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Abstract

Fully homomorphic encryption(FHE) was introduced by Rivest, Adleman,
and Dertouzos that can homomorphically evaluate encrypted data. However,
it turned out to be insecure. After then, it has been presented lots of im-
proved, modified FHE schemes for security and efficiency. One of them, a
FHE of López-Alt, Tromer, and Vaikuntanathan based on NTRU encryption
scheme of Hoffstein, Pipher, and Silverman, is more efficient than the other
schemes for a long time. Bos et al. suggest the more efficient FHE scheme,
which is the fastest, than López-Alt et al. They remove the DSPR assump-
tion and modulus switching procedure. Thus, in this paper, we look into the
scheme and implement its practical version and optimization. We provide
experimental results and analyze them as regards efficiency compared with
original one whose parameters are presented by authors.

Key words: BLLN, NTRU, FHE, Implementation
Student Number: No. 2011-23211
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Chapter 1

Introduction

Homomorphic encryption is a cryptosystem that one could add or multi-
ply ciphertexts and another could decrypt the result. Partially homomor-
phic cryptosystem can evaluate ciphertexts using only one operation without
decryption of them. e.g. RSA, ElGamal, Paillier. On the other hand, fully
homomorphic encryption(FHE) introduced by Rivest, Adleman, and Der-
touzos [12], which is not secure under the plaintext attack, can evaluate both
addition and multiplication. Until 2009, the cryptosystem of Boneh, Goh and
Nissim [6] is the best homomorphic encryption that evaluates a number of
additions and one multiplication.

In 2009, Craig Gentry suggested the first fully homomorphic encryption
using ideal lattices, which can evaluate a unlimited number of additions and
multiplications of ciphertexts that consist of polynomials over a ring [4, 5]. It
is more secure than former one. Since the noise of ciphertext increase during
evaluations, he present how to modify the scheme so as to reduce the noise
called bootstrapping process. Then the scheme can be converted into a fully
homomorphic encryption. However, it is not efficient to apply the real world.
After then, it has been presented that lots of improved, modified and another
fully homomorphic encryption schemes which do not use ideal lattices.

FHE based on NTRU encryption of Hoffstein, Pipher, and Silverman [7]
was presented by López-Alt, Tromer, and Vaikuntanathan [9], which is more
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CHAPTER 1. INTRODUCTION

efficient and secure than the others. Bos et al. [1] suggest the more efficient
FHE scheme, which is the fastest of existing schemes, than López-Alt et al.
Their scheme removes the decisional small polynomial ratio assumption, it
avoids modulus switching that makes the noise size diminish and its cipher-
text is represented by a single ring element. They also provide a practical
version with parameters and certain implementation results. In this paper,
we investigate the BLLN scheme, implement it and analyze what makes the
scheme faster and how faster than the other parameters of optimization pro-
cedure.

In chapter 2, we provide a basic notation and some of the assumption com-
posed of the RLWE and DSPR with LTV as aspects of security. In chapter 3,
we introduce the BLLN scheme including how to be a leveled somewhat ho-
momorphic encryption and fully homomorphic encryption. It might be seem
to have two part according to the way of homomorphic multiplication. In
chapter 4, we set up parameters by proving security, implement it and carry
out an optimization by defining and experimenting the Y ASHE.Discard.
Furthermore, we present their results as tables and analyze them with opti-
mization.
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Chapter 2

Preliminaries

Fully homomorphic encryption can evaluate the addition and multiplica-
tion homomorphically between ciphertexts as Enc(m1 +m2) = Enc(m1) +

Enc(m2) and Enc(m1 ·m2) = Enc(m1) ·Enc(m2) where Enc(mi) is the en-
cryption of a message mi. According to some properties, it could be divided
into somewhat homomorphic encryption, leveled fully homomorphic encryp-
tion, and fully homomorphic encryption. Somewhat homomorphic encryp-
tion is a special form of fully homomorphic encryption whose noise increases
during the evaluating process where each ciphertext has low-degree homo-
morphic operations. Leveled fully homomorphic encryption can evaluate the
ciphertexts with high-degree L, which sometimes called depth, and fully ho-
momorphic encryption can evaluate them regardless of depth or degree.

2.1 Basic Notation
We will use a quotient ring R = Z[x]/(Φn(x)), where Φn(x) = xn + 1 is a
n-th cyclotomic polynomial with n a power of two. Denote a ℓ∞ norm of f
by ∥f∥∞ = maxi{|ai| : f =

∑n−1
i=0 aix

i ∈ R}.

Lemma 2.1.1 ( [5, 10]). Let n ∈ N, let ϕ(x) be a n-th cyclotomic polynomial
of degree n and let R = Z[x]/(ϕ(x)). For any t, s ∈ R,
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CHAPTER 2. PRELIMINARIES

∥s · t(modϕ(x))∥ ≤
√
n · ∥s∥ · ∥t∥

∥s · t(modϕ(x))∥∞ ≤
√
n · ∥s∥∞ · ∥t∥∞.

We say that δ = sup{∥f · g∥∞/(∥f∥∞∥g∥∞) : f, g ∈ R} is an expansion
factor of R which is equal to n by lemma 2.1.1. For a polynomial f ∈ R,
denote the [f ]q ∈ R/qR = Zq/(x

n+1) by reducing coefficients into Zq which
have the range (− q

2
, q

2
] for some integer q . For v, w ∈ Rn, the dot product is

defined by ⟨v,w⟩ =
∑n

i=1 ui ·wi ∈ R where ui and wi are the ith component
of that. It also holds for the quotient ring Rq.

A discrete Gaussian distribution DZn,σ over Zn with parameter σ is a
probability distribution that assigns a probability proportional to exp(−π∥x∥2/σ2)

to each x ∈ Zn. It is a product distribution of n independent copies of
DZ,σ with mean 0 and standard deviation σ over the integers [8, 11]. It out-
puts a (r

√
n)-bounded polynomial with high probability. The distribution

χ = DZn,σ supported over R is called B-bounded if we have a B-bounded
polynomial for all f sampled from χ, i.e. ∥f∥∞ < B [9].

In this paper, we use a truncated Gaussian distribution χ that is B-
bounded and statistically close to the discrete Gaussian. It takes sample
whose norm is less than B so as to restrict the noise bound and growth
during the homomorphic operations [9, 11].

2.2 The Ring-LWE Problem
It has been suggested that lots of FHE schemes based on the RLWE assump-
tion and reductions of the worst case to average case. Lyubaskevsky, Peikert
and Regev describe the Ring learning with error problem (Ring-LWE) [11].
It distinguishes which distribution is used for sampling and generates certain
samples. It is an extension of the learning with error problem called LWE
that based on a field rather than polynomial.

Definition 2.2.1 (Ring-LWE). For given security parameter λ, n = n(λ) ∈
Z, let ϕ(x) = ϕn(x) ∈ Z[x] be a polynomial of degree n, let q = q(λ) ≥ 2
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CHAPTER 2. PRELIMINARIES

be an integer, let R = Z/(ϕ(x)) and R/qR. Let χ = χ(λ) be a distribution
over R. The Ring − LWEn,q,χ problem is to distinguish the following two
distributions. In the first distribution one samples (ai, bi) uniformly from R2

q .
In second distribution one samples (ai, bi = ai · s + ei) ∈ R2

q where s fixed
for all samples is uniformly sampled from Rq, ai’s are uniformly from Rq and
ei’s are from an error distribution χ. The Ring-LWE assumption is that the
Ring-LWE problem is hard.

The shortest vector problem over the ideal lattice which is worst-case
problem can be reduced to the Ring-LWE problem which is average-case.

Theorem 2.2.2 (Worst-case to Average-case Reduction [9, 11]). Let
Φn(x) = xn + 1 be a n-th cyclotomic polynomial of degree which is a power
of two. Let R = Z/(xn + 1), q ≡ 1(mod2n) be a prime integer and χ be a
B = ω(

√
nlogn)-bounded distribution. Then there is a randomized reduction

from nω(1) · (q/B)-approximate worst-case SVP for ideal lattice over R to
Ring − LWEn,q,χ.

This theorem is useful for setting parameters.

2.3 The DSPR Problem with LTV
A. López-Alt, E. Tromer, and V. Vaikuntanathan [9] present a scheme which
is based on NTRU with modifications and multikey homomorphism. It is
provably secure based on standard problems in ideal lattices. The parame-
ters, which is n, q, ϕ(x) of the degree n and χ, depend on security parameter
λ. Its message space is {0, 1} and all operations are evaluated on the quotient
ring Rq = Zq/(ϕ(x)). We simply introduce LTV scheme as follows.

Key Generation: Sample f0, g from key distribution χ, then compute f =

[2f0 + 1]q such that f ≡ 1 (mod 2). If f is not invertible modulo q,
re-sample f0. Let h = [2gf−1]q for inverse of f modulo q in R, then set
the secret key f and public key h.

5



CHAPTER 2. PRELIMINARIES

Encryption: Take a message m from {0, 1}. Ciphertext is generated by
computing c = [m + 2e + hs]q over the ring R with s, e sampled from
error distribution χ.

Decryption: Compute m′ = [[fc]q]2 ∈ R with the secret key f .

It easy to check that as long as there is no wrap-around modulo q. Compute

[fc]q = [fm+ 2fe+ fhs]q = [fm+ 2fe+ 2gs]q.

If there is no wrap-around modulo q then

[fc]q(mod2) = [fm+ 2fe+ 2gs]q = [fm]q(mod2) = m.

This scheme is secure under the assumption of decisional small polynomial
ratio problem.We simply call it DSPR problem.

Definition 2.3.1 (DSPR Problem [1, 9]). For given security λ, let Φ(x) ∈
Z[x] be a polynomial of degree n ∈ Z, let q ∈ Z be a prime integer. Let
R = Z/(ϕ(x)), Rq = R/qR and let χ is a distribution over the ring R. all
of them depend on λ. The DSPRn,q,χ problem is to distinguish between the
following two distributions. In first distribution, one samples h uniformly
at random over Rq. In second distribution, one samples h = a/b where a

and b are from the distribution χ. The DSPRn,q,χ assumption is that the
DSPRn,q,χ problem is hard.

It holds only if σ >
√
q · poly(n) for cyclotomic polynomial ϕ(x) which

makes secure against unbounded adversaries.

Stehlé and Steinfeld [13] propose a theorem for modified NTRU that
changes the value 2 which could indicates the size of the message space to
the value t where the t is in the R×

q , and 2e to te.

Theorem 2.3.2 ( [1, 13]). Let Φn(x) = xn+1 be a n-th cyclotomic polynomial
of degree which is a power of two ≥ 4 and it splits into k = k(q) irreducible
factors modulo a prime q ≥ 5. Let R = Z[x]/(xn + 1) and Rq = R/qR.
Let U(R×

q ) be the uniform distribution on R×
q which is the set of invertible
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CHAPTER 2. PRELIMINARIES

elements in Rq. Let χ = D×
Zn,σ be the spherical discrete Gaussian distribution

on Rq, restricted to R×
q . Let ϵ ∈ (0, 1/3), t ∈ R×

q . Let a and b are depended
on t with some distributions. Then the statistical distance a/b (mod q) and
U(R×

q ) is bounded by

D =

{
220n · q−

⌊ϵk⌋
k · 2n if σ ≥ 2n ·

√
log(8nq) · q 1

2
+ϵ

220n · q−2ϵn if σ ≥
√

2n log(8nq) · q 1+kϵ
2 and q ≥ (2n)

k
1−2kϵ .

Then the DSPR problem is hard in Rq.
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Chapter 3

Ring-based FHE Scheme

In this section we investigate the main scheme suggested by Bos et al. [1].
In section 3.2, a leveled somewhat homomorphic encryption of the scheme
is presented and subsection 3.1.1 describes the basic encryption, decryption
system and how the homomorphic operations are evaluated. In subsection
3.1.2, its security is proven with some assumptions. In section 3.2, we provide
how the scheme can be converted to a fully homomorphic encryption.

3.1 Leveled Somewhat Homomorphic Encryp-
tion

Bos et al. present a couple of leveled somewhat homomorphic encryption
according to homomorphic multiplication with two different evaluation keys.
This keys affect the complexity of the scheme such that we could estimate
which method of homomorphic multiplication is fast. We present two parts
of the scheme in parallel. They call them “Y ASHE” and “Y ASHE ′”. A sub
notation “1” stands for Y ASHE and “2” stands for Y ASHE ′.

3.1.1 BLLN Scheme
In this subsection, we describe two parts of the scheme. The first part is a
basic cryptosystem including how the encrypted messages can be decryptable

8



CHAPTER 3. RING-BASED FHE SCHEME

and the second part explains how the homomophic operation can be com-
puted according to the noise bound by some calculations. The basic cryp-
tosystem is composed of the key generation, encryption and decryption as
follows.

Key Generation: Sample f0, g from key distribution χkey, then compute
f = [tf0 + 1]q for 1 < t < q. If f is not invertible modulo q, re-sample
f0. Let h = [tgf−1]q for inverse of f modulo q in R, then we can gener-
ate a basic key set {f, h} which is comprised of a secret key and public
key respectively. Actually, the secret keys are f and f−1.
The evaluation key set {evk1, evk2} that is used for homomorphic mul-
tiplication is computed by

evk1 = [f−1Pω,q (Dω,q (f)⊗Dω,q (f)) + e + h · s]q ∈ Rℓ3ω,q ,

evk2 = [Pω,q (f) + e + h · s]q ∈ Rℓω,q

where ℓω,q = ⌊logw q⌋+ 2,

Dω,q : R→ Rℓω,q , f 7→ ([f0]ω, [f1]ω, · · · , [fℓω,q−1]ω) = ([fi]ω)
ℓω,q−1
i=0

Pω,q : R→ Rℓω,q , f 7→ ([f ]q, [fω]q, · · · , [fωℓω,q−1]q) = ([fωi]q)
ℓω,q−1
i=0

for f =
∑ℓω,q−1

i=0 fiω
i with fi ∈ R.

If ω = 2, then these functions are called BitDecomp and PowerOFTwo [2].

As the function Dω,q and Pω,q are defined, the dot product between two
vectors Dω,q(f) and Pω,q(g) is equal to the scalar product of f and g modulo
q for some f, g ∈ R. This follows from the fact that

< Dω,q(f), Pω,q(g) >=

ℓω,q−1∑
i=0

[fi]ω[gω
i]q ≡ g

ℓω,q−1∑
i=0

[fi]ωω
i ≡ f · g (modq).

Encryption: For given integer t, we take a message from the space R/tR

whose element is of the form m + tR. Simply, it can be written by
[m]t. Ciphertext that is the encryption of the message is computed by[⌊

q

t

⌋
[m]t + e+ hs

]
q

∈ R for s, e sampled from error distribution χerr.

9



CHAPTER 3. RING-BASED FHE SCHEME

Decryption: Compute m =

[⌊
t

q
[fc]q

⌉]
t

∈ R to obtain the message with

the secret key f .

The scheme is correctly decryptable when there exist v ∈ R such that
∥v∥∞ <

(△–q (mod t))

2
for [fc]q = [△[m]t + v]q, where △ =

⌊
q

t

⌋
. For some

a ∈ R,

t

q
[fc]q =

t

q
△ [m]t + v · t

q
+ ta

= [m]t −
q (mod t)

q
[m]t + v · t

q
+ ta.

If ∥v∥∞ <
(△–q (mod t))

2
, then

∥∥∥∥ − q (mod t)

q
[m]t + v · t

q

∥∥∥∥
∞

<
1

2
. So, we

could be correctly decrypt the ciphertext.

The homomorphic operations consisted of addition and multiplication are
defined as follows.

Homomorphic Addition: Let c1, c2 ∈ R be encrypted message m1,m2 ∈
R/tR. Compute an addition [c1 + c2]q that is a encrypted message
m1 +m2 modulo t by adding coefficients of ciphertext componentwise.

Although the size of inherent noise increases during this operation, which has
a sum of vi and r ∈ R where the r satisfies the equation as [m1]t + [m2]t =

[m1 + m2]t + r, ∥r∥∞ ≤ 1 and the ciphertext ci has a form of [mi]t + vi, it
could be decryptable.

Homomorphic Multiplication: Compute a ciphertext with multiplication
of two ciphertexts. Passing by a key-switching procedure, we obtain a
final ciphertext called an intermediate ciphertext, which might be cor-
rectly decryptable, is obtained.

According to the method of multiplication, two ways of homomorphic
encryption are presented with different ciphertexts c̃1,mul and c̃2,mul, inter-
mediate ciphertexts. Through the key-switching procedure, the intermediate
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CHAPTER 3. RING-BASED FHE SCHEME

ciphertext becomes a ciphertext decrypted under an original secret key f

instead of f 2. The evaluation key evki is used for this procedure. If this step
is omitted, the ciphertext could not be decryptable since its noise is too large
to decrypt. Hence the key-switching process is essential and the intermediate
ciphertext exists at all times.

The ciphertext c̃1,mul which is a multiplication of two ciphertexts c1 and
c2 is computed by

c̃1,mul =

[⌊
t

q
Pω,q (c1)⊗ Pω,q (c2)

⌉]
q

∈ Rℓ2ω,q ,

where the ⊗ is a tensor product which reduces the monomials ℓ2ω,q to
(
ℓω,q

2

)
.

The way of the key-switching is obtained by

[⟨Dω,q (c̃1,mul) , evk1⟩]q = [⟨Dω,q (c̃1,mul) , f
−1Pω,q (Dω,q (f)⊗Dω,q (f)) + e + h · s⟩]q

= [f−1⟨Dω,q (c̃1,mul) , Pω,q (Dω,q (f)⊗Dω,q (f))⟩
+ ⟨Dω,q (c̃1,mul) , e⟩+ h · ⟨Dω,q (c̃1,mul) , s⟩]q.

In this case, the final ciphertext c1,mul composed of a vector of polynomials
is

c1,mul = [⟨Dω,q (c̃1,mul) , evk1⟩]q
that could be correctly decryptable under the secret key f if

[fc1,mul]q = [⟨Dω,q (c̃1,mul) , Pω,q (Dω,q (f)⊗Dω,q (f))⟩
+ f⟨Dω,q (c̃1,mul) , e⟩+ gt⟨Dω,q (c̃1,mul) , s⟩]q

= [(t/q) · ⟨Pω,q (c1)⊗ Pω,q (c2) , Dω,q (f)⊗Dω,q (f)⟩
− rc + f⟨Dω,q (c̃1,mul) , e⟩+ gt⟨Dω,q (c̃1,mul) , s⟩]q

= [△[m1m2]t + ṽ1,mul + f⟨Dω,q (c̃1,mul) , e⟩+ gt⟨Dω,q (c̃1,mul) , s⟩]q
= [△[m1m2]t + v1,mul]q

where

rc =
t

q
⟨Pω,q(c1)⊗ Pω,q(c2), Dω,q(f)⊗Dω,q(f)⟩ − ⟨c̃1,mul, Dω,q(f)⊗Dω,q(f)⟩

=

⟨(
t

q
Pω,q (c1)⊗ Pω,q (c2)

)
−
⌊
t

q
Pω,q (c1)⊗ Pω,q (c2)

⌉
, Dω,q (f)⊗Dω,q (f)

⟩
,

11



CHAPTER 3. RING-BASED FHE SCHEME

and v1,mul satisfies under the condition of decryption.

Another ciphertext of the multiplication c̃2,mul which is a multiplication
of the ciphertexts c1 and c2 is computed by

c̃2,mul =

[⌊
t

q
c1c2

⌉]
q

∈ R,

and the key-switching process is followed by

[⟨Dω,q (c̃2,mul) , evk2⟩]q = [⟨Dω,q (c̃2,mul) , Pω,q (f) + e + h · s⟩]q
= [⟨Dω,q (c̃2,mul) , Pω,q (f)⟩+ ⟨Dω,q (c̃2,mul) , e⟩

+ h · ⟨Dω,q (c̃2,mul) , s⟩]q.

The final ciphertext c2,mul composed of a simply single polynomial is

c2,mul = [⟨Dω,q (c̃2,mul) , evk2⟩]q

that could be correctly decryptable under the secret key f if

[fc2,mul]q = [f⟨Dω,q (c̃2,mul) , Pω,q (f)⟩+ f⟨Dω,q (c̃2,mul) , e⟩+ gt⟨Dω,q (c̃2,mul) , s⟩]q
= [f⟨Dω,q ((t/q)c1c2) , Pω,q (f)⟩ − f · rc + f⟨Dω,q (c̃2,mul) , e⟩

+ gt⟨Dω,q (c̃2,mul) , s⟩]q
= [△[m1m2]t + ṽ2,mul + f⟨Dω,q (c̃2,mul) , e⟩+ gt⟨Dω,q (c̃2,mul) , s⟩]q
= [△[m1m2]t + v2,mul]q

where

f · rc = f ·
⟨(

Dω,q

(
t

q
c1c2

))
−
⌊
Dω,q

(
t

q
c1c2

)⌉
, Pω,q (f)

⟩
=

t

q
f 2 · c1c2 − f 2·

⌊
t

q
c1c2

⌉
and v2,mul satisfies under the condition of decryption.

12



CHAPTER 3. RING-BASED FHE SCHEME

3.1.2 Security of the Scheme
The security of the scheme Y ASHE using the first way of multiplication is
based on the IND-CPA under a “circular security” assumption and the RLWE
assumption. The second scheme Y ASHE ′ is based on the DSPR problem
under the circular security and RLWE assumptions. For the circular security,
replace f by distinct secret key fj of evki,j for i ∈ {1, 2} whose number “1”
and “2” stand for the Y ASHE and Y ASHE ′ respectively and j which is a
level with 1 ≤ j ≤ L, i.e. for given

evk1,j = [f−1
j Pω,q (Dω,q (fj−1)⊗Dω,q (fj−1)) + e + hj · s]q ∈ Rℓ3ω,q ,

evk2,j = [Pω,q

(
f 2
j−1

)
+ e + hj · s]q ∈ Rℓω,q ,

the final ciphertext ci,mul, which is the output of key-switching step with
input ciphertext c̃i,mul, is correctly decryptable under the secret key fj where
c̃i,mul is a multiplication of two j − 1th level ciphertexts.

3.2 Fully Homomorphic Encryption
To obtain a fully homomorphic encryption from the somewhat homomorphic
encryption, we have to decrease the noise of homomorphic evaluation. It it is
too large, then the homomorphic properties has gone. A modulus switching or
bootstrapping is a general way to reduce the noise of homomorphic computa-
tions. The noise growth during the homomorphic addition could be neglected
compared with homomorphic multiplication. Therefore we just consider the
multiplication. For given fci = △[mi]t + vi(mod q) with the ciphertext ci,
the noise vi has the bound V as

∥vi∥∞ < 2δtBkeyBerr +
1

2
q (mod t) δtBkey

< 2δtBerr +
1

2
δt2 = δt

(
2Berr +

1

2
t

)
= V,

13



CHAPTER 3. RING-BASED FHE SCHEME

and the inherent noise vi,mult of homomorphic multiplication is

∥v1,mult∥∞ < δt(2 + δℓω,tBkey
ω)V +

δt2

2
(3 + δℓω,tBkey

)

+
1

8
(δℓω,tBkey

ω)2 +
1

2
+ δ2tℓ3ω,qωBerrBkey

= δt(2 + δℓω,tω)V +
δt2

2
(3 + δℓω,t) +

1

8
(δℓω,tω)

2 +
1

2
+ δ2tℓ3ω,qωBerr,

∥v2,mult∥∞ < δt(4 + δtBkey)V + δ2t2Bkey(Bkey + t) + δ2tℓω,qωBerrBkey

= δt(4 + δt)V + δ2t2(1 + t) + δ2tℓω,qωBerr.

Hence the noise increase from O(δt2) of ∥vi∥∞ to O(δ3t4) of ∥vi,mul∥∞.

To make a fully homomorphic encryption of Y ASHE with an arbitrary
level L1, set up parameters with the hypothesis of the theorem by Stehlé
and Steinfeld and RLWE assumption, i.e., for ϵ ∈ (0, 1) and k ∈ (1/2, 1),
let q = 2d

ϵ be a prime and let Φn(x) = xn + 1 be a cyclotomic polynomial
of degree n which splits into k irreducible factors modulo q. Let χkey be a
discrete Gaussian distribution on Rq with deviation σkey ≥ 2n

√
log(8nq) · qk,

let χerr be an asymptotically ω(
√
2n log(2n))-bounded Gaussian distribution

on R. The inherent noise of a ciphertext regarding the depth L1 circuit, or-
ganized in a leveled homomorphic multiplicative tree structure without any
additions, is bounded by CL1

1 Vj + L1C
L1−1
1 C2 where

C1 = δt(2 + δℓω,tBkey
ω) = O(poly(n) log(q)) since δ = n,

C2 =
δt2

2
(3 + δℓω,tBkey

ω) +
1

8
(δℓω,tBkey

ω)2 +
1

2
+ δ2tℓ3ω,qωBerrBkey

= O(poly(n) log(q)3qk) and V = O(poly(n) · qk) for some k ∈ (1/2, 1)

by iterating the bound of ∥v1,mult∥ L1 times as assumed that the inherent
noise terms of all ciphertexts are considered to have the roughly same size
Vj = C1V +L1C2 for each level j > 0. To guarantee correctness of the scheme,
following equality should be satisfied as

q = Ω(L1 · poly(n)L1+1 · log(q)L1+2 · qk)

and any circuit of depth can be estimated by

L1 = O

(
(1− k) log(q)

log(log(q)) + log(n)

)
.

14



CHAPTER 3. RING-BASED FHE SCHEME

When the level L1 is greater than a depth Ldec = O(log(log(q))+ log(n)) over
F2 of the decryption circuit, it could be converted into a fully homomorphic
encryption scheme from Gentry’s Bootstrapping Theorem [5].

To obtain a fully homomorphic encryption of Y ASHE ′ with a level L2,
select parameters in order to satisfy the hypothesis of the RLWE and DSPR
assumptions, i.e. let q ≡ 1 (mod2n) be a prime and let Φn(x) = xn + 1 be
a cyclotomic polynomial of degree n which is a power of 2. Let χkey be a
discrete Gaussian distribution over the ring R, let χerr be an asymptotically
ω(

√
2n log(2n))-bounded Gaussian distribution on R. By evaluating the in-

herent noise bound of a ciphertext during the homomorphic operations of the
depth L2, an overall noise bound can be deduced by iterating the ℓ∞ norm
of v2,mult. It has the bound by

C ′L2
1 · V + L2C

′L2−1
1 C ′

2 (3.2.1)

where

C ′
1 =

(
1 +

4

δtBkey

)
δ2t2Bkey = O(poly(n)) since δ = n, (3.2.2)

C ′
2 = δ2tBkey(t(Bkey + t) + ℓω,qωBerr) (3.2.3)

= O(poly(n) log(q) · qk) for some k ∈ (1/2, 1).

To guarantee correctness of this scheme, we have that

q = Ω(L2 · poly(n)L2+1 · log(q) · qk).

Therefore YASHE’ can evaluate any circuit of depth

L2 = O

(
(1− k) log(q)

log(n)

)
.

When the level L2 is greater than the depth Ldec, it can be converted into
a fully homomorphic encryption scheme from Gentry’s Bootstrapping Theo-
rem [5].
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Chapter 4

Implementation

In this chapter, the intermediate ciphertext c̃2,mul of Y ASHE ′ is comprised
of a single polynomial rather than a vector of polynomials of the intermedi-
ate ciphertext c̃1,mul used for Y ASHE. Since the evaluation key of Y ASHE ′

consists of ℓω,q polynomials instead of ℓ3ω,q of Y ASHE which results in a sim-
ple key switching procedure, the Y ASHE ′ is more practical than Y ASHE.
Thus, we provide concrete parameters of Y ASHE ′ in section 4.1 and an
implementation result of it with special function Y ASHE.Discard to opti-
mize in section 4.2. Finally, we analyze the results including what makes the
implementation fast and how to set parameters with optimization.

4.1 Parameter Selection
Since Y ASHE ′ is secure under the Ring-LWE assumption and the DSPR
assumption, we have parameters from these assumptions. The attack against
RLWE, which can be seen a variant of the LWE, can be considered in the
same manner of the LWE. Therefore the distinguishing attack [8] on LWE
can also be applied to the RLWE problem. The distinguishing attack is to
find the shortest nonzero vector in the dual lattice of λq(A)

λ⊥
q (A) := {y ∈ Zm | y · A ≡ 0 (mod q)}

where A is derived from a sample of LWE as (A, b = A · s + e), A← Zm×n
q ,

s← Zn
q, which is a secret, and e← χn

σ where the χσ is a normal distribution

16



CHAPTER 4. IMPLEMENTATION

with mean 0 and standard deviation σ on Z. If we find the shortest vector
of it, one can distinguish the distribution of LWE samples from uniformly
distribution. The advantage of the distinguishing attack is very close to ϵ =

exp(−π · (∥y∥ · s/q)2). For security, it is sufficient to take a ℓ∞ norm of the
shortest vector y less than α · q/σ where α =

√
log(1/ϵ)/π. Actually, the

size of the norm has the minimum of q and δmqn/m where δ is called the
root-Hermite factor by [8]. In case of δmqn/m, the optimal value of m is√

n log(q)/log(δ). By BKZ algorithm, we have a relation between the run-
time in seconds and root-Hermite factor as λ = 1.8/log2 δ − 110. Then, the
relation

α · q/σ < 22
√

n log2 (q) log2 (δ) (4.1.1)

is obtained. Let q be a 127-bit prime and n = 212 which is a degree of
polynomial ϕn(x) of quotient ring R = Z/(Φn(x)), all of which depends on
security parameter λ. Fix the key distribution assumed to be bounded by
Bkey = 1 for evaluating the key switching step and the error distribution
bounded by Berr = 6σerr where σerr = 8 with Ring-LWE assumption. These
parameters with ω = 232 are presented and used for implementation of the
scheme by Bos et al. [1]. The maximum of the depth L is 2 through the
computation of the noise bound with L2.

4.2 Implementation of the Scheme
We implemented the scheme Y ASHE ′ in C++ with NTL library while Bos
et al. [1] implemented directly in C which does not depend on any other
number theory library. For given parameters of the section 4.1, we obtain the
running times of the scheme on average values over 100 tests and implement
it on an Intel Core i7, 3.4 GHz, 16GB RAM. The result of implementation
at level 1 is that key generation runs in 152 ms, encryption runs in 21 ms,
addition of ciphertexts in 44 µs, multiplication of ciphertexts including the
key-switching in 29 ms, and decryption runs in 7 ms.

17



CHAPTER 4. IMPLEMENTATION

4.2.1 Optimization
Before optimization, we define the Y ASHE.Discard function of Bos et al. [1],
which has a input ciphertext c and output ciphertext c′ as

c′ = YASHE.Discardω(c, i) = ⌊ω−ic⌋.

It is a truncating function by removing an insignificant multiple of ω-words
of the ciphertext c. If ωi-words are thrown away, ωic is equal to c except least
i-th bit which is zero. If fc = △m+ v(modq), then ωic′f = △m+ v′(modq)
with ∥v′∥∞ ≤ ∥v∥∞ +

1

2
δωi∥f∥∞. Therefore, both cihpertext length and the

number of components of the evaluation key are reduced per multiplication
of the key-switching procedure. Since the noise increase with size 1

2
δωi∥f∥∞,

the inherent noise ∥v′∥∞ of level L is bounded by C ′L
1 · V ′ +LC ′L−1

1 C ′
2 where

C ′
1, C

′
2, and V are the same as (3.2.2), (3.2.3) and

∥v′∥∞ ≤ ∥v∥∞ +
1

2
δωi∥f∥∞

≤ V +
1

2
δωi∥f∥∞ ≤ V +

1

2
δωi(1 + t) = V ′. (4.2.1)

If C ′L
1 ·V ′+LC ′L−1

1 C ′
2 is bounded by △

2
then it could be correctly decrypt-

able.

To sum up all conditions of the noise bound, we get approximately in-
equalities that represent relations of n, ω, q, t and ℓ by

n2t3
n

2
ωi ≤ q

2t
⇒ n3t4ωi ≤ q if i ≥ 1

n2t2(ℓω,q · ω ·Berr) ≤
q

2t
⇒ 2n2t3(ℓω,q · ω ·Berr) ≤ q

log (q)− 3

2
√

log (q) log (δ)
≤
√
n, ⌊logω (q)⌋+ 2 = ℓω,q.

These are convenience for evaluating the noise fast regarding parameters.
The first and second equality is derived from (4.2.1), (3.2.2) and (3.2.3), and
the third equality is induced from (4.1.1).
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For given parameters from section 4.1, we present data of the scheme im-
plemented by comparing the result which is already presented before starting
the section 4.2 with using the Y ASHE.Discard function. In given param-
eters, we percieve that the value i has the maximum 1 which means that
ω-words can be discarded and one evaluation key diminish. Look into the
table 4.1 that shows the running time of multiplication by millisecond.

KeyGen Encrypt Add Mult Decrypt
i=0 143 21 0.044 29 7
i=1 136 20 0.044 28 6

Table 4.1: Running times of logω = 32, t = 1024 for unit [ms]

We can see that the multiplication time decreases about 3 percent and
key generation time decreases about 4 percent compared with i = 0 that dose
not use the discarding function. Particularly, the addition time is the short-
est than the others about 1000 times. Unless q and n change, the timings of
encryption, decryption and addition do not fluctuate.

According the parameter ω, the number of elements of the evaluation
key varies such that the running time changes. We derived the fact that the
number of components is a reciprocal proportion to ω as the way of key
generation. Therefore, we implement it by changing logω = 32 to logω = 48

to make more efficient. The variation of ω cause the components of evaluation
key to drop to ℓ248,q = 4 from ℓ232,q = 5. However, we can not use ω more
than 264 to reduce them because the inherent noise of multiplication increase
too large to decrypt. The result of implementation with logω = 48 using
Y ASHE.Discard function is shown by Table 4.2.

KeyGen Encrypt Add Mult Decrypt
i=0 117 19 0.044 24 6
i=1 116 20 0.044 23 5

Table 4.2: Running times of logω = 48, t = 1024 for unit [ms]

In this case, the effect of the function is very slight as the running time
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of key generation decreases about 0.85 percent and that of multiplication de-
creases about 4 percent. But there is some effects on ω as the one decreases
about 14 ∼ 18 percent and the other decreases about 17 percent from table
4.1 and table 4.2.

Furthermore, we implement it by changing the parameter t which decides
message space as the ring R256 instead of R1024. Table 4.3 shows the exper-
imental result of that parameter. It uses logω = 48 rather than logω = 32

because we already know the former makes this scheme faster than the latter.

KeyGen Encrypt Add mul Decrypt
i=0 121 20 0.044 25 6
i=1 113 20 0.044 23 6

Table 4.3: Running times of logω = 48, t = 256 for unit [ms]

The variation of t does not have any effects on running time from table
4.2 and table 4.3. But the time of key generation decreases about 6 percent
and that of multiplication decreases about 8 percent by using this function.

In the similar manner, we use logω = 64 to reduce procedure of key-
switching, which can only use ℓω,q = 3 components of evaluation key without
discarding words. If not, we should use ℓω,q = 4 components. To make the
scheme faster, we may consider Y ASHE.Discard function. However, using
this function makes it impossible to decrypt correctly since the inherent noise
is too large to decrypt. Its experimental result is provided by table 4.4.

KeyGen Encrypt Add Mul Decrypt
i=0 97 19 0.044 22 6

Table 4.4: Running times of logω = 64, t = 256 for unit [ms]

The data of the table is about 19 percent of key generation and about
12 percent of multiplication faster than the result of the table 4.3 without
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discarding words.

From some experimental results, we can deduced that the value ω, which
affects the process of key-switching with the number of components of eval-
uation key, and the fact that whether Y ASHE.Discard function is used or
not are the important factors for deciding the running times. When the pair
of n and q consist of very small size, the maximal depth (or level ) Lmax

is very low. Since bootstrapping requires the depth L to be about 50, we
additively implement the scheme under this circumstances, which should be
set as the optimal parameter q = 2048 bit prime, t = 2, n = 216, ω = 293,
i = 1, and ℓ = 8.

KeyGen Encrypt Mul Decrypt
i=1 8.5 0.3 296 0.09

Table 4.5: Running times of L = 50, logω = 293, t = 2 for unit [s]
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Chapter 5

Conclusion

For fixed parameter q that is a 127 bit prime and polynomial degree n = 212,
we provide the experimental data by implementing the BLLN scheme. Then,
we performed optimization by adjusting parameters and using particular
function Y ASHE.Discard. Its results is presented by tables. When the pa-
rameter t, which determines message space, is fixed by 1024, the running
times are reduced about 18 percent of key generation and about 20 percent
of multiplication. When t is 256, the one decreases about 19 percent and the
other decreases about 12 percent. As a result, we can see which parameters
make the scheme faster and how to choose these parameters we want to im-
plement it as well as we can estimate how faster it is, depending on some
technique of optimization.
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국문초록

Rivest외 3명은암호화된상태에서계산가능한완전동형암호를제시하였다.
그러나이암호체계는안전하지않는것으로판명되어이후이를변형하거나
개선된 수많은 동형암호들이 소개되었다. 그 중 López-Alt 외 3명이 제안한
완전동형암호는 NTRU 암호체계에 기반한 것으로 다른 암호체계보다 더
효율적이다. Bos 외 3명은 그들의 스킴보다 효율성면에서 개선된 암호화
알고리즘을 개발하였다. 이는 López-Alt 외 3명의 암호체계에 기반된 DSPR
문제와 Modulus switching 단계를 제거한 결과로 본 논문은 이들이 제안한
암호알고리즘을 살펴봄과 동시에 구현 및 최적화한 결과를 분석하여 제시한
다.

주요어휘: BLLN,NTRU,동형암호,구현
학번: No. 2011-23211
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Abstract

Fully homomorphic encryption(FHE) was introduced by Rivest, Adleman,
and Dertouzos that can homomorphically evaluate encrypted data. However,
it turned out to be insecure. After then, it has been presented lots of im-
proved, modified FHE schemes for security and efficiency. One of them, a
FHE of López-Alt, Tromer, and Vaikuntanathan based on NTRU encryption
scheme of Hoffstein, Pipher, and Silverman, is more efficient than the other
schemes for a long time. Bos et al. suggest the more efficient FHE scheme,
which is the fastest, than López-Alt et al. They remove the DSPR assump-
tion and modulus switching procedure. Thus, in this paper, we look into the
scheme and implement its practical version and optimization. We provide
experimental results and analyze them as regards efficiency compared with
original one whose parameters are presented by authors.

Key words: BLLN, NTRU, FHE, Implementation
Student Number: No. 2011-23211
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Chapter 1

Introduction

Homomorphic encryption is a cryptosystem that one could add or multi-
ply ciphertexts and another could decrypt the result. Partially homomor-
phic cryptosystem can evaluate ciphertexts using only one operation without
decryption of them. e.g. RSA, ElGamal, Paillier. On the other hand, fully
homomorphic encryption(FHE) introduced by Rivest, Adleman, and Der-
touzos [12], which is not secure under the plaintext attack, can evaluate both
addition and multiplication. Until 2009, the cryptosystem of Boneh, Goh and
Nissim [6] is the best homomorphic encryption that evaluates a number of
additions and one multiplication.

In 2009, Craig Gentry suggested the first fully homomorphic encryption
using ideal lattices, which can evaluate a unlimited number of additions and
multiplications of ciphertexts that consist of polynomials over a ring [4, 5]. It
is more secure than former one. Since the noise of ciphertext increase during
evaluations, he present how to modify the scheme so as to reduce the noise
called bootstrapping process. Then the scheme can be converted into a fully
homomorphic encryption. However, it is not efficient to apply the real world.
After then, it has been presented that lots of improved, modified and another
fully homomorphic encryption schemes which do not use ideal lattices.

FHE based on NTRU encryption of Hoffstein, Pipher, and Silverman [7]
was presented by López-Alt, Tromer, and Vaikuntanathan [9], which is more

1



CHAPTER 1. INTRODUCTION

efficient and secure than the others. Bos et al. [1] suggest the more efficient
FHE scheme, which is the fastest of existing schemes, than López-Alt et al.
Their scheme removes the decisional small polynomial ratio assumption, it
avoids modulus switching that makes the noise size diminish and its cipher-
text is represented by a single ring element. They also provide a practical
version with parameters and certain implementation results. In this paper,
we investigate the BLLN scheme, implement it and analyze what makes the
scheme faster and how faster than the other parameters of optimization pro-
cedure.

In chapter 2, we provide a basic notation and some of the assumption com-
posed of the RLWE and DSPR with LTV as aspects of security. In chapter 3,
we introduce the BLLN scheme including how to be a leveled somewhat ho-
momorphic encryption and fully homomorphic encryption. It might be seem
to have two part according to the way of homomorphic multiplication. In
chapter 4, we set up parameters by proving security, implement it and carry
out an optimization by defining and experimenting the Y ASHE.Discard.
Furthermore, we present their results as tables and analyze them with opti-
mization.

2



Chapter 2

Preliminaries

Fully homomorphic encryption can evaluate the addition and multiplica-
tion homomorphically between ciphertexts as Enc(m1 +m2) = Enc(m1) +

Enc(m2) and Enc(m1 ·m2) = Enc(m1) ·Enc(m2) where Enc(mi) is the en-
cryption of a message mi. According to some properties, it could be divided
into somewhat homomorphic encryption, leveled fully homomorphic encryp-
tion, and fully homomorphic encryption. Somewhat homomorphic encryp-
tion is a special form of fully homomorphic encryption whose noise increases
during the evaluating process where each ciphertext has low-degree homo-
morphic operations. Leveled fully homomorphic encryption can evaluate the
ciphertexts with high-degree L, which sometimes called depth, and fully ho-
momorphic encryption can evaluate them regardless of depth or degree.

2.1 Basic Notation
We will use a quotient ring R = Z[x]/(Φn(x)), where Φn(x) = xn + 1 is a
n-th cyclotomic polynomial with n a power of two. Denote a ℓ∞ norm of f
by ∥f∥∞ = maxi{|ai| : f =

∑n−1
i=0 aix

i ∈ R}.

Lemma 2.1.1 ( [5, 10]). Let n ∈ N, let ϕ(x) be a n-th cyclotomic polynomial
of degree n and let R = Z[x]/(ϕ(x)). For any t, s ∈ R,

3



CHAPTER 2. PRELIMINARIES

∥s · t(modϕ(x))∥ ≤
√
n · ∥s∥ · ∥t∥

∥s · t(modϕ(x))∥∞ ≤
√
n · ∥s∥∞ · ∥t∥∞.

We say that δ = sup{∥f · g∥∞/(∥f∥∞∥g∥∞) : f, g ∈ R} is an expansion
factor of R which is equal to n by lemma 2.1.1. For a polynomial f ∈ R,
denote the [f ]q ∈ R/qR = Zq/(x

n+1) by reducing coefficients into Zq which
have the range (− q

2
, q

2
] for some integer q . For v, w ∈ Rn, the dot product is

defined by ⟨v,w⟩ =
∑n

i=1 ui ·wi ∈ R where ui and wi are the ith component
of that. It also holds for the quotient ring Rq.

A discrete Gaussian distribution DZn,σ over Zn with parameter σ is a
probability distribution that assigns a probability proportional to exp(−π∥x∥2/σ2)

to each x ∈ Zn. It is a product distribution of n independent copies of
DZ,σ with mean 0 and standard deviation σ over the integers [8, 11]. It out-
puts a (r

√
n)-bounded polynomial with high probability. The distribution

χ = DZn,σ supported over R is called B-bounded if we have a B-bounded
polynomial for all f sampled from χ, i.e. ∥f∥∞ < B [9].

In this paper, we use a truncated Gaussian distribution χ that is B-
bounded and statistically close to the discrete Gaussian. It takes sample
whose norm is less than B so as to restrict the noise bound and growth
during the homomorphic operations [9, 11].

2.2 The Ring-LWE Problem
It has been suggested that lots of FHE schemes based on the RLWE assump-
tion and reductions of the worst case to average case. Lyubaskevsky, Peikert
and Regev describe the Ring learning with error problem (Ring-LWE) [11].
It distinguishes which distribution is used for sampling and generates certain
samples. It is an extension of the learning with error problem called LWE
that based on a field rather than polynomial.

Definition 2.2.1 (Ring-LWE). For given security parameter λ, n = n(λ) ∈
Z, let ϕ(x) = ϕn(x) ∈ Z[x] be a polynomial of degree n, let q = q(λ) ≥ 2

4
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be an integer, let R = Z/(ϕ(x)) and R/qR. Let χ = χ(λ) be a distribution
over R. The Ring − LWEn,q,χ problem is to distinguish the following two
distributions. In the first distribution one samples (ai, bi) uniformly from R2

q .
In second distribution one samples (ai, bi = ai · s + ei) ∈ R2

q where s fixed
for all samples is uniformly sampled from Rq, ai’s are uniformly from Rq and
ei’s are from an error distribution χ. The Ring-LWE assumption is that the
Ring-LWE problem is hard.

The shortest vector problem over the ideal lattice which is worst-case
problem can be reduced to the Ring-LWE problem which is average-case.

Theorem 2.2.2 (Worst-case to Average-case Reduction [9, 11]). Let
Φn(x) = xn + 1 be a n-th cyclotomic polynomial of degree which is a power
of two. Let R = Z/(xn + 1), q ≡ 1(mod2n) be a prime integer and χ be a
B = ω(

√
nlogn)-bounded distribution. Then there is a randomized reduction

from nω(1) · (q/B)-approximate worst-case SVP for ideal lattice over R to
Ring − LWEn,q,χ.

This theorem is useful for setting parameters.

2.3 The DSPR Problem with LTV
A. López-Alt, E. Tromer, and V. Vaikuntanathan [9] present a scheme which
is based on NTRU with modifications and multikey homomorphism. It is
provably secure based on standard problems in ideal lattices. The parame-
ters, which is n, q, ϕ(x) of the degree n and χ, depend on security parameter
λ. Its message space is {0, 1} and all operations are evaluated on the quotient
ring Rq = Zq/(ϕ(x)). We simply introduce LTV scheme as follows.

Key Generation: Sample f0, g from key distribution χ, then compute f =

[2f0 + 1]q such that f ≡ 1 (mod 2). If f is not invertible modulo q,
re-sample f0. Let h = [2gf−1]q for inverse of f modulo q in R, then set
the secret key f and public key h.

5
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Encryption: Take a message m from {0, 1}. Ciphertext is generated by
computing c = [m + 2e + hs]q over the ring R with s, e sampled from
error distribution χ.

Decryption: Compute m′ = [[fc]q]2 ∈ R with the secret key f .

It easy to check that as long as there is no wrap-around modulo q. Compute

[fc]q = [fm+ 2fe+ fhs]q = [fm+ 2fe+ 2gs]q.

If there is no wrap-around modulo q then

[fc]q(mod2) = [fm+ 2fe+ 2gs]q = [fm]q(mod2) = m.

This scheme is secure under the assumption of decisional small polynomial
ratio problem.We simply call it DSPR problem.

Definition 2.3.1 (DSPR Problem [1, 9]). For given security λ, let Φ(x) ∈
Z[x] be a polynomial of degree n ∈ Z, let q ∈ Z be a prime integer. Let
R = Z/(ϕ(x)), Rq = R/qR and let χ is a distribution over the ring R. all
of them depend on λ. The DSPRn,q,χ problem is to distinguish between the
following two distributions. In first distribution, one samples h uniformly
at random over Rq. In second distribution, one samples h = a/b where a

and b are from the distribution χ. The DSPRn,q,χ assumption is that the
DSPRn,q,χ problem is hard.

It holds only if σ >
√
q · poly(n) for cyclotomic polynomial ϕ(x) which

makes secure against unbounded adversaries.

Stehlé and Steinfeld [13] propose a theorem for modified NTRU that
changes the value 2 which could indicates the size of the message space to
the value t where the t is in the R×

q , and 2e to te.

Theorem 2.3.2 ( [1, 13]). Let Φn(x) = xn+1 be a n-th cyclotomic polynomial
of degree which is a power of two ≥ 4 and it splits into k = k(q) irreducible
factors modulo a prime q ≥ 5. Let R = Z[x]/(xn + 1) and Rq = R/qR.
Let U(R×

q ) be the uniform distribution on R×
q which is the set of invertible

6
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elements in Rq. Let χ = D×
Zn,σ be the spherical discrete Gaussian distribution

on Rq, restricted to R×
q . Let ϵ ∈ (0, 1/3), t ∈ R×

q . Let a and b are depended
on t with some distributions. Then the statistical distance a/b (mod q) and
U(R×

q ) is bounded by

D =

{
220n · q−

⌊ϵk⌋
k · 2n if σ ≥ 2n ·

√
log(8nq) · q 1

2
+ϵ

220n · q−2ϵn if σ ≥
√

2n log(8nq) · q 1+kϵ
2 and q ≥ (2n)

k
1−2kϵ .

Then the DSPR problem is hard in Rq.

7



Chapter 3

Ring-based FHE Scheme

In this section we investigate the main scheme suggested by Bos et al. [1].
In section 3.2, a leveled somewhat homomorphic encryption of the scheme
is presented and subsection 3.1.1 describes the basic encryption, decryption
system and how the homomorphic operations are evaluated. In subsection
3.1.2, its security is proven with some assumptions. In section 3.2, we provide
how the scheme can be converted to a fully homomorphic encryption.

3.1 Leveled Somewhat Homomorphic Encryp-
tion

Bos et al. present a couple of leveled somewhat homomorphic encryption
according to homomorphic multiplication with two different evaluation keys.
This keys affect the complexity of the scheme such that we could estimate
which method of homomorphic multiplication is fast. We present two parts
of the scheme in parallel. They call them “Y ASHE” and “Y ASHE ′”. A sub
notation “1” stands for Y ASHE and “2” stands for Y ASHE ′.

3.1.1 BLLN Scheme
In this subsection, we describe two parts of the scheme. The first part is a
basic cryptosystem including how the encrypted messages can be decryptable

8
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and the second part explains how the homomophic operation can be com-
puted according to the noise bound by some calculations. The basic cryp-
tosystem is composed of the key generation, encryption and decryption as
follows.

Key Generation: Sample f0, g from key distribution χkey, then compute
f = [tf0 + 1]q for 1 < t < q. If f is not invertible modulo q, re-sample
f0. Let h = [tgf−1]q for inverse of f modulo q in R, then we can gener-
ate a basic key set {f, h} which is comprised of a secret key and public
key respectively. Actually, the secret keys are f and f−1.
The evaluation key set {evk1, evk2} that is used for homomorphic mul-
tiplication is computed by

evk1 = [f−1Pω,q (Dω,q (f)⊗Dω,q (f)) + e + h · s]q ∈ Rℓ3ω,q ,

evk2 = [Pω,q (f) + e + h · s]q ∈ Rℓω,q

where ℓω,q = ⌊logw q⌋+ 2,

Dω,q : R→ Rℓω,q , f 7→ ([f0]ω, [f1]ω, · · · , [fℓω,q−1]ω) = ([fi]ω)
ℓω,q−1
i=0

Pω,q : R→ Rℓω,q , f 7→ ([f ]q, [fω]q, · · · , [fωℓω,q−1]q) = ([fωi]q)
ℓω,q−1
i=0

for f =
∑ℓω,q−1

i=0 fiω
i with fi ∈ R.

If ω = 2, then these functions are called BitDecomp and PowerOFTwo [2].

As the function Dω,q and Pω,q are defined, the dot product between two
vectors Dω,q(f) and Pω,q(g) is equal to the scalar product of f and g modulo
q for some f, g ∈ R. This follows from the fact that

< Dω,q(f), Pω,q(g) >=

ℓω,q−1∑
i=0

[fi]ω[gω
i]q ≡ g

ℓω,q−1∑
i=0

[fi]ωω
i ≡ f · g (modq).

Encryption: For given integer t, we take a message from the space R/tR

whose element is of the form m + tR. Simply, it can be written by
[m]t. Ciphertext that is the encryption of the message is computed by[⌊

q

t

⌋
[m]t + e+ hs

]
q

∈ R for s, e sampled from error distribution χerr.

9
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Decryption: Compute m =

[⌊
t

q
[fc]q

⌉]
t

∈ R to obtain the message with

the secret key f .

The scheme is correctly decryptable when there exist v ∈ R such that
∥v∥∞ <

(△–q (mod t))

2
for [fc]q = [△[m]t + v]q, where △ =

⌊
q

t

⌋
. For some

a ∈ R,

t

q
[fc]q =

t

q
△ [m]t + v · t

q
+ ta

= [m]t −
q (mod t)

q
[m]t + v · t

q
+ ta.

If ∥v∥∞ <
(△–q (mod t))

2
, then

∥∥∥∥ − q (mod t)

q
[m]t + v · t

q

∥∥∥∥
∞

<
1

2
. So, we

could be correctly decrypt the ciphertext.

The homomorphic operations consisted of addition and multiplication are
defined as follows.

Homomorphic Addition: Let c1, c2 ∈ R be encrypted message m1,m2 ∈
R/tR. Compute an addition [c1 + c2]q that is a encrypted message
m1 +m2 modulo t by adding coefficients of ciphertext componentwise.

Although the size of inherent noise increases during this operation, which has
a sum of vi and r ∈ R where the r satisfies the equation as [m1]t + [m2]t =

[m1 + m2]t + r, ∥r∥∞ ≤ 1 and the ciphertext ci has a form of [mi]t + vi, it
could be decryptable.

Homomorphic Multiplication: Compute a ciphertext with multiplication
of two ciphertexts. Passing by a key-switching procedure, we obtain a
final ciphertext called an intermediate ciphertext, which might be cor-
rectly decryptable, is obtained.

According to the method of multiplication, two ways of homomorphic
encryption are presented with different ciphertexts c̃1,mul and c̃2,mul, inter-
mediate ciphertexts. Through the key-switching procedure, the intermediate

10
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ciphertext becomes a ciphertext decrypted under an original secret key f

instead of f 2. The evaluation key evki is used for this procedure. If this step
is omitted, the ciphertext could not be decryptable since its noise is too large
to decrypt. Hence the key-switching process is essential and the intermediate
ciphertext exists at all times.

The ciphertext c̃1,mul which is a multiplication of two ciphertexts c1 and
c2 is computed by

c̃1,mul =

[⌊
t

q
Pω,q (c1)⊗ Pω,q (c2)

⌉]
q

∈ Rℓ2ω,q ,

where the ⊗ is a tensor product which reduces the monomials ℓ2ω,q to
(
ℓω,q

2

)
.

The way of the key-switching is obtained by

[⟨Dω,q (c̃1,mul) , evk1⟩]q = [⟨Dω,q (c̃1,mul) , f
−1Pω,q (Dω,q (f)⊗Dω,q (f)) + e + h · s⟩]q

= [f−1⟨Dω,q (c̃1,mul) , Pω,q (Dω,q (f)⊗Dω,q (f))⟩
+ ⟨Dω,q (c̃1,mul) , e⟩+ h · ⟨Dω,q (c̃1,mul) , s⟩]q.

In this case, the final ciphertext c1,mul composed of a vector of polynomials
is

c1,mul = [⟨Dω,q (c̃1,mul) , evk1⟩]q
that could be correctly decryptable under the secret key f if

[fc1,mul]q = [⟨Dω,q (c̃1,mul) , Pω,q (Dω,q (f)⊗Dω,q (f))⟩
+ f⟨Dω,q (c̃1,mul) , e⟩+ gt⟨Dω,q (c̃1,mul) , s⟩]q

= [(t/q) · ⟨Pω,q (c1)⊗ Pω,q (c2) , Dω,q (f)⊗Dω,q (f)⟩
− rc + f⟨Dω,q (c̃1,mul) , e⟩+ gt⟨Dω,q (c̃1,mul) , s⟩]q

= [△[m1m2]t + ṽ1,mul + f⟨Dω,q (c̃1,mul) , e⟩+ gt⟨Dω,q (c̃1,mul) , s⟩]q
= [△[m1m2]t + v1,mul]q

where

rc =
t

q
⟨Pω,q(c1)⊗ Pω,q(c2), Dω,q(f)⊗Dω,q(f)⟩ − ⟨c̃1,mul, Dω,q(f)⊗Dω,q(f)⟩

=

⟨(
t

q
Pω,q (c1)⊗ Pω,q (c2)

)
−
⌊
t

q
Pω,q (c1)⊗ Pω,q (c2)

⌉
, Dω,q (f)⊗Dω,q (f)

⟩
,

11
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and v1,mul satisfies under the condition of decryption.

Another ciphertext of the multiplication c̃2,mul which is a multiplication
of the ciphertexts c1 and c2 is computed by

c̃2,mul =

[⌊
t

q
c1c2

⌉]
q

∈ R,

and the key-switching process is followed by

[⟨Dω,q (c̃2,mul) , evk2⟩]q = [⟨Dω,q (c̃2,mul) , Pω,q (f) + e + h · s⟩]q
= [⟨Dω,q (c̃2,mul) , Pω,q (f)⟩+ ⟨Dω,q (c̃2,mul) , e⟩

+ h · ⟨Dω,q (c̃2,mul) , s⟩]q.

The final ciphertext c2,mul composed of a simply single polynomial is

c2,mul = [⟨Dω,q (c̃2,mul) , evk2⟩]q

that could be correctly decryptable under the secret key f if

[fc2,mul]q = [f⟨Dω,q (c̃2,mul) , Pω,q (f)⟩+ f⟨Dω,q (c̃2,mul) , e⟩+ gt⟨Dω,q (c̃2,mul) , s⟩]q
= [f⟨Dω,q ((t/q)c1c2) , Pω,q (f)⟩ − f · rc + f⟨Dω,q (c̃2,mul) , e⟩

+ gt⟨Dω,q (c̃2,mul) , s⟩]q
= [△[m1m2]t + ṽ2,mul + f⟨Dω,q (c̃2,mul) , e⟩+ gt⟨Dω,q (c̃2,mul) , s⟩]q
= [△[m1m2]t + v2,mul]q

where

f · rc = f ·
⟨(

Dω,q

(
t

q
c1c2

))
−
⌊
Dω,q

(
t

q
c1c2

)⌉
, Pω,q (f)

⟩
=

t

q
f 2 · c1c2 − f 2·

⌊
t

q
c1c2

⌉
and v2,mul satisfies under the condition of decryption.
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3.1.2 Security of the Scheme
The security of the scheme Y ASHE using the first way of multiplication is
based on the IND-CPA under a “circular security” assumption and the RLWE
assumption. The second scheme Y ASHE ′ is based on the DSPR problem
under the circular security and RLWE assumptions. For the circular security,
replace f by distinct secret key fj of evki,j for i ∈ {1, 2} whose number “1”
and “2” stand for the Y ASHE and Y ASHE ′ respectively and j which is a
level with 1 ≤ j ≤ L, i.e. for given

evk1,j = [f−1
j Pω,q (Dω,q (fj−1)⊗Dω,q (fj−1)) + e + hj · s]q ∈ Rℓ3ω,q ,

evk2,j = [Pω,q

(
f 2
j−1

)
+ e + hj · s]q ∈ Rℓω,q ,

the final ciphertext ci,mul, which is the output of key-switching step with
input ciphertext c̃i,mul, is correctly decryptable under the secret key fj where
c̃i,mul is a multiplication of two j − 1th level ciphertexts.

3.2 Fully Homomorphic Encryption
To obtain a fully homomorphic encryption from the somewhat homomorphic
encryption, we have to decrease the noise of homomorphic evaluation. It it is
too large, then the homomorphic properties has gone. A modulus switching or
bootstrapping is a general way to reduce the noise of homomorphic computa-
tions. The noise growth during the homomorphic addition could be neglected
compared with homomorphic multiplication. Therefore we just consider the
multiplication. For given fci = △[mi]t + vi(mod q) with the ciphertext ci,
the noise vi has the bound V as

∥vi∥∞ < 2δtBkeyBerr +
1

2
q (mod t) δtBkey

< 2δtBerr +
1

2
δt2 = δt

(
2Berr +

1

2
t

)
= V,

13



CHAPTER 3. RING-BASED FHE SCHEME

and the inherent noise vi,mult of homomorphic multiplication is

∥v1,mult∥∞ < δt(2 + δℓω,tBkey
ω)V +

δt2

2
(3 + δℓω,tBkey

)

+
1

8
(δℓω,tBkey

ω)2 +
1

2
+ δ2tℓ3ω,qωBerrBkey

= δt(2 + δℓω,tω)V +
δt2

2
(3 + δℓω,t) +

1

8
(δℓω,tω)

2 +
1

2
+ δ2tℓ3ω,qωBerr,

∥v2,mult∥∞ < δt(4 + δtBkey)V + δ2t2Bkey(Bkey + t) + δ2tℓω,qωBerrBkey

= δt(4 + δt)V + δ2t2(1 + t) + δ2tℓω,qωBerr.

Hence the noise increase from O(δt2) of ∥vi∥∞ to O(δ3t4) of ∥vi,mul∥∞.

To make a fully homomorphic encryption of Y ASHE with an arbitrary
level L1, set up parameters with the hypothesis of the theorem by Stehlé
and Steinfeld and RLWE assumption, i.e., for ϵ ∈ (0, 1) and k ∈ (1/2, 1),
let q = 2d

ϵ be a prime and let Φn(x) = xn + 1 be a cyclotomic polynomial
of degree n which splits into k irreducible factors modulo q. Let χkey be a
discrete Gaussian distribution on Rq with deviation σkey ≥ 2n

√
log(8nq) · qk,

let χerr be an asymptotically ω(
√
2n log(2n))-bounded Gaussian distribution

on R. The inherent noise of a ciphertext regarding the depth L1 circuit, or-
ganized in a leveled homomorphic multiplicative tree structure without any
additions, is bounded by CL1

1 Vj + L1C
L1−1
1 C2 where

C1 = δt(2 + δℓω,tBkey
ω) = O(poly(n) log(q)) since δ = n,

C2 =
δt2

2
(3 + δℓω,tBkey

ω) +
1

8
(δℓω,tBkey

ω)2 +
1

2
+ δ2tℓ3ω,qωBerrBkey

= O(poly(n) log(q)3qk) and V = O(poly(n) · qk) for some k ∈ (1/2, 1)

by iterating the bound of ∥v1,mult∥ L1 times as assumed that the inherent
noise terms of all ciphertexts are considered to have the roughly same size
Vj = C1V +L1C2 for each level j > 0. To guarantee correctness of the scheme,
following equality should be satisfied as

q = Ω(L1 · poly(n)L1+1 · log(q)L1+2 · qk)

and any circuit of depth can be estimated by

L1 = O

(
(1− k) log(q)

log(log(q)) + log(n)

)
.

14



CHAPTER 3. RING-BASED FHE SCHEME

When the level L1 is greater than a depth Ldec = O(log(log(q))+ log(n)) over
F2 of the decryption circuit, it could be converted into a fully homomorphic
encryption scheme from Gentry’s Bootstrapping Theorem [5].

To obtain a fully homomorphic encryption of Y ASHE ′ with a level L2,
select parameters in order to satisfy the hypothesis of the RLWE and DSPR
assumptions, i.e. let q ≡ 1 (mod2n) be a prime and let Φn(x) = xn + 1 be
a cyclotomic polynomial of degree n which is a power of 2. Let χkey be a
discrete Gaussian distribution over the ring R, let χerr be an asymptotically
ω(

√
2n log(2n))-bounded Gaussian distribution on R. By evaluating the in-

herent noise bound of a ciphertext during the homomorphic operations of the
depth L2, an overall noise bound can be deduced by iterating the ℓ∞ norm
of v2,mult. It has the bound by

C ′L2
1 · V + L2C

′L2−1
1 C ′

2 (3.2.1)

where

C ′
1 =

(
1 +

4

δtBkey

)
δ2t2Bkey = O(poly(n)) since δ = n, (3.2.2)

C ′
2 = δ2tBkey(t(Bkey + t) + ℓω,qωBerr) (3.2.3)

= O(poly(n) log(q) · qk) for some k ∈ (1/2, 1).

To guarantee correctness of this scheme, we have that

q = Ω(L2 · poly(n)L2+1 · log(q) · qk).

Therefore YASHE’ can evaluate any circuit of depth

L2 = O

(
(1− k) log(q)

log(n)

)
.

When the level L2 is greater than the depth Ldec, it can be converted into
a fully homomorphic encryption scheme from Gentry’s Bootstrapping Theo-
rem [5].
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Chapter 4

Implementation

In this chapter, the intermediate ciphertext c̃2,mul of Y ASHE ′ is comprised
of a single polynomial rather than a vector of polynomials of the intermedi-
ate ciphertext c̃1,mul used for Y ASHE. Since the evaluation key of Y ASHE ′

consists of ℓω,q polynomials instead of ℓ3ω,q of Y ASHE which results in a sim-
ple key switching procedure, the Y ASHE ′ is more practical than Y ASHE.
Thus, we provide concrete parameters of Y ASHE ′ in section 4.1 and an
implementation result of it with special function Y ASHE.Discard to opti-
mize in section 4.2. Finally, we analyze the results including what makes the
implementation fast and how to set parameters with optimization.

4.1 Parameter Selection
Since Y ASHE ′ is secure under the Ring-LWE assumption and the DSPR
assumption, we have parameters from these assumptions. The attack against
RLWE, which can be seen a variant of the LWE, can be considered in the
same manner of the LWE. Therefore the distinguishing attack [8] on LWE
can also be applied to the RLWE problem. The distinguishing attack is to
find the shortest nonzero vector in the dual lattice of λq(A)

λ⊥
q (A) := {y ∈ Zm | y · A ≡ 0 (mod q)}

where A is derived from a sample of LWE as (A, b = A · s + e), A← Zm×n
q ,

s← Zn
q, which is a secret, and e← χn

σ where the χσ is a normal distribution

16



CHAPTER 4. IMPLEMENTATION

with mean 0 and standard deviation σ on Z. If we find the shortest vector
of it, one can distinguish the distribution of LWE samples from uniformly
distribution. The advantage of the distinguishing attack is very close to ϵ =

exp(−π · (∥y∥ · s/q)2). For security, it is sufficient to take a ℓ∞ norm of the
shortest vector y less than α · q/σ where α =

√
log(1/ϵ)/π. Actually, the

size of the norm has the minimum of q and δmqn/m where δ is called the
root-Hermite factor by [8]. In case of δmqn/m, the optimal value of m is√

n log(q)/log(δ). By BKZ algorithm, we have a relation between the run-
time in seconds and root-Hermite factor as λ = 1.8/log2 δ − 110. Then, the
relation

α · q/σ < 22
√

n log2 (q) log2 (δ) (4.1.1)

is obtained. Let q be a 127-bit prime and n = 212 which is a degree of
polynomial ϕn(x) of quotient ring R = Z/(Φn(x)), all of which depends on
security parameter λ. Fix the key distribution assumed to be bounded by
Bkey = 1 for evaluating the key switching step and the error distribution
bounded by Berr = 6σerr where σerr = 8 with Ring-LWE assumption. These
parameters with ω = 232 are presented and used for implementation of the
scheme by Bos et al. [1]. The maximum of the depth L is 2 through the
computation of the noise bound with L2.

4.2 Implementation of the Scheme
We implemented the scheme Y ASHE ′ in C++ with NTL library while Bos
et al. [1] implemented directly in C which does not depend on any other
number theory library. For given parameters of the section 4.1, we obtain the
running times of the scheme on average values over 100 tests and implement
it on an Intel Core i7, 3.4 GHz, 16GB RAM. The result of implementation
at level 1 is that key generation runs in 152 ms, encryption runs in 21 ms,
addition of ciphertexts in 44 µs, multiplication of ciphertexts including the
key-switching in 29 ms, and decryption runs in 7 ms.

17



CHAPTER 4. IMPLEMENTATION

4.2.1 Optimization
Before optimization, we define the Y ASHE.Discard function of Bos et al. [1],
which has a input ciphertext c and output ciphertext c′ as

c′ = YASHE.Discardω(c, i) = ⌊ω−ic⌋.

It is a truncating function by removing an insignificant multiple of ω-words
of the ciphertext c. If ωi-words are thrown away, ωic is equal to c except least
i-th bit which is zero. If fc = △m+ v(modq), then ωic′f = △m+ v′(modq)
with ∥v′∥∞ ≤ ∥v∥∞ +

1

2
δωi∥f∥∞. Therefore, both cihpertext length and the

number of components of the evaluation key are reduced per multiplication
of the key-switching procedure. Since the noise increase with size 1

2
δωi∥f∥∞,

the inherent noise ∥v′∥∞ of level L is bounded by C ′L
1 · V ′ +LC ′L−1

1 C ′
2 where

C ′
1, C

′
2, and V are the same as (3.2.2), (3.2.3) and

∥v′∥∞ ≤ ∥v∥∞ +
1

2
δωi∥f∥∞

≤ V +
1

2
δωi∥f∥∞ ≤ V +

1

2
δωi(1 + t) = V ′. (4.2.1)

If C ′L
1 ·V ′+LC ′L−1

1 C ′
2 is bounded by △

2
then it could be correctly decrypt-

able.

To sum up all conditions of the noise bound, we get approximately in-
equalities that represent relations of n, ω, q, t and ℓ by

n2t3
n

2
ωi ≤ q

2t
⇒ n3t4ωi ≤ q if i ≥ 1

n2t2(ℓω,q · ω ·Berr) ≤
q

2t
⇒ 2n2t3(ℓω,q · ω ·Berr) ≤ q

log (q)− 3

2
√

log (q) log (δ)
≤
√
n, ⌊logω (q)⌋+ 2 = ℓω,q.

These are convenience for evaluating the noise fast regarding parameters.
The first and second equality is derived from (4.2.1), (3.2.2) and (3.2.3), and
the third equality is induced from (4.1.1).
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CHAPTER 4. IMPLEMENTATION

For given parameters from section 4.1, we present data of the scheme im-
plemented by comparing the result which is already presented before starting
the section 4.2 with using the Y ASHE.Discard function. In given param-
eters, we percieve that the value i has the maximum 1 which means that
ω-words can be discarded and one evaluation key diminish. Look into the
table 4.1 that shows the running time of multiplication by millisecond.

KeyGen Encrypt Add Mult Decrypt
i=0 143 21 0.044 29 7
i=1 136 20 0.044 28 6

Table 4.1: Running times of logω = 32, t = 1024 for unit [ms]

We can see that the multiplication time decreases about 3 percent and
key generation time decreases about 4 percent compared with i = 0 that dose
not use the discarding function. Particularly, the addition time is the short-
est than the others about 1000 times. Unless q and n change, the timings of
encryption, decryption and addition do not fluctuate.

According the parameter ω, the number of elements of the evaluation
key varies such that the running time changes. We derived the fact that the
number of components is a reciprocal proportion to ω as the way of key
generation. Therefore, we implement it by changing logω = 32 to logω = 48

to make more efficient. The variation of ω cause the components of evaluation
key to drop to ℓ248,q = 4 from ℓ232,q = 5. However, we can not use ω more
than 264 to reduce them because the inherent noise of multiplication increase
too large to decrypt. The result of implementation with logω = 48 using
Y ASHE.Discard function is shown by Table 4.2.

KeyGen Encrypt Add Mult Decrypt
i=0 117 19 0.044 24 6
i=1 116 20 0.044 23 5

Table 4.2: Running times of logω = 48, t = 1024 for unit [ms]

In this case, the effect of the function is very slight as the running time
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CHAPTER 4. IMPLEMENTATION

of key generation decreases about 0.85 percent and that of multiplication de-
creases about 4 percent. But there is some effects on ω as the one decreases
about 14 ∼ 18 percent and the other decreases about 17 percent from table
4.1 and table 4.2.

Furthermore, we implement it by changing the parameter t which decides
message space as the ring R256 instead of R1024. Table 4.3 shows the exper-
imental result of that parameter. It uses logω = 48 rather than logω = 32

because we already know the former makes this scheme faster than the latter.

KeyGen Encrypt Add mul Decrypt
i=0 121 20 0.044 25 6
i=1 113 20 0.044 23 6

Table 4.3: Running times of logω = 48, t = 256 for unit [ms]

The variation of t does not have any effects on running time from table
4.2 and table 4.3. But the time of key generation decreases about 6 percent
and that of multiplication decreases about 8 percent by using this function.

In the similar manner, we use logω = 64 to reduce procedure of key-
switching, which can only use ℓω,q = 3 components of evaluation key without
discarding words. If not, we should use ℓω,q = 4 components. To make the
scheme faster, we may consider Y ASHE.Discard function. However, using
this function makes it impossible to decrypt correctly since the inherent noise
is too large to decrypt. Its experimental result is provided by table 4.4.

KeyGen Encrypt Add Mul Decrypt
i=0 97 19 0.044 22 6

Table 4.4: Running times of logω = 64, t = 256 for unit [ms]

The data of the table is about 19 percent of key generation and about
12 percent of multiplication faster than the result of the table 4.3 without
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CHAPTER 4. IMPLEMENTATION

discarding words.

From some experimental results, we can deduced that the value ω, which
affects the process of key-switching with the number of components of eval-
uation key, and the fact that whether Y ASHE.Discard function is used or
not are the important factors for deciding the running times. When the pair
of n and q consist of very small size, the maximal depth (or level ) Lmax

is very low. Since bootstrapping requires the depth L to be about 50, we
additively implement the scheme under this circumstances, which should be
set as the optimal parameter q = 2048 bit prime, t = 2, n = 216, ω = 293,
i = 1, and ℓ = 8.

KeyGen Encrypt Mul Decrypt
i=1 8.5 0.3 296 0.09

Table 4.5: Running times of L = 50, logω = 293, t = 2 for unit [s]
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Chapter 5

Conclusion

For fixed parameter q that is a 127 bit prime and polynomial degree n = 212,
we provide the experimental data by implementing the BLLN scheme. Then,
we performed optimization by adjusting parameters and using particular
function Y ASHE.Discard. Its results is presented by tables. When the pa-
rameter t, which determines message space, is fixed by 1024, the running
times are reduced about 18 percent of key generation and about 20 percent
of multiplication. When t is 256, the one decreases about 19 percent and the
other decreases about 12 percent. As a result, we can see which parameters
make the scheme faster and how to choose these parameters we want to im-
plement it as well as we can estimate how faster it is, depending on some
technique of optimization.
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국문초록

Rivest외 3명은암호화된상태에서계산가능한완전동형암호를제시하였다.
그러나이암호체계는안전하지않는것으로판명되어이후이를변형하거나
개선된 수많은 동형암호들이 소개되었다. 그 중 López-Alt 외 3명이 제안한
완전동형암호는 NTRU 암호체계에 기반한 것으로 다른 암호체계보다 더
효율적이다. Bos 외 3명은 그들의 스킴보다 효율성면에서 개선된 암호화
알고리즘을 개발하였다. 이는 López-Alt 외 3명의 암호체계에 기반된 DSPR
문제와 Modulus switching 단계를 제거한 결과로 본 논문은 이들이 제안한
암호알고리즘을 살펴봄과 동시에 구현 및 최적화한 결과를 분석하여 제시한
다.

주요어휘: BLLN,NTRU,동형암호,구현
학번: No. 2011-23211
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