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I. ABSTRACT 

 The role of E3 ubiquitin ligase  

Mind Bomb-1 in muscle maintenance  

Ji Yun Seo 

Interdisciplinary Graduate Program in Genetic Engineering 

The Graduate School 

Seoul National University 

 

Maintenance of skeletal muscle throughout life is essential for quality of life. Hence, 

it is of great interest to determine the muscle-specific factor responsible to maintain 

skeletal muscle throughout the lifetime. In skeletal muscle, several muscle-specific 

E3 ubiquitin ligases are known to play fundamental roles in maintenance of muscle, 

regulation of muscle protein catabolism and mediation of muscle atrophy. Among 

the great diversity of E3 ubiquitin ligases, however, there are no studies in muscle 

on the E3 ubiquitin ligase Mind bomb 1 (Mib1).  

In this study, I used Cre-Lox targeted approach to establish a myofiber-

specific Mib1 knockout mice to determine whether myofiber-specific Mib1 deletion 

compromises muscle maintenance contributing to progressive muscle atrophy. Here, 

I first confirmed that the genetic lack of myofiber-specific Mib1 leads to loss of 
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muscle mass, decreased cross-sectional area and impaired muscle functions in 

adult mice. These findings suggest Mib1 may have potential role to prevent skeletal 

muscle atrophy.  

 

Keywords : Skeletal muscle, Mib1 (Mind Bomb 1), Muscle maintenance, E3 

ubiquitin ligase, Muscle atrophy 
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III. INTRODUCTION  

 

Skeletal muscle, which comprises a large percentage of body weight, plays 

important roles for locomotion, structural support, energy production and regulation 

of body metabolism. Consequently, the maintenance of skeletal muscle is critical for 

quality of life, and essential for health and even survival (Bonaldo and Sandri, 2013). 

Unlike postnatal muscle where incorporation of satellite cells into growing fibers 

largely takes place (Moss and Leblond, 1971; Schultz, 1996; Yablonka-Reuveni, 

2011), in adults, the growth of skeletal muscle mass and muscle fiber size (for 

example, muscle cross-sectional area) depends on the physiological conditions 

such as growth factors, hormones, nutrients, cytokines, mechanical stress and 

physical activity. In general, skeletal muscle mass is an important determinant of 

physical performance, endurance and strength. A decrease of muscle cross-

sectional area with subsequent reduction in whole muscle volume and mass, but no 

decrease in fiber numbers is the major characteristic of muscle atrophy (Nicks et al., 

1989). On the other hand, the age-related muscle atrophy is accompanied by 

reduction in both cross-sectional area and fiber numbers (Lexell et al., 1988).  

 

Muscle atrophy is a deliberating consequences of aging, denervation (for 

example, in patients with spinal cord injuries or neuromuscular diseases), inactivity 

(for example, during prolonged bed rest or cast-immobilization) and systemic 

response to fasting and various chronic diseases (Bodine and Baehr, 2014; Brooks 
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and Myburgh, 2014; Cohen et al., 2015). The process of muscle atrophy is tightly 

controlled by many signaling pathways and results in changes of balance between 

protein breakdown and synthesis. Amongst cellular and molecular pathways 

regulating skeletal muscle atrophy, the ubiquitin proteasome system is responsible 

for depletion of most proteins in atrophying skeletal muscles (Brooks and Myburgh, 

2014; Costelli and Baccino, 2003; Solomon and Goldberg, 1996). Once ubiquitin is 

activated by ubiquitin-activating enzyme (E1), it is transferred to active site of 

ubiquitin-conjugating enzyme (E2). Subsequently, activated E3 ubiquitin ligase 

recognizes the substrates and adds ubiquitin moieties to target proteins, thereby 

triggering degradation of ubiquitin-conjugated substrates (Lyon et al., 2013; 

Weissman et al., 2011). Polyubiquitinated proteins are mainly degraded by 26S 

proteasome, while monoubiquitinated proteins are degraded by lysosomal 

cathepsins (Fanzani et al., 2012; Marmor and Yarden, 2004). Consequently, 

activation of E3 ubiquitin ligases in skeletal muscles during muscle atrophy results 

in the targeting and degradation of substrates involved in diverse cellular processes.  

 

The activity of most E3 ubiquitin ligases is specified by C-terminal RING 

domains, which are implicated in proteasome-dependent proteolysis, receptor 

endocytosis, and vesicular trafficking (Deshaies and Joazeiro, 2009). Several E3 

ubiquitin ligases have been reported to implicate in muscle development, 

maintenance, and/or atrophy, including MuRF1 (Bodine et al., 2001), 

MAFbx/Atrogin-1 (Bodine et al., 2001; Gomes et al., 2001), TRIM32 (Cohen et al., 
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2012) and TRAF6 (Paul et al., 2010). MuRF1 and TRAF6, which contain a RING 

finger domain, are known to target several myofibrillar and structural proteins (Paul 

et al., 2010; Witt et al., 2005). Similarly, MAFbx/Atrogin-1, which contains cullin-

RING finger domain, targets sarcomeric proteins, myogenic regulatory factors and 

eukaryotic initiation factors (Csibi et al., 2009; Tintignac et al., 2005). Unlike MuRF1 

and MAFbx/Atrogin-1 that are muscle specific, TRIM32, which ubiquitinates desmin 

cytoskeleton and myofibrils (Cohen et al., 2012), is expressed ubiquitously with 100-

fold higher expression levels in brain than in skeletal muscles (Kudryashova et al., 

2009). However, interestingly, mutations in TRIM32 results in mild dystrophy, limb 

gridle muscular dystrophy type 2H, and sarcotubular myopathy (Kudryashova et al., 

2009; Schoser et al., 2005) and loss of TRIM 32 in mice results in myopathy and 

neurological defects (Kudryashova et al., 2012; Kudryashova et al., 2009).   

 

Mind bomb 1 (Mib1) ubiquitin ligase is essential for cytoplasmic ubiquitin-

mediated endocytosis of Notch ligands (Koo et al., 2007). Mib1 contains two 

mib/herc2 domains, one zz zinc finger domain, two Mib repeats, eight Ankyrin repeat 

domains and three RING finger domains (Itoh et al., 2003; Koo et al., 2005; McMillan 

et al., 2015). Similar to TRIM32, Mib1 ubiquitously expressed in embryo and adult 

tissues (Burns et al., 2005; Haddon et al., 1998; Itoh et al., 2003; Koo et al., 2005; 

Lawson et al., 2001; Luxan et al., 2013). Recently, Tseng et al. reported putative 

Mib1-binding proteins via yeast-two-hybrid screening and showed that several 

Mib1-interacting proteins involved in cytoskeleton members such as myosin light 
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chain, actinin alpha 2-4, cofilin 1, dystobrevin, and dystrophin-associated protein A1 

(Tseng et al., 2014). Considering diverse range of functions of E3 ubiquitin ligases, 

it is likely that there are more unknown Mib1-interacting proteins participating in the 

development or maintenance of skeletal muscle. However, the role of Mib1 in 

skeletal muscle has not been investigated.  

 

Through the myofiber-specific Mib1 knockout mice, I investigated the role 

of Mib1 in adult muscle maintenance. In this study, I found that the ablation of Mib1 

in myofibers causes loss of muscle mass and reduction in cross-sectional area, and 

impaired muscle functions in adulthood. Collectively, my results raise the possibility 

that there are unknown Mib1-binding substrates which plays important role in adult 

muscle maintenance.  
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IV. MATERIALS AND METHODS  

 

IV-1. Mice 

Mice with a Mib1 gene (Mib1f/f) flanked by a pair of loxP sites were previously (Koo 

et al., 2007). Myofiber-specific transgenic mice expressing Cre recombinase under 

control of the MCK promoter (Bruning et al., 1998) were purchased from The 

Jackson Laboratory (Bar Harbor, Maine, USA). For MF-specific deletion studies, 

Mib1f/f mice were crossed with MCK-Cre mice to generate MCK-Cre;Mib1f/f mice. 

Young (3 months of age), adult (6-9 months of age) and middle-aged (16 months of 

age) male MCK-Cre;Mib1f/f mice and littermate control mice were used for 

experiments. All of these mouse lines were backcrossed onto a C57BL/6 

background and were housed and handled according to the guidelines of the ethical 

committees at Seoul National University.  

 

IV-2. Grip Strength  

Whole-limb grip strength was assessed by allowing mice to grab a grid which is 

attached to a grip strength test meter (Grip strength test, Bioseb, France). The 

mouse is pulled horizontally by the tail away from the grid and the peak force was 

measured (Bonetto et al., 2015). The test was performed five times with 5 seconds 

of recovery. The maximum absolute grip strength (g force; in grams) for each mouse 



6 

 

was normalized to body mass (g) to determine each grip strength for each mouse. 

All experiments were performed in a blind fashion.  

 

IV-3. Whole-Limb Hanging Test  

Whole-limb hanging test was assessed by allowing mice to grab a wire mesh (1 cm 

X 1 cm) while carrying a weight (8-10 % of their body) attached to their tails. Each 

mouse was placed on a wire mesh, which was inverted and suspended above soft 

bedding to protect mice from falling off the wire mesh. The latency of mice to fall off 

was recorded three times with a rest interval between each trial of about 10 min 

(Bonetto et al., 2015; Luk et al., 2012). The maximum hang time for each mouse 

was used. All experiments were performed in a blind fashion. 

 

IV-4. Treadmill Exercise Test  

Untrained mice were evaluated for their running capacity. The mice were 

familiarized with the treadmill for 3 days before the test by running 10 min per day 

at 10 m/min. Mice were then subjected to a high intensity running regime with 5 

m/min speed increments every 5 minutes up to 15 m/min speed until exhaustion. 

Running time and distance were recorded and collected for each mouse. Mice were 

sacrificed one week after exercise tests.  

 

 



7 

 

IV-5. Histological Analysis 

Hindlimb muscles were dissected, weighed, immersed in PBS and embedded in 

Tissue Tek OCT compound (Sakura Fineteck, Toerrance, CA). Dissected muscle 

were quickly frozen in liquid nitrogen and stored at -80 °C prior to sectioning. 

Muscles were sectioned on a cryostat at 7-m and used for histochemistry or 

immunohistochemistry. For histological analysis, muscle sections were fixed in 4% 

paraformaldehyde overnight at 4°C and stained with hematoxylin and eosin (H&E).  

 

IV-6. Immunohistochemical Analysis 

For immunohistochemistry, muscle sections were fixed with 4% paraformaldehyde 

in PBS for 10 min, washed in PBS, permeabilized with permeabilization solution 

(0.2% Tween-20 in 5% BSA in PBS) 10 min and treated with MOM blocking solution 

for 1 h at room temperature, according to the manufacturer’s instructions (FMK-

2201; Vector Laboratories, Burlingame, CA, USA). The sections were then 

incubated with rat anti-laminin (1:2,000, Abcam), mouse anti-MyHC1 (1:300, DSHB) 

and mouse anti-MyHC2a (1:300, DSHB) at 4°C overnight. The slides were washed 

with PBS several times and incubated with secondary antibodies for 1 h at room 

temperature. The slides were mounted with Vectashield (H-1001; Vector 

Laboratories, Burlingame, CA, USA) after washing with PBS. Images were 

visualized with an Observer Z1 fluorescent microscope (Zeiss) and captured with a 

Spot Flex camera. For fiber cross-sectional area calculation, Leopard (ZOOTOS, 
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Korea) was used. 

 

IV-7. Immunoblotting Analysis 

For immunoblotting, gastrocnemius muscles were homogenized in 500mL RIPA 

buffer (50 mM Tris-HCl, pH 7.5, 0.5% SDS, 20 µg/mL aprotinin, 20 µg/mL leupeptin, 

10 µg/mL phenylmethylsulfonyl fluoride, 1 mM sodium orthovanadate, 10 mM 

sodium pyrophosphate, 10 mM sodium fluoride, and 1 mM dithiothreitol). Bradford’s 

reagent (Bio-Rad Laboratories, Hercules, CA, USA) was used for measuring total 

protein concentrations. Muscle extracts were separated by electrophoresis in 6-10% 

polyacrylamide gels and transferred to PVDF membranes (Milipore, Overijse, 

Belgium). The membranes were incubated with antibodies to Mib1 (Abfrontier, 

1:200), MyHC1 (DSHB, 1:500), Ubiquitin (Santa Cruz, 1:400), and tubulin (Abcam, 

1:7,000) overnight at 4°C or 2 h at room temperature followed by corresponding 

secondary antibodies (Sigma-Aldrich or Invitrogen). Protein bands were detected 

with enhanced chemiluminescence (Amersham Pharmacia Biotech) using LAS 

imaging system (Fujifilm, Tokyo, Japan). -tubulin was used as loading control.   

 

IV-8. qRT-PCR Analysis 

Total RNA was extracted from the freshly isolated GA muscles using TRI Reagent 

(Sigma-Aldrich) and analyzed by qRT-PCR. The complementary DNA synthesis was 



9 

 

performed according to the manufacturer’s instructions (Omniscript kit; Qiagen). 

The data were normalized to -actin housekeeping genes. Primer sequences for 

qRT-PCR are as follows: Mib1, forward, 5’-TCCTGGACTGAACCTGCTCT-3’, and 

reverse, 5’- AGTGGGTTCTCGGAGTCCTT-3’, LC3, forward, 5’-

CATGAGCGAGTTGGTCAAGA-3’, and reverse, 5’-CCATGCTGTGCTGGTTGA-3’, 

and Bnip3, forward, 5’- CCTGTCGCAGTTGGGTTC-3’, and reverse, 5’-

GAAGTGCAGTTCTACCCAGGAG-3’, and b-actin, forward, 5’-

TCATGAAGTGTGACGTTGAC-3’, and reverse, 5’-CCTAGAAGCATTTGCGGTGC-

3’. 

 

IV-9. Statistical Analysis 

Statistical significance was determined by applying student t-test to raw values from 

at least 3 independent experiments. All the error bars represent the S.E.M. A p value 

of < 0.05 considered statistically significant at the 95% confidence level. 
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V. RESULTS  

 

V-1. Myofiber-specific deletion of Mib1 results in muscle atrophy in 

adulthood 

 

To investigate whether loss of Mib1 in muscle has adverse effects on the 

maintenance of skeletal muscle, I crossed muscle creatine kinase (MCK)-Cre 

transgenic mice (Bruning et al., 1998) with Mib1f/f mice (Koo et al., 2007) to generate 

myofiber-specific Mib1 gene-deleted mice (MCK-Cre;Mib1f/f; hereafter Mib1 cKO). 

Since Mib1 plays a significant role in Notch signaling (Itoh et al., 2003; Koo et al., 

2005) that is necessary to maintain muscle stem cells during skeletal muscle 

development (Bjornson et al., 2012; Mourikis et al., 2012; Mourikis and Tajbakhsh, 

2014), I investigated whether Mib1 cKO mice have normal skeletal muscle 

development. We first examined the longitudinal changes in body mass of Mib1 cKO 

and wild-type (WT) control mice between 1 and 17 months of age. Mib1 cKO and 

WT mice, which fed ad libitum, showed a similar increase of body weight during 

postnatal development (Figure 1A). To determine the changes in muscle 

morphology with age, I analyzed hindlimb muscles [tibialis anterior (TA), 

gastrocnemius (GA), and quadriceps femoris (Q) muscles] of young (3 months of 

age), adult (6-9 months of age) and middle-aged (MA; 16 months of age) male mice. 
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Muscle weight in young Mib1 cKO mice was similar to that of WT mice, suggesting 

Mib1-deficient skeletal muscles develop normally during postnatal growth. However, 

MA Mib1 cKO mice showed significant decline in the weight of GA and Q muscles 

(Figure 1C), although the Q muscles did not quite reach statistical significance 

(p=0.057). Consistently, histological analysis of GA muscles was apparently normal 

in young Mib1 cKO mice whereas showed narrow myofibers in adult and MA Mib1 

cKO mice compared to that of WT mice, indicating age-associated gradual loss of 

skeletal muscle in Mib1 cKO mice. 

Since reduction in muscle volume and mass is accompanied by decreased 

muscle fiber cross sectional area (CSA) and/or number of fibers (Glass, 2003; 

McKinnell and Rudnicki, 2004; Romanick et al., 2013), I examined the impact of loss 

of Mib1 in myofiber on mean CSA of muscles and total muscle fiber numbers. On 

immunohistochemical examination of TA muscles of Mib1 cKO and WT mice, the 

number of muscle fibers of adult and MA TA muscles was comparable between 

groups (Figure 1G). However, there were significant decreases in CSA of adult 

(Figure 1F and H) and MA Mib1 cKO TA muscles (Data not shown), suggesting the 

reduction in muscle results from decrease in muscle CSA, but not the decline in 

muscle fiber numbers. 
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Figure 1. Ablation of Mib1 in myofiber induces muscle loss in mice. 

(A) Body weight curves of male WT and Mib1 cKO mice fed ad libitum. (B) Relative 

hindlimb muscle [tibialis anterior (TA), gastrocnemius (GA) and quadriceps femoris 

(Q) muscles] divided by body weight at indicated ages. (C-D) Optic images of 

hindlimb muscles of young (3 months of age, C) and adult (9 months of age, D) WT 

and Mib1 cKO mice. (E) H&E stained images of TA muscles of young, adult and 

middle-aged (16 months of age) WT and Mib1 cKO mice. (F) Laminin-stained TA 

muscles of adult and MA WT and Mib1 cKO mice. (G) Myofiber numbers of TA 

muscles of adult and MA WT and Mib1 cKO mice. (H) Morphometric quantification 

of cross-sectional area in Laminin-stained TA muscle of adult and MA WT and Mib1 

cKO mice. Young, adult and MA (middle-aged) represent 3-, 6 to 9-, and 16 months 

of age, respectively. Scale bars, 1 cm (C, D) and 100 m (E, F). Data are mean ± 

SEM. N = 3-4 mice per each genotype and age. *p < 0.05.  
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V-2. Ablation of Mib1 in myofiber leads to impaired muscle function 

 

To examine whether the ablation of Mib1 led to changes in muscle function, I 

performed several muscle function tests such as treadmill exercise, grip strength 

test and hanging test. For treadmill exercise tests, mice were subjected to a high 

intensity running regime with 5 m/min speed increments every 5 minutes up to 15 

m/min speed until exhaustion (Figure 2A). Both adult and MA Mib1 cKO mice 

showed lower endurance run capacity than age-matched WT mice (Figure 2B-C). 

Additionally, I analyzed the muscle strength to evaluate neuromuscular performance 

(Bonetto et al., 2015). There was no difference in grip strength (Figure 2D-E), 

suggesting that loss of Mib1 has no adverse effects on muscle strength. However, 

when I further performed four limb-hanging test (Balkaya et al., 2013; Bonetto et al., 

2015) to assure normal neuromuscular function in Mib1 cKO mice, Mib1 cKO mice 

showed poor neuromuscular performance (Figure 2F-G). Unfortunately, some mice 

seem to avoid hanging by falling off it on purpose albeit mice were adapted prior to 

tests. Hence, larger number of mice are required to validate neuromuscular 

functions of Mib1 cKO mice. Taken together, these data indicate that the loss of 

Mib1 in myofibers result in lower running capacity, and mild or no gross impairment 

of motor functions at adulthood.  
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Figure 2. Myofiber-specific Mib1 ablation leads to impaired muscle function.  

(A) Experimental design illustrating the treadmill exercise paradigm. Mice were 

familiarized to treadmill running. The initial speed of 5 m/min was increased by 5 

m/min every 5 min. The running capacity was measured at maximum speed of 15 

m/min until exhaustion. (B-C) Running time (B) and running distance (C) of WT and 

Mib1 cKO mice at indicated ages. (D) Representative images of whole-limb grip 

strength. (E) Whole-limb grip strength of WT and Mib1 cKO mice at indicated ages. 

Maximum absolute grip strength (g force; in grams) for each mouse was normalized 

to body mass (g). (F) Representative images of hanging test. (G) Hanging wire tests 

of WT and Mib1 cKO mice at indicated ages. Adult and MA (middle-aged) represent 

6 to 9-, and 16 months of age, respectively. Data are mean ± SEM. N = 3-4 mice 

per each genotype and age. **p < 0.01.  
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V-3. Mib1 is required for the activation of the ubiquitin-mediated 

proteolysis 

 

The ubiquitin-mediated proteolysis is the major pathway which causes the 

degradation of muscle proteins in atrophying conditions (Brooks and Myburgh, 2014; 

Costelli and Baccino, 2003; Solomon and Goldberg, 1996). I investigated the 

possibility of whether Mib1 is involved in ubiquitin-mediated protein degradation 

pathway during muscle atrophy. GA muscles were isolated from adult and MA WT 

and Mib1 cKO mice, and used to measure the levels of ubiquitinated proteins by 

immunoblotting. Interestingly, the protein ubiquitylation was considerably lower in 

GA muscles of Mib1 cKO mice than in those of WT mice (Figure 3A). Moreover, 

decreased levels of specific bands in MA Mi1 cKO muscles were observed (Figure 

3A, red box), indicating that Mib1 is involved in the degradation of muscle proteins. 

During muscle atrophy, several contractile proteins such as myosin heavy chain, 

one of most abundant protein in skeletal muscle, undergo degradation process 

(Cohen et al., 2009; Cohen et al., 2015). To determine that Mib1 is involved in 

degradation of muscle proteins, immunoblotting on myosin heavy chain fast type 

(MyHC1) protein, which is abundantly expressed in GA muscles (Sher and Cardasis, 

1976), was performed. There was no significant degradation of MyHC1 in GA 

muscles from MA Mib1 cKO mice compared to that of WT mice (Figure 3A). 

Consistently, immunohistochemical analysis of myosin heavy chain fast type 
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(MyHC2a) and myosin heavy chain slow type (MyHC1) expression in TA muscles 

revealed the similar distributions of myosin heavy chain in Mib1 cKO and WT mice 

(Figure 3B-D). In addition, the distributions of myosin heavy chain in GA muscles 

from Mib1 cKO mice was comparable to that of WT mice (Data not shown). Taken 

together, these results suggest that Mib1 functions through the activation of 

ubiquitin-proteasome pathway but did not trigger the degradation of myosin heavy 

chains.  
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Figure 3. Myofiber-specific Mib1 regulates ubiquitin-mediated proteolysis.  

(A) Representative immunoblots for ubiquitin, MyHC1, and Mib1 in GA muscles of 

WT and Mib1 cKO mice at indicated ages. Tubulin was used as loading control. Red 

box indicates the decrease in expression level of ubiquitin in Mib1 cKO mice 

compared to that of WT mice. (B) Representative images of Laminin and MyHC1/2a-

stained TA muscles of adult WT and Mib1 cKO mice. (C-D) Quantification of myosin 

heavy chain slow type (MyHC1) and myosin heavy chain fast type (MyHC2a) in TA 

muscles of WT and Mib1 cKO mice at middle-aged. Adult and MA (middle-aged) 

represent 6 to 9-, and 16 months of age, respectively. Data are mean ± SEM. N = 

3-4 mice per each genotype and age. *p < 0.05.  
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Figure 4. A schematic depiction of Mib1 regulating muscle maintenance and 

function  

During normal physiological condition, the protein homeostasis is regulated by 

several E3 ubiquitin ligases including Mind Bomb 1 (Mib1) E3 ubiquitin ligases. In 

that, Mib1-mediated ubiquitin-proteasome system degrades the muscle proteins or 

substrates involved in protein degradation pathway, thereby maintaining muscle 

homeostasis. However, in the absence of Mib1 in myofiber, these muscle proteins 

or substrates accumulate leading to generation of harsh conditions associated with 

muscle atrophy and impaired muscle function.  
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VI. DISCUSSION  

 

In this study, I investigated the effects of loss of Mib1 in muscle maintenance. This 

finding indicates that ablation of Mib1 is detrimental to the muscle maintenance and 

muscle adaptation to endurance aerobic exercise but may not have adverse impact 

on motor coordination. The loss of muscle mass associated with reduction in muscle 

cross-sectional area and decreased muscle function in Mib1 cKO mice clearly mimic 

the clinical manifestations of muscle atrophy (Berg et al., 1991; Dodson et al., 2011; 

Gogia et al., 1988; Larsson et al., 1979; MacDougall et al., 1977). The most 

surprising result of my study was that the loss of Mib1 in myofiber indeed caused a 

decrease in the level of ubiquitinated proteins (Figure 3A). Given that, I can 

reasonably expect that the role of Mib1 in muscle would be the degradation of 

degenerating muscle proteins (Figure 4) like parkin, which is an E3 ubiquitin ligase 

participating in the regulation of proteasomal degradation of abnormal mitochondria 

(Castillo-Quan, 2011).  

 

Several studies reveal the significant role of ubiquitin-mediated pathway in 

muscle atrophy (Cohen et al., 2015; Lyon et al., 2013; Weissman et al., 2011). In 

order to determine the molecular mechanism of Mib1 in ubiquitin-mediated 

proteolysis in muscle atrophy, the further studies on Mib1 binding substrate and its 

potential function in muscle maintenance should be conducted. I am currently 



24 

 

planning to perform yeast-two-hybrid screening on single myofiber and 

immunoprecipitation experiment using LC-MS/MS to expand the Mib1 signaling 

network in muscle maintenance. Although recent studies reported the list of potential 

Mib1 binding partners from adult rat brain and zebrafish (Mertz et al., 2015; Tseng 

et al., 2014), the elaborated screening on single muscle fibers are required to 

determine the novel interaction partners of Mib1 which play significant role solely in 

myofibers. My further works on Mib1 will expand the current understanding on Mib1.  

 

In human, MIB1 gene is located on the long arm of chromosome 18q 11.2 

(Wystub et al., 2013). According to clinical report, diseases associated with deletion 

of long arm of chromosome 18 are characterized by low muscle tone, hypotonia 

(Cody et al., 2007; Strathdee et al., 1995; Surh et al., 1991; Wertelecki and Gerald, 

1971). Unlike healthy muscle which never fully relaxed, hypotonia is a symptom of 

low muscular tone associated with decreased tension and stiffness of muscles to 

stretching which is caused by systemic diseases and diseases of the nervous 

system (Leyenaar et al., 2005; Lisi and Cohn, 2011). Furthermore, the genetic 

conditions such as Down Syndrome, Prader-Willi syndrome, Tay-Sachs disease, 

spinal muscular atrophy, Charcot-Marie-Tooth disease and muscular dystrophy are 

known to cause hypotonia. Although several types of therapy for hypotonia have 

been performed, currently, there are no direct treatment for hypotonia (Leyenaar et 

al., 2005; Lisi and Cohn, 2011). In that, unraveling the function of Mib1 and 
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interacting substrates in muscle maintenance would suggest a therapeutic approach 

to the treatment of hypotonia and muscle atrophy.  
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VIII. 요약 (국문초록) 

   

 사람이 삶의 질을 향상시키고 건강한 신체를 갖추기 위해서는 근육의 

유지가 무엇보다도 중요하다. 따라서 일생동안 근육을 유지시킬 수 있는 근육 

특이적인 인자를 찾기 위해 연구자들이 많은 관심을 갖고 연구를 진행하고 

있다. 근육에는 근육의 유지, 근육 단밸직의 의화작용, 근육위축증을 조절하는 

여러 E3 유비퀴틴 라이게이즈들이 존재하고 있다고 알려져있으나, 아직까지 

E3 유비퀴틴 라이게이즈인 Mind Bomb 1 (Mib1)이 근육에서 어떠한 기능을 

하는지에 대해 정확하게 규명되어 있지 않다. 본 연구에서는, Cre-Lox 

시스템을 이용해 만든 근육섬유 특이적 Mib1 적중 마우스를 분석함으로써 

Mib1이 결손된 경우 근육의 무게와 근육섬유 단면적이 감소되고, 근육의 

기능이 현저하게 저해되는 것을 발견하였다. 또한, 근육섬유 특이적 Mib1 적중 

마우스의 근육에서 유비퀴틴화가 감소된 것을 확인하였고, 이는 Mib1이 

유비퀴틴 프로테아좀 기전을 통해 근육을 유지한다는 것을 증명해주고 있다. 

이러한 연구 결과는 근육섬유에 존재하는 Mib1이 유비퀴틴 프로테아좀 

시스템을 통해 손상된 근육 단백질들을 유비퀴틴화 시켜 분해시키며, 이러한 

기능이 저해될 경우 근육 위축증이 일어나고 근육기능이 소실될 수 있다는 

사실을 증명해주고 있다.  

주요어 : 근육, Mib1 (Mind Bomb 1), 근육 유지, 근육 위축증, E3 유비퀴틴 

라이게이즈 
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