉매의 환원 특성 및 활성금속의 특성과 반응 활성 사이의 상관관계

Fig 4.2.6에서, TPR 분석결과 및 수소 화학흡착 분석결과가 일정한 경향을 나타내는 것으로 보아, 금속-담체간 상호작용과 활성 금속의 표면적이 촉매의 직접 탈수소화 반응에의 활성과 밀접한 관련을 가지고 있음을 확인할 수 있다. TPR 피크 온도가 높고 즉, 금속-담체간 상호작용이 세고, Pt 표면적이 큰 촉매일수록 직접 탈수소화 반응에서의 활성이 증가하는 경향을 보이는 것으로 생각된다.

또한 6종의 촉매 중 Pt/Sn/Zn/Al₂O₃ 촉매가 직접 탈수소화 반응에서 가장 높은 활성을 보이며, 이로써 Zn 금속이 직접 탈수소화 반응용 촉매인 Pt/Sn/Al₂O₃ 촉매에 가장 적합한 조촉매라고 판단되어진다. 참고문헌에 따르면, Zn가 Pt/Sn/Al₂O₃촉매에 도입될 경우, 촉매 소성 시에 Pt 소결정도가 감소하여 분산도가 증가하며, Sn과 같이 spacer로 유사한 작용을 함으로써 Pt의 입자
크기를 감소시키는 역할을 한다고 알려져 있다. 따라서 이러한 Zn의 성질들이 위 특성분석에서도 증명되었으며, Zn 금속이 Pt/SnAl₂O₃촉매에 가장 적합한 조촉매라고 판단하였다.
Fig. 4.2.1. XRD patterns of reduced Pt/Sn/M/Al2O3 (M=Zn, In, Y, Bi, Ga) catalysts.
Table 4.2.1. Atomic ratios and BET surface areas of Pt/Sn/M/Al₂O₃ (M= Zn, In, Y, Bi, Ga) catalysts

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Atomic ratio</th>
<th>BET surface area (m²/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pt (wt%)³</td>
<td>Sn (wt%)³</td>
</tr>
<tr>
<td>Pt/Sn/Zn/Al₂O₃</td>
<td>0.89</td>
<td>1.14</td>
</tr>
<tr>
<td>Pt/Sn/In/Al₂O₃</td>
<td>0.88</td>
<td>1.13</td>
</tr>
<tr>
<td>Pt/Sn/Al₂O₃</td>
<td>0.99</td>
<td>1.04</td>
</tr>
<tr>
<td>Pt/Sn/Y/Al₂O₃</td>
<td>1.02</td>
<td>1.01</td>
</tr>
<tr>
<td>Pt/Sn/Bi/Al₂O₃</td>
<td>1.02</td>
<td>1.05</td>
</tr>
<tr>
<td>Pt/Sn/Ga/Al₂O₃</td>
<td>1.01</td>
<td>1.07</td>
</tr>
</tbody>
</table>

³ Determined by ICP-AES measurement

⁴ Calculated by the BET equation within the range of relative pressure (P/P₀) of 0.05-0.30
Fig. 4.2.2. Catalytic performance with time on stream over Pt/Sn/M/Al$_2$O$_3$ (M = Zn, In, Y, Bi, Ga) catalysts in the direct dehydrogenation of n-butane.
Fig. 4.2.3. Catalytic performance of Pt/Sn/M/Al₂O₃ (M = Zn, In, Y, Bi, Ga) catalysts in the direct dehydrogenation of n-butane after a 360 min-reaction.
Table 4.2.2. Catalytic performance of Pt/Sn/Al₂O₃ and Pt/Sn/M/Al₂O₃ (M = Zn, In, Y, Bi, Ga) catalysts in the direct dehydrogenation of n-butane after a 60-min reaction and a 360 min-reaction (reaction temperature = 550 °C, GHSV = 600 ml/h-g-cat, inert gas ratio (n-butane:nitrogen) = 1:1)

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Xᵢ (%)</th>
<th>Xᵢ (%)</th>
<th>Sᵢ (%)</th>
<th>Sᵢ (%)</th>
<th>C1-C3</th>
<th>C5-C6</th>
<th>C1-C3</th>
<th>C5-C6</th>
<th>D (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-butene</td>
<td>2-butene</td>
<td>1,3-butadiene</td>
<td>iso-butane</td>
<td>1-butene</td>
<td>2-butene</td>
<td>1,3-butadiene</td>
<td>iso-butane</td>
<td></td>
</tr>
<tr>
<td>Pt/Sn/Zn/γ-Al₂O₃</td>
<td>76.0</td>
<td>59.1</td>
<td>20.7</td>
<td>42.4</td>
<td>5.2</td>
<td>13.7</td>
<td>12.0</td>
<td>5.6</td>
<td>0.4</td>
</tr>
<tr>
<td>Pt/Sn/In/γ-Al₂O₃</td>
<td>69.7</td>
<td>51.8</td>
<td>21.6</td>
<td>30.0</td>
<td>6.0</td>
<td>24.0</td>
<td>9.3</td>
<td>8.5</td>
<td>0.6</td>
</tr>
<tr>
<td>Pt/Sn/γ-Al₂O₃</td>
<td>68.9</td>
<td>48.2</td>
<td>18.7</td>
<td>40.3</td>
<td>4.6</td>
<td>19.5</td>
<td>9.1</td>
<td>7.0</td>
<td>0.8</td>
</tr>
<tr>
<td>Pt/Sn/Y/γ-Al₂O₃</td>
<td>64.7</td>
<td>47.9</td>
<td>20.5</td>
<td>45.3</td>
<td>4.0</td>
<td>14.9</td>
<td>7.7</td>
<td>6.7</td>
<td>0.9</td>
</tr>
<tr>
<td>Pt/Sn/Bi/γ-Al₂O₃</td>
<td>65.4</td>
<td>44.9</td>
<td>16.9</td>
<td>38.9</td>
<td>3.2</td>
<td>21.3</td>
<td>11.0</td>
<td>7.9</td>
<td>0.8</td>
</tr>
<tr>
<td>Pt/Sn/Ga/γ-Al₂O₃</td>
<td>51.7</td>
<td>24.0</td>
<td>20.8</td>
<td>45.5</td>
<td>5.5</td>
<td>17.2</td>
<td>4.2</td>
<td>6.1</td>
<td>0.7</td>
</tr>
</tbody>
</table>

+a Xᵢ is initial conversion of n-butane and Sᵢ is initial selectivity obtained after a 60-min reaction
+b Xᵢ is final conversion of n-butane and Sᵢ is final selectivity obtained after a 360-min reaction
+c Deactivation rate (D) is defined as follow: D = (Xᵢ – Xᵢ)/Xᵢ × 100
Fig. 4.2.4. TPR profiles of Pt/Sn/M/Al$_2$O$_3$ (M = Zn, In, Y, Bi, Ga) catalysts.
Table 4.2.3. Hydrogen chemisorption results for reduced Pt/Sn/M/Al$_2$O$_3$ (M = Zn, In, Y, Bi, Ga) catalysts

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Pt dispersion (%)a</th>
<th>Pt surface area (m2/g)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt/Sn/Zn/Al$_2$O$_3$</td>
<td>23.6</td>
<td>58.2</td>
</tr>
<tr>
<td>Pt/Sn/In/Al$_2$O$_3$</td>
<td>18.7</td>
<td>46.2</td>
</tr>
<tr>
<td>Pt/Sn/Al$_2$O$_3$</td>
<td>15.0</td>
<td>36.9</td>
</tr>
<tr>
<td>Pt/Sn/Y/Al$_2$O$_3$</td>
<td>14.7</td>
<td>34.7</td>
</tr>
<tr>
<td>Pt/Sn/Bi/Al$_2$O$_3$</td>
<td>10.8</td>
<td>26.8</td>
</tr>
<tr>
<td>Pt/Sn/Ga/Al$_2$O$_3$</td>
<td>10.0</td>
<td>23.4</td>
</tr>
</tbody>
</table>

a Calculated by assuming a stoichiometry factor of H/Pt = 1
Fig. 4.2.5. XPS spectra of Sn 3d$_{5/2}$ of reduced Pt/Sn/M/Al$_2$O$_3$ (M = Zn, In, Y, Bi, Ga) catalysts.
Table 4.2.4. Binding energies of Pt 4f\(_{7/2}\) and Sn 3d\(_{5/2}\) and surface atomic ratio of Pt/Sn/M/Al\(_2\)O\(_3\) (M = Zn, In, Y, Bi, Ga) catalysts

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Binding energy of Pt 4f(_{7/2}) (eV)(^a)</th>
<th>Binding energy of Sn 3d(_{5/2}) (eV)(^a)</th>
<th>Surface atomic ratio Pt/Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt/Sn/Zn/Al(_2)O(_3)</td>
<td>72.3 (100)</td>
<td>487.1 (19) 485.9 (81)</td>
<td>0.0057</td>
</tr>
<tr>
<td>Pt/Sn/In/Al(_2)O(_3)</td>
<td>72.0 (100)</td>
<td>487.3 (35) 485.6 (65)</td>
<td>0.0057</td>
</tr>
<tr>
<td>Pt/Sn/Al(_2)O(_3)</td>
<td>71.9 (100)</td>
<td>487.4 (69) 485.8 (31)</td>
<td>0.0045</td>
</tr>
<tr>
<td>Pt/Sn/Y/Al(_2)O(_3)</td>
<td>71.9 (100)</td>
<td>487.5 (58) 486.2 (42)</td>
<td>0.0053</td>
</tr>
<tr>
<td>Pt/Sn/Bi/Al(_2)O(_3)</td>
<td>71.9 (100)</td>
<td>487.6 (61) 486.0 (39)</td>
<td>0.0037</td>
</tr>
<tr>
<td>Pt/Sn/Ga/Al(_2)O(_3)</td>
<td>71.7 (100)</td>
<td>487.3 (70) 485.3 (30)</td>
<td>0.0037</td>
</tr>
</tbody>
</table>

\(^a\) Values in parentheses indicate the percentage of the species
Fig. 4.2.6. Correlations between yield for TDP after a 360 min-reaction and TPR peak temperature, and between yield for TDP after a 360 min-reaction and Pt surface area
4.3. Pt/Sn/XZn/Al₂O₃ (X=0, 0.25, 0.5, 0.75, 1.0) 촉매를 통한 노르말-부탄의 직접 탈수소화 반응

4.3.1. Pt/Sn/XZn/Al₂O₃ (X=0, 0.25, 0.5, 0.75, 1.0) 촉매의 제조 및 결정 구조 확인

상기 4.2에서 제조된 Pt/Sn/M/Al₂O₃ (M=Zn, In, Y, Bi, Ga) 촉매 중 반응 활성가가 가장 높았던 Pt/Sn/Zn/Al₂O₃ 촉매에서 Zn 금속의 담지량을 조절하여 최적 비율의 Zn를 포함한 Pt/Sn/Zn/Al₂O₃ 촉매를 제조하고자 하였다. 따라서 Zn 금속의 담지량을 다양하게 하여 Pt/Sn/XZn/Al₂O₃ (X=0, 0.25, 0.5, 0.75, 1.0) 촉매를 제조하였고, 제조된 촉매들의 결정상을 알아보기 위해 X-선 회절 분석을 수행하였으며, 분석 결과를 Fig. 4.3.1에 나타내었다. 그림에서 볼 수 있듯이, 감마-알루미나에 해당하는 특성 피크만 관찰되었으며, 백금, 주석 및 아연에 관련된 특성 피크는 관찰되지 않았다 [28]. 백금의 결정상의 경우 알루미나 담체의 상과 같은 위치에서 발견되어 구분하기는 힘들뿐 아니라, 함량 또한 미량이고, 분산이 아주 잘 되었다고 판단되어 X-선 회절 분석 결과만으로는 촉매 제조 결과를 제대로 확인할 수 없었다 [29]. 이에 따라 본 연구에서는 촉매가 제대로 제조되었는지를 확인하기 위해 Pt/Sn/XZn/Al₂O₃ 촉매들 내의 금속 성분의 함량을 분석하기 위해 ICP-AES 분석을 수행하였으며, 제조된 Pt/Sn/XZn/Al₂O₃ 촉매들의 ICP-AES 분석 결과를 다음
Table 4.3.1에 나타내었다.

모든 촉매에서 감마-알루미나 담체에 담지된 Pt의 중량%가 이론값 1에 가까운 0.94-1.03 정도의 Pt 중량% 값을 보였고, Sn의 경우에도 이론값 1에 가까운 Sn 중량% 값을 보였다. 또한 Zn의 경우에도 그 중량%가 각각의 이론값인 0, 0.25, 0.5, 0.75, 1.0에 가까운 중량% 값을 보여 모든 촉매가 계획한 바대로 제조되었음을 확인할 수 있었다. Table 4.3.1에 5종의 Pt/Sn/XZn/Al₂O₃ 촉매의 BET 표면적을 함께 표기하였다. 표면적 측정은 재현성 확인을 위해 여러 번 측정하여, 그 값들의 평균 값을 나타내었다. Pt/Sn/XZn/Al₂O₃ 촉매의 표면적은 약 169-185 m²/g의 값을 가지며, Zn 담지량이 증가할수록 표면적이 감소하였는데, 이는 Zn 담지량이 증가할 때, 담체의 기공을 막는 현상이 심해졌기 때문이다. 촉매 간 큰 차이는 발견하지 못하였으며, 반응활성과도 주목할 만한 상관관계를 보이지 않았다.

4.3.2. 노르말-부탄의 직접 탈수소화 반응 활성

제조된 Pt/Sn/XZn/Al₂O₃ (X=0, 0.25, 0.5, 0.75, 1.0) 촉매를 이용한 노르말-부탄의 직접 탈수소화 반응 활성 결과를 Fig. 4.3.2에 나타내었다. Fig. 4.3.2에는 각 촉매들의 반응 360분 후의 촉매 활성을 비교하였고, 반응 360분 후의 구체적인 노르말-부탄의 전환율, 탈수소화 생성물들의 선택도, 수율을 나타내었다. 비활성화 정도는 그 차이가 유사하여 반응시간에 따른 촉매 활성은 따로 나타내지 않았다. Fig. 4.3.2에서 알 수 있듯이, Zn의 담지량이
증가할수록, 촉매 활성은 증가하다가 감소하는 경향을 보였다. Pt/Sn/0.5Zn/Al₂O₃ 촉매가 노르مال-부탄의 직접 탈수소화 반응에서 가장 높은 활성을 보았으며, 활성의 순서는 Pt/Sn/0.5Zn/Al₂O₃ > Pt/Sn/0.75Zn/Al₂O₃ > Pt/Sn/0.25Zn/Al₂O₃ > Pt/Sn/1.0Zn/Al₂O₃ > Pt/Sn/Al₂O₃의 순서이다. Fig. 4.3.2의 결과에서 나타난 다양한 비율의 Zn를 도입한 Pt/Sn/Zn/Al₂O₃ 촉매들을 통한 직접 탈수소화 반응에 대해 각 촉매들의 활성 차이 원인을 설명하기 위하여, 앞서 시행한 활성 금속에 대한 분석과 담체와 담지된 금속들 간의 상호작용에 관한 특성을 이해하려는 분석을 시도하였다. 따라서 본 연구에서는 각 촉매의 반응 활성에 대한 원인을 규명하기 위하여 X-선 광전자분광 분석 실험, 수소 화학흡착 실험 및 TPR 분석 실험을 수행하였다.

4.3.3. 촉매의 금속-담체간 상호작용 및 환원 특성과 반응 활성 사이의 상관관계

Pt/Sn/XZn/Al₂O₃ (X=0, 0.25, 0.5, 0.75, 1.0) 촉매에서 금속-담체간 상호작용 및 환원 거동을 조사하기 위하여 승온 환원 실험을 수행하였고, 그 결과를 Fig. 4.3.3에 나타내었다. 앞서 언급하였듯이, 백금, 주석과 아연 금속이 모두 관련되어 있어 각각의 피크를 어느 하나의 금속에 대한 피크라고 정의하기는 어렵다. 하지만 모든 촉매의 승온 환원 실험 분석 결과의 개형은 모든 촉매에서 유사하게 나타났고, 250 ℃ 부근의 피크는 주로 백금 옥사이드의 환원이며 일부 주석 옥사이드와 아연 금속의 옥사이드의 환원이 동시에
일어났다고 판단할 수 있다 [34]. 앞선 연구와 마찬가지로 250 ℃ 부근의 피크를 비교해보면 Pt/Sn/0.5Zn/Al₂O₃ > Pt/Sn/0.75Zn/Al₂O₃ > Pt/Sn/0.25Zn/Al₂O₃ > Pt/Sn/1.0Zn/Al₂O₃ > Pt/Sn/Al₂O₃의 순서로 TPR 피크 온도가 감소하는 것을 알 수 있다. Zn 함량이 0에서 0.5 wt%까지는 담체와 금속들 간의 인력이 강하게 작용하여 TPR 피크 온도가 점점 증가하게 되는 반면, Zn 함량이 0.5에서 1.0 wt%까지 증가하게 되는 경우에는 TPR 피크 온도가 감소하는 것을 확인하였다. 그 이유는 Zn 함량에 따라 금속의 화학적 본질이 달라질 수 있으며, 흡착된 수소가 Zn 옥사이드로 스필오버되면서 환원된 금속 형태 또는 백금과 합금 형태로 형성할 확률이 높아지기 때문이다. 즉, 250 ℃ 부근의 TPR 피크 온도는 Zn의 함량이 증가함에 따라 화산형 분포를 나타내며, 이러한 경향은 반응 활성도도 같다.

4.3.4. 촉매 활성금속의 분산도 및 표면적과 반응 활성 사이의 상관관계

추가적으로 노르مال-부탄의 직접 탈수소화 반응에 대한 촉매들의 활성차이를 설명하기 위해 활성 금속의 분산도 및 활성 금속의 표면적을 측정하기 위해 수소화학흡착 실험을 수행하였다. Table 4.3.2에는 다양한 함량을 가진 Zn 금속을 조층매로 도입한 Pt/Sn/0.5Zn/Al₂O₃ (X=0, 0.25, 0.5, 0.75, 1.0) 촉매들의 활성적 활성¹수소화학흡착 결과를 나타내었다. 앞서 언급한 대로,
H/Pt의 화학흡착량론계수를 1로 가정한 후, 활성 금속의 백금의 분산도 및 백금의 표면적을 계산하였다. 다양한 함량을 가진 Zn 금속을 조층매로 도입한
Pt/Sn/XZn/Al₂O₃ 촉매의 수소 화학흡착 결과로부터 백금의 분산도와 백금의 표면적은 Pt/Sn/0.5Zn/Al₂O₃ > Pt/Sn/0.75Zn/Al₂O₃ > Pt/Sn/0.25Zn/Al₂O₃ > Pt/Sn/1.0Zn/Al₂O₃ > Pt/Sn/Al₂O₃의 순서로 감소하는 것을 알 수 있다. 이러한 결과는 앞선 승온환원 분석 결과와 일치하는데, 금속-담체간 상호작용이 강할수록 백금이 담체위에 고유 분산 되고, 백금의 입자 크기는 감소한다. 즉, 강한 금속-담체간 상호작용은 백금 입자의 무침현상을 방해하기 때문에, 백금의 표면적은 증가하게 되는 것이다. Pt/Sn/0.5Zn/Al₂O₃ 촉매에서 가장 높은 백금 분산도와 백금 표면적을 얻었다. 백금 입자들과 근접한 곳에 Zn 금속이 존재함으로써 연속적인 백금 사이트 수를 감소시키고, 이것이 백금 분산도 향상에 도움이 된다. 즉, Zn는 효과적인 spacer로 작용하여 활성금속 집단의 크기를 감소시킨다 [37]. 캐다가 백금, 주석, 아연의 화학적 인력이 소성과정 동안에 백금의 소결정도에 영향을 주거나 백금 표면 성질을 변화시켜 무침현상을 방해한다는 보고가 있다. 따라서 Zn는 활성금속의 입자크기가 클 때 진행되는 부반응이나 코크 형성반응등을 억제시킬 수 있다. 또한 Zn 함량이 과량일 경우에는 백금 입자 자체를 막거나 백금과 합금을 형성하여 반응에 적합하지 않게 된다.

4.3.5. 환원된 촉매의 전자적 특성

환원된 촉매의 각 금속 성분의 화학적 결합상태를 확인하기 위하여 X-선 광전자분광 분석 실험을 수행하였다. Zn 2pₓᵧ에 해당하는 X-선 광전자분광
스펙트라는 Fig 4.3.4에 나타내었고, 측정된 Pt 4f₇/₂의 결합 에너지와 Sn 3d₅/₂의 결합 에너지, Zn 2p₃/₂의 결합 에너지를 Table 4.3.3에 나타내었다. Table 4.3.3의 X-선 광전자분광 분석 결과에서, 백금의 결합에너지가 71.7~72.3 eV사이에서 하나의 값을 가지는 것으로 보아, 모든 측면에서 백금은 금속 산화물이 아닌 금속의 형태로 존재한다는 것을 알 수 있으며, 환원시 모든 백금이 활성화된 것으로 판단할 수 있다. 또한 주석의 경우 두 개의 결합에너지를 갖는다면, 이 중 485.3~486.2 eV 범위의 값을 가지는 주석은 합금을 형성하는 주석에 해당하며, 487.1~487.6 eV 범위의 값을 가지는 주석은 금속 산화물 형태의 주석에 해당한다 [38,39]. 따라서 주석은 환원시에 전부 활성화되지 못하고, 일부만 활성화되어 백금과 합금을 형성하며 나머지는 당연히 알루미나와 결합하는 주석 옥사이드 상태로 존재한다. Fig 4.3.4를 보면, 각각의 환원된 Pt/Sn/XZn/Al₂O₃ 측면의 Zn 2p₃/₂에 해당하는 X-선 광전자분광 스펙트라가 모두 다른 것을 확인할 수 있다. Pt/Sn/XZn/Al₂O₃ (X=0.25, 0.5) 측면의 경우에, Zn의 대부분은 산화물인 ZnO 상태로 존재한다 [40]. 그러나, Zn의 함량이 과량이 될 경우, ZnO는 금속 형태의 Zn로 활성화될 수 있으며, 결국에는 PtZn 형태의 합금을 형성하게 된다. Pt-Zn 형태의 합금이 형성되면, 합금 상태의 Zn는 Pt의 전자 밀도를 증가시키고, Zn의 전자 전하적 적응시점을, Pt 4f₇/₂의 결합 에너지를 감소시킨다 [41]. 따라서 이러한 Pt의 전자적 성질 변화가 수소 환합능력 감소를 이끌고, PtZn 합금 형태가 수소 화학흡착 및 파라핀 탈수소화 반응에서 비활성상으로 작용한다 [23]. 이는 Pt/Sn/XZn/Al₂O₃...
(X=0.75, 1.0) 측면에서 백금의 분산도가 감소하고 측면 활성이 감소하는 이유가 된다.

4.3.6. 측면의 환원 특성 및 활성금속의 특성과 반응 활성 사이의 상관관계

TPR 분석을 통해 얻어진 TPR 피크 온도 및 수소 화합물 분석을 통해 얻어진 Pt 표면적과 각 측면들의 직접 탈수소화 반응에 대한 활성을 비교하여 Fig 4.3.6에 나타내었다. Fig 4.3.5에서, TPR 분석결과 및 수소 화합물 분석결과가 일정한 경향을 나타내는 것으로 보아, 금속-담체간 상호작용과 활성 금속의 표면적이 측면의 직접 탈수소화 반응에의 활성과 밀접한 관련을 가지고 있음을 확인할 수 있다. TPR 피크 온도가 높고 즉, 금속-담체간 상호작용이 세고, Pt 표면적이 큰 측면은 수록 직접 탈수소화 반응에서의 활성이 증가하는 경향을 보이는 것으로 판단된다.

따라서 다양한 함량의 Zn를 도입한 측면 중 Pt/Sn/0.5Zn/Al₂O₃ 측면이 직접 탈수소화 반응에서 가장 높은 활성을 보이며, 이로써 Zn 금속의 담지량이 0.5 wt%일 때, 직접 탈수소화 반응에 가장 최적의 비율이라고 판단된다.
Fig. 4.3.1. XRD patterns of reduced Pt/Sn/XZn/Al2O3 (X = 0, 0.25, 0.5, 0.75, 1.0) catalysts.
Table 4.3.1. Atomic ratios and BET surface areas of Pt/Sn/XZn/Al₂O₃ (X = 0, 0.25, 0.5, 0.75, 1.0) catalysts

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Atomic ratio</th>
<th>BET surface area (m²/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pt (wt%)ᵃ</td>
<td>Sn (wt%)ᵃ</td>
</tr>
<tr>
<td>Pt/Sn/Al₂O₃</td>
<td>0.96</td>
<td>1.04</td>
</tr>
<tr>
<td>Pt/Sn/0.25Zn/Al₂O₃</td>
<td>0.96</td>
<td>1.04</td>
</tr>
<tr>
<td>Pt/Sn/0.5Zn/Al₂O₃</td>
<td>0.94</td>
<td>1.06</td>
</tr>
<tr>
<td>Pt/Sn/0.75Zn/Al₂O₃</td>
<td>1.03</td>
<td>1.05</td>
</tr>
<tr>
<td>Pt/Sn/1.0Zn/Al₂O₃</td>
<td>1.03</td>
<td>0.99</td>
</tr>
</tbody>
</table>

ᵃ Determined by ICP-AES measurement
ᵇ Calculated by the BET equation within the range of relative pressure (P/P₀) of 0.05-0.30
Fig. 4.3.2. Catalytic performance of Pt/Sn/XZn/Al$_2$O$_3$ (X = 0, 0.25, 0.5, 0.75, 1.0) catalysts in the direct dehydrogenation of n-butane.
Fig. 4.3.3. TPR profiles of Pt/Sn/XZn/γ-Al₂O₃ (X = 0, 0.25, 0.5, 0.75, 1.0) catalysts.
Table 4.3.2. Hydrogen chemisorption results for reduced Pt/Sn/XZn/Al$_2$O$_3$ (X = 0, 0.25, 0.5, 0.75, 1.0) catalysts

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Pt dispersion (%)a</th>
<th>Pt surface area (m2/g)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt/Sn/Al$_2$O$_3$</td>
<td>15.0</td>
<td>36.9</td>
</tr>
<tr>
<td>Pt/Sn/0.25Zn/Al$_2$O$_3$</td>
<td>16.9</td>
<td>41.8</td>
</tr>
<tr>
<td>Pt/Sn/0.5Zn/Al$_2$O$_3$</td>
<td>23.6</td>
<td>58.2</td>
</tr>
<tr>
<td>Pt/Sn/0.75Zn/Al$_2$O$_3$</td>
<td>21.6</td>
<td>53.2</td>
</tr>
<tr>
<td>Pt/Sn/1.0Zn/Al$_2$O$_3$</td>
<td>16.0</td>
<td>40.2</td>
</tr>
</tbody>
</table>

a Calculated by assuming a stoichiometry factor of H/Pt = 1
Fig. 4.3.4. XPS spectra of Zn 2p$_{3/2}$ level of reduced Pt/Sn/XZn/Al$_2$O$_3$ (X = 0, 0.25, 0.5, 0.75, 1.0) catalysts
Table 4.3.3. Binding energies of Pt $4f_{7/2}$, Sn $3d_{5/2}$, and Zn $2p_{3/2}$ of Pt/Sn/XZn/Al$_2$O$_3$ (X = 0, 0.25, 0.5, 0.75, 1.0) catalysts

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Binding energy of Pt $4f_{7/2}$ (eV)</th>
<th>Binding energy of Sn $3d_{5/2}$ (eV)</th>
<th>Binding energy of Zn $2p_{3/2}$ (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt/Sn/Al$_2$O$_3$</td>
<td>71.9</td>
<td>487.1</td>
<td>-</td>
</tr>
<tr>
<td>Pt/Sn/0.25Zn/Al$_2$O$_3$</td>
<td>72.1</td>
<td>487.1</td>
<td>1022.7</td>
</tr>
<tr>
<td>Pt/Sn/0.5Zn/Al$_2$O$_3$</td>
<td>72.0</td>
<td>487.0</td>
<td>1022.6</td>
</tr>
<tr>
<td>Pt/Sn/0.75Zn/Al$_2$O$_3$</td>
<td>71.7</td>
<td>488.1</td>
<td>1024.0</td>
</tr>
<tr>
<td>Pt/Sn/1.0Zn/Al$_2$O$_3$</td>
<td>71.7</td>
<td>487.4</td>
<td>1024.0</td>
</tr>
</tbody>
</table>
Fig. 4.3.5. Correlations between yield for TDP after a 360 min-reaction and TPR peak temperature and between yield for TDP after a 360 min-reaction and Pt surface area.
5. 결론

본 연구를 통하여 노르말-부탄의 직접 탈수소화 반응으로부터 고부가가치의 부텐 및 1,3-부타디엔을 생성하기 위한 촉매 개발을 수행하였다. 먼저 Pt/Sn/Al_2O_3 촉매를 기본으로 하여 담체의 산점을 조절하기 위해 알칼리 금속을 조촉매로 도입한 Pt/Sn/M/Al_2O_3 (M=Li, Na, K, Rb) 촉매를 순차적 함량법을 통해 제조하였고, X-선 회절 분석 및 ICP-AES, X선 광전자 분석을 통해 촉매의 재조를 확인하였다. 반응 실험 결과, Pt/Sn/Rb/Al_2O_3 > Pt/Sn/K/Al_2O_3 > Pt/Sn/Na/Al_2O_3 > Pt/Sn/Li/Al_2O_3 > Pt/Sn/Al_2O_3의 순서로 부텐과 1,3-부타디엔에 대한 선택도가 증가하였다. 촉매의 반응 활성과 산 특성과의 상관관계를 조사하기 위하여 암모니아 승온탈착 실험을 수행하였다. 그 결과, 산량이 적은 촉매일수록 목적 생성물의 선택도가 증가하고 반응 후 코크는 감소하는 것을 확인할 수 있었다. 다음으로는 활성금속의 활성을 증진시키기 위해 알칼리 금속 외에 다양한 전이금속을 Pt/Sn/Al_2O_3 촉매의 조촉매로 탐색하였다. Pt/Sn/M/Al_2O_3 (M=Zn, In, Y, Bi, Ga) 촉매는 순차적 함량법을 통해 제조하였고, X-선 회절 분석 및 ICP-AES, X선 광전자 분석을 통해 촉매가 성공적으로 제조된 것을 확인하였다. 반응 실험 결과, 반응 활성의 순서는 Pt/Sn/Zn/Al_2O_3 > Pt/Sn/In/Al_2O_3 > Pt/Sn/Y/Al_2O_3 > Pt/Sn/Bi/Al_2O_3 > Pt/Sn/Ga/Al_2O_3 순서로 나타났다. Zn 와 In 금속이 조촉매로 도입된 경우, 목적 생성물에 대한 수율이 증가했을 뿐 아니라,
비활성화 정도 또한 Pt/Sn/Al₂O₃ 촉매에 비해 감소하였다. 반응 활성의 원인을 설명하기 위하여, 승온환원 분석 및 수소 화학흡착 분석을 수행하였다. 분석 결과, 금속-담체간 상호작용이 강할수록 활성 금속의 입자크기는 감소하고 담체 위에 고루 분산됨으로써 우수한 반응 활성을 보이는 것을 확인하였다. 또한 6종의 촉매 중 Pt/Sn/Zn/Al₂O₃ 촉매가 직접 탈수소화 반응에서 가장 높은 활성을 보이며, 이로써 Zn 금속이 직접 탈수소화 반응용 촉매인 Pt/Sn/Al₂O₃ 촉매에 가장 적합한 조촉매라고 판단되어진다.

마지막으로 활성이 가장 우수하였던 Pt/Sn/Zn/Al₂O₃ 촉매에서 Zn 금속의 함량의 변화가 노르말-부탄의 직접 탈수소화 반응에 어떠한 영향을 주는지를 알아보기 위하여 Pt/Sn/XZn/Al₂O₃ (X=0, 0.25, 0.5, 0.75, 1.0) 촉매를 순차적 함침법에 의해 제조하였다. 제조된 촉매는 X-선 회절 분석 및 ICP-AES, X선 광전자 분석을 통해 촉매의 제조를 확인하였다. 반응 실험 결과, Pt/Sn/0.5Zn/Al₂O₃ > Pt/Sn/0.75Zn/Al₂O₃ > Pt/Sn/0.25Zn/Al₂O₃ > Pt/Sn/1.0Zn/Al₂O₃ > Pt/Sn/Al₂O₃의 순서로 반응 활성이 감소하였고, 즉 함량 변화에 따라 부탄 및 1,3-부탄디엔의 생성량은 화학형 곡선을 보였다. 특히, 금속-담체간 상호작용이 세고, Pt 표면적이 큰 촉매인 Pt/Sn/0.5Zn/Al₂O₃ 촉매의 경우, 가장 우수한 반응 활성을 보였고, Zn 함량이 0.5 wt% 이상에서는 Pt-Zn alloy 형성이 반응 활성을 저해하는 것으로 나타났다.

따라서 본 연구를 통하여, 노르말-부탄의 직접 탈수소화 반응에 사용되는 촉매인 Pt/Sn/Al₂O₃ 촉매에 가장 적합한 조촉매를 탐색하고, 촉매의
반응 활성과 금속-담체간 상호작용 및 활성금속의 표면적과의 상관관계를 규명할 수 있었다.
참고문헌

Abstract

A study on the direct dehydrogenation of n-butane over Pt/Sn/Al₂O₃ catalyst: Effect of promoter

Hyun Seo
School of Chemical and Biological Engineering
The Graduate School
Seoul National University

Catalysts for direct dehydrogenation of n-butane to n-butene and 1,3-butadiene were investigated in this work. A series of Pt/Sn/M/Al₂O₃ catalysts with different third metal (M = Li, Na, K, and Rb) were prepared by a sequential impregnation method, and they were applied to the direct dehydrogenation of n-butane to n-butene and 1,3-butadiene. Successful formation of Pt/Sn/M/Al₂O₃ catalysts was well confirmed by XRD, and ICP-AES measurements. Surface acidity of Pt/Sn/M/Al₂O₃ catalysts was measured by NH₃-TPD experiments. A correlation between catalytic performance and surface acidity of Pt/Sn/M/Al₂O₃ catalysts revealed that the catalytic performance increased with increasing surface acidity of the catalyst. In order to decrease deactivation rate of
Pt/Sn/Al$_2$O$_3$ catalysts, various transition metals were also investigated as a promoter of Pt/Sn/Al$_2$O$_3$ catalysts. A series of Pt/Sn/M/Al$_2$O$_3$ catalysts with different third metal (M = Zn, In, Y, Bi, and Ga) were prepared by a sequential impregnation method with a variation of promoter (M), and they were applied to the direct dehydrogenation of n-butane to n-butenes and 1,3-butadiene. Successful formation of Pt/Sn/M/Al$_2$O$_3$ catalysts was well confirmed by XRD, ICP-AES, and XPS measurements. Metal-support interaction was measured by TPR experiments, and Pt surface area was measured by H$_2$-chemisorption experiments, respectively, to elucidate the effect of metal-support interaction and Pt dispersion on the catalytic performance in the reaction. Amount of n-butenes and 1,3-butadiene increased with increasing both metal-support interaction and Pt surface area of the catalysts. Among the catalysts tested, Pt/Sn/Zn/Al$_2$O$_3$ catalyst also showed the best catalytic performance in the direct dehydrogenation of n-butane. In order to investigate the effect of zinc content on the physicochemical properties and catalytic activities of Pt/Sn/Zn/Al$_2$O$_3$ catalysts, a series of Pt/Sn/XZn/Al$_2$O$_3$ catalysts with different zinc contents (X = 0, 0.25, 0.5, 0.75, and 1.0) were prepared by a sequential impregnation method with a variation of Zn content (X, wt%). Successful formation of Pt/Sn/XZn/Al$_2$O$_3$ catalysts was confirmed by XRD, ICP-AES, and XPS measurements. Metal-support interaction was measured by TPR experiments, and Pt surface area was measured by H$_2$-chemisorption experiments, respectively, to elucidate the effect of metal-support interaction and Pt dispersion on the catalytic performance in the reaction. Correlations between catalytic performance and TPR peak temperature, and between catalytic performance and Pt surface area revealed that the catalytic performance increased with increasing metal-support interaction and Pt surface area. Thus, both metal-
support interaction and Pt surface area of the catalysts played important roles in determining the catalytic performance in the direct dehydrogenation of n-butane to n-butene and 1,3-butadiene. Among the catalysts tested, Pt/Sn/0.5Zn/Al₂O₃ catalyst, which retained the strongest metal-support interaction and the highest Pt surface area, showed the best catalytic performance in terms of yield for TDP and conversion of n-butane. Suitable addition of Zn (0.5 wt%) can reduce the size of the platinum ensembles by geometric effect, thus increasing the Pt surface area. However, when the content of Zn is excessive, the character of active metal has been modified by the formation of PtZn alloy and the decrease of Pt surface area is observed.

Keywords: Direct dehydrogenation, n-Butane, n-Butene, 1,3-Butadiene, Platinum-tin catalyst, Promoter

Student Number: 2012-23267