저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

- 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건을 명확하게 나타내야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer
도시계획학 석사학위논문

손실분포법을 이용한
국내기상재해의 최대피해가능 금액
추정연구
-공공시설 피해를 중심으로-

2013년 2월

서울대학교 환경대학원
환경계획학과
강 범 서
국문초록

최근 우리나라의 기후변화로 인해 자연재해의 피해의 정도와 규모가 급속하게 증가하고 있다. 하지만 아직도 정부 및 대다수의 국민들은 자연재해 현상을 일시적인 재난으로 간주하여, 재난복구비용의 상당액을 추경예산에 의존해서 마련했다. 그러나 2002년 태풍 '루사'의 경우 4조원 이상의 피해액이 발생하였고 2010년 까지 단일 기상재해로 인한 총 피해액이 1조원 이상인 것은 총 4건이고 기후변화로 인한 한반도지역 기후온난화에 따라 자연재해의 빈도가 증가될 것으로 예상되는 현시점에서 구체적인 재해복구비용 계정확충 방안이 없을 경우, 적시적인 피해복구에 차질이 생기게 된다.

따라서, 본 연구에서는 금융기관의 운영리스크의 관리기법 중인 하나인 손실분포법(LDA)을 이용하여 국내 공공시설의 기상재해로 인한 최대손실 가능 금액 추정 및 모형검토를 실시하였다. 연구결과 국내 기상재해의 경우 '최대우도함수방법'을 이용할 경우 분포분포는 포아송 분포, 피해액 분포는 로그노말 분포에 적합성을 보였다. 이 두 분포를 이용해, 본태카를 류 시뮬레이션을 통한 99.9%의 최대손실가능금액은 평균 198조원으로 추정되었다. 최대우도함수방법이 아닌 베이지안 통계이론에 따른 마코프체인 본태카를로 시뮬레이션을 이용해 심도분포의 모수를 추정하여 손실분포법을 적용한 경우, 99.9% 최대손실가능금액이 15조원이 감소되어 187조원이 되었다.

이렇게 백분위수 99.9%에서의 금액이 수백조원으로 나타나는 문제가 해결하기 위해 발생된 피해액난수들의 합의 분포를 이용하는 손실분포법 이 아니라 피해액 난수의 평균값이 나타내는 분포를 이용한 결과 99.9%에서의 금액이 16조 3천억 원으로 나타났다.

◆ 주요어 : 자연재해, 손실분포법, 본테카를로, 마코프체인-본테카를로, 메트로폴리스-헤스팅스 알고리즘

◆ 학 번 : 2011-22300
<table>
<thead>
<tr>
<th>영문약어</th>
<th>영문명칭</th>
<th>한국어</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD test</td>
<td>Anderson Darling test</td>
<td>엔더슨 달링 검정</td>
</tr>
<tr>
<td>C.V</td>
<td>Critical Value</td>
<td>임계값</td>
</tr>
<tr>
<td>GEV</td>
<td>Generalized Extream Value</td>
<td></td>
</tr>
<tr>
<td>KS test</td>
<td>Kolmogorov sminov test</td>
<td>콜모고로프 스미노프 검정</td>
</tr>
<tr>
<td>LDA</td>
<td>Loss Distribution Approach</td>
<td>손실분포법</td>
</tr>
<tr>
<td>Lognorm.</td>
<td>Log Normal Distribution</td>
<td>대수정규분포</td>
</tr>
<tr>
<td>Logp 3.</td>
<td>Log Pearson Type3 Distribution</td>
<td></td>
</tr>
<tr>
<td>MC</td>
<td>Monte Carlo Simulation</td>
<td>몬테카를로 시뮬레이션</td>
</tr>
<tr>
<td>MCMC</td>
<td>Marcov–Chain Monte Carlo Simulation</td>
<td>마코프체인 몬테카를로 시뮬레이션</td>
</tr>
<tr>
<td>MH smapling</td>
<td>Metropolis Hasting Sampling</td>
<td>메트로폴리스 해스팅 추출</td>
</tr>
<tr>
<td>MLE</td>
<td>Maximum Likelihood Estimation</td>
<td>최대우도함수법</td>
</tr>
<tr>
<td>Nbin.</td>
<td>Negative Binomial Distribution</td>
<td>음이항분포</td>
</tr>
<tr>
<td>Pois.</td>
<td>Poisson Distribution</td>
<td>포아송분포</td>
</tr>
<tr>
<td>VaR</td>
<td>Value at Risk</td>
<td>최대손실가능금액</td>
</tr>
</tbody>
</table>
목차

Ⅰ. 서론 ... 1
 1. 연구의 배경 및 목적 ... 1
 1) 연구의 배경 ... 1
 2) 연구의 목적 ... 2
 2. 연구의 범위 ... 4
 1) 연구의 대상 ... 4
 2) 연구 자료 ... 5
 3. 연구의 방법 ... 6
 4. 연구 흐름도 ... 10

Ⅱ. 이론적 배경과 선행 연구의 고찰 ... 11
 1. 이론적 배경 ... 11
 1) 손실분포법 ... 11
 2) 분포의 추정방식 ... 12
 (1) 고전적 분포 추정방식 ... 13
 (2) 베이지안 추정방식 ... 14
 3) 추정분포의 적합성 검증 ... 17
 (1) Kolmogorov-Sminov Test ... 18
 (2) Anderson-Darling Test ... 18
 4) 주요 확률분포 ... 18
(1) 이산형 확률분포
(2) 연속형 확률분포

2. 기존연구의 고찰
1) 기상재해 대응분야
2) 자연재해 리스크관리분야
3) 운영리스크 관리 방법론

III. 데이터의 기초적 분석
1. 빈도데이터
2. 심도(피해액)데이터

IV. 데이터분포의 추정
1. 빈도데이터 분포의 추정
 1) MLE 방식의 추정
 2) MH Sampling 방식의 추정
 3) 소결론
2. 심도 데이터 분포의 추정
 1) MLE 방식의 추정
 2) MH Sampling 방식의 추정
 (1) 분산모수를 알고, 평균모수만을 추정
 (2) 분산모수와 평균모수 모두추정
 3) 소결론
3. 데이터 분포의 추정결과 검토
V. 손실분포법을 통한 VaR 추정 60

1. MLE방식 추정분포를 이용한 LDA결과 61
 1) Poisson-Logpearson Type3. LDA결과 61
 2) Negative Binomial-Logpearson Type3. LDA결과 62
 3) Poisson-Lognormal(3P). LDA결과 63
 4) Negative Binomial-Lognormal(3P). LDA결과 64
 5) Poisson-Lognormal. LDA결과 65
 6) Negative Binomial-Lognormal. LDA결과 66

2. MCMC 방식추정 분포를 이용한 LDA결과 67
 1) Poisson-Lognormal(MH Sampling \(\mu_t\) 추정). LDA결과 67
 2) Poisson-Lognormal(MH Sampling \(\mu_t,\sigma_t\) 추정). LDA결과 . 68

3. 추정방식에 따른 LDA결과비교 69

4. LDA모형의 현실적합성 고려 70

VI. 결론 ... 72

1. 연구의 요약 .. 72

2. 연구의 한계 및 향후과제 ... 76

■ 참고문헌 ... 78
<부 록>

1. 2010년 기준 연도별 생산자 물가지수
2. 기상재해별 공공시설 피해액
3. Pois.-Logp3. LDA Simulation 결과
4. Nbin.-Logp3. LDA Simulation 결과
5. Pois.-Lognorm(3P). LDA Simulation 결과
6. Nbin.-Lognorm(3P). LDA Simulation 결과
7. Pois.-Lognorm. LDA Simulation 결과
8. Nbin-Lognorm. LDA Simulation 결과
9. Pois- MCMC Lognorm(1). LDA Simulation 결과
10. Pois- MCMC Lognorm(2). LDA Simulation 결과
11. Pois- MCMC Lognorm(2). 평균을 이용한 Simulation 결과
<표 차례>

<표 1> 연도별 기상재해 빈도 ... 31
<표 2> 빈도분포 MLE 추정 검정결과 .. 34
<표 3> 빈도분포 MLE 추정 검정결과 .. 34
<표 4> 심도 데이터의 MLE 추정결과 .. 41
<표 5> 연도별 로그정규분포 모수의 MLE추정 결과 46
<표 6> μ분포’π(μ)’ 의 MLE 추정결과 .. 47
<표 7> MLE, M-H Sampling 방식의 추정모수 비교 51
<표 8> MLE, M-H Sampling 방식의 추정모수 통계량 비교 51
<표 9> α분포’π(α)’ 의 MLE 추정결과 .. 52
<표 10> MH-Sampling 결과 ... 55
<표 11> MLE, M-H Sampling 방식의 추정모수 비교 57
<표 12> MLE, M-H Sampling 방식의 추정모수통계량 비교 57
<표 13> MLE, MH Sampling 방식의 추정모수 비교 58
<표 14> 추정된 분포를 이용한 LDA시뮬레이션 결과 평균 값 69
<표 15> 심도분포 발생단수들의 평균을 사용한 결과 71
<표 16> 연간피해액 1조원이상인 해의 대재해 피해액 비율 75
<그림 차례>

<그림 1> 기상재해 피해 만도 히스토그램 .. 32
<그림 2> 기상재해 피해액 ... 32
<그림 3> 기상재해 피해액 히스토그램 .. 33
<그림 4> P-P Plot ... 35
<그림 5> Negative Binomial Distribution ... 35
<그림 6> Poisson Distribution ... 35
<그림 7> ’H₀: λₜ=λ’에 대한 가설검정 결과 ... 37
<그림 8> 모수(λₜ)의 M-H Sampling결과 .. 38
<그림 9> 심도 데이터 Log-Normal MLE 추정 ... 41
<그림 10> 심도 데이터 Log-Normal(3P) MLE 추정 42
<그림 11> 심도 데이터 Log-Pearson3 MLE 추정 42
<그림 12> 심도 데이터 Log-Normal Q-Q Plot 42
<그림 13> 심도 데이터 Log-Normal(3p) Q-Q Plot 43
<그림 14> 심도 데이터 Log-Pearson3p Q-Q Plot 43
<그림 15> 7개년도 값을 제외한 0ₜ의 추세 .. 45
<그림 16> 연도별 μₜ의 추세 .. 45
<그림 17> μₜ분포’π(μₜ)’의 MLE 추정 ... 47
<그림 18> GEV분포의 Q-Q plot ... 48
<그림 19> Random Walk MH Sampling 결과 49
<그림 20> MH Sampling 결과를 확대한 모습 50
<그림 21> 가설 H₀: E(μₜ) = μ 의 T-test결과 50
<그림 22> a_t분포'π(a_t)'의 MLE 추정 .. 52
<그림 23> GEV분포의 Q-Q plot ... 53
<그림 24> μ_t의 Random Walk MH Sampling 결과 55
<그림 25> τ_t의 Random Walk MH Sampling 결과 55
<그림 26> 가설 $H_0: E(\hat{\mu}) = \mu$ 의 T-test결과 56
<그림 27> 가설 $H_0: E(\hat{\sigma}) = \sigma$ 의 T-test결과 56
<그림 28> 연간 기상재해 피해액 히스토그램 60
<그림 29> Poisson-Logpearson Type3 LDA 결과 61
<그림 30> Neg.Binomial-Logpearson Type3 LDA 결과 62
<그림 31> Poisson-Lognormal (3P) LDA 결과 63
<그림 32> Neg.Binomial-Lognormal (3P) LDA 결과 64
<그림 33> Poisson-Lognormal LDA 결과 65
<그림 34> Neg.Binomial-Lognormal LDA 결과 66
<그림 35> Poisson-MCMC Lognormal(1) LDA 결과 67
<그림 36> Poisson-MCMC Lognormal(2) LDA 결과 68
Ⅰ. 서론

1. 연구의 배경 및 목적

1) 연구의 배경

지금까지 기후변화 문제에 대해서는 기온상승을 억제하기위한 원인인 온실가스 배출량 감축을 위한 제도 및 국가, 산업분야별 배출량 감축할당량 책정 등의 문제가 주로 논의되었다. 하지만 기후변화에 따른 극심해지는 사회, 경제적인 문제를 겪게 되면서 근본에서야 정부와 학계를 중심으로 기후변화에 따라 직면하는 국가경제 및 개인생활에 미치는 영향사례에 대한 분석과 이에 대응하기 위한 논의로 확장되고 있는 상황이다.

우리나라의 경우 예전까지는 온대기후대의 특성상 기상재해에 대한 위협노출정도가 비교적 낮았으며 발생빈도도 특정시기(5월~9월)에 집중되어 기상재해의 위험에 대한 국가적 인식은 저조하였다. 그런 이유로 기존 손실에 기반해 집중호우 및 태풍 등의 기상 재해에 취약한 시설물 보강, 재해피해의 구조 및 구호에 필요한 장비·인력확충 부분등 재해관리의 기초적 부분에만 집중했음을 뿐 기후변화에 대한 기상재해의 강도심화의 문제까지 고민하지 못하였다.

사회구조 및 경제가 성장할수록 재해나 재난이 미치는 파급 효과는 예전보다 증가하고 그 양상도 복잡하게 되고 있다. 특히 대한민국의 경우 단기 압축 성장정책으로 인해 외형적 성장지표를 중시한 가담에 변가 및 전략적 리스크관리에 대한 역량은 아직 선진국의 요건에 부합되기는 어렵다고 판단된다. 더욱이 아직 관련학계에서 조차 국가적인 자연재해 리스크 동을 측정 및 관리하는 체계적인 방법론에 관한 연구가 미흡한 상황이다.

따라서 본 연구에서는 그동안 우리사회가 아직 깊이 있게 고민하지 못한 자연재해 중 기상재해의 심각성을 인지하여 그 리스크에 대해 다루보고자 한다.

2) 연구의 목적

보험제도의 특성상 재해가 동일한 지역에 집중적으로 발생해 위험의 상관성이 높은 기상재해는 위험사산의 효과가 극히 낮고, 공공시설과 같은 공익 목적성은 높고 도로 및 철도와 같이 진국법 위의 시설은 소유 및 권리관계분석이 복잡해 공공시설물의 기상재해 피해에 대한 보험 상품의 성립 가능성이 극히 낮다. 하지만 안정적인 국가운영 및 국민생활의 지향이 없도록 하기 위해서는 이에 대한 대비가 필요하다.
따라서 본 연구는 기상재해로 인한 국가재산 및 시설이 일게 될 최대피해규모를 통계학적 방법과 시뮬레이션을 통해 추정할 것이다. 이를 통해서 국가적으로 기상재해 리스크관리에 필요한 자본량을 결정하는 정책참고자료 제시뿐만 아니라 기상재해로 인한 국가 시설의 피해복구에 필요한 재원규모 추정에 도움이 되고자 한다.

지난 2008년 전 세계적인 금융위기를 겪으며 전 세계적으로 주요 금융기관들은 전통적인 리스크 관리 분야인 시장 리스크와 신용 리스크 뿐만 아니라 운영 리스크(Operational Risk)의 관리도 자본 시장의 안정성 확보를 위해서 요구받고 있다.1) 그런 이유로 현장 및 학계에서도 이 운영리스크 추정 및 관리를 위한 여러 방법들이 개발 및 연구되고 있다.

정규분포를 가정하는 시장·신용 리스크와는 달리 운영리스크에 해당하는 사고의 유형은 빈도(Frequency)는 많지만 피해액이 작은 사고와 반도는 극히 낮지만 피해액이 매우 큰 사고가 혼재되어 있는 특성이 있다. 이는 기상재해의 발생양상과 상당한 유사성을 지니고 있어 기상재해로 인한 리스크 평가에 있어 유용한 방법론이 될 수 있다고 판단된다.

운영리스크 측정의 고급관리기법 (AMA: Advanced Measurement Approach)으로는 스코어 카드법과 손실 분포법이 있다. 스코어카드 법이란 운영리스크에 대한 기초 소요자본량을 결정한 뒤, 개별적인 리스크 요소별로 가중치를 부여한 점수표를 이용해서 각 소요 자본량에 점수표의 가중치를 곱한 합산해 소요자본량 부과액을 수정하는 방법이다. 손실분포방법은 기존 데이터의 확률분포를 추정하고 이 분포를 이용해 몬테카를로 시뮬레이션을 진행시켜 운영리스크에 대한 소요자본량을 구하는 방식이다.

1) 금융회사의 운영전략 및 내부설계의 사례, 회계, 베타 등의 사고 및 외부적 요인으로 인한 손실위험
따라서 본 연구에서는 보험통계방법론에 기반한 운영리스크 관리기법 중 한 가지 방식인 손실분포추정법(LDA)방식을 도입하여 국내 기상재해의 리스크 평가에 적합한 모형과 방식을 연구하며, 그 방법을 기초로 자연재해로 인한 최대손실가능금액(VaR)을 추정하고자 한다.

2. 연구의 범위

1) 연구 대상

본 연구에서 다루고자 하는 자연재해는 우선 기상재해로 국한 시키고자 한다. 자연재해에는 지진, 해일, 태풍, 호우 등 여러 가지의 형태로 발생하지만 대한민국의 경우 역사적으로 지진, 해일 등의 현상으로 인한 인명·재산 손실이 기록된 사고가 없는 상황이라 분석에 제한이 있다. 따라서 우리에게 가장 익숙한 자연재해인 기상재해로 그 범위를 한정한다.

기상재해에 따른 피해대상도 인명피해가 아닌 재산피해로 한정하고자 한다. 재해로 인한 피해 중 가장 큰 것은 인명피해이다. 하지만 이를 화폐단위로 환산하여 분석하는 것은 윤리적 논쟁 및 방법론 적용이 복잡하다. 더불어 단순 사상자 및 실종자에 대해 집계된 수치를 분석하여 그 경향을 살피는 것은 본 연구의 논점에서 벗어나기 때문에 재산피해로 한정한다.

재산상의 손실부분에 있어서도 다시 사적재산의 손실과 공공재산 손실로 구분할 수 있다. 특히 사적재산의 경우 사적자치의 원칙에 따라 개인복구가 기본이며 국가가 지원은 자선이다. 실제로도 도 개인재산의 피해복구 비용은 국가지원 보다 상당부분이 자비복구 형태로 귀착 된다. 반면, 공공재산의 피해의 경우 그 피해액 및

2) 국가에서 지급되는 지원금은 성격상 복구지원비보다 위로금의 형태이며, 복구지원비의 경우에도

- 4 -
복구비용은 고스란히 국가의 부담으로 귀결이 되며, 실제 피해 데이터를 살펴봐도 상당 수 피해가 집중되는 부분이 농작물과 공공 재산 피해에 집중되어있다. 따라서 논의의 명확성을 위해 본 연구에서는 기상재해로 인한 재산상의 손실 중 공공재산의 손실을 그 대상으로 할 예정이다. 3)

연구대상의 공간적 범위는 휴전선 이남의 한반도 및 부속도서로 2010년의 행정구역상 1개의 특별시, 6개의 광역시, 8개의 도, 1개의 특별자치도이다. 시간적 범위의 경우 총 26개년이며, 하지만 기온상승으로 인한 국내 기상재해의 발생 및 변화양상을 반영하고 데이터 수집과정에서의 신뢰성과 일관성을 고려해야 하기 때문에 1985년부터 2010년까지의 기상재해 피해데이터를 사용할 예정이다.

2) 연구 자료

위의 연구 대상조건을 충족하는 자료를 선정한 결과 소방방재청에서 매년 발간하는 재해연보를 기준으로 선정하고자 한다. 데이터의 선정기간은 1985년부터 2010년까지 총 26개년이다.

과정 자료의 선정 이유는 특정주체에 대해 연도별 자료를 동일기관에서 지속적으로 작성 및 배포하고 있어 자료수집 및 선정의 일관성과 신뢰성이 보장된다. 그리고 기상재해 현상에 대한 지역별, 항목별, 유형별 피해현황이 상세히 기술되었으며, 국가기관에서 발행하는 자료로 그 왜곡 및 정보의 누락이 사설기관의 자료에 비해 적다고 판단되며 그 피해액 단위가 ’천원 단위’까지 구체적으로 명시가 되어있기 때문이다. 이와 같은

저금리의 장기상환 대출형태로 이뤄진다. 3) 박종식(2007)연구를 통해 살펴보아도 기상재해의 총 피해액과 공공시설 피해액간의 상관관계가 0.95로 다른 피해항목들보다 가장 높게 나타났다.
이유로 다른 자료들에 비해 연구결과의 신뢰성을 낮보할 수 있다.

사용하는 자료는 해당기간동안 발생한 기상재해 중 공공시설 피해를 입힌 기상재해 수와 그 피해액이다. 해당 기간 동안 정부가 집계한 피해액 항목에는 점수면적, 건물, 선박, 농경지, 농작물, 공공시설, 기타로 분류되어있다.

이 중 점수면적의 경우 단위가 화폐단위가 아닌 면적(ha) 단위로서 산입이 불가능하다. 공공시설을 제외한 다른 항목의 경우 사유재산과 국유재산이 혼재되어 있는 상황이라 이에 대한 구체적인 데이터를 확보해 분류하지 않는 상황에서는 본 연구의 방향성을 살릴 가능성이 크다. 각 항목별 피해의 경우 소유내용을 구체적으로 명시한 자료를 확보하는 것이 제한이 있다. 따라서 본 연구에서는 공공시설 피해 자료만을 사용할 예정이다.

제공된 자료의 집계된 피해액의 경우 당해년도 화폐액이다. 이 자료 그대로 피해액을 분석할 경우 각 시기간의 화폐의 구매가치가 다르기 때문에 동일비교 시 문제가 발생된다. 따라서 본 연구에서는 2010년도 생산자물가지수와를 토대로 모든 피해액을 2010년도 화폐가치로 변환시켜서 활용할 예정이다.

3. 연구의 방법

본 연구는 앞서 설명한 대상에 해당하는 공공시설에 대한 연간 기상재해 피해빈도, 개별 기상재해에 따른 손실액 자료로 나누어 통계적으로 적합한 분포를 추정하고 추정된 분포에서 난수를 생성하는 모의실험 방식을 이용할 것이다. 이런 모의실험 방식은 실제 기상재해사례의 분석과 예측하는데 있어 기상학, 수문학, 건축학 및

4) 부록 1. 참조
보험업 등에서 자주 사용하는 방식이다.

기상재해의 경우 특정재해를 인위적으로 반복하는 실험을 할 수 없으며 그 발생결과도 정형적인 몇 가지 설명변수만으로는 해석하기가 힘든 복잡세의 특성을 지니고 있다. 기상재해의 발생형태와 피해규모 또한 보편적으로 상관성이 있지만 그것이 필연적이고 가역적으로 발생하는 것이 아닌 확률적이고 비가역적 현상이기 때문에 통제된 환경에서 몇 가지의 설명변수만을 가지고 이를 재현해 분석하는 것이 불가능하다.

이런 한계점을 극복하기 위해 기존까지 발생하였던 기상재해 데이터에 기초하여 이를 확률변수를 포함하도록 모형화시켜 수많은 모의실험을 통해 나오는 결과를 대수법칙과 중심극한정리를 이용해 수렴 값을 찾아 그 피해규모 및 범위를 예측한다.

본 연구에서는 이런 기상재해의 복잡계적 특성과 확률적 현상 이란 점을 고려해서 기존의 계량적 접근법처럼 설명변수를 찾고 데이터와 설명변수간의 설명력을 찾아 모형을 구성해 예측을 하는 회귀분석적방식이 아닌 각 데이터가 따르는 분포를 추정하고 이를 이용해 난수를 발생하는 모의실험인 몬테카를로 시뮬레이션을 통해 피해액을 예측하는 방식을 사용할 것이다.

본 연구에서 사용하는 모형은 기존의 기상재해에 따른 피해액과 그 발생빈도의 데이터가 따르는 확률분포에서 각각 난수를 발생시켜 나타난 결과를 조합해 얻어진 가상의 피해액분포에서 각 백분위수에 대한 값을 찾아내는 시뮬레이션 방식을 활용할 예정이다.

하지만 난수발생 시뮬레이션 방식의 경우 매 시뮬레이션들의 결과 값에 대한 신뢰성 및 각 시뮬레이션의 재현성에 대한 근본적 문제점이 발생하기 때문에 본 연구에서는 여러 차례의 동일한 시뮬레이션을 반복해 각각의 시뮬레이션 결과 값들의 평균값을 사용할 예정이다.
난수발생 시뮬레이션을 하기 전 난수를 발생시키기 위한 기상 재해의 민도 및 피해액 데이터가 따르는 분포를 추정해야 한다. 본 연구에서는 보험업 및 리스크관리 분야에서 자주 활용하는 몇 가지 확률분포를 이용해서 최대 우도 환수법을 사용해 각 분포의 모수를 추정하는 전통적인 방식과 추정하는 모수를 고정된 상수가 아닌 확률변수로 생각하고 모수가 따르는 확률분포와 데이터가 따르는 확률분포 두 가지를 이용하는 테이지안 통계방식을 활용해 모수를 추정하고자 한다.

각 추정방식으로 얻어진 분포들의 타당성은 비모수적 검정방법을 사용해 살펴볼 것이다. 본 연구에서 사용될 비모수적 추정방식은 콜모고로프 스미노프 검정법, 엔더슨 달링 검정법, 카이제곱 검정을 사용할 것이다. 각 방식을 이용해 추정된 분포는 데이터가 나타내는 분포를 따른다는 가설검정을 통해 적합성 여부를 검토할 것이다.

적합성 검도를 거쳐 적합성을 나타내는 확률분포를 이용해 시뮬레이션을 진행한다. 이때 우선 추정된 민도분포에서 난수를 발생시키고 그 값에 해당되는 수치만큼 추정된 피해액 분포에서 난수를 발생시켜 그 결과값을 합한 것을 1년간 발생한 가상의 기상 재해 피해총액으로 정한다. 이런 가상의 연간 총 피해액을 10,000회에 걸쳐 반복적으로 생성하고 그 총 피해액이 나타내는 누적분포에서 90%, 95%, 99%, 99.9%의 백분위 수에 해당하는 피해액을 구하고, 이 과정을 1회의 시뮬레이션으로 정의한다.

본 연구에서는 총 50회의 시뮬레이션 통해 얻은 각 백분위수에 해당하는 값들의 평균값을 구하고 그 평균값을 결과 값으로 활용하여 각기 다른 분포추정방식의 효용성 및 정확성을 분석하고 가장 현실을 잘 반영한 분포모형을 채택할 것이다.

연구에서는 시뮬레이션 및 분포추정 및 검정에 수리해석 프로그램을 사용할 것이다. 각 부분별 사용프로그램을 소개하면
분포의 추정, 의사나누방생과 추정분포의 비모수적 검정에는 Matlab R2012a (Mathwork)과 Easyfit 5.5 Professional (Mathwave)를 주로 활용할 것이며, MH-Sampling에는 Matlab R2012a (Mathwork) 와 OpenBUGS Ver.3.2.2 (Members of OpenBUGS Project management group)을 사용할 것이고, LDA 시뮬레이션에는 Matlab R2012a (Mathwork)을 사용할 것이다.
4. 연구 흐름도

I. 표본(Data)의 수집 및 조정, 기초 통계분석

II. 변도와 심도 분포의 추정
(MLE 방식, MCMC방식)

III. 추정된 분포의 적합도 검증
(χ^2-test, K-S test, A-D test 등)

IV. 적합성이 높고 프로그램에서 지원 분포를 이용한 시뮬레이션
(MLE추정 분포의 MC, M-H Sampling 추정 분포의 MC)

V. LDA시뮬레이션 결과분석 및 결론도출
Ⅱ. 이론적 배경과 선행연구의 고찰

1. 이론적 배경

1) 손실분포법 (LDA)

이 방법론은 이번 연구의 핵심적인 방법론으로서 리스크관리 및 보험업에서 사고에 대한 예상 손실액 평가 시 사용하는 방식이다. 운영리스크관리 부분에 대한 학술적 연구에서 가장 많이 다뤄지는 기법으로 보험사나 은행 등의 영업기관에서 기존에 발생한 실제적인 사고의 데이터에 기초하여 통계학적인 분석방법을 사용한다. 때문에 운영리스크에 대한 다른 평가 방식들에 비해 상당히 설명력과 논리성을 가지고 있는 방식이다.

이 방식의 수행단계는 다음과 같다. 첫 단계로 일정기간(보통 1년) 동안 발생하는 개별사고의 총합인 연간 사고발생빈도 자료가 나타내는 분포와 개별 사고의 피해액이 나타내는 분포를 다년간 누적된 데이터에 기초하여 추정한다. 보통 이때 사용되는 분포의 추정 방식은 최우도함수법(MLE)을 이용하여 각 분포의 모수를 설정한다.

두 번째 단계는 추정된 분포가 표본분포에 적합한지를 통계적 검정하는데 주로 사용되는 검정방식은 χ²-test, Kolmogorov-Smirnov test, Anderson-Darling test, Cramer-von Mises test 등이 사용된다. 상기의 검정을 통해 가장 적합성이 높은 분포를 다음 단계에서 이용한다.

세 번째 단계는 검정을 통해 선택된 연간 사고빈도수 분포에서 원하는 회수만큼의 난수를 발생시킨다. 그런 다음 개별적으로 뽑힌 난수에 해당하는 수치만큼을 추정된 손실 분포에서 재해액(개별심도)을 추출하여 합산한다.(즉, 가상의 연간 사고발생 총액을 만든다) <식 1>
\[S = \sum_{i=1}^{N} X_i \quad \text{여기서} \quad X_i(\text{연속형 확률 변수}) ; \quad N(\text{자연수, 이산형 확률 변수}) ; \quad \text{빈도단수} \]

각각의 단계는 다음과 같다.

1) 세 번째 단계 개념(Panjer Recursion)의 수식화

마지막 세 번째 단계는 빈도분포에서 생성된 난수 개수만큼의 총 피해액을 기초로 새로운 총 손실분포를 발생시키고 이 분포에서 누적확률의 일정 값(보통, 은행의 경우 99.9%)에 해당하는 금액을 VaR로 추정한다.<식 2>

\[F_x(x) = P(S < x) = \sum_{n=0}^{\infty} h(n) P(S < \frac{x}{N} = n) = \sum_{n=0}^{\infty} h(n) f(n)(x) \]

\(h(n) \) : 난수사건 발생할 확률이상
\(x \) : 특정수준

2) 분포의 추정방식

LDA방식은 추정된 빈도와 심도의 분포를 이용한 본테카를로 시뮬레이션 방식의 일종으로 데이터의 분포에서 어떤 표본을 한개 무작위로 뽑아낸 뒤, 다시 그 표본이 뽑히는 가능성이 있더라도 무작위로 표본을 뽑아내서 임의의 데이터를 만들어 내는 시뮬레이션 기법이다. 이렇게 만들어진 표본들은 당연히 매 횟수마다 조금씩 차이를 보이게 된다.

2) 분포의 추정방식

LDA방식을 적용하기에 앞서, 본 연구에서는 데이터로부터 기상 재해의 빈도와 심도에 대한 모집단의 분포를 추정해야 한다. 데이터에 기초하여 분포를 추정하는 방식은 크게 모집단의 분포를 몇 가지 확률 분포형태로 가정하여 데이터를 이용해 분포의 모수(\text{Parameter})를 추정하는 진통적인 방식(고전적 통계학으로 여기서 모수는 하나의 상수로 취급한다.)과 모수 또한 확률변수로 놓고 모수에 대한 정보

\(^{5)}\) 난수실험.
맞나 데이터 자료에 기초해 모수를 추정하는 방식인 베이즈 통계학으로 나올 수 있다.

(1) 고전적 분포추정방법

고전적 통계학에서는 주어진 데이터(표본)가 속한 모집단 분포의 모수를 추정하기 위해 크게 3가지의 추정방식을 사용한다. 각 방식은 적률방식(Method of Moment : MOM), 최대우도함수(MLE), 최소제곱방식(the Least-Squares Method: LS)이다. 이렇게 추정된 표본 모수들은 동일한 실험을 무수히 반복해 표본의 수가 많아질 경우 대수의 법칙과 중심극한이론에 의해 모집단 모수의 참값에 수렴하는 특성이 있다. 이론 고전적 방식에서는 모수를 하나의 상수로 간주하여 추정된 데이터의 정보만으로 모수를 추정하게 된다.

MLE방식에서 분포의 추정에 가장 많이 사용되는 것이 MLE방식으로 다른 방식들에 비해, 분포의 모수추정에 제한이 가장 적은 방식이다. 따라서 본 연구에서는 MLE방식을 이용해 표본 집단의 모수를 추정할 것이다.

MLE 방식이란 다음과 같은 확률변수 \((Y_1, Y_2, \ldots, Y_T)\)들의 분포함수가

\[f_t(y_1, y_2, \ldots, y_T|\theta), \theta \in \Omega \text{처럼 표현될 때(여기서, } \Omega \text{는 모수 공간)} \]

우도함수는 \(l(\theta|Y_1, Y_2, \ldots, Y_T) = f_t(Y_1, Y_2, \ldots, Y_T|\theta) = \prod_{t=1}^{T} f(Y_t|\theta)\)로 정의한다. (단 마지막 동식은 \(f_t(Y_T|\theta)\)이 독립일 경우 성립)

이때 우도함수를 최대로 하는 \(\theta\)값 Max_\theta [l(\theta|Y_1, Y_2, \ldots, Y_T): \theta \in \Omega]로 정의한다. (이를 만족시키는 \(\theta\)의 조건은 \(FOC: \frac{\partial l}{\partial \theta} = 0, SOC: \frac{\partial^2 l}{\partial \theta^2} < 0\)

6) MOM의 경우, MGf(Moment Generate Function)가 존재하지 않는 분포(대표적 Cauch)추정에 제약이 있으며 LS방식도 표본의 기댓값을 구하기에 제한이 가중한다.
이다.) 즉, FOC와 SOC를 동시에 만족시키는 \(\theta \)를 찾아내는 것이 바로 MLE방식이다.

(2) 베이지안 추정방법

위에서 설명한 고전적 분포추정방식의 경우 확률이란 것을 동일조건의 실험을 무한히 반복해 특정 사건이 일어날 비율인 상대도수의 수렴 값으로 해석한다. 하지만 대부분의 실제 자연 현상 및 사회현상의 경우 동일조건에서 무수한 반복이 불가능한 경우이다. 이런 현상에 대해 특정 사건이 발생할 확률은 경험으로 축적된 경보나 및 주관적 견해를 통해 판단한다.

이렇게 객관적인 상대도수의 수렴 값뿐만 아니라 주관적 정보를 활용하는 것이 베이즈 통계학(Bayesian Statics)이다. 이번 연구에서 MCMC방식을 도입하는 가장 큰 이유는 기상재해 현상이 동일한 조건으로 무수히 반복할 수 있는 것이 아니기 때문이다. 일단 재해가 발생한 다음 피해에 관한 데이터가 사후적으로 얻어지는 것이 때문에 기상재해의 피해액 데이터의 확률 분포의 모수가 객관적인 상대도수 값으로 수렴한다는 조건을 충족시키기 힘들다. 따라서 이런 문제점을 극복하려면 그동안 연간기상재해를 바탕으로 모수의 변화와 관련된 정보도 사용할 필요가 있기 때문이다.

베이즈 통계학에서는 모수를 고정된 상수가 아닌 확률변수로 취급한다. 모수의 추정에 있어 데이터에 대한 정보뿐만이 아니라 기존의 모수가 갖는 정보를 활용해서 고전적 분포추정방식보다 활용하는 정보가 더욱 많아지게 된다. 단 모수가 갖는 정보인 사전분포 선택에 있어 주관적 입장이 반영되는 한계가 있다.

베이즈 정리 <식 3>를 살펴보면
위의 식에서 \(f(y|\theta) \)와 \(\pi(\theta|y) \)는 표본과 모수의 사후확률분포 \((\)추정하고자 하는 분포\()\)이고 \(\pi(\theta|y) \)와 \(f(y|\theta) \)는 다시 표본과 모수의 사전확률분포\((\)주관적 정보\()\), \(f(y|\theta) \)와 \(\pi(\theta|y) \)는 각각 표본과 모수의 우도함수이다. 두 식의 분포의 부정적분 형태는 상수 \(\int_{-\infty}^{+\infty} \pi(\theta|y)f(y)dy \)로 나타내어지므로, \(\langle \)식 3\rangle은 \(\langle \)식 4\rangle의 형태로 변환된다.

\[
\begin{align*}
f(y|\theta) &= \frac{\pi(\theta|y)f(y)}{\pi(\theta)} \\
\pi(\theta|y) &= \frac{f(y|\theta)\pi(\theta)}{f(y)} = \frac{\int_{-\infty}^{+\infty} \pi(\theta|y)f(y)dy}{\int_{-\infty}^{+\infty} f(y|\theta)\pi(\theta)d\theta}
\end{align*}
\]

\(\langle \)식 3\rangle 표본(\(y \)) 및 모수(\(\theta \))에 대한 베이즈정리

하지만 위의 식은 동호형태가 아닌 비례식의 형태로 표현된다. 동호의 형태로 나타내기 위해서는 각 식의 양변을 기댓값을 취해야 한다.(표본과 모수 모두 확률변수) 하지만 우변의 경우 기댓값을 취하기 위해서는 적분\((\)연속형 확률변수\()\)을 하여야 하나 수리 해석적으로 그 적분값을 구하는 것이 상당히 까다로운 일이다. 따라서 이를 구하기 위해서는 수치적\((\)Numerically\) 접근을 통해야만 한다. 수치적 접근을 하기 위해서는 우변에 해당하는 분포에서 난수를 발생시키 함을 구해야 하는데, 그때 주로 이용되는 방식이 바로 'Marcov-Chain MonteCarlo simulation'방법이다.

MCMC 시뮬레이션이나 Markov 정리\(\langle \)식 5\rangle를 모수들이 만족한다고 가정하고 그 수열로부터 난수(표본)를 추출하는 방
식으로 MC 시뮬레이션 방법의 일종이다.

\[
P(\theta_{n+1} = \Theta | \theta_n = \Theta, \ldots, \theta_1 = \Theta_1) = P(\theta_{n+1} = \Theta | \theta_n = \Theta)
\]
\[
P(\theta_{n+1} = \Theta | \theta_n = c) = P(\theta_n = \Theta | \theta_{n-1} = c)
\]

식 5) Markov 정리

식 5)를 보다 쉽게 풀어하면 과거와 현재 상태가 주어졌을 때의 미래상태의 조건부 확률 분포는 과거 상태와는 독립적이며, 오직 현재 상태에 의해서만 결정된다는 성질이다.

MCMC Algorithm에서 최근 널리 활용되는 표본추출방식에 Metropolis–Hasting sampling 방식이 있다. 이 방식은 반복적으로 확률변수를 추출하는 것으로 상호작용하는 변수들로 구성하는 문제의 성질을 밝혀내기 위해 고안된 것으로 양자역학분야에서 제시되었다. 목표분포가 다변량 또는 고차원일 경우 쉽게 수치적분을 할 수 있는 방법론으로 목표분포가 \(f(y) \propto \pi(y) \) 또는 \(f(y) = c \times \pi(y) \)의 형태로 주어지고 정규화 상수 \(c(= 1/\int \pi(y)dy) \)를 모르는 경우 난수를 발생시키는 방법이다.

목표분포(\(\pi(\cdot) \))에서 적절적으로 표본을 추출하는 것이 어려울 경우 이에 대응하는 제안분포\(q(\cdot | x_t) \)를 정하고 이로부터 후보 표본\(p(x_t, y_t) \)을 추출한 후, 모형에 알맞은 채택조건을 설정해 추출된 표본이 채택조건을 만족하면 다음상태\((t+1) \)의 표본\((x_{t+1}) \)을 구한다. 이는 과정을 반복하면 추출된 표본 집합은 결국 목표 분포에서 추출한 표본과 동일해 지는 성질을 이용한 방식으로 알고리즘은 다음과 같다.

i) 적절한 초기값 \(x_0 \)를 선택한다.

ii) 제안분포 \(q(\cdot | x_t) \)로부터 \(y \)를 추출한다.

7) \(q(\cdot | x_t) \)는 불가역성(irreducible)과 비주기성(aperiodicity)을 만족해야 한다.
8) 이 경우 \(x_{t+1} \)은 오직 채택시점\((t) \)의 상태 \(x_t \)에만 의존한다.
iii) 임의분포 \(U(0,1)\)에서 임의의 임의난수 \(u_t\)를 생성한다.

iii) 채택조건 \(\alpha(x_t, y) = \min\left(\frac{\pi(y)q(y|x_t)}{\pi(x_t)q(x_t|y)}, 1\right)\)에서 \(u_t \leq \alpha(x_t, y)\)

이면 \(y\)를 채택한다.9)

iv) \(y\)가 채택되면 다음단계의 값을 추출하고, 채택되지 않으면 \(x_{i+1} = x_i\)이다.

따라서 MH-Sampling은 표본을 추출하는 제안분포 \(q(\cdot|x_t)\)의 선택이 중요하다. 제안분포를 선택하는 방식에 따라 크게 확률생성(Random work) MH Sampling과 독립 MH Sampling으로 나뉘진다. 본 연구에서는 확률생성 MH Sampling 방식을 이용한 것이다.

확률생성과정이란 제안분포가 \(q(y|x) = q(|x - y|)\)조건을 만족하는 것으로 발생된 난수 \(y\)는 \(y = x + z, z \sim q(|z|)\)식으로 다시 표현된다. 즉 이전 단계에서 발생한 난수 \(x\)에서 백색잡음(오차) \(z\)만큼 변동시킨 것이다. 독립 MH Sampling은 \(q(x, y) = q(y)\)를 만족하는 제안분포를 선택해 후보표본을 이전단계와 독립적으로 추출하는 방식이다.

선행연구를 살펴보면 MCMC방식은 기존의 방식보다 표본 분포에 더욱 근사하는 분포를 추정하지만 수리적 해석과 계산 과정의 복잡성이란 단점을 지닌다.

3) 추정분포의 적합성 검증

본 연구에서는 위의 방식들을 통해 추정된 분포를 \(\chi^2\)-test와 아래에서 설명하는 검정방식을 이용해 표본분포에 대한 적합성을 검정하여 적합성이 있는 분포를 대상으로 LDA 시뮬레이션을 진행할 것이다.

9) \(x_{i+1} = y\)
(1) Kolmogorov–Smirnov Test (KS test)

KS test는 표본과 추정된 분포의 거리차이가 최대가 되는 값을 통계량으로 사용한다. <식 6>. 이 검정법은 기본적으로 이산형 분포보다 연속형 분포를 전체로 하고 표본의 중심 값에 대한 설명력은 크지만 꼬리가 두터운 분포에 대한 설명력은 약한 단점을 가지고 있다.

\[D = \max(|F(Y) - S(Y)|) \]
\[\{F(Y): 추정분포의 CDF, S(Y): 표본분포의 CDF\} \]

<식 6> K-S test 통계량

KS test에서의 귀무가설(H₀)은 F(Y) = S(Y)이고 대립가설(H₁)은 F(Y) ≠ S(Y)이기 때문에 위의 통계량이 임계값보다 작아야 귀무가설이 기각되지 않는다.

(2) Anderson–Darling Test (AD test)

AD test는 표본이 특정한 분포에서 추출되었는지를 검정하기 위한 방법으로 꼬리부분에 대한 설명력을 중시할 경우 사용된다. <식 7>의 통계량에서 F(yᵢ)는 추정 CDF값이다. H₀: F(Y) = S(Y), H₁: F(Y) ≠ S(Y)이다.

\[A^2 = -n - \frac{1}{n} \sum_{i=1}^{n} \frac{2i-1}{N} (\ln(F(y_i)) + \ln(1 - F(y_{N+1-i}))) \]

<식 7> A-D test 통계량

4) 주요 확률분포

본 연구에서 각 기상재해 피해빈도 데이터와 피해액 데이터에 대한 분포 추정에 있어 이용하게 될 분포의 선정은 분포의 특성과 보험업 및 운영 리스크 관리에서 자주 활용되는 것을 사용할 것이다.
(1) 이산확률분포

이산형 변수가 갖는 분포를 추정하는 데 자주 사용되는 확률분포에는 베르누이분포 (Bernoulli Distribution), 이항분포 (Binomial Distribution), 음이항분포 (Negative Binomial Distribution), 포아송분포 (Poisson Distribution), 균일분포 (Uniform Distribution)가 널리 쓰인다. 따라서 본 연구에서는 기상재해 피해 풍부데이터 분포를 추정하는데 있어 이 5가지 분포를 사용할 것이다.

(2) 연속확률분포

보험업 분야에서 피해액의 분포추정 주로 사용되는 연속확률 분포에 대해 살펴보면 다음과 같다. (Hossack, I. B., Pollard, J. H., Zehnwirth, Benjamin, 1999)

① 대수정규분포 (Log-normal Distribution)

손해액 분포추정 시 가장 보편적으로 쓰이는 분포함수로 상당수의 데이터가 원측 (양의 왼도)에 집중되어 있는 형태로 소규모 피해액이 집중되어 있을 경우 사용된다.

\[f(x) = \frac{1}{\sigma x \sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(\frac{\ln x - \mu}{\sigma}\right)^2\right), \quad x > 0\]

② 파레토분포 (Pareto Distribution)

데이터의 전체 분포에서 꼬리부분에 대한 설명력이 높아 대형 재해와 같이 피해액이 큰 사고에 적합하여 재보험업계에서 자주 사용되는 분포로 대규모 피해액에 대해 과소 추정의 가능성이 있는 대수정규분포에 대해 보험료 산정이 안정성을 가질 수 있다

\[f(x) = \frac{k}{\theta} \left(1 + \frac{x}{\theta}\right)^{-(k+1)}, \quad x > 0\]
③ 감마분포 (Gamma Distribution)

사고로 인한 연간 총 손실액 분포추정에 자주 이용된다.

\[f(x) = \frac{1}{\theta^k I(k)} x^{k-1} \exp\left(-\frac{x}{\theta}\right), \quad x < 0 \]

④ 와이블분포 (Weibull Distribution)

보험료 산출에 필요한 식별도 추정에 있어 유용한 분포로 손해액 분포들 중 중요도가 크다.

\[f(x) = \frac{\beta}{\gamma} x^{\beta-1} \exp\left(-\frac{x}{\gamma}\right), \quad x > 0 \]

따라서 본 연구에서는 위의 4가지 분포 및 EasyFit 프로그램에서 제공되는 연속형 분포함수 중 적합성이 높은 분포함수를 사용할 것이다.

2. 기존연구의 고찰

이전 국내에는 기상재해에 대한 국가적 리스크관리의 구체적인 방법론에 대한 본격적 연구가 부족한 상태이다. 단 개별적 재해사고 (홍수, 산사태 등)에 관한 분석에 대한 모델개발 및 연구가 수문학회, 토목학회를 중심으로 연구 되어졌을 뿐이지만, 이들 연구는 특정 재해(주로 태풍피해)에 주목하여 실제피해와 분석 프로그램의 시뮬레이션 간의 일치성을 비교분석하는데 초점을 맞추고 있으며, 소방방재청 주도로 미국의 재난관리시스템인 HAZUS-MH의 국산화에 대한 연구가 있었다. 하지만 대부분의 연구가 GIS시스템을 활용한 연구로써 지리적 정보 및 지역별 인구분포 건물분포 등의 막대한 데이터베이스구축이란 전체조건을 요구하고 있다. 더불어 대부분의 재해의 대상이 태풍 및 풍수해에 초점을 맞춰 그 순간최대풍속에 따른 피해예측모델링 방식으로 태풍으로 인한 피해규모 및 지역에
대한 시뮬레이션은 가능하지만 전사적인 규모로 피해복구비 산정에는 다소간 제약이 있는 방식이었다.

본 연구전의 선행연구 검토의 작업은 크게 3가지의 주제 분야에서 실시하였다. 첫 번째로 국내 기상재해 현상에 대한 분석 및 경향을 추정 및 이에 대한 사회적 대응방안 마련에 관한 주체와 두 번째로는 자연재해에 대한 리스크관리 및 사회적 대응능력 구축에 관한 연구, 세 번째로 운영리스크 관리 방범론에 관한 주제에 대한 선형 연구를 진행 하였다.

1) 기상재해와 대응분야

연구결과 한반도의 자연재해의 주요원인은 호우, 대풍이었으며 재해의 발생빈도는 감소하고 있지만 규모의 대형화를 지속하였고 특히 공공시설의 피해액이 전체피해액의 약 66%를 차지하는 것
으로 연구 되어 공공시설의 자연재해 취약성을 지적하였다. 월별로는 하계에 총 피해액의 87%가 집중되어 있으며 그 중 8월에 공공시설 피해액비중이 79.11%임을 밝혔다. 제해 취약지역으로는 면적대비 피해밀도가 높은 지역으로 선정한 결과 강원도, 경상남도를 취약지역으로 분석하였으며 자연재해의 총 피해액과 다른 피해 항목간의 파어슨 상관관계결과 공공시설과 총 피해액의 상관관계가 0.95, 농경지 피해액과는 0.84, 건물 피해액과는 0.79로 분석되었 다. 10)

지역별로도 16개 시·도 중 9개의 시·도에서 공공시설이 차지하는 피해액 비중이 50%이며 이 중 상관관계가 0.99 이상 수치를 나타낸 지역으로 대구광역시, 강원도, 경상북도로 나타났으며 전국적으로 주요원인은 태풍으로 분석되었다.

2) 자연재해 리스크관리 분야

이재은(2002)연구에서는 2001년 4월 9일부터 5월 3일까지 16개 광역 및 57개 기초자치단체의 자연재해 및 인위재해 관리업무를 담당하는 5급 공무원들 1중 에게 설문조사기법 중 하나인 AHP 기법을 이용하여 자연재해와 인위재해의 2 가지 유형의 재난에 있어 실무 공무원들이 중요하게 인식하는 재해업무에 대한 우선순

10) 이번 연구에서 사용되는 피해액 데이터를 기초로 상관관계를 분석한 결과 연도별 총 피해액과 연도별 공공시설 피해액의 상관관계는 0.9565, 연도별 농경지 피해액과의 상관관계는 0.5408, 연도별 공공시설 피해액과 연도별 농경지 피해액간의 상관관계는 0.4894가 나왔다.
위를 정하였다. 11) 연구에서 사용한 평가요소는 다음과의 표와 같다.

<table>
<thead>
<tr>
<th>평가목표</th>
<th>자연재해관리정책</th>
<th>인위재난관리정책</th>
<th>효과성 평가요소 비교</th>
</tr>
</thead>
<tbody>
<tr>
<td>완화영역</td>
<td>• 자연재해관리정책의 효과성 평가요소의 상대적 중요도 및 우선순위 측정</td>
<td>• 인위재난관리정책의 효과성 평가요소의 상대적 중요도 및 우선순위 측정</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 완화, 준비, 대응, 복구 영역</td>
<td>• 완화, 준비, 대응, 복구 영역</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>평가요소</th>
<th>완화영역</th>
<th>준비영역</th>
<th>대응영역</th>
<th>복구영역</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• 사전예방책의 수립</td>
<td>• 사전출석 및 협조체계의 유지</td>
<td>• 대응기상관련 협조 및 조정</td>
<td>• 복구상황의 점검 및 관리</td>
</tr>
<tr>
<td></td>
<td>• 재해예방 감소방안 마련</td>
<td>• 대응자원의 확보 및 비축</td>
<td>• 피해자 보호 및 구호조직</td>
<td>• 피해상황 파악 및 응급복구</td>
</tr>
<tr>
<td></td>
<td>• 재해영향의 예측 및 평가</td>
<td>• 재해경보 체계의 구축</td>
<td>• 재난감사 및 협조체계의 유지</td>
<td>• 재해발생 위험 및 이행 모니터링</td>
</tr>
<tr>
<td></td>
<td>• 사전기준의 설정</td>
<td>• 재난대응을 위한 사전훈련 실시</td>
<td>• 대응을 위한 유관 기관들 사이의 사전협업조정 및 협조의 확보</td>
<td>• 재난발생을 위한 자원의 확보</td>
</tr>
<tr>
<td></td>
<td>• 위험에 노출 감소</td>
<td>• 재난대응을 위한 사전훈련 실시</td>
<td>• 재난감사 및 협조체계의 유지</td>
<td>• 재난발생을 위한 자원의 확보</td>
</tr>
</tbody>
</table>

출처: 이재은, ‘지방자치단체의 자연재해관리정책과 인위재난관리정책 비교연구’(2001)

연구결과 자연재해관리의 경우 2001년 당시 남경공무원들이 지닌 인식은 전체평가요소의 중요도가 재해예방 감소방안의 마련(완화) → 사전예방책의 수립(완화) → 피해의 예측 및 수습(완화) → 재해해방 영향의 예측 및 평가(완화) → 재해상황의 파악 및 응급복구(대응) → 사전출석 및 협조체계유지(준비) → 재해발생 원인분석/평가(복구) 순으로 나타났다. 즉 자연재해의 경우 대응이나 준비보다 완화와 복구의 중요성이 높게 평가 되었으며 그 중에서도 재해영향의 예측 및 평가는 우선순위요소로서 4번째 위치를 하며 그 당시가

11) 2004년 소방방재청의 설립이전까지 국내의 위기관리는 자연재해와 인위재난의 2가지 형태로 구분하여 관리 및 대응이 진행되었다.
지만 해도 자연재해에 대한 리스크 관리의 중요성에 대해 담당 공무원들조차 큰 의미를 부여하지 않았다. 이에 대한 주요 이유로 논문에서는 자연재해가 천재(天災)의 성격으로 간주하는 것에 기인한다고 분석하였다.

위에서 설명한 자연재해에 대한 사회적 인식으로 인해 자연재해 피해추정에 관한 구체적인 방법론에 관한 연구가 국내에서는 2005년 이 후부터 본격화되기 시작한다.

차재형 (2001)의 연구에서는 당시까지만 해도 국내 보험업계에서 자연재해에 대한 보험료산정 시 손해액의 분포가 보험계약자 중 사고를 당한 확률과 같은 과거의 경험적 데이터에 기초해 위험률을 산출해 보험료를 책정하는 관행의 문제점을 지적하며 손해액 분포의 이용 도입을 주장하며 태풍, 폭수재, 산불사고의 피해액 자료를 당시 화재단위로 수정하여 최대우도판수법을 적용해 각 자연재해에 대해 적합성을 지닌 분포를 추정하고 클로모고로프-스미노프 테스트를 이용하여 적합성 검정을 실시하였다.

그 결과 국내의 태풍과 폭수재의 경우 왜이블 분포에 대해 높은 적합성을 지녔고, 산불사고의 경우 로그정규분포에 대해 적합성을 보인다는 결론을 도출 하였다. 그리고 그 결과를 이용해 위험률을 구하여 각 위험율에 해당하는 보험료를 추정한 결과 기존방식보다 손해액분포를 이용할 경우 보험료가 인하될 수 있다는 연구 결과를
제시하였다.

HAZUS-MIH는 자연, 홍수에 대한 자연재해에 대해 지역 GIS를 기반으로 만들어 졌으며, 자연재해에 대한 사전영향 평가, 응급 대응/복구 계획 수립, 피해 및 손실규모추정, 피해경감 대책 수립 등의 자료를 공급하는 도구로 재해의 모델링, 인구자료, 건물자료 및 사회기반시설 등의 시설정보와 건물과 기반시설에 대한 취약성 모델링을 입력 자료로 활용하여 재해 위험도 분석을 실시하고 시설정보를 바탕으로 물리적 피해 결정 및 손실액을 정한다.

하지만 이 시스템을 바로 국내에 도입하는 부분에 대한 제한 사항으로 소프트웨어에서 분석에 사용되는 자료와 모델 등 전반에 관한 사항이 미국 현지환경을 기준으로 제작되어서 국내의 사전 재해평가에 적합하지 않다는 문제점을 지적하고 있다. 특히 자연 재해의 피해규모를 추정하는 모델의 경우 미국 내의 관측 자료를 토대로 통계적 분석을 통한 경향적 모델임에 따라 이 모델의 경우 국내실정에 적합한 모델을 구축하기 위해 국내의 태풍, 강우, 홍수 등에 자료구축의 중요성을 강조했다.

오금호, 이종설(2006)의 기고에서는 국내의 재해피해 추정기법의 기술과 개발현황을 분석하였다. 국내의 경우 지진재해에 대한 연구가 먼저 시도 되었지만 태풍 및 홍수재해에 대한 연구는 당시까지만 해도 거의 없다고 지적하고 그나마 시도되는 지진 피해의 경우에도 기초적 수준에 머무르고 있다고 하였다.

특히 국내에서는 재해피해 추정을 위한 연구수행에 있어 외국의
구조형식을 그대로 사용해 국산화 노력이 미흡함을 밝혔다. 국내에서 가장 빈도수가 많은 자연재해 중 하나인 태풍의 경우에도 기상청의 분석 자료를 토대로 이동경로와 추정되는 상륙위치 파악에 어려움이 나타나 예방이 미흡한 수준에 머물러 피해규모를 줄이지 못하는 문제점을 제시하며 대규모 네트워크 시스템을 갖춘 재해피해추정 시스템 구축의 필요성을 파악하였다.

장은미(2006)의 연구에서는 지리정보에 기반한 재해 관리시스템 구축의 필요성을 태풍에 대한 민간보험사 사례를 통해 파악하였다. 연구는 보험회사의 재해통계분석을 통한 합리적인 보험상품개발 등의 실용적 목적으로 태풍의 풍속에 따른 피해규모를 산정하고 지역별로 보통에 따른 피해액 자료를 병행하여 그 피해규모를 추정하는 방식의 소프트웨어 개발을 진행하였다.

그 결과 태풍 루사, 메미와 같은 규모의 풍속을 지닌 태풍으로 시뮬레이션 결과 실제 총 보상액과 비교한 결과 메미는 54%, 루사 43%에 달하는 피해액결과가 나왔다. 원래 피해보험액보다 낮은 값이 나온 것이 대해 연구에서는 풍속만을 고려 즉 바람에 의한 피해만을 고려하였기 때문이라고 밝혔다.

장옥재, 김영오(2009)의 연구에서는 수문학에서 널리 활용되는 지역적 회귀분석을 적용해 각 지역별 홍수위험도를 평가하는 방법을 제안하였다. 지역적 회귀분석 설립은 먼저 과거홍수 피해 금액 자료가 충분한 지역의 홍수 피해금액과 시간강우량 자료를 이용해 비선형 회귀분석을 한 후, 얻은 계수를 해당지역의 인문- 사회 경제학적 인자들로 표현해 홍수피해영향을 정량화 시켜, 피해 자료가 불충분한 지역에서도 지역적 인자를 통해 홍수 피해금액을 추정하여 홍수취약도지수를 계산하는 방법을 연구하였다.

제안된 방법을 서울특별시 25개 자치구에 시범적으로 적용한 결과 강우의 지속시간이 19~24시간인 경우 마포구, 영등포구,
송파구, 강남구, 서초구가 홍수에 안전한 지역으로, 관악구가 가장 취약한 지역으로 분석되었다.

신경망 이론이란 포착된 데이터를 지배하는 경험적 규칙성을 수학적 표현하는 대신 가중치를 부여해 판단토록 하여 유사한 현상에 대해 동일한 결과를 도출토록 하여 통계적 방법에 비해 소요시간이 짧은 특성을 지니고 있다. 구조는 데이터를 입력하는 입력층, 가중치를 부여해 결론을 도출하는 은닉층, 결론을 재시하는 출력층으로 나뉘어진다. 연구에서는 입력되는 데이터로 피해 자료와 기상환경자료를 사용해 결과물로서 지역별 피해를 도출토록 하였다.

유전자 알고리즘란 확률적인 최적해 탐색방법으로 입력된 데이터를 염색체처럼 모사하여 각 데이터들이 생성세포의 유전자 차림 절반으로 나뉘 다른 데이터에서 온 유전자와 결합하여 새로운 데이터를 생성하는 방식으로 구조가 간단해 움직임범위가 넓다는 장점을 지니고 있다. 연구에서는 신경망모델학습에 적합해야 할 매개변수를 유전자 알고리즘을 이용하였다.

연구결과 출력결과가 은닉층의 개수에 영향을 받았으며 1개일 경우보다 2개일 경우 오차율이 적었다. 하지만 구체적으로 모델의 최적화에 요구되는 가중치, 은닉층의 수, 노드의 수 등에 관한 연구는 사후연구에 맡기고 있다.

이상의 자연재해관리에 대한 선행연구의 경향을 요약하면 2000년대 초반까지만 국내에서는 자연재해에 대한 위험예측 및 관리보다는 방재시설 확충을 통한 피해규모 감소와 피해발생 시 신속한 피해규모파악 및 복구에 초점을 맞추었다. 그 결과 다른
재해관리 선진국인 미국, 일본에 비해 독자적인 자연재해위험에 대한 예측모델이나 방식을 마련하지 못하다, 2004년 소방방재청의 설립이후 자연재해의 위험관리 부분에 대한 연구가 활성화 되었다.

하지만 아직 국내의 자연재해 피해예측에 대한 모델은 외국의 방식을 그대로 사용하는 단계로 모델의 내부 데이터 및 시뮬레이션 방식에 있어 국내실정에 맞춰야 하는 과제가 남아있다.

이에 대해 학계에서는 수문학, 지리학, 위험관리학회, 보험학회 등을 중심으로 여러 가지 분석방법론을 동원하여 자연재해에 대한 위험 및 피해규모를 예측하려는 모델개발이 시작된 단계로 아직은 미국의 HAZUS-MH처럼 실용화를 진행으로 개발에 성공한 단계에는 이르지 못한 상태이다.

1999년 올가 이후 자연재해 특히 태풍으로 인한 피해의 규모가 극심해지고 기습적인 집중호우로 인한 서울중심지역의 젊은 청수 피해 등으로 이런 기상재해에 대한 효과적인 시뮬레이션 분석 도구의 개발이 시급해지고 있으며, 다양한 시도와 이런 시도들에 대한 평가를 통해 우리나라의 피해에 적합한 모델개발의 필요성이 대두가 되고 있으며, 현재 관련 연구들이 진행되고 있는 상황이다.

3) 운영리스크관리 방법론

자료가 아닌 우심(집중호우동으로 인한 수해) 피해사례와 기상악화로 인한 공항의 결항피해사고를 통해 비 금융기관의 사고에 대해 LDA기법으로 MLE추정을 통해 얻은 분포를 MC 시뮬레이션을 적용하여 해당재해의 VaR를 추정했다.

Bakhodir Ergashev(2009)에서는 기존연구와는 다르게 손실액 분포를 로그정규의 단일분포로 추정하지 않고 손실분포의 두터운 꼬리의 특성을 반영하기 위해 기존의 로그정규분포에 감마분포를 혼합하고 이를 목적함수로 하여 MH Sampling을 통해 각 분포의 모수를 추정하는 방식을 채택하였다. 자료들이 모수에 대한 정보를 충분히 갖고 있을 경우 별도의 제안분포 없이 바로 목적분포에서 난수를 발생시켰으며 그렇지 못한 경우에만 제안분포를 이용해 난수를 부여하여 VaR를 추정하였다. 그 결과, 충분한 정보를 포함한 자료 이용 시 VaR 규모감소 및 추정분포의 적합성이 우수해졌다. 이를 통해 제안분포선택보다 모수의 정보를 충분히 가지고 있는 데이터의 중요성을 강조하였다.

지금까지의 선형연구들을 살펴보면 지구온난화로 인해 한반도 지역의 기온 및 기상현상의 변화가 발생하고 있다. 전통적으로 우리나라의 경우 여름철 장마와 태풍으로 인한 기상재해가 자연재해 피해의 대부분을 차지하고 있으며 2000년 전 후 단일 기상재해로 인한 피해액의 규모가 점차 증가 하고 있음에 따라 이에 대한 대비가 요구되고 있다.

이런 기상재해 등의 범국가적인 재해 및 재난에 대한 체계적인
관리를 위해 정부는 2004년 소방방재청을 설립하여 국가단위의 재해에 대한 대비와 대응방안을 강구하고 있다. 이에 따라 기존의 재방시설확충 및 복구 중심의 관리체계에서 점차 자연재해의 피해 규모와 정도에 관한 예측 및 분석모형개발을 시작하고 있는 상황이다.

단 현재의 주로 사용되는 자연재해 피해예측모형이 외국에서 개발된 것을 우리나라 상정에 맞게 바꾸는 현지화작업이 요구되고 있으며, 주로 태풍 및 집중호우 등의 기상재해가 발생한 후, 거기에 이어지는 기상데이터를 토대로 사후적인 피해분석에 초점을 맞추고 있다.

따라서 본 연구에서는 국내에서 발생한 기상재해의 데이터에 기초하여 사전적인 피해규모를 예측하는 방안에 대해 모색하고자 한다. 선행연구에서 국내 기상재해로 인한 피해총액과 공공시설의 피해의 상관관계가 높고, 그 피해정도가 감소하지 못하는 문제점이 있음에 따라 본 연구에서는 기상재해로 인한 공공시설의 최대 피해가능금액을 추정하여, 공공시설 피해복구비 예산편성 시 참고자료 제시 및 국내 기상재해의 피해에 대한 국민 및 정부에 대한 인식을 환기시키며, 더 나아가 최근 보험학회를 중심으로 논의되고 있는 대재해 체권의 원자산 및 발행규모 결정에 참고할 수 있는 금액을 제시하고자 한다.
아래 <그림1>의 히스토그램에서 살펴보면, 11회에서 가장 높은 빈도수를 보인다.

12) 본 연구에서 활용하게 된 기상재해 피해 빈도데이터이다.
2. 심도(피해액) 데이터

1985년부터 2010년까지 집계된 공공시설 피해 기상재해의 총수는 308건으로 자료에서 집계된 피해액은 당해연도 피해액과 이를 2010년 생산자물가지수로 변경한 수치를 나타내면 <그림 2>와 같다.

13) 상세한 데이터는 부록 2. 애 수록
2010년도 기준으로 피해액 규모를 보면 1조원을 넘는 자연재해가 총 6건을 나타내고 이 중 가장 큰 피해 (1999년 태풍 올가)를 준 재해의 피해규모는 6조원을 넘는다. 자료의 평균값은 93799.812백만원 (약 937억원)이고, 표본분산 값은 2.93243×10^{11}이고, 왜도 (Skewness)는 9.462이고, 첨도 (Kurtosis)는 97.054이다. 자료의 왜도와 첨도의 값이 정규분포의 값\(^14\)과 상당한 차이를 보여주고 있으며 데이터 분포는 정규성과 거리를 멀다는 것을 알 수 있다. 2010년도 기준 피해액으로 히스토그램으로 나타내면 <그림 3>과 같다.

![히스토그램](image)

<그림 3> 기상재해 피해액 히스토그램

히스토그램을 살펴보면 대다수의 기상재해로 인한 공공시설 피해액은 1조원 미만에 집중되어 원쪽으로 치우쳐진 분포를 보이지만, 피해가 1조원을 넘는 사건이 총 6건을 보이며, 상당히 꼬리를 두어 분포의 형태를 보이고 있다. 이는 기상재해로 인한 피해의 특성이 상당수가 소규모의 피해를 주며, 극히 소수로 대규모 피해를 야기한다는 것을 알려준다. 총 피해액과 공공시설 피해액과의 상관계수는 0.9738로 선행연구의 값보다 상관계수가 증가하였다.\(^{15}\)

이를 통해 기상재해로 인한 전체 피해 중 공공시설 피해가 차지하는 비중이 선행연구 당시보다 커졌음을 나타낸다.

\(^14\) 정규분포는 왜도가 0, 첨도가 3의 값을 나타낸다.
\(^{15}\) 박종길 (2007) 의 연구에서는 0.95로 나타남.
IV. 데이터 분포의 추정

1. 빈도 데이터 분포의 추정

1) MLE 방식의 추정

빈도 데이터는 연속형이 아닌 이산형 분포로서 앞서 언급되었던 이산형 분포인 분포들에 대한 MLE추정을 실시하였다. 그 결과 95% 신뢰구간에서 KS test와 AD test에서 적합성을 보인 분포는 Negative Binomial, Poisson 분포이다. <표 2> 각 분포에 대한 MLE 추정모수는 <표 3>과 같으며, 각 분포에 대한 P-P plot은 <그림 4>와 같다.

<표 2> 빈도분포 MLE 추정 검정결과

<table>
<thead>
<tr>
<th>분포</th>
<th>K-S test</th>
<th>A-D test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statics</td>
<td>95% C.V</td>
</tr>
<tr>
<td>nbin.</td>
<td>0.20461</td>
<td>0.25907</td>
</tr>
<tr>
<td>Pois.</td>
<td>0.16303</td>
<td></td>
</tr>
</tbody>
</table>

<표 3> 빈도분포 MLE 추정 검정결과

<table>
<thead>
<tr>
<th>분포</th>
<th>확률밀도함수(P.M.F)</th>
<th>추정된 모수</th>
</tr>
</thead>
<tbody>
<tr>
<td>nbin.</td>
<td>$k+n-1 \binom{k}{n} (1-p)^n p^k$</td>
<td>n=17, p=0.59994</td>
</tr>
<tr>
<td>Pois.</td>
<td>$\frac{\lambda^k}{k!} \cdot \exp(-\lambda)$</td>
<td>$\lambda=11.846$</td>
</tr>
</tbody>
</table>
데이터와 각 추정 분포의 그래프와의 비교는 아래 그림과 같다.

<그림 4> P-P Plot

<그림 5> Negative Binomial Distribution

<그림 6> Poisson Distribution
2) MH Sampling 방식의 추정

최근 5개년의 피해 수 데이터들을 살펴보면 대체로 분포의 중심부분인 7회~13회에 집중되어 연간 피해회수가 발생하는 것을 알 수 있다. 따라서 앞 절의 MLE추정 결과를 토대로 KS Test 통계량의 적합성이 높아(더욱 낮은 Test-Statics 값) 데이터의 중심(높은 빈도)에 대해서 설명력이 높은 Poisson분포의 모수(λ)를 MH sampling을 이용해 추정하고자 한다.

우리가 추정하고자 하는 Poisson 분포의 모수(λ)는 고정되어 있는 상수가 아니라 확률변수라 가정한다. 단 MCMC의 과정에서 중요한 것은 사전분포'π(λ)'의 설정인데, 현재 조건에서는 제안분포에 대한 정보가 부족한 상황이다. 이럴 경우 대체로 표본분포'p(n|λ)'와 공액(conjugated)인 사전분포를 이용하게 된다.

Poisson 분포의 공액을 이루는 사전분포는 Gamma 분포이다. 따라서 표본분포의 우도함수와 사전분포를 이용하여 모수(λ)의 사후분포는 다음과 같이 구해진다. Poisson 분포의 우도함수는 <식 8>, 사전분포는 <식 9>와 같다.

\[
h(n|\lambda) = \prod_{i=1}^{T} e^{-\lambda} \frac{\lambda^{n_i}}{n_i!}
\]

\[
\pi(\lambda) = \frac{(\lambda/\beta)^{\alpha-1}}{\Gamma(\alpha)\beta} \cdot \exp(-\lambda/\beta)
\]

위의 두 수식을 토대로 베이즈 정리를 이용해 사후분포 'π(λ|n)'를 구하면, <식 10>과 같다.

\[
\pi(\lambda|n) = \pi(\lambda) \cdot h(n|\lambda) \propto \frac{(\lambda/\beta)^{\alpha-1}}{\Gamma(\alpha)\beta} \cdot \exp(-\lambda/\beta) \prod_{i=1}^{T} e^{-\lambda} \frac{\lambda^{n_i}}{n_i!} \propto \lambda^{\alpha-1} \exp(-\lambda/\beta_T)
\]

<식 10> 빈도분포 모수(λ)의 사후분포

16) 2006년부터 2010년까지
17) 김달호, 'R과 Winbugs를 이용한 베이지안 통계학', 2009, 자유아카데미, p.104
여기서, \(\alpha_T = \alpha + \sum_{i=1}^{T} n_i \), \(\beta_T = \frac{\beta}{1 + \beta \times T} \)이다.

문제는 주어진 데이터의 상황에서는 초기의 \(\alpha \), \(\beta \)의 초기 값에 대해 정확히 구할 수가 없다. 따라서 불충분한 정보 상태에서 사전분포를 상수\((K)\)로 할 경우 \(\Pi(\lambda|n) = K \cdot h(n|\lambda) \alpha h(n|\lambda) \)이 된다. 이럴 경우, 사전분포인 Gamma\((\alpha_T, \beta_T)\)의 두 모수는 <식 11>과 같다.

\[
\alpha_T = 1 + \sum_{i=1}^{T} n_i \ , \ \beta_T = \frac{1}{T} \quad \text{..<식 11>}
\]

이럴 경우, 사후분포의 최빈값은 MLE추정의 모수와 같아지게 된다.\(^{18}\)

\[
MODE(\hat{\lambda}_T) = (\alpha_T - 1) \beta_T = \frac{1}{T} \sum_{i=1}^{T} n_i \quad \text{..<식 12>}
\]

<식 10>에 <식 11>의 값을 대입하여 얻은 사후분포에 대해, 제안분포로 표준정규분포를 사용해 Random Walk방식으로 M-H sampling을 실시할 경우, 10,000번의 시뮬레이션의 결과 <그림 7> \(\lambda_T \)의 평균값은 \('11.81' \)로 MLE방식 추정의 모수\((\lambda=11.846)\)와 95\% 신뢰도에서 통계적으로 다르지 않은 것 나타났다.<그림 6>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Err.</th>
<th>Std. Dev.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freque-n</td>
<td>26</td>
<td>11.84615</td>
<td>0.8887196</td>
<td>4.531598</td>
<td>10.0158 13.67651</td>
</tr>
</tbody>
</table>

\(t = 0.0407 \) degrees of freedom = 25

\[H_0: \text{mean} = 11.81 \quad \text{Ha: mean}< 11.81 \quad \text{Pr}(T < t) = 0.5161 \]
\[\text{Ha: mean} != 11.81 \quad \text{Pr}(|T| > |t|) = 0.9679 \]
\[\text{Ha: mean}> 11.81 \quad \text{Pr}(T > t) = 0.4839 \]

<그림 7> \('H_0: \lambda_T = \lambda' \)에 대한 가설검정 결과

따라서 Random Work M-H Sampling방식으로 구한 Poisson 분포의

\(^{19}\) 빈도데이터에 기초하여 구하면 \(\alpha_T = 309 \), \(\beta_T = 1/26 \) 이다.
모수(λₜ)는 MLE방식에서 구한 모수(λ)와 큰 차이가 있다고 보기 어렵다.

다음으로 M-H-Sampling 방식으로 추정된 모수(λₜ)의 K-S test결과 검정통계량이 0.1655로 MLE방식추정보다 적합성이 떨어졌다.

3) 소 결 론

기상재해의 반도분포의 모수 추정의 경우, MLE추정 시 기존에 알려진 이산분포들 중에서 포아송, 음이항분포에 대해, KS test와 AD test 모두에서 95% 신뢰구간에서 적합성을 보이고 있다. Uniform 분포의 경우 KS test에서 신뢰수준 95%, 99%에서 적합성을 보이지만, AD test에 대해서는 적합성을 보이지 못한다. 베르누이 분포와, 이항분포에 대해서는 Fitting이 불가능한 것으로 나타났다.

포아송 분포와 음이항 분포에 대해 비교할 경우, KD test에서는 포아송 분포의 적합성이, AD test의 경우 음이항 분포의 적합성이 높은 것(Test Statics가 낮음을수록 높은 적합성)으로 나타나고 있다. 두 테스트 결과를 통해 포아송 분포는 분포의 중심부분에 대한 설명력이 높고 음이항 분포의 경우 분포의 꼬리부분에 대한 설명력이 높다고
볼 수 있다. 이는 데이터와 추정된 분포의 PMF 가 함께 도시된 <그림 4>, <그림 5>에서도 볼 수 있다. P-P plot을 살펴보면 음이항 분포가 데이터의 각 점들이 대각선에 더욱 가깝게 분포한 것을 볼 수 있어, 개별 데이터와 추정된 분포의 값과의 오차가 적다고 판단할 수 있다.

이상의 결과를 통해 이번연구에서는 기상재해의 범도분포의 경우, 극단적인 발생횟수 보다 빈도의 중심적 성향에 대한 설명력이 높아야 한다고 판단되기 때문에 포아송 분포를 우선하는 것이 타당하다고 판단된다.

따라서 MCMC에서 사용하는 데이터의 분포는 포아송 분포를 이용하였다. MCMC를 이용해 관측된 데이터(n)를 반영해 확률변수인 모수(λ_T)를 추정하기 위해서는 사전분포의 선택이 중요하다. 하지만, 지금의 데이터 수준에서 정확한 사전분포의 선택에 제약이 있어 데이터 분포와 공액을 이루는 감마분포를 가지고 추정한 결과 그 값이 MLE를 이용하여 구한 모수의 값과 다르지 않다고 분석되었다.

손실분포법(LDA)을 적용하는데 있어 MLE방식으로 추정 시 적합성을 보인 심도분포와의 조합에 있어서는 포아송 분포와 음이항 분포 모두를 사용하여 최대손실가능금액을 추정하고, MH Sampling을 이용해 심도분포의 모수를 추정한 것에 대해서는 포아송 분포를 이용해서 최대손실가능 금액을 추정하고자 한다.

이번 빈도분포의 추정에 있어 빈도분포의 모수에 대한 보다 정확한 사전분포의 정보가 부족하여, 부적절한 사전분포(상수, K)를

20) 사전분포 g(x)는 \[\int_{-\infty}^{\infty} g(x)dx < \infty \]의 조건이 충족되어야 한다.

하지만 \(g(x)=K \)로 할 경우, \[\int_{-\infty}^{\infty} Kdx = \infty \]이 되어 부적절한 사전분포가 된다.
이용하였다. 그 결과 추정모수의 평균값이 MLE추정 모수와 차이가 없고 데이터에 대한 적합도가 감소해 MCMC 추정방식이 불필요하다 생각된다.

2. 심도 데이터 분포의 추정

1) MLE방식의 추정

심도 데이터는 연속형 분포이다. 이미 앞에서 심도데이터의 형태와 첨도가 정규분포의 값과 크게 다른 것을 통해 정규분포를 따른다고 보기 어렵다고 판단했다.

피해액의 정규성 여부에 대한 객관적인 판단을 위해 심도 데이터로 'Jarque-bera test'를 실시했을 경우, p-value가 \(1.0000 \times 10^{-03}\) (jbstat = 1.2151 \times 10^5)이어서, 0.05보다 작게 되어 5%유의수준에서 통계적으로도 정규분포를 따른다고 볼 수 없다.

단, 피해액 데이터\(x_i \)에 자연로그 값을 취한 후 그 값\(y_i = \ln(x_i) \)들로 'Jarque-bera test'를 실시하면 p-value가 0.096 (jbstat = 4.2735)으로 0.05보다 크게 되어 5%유의수준에서 통계적으로 정규분포를 따른다고 볼 수 있다. 이를 통해 심도분포가 로그정규분포에 대해 높은 적합성을 보일 것으로 기대된다.

심도 데이터에 대하여, MLE추정을 할 경우, 여러 연속형 분포들 중에서 Log-Pearson 3 분포, Lognormal 분포, Lognormal(3P) 분포가 적합성 검정들 모두(K-D test, A-D test, \(\chi^2\)-test)에서 적합성이 뛰어난 상위 3개의 분포에 들어가며<표 4>, 95%의 신뢰수준에서 적합도의

21) 데이터의 분포가 정규분포를 따르는지 여부를 확인하는 검정으로 \(H_0: X \sim N(\mu,\sigma^2)\)이다.

통계량은 \(JB = \frac{n}{6} (s^2 + \frac{(k-3)^2}{4})\)이며, \(n\)은 데이터의 수, \(s\)는 데이터의 첨도, \(k\)는 데이터의 첨도이다. 자료의 수가 많을 경우 통계량은 자유도가 2인 카이제곱 분포를 따른다.
통계적 유의성을 보였다. 데이터에 대한 각 분포의 그래프와의 비교한 것은 <그림 8-10>와 Q-Q plot <그림 11-13>은 다음과 같다.

<표 4> 심도 데이터의 MLE 추정결과

<table>
<thead>
<tr>
<th>분포함수</th>
<th>추정모수</th>
<th>통계적 검정값</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>KS-test</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C.V:</td>
</tr>
<tr>
<td>Lognorm.</td>
<td>σ=3.1291 μ=7.3226</td>
<td>0.05303</td>
</tr>
<tr>
<td>Lognorm. (3P)</td>
<td>σ=3.2032 μ=7.2908 γ=0.80584</td>
<td>0.04658</td>
</tr>
<tr>
<td>Logp3.</td>
<td>α=179.45 β=0.23397 γ=-34.663</td>
<td>0.04611</td>
</tr>
</tbody>
</table>

<그림 9> 심도 데이터 Log-Normal MLE 추정
<그림 10> 심도 데이터 Log-Normal(3P) MLE 추정

<그림 11> 심도 데이터 Log-Pearson3 MLE 추정

<그림 12> 심도 데이터 Log-Normal Q-Q Plot
2) MH Sampling 방식의 추정

위의 MLE추정 결과의 분포들 중에서 난수 생성이 용이한, Log-Normal 분포(22)를 데이터의 분포로 사용할 것이다. 로그정규분포의 경우 KS Test와 AD test의 값이 다른 두 분포에 비해 떨어진다. 하지만 Log-Pearson type 3(23) 분포의 경우 Matlab 및 기타 수리패키지
프로그램을 통한 의사난수(Pseudo Random Number) 발생에 제한이 있다.

Log–Normal(3P)의 경우에는 모수인 γ 미만의 피해액 데이터에 대해 절식(truncation)을 한 후 Fitting을 하기 때문에 적합성이 높을 지라도 추정된 분포를 통해 생성된 난수는 특정값(γ) 미만의 경우에 대한 설명력이 부족하게 된다. 이런 이유로 로그정규분포를 데이터의 분포 $p(x|\mu,\sigma)$로 설정하여 Random Walk MH Sampling을 진행할 것이다.

로그정규분포의 모수는 μ, σ 두 개이다. 이 두 모수의 각각의 사전분포에 대한 정보를 얻기 위해서, 26개년의 손실액을 각 년도 별로 구분하여, 로그정규분포에 대한 MLE 추정을 통해서 개별년도의 μ, σ를 구하면 <표 5>와 같다.

개별 연도별 MLE 추정결과를 95% 신뢰수준에서 K–S test Statics를 통해 살펴보면 연도별로 로그정규분포보다 높은 적합성을 보이는 분포가 존재하며, 1998년의 경우에는 손실액 데이터들이 통계적으로 로그정규분포를 따른다고 보기 힘들었으며, 2002년의 경우 심도 데이터가 4개뿐 이어서 MLE추정이 불가능하였다. 그렇지만 이런 특이적인 경우가 전체 26개년 중 2개 년도이고 나머지 연도의 경우 모두 95% 신뢰수준에서 로그정규분포를 따르는 것으로 분석되었다.

22) 로그정규분포의 PDF: $f(x|\mu,\sigma) = \frac{1}{x\sigma\sqrt{2\pi}} e^{\exp(-\frac{(\ln x-\mu)^2}{2\sigma^2})}$

23) Log–Pearson type 3 PDF :

$$f(x|\alpha,\beta,\gamma) = \frac{1}{|\beta| x\Gamma(\alpha)} \left(\frac{\ln x-\gamma}{\beta} \right)^{\alpha-1} \exp\left(-\frac{\ln x-\gamma}{\beta}\right)$$

로의 감마분포와 유사한 형태의 분포지만 독립변수의 형태가 자연로그 값으로 직한 후, γ만큼을 평행 이동시킨 형태이다.

24) Log–Normal(3P) PDF:

$$f(x|\mu,\sigma,\gamma) = \frac{1}{(x-\gamma)\sigma\sqrt{2\pi}} e^{\exp(-\frac{(\ln (x-\gamma)-\mu)^2}{2\sigma^2})}$$
(1) 분산모수(σ_t)를 알고, 평균모수(μ_t)만을 추정

모수 σ_t의 경우, 평균은 2.7049, 표준편차는 0.58558이다. 특이한 반면
사실은 각 연도별 값들이 특이한 7개년도\(^{25}\)를 제외하면, 3.0을 중심으로 진동하며 수렴하는 양상을 보여주고 있다. <그림 14>

![그림 14. 7개년도 값들 제외한 σ_t의 추세](그림14)

전체 데이터에서 추정한 σ의 값인 '3.1219'이란 값과 비교해도 큰 차이가 있다고 보기 어려우므로, 이번 장에서는 σ_t의 사전분포를 MLE추정 값으로 설정하여, 평균모수(μ_t)만을 추정하기로 한다.

모수 μ_t의 경우, 평균은 7.5526이고, 표준편차는 1.4649이다. 각 연도별 값들은 무작위적으로 나타나는 양상을 보이고 있다. <그림 15>

![그림 15. 연도별 μ_t의 추세](그림15)

<table>
<thead>
<tr>
<th>연도</th>
<th>(\mu_t)</th>
<th>(\sigma_t)</th>
<th>K-S test statics</th>
<th>95% C.V</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985</td>
<td>6.5614</td>
<td>2.1902</td>
<td>0.09972</td>
<td>0.28087</td>
</tr>
<tr>
<td>1986</td>
<td>5.8246</td>
<td>3.0516</td>
<td>0.15282</td>
<td>0.3376</td>
</tr>
<tr>
<td>1987</td>
<td>8.4883</td>
<td>3.2677</td>
<td>0.1715</td>
<td>0.3376</td>
</tr>
<tr>
<td>1988</td>
<td>5.6272</td>
<td>2.8365</td>
<td>0.14234</td>
<td>0.30936</td>
</tr>
<tr>
<td>1989</td>
<td>6.0911</td>
<td>3.3257</td>
<td>0.18701</td>
<td>0.29408</td>
</tr>
<tr>
<td>1990</td>
<td>6.5314</td>
<td>2.8482</td>
<td>0.12859</td>
<td>0.30936</td>
</tr>
<tr>
<td>1991</td>
<td>7.8964</td>
<td>3.4076</td>
<td>0.20986</td>
<td>0.32733</td>
</tr>
<tr>
<td>1992</td>
<td>5.7335</td>
<td>1.7612</td>
<td>0.11203</td>
<td>0.3376</td>
</tr>
<tr>
<td>1993</td>
<td>7.0245</td>
<td>2.9544</td>
<td>0.11739</td>
<td>0.39122</td>
</tr>
<tr>
<td>1994</td>
<td>7.6032</td>
<td>2.8064</td>
<td>0.22131</td>
<td>0.39122</td>
</tr>
<tr>
<td>1995</td>
<td>6.9026</td>
<td>3.2610</td>
<td>0.25033</td>
<td>0.37543</td>
</tr>
<tr>
<td>1996</td>
<td>6.9031</td>
<td>2.7469</td>
<td>0.29062</td>
<td>0.45427</td>
</tr>
<tr>
<td>1997</td>
<td>9.0334</td>
<td>1.3964</td>
<td>0.13957</td>
<td>0.39122</td>
</tr>
<tr>
<td>1998</td>
<td>7.5925</td>
<td>3.5174</td>
<td>0.47144</td>
<td>0.39122</td>
</tr>
<tr>
<td>1999</td>
<td>10.12</td>
<td>2.5072</td>
<td>0.15046</td>
<td>0.51926</td>
</tr>
<tr>
<td>2000</td>
<td>11.151</td>
<td>1.5845</td>
<td>0.24371</td>
<td>0.56328</td>
</tr>
<tr>
<td>2001</td>
<td>9.7983</td>
<td>1.7232</td>
<td>0.14991</td>
<td>0.45427</td>
</tr>
<tr>
<td>2002</td>
<td>데이터 부족으로 MLE 추정 불가</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>9.3301</td>
<td>2.7096</td>
<td>0.14689</td>
<td>0.40925</td>
</tr>
<tr>
<td>2004</td>
<td>8.6691</td>
<td>2.8000</td>
<td>0.17542</td>
<td>0.43001</td>
</tr>
<tr>
<td>2005</td>
<td>7.3401</td>
<td>3.0921</td>
<td>0.1346</td>
<td>0.37543</td>
</tr>
<tr>
<td>2006</td>
<td>6.9769</td>
<td>2.8711</td>
<td>0.23528</td>
<td>0.36143</td>
</tr>
<tr>
<td>2007</td>
<td>7.4675</td>
<td>2.1238</td>
<td>0.14729</td>
<td>0.39122</td>
</tr>
<tr>
<td>2008</td>
<td>5.8798</td>
<td>2.8916</td>
<td>0.19496</td>
<td>0.48342</td>
</tr>
<tr>
<td>2009</td>
<td>6.6326</td>
<td>3.0026</td>
<td>0.16677</td>
<td>0.43001</td>
</tr>
<tr>
<td>2010</td>
<td>7.6355</td>
<td>2.9465</td>
<td>0.16544</td>
<td>0.39122</td>
</tr>
</tbody>
</table>
모수 \(\mu_t \) 의 확률분포를 MLE를 통해 추정하게 되면, Generalized Extream Value(이하 GEV)분포가 KS test와, AD test 모두에서 높은 적합성을 보인다. <표 6>, <그림 16>, <그림 17>

<표 6> \(\mu \)분포 \(\pi(\mu) \)' 의 MLE 추정결과

<table>
<thead>
<tr>
<th>분포함수</th>
<th>추정모수</th>
<th>통계적 검정값</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>KS-test</td>
</tr>
<tr>
<td>95% C.V.:</td>
<td>0.26404</td>
<td>2.5018</td>
</tr>
<tr>
<td>GEV</td>
<td>k=0.03275</td>
<td>0.07908</td>
</tr>
<tr>
<td></td>
<td>(\sigma =1.5043)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\mu =6.8455)</td>
<td></td>
</tr>
</tbody>
</table>
이상의 분석을 통해, 다음과 같이 심도(피해액)분포의 모수 \(\mu_t \), \(\sigma_t \)의 사전분포를 구하면 아래의 식과 같다.

\[
\pi(\sigma_t) = 3.1219 \quad \cdots <\text{식 13}>
\]

\[
\pi(\mu_t) = \frac{1}{\sigma_0} \left(1 + k \left(\frac{\mu_t - \mu_0}{\sigma_0} \right) \right)^{-\frac{1}{k}} - \frac{1}{k} \exp\left(- \left(1 + k \left(\frac{\mu_t - \mu_0}{\sigma_0} \right) \right)^{-\frac{1}{k}} \right) <\text{식 14}>
\]

\[
\sigma_0 = 1.158, \mu_0 = 6.8455, k = 1.018
\]

데이터(\(x_i \))들의 분포는 로그정규분포를 따르고, \(<\text{식 13}>, \,<\text{식 14}>\)의 사전분포를 이용해 베이즈공식을 적용해 사후분포를 구하면 다음과 같다.

우선 \(y_i = \ln(x_i) \)의 폼 변환하면 \(y_i \)의 분포는 정규분포의 폼으로 변환되어, \(y_i \)의 우도함수는 \(<\text{식 15}>\)와 같다.

\[
h(y_i | \mu_t, \sigma_t) = \prod_{i=1}^{n} \frac{1}{\sigma_t \sqrt{2\pi}} \exp\left(- \frac{(y_i - \mu_t)^2}{2\sigma_t^2} \right) \quad \cdots <\text{식 15}>
\]

베이즈 공식에 의해 \(<\text{식 14}>\)와 \(<\text{식 15}>\)의 곱은 사후분포의 형태임으로 다음과 같이 정리된다.
\[
\pi(\mu_i|y_i) = \pi(\mu_i) \cdot h(y_i|\mu_i, \sigma_i = 3.1219)
= \frac{1}{\sigma_i} \cdot \left(1 + k(\frac{\mu_i - \mu_0}{\sigma_0})\right)^{-\frac{k-1}{2}} \cdot \exp\left(-\frac{(y_i - \mu_i)^2}{2\sigma_i^2}\right) \prod_{i=1}^{n} \frac{1}{\sigma_i \sqrt{2\pi}} \exp\left(-\frac{(y_i - \mu_i)^2}{2\sigma_i^2}\right)
= \frac{1}{\sigma_0} \cdot \frac{1}{\sqrt{2\pi}} \cdot \frac{1}{\sqrt{2\pi}} \cdot \prod_{i=1}^{n} \exp\left(-\frac{(y_i - \mu_i)^2}{2\sigma_i^2}\right)
= \frac{1}{\sigma_0^k} \cdot \frac{1}{\sqrt{2\pi}} \cdot \prod_{i=1}^{n} \exp\left(-\frac{(y_i - \mu_i)^2}{2\sigma_i^2}\right)
\]

\[
\propto (1 + k(\frac{\mu_i - \mu_0}{\sigma_0}))^{-\frac{k-1}{k}} \cdot \exp\left(-\frac{(y_i - \mu_i)^2}{2\sigma_i^2}\right) \prod_{i=1}^{n} \exp\left(-\frac{(y_i - \mu_i)^2}{2\sigma_i^2}\right)
= (1 + k(\frac{\mu_i - \mu_0}{\sigma_0}))^{-\frac{k-1}{k}} \cdot \exp\left(-\frac{(y_i - \mu_i)^2}{2\sigma_i^2}\right) \prod_{i=1}^{n} \exp\left(-\frac{(y_i - \mu_i)^2}{2\sigma_i^2}\right)
\]

\[
\mu_0 = 6.8455, \sigma_0 = 1.158, k = 0.03275, n = 308,
\sum_{i=1}^{n} y_i = \sum_{i=1}^{n} \ln(x_i) = 2.2554 \times 10^3, \sum_{i=1}^{n} y_i^2 = 1.9531 \times 10^4
\]

모수 \(\mu_i\)의 사후분포 \(\pi(\mu_i|y_i)\)는 식 16과 같이 정리되고, 이를 분포를 제안분포로 설정하여 150,000회26)에 걸쳐 Random Walk M-H Sampling을 실시한 결과는 다음과 같다. <그림 17>

![Random Walk M-H Sampling](image)

<그림 19> \(\mu_i\)의 Random Walk M-H Sampling 결과

26) 수치자에 걸친 시뮬레이션 결과, 시뮬레이션 횟수가 최소 10,000을 넘겨야 MII Sampling을 통한 \(\mu_i\)의 추정 값이 수렴성을 나타낸다.
위의 시뮬레이션 결과 모수 \(\mu \)의 평균과 최빈값 모두 '7.1419'의 값으로 나타났고 시뮬레이션 결과 그래프 형태는 7.2를 중심으로 진동하며 진행하는 모습을 보이고 있다.<그림 18>

\[<\text{그림 20.}>\text{ M-H Sampling 결과를 확대한 모습}\]

MLE방식으로 추정된 모수 \(\mu \)와 MHI Sampling으로 추정된 \(\mu \)의 평균 값이 확률적으로 일치하는지 검정을 실시하면 <그림 19>처럼 95% 신뢰구간에서 귀무가설 \(H_0 : E(\widehat{\mu}) = \mu \)을 기각하지 못한다.

\[<\text{그림 21}>\text{ 가설 } H_0 : E(\widehat{\mu}) = \mu \text{ 의 T-test 결과}\]

MLE방식으로 추정한 모수 \(\mu \), \(\sigma \)와 MHI Sampling에 의해 추정한 모수는 \(\mu_t \), \(\sigma_t \)를 비교하면 <표 7>과 같다.
표 7 MLE, M-H Sampling 방식의 추정모수 비교

<table>
<thead>
<tr>
<th>분포함수</th>
<th>모수</th>
<th>MLE 방식</th>
<th>MH Sampling(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log-Normal</td>
<td>μ</td>
<td>7.3226</td>
<td>7.1419</td>
</tr>
<tr>
<td></td>
<td>σ</td>
<td>3.1291</td>
<td></td>
</tr>
</tbody>
</table>

추정된 두 모수 중 어떤 방식으로 추정된 모수 값이 더 높은 적합성을 보이는 지 KS test를 실시할 경우 <표 8>와 같다.

표 8 MLE, M-H Sampling 방식의 추정모수 통계량 비교

<table>
<thead>
<tr>
<th>K-S test Statics (95% C.V : 0.07863)</th>
<th>MLE 방식</th>
<th>MH Sampling(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.05303</td>
<td>0.0600</td>
</tr>
</tbody>
</table>

KS test 결과를 보면, MH Sampling으로 추정된 모수는 통계적으로 유의미한 적합성을 보이고 있지만, MLE 방식으로 추정된 모수보다는 적합성이 떨어지는 것으로 나타난다. 그러나 로그정규분포의 중심경향을 나타내는 모수(μ)의 값이 감소했기 때문에 발생되는 난수의 값들도 MLE 추정분포의 결과보다는 값이 떨어질 것으로 기대된다.

(2) 분산모수(σt)와 평균모수(μt) 모두추정

앞 장에서는 분산모수를 하나의 균일분포로 가정한 후, 평균모수만을 추정하였다. 그 결과 평균모수의 값은 MLE추정방식보다 감소하였지만, 적합성은 떨어지는 것으로 나타났다.

이번 장에서는 두 모수 모두 알지 못하는 확률변수로 설정하여 두 모수를 MH-Sampling 방식을 이용하여 추정하고자 한다. 위에서 분석한 연도별 MLE추정 자료에서 분산모수(σt) 중 특히 값이 높은 7개 년도를 포함해 이를 토대로 MLE추정을 실시할 경우, 분산모수(σt)는 Genrealized Logistic 분포에 높은 적합성을 보이지만,
이번 장에서 사용하는 Open Bugs 프로그램에서 지원하지 않는 분포이어서, 프로그램에서 지원하는 분포들 중 가장 높은 적합성을 보이는 GEV 분포를 사용해 MH-Sampling을 실시하고자 한다. 우선 \((\sigma_t) \)의 분포를 GEV로 가정할 경우, MLE 추정 통계량과 검정 통계량은 <표 9>와 같다.

<표 9> \(\sigma_t \) 분포 \(\pi(\sigma_t) \) 의 MLE 추정결과

<table>
<thead>
<tr>
<th>분포함수</th>
<th>추정모수</th>
<th>통계적 검정값</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>KS-test</td>
</tr>
<tr>
<td>GEV</td>
<td>(k = -0.76114)</td>
<td>0.1301</td>
</tr>
<tr>
<td></td>
<td>(\sigma = 0.64936)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\mu = 2.6381)</td>
<td></td>
</tr>
</tbody>
</table>

MLE 추정결과와 GEV 분포는 95%의 신뢰도에서 KS test에서는 적합도에서 유의미한 통계값을 보여주었지만, AD test의 경우 적합성이 떨어져 유의미 하지 않은 것으로 나타났다. 하지만 앞서의 분석에서 살펴본 것처럼 대부분의 분산모수들의 경우 중심인 평균
값을 나타내므로 데이터의 중심부분에 대한 설명력이 높은 분포가 선정되어야 하는데, 오의 교차합성여부가 AD-test의 적합성 여부보다 중요하다고 판단된다.

<그림 23> GEV분포의 Q-Q plot

이상의 분석을 통해, 다음과 같이 심도(피해액)분포의 모수 μ, α의 사전분포를 정의하면 다음과 같다.

$$\pi(\sigma_t) = \frac{1}{\sigma_t} (1 + k_1 \left(\frac{\sigma_t - \mu_1}{\sigma_1} \right))^{-\frac{1}{k_1} - 1} \exp \left(- (1 + k_1 \left(\frac{\sigma_t - \mu_1}{\sigma_1} \right)) - \frac{1}{k_1} \right) \cdots \text{<식 17>}
$$

$$\sigma_1 = 0.64936, \mu_1 = 2.6381, k_1 = -0.76114$$

$$\pi(\mu_t) = \frac{1}{\sigma_0} (1 + k \left(\frac{\mu_t - \mu_0}{\sigma_0} \right))^{-\frac{1}{k} - 1} \exp \left(- (1 + k \left(\frac{\mu_t - \mu_0}{\sigma_0} \right)) - \frac{1}{k} \right) \cdots \text{<식 18>}
$$

$$\sigma_0 = 1.158, \mu_0 = 6.8455, k = 1.018$$

결합사전분포의 경우 두 모수가 독립일 경우 <식 17>, <식 18>의 곱으로 구성된다.

$$\pi(\mu_t, \sigma_t) = \frac{1}{\sigma_0 \sigma_1} (1 + k \left(\frac{\mu_t - \mu_0}{\sigma_0} \right))^{-\frac{1}{k} - 1} (1 + k_1 \left(\frac{\sigma_t - \mu_1}{\sigma_1} \right))^{-\frac{1}{k_1} - 1} \cdots \text{<식 19>}
$$

$$\times \exp \left(- (1 + k \left(\frac{\mu_t - \mu_0}{\sigma_0} \right)) - \frac{1}{k} - (1 + k_1 \left(\frac{\sigma_t - \mu_1}{\sigma_1} \right)) - \frac{1}{k_1} \right)$$

이에 따라 결합사후분포의 경우, <식 15>와 <식 19>의 곱의
형태로 나타난다.

\[\pi(\mu_t, \sigma_t | y_i) = h(y_i | \mu_t, \sigma_t) \times \pi(\mu_t, \sigma_t) \] \[<\text{식 20}> \]

이 경우에서 각 모수별로 Random Walk M-H Sampling을 하려면 다른 모수에 대하여 적분한 한계 사후분포를 얻어야 한다. 즉 <식 21>과 같이 계산 후, 실시하여야 한다. 이 경우 해석적 적분은 부정적분 값이 정의되지 못할 수치적분을 해야 하는 상황이 발생하여 복잡해지게 된다.

\[\pi(\mu_t | y_i) = \int \pi(\mu_t, \sigma_t | y_i) d\sigma_t, \quad \pi(\sigma_t | y_i) = \int \pi(\mu_t, \sigma_t | y_i) d\mu_t \] \[<\text{식 21}> \]

표본분포에 로그정규분포와 각 모수들의 사전분포에 MLE방식으로 추정된 분포를 입력해 총 100,000회에 걸쳐 Random Walk MHI Sampling을 실시 한 결과는 다음과 같다.27) <표 10> <그림 22>, <그림 23> 각 모수들의 평균값을 이용할 경우, 로그정규분포의 평균모수(\(\mu_t\))는 ‘7.309’, 분산모수(\(\sigma_t\))는 ‘3.1204’가 된다.

27) “OpenBUGS”에서 사용되는 로그정규분포는 다음과 같다.

\[\sqrt{\frac{\tau}{2\pi x}} \exp \left(-\frac{x}{2} (\log x - \mu)^2 \right) ; \quad x > 0 \] 1/\(\sigma_t^2\) 값과 같은 값으로, \(\sigma_t = \sqrt{1/\tau}\) 가 된다.

- 54 -
<표 10> MH-Sampling 결과

<table>
<thead>
<tr>
<th></th>
<th>평균</th>
<th>표준편차</th>
<th>오차</th>
<th>5% 신용구간</th>
<th>중앙값</th>
</tr>
</thead>
<tbody>
<tr>
<td>μₜ</td>
<td>7.309</td>
<td>0.1779</td>
<td>0.001701</td>
<td>6.96</td>
<td>7.659</td>
</tr>
<tr>
<td>τₜ</td>
<td>0.1027</td>
<td>0.008265</td>
<td>2.92E-05</td>
<td>0.08714</td>
<td>0.1194</td>
</tr>
</tbody>
</table>

<그림 24> μₜ의 Random Walk MH Sampling 결과

<그림 25> τₜ의 Random Walk MH Sampling 결과
시뮬레이션 결과를 MLE추정 모수 값들과 통계적 유의성을 비교하면 다음과 같다. <그림 24>, <그림 25>

<table>
<thead>
<tr>
<th>Variable</th>
<th>obs</th>
<th>Mean</th>
<th>std. err.</th>
<th>std. dev.</th>
<th>[95% conf. interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log.Loss</td>
<td>308</td>
<td>7.32258</td>
<td>0.1785885</td>
<td>3.134216</td>
<td>6.971168, 7.673993</td>
</tr>
</tbody>
</table>

\[
{\text{mean}} = \text{mean(Log.Loss)} \quad t = 0.0760 \\
{\text{degrees of freedom}} = 307 \\
{\text{Ha: mean < 7.309}} \quad {\text{Pr(T < t)}} = 0.5303 \\
{\text{Ha: mean > 7.309}} \quad {\text{Pr(|T|} > |t|) = 0.9394} \\
{\text{Ha: mean > 7.309}} \quad {\text{Pr(T > t)}} = 0.4697 \\
\]

<그림 26> 가설 \(H_0 : E(\mu_t) = \mu \) 의 T-test결과

<table>
<thead>
<tr>
<th>Variable</th>
<th>obs</th>
<th>Mean</th>
<th>std. err.</th>
<th>std. dev.</th>
<th>[95% conf. interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log.Loss</td>
<td>308</td>
<td>7.32258</td>
<td>0.1785885</td>
<td>3.134216</td>
<td>6.971168, 7.673993</td>
</tr>
</tbody>
</table>

\[
{\text{sd}} = \text{sd(Log.Loss)} \quad c = \text{ch12} = 309.7246 \\
{\text{degrees of freedom}} = 307 \\
{\text{Ha: sd < 3.1204}} \quad {\text{Pr(C < c)}} = 0.5543 \\
{\text{Ha: sd > 3.1204}} \quad {\text{2*Pr(C > c)}} = 0.8914 \\
{\text{Ha: sd > 3.1204}} \quad {\text{Pr(C > c)}} = 0.4457 \\
\]

<그림 27> 가설 \(H_0 : E(\sigma_t^2) = \sigma \) 의 T-test결과

MHI Sampling으로 추정된 두 모수 모두 MLE로 추정된 모수들과 95% 신뢰수준에서 통계적으로 다르지 않다고 나왔다.
MLE방식으로 추정한 모수 \(\mu, \sigma \)와 MHI Sampling에 의해 추정한 모수는 \(\mu_t, \sigma_t \)를 비교하면 <표 11>과 같다.
<표 11> MLE, M-H Sampling 방식의 추정모수 비교

<table>
<thead>
<tr>
<th>분포함수</th>
<th>모수</th>
<th>MLE 방식</th>
<th>M-H Sampling(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log-Normal</td>
<td>μ</td>
<td>7.3226</td>
<td>7.309</td>
</tr>
<tr>
<td></td>
<td>σ</td>
<td>3.1291</td>
<td>3.1204</td>
</tr>
</tbody>
</table>

M-H Sampling과 MLE방식으로 추정된 분포들과 데이터와의 적합성을 KS test를 이용하여 살펴보면 <표 12>와 같다.

<표 12> MLE, M-H Sampling 방식의 추정모수통계량 비교

<table>
<thead>
<tr>
<th>KS test Statics</th>
<th>MLE 방식</th>
<th>M-H Sampling(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>{95% C.V: 0.07883}</td>
<td>0.05303</td>
<td>0.0517</td>
</tr>
</tbody>
</table>

로그정규분포의 두 개의 모수를 모두 M-H Sampling으로 추정한 결과는 K-S test 결과 통계적으로 유의미하며, MLE추정방식보다 데이터에 대한 적합성이 개선된 것을 알 수 있다.

3) 소결론

기상재해의 섬도데이터 분포추정에 대한 앞선 연구들의 결과, MLE 방식으로 추정 시 Log-Pearson type3 분포, Log-Normal (3P) 분포, Log-Normal분포에 대하여 높은 적합성을 보였으며, 이들 분포 중 난수 생성과 자료에 대한 누락 발생이 없는 Log-Normal분포에 대하여 M-H Sampling을 실시하기위해, 연도별 피해액을 Log-Normal분포에 MLE 추정결과들을 사전모수로 이용해 μ_t, σ_t 에 대하여 두 가지 방식으로 추정하였다.

첫 번째는 분산모수(σ_t)의 값은 알고 있고(3.1291), 평균모수(μ_t)를 GEV분포를 따르고 확률변수로 가정하여 M-H Sampling으로 평균
모수만 추정하였고, 두 번째로는 두 모수 모두 확률변수로 가정하여 두 모수 모두 각기 다른 GEV분포를 따르는 것으로 가정하여 모수를 추정하였다.

그 결과 평균모수(\(\mu\))만을 추정하였을 때는 KS test결과 MLE 추정방식보다 데이터분포에 대한 적합성이 떨어졌지만, 두 개의 모수 (\(\mu_t, \sigma_t\))를 추정한 경우 적합성이 개선되었다.

<table>
<thead>
<tr>
<th>분포함수</th>
<th>모수</th>
<th>MLE 방식</th>
<th>MH Sampling(1)</th>
<th>MH Sampling(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log-Normal</td>
<td>(\mu)</td>
<td>7.3226</td>
<td>7.1419</td>
<td>7.309</td>
</tr>
<tr>
<td></td>
<td>(\sigma)</td>
<td>3.1291</td>
<td></td>
<td>3.1204</td>
</tr>
</tbody>
</table>

이상의 결과를 살펴보면 MH Sampling을 이용한 모수추정방식은 MLE추정방식으로 추정된 모수의 추정 값과 통계적으로 다르지 않고 수집된 데이터분포에 대해 적합성을 지닌 분포를 생성하며, \(\mu\)의 감소로 발생되는 난수의 값들이 기존 MLE추정의 것보다는 낮을 것으로 예상된다. 더불어 두 모수를 모두 추정한 경우 MLE방식보다 적합성이 개선이 되었다.
3. 데이터 분포의 추정결과 검토

1, 2장에서 실시 한 기상재해로 인한 국내 공공시설 피해데이터는
빈도분포에서 추정한 결과 포이송 분포에 대해 높은 적합성을 보였으며,
심도 데이터에 대해서는 로그정규분포에 대해 적합성을 보였다. 이는
금융기관의 운영리스크의 빈도와 심도데이터가 따르는 분포에 대해
연구한 국내외의 기존연구들의 결과와 다르지 않은 결과를 보여주고 있다.

더불어 현재 분포의 추정에 많이 이용되는 최대우도함수법(MLE)
방식으로 추정한 결과와 MH Sampling 방식을 이용한 결과도 크게
다르지 않다는 것을 확인하였다. 특히 빈도분포의 경우 모수의 사전
분포에 대한 정보량으로 인해 MLE와 MH Sampling 사이의 큰
차이점을 살펴볼 수가 없었다. 따라서 빈도분포 추정 시 사전분포에
대한 충분한 정보가 있어야 두 방식의 차이점이 나타날 것으로 기대가
된다.

심도분포의 경우 여러분포들 중 기존 수리패키지프로그램을 통해
난수생성이 용이한 로그정규분포를 사용해 MH Sampling으로 추정한
로그정규분포의 중심값을 나타내는 모수의 값이 MLE방식과 동계적
으로 차이는 없지만, 전반적으로 모수의 값이 감소하는 것으로 나타
났으며, 평균모수만 추정하는 것보다 평균과 분산모수 모두를 추정할
경우 적합성이 개선되었다.

이상의 데이터 분포의 추정을 기초로 다음 장에서는 손실분포법
(LDA)을 이용해 최대손실가능금액(VaR)을 추정하고자 한다. 사용되는
분포는 빈도분포의 경우 MLE방식의 추정에서는 Poisson 분포,
Negative Binominal 분포를 사용하고 심도분포의 경우 Log-Pearson
Type 3 분포, Log-Normal(3p), Log-Normal 분포를 사용하고
MCMC 방식의 경우 빈도데이터에는 Poisson분포, 심도데이터는
Log-Normal분포를 사용하여 90%, 95%, 99%, 99.9%의 백분위수
(Percentile)에 해당하는 값을 구할 것이다.
V. 손실분포법 (LDA)을 통한 VaR 추정

앞서 언급된 분포들의 조합을 이용해 각 조합별로 10,000번의 LDA 시뮬레이션을 50회 실시하였고, 백분위수 수치들은 각 결과 값들의 평균값을 사용하였다. 그림 자료는 백분위 수 99.9%의 평균값에 근접한 결과를 이용 하였다.

LDA 시뮬레이션 결과를 보기 이전에 데이터를 통해 1985년부터 2010년 까지의 기상재해로 인한 연간피해액 자료에 대한 히스토그램을 보면 <그림 28>과 같다.

총 26년간의 연간 피해액 중 상당수 (19건)는 1조원 미만의 피해규모를 보이고 있다. 하지만 그 이외의 연도에는 1조원을 넘거나 가까운 피해액을 보이며 전형적인 피레기 두터운 형태의 분포의 특성을 나타내고 있다. 2조원 이상의 피해규모부터는 불연속적으로 발생하는 모습을 보이고 있다. 각 추정분포를 이용한 LDA 시뮬레이션 결과는 다음과 같다.
1. MLE 방식 추정 분포를 이용한 LDA 결과

1) Poisson-Logpearson Type 3. LDA 결과

![Graph.png](attachment:Graph.png)

<그림 29> Poisson-Logpearson Type3 LDA 결과

Poisson-Logpearson Type 3 분포를 이용한 시뮬레이션 결과 총 10,000번의 시뮬레이션 결과들 중 상당수는 5조원 미만대의 피해액을 보여주고 있지만 최대 피해액이 450조가 넘는 결과가 발생하였고, 100조 이상의 피해액이 14건이 발생하는 모습을 보여주고 있다.
2) Negative Binomial–Logpearson Type 3. LDA 결과

Negative Binomial–Logpearson Type 3 분포를 이용한 시뮬레이션 결과 중 10,000번의 시뮬레이션 결과들 중 상당수는 5조원 미만대의 피해액을 보여주고 있지만 최대 피해액이 450조가 넘는 결과가 발생하였고, 100조 이상의 피해액이 14건이 발생하는 모습을 보여주며, Poisson 분포로 실시한 LDA와 비슷한 양상을 보여주고 있다.
3) Poisson-Lognormal(3p). LDA 결과

Poisson-Lognormal(3p) 분포를 이용한 시뮬레이션 결과 총 10,000번의 시뮬레이션 결과들 중 상당수는 5조원 미만대의 피해액을 보여주고 있지만 최대 피해액이 450조가 넘는 결과가 발생하였고, 100조 이상의 피해액이 15건이 발생하는 모습을 보여주고 있다.
4) Negative Binomial–Lognormal(3p). LDA 결과

Negative Binomial–Lognormal (3p) 분포를 이용한 시뮬레이션 결과 총 10,000번의 시뮬레이션 결과들 중 상당수는 5조원 미만대의 피해액을 보여주고 있지만 최대 피해액이 450조가 넘는 결과가 발생하였고, 100조 이상의 피해액이 14건이 발생하는 모습을 보여주며, Logpearson type 3 분포로 실시한 LDA와 비슷한 유사한 모습을 보인다.
5) Poisson-Lognormal. LDA 결과

Poisson-Lognormal 분포를 이용한 시뮬레이션 결과 총 10,000번의 시뮬레이션 결과들 중 상당수는 5조원 미만대의 피해액을 보여주고 있지만 최대 피해액이 900조가 넘는 결과가 발생하였고, 100조 이상의 피해액이 10건이 발생하는 모습을 보여주고 있으며, 앞의 두 심도 분포와는 확연히 다르게 큰 규모의 피해가 흔히 적게 발생한다.

<그림 33> Poisson-Lognormal LDA 결과
6) Negative Binomial–Lognormal. LDA 결과

<그림 34> Neg.Binomial–Lognormal LDA 결과

Negative Binomial–Lognormal 분포를 이용한 시뮬레이션 결과 총 10,000번의 시뮬레이션 결과들 중 상당수는 5조원 미만대의 피해액을 보여주고 있지만 최대 피해액이 450조가 넘는 결과가 발생하였고, 100조 이상의 피해액이 14건이 발생하는 모습을 보여주고 있다.
2. MCMC 방식 추정 분포를 이용한 LDA 결과

1) Poisson-Lognormal(MH Sampling \(\mu \) 추정). LDA 결과

\[
\begin{align*}
\text{Poisson-Lognormal(MH Sampling } \mu\text{ 추정). LDA 결과}
\end{align*}
\]

\[
\begin{align*}
\text{\textless \text{그림 36}\textgreater \text{ Poisson-MCMC Lognormal(1) LDA 결과}}
\end{align*}
\]

\[
\begin{align*}
\text{\(\mu \)만 MH Sampling으로 추정된 Poisson-Lognormal 분포를 이용한 시뮬레이션 결과 총 10,000번의 시뮬레이션 결과들 중 상당수는 5조원 미만대의 피해액을 보여주고 있지만 최대 피해액이 200조가 조금 넘는 수준의 결과가 발생하였고, 100조 이상의 피해액이 6건이 발생했다.}
\end{align*}
\]
2) Poisson-Lognormal (MH Sampling μ_t, σ_t 추정). LDA 결과

\[\mu_t, \sigma_t \] 모두 MH Sampling으로 추정된 Poisson-Lognormal 분포를 이용한 시뮬레이션 결과 총 10,000번의 시뮬레이션 결과 최대 피해액이 160조원 대에 머무르고 있으며 100조원을 넘는 경우는 10건을 보이며 다른 추정방식들과 달리 최대 피해액이 상당히 낮은 결과가 나왔다.
3. 추정방식에 따른 LDA 결과 비교

추정된 분포를 조합하여 실시한 50회의 LDA 시뮬레이션 결과들의 평균값을 비교해보면 <표 14>와 같다.28)

<표 14> 추정된 분포를 이용한 LDA시뮬레이션 결과 평균 값

<table>
<thead>
<tr>
<th>추정방식</th>
<th>사용분포</th>
<th>백분위수(Percentile) 값 (단위: 백만원)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>심도</td>
<td>90%</td>
</tr>
<tr>
<td>MLE</td>
<td>Log-Pearson3</td>
<td>Poiss.</td>
</tr>
<tr>
<td></td>
<td>Log-Normal(3p)</td>
<td>Poiss.</td>
</tr>
<tr>
<td></td>
<td>Log-Normal</td>
<td>N.Bin.</td>
</tr>
<tr>
<td></td>
<td>Log-Normal</td>
<td>Poiss.</td>
</tr>
<tr>
<td></td>
<td>Log-Normal</td>
<td>N.Bin.</td>
</tr>
<tr>
<td>MCMC μ_0만추정</td>
<td>Log-Normal</td>
<td>Poiss.</td>
</tr>
<tr>
<td>MCMC μ_0,σ 추정</td>
<td>Log-Normal</td>
<td>Poiss.</td>
</tr>
</tbody>
</table>

위의 결과를 살펴보면, 전반적으로 백분위수 사용에 있어서 포아송 분포를 사용한 시뮬레이션 결과가 음이항 분포를 사용한 시뮬레이션결과 값들보다 백분위수가 크게 추정되는 경향이 있음을 보여 주고 있다. 심도분포의 경우 MLE 추정에서 높은 적합성을 보여주었던 분포일 수록

28) 각 항목별 시뮬레이션 결과는 부록 3. ~ 부록 10에 수록
백분위 수 (최대손실가능금액(VaR))들의 값이 커지는 것을 알 수 있다.

MLE방식으로 추정한 심도분포보다 MCMC방식으로 추정된 심도분포들이 의한 손실분포 시뮬레이션 결과 백분위수에 해당되는 값이 낮게 나타났다. 두 MCMC방식 중 모든 모수(μₜ,σₜ)를 추정한 분포를 이용한 시뮬레이션들의 평균값과 MLE 방식의 차이를 보면, 99.9%의 백분위에서는 15조원, 95%에서는 600억 원 정도 감소하는 것을 알 수 있다. 이를 통해 국내 기상재해 피해액 추정과 복구예산 편성에 있어 MCMC방식을 통해 예상 피해액을 산정하는 것이 유리하다고 판단이 된다.

4. LDA모형의 현실적합성 고려

하지만 모든 분포들의 결합의 시뮬레이션 결과의 99.9%에 해당하는 백분위수들의 값이 수백조원을 넘는 값을 보여주며 현실성이 떨어지는 현상을 보여주고 있다. 실제 데이터 수집 기간 동안 발생한 최대 피해액이 6조원인 것을 감안할 경우, LDA방식의 시뮬레이션을 통해 얻은 99% 및 99.9%의 값을 사용하는 것은 문제가 있다고 볼 수 있다. 모형의 특성 상 난수 발생을 통한 시뮬레이션을 실행할 경우 심도분포에서 수 조원을 넘는 피해액을 여러 번 추출된 상태에서 그 결과들을 합산하여 얻은 분포의 백분위수를 사용할 경우 위와 같은 문제가 향상 발생하게 된다.

그러나 실제 현재까지의 국내 기상재해로 인한 연간 피해액의 경향을 보면 1~2회 정도의 규모 3이상의 대형태풍과 같은 대규모 재해로 인해 연간 피해액의 규모가 결정되는 현상을 볼 때 위의 모형을 사용 시 95%수준의 백분위 수에서는 현실 설명력이 높지만 그 이상의 백분위 수에서는 현실 설명력이 급격하게 떨어지게 된다.

만약 위에서 언급한 것처럼 대규모 피해의 수자례 누적에 대한 문제점을 해결하고 실제 연간 기상재해피해발생 경향을 반영하기 위해 심도분포에서
추측된 난수들의 합이 아닌 난수들의 평균값을 사용하게 되면, 99% 및 99.9%에 해당하는 백분위수가 증가할 경우보다 감소할 수 있다. 실제로 위의 결과들 중에서 포아송 분포와 MCMC방식으로 추정된 심도 분포를 결합해서 본테카를로 시뮬레이션 실시 후 심도분포의 난수 값들의 합이 아닌 평균을 사용할 경우 그 결과 값은 <표 15>와 같다. 29)

<table>
<thead>
<tr>
<th>추정방식</th>
<th>사용분포</th>
<th>백분위수(Percentile) 값 (단위: 백만원)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>심도</td>
<td>빈도</td>
</tr>
<tr>
<td>MCMC</td>
<td>Log-Normal</td>
<td>Poiss.</td>
</tr>
</tbody>
</table>

위의 결과를 보면 90%와 95%의 백분위수에 해당하는 연평균피해액의 값들은 각각 2.46천억 원, 5.1천억 원의 값을 보이고 99%에서는 2.36 조 원과 99.9%에서는 16조원 정도의 값을 보여 주고 있다. 이 경우 99.9%의 백분위수에서 수백조원을 넘는 <표 14>의 결과들이 비해 99% 및 99.9%의 백분위 수에서도 현실적이고 수용 가능한 시뮬레이션 결과 값이 나타났다.

지금까지의 결과를 보면 기상재해로 인한 공공시설의 최대손실 가능 추정연구에 있어 LDA방식을 그대로 사용할 경우 분포의 95%에 해당하는 결과 값이 현실에 가장 근사한 결과를 보였지만 그 이상의 백분위 수들에서는 결과 값이 지나치게 커지게 되는 문제가 있고 LDA방식을 변형 해 심도분포난수들의 합이 아닌 평균값을 사용할 경우 99%나 99.9%에 해당하는 백분위수들의 값이 타당한 결과 값이 나오게 된 다는 것을 알게 되었다.

29) 본 결과도 50번의 시뮬레이션 결과들의 평균값을 사용했다. 세부내용은 부록 11. 참조
Ⅴ. 결론

1. 연구의 요약

2000년대 이후 한반도 지역은 기후온난화로 인해 자연재해의 피해의 정도와빈도가 급격히 증가하고 있는 추세를 보이며 개별재난의 피해액이 1조원대를 넘기는 재해가 발생하고 있다. 이 중 큰 피해를 낸다는 기상재해는 대부분이 태풍으로 인한 피해이며 지구온난화로 인해서 동남아시아 인근 해역의 수온이 상승의 결과 향후, 태풍의 강도가 더욱 커지는 점을 감안할 때 그로인한 피해규모가 커질 가능성도 크다.

하지만 이들 선행연구의 한계점은 기상재해로 인해 발생되는 손실의 담보부분에 대한 제도적 정책적 측면의 접근의 연구를 진행하였지만, 정작 국내에서 기상재해로 인해 얼마나많은 피해가 발생할지에 대한 예측 및 산정에 대한 연구가 뒷받침되지 못하였다.

실제 보험 상품설계나 대재해 채권발행 시 사고에 따른 예상피해액을 기초로 하여 금액이 산정되어야 하지만, 아직 국내에는 자연재해로 인한 피해액의 규모를 사전에 추정하는 방법에 대한 연구가 부족한
실험이다.

따라서 본 연구에서는 금융기관의 비 금융자산 부분의 리스크 운영리스크관리 기법 중 하나인 손실분포법을 이용해 기상재해로 인한 피해규모를 추정하였다. 국내에서 발생하였던 기상재해로 인한 공공시설 피해액 데이터를 기초로 이들의 연간 발생횟수와 개별재해의 피해액의 분포를 추정하여 이 결과를 이용해 개별분포로부터 난수를 발생한 후 뽑아서 이를 합산하는 방식의 시뮬레이션을 통해서 기상 재해로 인한 최대손실가능 금액을 추정하는 연구를 실시하였다.

이와 유사한 연구가 이영재(2008)에 의해 국내 우식피해와 공항의 결항피해액에 대해 손실분포법을 이용하여 그 피해규모를 추정한 연구가 진행되었지만 이 연구에서는 손실분포법 사용 영역의 확장 가능성성을 시사해주는 연구로서 기상재해의 분포추정에 대해 기존의 최대우도함수법을 이용한 결과를 이용하였다.

따라서 본 연구에서는 기존 손실분포법 적용에서 많이 활용하는 최대우도함수법과 MCMC방식을 이용해 분포를 추정하고 각 결과를 손실분포법 시뮬레이션을 실시해 그 결과를 비교하여 효과적인 방법을 찾고자 하였다.

연구결과, 국내 기상재해로 인한 공공시설 피해의 경우 최대우도함수법을 이용해 분포를 추정하게 되면 빈도분포는 포아송분포와 음이항분포에 대해, 심도는 로그피어슨 타입3, 모수가 3개인 로그정규분포, 로그정규분포에 대해 높은 적합성을 보여주었다. 이는 금융기관의 손실분포법에 대한 선행연구결과들과 큰 차이가 없는 결과였다.

위의 결과에서 빈도분포에 대해서는 포아송분포, 심도분포에 대해
서는 로그정규분포에 대해 MCMC방식을 이용해 모수를 추정하였다. MCMC방식의 경우, Random Walk MH Sampling을 이용하였다.

MCMC 추정결과 빈도분포의 경우 모수분포에 대한 사전정보가 불충분하여, 포아송분포의 공액분포인 감마분포를 이용하였지만, 부적합한 사전분포의 사용으로 기존 MLE 추정방식과는 별 차이가 없는 모수의 결과 값을 얻게 되었다.

빈도분포의 경우 MCMC를 적용하기 전 모수들의 사전분포를 구하기 위해 연도별로 로그정규분포에 대해 최대우도함수법을 적용시켜 모수에 대한 분포를 구한 결과, 분산정보를 나타내는 \(\alpha \)값의 사전분포에 대해 MLE 추정 값과 같은 균일분포, GEV 분포를 따르는 경우로 나타나서 GEV 분포를 따르는 모수 \(\mu_t \)에 대해 Random walk MH Sampling을 실시하였다. 그 결과 모두 \(\mu_t \)값이 MLE추정 보다 다소 감소되었지만, 통계적으로는 크게 다르다고 할 수 없었고, KS test 결과 유의한 적합성을 보여주었고 \(\mu_t, \sigma_t \) 모두를 MCMC로 추정한 경우 MLE추정보다 적합성이 개선되었다.

위의 결과를 토대로 손실분포법 시뮬레이션을 적용하여 각 10,000번씩 총 50회의 시뮬레이션을 수행한 결과 심도데이터에 대해 높은 적합성을 보인 분포일수록 큰 99.9% VaR값이 구하여졌으며, 빈도분포의 경우 포아송 분포가 음이항분포 보다 더욱 큰 99.9% VaR값이 나타났다.

심도데이터에 대해 최대우도함수법과 MCMC추정의 결과 MCMC 추정 심도분포 사용 시 0.90, 0.95, 0.99, 0.999 백분위수들 모두에서 더욱 낮은 값을 보여주어, 심도데이터에 대해 적합성을 유지하면서 낮은 수치의 VaR추정을 가능하게 하였다.

LDA방식의 경우 0.95 백분위수 까지는 그 범위가 수 조원대의 범위를 나타내어 시뮬레이션의 현실 설명력과 적합성을 나타내었지만 그 이상의 백분위수들의 경우 값이 지나치게 커지게 되었다. 특히 누적확률 99.9%에서는 모두 수백조원을 넘는 수치를 보여주면서
실제 발생된 연간 피해액들의 데이터와 비교 시 99.9% VaR사용에 대한 효용성에 의문을 갖게 되었다.

LDA방식처럼 심도분포에서 발생한 난수들의 합이 아닌 평균값을 사용하였을 경우 누적확률 90%, 95%, 99%, 99.9%에 해당하는 값들이 각각 2천억원, 5천억원, 2조원, 16조원의 값이 추정되어 발생된 난수의 합의 사용한 결과보다 현실성이 커지게 되었다.

<table>
<thead>
<tr>
<th>년도</th>
<th>기간</th>
<th>재해유형</th>
<th>연간 피해액</th>
<th>단일재해 피해액</th>
<th>기여도</th>
</tr>
</thead>
<tbody>
<tr>
<td>1987</td>
<td>7.12-16</td>
<td>태풍 '살마'</td>
<td>1조 414억</td>
<td>4,079억</td>
<td>39.2%</td>
</tr>
<tr>
<td>1998</td>
<td>7.21-8.18</td>
<td>집중호우</td>
<td>1조 5,501억</td>
<td>1조 2,422억</td>
<td>80.1%</td>
</tr>
<tr>
<td>1999</td>
<td>7.23-8.4</td>
<td>태풍, 집중호우</td>
<td>1조 2,196억</td>
<td>1조 341억</td>
<td>84.8%</td>
</tr>
<tr>
<td>2002</td>
<td>8.30-9.1</td>
<td>태풍 '루서'</td>
<td>6조 6,741억</td>
<td>5조 3,388억</td>
<td>80.0%</td>
</tr>
<tr>
<td>2003</td>
<td>9.12-9.13</td>
<td>태풍 '매미'</td>
<td>3조 8,639억</td>
<td>3조 6,657억</td>
<td>94.9%</td>
</tr>
<tr>
<td>2006</td>
<td>7.9-7.29</td>
<td>집중호우</td>
<td>1조 9,316억</td>
<td>1조 8,645억</td>
<td>96.5%</td>
</tr>
</tbody>
</table>

표 16에서의 결과처럼 연구대상기간동안 연간 기상재해 피해액이 1조원을 넘긴 것이 총 6개년도이고 이중 대규모의 단일 기상재해 피해액이 연간 총 피해액에서 차지하는 비중(기여도)이 6개년도 중 5개 년도가 80% 이상을 보이고 있다. 즉 대규모의 재해로 인한 피해액은 재해가 발생한 당해 년의 연간 총 피해액 규모를 결정짓는다고 볼 수 있다.

앞서 LDA시뮬레이션 고찰부분에서 백분위수 99.9%에 해당하는

30) 공공시설 피해액 기준
시뮬레이션들의 결과들은 개별재해피해액이 1조원이 넘는 대규모 재해들이 연속적으로 발생된 결과 값으로 그 합이 수백조원이 나타나게 되었다. 따라서 99.9% 백분위수에 해당하는 심도난수들의 평균값은 대규모 기상재해가 발생하였을 때 나타날 수 있는 피해액을 대표한다고 해석할 수 있다. 즉 본 연구에서 살펴보고자 하는 기상재해로 인한 최대피해가능금액의 정의에 부합한다고 생각할 수 있다.

따라서 본 연구의 결과를 토대로 국내 기상재해로 인한 공공시설의 피해에 대한 최대손실가능금액의 추정방법에 있어 핸드분포에는 포아송분포 심도분포에는 MCMC로 추정된 로그정규분포를 사용하여 손실분포함을 변형시켜 평균값을 구하는 시뮬레이션이 다탄하다고 생각되며, 최대 손실가능금액 추정에 있어서는 99.9%에 해당하는 백분위수들의 평균값인 ‘16조 3천억 원’을 제시하고자 한다.

2. 연구의 한계 및 향후과제

본 연구의 한계점으로는 무엇보다 여러 요소가 결합되어 명확한 인과관계를 분석하기 힘든 기상재해현상을 그 발생된 범도와 피해액 데이터들의 분포만으로 단순화시켜 그 피해액 규모를 추정함에 따라, 우선지역 및 해안가지방의 공공재산분포형태, 태풍의 종속, 강우량 및 적설량 등의 다른 요소를 고려한 정교한 모델 생성을 못한 것이 가장 크게 본다. 다음으로 기상재해로 피해를 본 공공시설물 중 보험에 가입되어 있는 시설의 경우 피해액 추정에 있어 이를 반영시키려 하지만, 그에 관한 구체적인 자료를 확득하지 못하고 재해연보에 기록된 값 자체를 사용한 점이다.

그리고 모델링 방식의 한계에서는 무엇보다 기상재해손실발생 반도의 모수(λ)의 사전정보가 불충분하여, 부적합 사전분포를 이용한 결과 기존의 최대우도함수법과 큰 차이가 없다는 점이다. 재해발생
빈도의 모수에 대한 좀 더 추가적인 정보나 향후의 분석이 세밀적으로 진행이 된다면 이에 따른 문제점은 해결될 수 있을 것이라 판단이 된다. 더불어 기온상승 및 기후변화로 인한 국내 기상재해의 발생빈도와의 상관관계 및 모델링에 대한 후속 연구가 있을 경우, 분포분포 추정에 큰 도움이 될 수 있을 것으로 판단된다.

난수발생을 통한 시뮬레이션 결과 값들이 나타내는 분포를 사용함에 따라 분포의 꼬리부분에 상당히 큰 규모의 난수가 집중적으로 몰려 있음에 따라 극단적인 결과 값이 나오는 문제점이 발생이 되어 이런 문제점을 완화시키기 위해 시뮬레이션 결과 값들의 합을 구하는 방식이 평균값을 사용하는 방식을 이용하였지만, 이런 구조적인 문제점을 해소할 수 있는 정교한 시뮬레이션방식의 연구가 필요할 것이다.

마지막으로 이번 연구에서는 26개년 동안 피해액 데이터가 따르는 단일 확률분포를 구하기 위해 로그정규분포를 사용하여 적합성이 높은 평균과 분산모수를 찾는 방법에 초점을 맞추었다. 하지만 기상재해로 인한 피해액 규모가 증가하지만 그 반도가 감소하는 추세를 감안하게 되면 분포의 평균모수보다 분산모수의 중요성이 커지게 되며, 피해액 데이터가 따르는 분포의 변동성이 커지게 되고 더욱 두터운 꼬리를 갖게 된다.

반약 할 후 좀 더 많은 년도의 피해액 데이터가 구축이 되면 기존 피해액의 자료에 기초하여 추정된 분포의 모수들의 변동성이 반영된 상태로 보정을 설정하고 모형이 나타내는 예측값과 실제 관측값을 비교하며 그 확률적 오차를 이용한 칼만필터(Kalman filter)방식을 사용해 평균 및 분산모수의 변동 추이를 파악하여 분포를 찾아내는 방법을 고려하면 기상재해피해액 자료를 토대로 좀 더 정교한 최대 피해가능 금액 예측이 가능할 수 있을 것으로 기대한다.
참 고 문 헌

【국내문헌】

국립방재교육연구원 방재연구소(2008), 「리스크 곡선을 활용한 재난발생 특성분석 방안연구-인적재난의 정량적 위험분석 기법연구-」

금융감독원(2004), 「운영리스크 고급측정법 세부지침」

김달호(2009), 「R과 WinBUGS를 이용한 베이지안 통계학」, 자유아카데미

김재인(2010), 「금융 리스크 관리」, 다산 출판사

류성경(2007), 「선진국의 대체적위험전가수단 (ART) 운영 현황과 국내 도입방안」

박준홍(2007), 「MCMC방법을 적용한 운영리스크 LDA측정방법에 관한 실증연구」, 한국과학기술원 석사학위논문

박종길 외(2005), 「한반도에서 발생되는 기상재해분석」, 한국환경과학학회

보험개발원(2005), 「자연재해리스크관리와 CAT 모델」

선우석호 외(2006), 「운영리스크 추정과 손실분포 적합성 검증」, 한국금융연구원

소방방재청, 「재해연보」, 각 연도

신동호(2002), 「자연재해보험 도입에 대한 연구」, 산업과학연구

오금호 외(2006), 「재해피해 추정기법의 요소기술과 개발현황」, 제 54권 제 5호 2006년 5월

이승수 외(2006), 「풍수해 피해 예측평가도구(HAZUS-MH)의 소개」, 지방환경학회 제 7권 제 3호 2006년 9월

이성재 외(2008), 「확률분포에 의한 리스크 반도수와 손실규모 추정」

이종열 외(2005) 「국가위기기관리시스템의 통합적 접근-구조행태를 중심으로」

이재은(2002), 「지방자치단체의 자연재해관리정책과 인위재난관리정책비
교연구: AHP 기법을 이용한 상대적 중요도 및 우선순위 측정을 중심으로, 한국행정학보 제36권 제2호, p.165~185
장옥재 외(2009), 「지역화학분석을 이용한 홍수피해위험도 산정」, 한국방재과학 논문, 제9권 4호
장은미(2006), 「지리정보기반의 재해 관리시스템 구축(I)-민간 보험사의 사례, 태풍의 경우-」, 대한지리학회지 제41권 제1호(p.106~120)
장인식(2003), 「베이즈추론」, 고려대학교 출판부
조하연 외(2010), 「금융그룹의 운영리스크 관리」, 박영사
차재형(2001), 「데이터미아닝과 생존분석을 이용한 보험료 및 보험금 추정에 관한 연구」, 고려대학교 박사학위 논문
최병선(2009), 「금융공학 I Elements of financial Engineering」, 세경사
최선화(2010), 「산경망과 유전자 알고리즘을 이용한 자연피해 피해예측 모델 연구」, 한국컴퓨터종합학술대회 논문집 Vol.37, No.1(c)
홍원화 외(2005), 「집중호우에 따른 도시지역의 피해와 수방대책에 관한 연구 - 대구광역시를 중심으로-」, 대한건축학회논문집 제21권 6호

【외국문헌】
A. Frachot, P. Georges(2001), Loss Distribution Approach for operational risk
Bakhodir Ergashev(2009), Estimating the lognormal-gamma model of operational risk using the MCMC method, The Federal Reserve Bank of Richmond
David P.M.Scollnik(2000), Actuarial Modeling with MCMC and BUGS: Additional Worked Examples
F. Dufresne, Hans U. Gerber(1990), Risk theory for the compound
Poisson process that is perturbed by diffusion,

Gray Koop, Dale J. Poirier (2007), Bayesian Econometric Methods, Cambridge

G. W. Peters and S. A. Sisson (2006), Bayesian Inference, Monte Carlo Sampling and Operational Risk

L. Dalla Valle, P. Giudici (2007), A Bayesian approach to estimate the marginal loss distributions in operational risk management

Ling Hu, Yating Yang (2009), A Bayesian Monte Carlo Markov Chain Method for Loss Model and Risk Measure Assessment

Marcelo G. Cruz (2002), Modeling, Mesuring and Hedging Operational Risk, Wiley

Paul Embrechts, Hansjörg Furrer (2003), Quantifying regulatory capital for operational risk

Pavel V. SHEVCHENKO (2010), Modelling Operational Risk Using Bayesian Inference, Springer

Wan-Kai Pang, Ping-Kei Leung (2004), On interval estimation of the coefficient of variation for the three-parameter Weibull, Lognormal and Gamma distribution
부록

1. 2010년 기준 연도별 생산자 물가지수

<table>
<thead>
<tr>
<th>연도</th>
<th>생산자 물가지수</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985</td>
<td>1.908</td>
</tr>
<tr>
<td>1986</td>
<td>1.937</td>
</tr>
<tr>
<td>1987</td>
<td>1.928</td>
</tr>
<tr>
<td>1988</td>
<td>1.877</td>
</tr>
<tr>
<td>1989</td>
<td>1.85</td>
</tr>
<tr>
<td>1990</td>
<td>1.775</td>
</tr>
<tr>
<td>1991</td>
<td>1.695</td>
</tr>
<tr>
<td>1992</td>
<td>1.659</td>
</tr>
<tr>
<td>1993</td>
<td>1.635</td>
</tr>
<tr>
<td>1994</td>
<td>1.592</td>
</tr>
<tr>
<td>1995</td>
<td>1.52</td>
</tr>
<tr>
<td>1996</td>
<td>1.472</td>
</tr>
<tr>
<td>1997</td>
<td>1.417</td>
</tr>
<tr>
<td>1998</td>
<td>1.263</td>
</tr>
<tr>
<td>1999</td>
<td>1.29</td>
</tr>
<tr>
<td>2000</td>
<td>1.265</td>
</tr>
<tr>
<td>2001</td>
<td>1.27</td>
</tr>
<tr>
<td>2002</td>
<td>1.275</td>
</tr>
<tr>
<td>2003</td>
<td>1.247</td>
</tr>
<tr>
<td>2004</td>
<td>1.176</td>
</tr>
<tr>
<td>2005</td>
<td>1.151</td>
</tr>
<tr>
<td>2006</td>
<td>1.141</td>
</tr>
<tr>
<td>2007</td>
<td>1.125</td>
</tr>
<tr>
<td>2008</td>
<td>1.036</td>
</tr>
<tr>
<td>2009</td>
<td>1.038</td>
</tr>
<tr>
<td>2010</td>
<td>1</td>
</tr>
</tbody>
</table>

※ 출처: 한국은행 경제통계시스템 (http://ecos.bok.or.kr/)
2. 기상재해별 공공시설 피해액 (단위 : 백만원)

<table>
<thead>
<tr>
<th>연도</th>
<th>시작시기</th>
<th>종결시기</th>
<th>피해액 (당해년도기준)</th>
<th>피해액 (2010년기준)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985</td>
<td>2/9</td>
<td>2/11</td>
<td>93</td>
<td>177.444</td>
</tr>
<tr>
<td></td>
<td>4/11</td>
<td>4/13</td>
<td>15.3</td>
<td>29.1924</td>
</tr>
<tr>
<td></td>
<td>5/4</td>
<td>5/7</td>
<td>778.584</td>
<td>1485.538272</td>
</tr>
<tr>
<td></td>
<td>5/17</td>
<td>5/17</td>
<td>1.746</td>
<td>3.331368</td>
</tr>
<tr>
<td></td>
<td>6/22</td>
<td>6/28</td>
<td>7916.79</td>
<td>15105.23532</td>
</tr>
<tr>
<td></td>
<td>7/3</td>
<td>7/13</td>
<td>2732.49</td>
<td>5213.59092</td>
</tr>
<tr>
<td></td>
<td>7/17</td>
<td>7/19</td>
<td>36.705</td>
<td>70.03314</td>
</tr>
<tr>
<td></td>
<td>8/1</td>
<td>8/2</td>
<td>632.12</td>
<td>1206.08496</td>
</tr>
<tr>
<td></td>
<td>8/2</td>
<td>8/5</td>
<td>87.318</td>
<td>166.602744</td>
</tr>
<tr>
<td></td>
<td>8/8</td>
<td>8/12</td>
<td>2338.425</td>
<td>4461.7149</td>
</tr>
<tr>
<td></td>
<td>8/13</td>
<td>8/15</td>
<td>2765.852</td>
<td>5277.245616</td>
</tr>
<tr>
<td></td>
<td>8/15</td>
<td>8/19</td>
<td>11601.09</td>
<td>22134.87972</td>
</tr>
<tr>
<td></td>
<td>8/31</td>
<td>9/1</td>
<td>318.834</td>
<td>608.33272</td>
</tr>
<tr>
<td></td>
<td>9/1</td>
<td>9/7</td>
<td>716.905</td>
<td>1367.85474</td>
</tr>
<tr>
<td></td>
<td>9/7</td>
<td>9/8</td>
<td>81.555</td>
<td>155.60694</td>
</tr>
<tr>
<td></td>
<td>9/10</td>
<td>9/11</td>
<td>72.301</td>
<td>137.95008</td>
</tr>
<tr>
<td></td>
<td>9/18</td>
<td>9/23</td>
<td>1604.505</td>
<td>3061.39554</td>
</tr>
<tr>
<td></td>
<td>10/4</td>
<td>10/5</td>
<td>746.851</td>
<td>1424.991708</td>
</tr>
<tr>
<td></td>
<td>10/5</td>
<td>10/7</td>
<td>10863.523</td>
<td>20727.60188</td>
</tr>
<tr>
<td></td>
<td>10/9</td>
<td>10/13</td>
<td>204.331</td>
<td>389.863548</td>
</tr>
<tr>
<td></td>
<td>11/6</td>
<td>11/6</td>
<td>51.033</td>
<td>97.370964</td>
</tr>
<tr>
<td></td>
<td>11/9</td>
<td>11/15</td>
<td>282.942</td>
<td>539.853336</td>
</tr>
<tr>
<td></td>
<td>6/4</td>
<td>6/6</td>
<td>3.5</td>
<td>6.7795</td>
</tr>
<tr>
<td></td>
<td>6/16</td>
<td>6/17</td>
<td>32.942</td>
<td>63.808654</td>
</tr>
<tr>
<td></td>
<td>6/22</td>
<td>6/27</td>
<td>2838.072</td>
<td>5497.345464</td>
</tr>
<tr>
<td></td>
<td>7/11</td>
<td>7/12</td>
<td>9.959</td>
<td>19.290583</td>
</tr>
<tr>
<td></td>
<td>7/14</td>
<td>7/17</td>
<td>91.49</td>
<td>177.21613</td>
</tr>
<tr>
<td></td>
<td>7/18</td>
<td>7/22</td>
<td>3278.71</td>
<td>6350.86127</td>
</tr>
<tr>
<td></td>
<td>7/23</td>
<td>7/24</td>
<td>485.194</td>
<td>939.820778</td>
</tr>
<tr>
<td></td>
<td>8/1</td>
<td>8/4</td>
<td>0.48</td>
<td>0.92976</td>
</tr>
<tr>
<td></td>
<td>8/8</td>
<td>8/9</td>
<td>6976.455</td>
<td>13513.39334</td>
</tr>
<tr>
<td></td>
<td>8/10</td>
<td>8/11</td>
<td>228.612</td>
<td>442.821444</td>
</tr>
<tr>
<td></td>
<td>8/27</td>
<td>8/31</td>
<td>4171.519</td>
<td>8080.232303</td>
</tr>
<tr>
<td></td>
<td>9/2</td>
<td>9/2</td>
<td>20432.695</td>
<td>39578.13022</td>
</tr>
<tr>
<td></td>
<td>9/20</td>
<td>9/21</td>
<td>4.591</td>
<td>8.892767</td>
</tr>
<tr>
<td>Date</td>
<td>Date</td>
<td>Value</td>
<td>Value</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>10/9</td>
<td>10/14</td>
<td>372.924</td>
<td>722.353788</td>
<td></td>
</tr>
<tr>
<td>12/19</td>
<td>12/19</td>
<td>81.86</td>
<td>158.56282</td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>1/3</td>
<td>32.219</td>
<td>62.118232</td>
<td></td>
</tr>
<tr>
<td>2/2</td>
<td>2/4</td>
<td>3806.044</td>
<td>7338.052832</td>
<td></td>
</tr>
<tr>
<td>4/20</td>
<td>4/23</td>
<td>333.086</td>
<td>642.189808</td>
<td></td>
</tr>
<tr>
<td>6/1</td>
<td>6/2</td>
<td>667</td>
<td>1285.976</td>
<td></td>
</tr>
<tr>
<td>6/7</td>
<td>6/7</td>
<td>4.3</td>
<td>8.2904</td>
<td></td>
</tr>
<tr>
<td>7/12</td>
<td>7/16</td>
<td>211591.433</td>
<td>407948.2828</td>
<td></td>
</tr>
<tr>
<td>7/21</td>
<td>7/23</td>
<td>197745.48</td>
<td>381253.2854</td>
<td></td>
</tr>
<tr>
<td>7/25</td>
<td>7/28</td>
<td>19436.739</td>
<td>37474.03279</td>
<td></td>
</tr>
<tr>
<td>8/2</td>
<td>8/5</td>
<td>23705.901</td>
<td>45704.97713</td>
<td></td>
</tr>
<tr>
<td>8/7</td>
<td>8/8</td>
<td>361.602</td>
<td>697.18656</td>
<td></td>
</tr>
<tr>
<td>8/10</td>
<td>8/10</td>
<td>14.507</td>
<td>27.969496</td>
<td></td>
</tr>
<tr>
<td>8/15</td>
<td>8/17</td>
<td>11227.805</td>
<td>21647.2084</td>
<td></td>
</tr>
<tr>
<td>8/20</td>
<td>8/21</td>
<td>8211.653</td>
<td>15832.06698</td>
<td></td>
</tr>
<tr>
<td>8/28</td>
<td>8/30</td>
<td>25569.2</td>
<td>49297.4176</td>
<td></td>
</tr>
<tr>
<td>8/30</td>
<td>8/31</td>
<td>37461.07</td>
<td>72224.94296</td>
<td></td>
</tr>
<tr>
<td>1/22</td>
<td>1/24</td>
<td>215.908</td>
<td>405.259316</td>
<td></td>
</tr>
<tr>
<td>1/28</td>
<td>1/28</td>
<td>40</td>
<td>75.08</td>
<td></td>
</tr>
<tr>
<td>2/2</td>
<td>2/3</td>
<td>3.476</td>
<td>6.524452</td>
<td></td>
</tr>
<tr>
<td>4/17</td>
<td>4/19</td>
<td>262.26</td>
<td>492.26202</td>
<td></td>
</tr>
<tr>
<td>7/8</td>
<td>7/9</td>
<td>5829.532</td>
<td>10942.03156</td>
<td></td>
</tr>
<tr>
<td>7/9</td>
<td>7/11</td>
<td>5</td>
<td>9.385</td>
<td></td>
</tr>
<tr>
<td>7/12</td>
<td>7/14</td>
<td>14598.603</td>
<td>27401.57783</td>
<td></td>
</tr>
<tr>
<td>7/17</td>
<td>7/17</td>
<td>166.882</td>
<td>313.237514</td>
<td></td>
</tr>
<tr>
<td>7/20</td>
<td>7/20</td>
<td>57367.423</td>
<td>107678.653</td>
<td></td>
</tr>
<tr>
<td>7/22</td>
<td>7/23</td>
<td>204.137</td>
<td>383.165149</td>
<td></td>
</tr>
<tr>
<td>7/26</td>
<td>7/26</td>
<td>6.861</td>
<td>12.878097</td>
<td></td>
</tr>
<tr>
<td>8/15</td>
<td>8/15</td>
<td>16.21</td>
<td>30.42617</td>
<td></td>
</tr>
<tr>
<td>8/16</td>
<td>8/16</td>
<td>3183.194</td>
<td>5974.855138</td>
<td></td>
</tr>
<tr>
<td>8/18</td>
<td>8/18</td>
<td>182</td>
<td>341.614</td>
<td></td>
</tr>
<tr>
<td>8/27</td>
<td>8/28</td>
<td>760.31</td>
<td>1427.10187</td>
<td></td>
</tr>
<tr>
<td>9/25</td>
<td>9/28</td>
<td>71.382</td>
<td>133.984014</td>
<td></td>
</tr>
<tr>
<td>10/30</td>
<td>10/30</td>
<td>17</td>
<td>31.909</td>
<td></td>
</tr>
<tr>
<td>11/25</td>
<td>11/28</td>
<td>3</td>
<td>5.631</td>
<td></td>
</tr>
<tr>
<td>1987</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1988</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1989</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Date</th>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/24</td>
<td>1/24</td>
<td>80.362</td>
<td>148.6697</td>
</tr>
<tr>
<td>3/6</td>
<td>3/7</td>
<td>166.972</td>
<td>308.8982</td>
</tr>
<tr>
<td>5/10</td>
<td>5/11</td>
<td>0.448</td>
<td>0.8288</td>
</tr>
<tr>
<td>6/4</td>
<td>6/5</td>
<td>547.431</td>
<td>1012.74735</td>
</tr>
<tr>
<td>1989</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Date</td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>6/7</td>
<td>6/9</td>
<td>107.775</td>
<td>199.38375</td>
</tr>
<tr>
<td>6/14</td>
<td>6/15</td>
<td>4.571</td>
<td>8.45635</td>
</tr>
<tr>
<td>7/8</td>
<td>7/9</td>
<td>12.75</td>
<td>23.5875</td>
</tr>
<tr>
<td>7/15</td>
<td>7/16</td>
<td>15920.327</td>
<td>29452.6045</td>
</tr>
<tr>
<td>7/25</td>
<td>7/27</td>
<td>128436.157</td>
<td>237606.8905</td>
</tr>
<tr>
<td>7/28</td>
<td>7/29</td>
<td>27080.396</td>
<td>50098.7326</td>
</tr>
<tr>
<td>8/3</td>
<td>8/4</td>
<td>2.423</td>
<td>4.48255</td>
</tr>
<tr>
<td>8/11</td>
<td>8/12</td>
<td>54.605</td>
<td>101.01925</td>
</tr>
<tr>
<td>8/14</td>
<td>8/14</td>
<td>56.772</td>
<td>105.0282</td>
</tr>
<tr>
<td>8/20</td>
<td>8/23</td>
<td>8878.022</td>
<td>1642.3407</td>
</tr>
<tr>
<td>8/29</td>
<td>8/30</td>
<td>9024.997</td>
<td>16696.2445</td>
</tr>
<tr>
<td>9/8</td>
<td>9/9</td>
<td>20.05</td>
<td>37.0925</td>
</tr>
<tr>
<td>9/13</td>
<td>9/15</td>
<td>102.657</td>
<td>189.91545</td>
</tr>
<tr>
<td>9/17</td>
<td>9/18</td>
<td>13421.98</td>
<td>24830.663</td>
</tr>
<tr>
<td>11/1</td>
<td>11/2</td>
<td>175.376</td>
<td>324.4456</td>
</tr>
<tr>
<td>12/14</td>
<td>12/15</td>
<td>109.6</td>
<td>202.76</td>
</tr>
</tbody>
</table>

1989

<table>
<thead>
<tr>
<th>Date</th>
<th>Date</th>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/31</td>
<td>2/1</td>
<td>4362.07</td>
<td>7742.67425</td>
</tr>
<tr>
<td>2/20</td>
<td>2/20</td>
<td>47.4</td>
<td>84.135</td>
</tr>
<tr>
<td>3/24</td>
<td>3/24</td>
<td>5.121</td>
<td>9.089775</td>
</tr>
<tr>
<td>4/11</td>
<td>4/13</td>
<td>41.252</td>
<td>73.2223</td>
</tr>
<tr>
<td>4/25</td>
<td>4/26</td>
<td>30</td>
<td>53.25</td>
</tr>
<tr>
<td>5/1</td>
<td>5/3</td>
<td>62.05</td>
<td>110.13875</td>
</tr>
<tr>
<td>6/18</td>
<td>6/26</td>
<td>7810.139</td>
<td>13862.99673</td>
</tr>
<tr>
<td>7/11</td>
<td>7/12</td>
<td>53.03</td>
<td>94.12825</td>
</tr>
<tr>
<td>7/14</td>
<td>7/19</td>
<td>12219.2</td>
<td>21689.08</td>
</tr>
<tr>
<td>7/23</td>
<td>7/23</td>
<td>187.729</td>
<td>333.218975</td>
</tr>
<tr>
<td>7/24</td>
<td>7/25</td>
<td>954.925</td>
<td>1694.991875</td>
</tr>
<tr>
<td>8/20</td>
<td>8/22</td>
<td>2066.31</td>
<td>3667.70025</td>
</tr>
<tr>
<td>9/1</td>
<td>9/2</td>
<td>398.3</td>
<td>706.9825</td>
</tr>
<tr>
<td>9/9</td>
<td>9/12</td>
<td>244550.96</td>
<td>434077.954</td>
</tr>
<tr>
<td>10/6</td>
<td>10/9</td>
<td>1.96</td>
<td>3.479</td>
</tr>
<tr>
<td>12/1</td>
<td>12/3</td>
<td>1021.563</td>
<td>1813.274325</td>
</tr>
<tr>
<td>12/11</td>
<td>12/12</td>
<td>732.676</td>
<td>1300.4999</td>
</tr>
<tr>
<td>12/25</td>
<td>12/27</td>
<td>1716.604</td>
<td>3046.9721</td>
</tr>
</tbody>
</table>

1990

<table>
<thead>
<tr>
<th>Date</th>
<th>Date</th>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3</td>
<td>1/4</td>
<td>92.514</td>
<td>156.81123</td>
</tr>
<tr>
<td>2/15</td>
<td>2/24</td>
<td>3547.91</td>
<td>6013.70745</td>
</tr>
<tr>
<td>3/8</td>
<td>3/11</td>
<td>260.029</td>
<td>440.749155</td>
</tr>
<tr>
<td>4/17</td>
<td>4/18</td>
<td>201.885</td>
<td>342.195075</td>
</tr>
<tr>
<td>5/26</td>
<td>5/27</td>
<td>72.415</td>
<td>122.743425</td>
</tr>
<tr>
<td>Date</td>
<td>Date</td>
<td>Amount</td>
<td>Value</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>6/9</td>
<td>6/10</td>
<td>3820286</td>
<td>6475384.77</td>
</tr>
<tr>
<td>7/4</td>
<td>7/4</td>
<td>13</td>
<td>22.035</td>
</tr>
<tr>
<td>7/10</td>
<td>7/13</td>
<td>322311</td>
<td>546317145</td>
</tr>
<tr>
<td>7/15</td>
<td>7/16</td>
<td>160188</td>
<td>27151866</td>
</tr>
<tr>
<td>7/20</td>
<td>7/26</td>
<td>76447035</td>
<td>1295777243</td>
</tr>
<tr>
<td>7/28</td>
<td>7/30</td>
<td>5334996</td>
<td>904281822</td>
</tr>
<tr>
<td>7/31</td>
<td>8/1</td>
<td>8817295</td>
<td>1494531503</td>
</tr>
<tr>
<td>8/22</td>
<td>8/26</td>
<td>201395495</td>
<td>341365364</td>
</tr>
<tr>
<td>9/4</td>
<td>9/5</td>
<td>39727</td>
<td>67337265</td>
</tr>
<tr>
<td>9/27</td>
<td>9/28</td>
<td>436987</td>
<td>740692965</td>
</tr>
<tr>
<td>12/25</td>
<td>12/28</td>
<td>39656</td>
<td>6721692</td>
</tr>
<tr>
<td>1/31</td>
<td>2/1</td>
<td>4.75</td>
<td>788025</td>
</tr>
<tr>
<td>4/10</td>
<td>4/11</td>
<td>106867</td>
<td>177292353</td>
</tr>
<tr>
<td>4/17</td>
<td>4/21</td>
<td>59653</td>
<td>98964327</td>
</tr>
<tr>
<td>5/6</td>
<td>5/8</td>
<td>627026</td>
<td>1040236134</td>
</tr>
<tr>
<td>7/13</td>
<td>7/14</td>
<td>273429</td>
<td>453618711</td>
</tr>
<tr>
<td>7/15</td>
<td>7/15</td>
<td>308808</td>
<td>512312472</td>
</tr>
<tr>
<td>7/17</td>
<td>7/18</td>
<td>471448</td>
<td>782132232</td>
</tr>
<tr>
<td>8/7</td>
<td>8/8</td>
<td>178743</td>
<td>296534637</td>
</tr>
<tr>
<td>8/14</td>
<td>8/15</td>
<td>28.2</td>
<td>467833</td>
</tr>
<tr>
<td>8/24</td>
<td>8/25</td>
<td>46699</td>
<td>77473641</td>
</tr>
<tr>
<td>8/26</td>
<td>8/28</td>
<td>1096576</td>
<td>1819869248</td>
</tr>
<tr>
<td>8/30</td>
<td>8/30</td>
<td>199462</td>
<td>330907458</td>
</tr>
<tr>
<td>8/31</td>
<td>9/3</td>
<td>1152148</td>
<td>1911413532</td>
</tr>
<tr>
<td>9/22</td>
<td>9/26</td>
<td>567902</td>
<td>942149418</td>
</tr>
<tr>
<td>10/30</td>
<td>11/2</td>
<td>44325</td>
<td>73535175</td>
</tr>
<tr>
<td>1/14</td>
<td>1/19</td>
<td>510873</td>
<td>835277355</td>
</tr>
<tr>
<td>2/20</td>
<td>2/24</td>
<td>20442</td>
<td>3342267</td>
</tr>
<tr>
<td>4/22</td>
<td>4/23</td>
<td>5.7</td>
<td>93195</td>
</tr>
<tr>
<td>6/2</td>
<td>6/2</td>
<td>164986</td>
<td>26975211</td>
</tr>
<tr>
<td>6/28</td>
<td>6/28</td>
<td>34802</td>
<td>5690127</td>
</tr>
<tr>
<td>7/11</td>
<td>7/14</td>
<td>7850289</td>
<td>1283522252</td>
</tr>
<tr>
<td>7/18</td>
<td>7/18</td>
<td>1913993</td>
<td>3129378555</td>
</tr>
<tr>
<td>7/29</td>
<td>7/30</td>
<td>50347</td>
<td>82317345</td>
</tr>
<tr>
<td>8/1</td>
<td>8/3</td>
<td>128365</td>
<td>209876775</td>
</tr>
<tr>
<td>8/8</td>
<td>8/12</td>
<td>79879289</td>
<td>1306026375</td>
</tr>
<tr>
<td>8/20</td>
<td>8/21</td>
<td>61055671</td>
<td>9882602209</td>
</tr>
<tr>
<td>2/8</td>
<td>2/12</td>
<td>1030121</td>
<td>1639952632</td>
</tr>
<tr>
<td>5/25</td>
<td>5/26</td>
<td>1</td>
<td>1.592</td>
</tr>
<tr>
<td>Date</td>
<td>Amount</td>
<td>Date</td>
<td>Amount</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>6/18</td>
<td>6/20</td>
<td>632.671</td>
<td>1007.212232</td>
</tr>
<tr>
<td>6/30</td>
<td>7/1</td>
<td>63782.959</td>
<td>101542.4707</td>
</tr>
<tr>
<td>7/7</td>
<td>7/7</td>
<td>25999.378</td>
<td>41391.00978</td>
</tr>
<tr>
<td>7/31</td>
<td>8/1</td>
<td>2823.207</td>
<td>4494.545544</td>
</tr>
<tr>
<td>8/4</td>
<td>8/4</td>
<td>866.237</td>
<td>1379.049304</td>
</tr>
<tr>
<td>8/9</td>
<td>8/12</td>
<td>3318.86</td>
<td>5283.62512</td>
</tr>
<tr>
<td>8/14</td>
<td>8/16</td>
<td>165.877</td>
<td>264.076184</td>
</tr>
<tr>
<td>8/28</td>
<td>8/30</td>
<td>10662.637</td>
<td>16974.9181</td>
</tr>
<tr>
<td>10/10</td>
<td>10/12</td>
<td>813.587</td>
<td>1295.230504</td>
</tr>
<tr>
<td>3/1</td>
<td>3/1</td>
<td>28.934</td>
<td>43.97968</td>
</tr>
<tr>
<td>3/9</td>
<td>3/10</td>
<td>27.911</td>
<td>42.42472</td>
</tr>
<tr>
<td>5/20</td>
<td>5/20</td>
<td>36.19</td>
<td>55.0088</td>
</tr>
<tr>
<td>6/2</td>
<td>6/3</td>
<td>78.526</td>
<td>119.35952</td>
</tr>
<tr>
<td>7/2</td>
<td>7/3</td>
<td>22.798</td>
<td>34.65296</td>
</tr>
<tr>
<td>7/6</td>
<td>7/7</td>
<td>71.414</td>
<td>108.5928</td>
</tr>
<tr>
<td>7/9</td>
<td>7/10</td>
<td>7707.979</td>
<td>11716.12808</td>
</tr>
<tr>
<td>7/23</td>
<td>7/24</td>
<td>26462.399</td>
<td>40222.84648</td>
</tr>
<tr>
<td>8/1</td>
<td>8/1</td>
<td>160.194</td>
<td>243.49488</td>
</tr>
<tr>
<td>8/8</td>
<td>8/9</td>
<td>16377.215</td>
<td>24893.3668</td>
</tr>
<tr>
<td>8/19</td>
<td>8/30</td>
<td>375086.408</td>
<td>570131.3402</td>
</tr>
<tr>
<td>11/7</td>
<td>11/8</td>
<td>8240.967</td>
<td>12526.26984</td>
</tr>
<tr>
<td>1/13</td>
<td>1/15</td>
<td>100</td>
<td>147.2</td>
</tr>
<tr>
<td>2/17</td>
<td>2/19</td>
<td>93.139</td>
<td>137.10068</td>
</tr>
<tr>
<td>6/17</td>
<td>6/19</td>
<td>6027.804</td>
<td>8872.927488</td>
</tr>
<tr>
<td>6/29</td>
<td>6/30</td>
<td>77.818</td>
<td>114.548096</td>
</tr>
<tr>
<td>7/4</td>
<td>7/5</td>
<td>110.221</td>
<td>162.245312</td>
</tr>
<tr>
<td>7/26</td>
<td>7/28</td>
<td>326562.811</td>
<td>480700.4578</td>
</tr>
<tr>
<td>11/29</td>
<td>12/2</td>
<td>208.775</td>
<td>307.3168</td>
</tr>
<tr>
<td>1/1</td>
<td>1/7</td>
<td>3191.596</td>
<td>4522.491532</td>
</tr>
<tr>
<td>6/25</td>
<td>6/27</td>
<td>17053.967</td>
<td>24165.47124</td>
</tr>
<tr>
<td>6/30</td>
<td>7/2</td>
<td>17560.871</td>
<td>24883.75421</td>
</tr>
<tr>
<td>7/5</td>
<td>7/7</td>
<td>11136.685</td>
<td>15780.68265</td>
</tr>
<tr>
<td>7/15</td>
<td>7/17</td>
<td>4338.272</td>
<td>6147.331424</td>
</tr>
<tr>
<td>8/3</td>
<td>8/5</td>
<td>63015.99</td>
<td>89293.65783</td>
</tr>
<tr>
<td>Date</td>
<td>Amount</td>
<td>Value</td>
<td>Weight</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>8/7</td>
<td>8/9</td>
<td>4274.14</td>
<td>6056.45638</td>
</tr>
<tr>
<td>8/19</td>
<td>8/21</td>
<td>21569.688</td>
<td>30564.2479</td>
</tr>
<tr>
<td>9/1</td>
<td>9/2</td>
<td>376.843</td>
<td>533.986531</td>
</tr>
<tr>
<td>9/15</td>
<td>9/17</td>
<td>2634.751</td>
<td>3733.442167</td>
</tr>
<tr>
<td>11/25</td>
<td>11/26</td>
<td>1159.489</td>
<td>1642.995913</td>
</tr>
<tr>
<td>1/8</td>
<td>1/9</td>
<td>94</td>
<td>118.722</td>
</tr>
<tr>
<td>1/14</td>
<td>1/16</td>
<td>3012</td>
<td>3804.156</td>
</tr>
<tr>
<td>3/9</td>
<td>3/30</td>
<td>53</td>
<td>66.939</td>
</tr>
<tr>
<td>3/19</td>
<td>3/20</td>
<td>677</td>
<td>855.051</td>
</tr>
<tr>
<td>6/2</td>
<td>6/5</td>
<td>10</td>
<td>12.63</td>
</tr>
<tr>
<td>6/23</td>
<td>7/3</td>
<td>5070</td>
<td>6403.41</td>
</tr>
<tr>
<td>7/10</td>
<td>7/11</td>
<td>6940</td>
<td>8765.22</td>
</tr>
<tr>
<td>7/15</td>
<td>7/15</td>
<td>23</td>
<td>29.049</td>
</tr>
<tr>
<td>7/25</td>
<td>7/27</td>
<td>8051</td>
<td>10168.413</td>
</tr>
<tr>
<td>7/31</td>
<td>8/18</td>
<td>983587</td>
<td>1242270.381</td>
</tr>
<tr>
<td>9/29</td>
<td>10/1</td>
<td>219850</td>
<td>277670.55</td>
</tr>
<tr>
<td>7/1</td>
<td>7/2</td>
<td>12609</td>
<td>16265.61</td>
</tr>
<tr>
<td>7/23</td>
<td>8/4</td>
<td>801679</td>
<td>1034165.91</td>
</tr>
<tr>
<td>9/10</td>
<td>9/10</td>
<td>47516</td>
<td>61295.64</td>
</tr>
<tr>
<td>9/17</td>
<td>9/24</td>
<td>77580</td>
<td>100078.2</td>
</tr>
<tr>
<td>10/10</td>
<td>10/11</td>
<td>5841</td>
<td>7534.89</td>
</tr>
<tr>
<td>12/18</td>
<td>12/19</td>
<td>234</td>
<td>301.86</td>
</tr>
<tr>
<td>7/14</td>
<td>7/15</td>
<td>52942</td>
<td>66971.63</td>
</tr>
<tr>
<td>7/22</td>
<td>7/24</td>
<td>164470</td>
<td>208054.55</td>
</tr>
<tr>
<td>8/4</td>
<td>8/5</td>
<td>2649</td>
<td>3350.985</td>
</tr>
<tr>
<td>8/23</td>
<td>8/24</td>
<td>201553</td>
<td>254964.545</td>
</tr>
<tr>
<td>9/12</td>
<td>9/16</td>
<td>108838</td>
<td>137680.07</td>
</tr>
<tr>
<td>1/7</td>
<td>1/9</td>
<td>10091</td>
<td>12815.57</td>
</tr>
<tr>
<td>2/15</td>
<td>2/15</td>
<td>1005</td>
<td>1276.35</td>
</tr>
<tr>
<td>6/23</td>
<td>7/1</td>
<td>14705</td>
<td>18675.35</td>
</tr>
<tr>
<td>7/5</td>
<td>7/15</td>
<td>128906</td>
<td>163710.62</td>
</tr>
<tr>
<td>7/21</td>
<td>7/24</td>
<td>186462</td>
<td>236806.74</td>
</tr>
<tr>
<td>7/29</td>
<td>8/1</td>
<td>32032</td>
<td>40680.64</td>
</tr>
<tr>
<td>9/9</td>
<td>9/14</td>
<td>7504</td>
<td>9530.08</td>
</tr>
<tr>
<td>10/9</td>
<td>10/12</td>
<td>1893</td>
<td>2404.11</td>
</tr>
<tr>
<td></td>
<td>7/5</td>
<td>7/6</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>2002</td>
<td>8/4</td>
<td>8/11</td>
<td>35849</td>
</tr>
<tr>
<td></td>
<td>8/30</td>
<td>9/1</td>
<td>686293</td>
</tr>
<tr>
<td></td>
<td>10/18</td>
<td>10/20</td>
<td>4187351</td>
</tr>
<tr>
<td></td>
<td>6/18</td>
<td>6/19</td>
<td>11432</td>
</tr>
<tr>
<td></td>
<td>7/9</td>
<td>7/13</td>
<td>10539</td>
</tr>
<tr>
<td></td>
<td>7/17</td>
<td>7/18</td>
<td>57731</td>
</tr>
<tr>
<td></td>
<td>7/22</td>
<td>7/25</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>8/4</td>
<td>8/4</td>
<td>47732</td>
</tr>
<tr>
<td></td>
<td>8/6</td>
<td>8/7</td>
<td>342</td>
</tr>
<tr>
<td></td>
<td>8/17</td>
<td>8/21</td>
<td>8868</td>
</tr>
<tr>
<td></td>
<td>8/23</td>
<td>8/27</td>
<td>1252</td>
</tr>
<tr>
<td></td>
<td>9/12</td>
<td>9/13</td>
<td>30124</td>
</tr>
<tr>
<td></td>
<td>9/18</td>
<td>9/18</td>
<td>2939677</td>
</tr>
<tr>
<td></td>
<td>3/4</td>
<td>3/5</td>
<td>2131</td>
</tr>
<tr>
<td></td>
<td>4/26</td>
<td>4/29</td>
<td>11370</td>
</tr>
<tr>
<td></td>
<td>6/19</td>
<td>6/21</td>
<td>8868</td>
</tr>
<tr>
<td></td>
<td>7/2</td>
<td>7/17</td>
<td>82091</td>
</tr>
<tr>
<td></td>
<td>8/4</td>
<td>8/4</td>
<td>1252</td>
</tr>
<tr>
<td></td>
<td>8/17</td>
<td>8/19</td>
<td>30124</td>
</tr>
<tr>
<td></td>
<td>8/22</td>
<td>8/22</td>
<td>924.336</td>
</tr>
<tr>
<td></td>
<td>9/6</td>
<td>9/7</td>
<td>194</td>
</tr>
<tr>
<td></td>
<td>9/11</td>
<td>9/12</td>
<td>786</td>
</tr>
<tr>
<td></td>
<td>9/12</td>
<td>9/12</td>
<td>1231</td>
</tr>
<tr>
<td></td>
<td>1/15</td>
<td>1/15</td>
<td>462</td>
</tr>
<tr>
<td></td>
<td>3/4</td>
<td>3/13</td>
<td>3300</td>
</tr>
<tr>
<td></td>
<td>4/19</td>
<td>4/19</td>
<td>1116</td>
</tr>
<tr>
<td></td>
<td>4/19</td>
<td>4/19</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>6/26</td>
<td>6/28</td>
<td>462</td>
</tr>
<tr>
<td></td>
<td>6/30</td>
<td>7/2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>7/11</td>
<td>7/11</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>7/11</td>
<td>7/11</td>
<td>13655</td>
</tr>
<tr>
<td></td>
<td>7/30</td>
<td>7/30</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>8/2</td>
<td>8/11</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>8/2</td>
<td>8/11</td>
<td>29556</td>
</tr>
<tr>
<td></td>
<td>8/19</td>
<td>8/20</td>
<td>2937</td>
</tr>
<tr>
<td></td>
<td>9/6</td>
<td>9/18</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>10/21</td>
<td>10/24</td>
<td>120437</td>
</tr>
<tr>
<td></td>
<td>12/3</td>
<td>12/24</td>
<td>2937</td>
</tr>
<tr>
<td></td>
<td>12/3</td>
<td>12/24</td>
<td>109</td>
</tr>
<tr>
<td>Date</td>
<td>Date</td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>4/17</td>
<td>4/21</td>
<td>124</td>
<td>141.484</td>
</tr>
<tr>
<td>5/4</td>
<td>5/7</td>
<td>391</td>
<td>446.131</td>
</tr>
<tr>
<td>6/10</td>
<td>6/10</td>
<td>30</td>
<td>34.23</td>
</tr>
<tr>
<td>6/25</td>
<td>6/25</td>
<td>140</td>
<td>159.74</td>
</tr>
<tr>
<td>6/29</td>
<td>7/1</td>
<td>274</td>
<td>312.634</td>
</tr>
<tr>
<td>7/8</td>
<td>7/9</td>
<td>899</td>
<td>1025.759</td>
</tr>
<tr>
<td>7/9</td>
<td>7/29</td>
<td>1634158</td>
<td>1864574.278</td>
</tr>
<tr>
<td>8/17</td>
<td>8/21</td>
<td>368</td>
<td>419.888</td>
</tr>
<tr>
<td>8/25</td>
<td>8/27</td>
<td>155</td>
<td>176.855</td>
</tr>
<tr>
<td>9/16</td>
<td>9/18</td>
<td>10030</td>
<td>11444.23</td>
</tr>
<tr>
<td>10/22</td>
<td>10/25</td>
<td>44370</td>
<td>50626.17</td>
</tr>
<tr>
<td>11/4</td>
<td>11/9</td>
<td>1898</td>
<td>2165.618</td>
</tr>
<tr>
<td>12/16</td>
<td>12/18</td>
<td>112</td>
<td>127.792</td>
</tr>
<tr>
<td>3/4</td>
<td>3/8</td>
<td>2979</td>
<td>3351.375</td>
</tr>
<tr>
<td>3/28</td>
<td>3/29</td>
<td>126</td>
<td>141.75</td>
</tr>
<tr>
<td>3/30</td>
<td>4/1</td>
<td>177</td>
<td>199.125</td>
</tr>
<tr>
<td>7/1</td>
<td>7/2</td>
<td>3981</td>
<td>4478.625</td>
</tr>
<tr>
<td>7/13</td>
<td>7/16</td>
<td>1330</td>
<td>1496.25</td>
</tr>
<tr>
<td>7/29</td>
<td>7/29</td>
<td>79</td>
<td>88.875</td>
</tr>
<tr>
<td>8/4</td>
<td>8/15</td>
<td>29742</td>
<td>33459.75</td>
</tr>
<tr>
<td>8/27</td>
<td>8/30</td>
<td>586</td>
<td>659.25</td>
</tr>
<tr>
<td>8/31</td>
<td>9/3</td>
<td>1056</td>
<td>1188</td>
</tr>
<tr>
<td>9/4</td>
<td>9/9</td>
<td>2220</td>
<td>2497.5</td>
</tr>
<tr>
<td>9/13</td>
<td>9/18</td>
<td>113839</td>
<td>128068.875</td>
</tr>
<tr>
<td>2/6</td>
<td>2/8</td>
<td>60</td>
<td>62.16</td>
</tr>
<tr>
<td>2/22</td>
<td>2/25</td>
<td>140</td>
<td>145.04</td>
</tr>
<tr>
<td>7/19</td>
<td>7/21</td>
<td>398</td>
<td>412.328</td>
</tr>
<tr>
<td>7/23</td>
<td>7/26</td>
<td>40510</td>
<td>41968.36</td>
</tr>
<tr>
<td>8/2</td>
<td>8/18</td>
<td>10802</td>
<td>11190.872</td>
</tr>
<tr>
<td>8/22</td>
<td>8/23</td>
<td>80</td>
<td>82.88</td>
</tr>
<tr>
<td>12/21</td>
<td>12/23</td>
<td>5</td>
<td>5.18</td>
</tr>
<tr>
<td>4/20</td>
<td>4/22</td>
<td>10</td>
<td>10.38</td>
</tr>
<tr>
<td>7/7</td>
<td>7/8</td>
<td>19271</td>
<td>20003.298</td>
</tr>
<tr>
<td>7/9</td>
<td>7/9</td>
<td>1706</td>
<td>1770.828</td>
</tr>
<tr>
<td>7/11</td>
<td>7/16</td>
<td>220586</td>
<td>228968.268</td>
</tr>
<tr>
<td>Date</td>
<td>7/17</td>
<td>7/18</td>
<td>160</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>2009</td>
<td>7/21</td>
<td>7/21</td>
<td>400</td>
</tr>
<tr>
<td>8/11</td>
<td>8/12</td>
<td>1348</td>
<td>1399.224</td>
</tr>
<tr>
<td>10/16</td>
<td>10/18</td>
<td>14</td>
<td>14.532</td>
</tr>
<tr>
<td>11/9</td>
<td>11/13</td>
<td>686</td>
<td>712.068</td>
</tr>
<tr>
<td>3/17</td>
<td>3/17</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>7/10</td>
<td>7/11</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>7/16</td>
<td>7/18</td>
<td>10390</td>
<td>10390</td>
</tr>
<tr>
<td>7/23</td>
<td>7/24</td>
<td>16413</td>
<td>16413</td>
</tr>
<tr>
<td>8/9</td>
<td>8/12</td>
<td>2567</td>
<td>2567</td>
</tr>
<tr>
<td>8/13</td>
<td>8/18</td>
<td>80652</td>
<td>80652</td>
</tr>
<tr>
<td>8/23</td>
<td>8/29</td>
<td>395</td>
<td>395</td>
</tr>
<tr>
<td>9/1</td>
<td>9/3</td>
<td>54779</td>
<td>54779</td>
</tr>
<tr>
<td>9/9</td>
<td>9/10</td>
<td>2963</td>
<td>2963</td>
</tr>
<tr>
<td>9/21</td>
<td>9/22</td>
<td>39407</td>
<td>39407</td>
</tr>
<tr>
<td>12/29</td>
<td>1/1</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>
3. Pois.-Logp3. LDA Simulation 결과

<table>
<thead>
<tr>
<th>90%VaR</th>
<th>95%VaR</th>
<th>99%VaR</th>
<th>99.9%VaR</th>
</tr>
</thead>
<tbody>
<tr>
<td>4447119</td>
<td>9877435</td>
<td>6151166</td>
<td>4.38E+08</td>
</tr>
<tr>
<td>4576111</td>
<td>10254749</td>
<td>65193225</td>
<td>4.94E+08</td>
</tr>
<tr>
<td>4431761</td>
<td>10096965</td>
<td>60415425</td>
<td>5.33E+08</td>
</tr>
<tr>
<td>4220337</td>
<td>9502577</td>
<td>62198120</td>
<td>6.96E+08</td>
</tr>
<tr>
<td>4370029</td>
<td>10644572</td>
<td>5496385</td>
<td>6.63E+08</td>
</tr>
<tr>
<td>4331639</td>
<td>10062890</td>
<td>5529784</td>
<td>4.11E+08</td>
</tr>
<tr>
<td>4292328</td>
<td>10613419</td>
<td>59390394</td>
<td>7.86E+08</td>
</tr>
<tr>
<td>4103629</td>
<td>10673572</td>
<td>63778572</td>
<td>6.71E+08</td>
</tr>
<tr>
<td>4440494</td>
<td>10310578</td>
<td>64628966</td>
<td>5.97E+08</td>
</tr>
<tr>
<td>4457036</td>
<td>10003214</td>
<td>62708909</td>
<td>3.27E+08</td>
</tr>
<tr>
<td>4569980</td>
<td>9595138</td>
<td>55716206</td>
<td>6.97E+08</td>
</tr>
<tr>
<td>4571469</td>
<td>10487967</td>
<td>6242369</td>
<td>5.33E+08</td>
</tr>
<tr>
<td>4269140</td>
<td>10053089</td>
<td>5232157</td>
<td>6.03E+08</td>
</tr>
<tr>
<td>4275812</td>
<td>9418564</td>
<td>5509380</td>
<td>5.05E+08</td>
</tr>
<tr>
<td>4287757</td>
<td>9846143</td>
<td>53707212</td>
<td>7.41E+08</td>
</tr>
<tr>
<td>4316660</td>
<td>10078872</td>
<td>55386629</td>
<td>4.08E+08</td>
</tr>
<tr>
<td>4419680</td>
<td>9107327</td>
<td>58896618</td>
<td>4.66E+08</td>
</tr>
<tr>
<td>4306205</td>
<td>9733319</td>
<td>5386962</td>
<td>4.49E+08</td>
</tr>
<tr>
<td>4212231</td>
<td>9494762</td>
<td>5119280</td>
<td>3.76E+08</td>
</tr>
<tr>
<td>4438892</td>
<td>10063237</td>
<td>51782359</td>
<td>7.41E+08</td>
</tr>
<tr>
<td>4286242</td>
<td>9781113</td>
<td>57911634</td>
<td>4.98E+08</td>
</tr>
<tr>
<td>4764351</td>
<td>10934329</td>
<td>57125967</td>
<td>7.19E+08</td>
</tr>
<tr>
<td>4013623</td>
<td>9136280</td>
<td>59330610</td>
<td>9.13E+08</td>
</tr>
<tr>
<td>4380329</td>
<td>10407609</td>
<td>57017163</td>
<td>4.03E+08</td>
</tr>
<tr>
<td>4086334</td>
<td>9640395</td>
<td>6493001</td>
<td>5.46E+08</td>
</tr>
<tr>
<td>4341666</td>
<td>10819610</td>
<td>6181849</td>
<td>9.48E+08</td>
</tr>
<tr>
<td>4195114</td>
<td>9819803</td>
<td>5927625</td>
<td>5.42E+08</td>
</tr>
<tr>
<td>4302038</td>
<td>10014732</td>
<td>5952384</td>
<td>5.59E+08</td>
</tr>
<tr>
<td>4368809</td>
<td>10029607</td>
<td>62099092</td>
<td>8.24E+08</td>
</tr>
<tr>
<td>4285486</td>
<td>9085797</td>
<td>5173593</td>
<td>4.63E+08</td>
</tr>
<tr>
<td>4268974</td>
<td>9271963</td>
<td>67266607</td>
<td>5.96E+08</td>
</tr>
<tr>
<td>4314814</td>
<td>10232860</td>
<td>54820993</td>
<td>4.92E+08</td>
</tr>
<tr>
<td>4206826</td>
<td>10251166</td>
<td>5832247</td>
<td>9.41E+08</td>
</tr>
<tr>
<td>4288799</td>
<td>9606665</td>
<td>6760664</td>
<td>7.84E+08</td>
</tr>
<tr>
<td>4254182</td>
<td>9576956</td>
<td>64126813</td>
<td>7.21E+08</td>
</tr>
<tr>
<td>4304505</td>
<td>9278826</td>
<td>47274188</td>
<td>4.98E+08</td>
</tr>
<tr>
<td>4194194</td>
<td>10282747</td>
<td>59787190</td>
<td>6.13E+08</td>
</tr>
<tr>
<td>4446920</td>
<td>10789837</td>
<td>6788857</td>
<td>7.78E+08</td>
</tr>
<tr>
<td>4354899</td>
<td>10381129</td>
<td>6203272</td>
<td>5.83E+08</td>
</tr>
<tr>
<td>4397747</td>
<td>10641839</td>
<td>69088876</td>
<td>1.09E+09</td>
</tr>
<tr>
<td>4119044</td>
<td>9368900</td>
<td>51305008</td>
<td>3.98E+08</td>
</tr>
<tr>
<td>4304625</td>
<td>10105741</td>
<td>5997122</td>
<td>6.92E+08</td>
</tr>
<tr>
<td>4350344</td>
<td>10217382</td>
<td>6839473</td>
<td>7.44E+08</td>
</tr>
<tr>
<td>4641623</td>
<td>10747938</td>
<td>6469030</td>
<td>5.17E+08</td>
</tr>
<tr>
<td>4626880</td>
<td>10740947</td>
<td>6398194</td>
<td>7.24E+08</td>
</tr>
<tr>
<td>4545322</td>
<td>10808626</td>
<td>6549838</td>
<td>8.21E+08</td>
</tr>
<tr>
<td>4369111</td>
<td>10069763</td>
<td>58864706</td>
<td>7.23E+08</td>
</tr>
<tr>
<td>4353883</td>
<td>10168573</td>
<td>71243854</td>
<td>7.69E+08</td>
</tr>
<tr>
<td>4425230</td>
<td>9943842</td>
<td>55784999</td>
<td>4.42E+08</td>
</tr>
</tbody>
</table>
4. Nbin.-Logp3. LDA Simulation 결과

<table>
<thead>
<tr>
<th>90% VaR</th>
<th>95% VaR</th>
<th>99% VaR</th>
<th>99.9% VaR</th>
</tr>
</thead>
<tbody>
<tr>
<td>4013963</td>
<td>9190428</td>
<td>50893335</td>
<td>3.75E-08</td>
</tr>
<tr>
<td>438661</td>
<td>10655752</td>
<td>79247708</td>
<td>7.16E-08</td>
</tr>
<tr>
<td>3941610</td>
<td>9238411</td>
<td>58344300</td>
<td>3.93E-08</td>
</tr>
<tr>
<td>4100115</td>
<td>9830667</td>
<td>58924091</td>
<td>3.84E-08</td>
</tr>
<tr>
<td>421540</td>
<td>10325085</td>
<td>61991997</td>
<td>4.89E-08</td>
</tr>
<tr>
<td>4119179</td>
<td>9700994</td>
<td>62871566</td>
<td>5.43E-08</td>
</tr>
<tr>
<td>4021796</td>
<td>9722106</td>
<td>51150933</td>
<td>5.89E-08</td>
</tr>
<tr>
<td>4271841</td>
<td>9557611</td>
<td>55751937</td>
<td>7.78E-08</td>
</tr>
<tr>
<td>4066166</td>
<td>10499730</td>
<td>55990652</td>
<td>6.05E-08</td>
</tr>
<tr>
<td>3808333</td>
<td>9722706</td>
<td>52290262</td>
<td>6.72E-08</td>
</tr>
<tr>
<td>4123010</td>
<td>984962</td>
<td>7023981</td>
<td>5.36E-08</td>
</tr>
<tr>
<td>3918428</td>
<td>9672115</td>
<td>70705884</td>
<td>8.71E-08</td>
</tr>
<tr>
<td>4097939</td>
<td>9529684</td>
<td>52708786</td>
<td>6.93E-08</td>
</tr>
<tr>
<td>4154368</td>
<td>9685297</td>
<td>54629833</td>
<td>3.5E-08</td>
</tr>
<tr>
<td>3829933</td>
<td>8764412</td>
<td>52609994</td>
<td>4.61E-08</td>
</tr>
<tr>
<td>4151817</td>
<td>10115309</td>
<td>57018846</td>
<td>6.15E-08</td>
</tr>
<tr>
<td>406137</td>
<td>9420812</td>
<td>57580729</td>
<td>3.55E-08</td>
</tr>
<tr>
<td>403632</td>
<td>9649138</td>
<td>55282341</td>
<td>6.89E-08</td>
</tr>
<tr>
<td>4075995</td>
<td>9346745</td>
<td>54546283</td>
<td>6.8E-08</td>
</tr>
<tr>
<td>4068498</td>
<td>9371253</td>
<td>57797723</td>
<td>5.13E-08</td>
</tr>
<tr>
<td>4283708</td>
<td>9548533</td>
<td>50646552</td>
<td>7.19E-08</td>
</tr>
<tr>
<td>4057531</td>
<td>9310825</td>
<td>49043111</td>
<td>4.54E-08</td>
</tr>
<tr>
<td>4163145</td>
<td>9209047</td>
<td>53346100</td>
<td>5.19E-08</td>
</tr>
<tr>
<td>3998708</td>
<td>9226078</td>
<td>56648829</td>
<td>6.08E-08</td>
</tr>
<tr>
<td>3919652</td>
<td>9141381</td>
<td>53660778</td>
<td>3.88E-08</td>
</tr>
<tr>
<td>4469231</td>
<td>10107523</td>
<td>65214332</td>
<td>6.91E-08</td>
</tr>
<tr>
<td>4196041</td>
<td>9326295</td>
<td>57085872</td>
<td>4.33E-08</td>
</tr>
<tr>
<td>3888290</td>
<td>9567612</td>
<td>49204089</td>
<td>4.07E-08</td>
</tr>
<tr>
<td>4028994</td>
<td>982430</td>
<td>56148803</td>
<td>4.7E-08</td>
</tr>
<tr>
<td>4157785</td>
<td>9935630</td>
<td>60365134</td>
<td>4.32E-08</td>
</tr>
<tr>
<td>4254748</td>
<td>9870196</td>
<td>6497872</td>
<td>1.1E-09</td>
</tr>
<tr>
<td>4039694</td>
<td>9237226</td>
<td>56483478</td>
<td>3.09E-08</td>
</tr>
<tr>
<td>4106733</td>
<td>9664128</td>
<td>46152571</td>
<td>3.96E-08</td>
</tr>
<tr>
<td>4401733</td>
<td>10611082</td>
<td>57912742</td>
<td>7.92E-08</td>
</tr>
<tr>
<td>4504694</td>
<td>10607822</td>
<td>60099325</td>
<td>5.57E-08</td>
</tr>
<tr>
<td>4038510</td>
<td>8810894</td>
<td>52383407</td>
<td>7.37E-08</td>
</tr>
<tr>
<td>4142118</td>
<td>10628229</td>
<td>58092634</td>
<td>9.63E-08</td>
</tr>
<tr>
<td>3996912</td>
<td>9728210</td>
<td>51716500</td>
<td>4.77E-08</td>
</tr>
<tr>
<td>4041007</td>
<td>9453017</td>
<td>51832157</td>
<td>3.71E-08</td>
</tr>
<tr>
<td>4122464</td>
<td>9511809</td>
<td>6094239</td>
<td>7.63E-08</td>
</tr>
<tr>
<td>4013997</td>
<td>9767365</td>
<td>6967350</td>
<td>6.28E-08</td>
</tr>
<tr>
<td>414918</td>
<td>10477756</td>
<td>6478779</td>
<td>8.88E-08</td>
</tr>
<tr>
<td>4118620</td>
<td>9914056</td>
<td>6212025</td>
<td>7.56E-08</td>
</tr>
<tr>
<td>3808168</td>
<td>8793741</td>
<td>55376650</td>
<td>4.69E-08</td>
</tr>
<tr>
<td>428956</td>
<td>9643776</td>
<td>60796599</td>
<td>4.67E-08</td>
</tr>
<tr>
<td>3818497</td>
<td>8737360</td>
<td>52079990</td>
<td>5.69E-08</td>
</tr>
<tr>
<td>4042009</td>
<td>9412843</td>
<td>52960994</td>
<td>4.31E-08</td>
</tr>
<tr>
<td>3923042</td>
<td>8803999</td>
<td>49900148</td>
<td>6.34E-08</td>
</tr>
<tr>
<td>4315909</td>
<td>9486292</td>
<td>50148538</td>
<td>3.23E-08</td>
</tr>
<tr>
<td>403963</td>
<td>9723548</td>
<td>61675297</td>
<td>6.71E-08</td>
</tr>
</tbody>
</table>
5. Pois.-Lognorm(3P), LDA Simulation 결과

<table>
<thead>
<tr>
<th>Pois.-Lognorm(3P). LDA Simulation 결과</th>
<th>90%VaR</th>
<th>95%VaR</th>
<th>99%VaR</th>
<th>99.9%VaR</th>
</tr>
</thead>
<tbody>
<tr>
<td>340.467.7</td>
<td>72840.448.84</td>
<td>41506267.25</td>
<td>311164561.6</td>
<td></td>
</tr>
<tr>
<td>350.136.6</td>
<td>7132009.551</td>
<td>33643553.89</td>
<td>38407472.7</td>
<td></td>
</tr>
<tr>
<td>360.257.3</td>
<td>7388342.25</td>
<td>35676979.95</td>
<td>241493303.1</td>
<td></td>
</tr>
<tr>
<td>364.220.2</td>
<td>8036340.67</td>
<td>3862413.88</td>
<td>51766439.9</td>
<td></td>
</tr>
<tr>
<td>331.302.6</td>
<td>6773492.226</td>
<td>20894704.18</td>
<td>247903734.3</td>
<td></td>
</tr>
<tr>
<td>386.1162.3</td>
<td>846651.89</td>
<td>4205350.0</td>
<td>236994474.</td>
<td></td>
</tr>
<tr>
<td>333.1521.3</td>
<td>75246434.25</td>
<td>3493719.27</td>
<td>236994474.</td>
<td></td>
</tr>
<tr>
<td>341.9461.5</td>
<td>30871053.9</td>
<td>300358307.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>766.090.4</td>
<td>8062370.461</td>
<td>38863531.06</td>
<td>256388801.2</td>
<td></td>
</tr>
<tr>
<td>350.252.5</td>
<td>7990276.21</td>
<td>32132417.71</td>
<td>188813598.8</td>
<td></td>
</tr>
<tr>
<td>345.209.4</td>
<td>7582833.972</td>
<td>36470675.54</td>
<td>266389173.7</td>
<td></td>
</tr>
<tr>
<td>361.7120.8</td>
<td>7823832.09</td>
<td>38294742.24</td>
<td>310936923.3</td>
<td></td>
</tr>
<tr>
<td>334.830.25</td>
<td>7397911.123</td>
<td>36527723.19</td>
<td>452798038.7</td>
<td></td>
</tr>
<tr>
<td>365.753.8</td>
<td>76889669.48</td>
<td>36914035.28</td>
<td>318969395.1</td>
<td></td>
</tr>
<tr>
<td>358.2516.4</td>
<td>76656329.19</td>
<td>39356621.83</td>
<td>335963480.9</td>
<td></td>
</tr>
<tr>
<td>366.5941.5</td>
<td>7615085.481</td>
<td>4013319.25</td>
<td>217544992.</td>
<td></td>
</tr>
<tr>
<td>347.7678.6</td>
<td>718670.367</td>
<td>3198866.71</td>
<td>327417838.5</td>
<td></td>
</tr>
<tr>
<td>353.4834.4</td>
<td>8207731.114</td>
<td>36804268.75</td>
<td>190828143.3</td>
<td></td>
</tr>
<tr>
<td>360.4768.1</td>
<td>7995520.576</td>
<td>40980732.85</td>
<td>240667362.6</td>
<td></td>
</tr>
<tr>
<td>357.8506.4</td>
<td>7513189.062</td>
<td>38399383.46</td>
<td>237073198.8</td>
<td></td>
</tr>
<tr>
<td>338.8653.6</td>
<td>7683316.756</td>
<td>35141671.16</td>
<td>263888967.9</td>
<td></td>
</tr>
<tr>
<td>336.8734.4</td>
<td>7783688.899</td>
<td>39256101.97</td>
<td>282544387.</td>
<td></td>
</tr>
<tr>
<td>373.6629.1</td>
<td>7340508.268</td>
<td>35152390.26</td>
<td>258828327.</td>
<td></td>
</tr>
<tr>
<td>382.2774.5</td>
<td>7973571.979</td>
<td>36857272.58</td>
<td>401261167.4</td>
<td></td>
</tr>
<tr>
<td>356.3524.9</td>
<td>8322233.19</td>
<td>45064803.73</td>
<td>246509825.2</td>
<td></td>
</tr>
<tr>
<td>370.4636.6</td>
<td>7823383.315</td>
<td>39123389</td>
<td>24831523.7</td>
<td></td>
</tr>
<tr>
<td>336.7817.8</td>
<td>7451910.315</td>
<td>37543592.28</td>
<td>233216609.3</td>
<td></td>
</tr>
<tr>
<td>348.3852.7</td>
<td>81619465.37</td>
<td>45073972.74</td>
<td>286007667.2</td>
<td></td>
</tr>
<tr>
<td>345.010.4</td>
<td>72018800.02</td>
<td>32560877.64</td>
<td>200904885.7</td>
<td></td>
</tr>
<tr>
<td>347.582.3</td>
<td>7346130.641</td>
<td>36990075.57</td>
<td>24184123.5</td>
<td></td>
</tr>
<tr>
<td>352.498.7</td>
<td>7226766.652</td>
<td>35974932.85</td>
<td>380177820.6</td>
<td></td>
</tr>
<tr>
<td>353.6019.7</td>
<td>6819200.12</td>
<td>31978924.42</td>
<td>249221843.2</td>
<td></td>
</tr>
<tr>
<td>310.6381.8</td>
<td>699203.109</td>
<td>3276291.15</td>
<td>180967183.1</td>
<td></td>
</tr>
<tr>
<td>352.7484.9</td>
<td>7366641.64</td>
<td>34017972.46</td>
<td>409239607.9</td>
<td></td>
</tr>
<tr>
<td>341.194.3</td>
<td>730691.121</td>
<td>31154487.53</td>
<td>38363165.5</td>
<td></td>
</tr>
<tr>
<td>346.022.7</td>
<td>7973124.144</td>
<td>35736753.56</td>
<td>157663286.5</td>
<td></td>
</tr>
<tr>
<td>370.2013.8</td>
<td>8050869.616</td>
<td>45796396.01</td>
<td>190873797.3</td>
<td></td>
</tr>
<tr>
<td>364.399.1</td>
<td>8026813.599</td>
<td>38362738.99</td>
<td>335414142.1</td>
<td></td>
</tr>
<tr>
<td>388.740.3</td>
<td>8083334.036</td>
<td>32349832.34</td>
<td>166626038.9</td>
<td></td>
</tr>
<tr>
<td>372.553.9</td>
<td>8150551.599</td>
<td>32542901.22</td>
<td>363967869.9</td>
<td></td>
</tr>
<tr>
<td>353.497.1</td>
<td>7381912.304</td>
<td>3235120.47</td>
<td>273305425.9</td>
<td></td>
</tr>
<tr>
<td>339.451.3</td>
<td>7110071.27</td>
<td>3834282.99</td>
<td>297382747.5</td>
<td></td>
</tr>
<tr>
<td>348.627.5</td>
<td>7240708.66</td>
<td>35754633.58</td>
<td>372799563.9</td>
<td></td>
</tr>
<tr>
<td>347.0969.5</td>
<td>7434071.961</td>
<td>3451342.52</td>
<td>302075257.3</td>
<td></td>
</tr>
<tr>
<td>390.617.2</td>
<td>7721838.834</td>
<td>37241032.61</td>
<td>257771157.4</td>
<td></td>
</tr>
<tr>
<td>346.1535.4</td>
<td>7327806.614</td>
<td>36528797.88</td>
<td>308664033.2</td>
<td></td>
</tr>
<tr>
<td>354.059.8</td>
<td>7391683.74</td>
<td>35340720.89</td>
<td>295888570.5</td>
<td></td>
</tr>
<tr>
<td>360.6329.2</td>
<td>726403.357</td>
<td>32674545.86</td>
<td>199506467.1</td>
<td></td>
</tr>
<tr>
<td>330.1068.7</td>
<td>7208210.712</td>
<td>39309961.8</td>
<td>349033035.</td>
<td></td>
</tr>
<tr>
<td>338.249</td>
<td>7528150.01</td>
<td>3016919.52</td>
<td>179861926.8</td>
<td></td>
</tr>
</tbody>
</table>
6. Nbin.-Lognorm(3P). LDA Simulation 결과

<table>
<thead>
<tr>
<th>90%VaR</th>
<th>95%VaR</th>
<th>99%VaR</th>
<th>99.9%VaR</th>
</tr>
</thead>
<tbody>
<tr>
<td>34260.2956</td>
<td>6954371.582</td>
<td>31691807.77</td>
<td>353301770.2</td>
</tr>
<tr>
<td>327103.145</td>
<td>6872036.727</td>
<td>33481379.58</td>
<td>199769939.9</td>
</tr>
<tr>
<td>332709.116</td>
<td>7319877.215</td>
<td>3006273.35</td>
<td>231245033.4</td>
</tr>
<tr>
<td>337872.04</td>
<td>7152340.691</td>
<td>32736310.06</td>
<td>263632636.3</td>
</tr>
<tr>
<td>307516.4394</td>
<td>6542862.7</td>
<td>34842585.22</td>
<td>221883474.5</td>
</tr>
<tr>
<td>339806.662</td>
<td>7641313.933</td>
<td>37811340.45</td>
<td>285064223.2</td>
</tr>
<tr>
<td>329022.9654</td>
<td>7065028.593</td>
<td>35296135.06</td>
<td>366604582</td>
</tr>
<tr>
<td>329049.086</td>
<td>719047.511</td>
<td>35976582.66</td>
<td>199651076.1</td>
</tr>
<tr>
<td>316117.176</td>
<td>7102046.391</td>
<td>36392894.91</td>
<td>250013855.3</td>
</tr>
<tr>
<td>346019.674</td>
<td>807824.31</td>
<td>38028252.57</td>
<td>295306422.3</td>
</tr>
<tr>
<td>326239.218</td>
<td>706182.171</td>
<td>38324242.78</td>
<td>260013855.3</td>
</tr>
<tr>
<td>347874.6901</td>
<td>7228870.133</td>
<td>39423195.98</td>
<td>242250203.9</td>
</tr>
<tr>
<td>356990.3246</td>
<td>708238.333</td>
<td>39829255.7</td>
<td>236928444.4</td>
</tr>
<tr>
<td>333088.633</td>
<td>722857.113</td>
<td>3983174.66</td>
<td>199651076.1</td>
</tr>
<tr>
<td>349292.499</td>
<td>7330781.866</td>
<td>34680200.37</td>
<td>251041004.1</td>
</tr>
<tr>
<td>334435.466</td>
<td>633133.914</td>
<td>32437262.81</td>
<td>241615751.8</td>
</tr>
<tr>
<td>309586.422</td>
<td>6812454.542</td>
<td>36542914.91</td>
<td>275144863.3</td>
</tr>
<tr>
<td>339518.7483</td>
<td>6841896.896</td>
<td>40472402.98</td>
<td>248553285.2</td>
</tr>
<tr>
<td>324061.322</td>
<td>6685353.095</td>
<td>34229905.54</td>
<td>210661001.5</td>
</tr>
<tr>
<td>313924.21</td>
<td>713019.795</td>
<td>3869399.44</td>
<td>284764030.3</td>
</tr>
<tr>
<td>353442.008</td>
<td>775096.856</td>
<td>3635753.31</td>
<td>200541061.5</td>
</tr>
<tr>
<td>319128.145</td>
<td>667823.839</td>
<td>29572301.29</td>
<td>190467678.8</td>
</tr>
<tr>
<td>353092.614</td>
<td>727197.854</td>
<td>38053016.13</td>
<td>284633024.1</td>
</tr>
<tr>
<td>328739.641</td>
<td>6705350.637</td>
<td>30274790.84</td>
<td>232708089.8</td>
</tr>
<tr>
<td>324961.436</td>
<td>6633331.278</td>
<td>37415243.29</td>
<td>333585173</td>
</tr>
<tr>
<td>333255.373</td>
<td>7309552.517</td>
<td>31803113.04</td>
<td>183875343.2</td>
</tr>
<tr>
<td>337014.474</td>
<td>675821.356</td>
<td>3157361.84</td>
<td>159477015.9</td>
</tr>
<tr>
<td>339192.748</td>
<td>695633.141</td>
<td>3497338.46</td>
<td>422377993.7</td>
</tr>
<tr>
<td>331420.847</td>
<td>722483.989</td>
<td>30661469.62</td>
<td>248897097.9</td>
</tr>
<tr>
<td>34869.935</td>
<td>720468.906</td>
<td>3977634.96</td>
<td>280193771.9</td>
</tr>
<tr>
<td>320370.823</td>
<td>652423.747</td>
<td>3009633.97</td>
<td>265341411.6</td>
</tr>
<tr>
<td>329283.701</td>
<td>717940.269</td>
<td>4208449.36</td>
<td>443666279.5</td>
</tr>
<tr>
<td>302497.009</td>
<td>647184.938</td>
<td>2533330.32</td>
<td>222963088.9</td>
</tr>
<tr>
<td>316181.594</td>
<td>646173.038</td>
<td>3563506.17</td>
<td>234106544.7</td>
</tr>
<tr>
<td>318949.882</td>
<td>675015.372</td>
<td>3403948.99</td>
<td>179171600.3</td>
</tr>
<tr>
<td>359711.8774</td>
<td>748454.389</td>
<td>3641835.53</td>
<td>216622731.3</td>
</tr>
<tr>
<td>354681.8308</td>
<td>753574.982</td>
<td>42051467.72</td>
<td>249576218.4</td>
</tr>
<tr>
<td>351600.913</td>
<td>773727.027</td>
<td>39528987.3</td>
<td>223738663.2</td>
</tr>
<tr>
<td>340886.328</td>
<td>683601.851</td>
<td>31344382.38</td>
<td>201147335</td>
</tr>
<tr>
<td>355236.451</td>
<td>7296294.209</td>
<td>3715345.29</td>
<td>305252824.6</td>
</tr>
<tr>
<td>340293.25</td>
<td>7209403.062</td>
<td>3274328.15</td>
<td>194816372.9</td>
</tr>
<tr>
<td>347201.729</td>
<td>722858.772</td>
<td>3346288.84</td>
<td>325296317.6</td>
</tr>
<tr>
<td>332411.2585</td>
<td>7038102.606</td>
<td>2887482.82</td>
<td>194189739.4</td>
</tr>
<tr>
<td>361789.286</td>
<td>799883.196</td>
<td>3786438.27</td>
<td>224116565.3</td>
</tr>
<tr>
<td>317406.031</td>
<td>7201673.701</td>
<td>3622568.28</td>
<td>213968323.1</td>
</tr>
<tr>
<td>322877.3252</td>
<td>6876883.738</td>
<td>34935865.86</td>
<td>258318687</td>
</tr>
<tr>
<td>332247.756</td>
<td>6931791.838</td>
<td>36434383.68</td>
<td>233254734.9</td>
</tr>
<tr>
<td>326681.7306</td>
<td>6932191.294</td>
<td>33356170.04</td>
<td>308228975.2</td>
</tr>
<tr>
<td>352593.858</td>
<td>7464394.8143</td>
<td>39066664.5</td>
<td>311868830.3</td>
</tr>
<tr>
<td>324721.963</td>
<td>779513.431</td>
<td>3604906.08</td>
<td>248069578.5</td>
</tr>
</tbody>
</table>
7. Pois-Lognorm. LDA Simulation 결과

<table>
<thead>
<tr>
<th>90% VaR</th>
<th>95% VaR</th>
<th>99% VaR</th>
<th>99.9% VaR</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.91883</td>
<td>64.0856502</td>
<td>224.908227</td>
<td>1975.036969</td>
</tr>
<tr>
<td>30.538851</td>
<td>62.38118689</td>
<td>228.243646</td>
<td>2207.4852</td>
</tr>
<tr>
<td>30.673614</td>
<td>64.00439871</td>
<td>226.792727</td>
<td>1800.31072</td>
</tr>
<tr>
<td>30.2827849</td>
<td>62.9682873</td>
<td>226.364118</td>
<td>1800.9146</td>
</tr>
<tr>
<td>30.406909</td>
<td>63.19093479</td>
<td>228.18288</td>
<td>1611.841381</td>
</tr>
<tr>
<td>30.993432</td>
<td>64.87884282</td>
<td>221.88854</td>
<td>1925.86746</td>
</tr>
<tr>
<td>31.0346561</td>
<td>64.24208325</td>
<td>228.028639</td>
<td>1821.07859</td>
</tr>
<tr>
<td>30.6789488</td>
<td>63.67228646</td>
<td>227.314745</td>
<td>2253.31809</td>
</tr>
<tr>
<td>30.3867097</td>
<td>62.65377511</td>
<td>228.746666</td>
<td>2074.728318</td>
</tr>
<tr>
<td>31.0135295</td>
<td>62.82133493</td>
<td>229.727336</td>
<td>1800.61219</td>
</tr>
<tr>
<td>30.759447</td>
<td>63.5017322</td>
<td>226.471524</td>
<td>1900.534374</td>
</tr>
<tr>
<td>30.206945</td>
<td>64.03885158</td>
<td>229.25915</td>
<td>1788.802358</td>
</tr>
<tr>
<td>31.7199856</td>
<td>65.25700748</td>
<td>301.541213</td>
<td>2263.07022</td>
</tr>
<tr>
<td>30.257204</td>
<td>64.46903822</td>
<td>301.14033</td>
<td>2001.129865</td>
</tr>
<tr>
<td>30.949052</td>
<td>62.97193066</td>
<td>228.162289</td>
<td>1793.89191</td>
</tr>
<tr>
<td>30.692131</td>
<td>63.57826343</td>
<td>228.870249</td>
<td>1889.992759</td>
</tr>
<tr>
<td>30.679105</td>
<td>63.13721119</td>
<td>307.566724</td>
<td>2237.669891</td>
</tr>
<tr>
<td>30.8114598</td>
<td>63.15594704</td>
<td>291.111872</td>
<td>1862.782375</td>
</tr>
<tr>
<td>30.909837</td>
<td>64.40224636</td>
<td>228.881217</td>
<td>2004.691921</td>
</tr>
<tr>
<td>31.0479336</td>
<td>65.00066704</td>
<td>302.556875</td>
<td>2146.896353</td>
</tr>
<tr>
<td>30.231365</td>
<td>62.75781748</td>
<td>228.093281</td>
<td>1831.24838</td>
</tr>
<tr>
<td>30.616666</td>
<td>63.63696098</td>
<td>226.480854</td>
<td>2051.471212</td>
</tr>
<tr>
<td>30.848284</td>
<td>62.47748961</td>
<td>285.38802</td>
<td>2077.18929</td>
</tr>
<tr>
<td>30.745062</td>
<td>63.83102841</td>
<td>285.81114</td>
<td>2127.43411</td>
</tr>
<tr>
<td>30.3800972</td>
<td>63.30675609</td>
<td>226.483299</td>
<td>1852.471762</td>
</tr>
<tr>
<td>30.4624934</td>
<td>62.71282525</td>
<td>228.092323</td>
<td>2000.44102</td>
</tr>
<tr>
<td>30.708107</td>
<td>62.78447807</td>
<td>276.143281</td>
<td>1928.6232</td>
</tr>
<tr>
<td>30.738629</td>
<td>63.00769817</td>
<td>228.682958</td>
<td>1838.468909</td>
</tr>
<tr>
<td>30.87673</td>
<td>63.26837281</td>
<td>229.815227</td>
<td>1796.389223</td>
</tr>
<tr>
<td>30.8220972</td>
<td>64.7013486</td>
<td>300.106615</td>
<td>1939.232074</td>
</tr>
<tr>
<td>31.1331045</td>
<td>64.82860391</td>
<td>226.374031</td>
<td>1983.093976</td>
</tr>
<tr>
<td>30.8361371</td>
<td>64.80694126</td>
<td>223.654777</td>
<td>1678.942288</td>
</tr>
<tr>
<td>30.540514</td>
<td>64.30594478</td>
<td>224.412011</td>
<td>1828.536912</td>
</tr>
<tr>
<td>31.3054117</td>
<td>65.0238866</td>
<td>226.781127</td>
<td>2044.921822</td>
</tr>
<tr>
<td>30.6103853</td>
<td>63.59149647</td>
<td>228.471388</td>
<td>2063.4852</td>
</tr>
<tr>
<td>30.713836</td>
<td>64.28043244</td>
<td>306.183918</td>
<td>1984.30904</td>
</tr>
<tr>
<td>30.985713</td>
<td>64.71412256</td>
<td>228.2421</td>
<td>1947.83161</td>
</tr>
<tr>
<td>30.759191</td>
<td>64.31971715</td>
<td>300.27206</td>
<td>2083.48482</td>
</tr>
<tr>
<td>30.8661357</td>
<td>62.9019311</td>
<td>277.462288</td>
<td>1815.604891</td>
</tr>
<tr>
<td>31.067536</td>
<td>64.71313865</td>
<td>228.901344</td>
<td>2127.4127</td>
</tr>
<tr>
<td>30.8310634</td>
<td>63.23986328</td>
<td>235.70557</td>
<td>2028.03759</td>
</tr>
<tr>
<td>31.2252981</td>
<td>64.52831357</td>
<td>224.00472</td>
<td>2284.92334</td>
</tr>
<tr>
<td>30.4814178</td>
<td>63.39115975</td>
<td>302.158374</td>
<td>1973.906353</td>
</tr>
<tr>
<td>30.4046695</td>
<td>62.26007178</td>
<td>228.482999</td>
<td>1877.405535</td>
</tr>
<tr>
<td>30.9570355</td>
<td>63.59099265</td>
<td>225.2014</td>
<td>2135.28328</td>
</tr>
<tr>
<td>31.9985055</td>
<td>64.63890163</td>
<td>305.156474</td>
<td>2283.49787</td>
</tr>
<tr>
<td>30.2082669</td>
<td>63.40063391</td>
<td>279.995074</td>
<td>1923.16061</td>
</tr>
<tr>
<td>30.9695245</td>
<td>63.1860539</td>
<td>228.25992</td>
<td>2146.85171</td>
</tr>
<tr>
<td>30.359126</td>
<td>63.32535894</td>
<td>224.048682</td>
<td>2157.20792</td>
</tr>
<tr>
<td>30.518298</td>
<td>63.88015997</td>
<td>224.113835</td>
<td>1884.66015</td>
</tr>
</tbody>
</table>
8. Nbin-Lognorm. LDA Simulation 결과

<table>
<thead>
<tr>
<th>연도</th>
<th>90% VaR</th>
<th>95% VaR</th>
<th>99% VaR</th>
<th>99.9% VaR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012-03-18</td>
<td>2802524.82</td>
<td>2802524.82</td>
<td>2802524.82</td>
<td>2802524.82</td>
</tr>
<tr>
<td>2012-04-06</td>
<td>2820873.58</td>
<td>2820873.58</td>
<td>2820873.58</td>
<td>2820873.58</td>
</tr>
<tr>
<td>2012-08-31</td>
<td>2847699.84</td>
<td>2847699.84</td>
<td>2847699.84</td>
<td>2847699.84</td>
</tr>
<tr>
<td>2012-07-31</td>
<td>2874504.26</td>
<td>2874504.26</td>
<td>2874504.26</td>
<td>2874504.26</td>
</tr>
<tr>
<td>2012-06-12</td>
<td>2830913.24</td>
<td>2830913.24</td>
<td>2830913.24</td>
<td>2830913.24</td>
</tr>
<tr>
<td>2012-05-06</td>
<td>28025024.82</td>
<td>28025024.82</td>
<td>28025024.82</td>
<td>28025024.82</td>
</tr>
<tr>
<td>2012-03-31</td>
<td>2820873.58</td>
<td>2820873.58</td>
<td>2820873.58</td>
<td>2820873.58</td>
</tr>
<tr>
<td>2011-09-30</td>
<td>2847699.84</td>
<td>2847699.84</td>
<td>2847699.84</td>
<td>2847699.84</td>
</tr>
<tr>
<td>2011-06-30</td>
<td>2874504.26</td>
<td>2874504.26</td>
<td>2874504.26</td>
<td>2874504.26</td>
</tr>
<tr>
<td>2011-03-31</td>
<td>2830913.24</td>
<td>2830913.24</td>
<td>2830913.24</td>
<td>2830913.24</td>
</tr>
<tr>
<td>2010-12-31</td>
<td>28025024.82</td>
<td>28025024.82</td>
<td>28025024.82</td>
<td>28025024.82</td>
</tr>
<tr>
<td>2010-09-30</td>
<td>2847699.84</td>
<td>2847699.84</td>
<td>2847699.84</td>
<td>2847699.84</td>
</tr>
<tr>
<td>2010-06-30</td>
<td>2874504.26</td>
<td>2874504.26</td>
<td>2874504.26</td>
<td>2874504.26</td>
</tr>
<tr>
<td>2010-03-31</td>
<td>2830913.24</td>
<td>2830913.24</td>
<td>2830913.24</td>
<td>2830913.24</td>
</tr>
<tr>
<td>2009-12-31</td>
<td>28025024.82</td>
<td>28025024.82</td>
<td>28025024.82</td>
<td>28025024.82</td>
</tr>
<tr>
<td>2009-09-30</td>
<td>2847699.84</td>
<td>2847699.84</td>
<td>2847699.84</td>
<td>2847699.84</td>
</tr>
<tr>
<td>2009-06-30</td>
<td>2874504.26</td>
<td>2874504.26</td>
<td>2874504.26</td>
<td>2874504.26</td>
</tr>
<tr>
<td>2009-03-31</td>
<td>2830913.24</td>
<td>2830913.24</td>
<td>2830913.24</td>
<td>2830913.24</td>
</tr>
<tr>
<td>2008-12-31</td>
<td>28025024.82</td>
<td>28025024.82</td>
<td>28025024.82</td>
<td>28025024.82</td>
</tr>
<tr>
<td>2008-09-30</td>
<td>2847699.84</td>
<td>2847699.84</td>
<td>2847699.84</td>
<td>2847699.84</td>
</tr>
<tr>
<td>2008-06-30</td>
<td>2874504.26</td>
<td>2874504.26</td>
<td>2874504.26</td>
<td>2874504.26</td>
</tr>
<tr>
<td>2008-03-31</td>
<td>2830913.24</td>
<td>2830913.24</td>
<td>2830913.24</td>
<td>2830913.24</td>
</tr>
</tbody>
</table>

- 96 -
9. Pois-MCMC Lognorm(1) LDA Simulation 결과

<table>
<thead>
<tr>
<th>VaR 95%</th>
<th>VaR 95%</th>
<th>VaR 95%</th>
<th>VaR 95%</th>
<th>Var 99.9%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2552298</td>
<td>5285697</td>
<td>2444676</td>
<td>1.56E-08</td>
<td></td>
</tr>
<tr>
<td>2551723</td>
<td>5316623</td>
<td>2465122</td>
<td>1.88E-08</td>
<td></td>
</tr>
<tr>
<td>2502753</td>
<td>5497223</td>
<td>2599442</td>
<td>1.98E-08</td>
<td></td>
</tr>
<tr>
<td>2575219</td>
<td>5367408</td>
<td>2587199</td>
<td>1.58E-08</td>
<td></td>
</tr>
<tr>
<td>2579753</td>
<td>5323663</td>
<td>2483696</td>
<td>1.61E-08</td>
<td></td>
</tr>
<tr>
<td>2442668</td>
<td>5344617</td>
<td>2631074</td>
<td>1.74E-08</td>
<td></td>
</tr>
<tr>
<td>2593844</td>
<td>5278152</td>
<td>2591076</td>
<td>1.71E-08</td>
<td></td>
</tr>
<tr>
<td>2397087</td>
<td>5399037</td>
<td>2547486</td>
<td>1.62E-08</td>
<td></td>
</tr>
<tr>
<td>2553760</td>
<td>5328446</td>
<td>2438038</td>
<td>1.65E-08</td>
<td></td>
</tr>
<tr>
<td>2617075</td>
<td>5400378</td>
<td>2380827</td>
<td>1.69E-08</td>
<td></td>
</tr>
<tr>
<td>2617090</td>
<td>5451012</td>
<td>2671496</td>
<td>1.83E-08</td>
<td></td>
</tr>
<tr>
<td>2578113</td>
<td>5385117</td>
<td>2709274</td>
<td>1.72E-08</td>
<td></td>
</tr>
<tr>
<td>2599820</td>
<td>5448771</td>
<td>2457941</td>
<td>1.61E-08</td>
<td></td>
</tr>
<tr>
<td>2571068</td>
<td>5390692</td>
<td>2368610</td>
<td>1.58E-08</td>
<td></td>
</tr>
<tr>
<td>2502753</td>
<td>5379212</td>
<td>2410301</td>
<td>1.46E-08</td>
<td></td>
</tr>
<tr>
<td>2575219</td>
<td>5385905</td>
<td>2354247</td>
<td>1.62E-08</td>
<td></td>
</tr>
<tr>
<td>2582884</td>
<td>5366835</td>
<td>2388893</td>
<td>1.83E-08</td>
<td></td>
</tr>
<tr>
<td>2536198</td>
<td>5259761</td>
<td>2422877</td>
<td>1.63E-08</td>
<td></td>
</tr>
<tr>
<td>2601484</td>
<td>5413819</td>
<td>2481261</td>
<td>1.62E-08</td>
<td></td>
</tr>
<tr>
<td>2567963</td>
<td>5266351</td>
<td>2354246</td>
<td>1.74E-08</td>
<td></td>
</tr>
<tr>
<td>2573197</td>
<td>5304696</td>
<td>2491722</td>
<td>1.62E-08</td>
<td></td>
</tr>
<tr>
<td>2815368</td>
<td>5489065</td>
<td>2619298</td>
<td>1.66E-08</td>
<td></td>
</tr>
<tr>
<td>2593172</td>
<td>5401484</td>
<td>2391494</td>
<td>1.68E-08</td>
<td></td>
</tr>
<tr>
<td>2566267</td>
<td>5394641</td>
<td>2490437</td>
<td>1.68E-08</td>
<td></td>
</tr>
<tr>
<td>2582884</td>
<td>5418442</td>
<td>2503973</td>
<td>1.61E-08</td>
<td></td>
</tr>
<tr>
<td>2536198</td>
<td>5259761</td>
<td>2422877</td>
<td>1.63E-08</td>
<td></td>
</tr>
<tr>
<td>2560654</td>
<td>5321825</td>
<td>2573290</td>
<td>1.88E-08</td>
<td></td>
</tr>
<tr>
<td>2566233</td>
<td>5422474</td>
<td>2357581</td>
<td>1.62E-08</td>
<td></td>
</tr>
<tr>
<td>2556288</td>
<td>5252826</td>
<td>2449548</td>
<td>1.68E-08</td>
<td></td>
</tr>
<tr>
<td>2596721</td>
<td>5423284</td>
<td>2575837</td>
<td>1.64E-08</td>
<td></td>
</tr>
<tr>
<td>2520001</td>
<td>5424318</td>
<td>2506674</td>
<td>1.63E-08</td>
<td></td>
</tr>
<tr>
<td>2534545</td>
<td>5190712</td>
<td>2354764</td>
<td>1.53E-08</td>
<td></td>
</tr>
<tr>
<td>2568578</td>
<td>5283794</td>
<td>2361363</td>
<td>1.59E-08</td>
<td></td>
</tr>
<tr>
<td>2557077</td>
<td>5298425</td>
<td>2407425</td>
<td>1.56E-08</td>
<td></td>
</tr>
<tr>
<td>2573285</td>
<td>5322537</td>
<td>2361850</td>
<td>1.67E-08</td>
<td></td>
</tr>
<tr>
<td>2551337</td>
<td>5289490</td>
<td>2381369</td>
<td>1.78E-08</td>
<td></td>
</tr>
<tr>
<td>2564310</td>
<td>5247969</td>
<td>2324892</td>
<td>1.54E-08</td>
<td></td>
</tr>
<tr>
<td>2567741</td>
<td>5286612</td>
<td>2420463</td>
<td>1.65E-08</td>
<td></td>
</tr>
<tr>
<td>2582308</td>
<td>5330629</td>
<td>2367687</td>
<td>1.55E-08</td>
<td></td>
</tr>
<tr>
<td>2568816</td>
<td>5336540</td>
<td>2472595</td>
<td>1.87E-08</td>
<td></td>
</tr>
<tr>
<td>2587102</td>
<td>5321341</td>
<td>2378173</td>
<td>1.58E-08</td>
<td></td>
</tr>
<tr>
<td>2580984</td>
<td>5313230</td>
<td>2487810</td>
<td>1.81E-08</td>
<td></td>
</tr>
<tr>
<td>2588525</td>
<td>5344931</td>
<td>2390632</td>
<td>1.91E-08</td>
<td></td>
</tr>
<tr>
<td>2579931</td>
<td>5310133</td>
<td>2390373</td>
<td>1.74E-08</td>
<td></td>
</tr>
<tr>
<td>2447215</td>
<td>5212836</td>
<td>2341503</td>
<td>1.54E-08</td>
<td></td>
</tr>
<tr>
<td>2592095</td>
<td>5392185</td>
<td>2479774</td>
<td>1.59E-08</td>
<td></td>
</tr>
<tr>
<td>2574847</td>
<td>5327582</td>
<td>2490354</td>
<td>1.52E-08</td>
<td></td>
</tr>
<tr>
<td>2555953</td>
<td>5357465</td>
<td>2401910</td>
<td>1.48E-08</td>
<td></td>
</tr>
<tr>
<td>2505421</td>
<td>5452398</td>
<td>2469096</td>
<td>1.57E-08</td>
<td></td>
</tr>
<tr>
<td>2606385</td>
<td>5283373</td>
<td>2443693</td>
<td>1.62E-08</td>
<td></td>
</tr>
</tbody>
</table>
Poiss-MCMC Lognorm(2). LDA Simulation 결과

<table>
<thead>
<tr>
<th>VaR 90%</th>
<th>VaR 95%</th>
<th>VaR 99%</th>
<th>VaR 99.9%</th>
</tr>
</thead>
<tbody>
<tr>
<td>298932</td>
<td>6180850</td>
<td>27452066</td>
<td>1.9E-08</td>
</tr>
<tr>
<td>296735</td>
<td>6036999</td>
<td>28711004</td>
<td>1.91E-08</td>
</tr>
<tr>
<td>2996302</td>
<td>6157946</td>
<td>28447627</td>
<td>1.82E-08</td>
</tr>
<tr>
<td>297383</td>
<td>6157300</td>
<td>29856429</td>
<td>2.15E-08</td>
</tr>
<tr>
<td>2995963</td>
<td>6042154</td>
<td>29312638</td>
<td>2.11E-08</td>
</tr>
<tr>
<td>3026538</td>
<td>6291011</td>
<td>29578873</td>
<td>1.83E-08</td>
</tr>
<tr>
<td>3031822</td>
<td>6234206</td>
<td>29510499</td>
<td>1.84E-08</td>
</tr>
<tr>
<td>3005490</td>
<td>6254888</td>
<td>29366364</td>
<td>1.86E-08</td>
</tr>
<tr>
<td>2990666</td>
<td>6186961</td>
<td>29520318</td>
<td>1.90E-08</td>
</tr>
<tr>
<td>3030294</td>
<td>6287602</td>
<td>29084869</td>
<td>1.96E-08</td>
</tr>
<tr>
<td>2993657</td>
<td>6168034</td>
<td>28343420</td>
<td>1.87E-08</td>
</tr>
<tr>
<td>3088835</td>
<td>6219990</td>
<td>2907941</td>
<td>2.06E-08</td>
</tr>
<tr>
<td>3023784</td>
<td>6290411</td>
<td>29760059</td>
<td>1.79E-08</td>
</tr>
<tr>
<td>3034732</td>
<td>6085248</td>
<td>29623806</td>
<td>2.04E-08</td>
</tr>
<tr>
<td>3088097</td>
<td>6158038</td>
<td>28305889</td>
<td>2.25E-08</td>
</tr>
<tr>
<td>3050237</td>
<td>6226460</td>
<td>2714894</td>
<td>1.76E-08</td>
</tr>
<tr>
<td>2962148</td>
<td>6119102</td>
<td>2731500</td>
<td>1.62E-08</td>
</tr>
<tr>
<td>2993002</td>
<td>6240727</td>
<td>27284608</td>
<td>1.83E-08</td>
</tr>
<tr>
<td>3009427</td>
<td>6225519</td>
<td>28602771</td>
<td>1.79E-08</td>
</tr>
<tr>
<td>2944853</td>
<td>6099662</td>
<td>29747096</td>
<td>2.0E-08</td>
</tr>
<tr>
<td>2996825</td>
<td>6137361</td>
<td>28149432</td>
<td>1.99E-08</td>
</tr>
<tr>
<td>2973842</td>
<td>6033937</td>
<td>28668550</td>
<td>1.73E-08</td>
</tr>
<tr>
<td>3009562</td>
<td>6361923</td>
<td>30089051</td>
<td>1.82E-08</td>
</tr>
<tr>
<td>2967258</td>
<td>6174618</td>
<td>28325232</td>
<td>2.0E-08</td>
</tr>
<tr>
<td>2996699</td>
<td>6195845</td>
<td>27706441</td>
<td>1.98E-08</td>
</tr>
<tr>
<td>3083401</td>
<td>6207837</td>
<td>28456634</td>
<td>1.81E-08</td>
</tr>
<tr>
<td>3083910</td>
<td>6192914</td>
<td>28308660</td>
<td>1.94E-08</td>
</tr>
<tr>
<td>2961734</td>
<td>6112167</td>
<td>27780689</td>
<td>1.92E-08</td>
</tr>
<tr>
<td>2990124</td>
<td>6228668</td>
<td>27273148</td>
<td>1.98E-08</td>
</tr>
<tr>
<td>2953517</td>
<td>6076577</td>
<td>27888410</td>
<td>1.79E-08</td>
</tr>
<tr>
<td>2965539</td>
<td>6149626</td>
<td>27620337</td>
<td>1.99E-08</td>
</tr>
<tr>
<td>3040154</td>
<td>6087510</td>
<td>27421197</td>
<td>1.75E-08</td>
</tr>
<tr>
<td>2981410</td>
<td>6133822</td>
<td>28453633</td>
<td>1.86E-08</td>
</tr>
<tr>
<td>2981420</td>
<td>6217579</td>
<td>2782824</td>
<td>1.86E-08</td>
</tr>
<tr>
<td>2976016</td>
<td>6146009</td>
<td>27132329</td>
<td>1.81E-08</td>
</tr>
<tr>
<td>296670</td>
<td>6118906</td>
<td>27329129</td>
<td>1.98E-08</td>
</tr>
<tr>
<td>2977189</td>
<td>6070988</td>
<td>2693471</td>
<td>1.77E-08</td>
</tr>
<tr>
<td>297279</td>
<td>6148806</td>
<td>27322334</td>
<td>1.76E-08</td>
</tr>
<tr>
<td>3004634</td>
<td>6198252</td>
<td>28314831</td>
<td>1.88E-08</td>
</tr>
<tr>
<td>2962984</td>
<td>6093202</td>
<td>28971425</td>
<td>1.82E-08</td>
</tr>
<tr>
<td>2969054</td>
<td>6138064</td>
<td>28678944</td>
<td>1.84E-08</td>
</tr>
<tr>
<td>2983425</td>
<td>6323566</td>
<td>28185635</td>
<td>1.91E-08</td>
</tr>
<tr>
<td>3002006</td>
<td>6176811</td>
<td>27961018</td>
<td>1.78E-08</td>
</tr>
<tr>
<td>2913930</td>
<td>6185338</td>
<td>27387356</td>
<td>1.56E-08</td>
</tr>
<tr>
<td>302371</td>
<td>6265884</td>
<td>2769963</td>
<td>1.72E-08</td>
</tr>
<tr>
<td>3033241</td>
<td>6179566</td>
<td>2871997</td>
<td>1.85E-08</td>
</tr>
<tr>
<td>2983870</td>
<td>6195394</td>
<td>27443036</td>
<td>1.73E-08</td>
</tr>
<tr>
<td>2952160</td>
<td>6088529</td>
<td>27795747</td>
<td>1.92E-08</td>
</tr>
<tr>
<td>2976771</td>
<td>6035362</td>
<td>27244479</td>
<td>1.68E-08</td>
</tr>
<tr>
<td>2964742</td>
<td>6182115</td>
<td>28180222</td>
<td>1.89E-08</td>
</tr>
</tbody>
</table>
11. Pois-MCMC Lognorm(2), 평균을 이용한 Simulation 결과

<table>
<thead>
<tr>
<th>95%VaR</th>
<th>99%VaR</th>
<th>99.9%VaR</th>
<th>99.99%VaR</th>
</tr>
</thead>
<tbody>
<tr>
<td>24277.6</td>
<td>5025.2</td>
<td>24293.8</td>
<td>1705327</td>
</tr>
<tr>
<td>24871.3</td>
<td>5068.9</td>
<td>23782.1</td>
<td>1734963</td>
</tr>
<tr>
<td>24630.2</td>
<td>5167.2</td>
<td>24699.6</td>
<td>1628539</td>
</tr>
<tr>
<td>25070.8</td>
<td>5210.7</td>
<td>24613.7</td>
<td>1644394</td>
</tr>
<tr>
<td>24469.1</td>
<td>5148.3</td>
<td>23930.1</td>
<td>1548949</td>
</tr>
<tr>
<td>24729.1</td>
<td>5149.2</td>
<td>24894.5</td>
<td>1615274</td>
</tr>
<tr>
<td>24970.4</td>
<td>52568.9</td>
<td>24604.8</td>
<td>1644394</td>
</tr>
<tr>
<td>24661.5</td>
<td>50869.4</td>
<td>23336.2</td>
<td>1681070</td>
</tr>
<tr>
<td>24889.3</td>
<td>50209.9</td>
<td>23012.6</td>
<td>1733944</td>
</tr>
<tr>
<td>24979.5</td>
<td>51681</td>
<td>23608.6</td>
<td>1637367</td>
</tr>
<tr>
<td>24842.9</td>
<td>50196.7</td>
<td>22399.9</td>
<td>1823491</td>
</tr>
<tr>
<td>24748.7</td>
<td>51669.2</td>
<td>24061.8</td>
<td>1795363</td>
</tr>
<tr>
<td>24579.2</td>
<td>511115.7</td>
<td>236215.6</td>
<td>15056490</td>
</tr>
<tr>
<td>24148.9</td>
<td>506271.4</td>
<td>243289.1</td>
<td>16490438</td>
</tr>
<tr>
<td>24748.7</td>
<td>513493.1</td>
<td>238408.2</td>
<td>15197759</td>
</tr>
<tr>
<td>24669.1</td>
<td>517410.2</td>
<td>2385304.3</td>
<td>16625049</td>
</tr>
<tr>
<td>24777.3</td>
<td>50438.7</td>
<td>228509.2</td>
<td>16733419</td>
</tr>
<tr>
<td>24832.5</td>
<td>519711</td>
<td>2396257.8</td>
<td>1474446</td>
</tr>
<tr>
<td>24492.7</td>
<td>503731.1</td>
<td>2224230.1</td>
<td>15331596</td>
</tr>
<tr>
<td>24804.7</td>
<td>506667.1</td>
<td>2240968.4</td>
<td>16568306</td>
</tr>
<tr>
<td>245660.1</td>
<td>503011.8</td>
<td>241933.9</td>
<td>16712565</td>
</tr>
<tr>
<td>24934.8</td>
<td>518621.6</td>
<td>2466349.4</td>
<td>13864830</td>
</tr>
<tr>
<td>24482.8</td>
<td>511636.7</td>
<td>2411103.3</td>
<td>16058988</td>
</tr>
<tr>
<td>247786</td>
<td>513066.3</td>
<td>2305280.3</td>
<td>16066114</td>
</tr>
<tr>
<td>24484.4</td>
<td>512153.8</td>
<td>2347256.6</td>
<td>14731709</td>
</tr>
<tr>
<td>24184.5</td>
<td>502141.6</td>
<td>2233140.9</td>
<td>16207649</td>
</tr>
<tr>
<td>244137</td>
<td>513124</td>
<td>2464034.5</td>
<td>1795488</td>
</tr>
<tr>
<td>24660.1</td>
<td>516355.2</td>
<td>2277460.6</td>
<td>15935076</td>
</tr>
<tr>
<td>247282</td>
<td>508229.2</td>
<td>2363250.9</td>
<td>15417074</td>
</tr>
<tr>
<td>24399.2</td>
<td>505385.7</td>
<td>241963.5</td>
<td>17576334</td>
</tr>
<tr>
<td>247782.7</td>
<td>509232.2</td>
<td>2322866.9</td>
<td>14937166</td>
</tr>
<tr>
<td>247213.2</td>
<td>505330.5</td>
<td>2417253.6</td>
<td>15423832</td>
</tr>
<tr>
<td>24350.1</td>
<td>504337.4</td>
<td>2383075.6</td>
<td>15370612</td>
</tr>
<tr>
<td>24410.5</td>
<td>504251.5</td>
<td>2363445.7</td>
<td>16666530</td>
</tr>
<tr>
<td>24106.4</td>
<td>510369</td>
<td>2384300.8</td>
<td>15682699</td>
</tr>
<tr>
<td>24511.6</td>
<td>502501.9</td>
<td>2324896.4</td>
<td>16492197</td>
</tr>
<tr>
<td>24384.9</td>
<td>507290.2</td>
<td>2325144.1</td>
<td>16881410</td>
</tr>
<tr>
<td>24809.7</td>
<td>504592.2</td>
<td>233643.3</td>
<td>15906176</td>
</tr>
<tr>
<td>247072</td>
<td>509292</td>
<td>2362364</td>
<td>16514567</td>
</tr>
<tr>
<td>247903</td>
<td>510662</td>
<td>2312518</td>
<td>15187669</td>
</tr>
<tr>
<td>24483.3</td>
<td>504962.4</td>
<td>2361836.2</td>
<td>16455358</td>
</tr>
<tr>
<td>24383.8</td>
<td>512562.1</td>
<td>2407710.9</td>
<td>15960216</td>
</tr>
<tr>
<td>24675.2</td>
<td>512113.3</td>
<td>2379725.3</td>
<td>15753311</td>
</tr>
<tr>
<td>24762.4</td>
<td>499232.2</td>
<td>2326968.7</td>
<td>18445062</td>
</tr>
<tr>
<td>24634.8</td>
<td>509028.2</td>
<td>2370747.3</td>
<td>14716566</td>
</tr>
<tr>
<td>24700.8</td>
<td>505140.5</td>
<td>2300476.1</td>
<td>17282210</td>
</tr>
<tr>
<td>24792.5</td>
<td>504871.3</td>
<td>2402832.3</td>
<td>15858706</td>
</tr>
<tr>
<td>24306.6</td>
<td>519233.5</td>
<td>2420348.7</td>
<td>16678290</td>
</tr>
<tr>
<td>24489.5</td>
<td>498199.2</td>
<td>2245491.2</td>
<td>16007025</td>
</tr>
</tbody>
</table>
Abstract

Estimating Maximum Damage of Domestic Climate disaster with loss distribution approach focusing on the public sector.

Advised by
Prof. Hong, Jong Ho

December, 2012

submitted by
Kang, Bum Seo

Department of Environmental Planning Graduate School of Environmental Studies
Seoul National University
Natural disasters have grown in scale since late 90’s in Korea. The ‘Lusa’ (typhoon) made the biggest damage in 2002, with total damage above five trillion won. Also the number of climate disasters that exceed 1 trillion won in damage have increased six times since the 1980’s. This situation is due to climate change and global warming.

Despite this trend of increasing climate disasters, Korea government’s policy lacked of tools to forecast maximum climate disaster damage. Hence government consumed the revised supplementary budget for disaster relief. As a result the restoring process was retarded and insufficient. This study is to find the maximum damage of climate disaster in Korea.

Loss Distribution Approach (LDA) simulation method was used to find maximum damage of a climate disaster, LDA simulation is an insurance statistical method. This simulation need to find the frequency and severity distribution of an accident. First, random numbers are chosen in frequency distribution, and then, the same random numbers are extracted in severity distribution. Afterward the severity random numbers are summed up. To make a new distribution of total damage, the above algorithm is run repeatedly. Lastly specific figures are extracted from the total damage distribution (in the 90%, 95% 99% and 99.9% percentile).

The data get from annals of disaster is used. It was recorded by National Emergency Management Agency. Research object is public sector damage caused by climate disasters. Period of study is 1985 to 2010. Study location is South Korea. The basis of valuation is 2010 of the producer price index. The number of frequency data is 26 and severity data is 308.
Frequency distribution conformed to Poisson distribution and Negative binomial distribution using Maximum Likelihood estimation (MLE). Negative Binomial distribution is more appropriate in the tail region than Poisson, but Poisson is more adequate for the central region then the Negative Binomial. Therefore Poisson distribution was chosen for the analysis, to find parameter value using Markov Chain Monte Carlo (MCMC) simulation. But the MLE yields better results than the MCMC in Kolmogorov–Smirnov test.

Severity distribution conformed to Log–Pearson type 3, 3 parameters following Log–Normal and Log–Normal distribution using Maximum Likelihood estimation (MLE). Log–Pearson type 3 distribution is the best fit. But due to convenience of random number generation and supporting distribution provided by mathematical software, Log–Normal distribution was selected, finding the parameter using MCMC simulation. MCMC yielded better results compared to MLE in Kolmogorov–Smirnov test.

The LDA simulation results are excellent in 95% percentile using Poisson and MCMC Log–Normal distribution. But 99% and 99.9% percentiles are above 100 trillion won. This is not a realistic number. The LDA simulation method had to be modified.

The change utilizes the average of severity random numbers, not summation (LDA method). As a result 99%, 99.9% percentile numbers are less than 100 trillion won. Still, Korea’s climate disaster damage cost could exceed levels experienced in the past. Therefore the average of Big disaster damage is more meaningful than the sum of small climate events. The final estimation of public sector maximum climate disaster damage is 16.3 trillion won.

◆ Key words : Climate Disaster, Loss Distribution Approach, Markov Chain Monte Carlo, Metropolis–Hastings Algorithm

◆ Student Number : 2011–22300.