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Abstract

Vertex coloring of plane graphs

Ho-Seok Choe

Department of Mathematical Sciences
The Graduate School
Seoul National University

The four color theorem states that only four colors are needed to color the re-
gions of any simple planar map so that any two adjacent regions have different
colors. This theorem can be interpreted as finding a vertex coloring of plane
graphs. This thesis suggests a method to find a vertex coloring of plane graphs
with four available colors that includes the following steps:

(i) Convert the given map to a graph and find a maximal plane graph that

contains the graph.

(ii) Remove vertices of degree 3 from the maximal plane graph if they exist.

(iii) Find a hubset that is a set of independent hubs of wheels.

(iv) Color the vertices that are not the elements of the hubset with three
available colors.

(v) Color the vertices contained in the hubset with the fourth color.

(vi) Finally, apply the coloring result to the given map.

Using this process, we obtained a 98% success rate in computer experiments
for random graphs of order 40. We will discuss how to improve the coloring
process.

Key words: vertex coloring, plane graph, four color, 4-color
Student Number: 2009-20284
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Chapter 1

Introduction

1.1 What is the Four Color Theorem?

Suppose that we are going to make a (geographic) map of our nation or a
blueprint of our house. We would draw several lines to distinguish each region,
and color the regions to increase the visibility of our work. If we are only
interested in distinguishing the regions, at least how many colors do we need?
In other words, suppose that two regions have different colors if they share
a line as their boundary. Then, at least how many colors do we need? The
conjecture that only four colors are needed to complete such a coloring task for
an arbitrary map was first proposed in 1852 by Francis Guthrie [3]. At long
last, Kenneth Appel and Wolfgang Haken proved the four color theorem using
a computer in 1976, and their proof was improved in 1996 by Neil Robertson,
Daniel Sanders, Paul Seymour, and Robin Thomas [7].

A region is a connected open subset of the plane. A planar map is a set
of disjoint regions of the plane. A point is a corner of a map if it is contained
in the closures of at least three regions. Two regions of a map are adjacent if
their closures share a point that is not a corner. The four color theorem asserts
that only four colors are needed to color the regions of any simple planar map

so that any two adjacent regions have different colors [3].!

1[3] defines a planar map as a set of pairwise disjoint subsets called regions of the plane,
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1.2 Generalization of the Four Color Theorem

People may wonder where the number “4” comes from. And the dimensions,
the topological structures, or some properties of the spaces containing the given
map would probably cross their minds. Here are some examples that help us
check our conjectures.

Example 1.2.1.

Figure 1.2.1: Map that requires four colors to color the regions

In Figure 1.2.1, we show a map containing four regions (five regions if we
count the unbounded region) on a plane. All the regions are pairwise adja-
cent. Therefore, at least four colors are required to color this map.

and a stmple planar map as a planar map whose regions are connected open sets.
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Example 1.2.2.

2 D
il
Figure 1.2.2: Chessboard Figure 1.2.3: Pizza with odd pieces

Figure 1.2.2 and Figure 1.2.3 show maps that require less than 4 colors since
they have specific structures.

What if the spaces containing the maps are not two dimensional?

Example 1.2.3.

L1201 21 2.

% N NN

Figure 1.2.4: an interval of the real Figure 1.2.5: a circle
line

Figure 1.2.4 shows an interval of the real line R and It does not contain a
corner since any point p of R separates R \ {p} into two distinct partitions
({xr e R:z < p}and {x € R:x > p}). Therefore, if two regions A and B of
R share a point p as a common frontier and A has been assigned a color, say
color 1, then B can be assigned another color, say color 2. By repeating this

3
g o
(25 A=
Ao SECHIL



CHAPTER 1. INTRODUCTION

work for another frontier of the sum of colored regions, we can color all the
regions with only two colors. Figure 1.2.5 shows a circle that can be viewed as
joining two ends of a bounded interval containing an odd number of regions.
The map in this figure requires three colors since the ends of the interval are
joined: The first region and the last region are not adjacent before joining the
ends, but they are adjacent after joining the ends. Compare Figure 1.2.5 with
Figure 1.2.3.

Example 1.2.4.

(@) (b)

Figure 1.2.6: regions of 3-dimensional space

In Figure 1.2.6, (a) shows a map with seven regions (containing a cylindri-
cal region) of 3-dimensional space. Most regions have shapes such as a sum of
a tube and a stick like (b). This map requires seven colors since all the regions
are pairwise adjacent. From this figure, we can guess the existence of maps
that require infinitely many colors: by adjusting some parameters (width of
stick, height of tube, and so on) of each region, and adding more regions of
similar shape, we can make a map that requires as many colors as we want.

-
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CHAPTER 1. INTRODUCTION

As the previous example shows, it seems pointless to consider this type
of problem for maps of three or higher dimensional spaces. Instead, let us
consider maps of 2-dimensional surfaces embedded into a 3-dimensional space.
The next example shows that the coloring problems are more complicated and
that the topological structures presumably influence the number of required
colors.

Example 1.2.5.

v

Figure 1.2.7: a map of torus requir- Figure 1.2.8: annulus in the plane
ing seven colors and annulus in a torus

Figure 1.2.7 shows a map of a torus requiring seven colors. As we obtain
a new adjacency condition by joining the ends of an interval (a region of the
real line) in Example 1.2.3, we may get new adjacency conditions by pasting
the opposite edges of a square (a region of the plane). In Figure 1.2.8, A is an
annular region with its two frontiers B and C' in a plane. A’ is also an annular
region with its two frontiers B’ and C” in a torus. A separates its exterior into
two pieces but A" does not. If there was a regions whose frontier intersects with
B and another region whose frontier intersects with C' in the plane, these two
regions would never be adjacent. However, if there was a region whose frontier

5)
g o
(25 A=
Ao SECHIL



CHAPTER 1. INTRODUCTION

intersects with B’ and another region whose frontier intersects with C’ in the
torus, these two regions may be adjacent. Considering the fact that a cycle
(or a polygon) is a deformation retract of an annulus [6], the plane case agrees
with the Jordan curve theorem (Theorem 2.2.1), but the torus case does not.

1.3 Maps with finite regions

In this thesis, we treat maps that contain finite regions of the plane. However,
a map may have two or more unbounded regions and we may want to find
another map that conserves the adjacency of all the pairs of regions and has
only one unbounded region.

Y
)X_’ §? A

rotu

_—
1 0 0
0 cos 180" -sin 180°

0 sin 180° cos 180",

A

Figure 1.3.1: Example of getting a map that has only one unbounded
region from another map that has four unbounded regions.

Recall the well-known stereographic projection 7 : S? \ N — R? where S?
is a unit sphere, N = (0,0,1) is the north pole of the sphere, and R? is the
plane isomorphic to the plane {(z,y, z)|z = 0} in three-dimensional space [5].
With the help of this projection, we can find the wanted map. Assume that
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a map M of the plane has two or more unbounded regions, say Ry, Rs, - - R,.
Considering that 77! (R;) and 7~ !(R;) are distinguished in S? (1 < i # j < n),
it is reasonable to treat the north pole N as a point contained in frontier of
every m '(Ry), where k = 1,2,--- ,n. Let roty; : S — S? be a rotation of
5% such that the north pole N is contained in roty (7! (R)) for some R € M.
Let us remove N and re-send regions of roty (7~ *(M)) to the plane by the
projection 7 so that we obtain a new map of the plane that contains only one
unbounded region. This method does not break the adjacency of the regions
since the projection 7 and the rotation rot,; are continuous and bijective. If
we want a region with special properties to be unbounded, we can use a similar
method.



Chapter 2

Graph representation

This chapter introduces the standard terminologies and some well-known facts
from [2].

2.1 Graphs

A graph is a pair G = (V, E) of sets such that E C [V]?. The elements of V'
are the vertices of the graph (G, the elements of £ are its edges. The usual
way to picture a graph is by drawing a dot for each vertex and joining two of
these dots by a line if the corresponding two vertices form an edge.

A graph with vertex set V is said to be a graph on V. The vertex set of
a graph G is referred to as V(G), its edge set as F(G). We shall not always
distinguish strictly between a graph and its vertex or edge set. For example,
we may speak of a vertex v € G (rather than v € V(G)), and edge e € G, and
so on.

The number of vertices of a graph G is its order written as |G|, and the
number of its edges is denoted by |G|

A vertex v is incident with an edge e if v € e. And e is an edge at v.
The two vertices incident with an edge are its endvertices or ends, and an edge
joins its ends. An edge {x,y} is usually written as zy (or yx). If z € X and
y € Y, then xy is an X — Y edge. The set of all X —Y edges in a set F
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is denoted by E(X,Y); instead of E({z},Y) and E(X,{y}) we simply write
E(z,Y) and E(X,y). The set of all the edges in E at a vertex v is denoted by
E(v).

Two vertices x,y of G are adjacent or neighbors, if xy is an edge of G.
Also, two edges e # f are adjacent if they have an end in common. If all the
vertices of GG are pairwise adjacent, then G is complete. A complete graph on
n vertices is a K™. K3 is called a triangle. Pairwise non-adjacent vertices or
edges are called independent. More formally, a set of vertices or of edges is
independent (or stable) if no two of its elements are adjacent.

Let G = (V,FE) and G’ = (V' E’) be two graphs. We call G and G’
isomorphic, and write G ~ G’ if there exists a bijection ¢ : V — V' with
xy € E < ¢(x)p(y) € E' for all z,y € V. Such a bijection ¢ is called an
isomorphism.

A class of graphs that is closed under isomorphism is called a graph prop-
erty. For example, ‘containing of triangle’ is a graph property.

We set GUG" := (VUV/, EUE") and GNG' = (VNV' ENE'). V' CV
and E' C F then G’ is a subgraph of G (and G a supergraph of G'), written as
G' C G. If G C G and G’ contains all the edges ry € E with x,y € V’, then
G’ is an induced subgraph of G and we say that V' induces or spans G’ in G,
write G’ =: G[V'].

If U is any set of vertices (usually of G), we write G — U for G[V \ U]. If
U = {v} is a singleton, we write G—v rather than G—{v}. Instead of G-V (G")
we simply write G — G'. For a subset F of [V]? we write G — F := (V,E \ F)
and G+ F = (V,EUF). As above, G — {e} and G + {e} are abbreviated
to G —e and G + e. We call G edge-mazximal with a given graph property
if G itself has the property but no graph G + zy := (V, E U {zy}) does, for
non-adjacent vertices z,y € G.

The set of neighbors of a vertex v in G is denoted by Ng(v) or briefly by
N(v). More generally for U C V, the neighbors in V' \ U of vertices in U are
called neighbors of U, denoted by N(U).

The degree dg(v) = d(v) of a vertex v is the number |E(v)|. The number
d(@) := min{d(v)|v € V'} is the minimum degree of G, the number A(G) :=
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max{d(v)|v € V'} is its mazimum degree. The number

d(G) = % S d(w)

veV

is the average degree of G. If we sum up all the vertex degrees in G we count
every edge exactly twice: once from each of its ends. Thus

B = %d(G) V. (2.1.0.1)

A path is a non-empty graph P = (V, E) of the form
V={zo, 1, -, i}, B = {071, 0172, , Tp_174}

where the x; are all distinct. The vertices xy and xp are linked by P and
are called its ends. The vertices x1,---x,_1 are the inner vertices of P. The
number of edges of a path is its length. We often refer to a path by the natural
sequence of its vertices, writing P = xqz - - - 1, and calling P a path from xq
to xy, (as well as between xy and zy).

Given sets A, B of vertices, we call P = x¢---x, an A — B path if V(P)N
A = {xo} and V(P) N B = {xx}. As before, we write a — B path rather than
{a} — B path, etc.

If P=xqxy---xp_1is a path and k > 3, then the graph C' := P+x;_1x is
called a cycle. As with paths, we often denote a cycle by its (cyclic) sequence
of vertices such as C' = xq, -+ ,Tr_1,x9. The length of a cycle is its number of
edges (or vertices). An edge that joins two vertices of a cycle but is not itself
an edge of the cycle is a chord of that cycle. An induced cycle in G, a cycle in
G forming an induced subgraph, is one that has no chords.

A non-empty graph G is called connected if any two of its vertices are linked
by a path in G. A maximal connected subgraph of G is called a component of
G.

An acyclic graph, one not containing any cycles, is called a forest. A
connected forest is called a tree. The vertices of degree 1 in a tree are its
leaves.

10
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Let r > 2 be an integer. A graph G = (V| E) is called r-partite if V admits
a partition into r classes such that every edge has its ends in different classes.
Vertices in the same partition class must not be adjacent. Instead of ‘2-partite’
one usually says bipartite. An r-partite graph in which every two vertices from
different partition classes are adjacent is called complete multipartite(r-partite)
graph and denoted by K, ... ,, where each n; is the number of vertices of each
partition class. If ny = --- = n, =: s we abbreviate this to K.

Let e = zy be an edge of a graph G = (V, E). By G /e we denote the graph
(V') E') with vertex set V' := (V \ {z,y}) U {v.} and edge set

E":={vw € E{v,w}n{z,y} = 0} U{vew|zw € E\ {e}or yw € E'\ {e}}.

More generally, if X is another graph and {V,|z € V(X)} is a partition
of V into connected subsets such that, for any two vertices x,y € X, there is
a V, —V, edge in G if and only if zy € E(X), we call G an M X and write
G = MX. The sets V, are the branch sets of this MX. If G = MX is a
subgraph of another graph Y, we call X a minor of Y and write X Y.

If we replace the edges of X with independent paths between their ends
(so that none of these paths has an inner vertex on another path or in X)), we
call the graph G obtained a subdivision of X and write G =TX. f G =TX
is the subgraph of another graph Y, then X is a topological minor of Y.

2.2 Planar graphs

A straight line segment in the Euclidean plane is a subset of R? that has the
form {p + Mg — p)|0 < X < 1} for distinct points p,q € R%. A polygon is a
subset of R? that is the union of finitely many straight line segments and is
homeomorphic to the unit circle S'. A polygonal arc, or simply an arc, is a
subset of R? which is the union of finitely many straight line segments and
is homeomorphic to the closed unit interval [0,1]. The images of 0 and of 1
under such a homeomorphism are the endpoints of this polygonal arc, which
links them and runs between them. If P is an arc between x and y, the point
set P\ {x,y} is the interior of P and we denote it by P.

11
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Let O C R? be an open set. Being linked by an arc in O defines an
equivalence relation on O. The corresponding equivalence classes are again
open and they are the regions of O. The frontier of a set X C R? is the set
Y of all points y € R? such that every neighborhood of 4 meets both X and
R%\ X.

Theorem 2.2.1 (Jordan Curve Theorem for Polygons). For every polygon
P C R? the set R?\ P has exactly two regions. Each of these has the entire
polygon P as its frontier.

A good account of the Jordan curve theorem is given in [8] or [6].

Lemma 2.2.2. Let P, P, P; be three arcs, between the same two endpoint
but otherwise disjoint.

(i) R?\ (PyUPU P) has exactly three regions, with frontiers PyUP,, P,U P3
and P U P;.

(ii) If P is an arc between an inner point of P; and an inner point of Pj,
whose interior lies in the region of R? \ (P, U P3) that contains P», then
PPy #£0.

A plane graph is a pair (V, E) of finite sets with the following properties
(the elements of V' are again called vertices, those of E edges):

(i) VSR

(ii) every edge is an arc between two vertices;

(i)

(iv)

For every plane graph G, the set R? \ G is open. Its regions are the faces of

G. We denote the set of faces of G by F(G).
The subgraph of G whose point set is the frontier of a face f is said to

different edges have different sets of endpoints;

the interior of an edge contains no vertex and no point of any other edge.

bound f and is called its boundary, and we denote it by G|[f]. A face is said
to be incident with the vertices and edges of its boundary.

A plane graph G is called maximally plane, or just mazimal, if we cannot
add a new edge to form a plane graph G’ 2 G with V(G’) = V(G). We call G

12
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a plane triangulation if every face of G (including the outer face) is bounded
by a triangle.

A wheel W, is a graph with n vertices (n > 4) formed by connecting a
single vertex v to all vertices of an (n — 1)-cycle. The single vertex v is hub
and the edges incident with v are called spokes. We simply denote it by W
when we do not need to consider the length of the cycle. If W is a wheel in a
graph G and h is its hub, we say that h forms a wheel W in G.

Proposition 2.2.3. A plane graph of order at least 3 is maximally plane if
and only if it is a plane triangulation.

Theorem 2.2.4 (Euler’s Formula). Let G be a connected plane graph with n
vertices, m edges, and [ faces. Then

n—m+1l=2 (2.2.4.1)

Corollary 2.2.5. A plane graph with n > 3 vertices has at most 3n — 6 edges.
Every plane triangulation with n vertices has 3n — 6 edges.

An embedding in the plane, or planar embedding, of an (abstract) graph G
is an isomorphism between G and a plane graph H. The latter will be called
a drawing of G. A graph is called planar if it can be embedded in the plane.
A planar graph is mazimal, or maximally planar, if it is planar but cannot be
extended to a larger planar graph by adding an edge (but no vertex).

Proposition 2.2.6.

(i) Every maximal plane graph is maximally planar.
(ii) A planar graph with n > 3 vertices is maximally planar if and only if it
has 3n — 6 edges.

Theorem 2.2.7 (Kuratowski 1930; Wagner 1937). The following assertions
are equivalent for graphs G:

(i) G is planar;

(ii) G contains neither K® nor K33 as a minor;

iii) G contains neither K® nor K33 as a topological minor.
) g

13
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2.3 Plane graph representation of a map

For a given map V = {vy,vq,--- ,v,} of plane (n > 4), let us define F :=
{vw C Vv, w are adjacent }, then G = (V,E) forms a graph on V. Two
adjacent regions (their closures share a point that is not a corner) in V' are
also adjacent (they are joined by an edge) in G. The graph G is planar since
G has a drawing H in the following sense: let V' := {p1,ps, -+, pn} be a set of
inner points of regions of the plane such that p; € v; for each i = 1,2,--- n.
For an adjacent pair of regions, v; and v;, there exists a point ¢ that is not a
corner on a common frontier of v; and v;. Let P; ; be an arc from p; to ¢ lying
in v1, and F,; be an arc from ¢ to p, lying in vy. Let P, ; := P, ,U P, ; be the
sum of the arcs and E’ be the set of such P, ;. Let us define a drawing H on
V', setting H := (V' E’). Then, we can find (graph) isomorphism ¢ : V' — V'
such that ¢(v;) = p; and ¢(v;v;) = P, ;. Therefore, we can convert the coloring
problem of a map of the plane to the coloring problem of vertices of a plane
graph.

A wvertex coloring of a graph G = (V, E) is a function ¢ : V' — S from the
vertex set V' to a set S such that ¢(v) # c¢(w) whenever v and w are adjacent.
The elements of the set S are called the available colors. The smallest integer
k is the (vertex-) chromatic number of G if G has a k-coloring that is a vertex
coloring ¢ : V- — {1,--- ,k}. We denote the chromatic number by x(G). A
graph G with x(G) = k is called k-chromatic; if x(G) < k, we call G k-
colorable [2]. We also call a vertex coloring with |S| < n an n-coloring solution
of G. Clearly, we are looking for the 4-coloring solutions.

Suppose that G and G + xy are plane graphs such that x,y € G are non-
adjacent vertices. Then all the coloring solutions of G+ zy are also the coloring
solutions of G. Therefore, we have only to consider a maximal plane graph
containing the given graph G. By Proposition 2.2.6, we shall not distinguish
between maximal plane graphs and maximal planar graphs. And by Proposi-
tion 2.2.3, all the faces, including unbounded faces, of maximal plane graphs
are bounded by triangles.

Proposition 2.3.1. Let G be a maximal plane graph with n vertices. The
minimum degree 6(G) of G is at least 3.

14
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Proof. By Corollary 2.2.5, G has 3n — 6 edges. A graph G’ obtained by re-
moving vertices or edges from G is also a plane graph. Suppose that there is
a vertex v of degree 2. Set G’ := G — v. Then the order |G'| of G’ is n — 1
and the number ||G’|| of its edges is 3n — 6 — 2 = 3n — 8 since the degree of
v is 2. However, ||G'|| = 3n — 8 > 3(n — 1) — 6 and by Corollary 2.2.5, this
contradicts the fact that G’ is a plane graph. m

Proposition 2.3.2. Let G be a maximal plane graph with n vertices and
v € G be a vertex of degree 3. Then the graph G’ := G — v is also a maximal
plane.

Proof. The number of edges of G’ is (3n—6) —3 = 3(n—1)—6 and by Corollary
2.2.5, ¢ is maximally plane. O

Suppose that G has a vertex v of degree 3. Let vy, vy, v3 be the neighbors
of v. If we can find a 4-coloring solution ¢ : V(G —v) — S of G — v, then we
also can find a 4-coloring solution of G by extending c: define ¢(v) := s where
s € S\ c({vi,v2,v3}). By Proposition 2.3.2, G — v is also maximally plane.
Therefore, we have only to consider a maximal plane graph with a minimum
degree at least 4.

Applying Equation 2.1.0.1 to a maximal plane graph G of order n with
d(G) > 4, we could easily obtain that

d(G) % (2.3.2.1)
= w (2.3.2.2)

— 6-— % (2.3.2.3)
(2.3.2.4)

. lim d(G) =6. (2.3.2.5)

This means that most vertices have degrees less than 6.
Digressively, the fact that a graph G of order at least 4 has a 4-coloring
solution is equivalent to the fact that G is 4-partite: assume that G has a
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4-coloring solution ¢ : V(G) — S. As an equivalence relation, the 4-coloring
solution defines four or less equivalence classes on V(G), and vertices of the
same class are independent. Since the n-partite graph of order m is also m-
partite where m > n, GG is 4-partite. Conversely, assume that G is 4-partite.
Let us define a coloring solution ¢ on V(&) such that ¢'(v) = ¢(w) if v, w are
in the same class and ¢(v) # ¢/(w) if v,w are in different classes. Then the
number of the range of ¢’ is at most 4.

If we can prove that if an arbitrary graph G is not 4-partite, then it con-
tains K° or K33 as a minor or a topological minor so that it is not a planar
graph by the Theorem of Kuratowski and Wagner (Theorem 2.2.7), then the
contraposition asserts that all planar graphs are 4-partite, and therefore have
4-coloring solutions.

Notation 2.3.3. We can assume that a map has only one unbounded region
(Section 1.3). Let G be a maximal plane graph containing a subgraph that
represents the given map, and let a vertex v of G represent the unbounded
region of the map. The edges at v complicate the figure of G. Thus, in this
thesis, the edges at v would be omitted and the vertex v would be at the proper
location in the figures of the graph representation. And we would represent an
edge as a smooth curve even if it is defined as a polygonal arc which is a union
of finitely many straight line segments. We can easily distinguish the vertices
in the figure of a graph since all vertices have degrees at least 4 by Proposition
2.3.2. See the following example.

Example 2.3.4.

(a) (b)
Figure 2.3.1: prefer (b) rather than (a)

Both (a) and (b) of Figure 2.3.1 denote K*. We use a line segment for rep-
resenting an edge. But when it is difficult, we use smooth curves such as (b)
rather than a union of finite line segments such as (a).

16
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Example 2.3.5.

(a) (b) (c)

Figure 2.3.2: prefer (c) rather than (b) for a graph notation of map (a)

In Figure 2.3.2, (b) and (c) are the same graph representations of map (a).
(c) is obtained from (b) omitting edges at the vertex v that represents the
unbounded region of map (a). We prefer figures such as (c) rather than figures
such as (b) for a graph representation of a map.

Proposition 2.3.6 (Five Color Theorem). Every planar graph is 5-colorable.
The proof of the Five Color Theorem is given in [2].

Theorem 2.3.7 (Grotzsch 1959). Every planar graph not containing a triangle
is 3-colorable [2][9].
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Chapter 3

Finding a 4-coloring solution

In this chapter, we will discuss how to color the vertices.

3.1 An introduction of a coloring method

Let G be a plane graph and v be a vertex of G. Assume that we will color
the vertices of G’ one by one and that v have £ number of colored neighbours
at a moment. Let S denote a set of all colors that have been assigned to the
neighbors. Clearly, |S| =: n < k < dg(v). Then, we say that v has n colors on
its neighbors. If a vertex v has n colors on its neighbors and another vertex w
has m colors on its neighbors and m < n, then we say that v has more colors
on its neighbors than w or that w has less colors on its neighbors than v.

In a plane graph G, a maximal triangle patch without a wheel or simply a
patch is a subgraph P of G with the following properties:

(i) P is a triangulation.
(ii) P does not contain a wheel graph.
(iii) If a triangle T} of G shares an edge with a triangle T, of P, then T} is
also a triangle of P.

A patch P is simple if the closure of the sum of all its faces is a simple region
of the plane. Let P be a set of all patches of G. A vertex v of G is patch-free
from P or simply patch-free if v is not contained in any member of P.

18



CHAPTER 3. FINDING A 4-COLORING SOLUTION

In a maximal plane graph G, an independent hubset or simply a hubset is
a set H of independent vertices such that each member is a hub of a wheel in
G. H is mazimal if G — H does not contain any wheels. Let us refer to the
members of a hubset as hubs unless any confusion arises.

Let G be a plane graph, v be a vertex of G, ¢ : V(G) — S be a vertex
coloring of G, and A be a subset of V(G). A usually does not contain v. A
set of adjacent colors of v with respect to c|4 is the image set ¢|4(A N Ng(v))
in S and it is denoted by AC,,(v) or simply AC.(v) or AC(v). The number
|AC.(v)| is the AC-number of v.

Let G be a plane graph of order n. We would like to color its vertices one
by one. Since we do not have enough colors, we should decide which vertex
to color. If, at a moment, a non-colored vertex v € G has three colors on its
neighbors and we have only four available colors, we have to color this vertex
v rather than other vertices. It seems natural to select a vertex that has more
colors on its neighbors rather than other vertices that have less colors on their
neighbors, among the non-colored vertices. In such a point of view, we can
consider a coloring method by constructing a finite sequence of pairs (G, cx.)
in the following way:

(i) G1 = ({v1},0) where v; € V(G).
(ii) Define a vertex coloring, ¢; : Gy — S on G.
(iii) Define an induced subgraph Gy := G[Gj_1 U {vg}], where v, € G\ Gg_1
is a vertex such that the AC-number |AC., _, (vg)| is maximum.

(iv) Define a vertex coloring, ¢ : Gj — S such that c¢|g,_, = cx—1 and
Ck(’l)k) < S \ ACCIWI (U)

The above process does not always work for a 4-element set S, say {1,2,3,4}.
To improve the above process, we can add other conditions for selecting vy or
a process for exchanging some assigned colors. However, this thesis suggests
another way:

(i) Convert the given map to a graph and find a maximal plane graph that
contains the graph.

(ii) Remove vertices of degree 3 from the maximal plane graph if they exist.
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(iii) Find a hubset in the graph.
(iv) Color the vertices that are not the elements of the hubset with three
available colors.

(v) Color the vertices contained in the hubset with the fourth color.
(vi) Finally, apply the coloring result to the given map.

3.2 Examples of coloring

Example 3.2.1. Find a coloring solution of the given map, Figure 3.2.1.

Figure 3.2.1: given map
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Figure 3.2.2: Step 1

Solution. Step 1: Find a graph representation of the given map in Figure 3.2.1
as described in Section 2.3.

Figure 3.2.3: Step 2

Step 2: Omit the edges at a in the same way as Figure 2.3.3 in Example
2.3.5, where a is the vertex that represents the unbounded region of the given
map.
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Figure 3.2.4: Step 3

Step 3: By Proposition 2.2.3, the graph in Figure 3.2.3 is not a maximally
plane since it contains two faces whose boundaries are not triangles. Find a
maximal plane graph containing Figure 3.2.3.

Figure 3.2.5: Step 4, a graph G

Step 4: By Proposition 2.3.2 and the arguments below, the vertex b in Figure
3.2.4 can be removed since its degree is three. Let GG denote this graph.

22
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aO

Figure 3.2.6: Step 5

Step 5: Find a hubset H. In Figure 3.2.6, the hubs are represented by white
circles. Note that a is also a hub of a wheel.

Figure 3.2.7: Step 6

Step 6: Following the vertex-selecting order discussed in Section 3.1, color
the patches of G — H with three available colors, say color 1, color 2, and color
3. Note that if G — H had not contained any patches, this step would have
been a specific example of the Grotzsch’s theorem (Theorem 2.3.7).
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Figure 3.2.8: Step 7

Step 7: Color the hubs with color 4. Note that we never used color 4 at
Step 6 and that all the hubs are independent by the definition of the hubset.

Figure 3.2.9: Step 8

Step 8: Apply the coloring result to the original graph in Figure 3.2.3 ob-
tained at Step 2. Do not forget to color the vertex b that was removed at Step
4. We have only to assign b color 2 since AC(b) = {1, 3,4}.
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|

Figure 3.2.10: Step 9

b
== [

Step 9: Color the region of the given map according to the vertex coloring
we have found. O

The coloring process such as the one in Example 3.2.1 does not always
success. See the following examples.
Example 3.2.2.

(a) Unsuccessful (b) Successful

Figure 3.2.11

Figure 3.2.11 shows the different choices of hubsets for the same graph. (a)
shows the wrong choice of hubset — the ends of an edge e have the same color.
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Example 3.2.3.

(a@) Unsuccessful (b) Successful (c) Successful

Figure 3.2.12

Figure 3.2.12 also shows the different choices of hubsets for the same graph.
The ends of one of the edges {e, f,g} in (a) have the same color: lower ends
of these edges must have the same color, color 1 as figured, but the upper
ends of the edges must have pairwise different colors. Since we have only three
available colors, it is unsuccessful by the pigeonhole principle.

Example 3.2.4.

(@) Unsuccessful (b) Successful (c) Successful

Figure 3.2.13

In Figure 3.2.13 (a), every vertex of a triangle A has color 3 on its neigh-
bors. Thus, it is unsuccessful since we have only three available colors for the
vertices of the triangle A. A path eU f of length 2 has color 1 on one end and
color 2 on the other end. Therefore, the only inner vertex has to be assigned
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color 3. Every inner vertex of paths P and @) plays a role as a buffer that
prevents the failure of coloring since it always has two neighbors except hubs
so that it has at most two colors on its neighbors before coloring hubs.

Example 3.2.5.

Successful

1
)

(@) Unsuccessful (b

Figure 3.2.14

In Figure 3.2.14 (a), P is a path of length 3 and both of its ends have been
assigned color 1. Therefore, one of the two inner points of P has to be colored
with color 2. However, the triangle A contains the two inner points of P, and
has another vertex that already has been colored with color 2. Therefore, (a)
is unsuccessful.

3.3 Observations

Definition 3.3.1. Let GG be a plane graph containing at least one triangle. An
overedge sequence is a sequence {vy,vg, - - - } of vertices such that there exists
an edge e; that is the opposite edge of vertex v; in a triangle T" and the opposite
edge of vertex v;;1 in a triangle 7" of GG. Note that T and 7" can denote the
same triangle, and that v; and v; can denote the same vertex even if ¢ # j.
Two vertices v; and vy of G are overedge if there exists an overedge sequence
containing both v; and v,.
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Proposition 3.3.2. For the vertices in a patch P, the overedge relation is an
equivalence relation.

Proof. (Reflexivity) Since P is a triangulation, for any vertex v of P, there
exists a triangle T" that contains v. Let e be an opposite edge of v in T', then
a sequence {v,v,---} is an overedge sequence since e is an opposite edge of
every element of the sequence in 7T'.
(Symmetry) If v; and vy are members of a sequence, then vy and v; are also
members of the sequence.
(Transitivity) Assume that v; and v; are members of an overedge sequence
A, and v; and v, are members of an overedge sequence B. Then we have a
subsequence {v;, - -+ ,v;} of A and another subsequence {v;,--- ,v;} of B. By
joining the two sequences, we get an overedge sequence {v;,--- ,v;,- - , U}
m

Proposition 3.3.3. The overedge relation defines three equivalence classes on
a simple patch P.

Proof. Let P be a simple patch and 77 be a triangle of P. We have three
distinct pairs, each of which is a form of (v}, e?) such that v! is an opposite
vertex of edge e} where i = 1,2, 3. Let T, be another triangle of P that shares
an edge e} with T}. There is only one opposite vertex of the edge e! in T, and
let v4 denote this vertex. Similarly, in a triangle T; of P that shares an edge
e, with 77 U --- U Tj_y, let the opposite vertex of e, be denoted by v}, for
some index k. Note that T} shares only one edge with 71 U---UT;_; and that
there exists only one opposite vertex of e} in T} since P is simple and it does
not contain any wheels. Therefore, a vertex v of T} U - -- U T} cannot have two
notations; for example, v,?l =v = v,ﬁfQ where i; # iy, so that the number of
equivalence classes is less than three. O

Corollary 3.3.4. A simple patch P requires exactly three colors to color its
vertices. Two vertices v and w of P have the same color if they are overedge.

Proof. Assume that the two vertices v and w are overedge in a simple patch
P. Then v and w are non-adjacent in P since P does not contain K* that is
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a wheel graph. (However, v and w can be adjacent in a supergraph of P. See
the Example 3.3.7.) Therefore, we can assign the same color to vertices in the
same equivalence class. By Proposition 3.3.3, we need exactly three colors. [J

Assume that we find a maximal hubset H of a plane graph G. Consider
the graph G — H. A patch has six numbers of 3-coloring solutions since a
triangle also has six numbers of 3-coloring solutions. And for a colored patch
P, if we want a vertex v € P that was already colored to have a different color,
we can just exchange the color of [v] and the color of [w], where [v] and [w]
are the different equivalence classes containing v and w, respectively.

Let us consider how a colored patch affects the colorings of another patch
in G — H. Assume that P and @) are two patches and P has been colored. If
they share a vertex v, then we have two choices of 3-coloring solutions for Q).
If the patches are linked by an edge vw where v € P, w € @), then we have
four choices of 3-coloring solutions for (). If the patches are linked by a P — @)
path vuw of length 2, where v € P, w € (@), then the vertex coloring of P
does not affect the choice of the vertex coloring of ). Even if the ends of the
path have different colors, we can always assign the third color to the inner
vertices of the path since the degree of all the inner vertices is 2 in G — H.
This means that a coloring of P never affects the coloring of @) if all P — @)
paths have lengths at least 2. Such a path of length at least 2 can be seen
as a graph representation of an interval of the real line such as Figure 1.2.4.
Three available colors are enough to color maps of such an interval. When
we finish coloring some patches and if there does not exist non-colored vertex
of AC-number 2, we should select a vertex that is contained in a non-colored
patch linked to the sum of colored patches by a path of shorter length. Note
that a vertex that is shared by two patches can be thought as a linking path of
length 0. However, which vertices would be the inner vertices of such a path
linking two patches in G — H? The answer is vertices of degree 4 in G.

Proposition 3.3.5. Let G be a maximal plane graph with 6(G) > 4 and H be
a maximal hubset of G. Let W' and W? be two wheels such that hi, hy € H
are hubs of W' and W2, respectively, and W' and W? share a path P of length
at least 2. Then the degree of the inner vertices of P is 4 in G.
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Proof. Let v be an inner vertex of P. Then we obtain dg(v) > 4 since 6(G) > 4.
The vertex v has two neighbors v; and vy in P and two neighbors hy and hy
that are not vertices in P. However, v does not have any other neighbors:
each vhyv;v (i,j7 = 1,2) forms a triangle. If a vertex w is inside of one of
the triangles, the degree dg(w) of w is 3 since G is maximally planar. This
contradicts the assumption that 6(G) > 4. If w is outside all the triangles, this
also contradicts the Jordan curve theorem (Theorem 2.2.1) since hyvyhovohy
forms a cycle containing all the triangles. O

For a maximal hubset H of a maximal plane graph G, we can always color
the patch-free vertices of G — H with 3 available colors if they have degree 4
in G. However, if a patch-free vertex v of G — H has a degree at least 6 in G,
we are not always able to color the vertex v. See the next example.

Example 3.3.6.

(coloring order, color)

O :hubs
P, Q R, S: patches

Figure 3.3.1
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Due to the wrong choice of a maximal hubset, finding a 3-coloring solution is
unsuccessful (Figure 3.3.1). Let v; denote the i-th colored vertex in the figure.
We start coloring v; with color 1 and we have no problem until the vertex vy is
colored with color 2. In patch @), vs, vs and v; should be colored with color 2
since they are overedge with v, which has been colored with color 2. When we
color the vertex vg, we have to color it with color 1 because if we color it with
color 3 then v which is not a hub, would have three colors on its neighbors.
Also, v already has hubs that would be colored with color 4 as its neighbors;
thus, v would require the fifth color. This implies that vy should be colored
with color 3. Since vy is overedge with wvg, it should be colored with color 3.
Finally, v requires the fifth color.

A patch-free vertex such as v in Figure 3.3.1 has a degree at least 6.
However, Equation 2.3.2.5 says that such a vertex does not appear frequently.
Despite this, we can usually find another 3-coloring solution by exchanging
colors of two classes of some patches. As Example 3.3.6 states, if there is no
3-coloring solution, we should take another maximal hubset.

Example 3.3.7.
O O : vertices in overedge relation

(a) (b) ()

Figure 3.3.2
The patch of (a) in Figure 3.3.2 is not simple and the overedge relation cannot
define three equivalence classes. (b) shows that two ends of an edge e that are
contained in different patches. They are overedge with a vertex v so that they
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are also overedge. (c) shows a situation similar to the case of (b), two vertices
are overedge in a patch but they are linked by an edge e.

Situations such as the next example frequently occur.

Example 3.3.8. Consider a path P of length 3 whose ends are colored with
the same color, say color 1. Then the two inner vertices v; and v, have to be
colored with color 2 and color 3 or with color 3 and color 2, respectively. See
Figure 3.2.14 in Example 3.2.5.

The previous example shows that although the length of a path (that links
two patches) is at least 2, if some inner vertices of the path have degrees more
than 4, we have to consider these inner vertices when we color the patches
containing some of these inner vertices or the patches containing other vertices
that are adjacent to some of these inner vertices.

What should we also consider? Let G be a maximal plane graph and H
be a maximal hubset in G. Let G’ be a graph on P U P where PP is the set of
patches in G — H and P is the set of patch-free vertices that have degree at
least 2 in G — H. Let us define an edge set E(G’) of G’ such that vw € E(G’) if
v,w € V(G') share a vertex or are linked by an edge. Obviously, G’ is a plane
graph. The difficult concepts are perhaps the cycles in G’ because a coloring
of a vertex v € G’ affects the coloring of other vertices along the cycles of G’
that contain v and it affects v again. Since the cycles containing v may form
complex structures in G’ or the colorings of two neighbors of v may affect each
other, we should consider the structure when we color v. However, we should
only consider the subgraphs of G’ that are isomorphic to the subdivisions of two
complete graphs, K? and K*, since the Theorem of Kuratowski and Wagner
(Theorem 2.2.7) asserts that any subdivision of K™ for n > 5 does not appear
in the planar graph G’. Let K be a subdivision of a complete graph containing
vin G'. Set a weight on each edge of K for vw € E(K): if v and w share n
vertices and are linked by m edges, then set the weight W (vw) of vw € E(K)
as 3n+2m. The quantity (3_.c () W(e))/| K| can be a standard for guessing
the success rate of coloring locally. The heavier weight, the harder it is for the
coloring to be successful.
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We have to choose a “good” maximal hubset. Most of the unsuccessful
cases of the previous examples contain a patch comparatively bigger than the
patches of the successful cases if we define the size of a patch as the number of
its faces. It seems better to break the “big” patches into smaller pieces. Assume
that we construct a maximal hubset H by adding new members (hubs) one by
one. To avoid generating “big” patches or non-simple patches, we can select
a vertex as a new hub forming a wheel that shares as many edges as possible
with some other wheels that are formed by the hubs that we already found.

It would also be better to take a hubset H in plane graph G such that
the patches in G — H are linked by paths of longest possible length. By
Proposition 3.3.5 and the arguments before it, it seems better not to select
vertices of degree 4 in G as members of the hubset. However, for a maximal
plane graph G containing vertices of degree 4, assume that we have found
a “good” hubset H so that we have a 4-coloring solution ¢ that assigns the
members of H color 4 and assigns some other vertices of degree 4, without loss
of generality, color 1. Note that the other vertex coloring ¢’ obtained from ¢
by exchanging color 1 and color 4 is also a 4-coloring solution of G. Inversely,
we can find another hubset H' by taking vertices that are assigned color 4 by
¢ as its members. H’ contains vertices of degree 4 in G, and it may not be a
maximal.

We suggest the following conditions for finding a maximal hubset.

(i) Select a vertex as a new hub such that the wheel formed by this hub
shares as many edges as possible with other wheels formed by hubs that
are already selected.

(ii) If a vertex v is overedge with a hub h that we already found, and if v
and h are simultaneously adjacent to other 4-degree vertices, select the
vertex v as new hub rather than other vertices. If there exist multiple
vertices such as v, select the one that has more neighbors of degree 4.

(iii) Choose a maximal hubset H such that G — H would contain less number
of faces that are bounded by triangles.
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Computer experiments

Since the method for finding the vertex coloring is not always successful, we
would like to check the success rate. This chapter provides some source codes
of computer programs and the explanations of them. You can also refer to the
comments that are contained in the codes. The codes are written in MATLAB-
like language. These codes may work for MATLAB, FreeMat, Octave, and
so on. In fact, the codes are written and checked in FreeMat. This thesis,
therefore, recommends running the codes in FreeMat.

The adjacency matrizc A = (a;j)nxn of a graph G := (V, E) is defined by

1 v eE
g = { 0 otherwise.

For convenience, we do not distinguish a graph and its adjacency matrix
as long as no confusion arises. For example, the adjacency matrix of a graph
G is denoted by G, and the graph whose adjacency matrix is A is denoted by
A.

4.1 Process flow and the result

The process flow of computer codes is described as follows:

(i) Generate a random maximal plane graph. In fact, the codes generate a
random adjacency matrix A of a maximal plane graph.
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(ii) Get B by removing the vertices of degree 3 from A and find a hubset H

of B. Even if the thesis suggest three conditions for finding the maximal
hubset at the end of Section 3.3, the codes takes only condition (i) to
find new hubs while constructing a hubset because implementing all the
conditions complicates the codes.

(iii) Find patches in B — H.

) Construct another adjacency matrix C' of a virtual graph whose vertices

are equivalence classes of the overedge relation or patch-free vertices of
degree more than 4 in B.

(v) Generate the list of probable colorings of C' with three available colors.

(vi) If a vertex coloring of C' exists in the list then return success=1; other-

wise return success=0.

For a random maximal plane graph of order 40, we obtained the success

rate: (number of successes)/(number of tries)= 923/940 ~ 98%.

4.2 Source codes

hoRun.m :

numSuccess = 0;

wrongEqClassVertexTable = 0;

for

loopCount=1:1000

% Iterate 1000 times.
disp(’free memory’)
clear A faces maxIndHubset tempMaxIndHubset B indexB facesB

patch patchFree patchFreed4Degree sizeEqClass
facesRemovedHub C eqClassVertexTable colorVector success

disp(’Generate random adjacency matrix of a maximal plane

[A

graph’);
,faces] = hoGenRandAdjMat (40) ;

disp(’Remove vertices of degree 3 and find hubset’);
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[maxIndHubset , tempMaxIndHubset ,B, indexB,facesB]=
hoSelectArbMaxIndHubset (A, faces) ;

disp(’Find patches and patch-free vertices’);
[patch,patchFree ,patchFree4Degree ,sizeEqClass ,facesRemovedHub
]=hoFindPatches (B, tempMaxIndHubset ,facesB);

disp(’Create a virtual adjacency matrix’);
[C,eqClassVertexTable] = hoVirtualAdjMat (patch,patchFree,B,
tempMaxIndHubset) ;

disp(’Check the eqClassVertexTable ’);
for i=1:size(eqClassVertexTable ,1)
if (eqClassVertexTable(i,1)==eqClassVertexTable(i,2) |
eqClassVertexTable(i,1)==eqClassVertexTable (i,3) |
eqClassVertexTable(i,2)==eqClassVertexTable(i,3))
disp(’wrong eqClassVertexTable’) ;
wrongEqClassVertexTable=1;
break;
end
end

if (wrongEqClassVertexTable==1)
wrongEqClassVertexTable=0;
continue;

end

disp(’Generate a list of vertex coloring’);
colorVector=hoGenColorList (C,eqClassVertexTable) ;

disp(’Check the list of vertex coloring’);
success=hoCheck3Colorable (C,colorVector) ;

if (success==1)
numSuccess=numSuccess+1;

end

disp(’loopCount :’)
loopCount
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disp(’numSuccess : ’)
numSuccess

end

disp(’success rate :’)

numSuccess/loopCount

hoGenRandAdjMat.m :

function [A,faces] = hoGenRandAdjMat (numVertex)

if (numVertex < 5)
% Treat graphs of order > 4
disp (’number of vertices is less than
exit () ;
end

% Maximal plane graph has 3*(number of
numEdge = 3*numVertex-6;

% A will be an adjacency matrix
A = zeros(numVertex ,numVertex) ;

% To draw maximal graph, we first draw
A(2,1) 1;
A(3,1) ig
A(3,2) 1;

% Faces will be the index set of faces.
faces(1,1:3) = [1,2,3];

4°);

vertices) -6 edges.

a triangle.

We got a triangle.

% numTriangle is the number of the faces.

numFace = 1;

% Call the vertices incident to the unbounded face by external

% vertices. Boundary(cycle) of the unbounded face for the
% triangle which formed by first, second and third drawn

% vertices.
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boundaryUnboundedFace = [1,2,3];

%» Length of the boundary of the unbounded face. When a new

% vertex and new edges incident to the new vertex are added,
% this value will increse by (3 - (number of the new edges)).
lengthBoundary = 3;

% Now we add a new vertex.

% We draw a new vertex in the
% vertices already drawn. the
% number of edges incident to
% added there need at least 2
And we already used

unbounded face and draw edges to
availableNumEdge is maximum

new vertex. If a new vertex
edges incident to the new

% vertex.
% triangle.
% face, the number of edges also bounded by the number of

% vertices of the unbounded face.

3 edges for the first
Since the new vertex would drawn in unbounded

% original code

% availableNumEdge =
% min(numEdge -3-2*(numVertex -3) ,lengthBoundary) ;
% optimized code
availableNumEdge = min(numEdge -2*numVertex+3, lengthBoundary) ;
for i=4:numVertex-1

% i-th vertex would have currentNumEdge number of edge with

% vertices already drawn.
% availableNumbEdge+1,

% availableNumbEdge
if (availableNumEdge==2)

And we know 1 < currentNumEdge <
so we choose randomly between 2 and

currentNumEdge 2;
else
currentNumEdge = rem(floor (10000*rand(1,1)) ,availableNumEdge
-2) +2;
end

% The vertices adjacent to the new i-th vertex forms a path
% P in the boundary(cycle) of the unbounded face.
% can choose the path by choosing its end. Choose it randomly

Thus we
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% among external vertices.
currentStartingVertex = rem(floor (10000*rand(1,1)),
lengthBoundary) +1;

% The boundary of the unbounded face is a cycle but we
% denoted it as vector whose name is boundaryUnboundedFace.
% To use this vector as like a cycle we write this vector
% twice and take some needed part of it.
tempBoundary = [boundaryUnboundedFace ,boundaryUnboundedFace (1:
size (boundaryUnboundedFace ,2) -1)1];

% Initiate currentAddedRow which would be i-th row of
% Adjacency matrix A.
currentAddedRow = zeros(1l,i-1);

% From the informations of currentNumEdge and
% currentStartingVertex, construct currentAddedRow.
for j=1:currentNumEdge
index=j-1l+currentStartingVertex;
currentAddedRow (tempBoundary (index)) = 1;
end

% Add new i-th row to the adjacency matrix A.
A(i,1:1i-1) = currentAddedRow;
clear currentAddedRow;

% And we also have new faces. Add them
for j=1:currentNumEdge -1
numFace = numFace+1;
index=j-1l+currentStartingVertex;
faces (numFace ,1:3)=[tempBoundary (index) , tempBoundary (index+1)
,il;
end

% lengthBoundary was changed. Reset it.
lengthBoundary = lengthBoundary+3-currentNumEdge;

% The boundary of the unbounded face was also changed. Its
% new boundary is (an end of P) - (the new vertex) -
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% (another end of P) - (vertices on boundary \ vertices on P))
boundaryUnboundedFace = [tempBoundary(currentStartingVertex),i
,tempBoundary (currentStartingVertex+currentNumEdge -1:size(
tempBoundary ,2))1;
boundaryUnboundedFace = boundaryUnboundedFace (1:lengthBoundary
)

clear tempBoundary;

% availableNumEdge could also be changed. Reset it.
availableNumEdge = min(numEdge-3-currentNumEdge -2* (numVertex -i
) ,lengthBoundary) ;
end

% We construct the last row of the adjacency matrix A.
currentAddedRow = zeros(1l,numVertex) ;

% The last vertex is adjacent with all vertices of the
% boundary of the unbounded face.
for j=1:lengthBoundary
currentAddedRow (boundaryUnboundedFace (j))=1;
end

% Add the last row to the adjaency matrix A.
A(numVertex ,:) = currentAddedRow;

% Add the faces.
for j=1:lengthBoundary-1
numFace = numFace+1;
faces (numFace ,1:3)=[boundaryUnboundedFace (j),
boundaryUnboundedFace (j+1) ,numVertex];
end

numFace=numFace+1;
faces (numFace ,1:3)=[boundaryUnboundedFace (1),

boundaryUnboundedFace (lengthBoundary) ,numVertex];

% A is symmetric. For convenience we do not consider this,
% and we just only construct the lower part of A. By adding
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% the transpose matrix of A, we complete it.
A=A+A";

% Sum of all ’1° of A have to be equal to the twice of
% number of edges. Check it.
sum(sum(A)) == numEdgex*2;

hoRemove3degree.m :

function [B,indexB,faceB] = hoRemove3degree (A,indexB,faces)
% Remove vertices of 3 degree from given adjacency matrix A.
% give indexB = 0 at first.

% When we remove a 3-degree vertex, another vertex could be
% 3-degree vertex (The vertex of degree 4 which is adjacent
% to the removed vertex). Thus we remove a 3-degree vertex,
% we should restart the removing operation on result matrix.
% In the given adjacency matrix A, i-th row(or column)

% represent i-th drawn vertex. However, in the result matrix
% B, the i-th row does not represent i-th vertex, anymore.

% Thus indexB would tell us, which vertex i-th row of B

% represent for. For example if indexB(3)=5 then the third

% row of B contains the adjacency information of fifth

% vertex of which adjacency information in A is obviously

% fifth row of A.

% When we remove 3-degree vertex, the three faces that are

% incident to the vertex were removed and there appear a new
% face bounded by the triangle containing the three neighbours
% of the removed vertex.

% Initiate result matrix.
B = A;

% Get size of B for FOR sentence.
numVertex = size(B,1);

% Initiate faces.
faceB = faces;

% Get number of faces that we have found.
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numFace = size(faceB,1);

% Initiate indexB.
if (indexB == 0)

indexB = 1:numVertex;
end

for i = 1l:numVertex
% If we find 3-degree vertex, remove it and reset the indexB.

if (sum(B(i,:))==3)
% If the sum of i-th row of B is equal to 3, the i-th vertex
% of B has the degree 3. We remove the i-th row and the i-th
% column of B.

if (i==1)
B = B(2:numVertex ,2:numVertex) ;
indexB = indexB(2:numVertex) ;

elseif (i==numVertex)

B = B(1:numVertex-1,1:numVertex-1) ;
indexB = indexB(1:numVertex-1);
else

B = [B(1:i-1,1:i-1),B(1:i-1,i+1:numVertex) ;B(i+1:numVertex
,1:i-1) ,B(i+1:numVertex,i+l:numVertex)];
indexB = [indexB(1:i-1),indexB(i+1:numVertex)];
end

j=1;
tempCount = 0;

% We delete the faces containing the vertices of degree 3,
% that were removed at previous IF sentence.
while (j<numFace+1)
tempFaceBit =hoConvertIndexToBit (faceB(j,:) ,numVertex);

% Since we have deleted the i-th 3-degree vertex, we remove
%» the faces that is incident to the i-th vertex.

if (tempFaceBit (i)==1)

if (j==1)
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faceB = faceB(2:numFace,:) ;

elseif (j==numFace)

faceB = faceB(1:numFace-1,:);
else

faceB = [faceB(1:j-1,:);faceB(j+1l:numFace,:)];
end
numFace = numFace-1;

tempCount = tempCount+1;
else

jo= i1
tempCount

]
o

end
end

% We add a new face that is bounded by the triangle whose

% vertices are the neighbors of i-th vertex.
faceB(numFace+1,:) = hoConvertBitToIndex (A(i,:));
numFace = numFace+1;

% Convert the index of A to the index of B.
% Since we removed a vertex, the vertices that has indices
% greater than the index of the removed vertex have indices
% decreased.
for j=1:numFace
for k=1:3
if (faceB(j,k)>1i)
faceB(j,k)=faceB(j,k)-1;
end
end
end

% Stop the process and restart same removing process with B
% again.
[B,indexB,faceB] = hoRemove3degree (B, indexB,faceB);
break;
end
end
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hoSelectArbMaxIndHubset.m :

function [maXIndHubset,tempMaxIndHubset,B,indexB,facesB]=
hoSelectArbMaxIndHubset (A, faces)

% A is an adjacency matrix of a maximal plane graph G.

% maxIndHubset (i) = 1 if i-th vertex of G is contained

% in maximal independent hubset which we would construct.

% Remove vertices of degree 3.
[B,indexB,facesB] = hoRemove3degree(A,0,faces);

% number of vertices of G.
numVertex = size(B,1);

% Initiate the tempMaxIndHubset of which i-th component

% is 1 if i-th vertex, of which information of adjacency is

% denoted by i-th row of B, would be contained in
% maximal independent hubset.
tempMaxIndHubset = zeros(l,numVertex);

% Initiate canBeHub which is vertices that can be an hub.
canBeHub = ones (1,numVertex) ;

% If we consider about the relation between the sphere

% and the plane all vertices have same conditions for

% being selected as the first hub. However, for the

% convenience to figure the graph in our thesis, we select
% the last vertex.

tempMaxIndHubset (numVertex) = 1;

% And the vertices adjacent to the new hub can be hub
% any more. remove these from canBeHub.
for i=1:numVertex
if (B(numVertex ,i)==1)
inversedAdjRow (i) =0;
elseif (B(numVertex,i)==0)
inversedAdjRow (i)=1;
end
end
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canBeHub (numVertex) = 0;
canBeHub = canBeHub.*inversedAdjRow;

% We would select new hubs till canBeHub is empty set.
preventInfinitelLoop = 1;

while ((sum(canBeHub) "= 0) & (preventInfinitelLoop < (numVertex
*3)))

% We would select a new hub which has neighbors that are also

% the neighbors of hubs we already selected, as many as

% possible. countNb(i) is the number of neighbors that are

% also the neighbors of hubs we already selected, of i-th

% vertex. countNb(i) = 0 if the i-th vertex does NOT

% contained in canBeHub.

countNb = zeros (1,numVertex) ;

for i=1:numVertex
if (canBeHub (i)==1)
for j=1:numVertex
if (tempMaxIndHubset (j)==1)
countNb (i) = countNb(i)+sum(B(i,:).*B(j,:));
end
end
end
end
% Find vertices that have maximum number of neighbors
% that are also neighbors of hubs we already selected,
% among the elements of canBeHub.
tempMaxValue = 0;
for i=1:numVertex
if (tempMaxValue < countNb(i))
tempMaxValue = countNb(i);
end
end

% Make set of indices of vertices of which countNb(i) is
% equal to the tempMaxValue.
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0=
for i=1:numVertex
if (countNb (i) == tempMaxValue)
indexSetMaxValue(j) = 1ij;
j o= 3+
end
end

% Select the vertex as a new hub RANDOMLY
selectedIndex = indexSetMaxValue (rem(floor (10000*rand(1,1)),]
-1)+1) ;
clear indexSetMaxValue;

% and insert it into maxIndHubset.
tempMaxIndHubset (selectedIndex) = 1;

%» Remove the vertices that are adjacent to the new hub from
% canBeHub.
for i=1:numVertex
if (B(selectedIndex ,i)==1)
inversedAdjRow (i)=0;
elseif (B(selectedIndex,i)==0)
inversedAdjRow (i) =1;
end
end

canBeHub (selectedIndex) =0;
canBeHub = canBeHub.*inversedAdjRow;

%» prevent infinitely many loop of WHILE statement.
preventInfiniteloop = preventInfinitelLoop+1;
end

% Initiate maxIndHubset.
maxIndHubset = zeros(l,size(A,1));

% Convert hubs on B to hubs on A.

for i=1:numVertex
if (tempMaxIndHubset (i)==1)
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maxIndHubset (indexB (i) )=1;
end
end

hoFindPatches.m :

function [patch,patchFree,patchFree4Degree,hbsizeEqClass,
facesRemovedHub]=hoFindPatches (B, tempMaxIndHubset ,facesB)
% B is adjacency matrix which does not contain 3 degree

% vertices; B could be obtained by ’hoRemove3degree (A)’

% A is an adjacency matrix A which could be generated by

where

%’hoGenRanAdjMat ’ tempMaxIndHubset is a maximal independent

% hubset of B.

% Get size of B
numVertex = size(B,1);

% Initiate nonHubVertices that would not be hubs.
nonHubVertices = ones(1,numVertex);

% Initiate faces. Put face information of B into
facesRemovedHub = facesB;

% Get number of faces
numFace = size(facesRemovedHub ,1) ;

% Remove hubs specified in tempMaxIndHubset from
% nonHubVertices.

for i=1:numVertex

% Generate inversed vector of tempMaxIndHubset.

’faces’.

% In this vector, if i-th vertex contained in the hubset,

% the value of i-th component is 0O, otherwise 1.
if (tempMaxIndHubset (i)==1)
inversedTempMaxIndHubset (i)=0;
elseif (tempMaxIndHubset (i)==0)
inversedTempMaxIndHubset (i)=1;
end
end

%» The componentwise multiplication of a nonHubVertices and
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% the inversed vector of tempMaxIndHubset, removes the hubs

% described by tempMaxIndHubset from nonHubverices.

nonHubVertices = nonHubVertices.*inversedTempMaxIndHubset;

% Remove faces containing hubs.

% In fact, this removes rows of facesReovedHub that contains

% hubs.
for i=1:numVertex
if (tempMaxIndHubset (i)==1)
% i-th vertex is a hub.
j=1
while (j<numFace+1)
tempFaceBit = hoConvertIndexToBit (facesRemovedHub(j,:),
numVertex) ;
if (tempFaceBit (i)==1)
% If a j-th row of facesRemovedHub contains i-th vertex
% remove it from facesRemovedHub that is a list of faces.
if (j==1)
facesRemovedHub = facesRemovedHub (2:numFace, :) ;
elseif (j==numFace)
facesRemovedHub

facesRemovedHub (1:numFace-1,:) ;
else
facesRemovedHub = [facesRemovedHub (1:j-1,:);
facesRemovedHub (j+1:numFace,:)];
end
numFace = numFace-1;
else
j = j+1;
end
end
end
end

% Initiate some variables.
isFace = 0;
containFace = 0;

numPatch = O0;

% And rename the list of faces.
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facesDB = facesRemovedHub;
sizeFacesDB = size(facesDB,1);

% Since all the faces in facesDB are triangles, each of them
% are contained in some patches.
while (sizeFacesDB > 0)
numPatch=numPatch+1;
% patch(i,j,k)-th vertex is contained in i-th patch.
% And this vertex is classed by overedge relation so that
% patch(i,j,k)-th vertex is contained in j-th class.

% Process first face
patch (numPatch ,1,1)
patch (numPatch ,2,1)
patch (numPatch,3,1)

facesDB(1,1);
facesDB(1,2);
facesDB(1,3);

sizeEqClass (numPatch,1:3)=[1,1,1];

% Remove the face processed from facesDB.
facesDB = facesDB(2:sizeFacesDB,:);
sizeFacesDB = sizeFacesDB-1;

if (sizeFacesDB>0)
i=1;
while(i<1+sizeFacesDB)
eqClass = 0;
for j=1:sizeEqClass (numPatch,1)
for k=1:sizeEqClass (numPatch,2)
if (B(patch (numPatch,1,j),patch(numPatch,2,k))==1)
% Check whether both patch(numPatch,1,j)-th vertex and
% patch(numPatch,2,k)-th vertex are the ends of the same edge.
% One end is from class 1 the other end is from class 2.
% Therefore if the face (triangle) shares the edge with this
% patch, the opposite vertex of the edge in the face is
% contained in class 3.
tempEdgeContainedBit = hoConvertIndexToBit ([patch(
numPatch,1,j) ,patch(numPatch,2,k)],numVertex) ;
for 1=1:sizeFacesDB
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tempFaceBit = hoConvertIndexToBit (facesDB(1l,:),numVertex
);
checkShareEdgeBit = tempFaceBit-tempEdgeContainedBit;
countOne = O0;
countZero = 0;
for m=1:numVertex
if (checkShareEdgeBit (m)==1)

countOne = countOne+1;

elseif (checkShareEdgeBit (m)==0)
countZero = countZero+1;

end

end

if (countOne==1& countZero==numVertex —-1)
% We can use only countOne==1 for the IF sentence, but for
% precision, additional condition contZero==numVertex-1 is
% used.
isFace=1;
% The opposite vertex of the edge in the face is contained in
% class 3.
eqClass = 3;
break;
end
end
end
if (isFace==1)
break;
end
end
if (isFace==1)
break;
end
end

if (isFace==0)
for j=1:sizeEqClass (numPatch,2)
for k=1:sizeEqClass (numPatch,3)
if (B(patch (numPatch,2, j),patch(numPatch,3,k))==1)
% Check whether both patch(numPatch,2,j)-th vertex and
% patch(numPatch,3,k)-th vertex are the ends of the same edge.
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% One end is from class 2 the other end is from class 3.
% Therefore if the face (triangle) shares the edge with this
% patch,the opposite vertex of the edge in the face is
% contained in class 1.
tempEdgeContainedBit = hoConvertIndexToBit ([patch(
numPatch,2,j) ,patch(numPatch,3,k)],numVertex) ;
for 1=1:sizeFacesDB
tempFaceBit = hoConvertIndexToBit (facesDB(1l,:),
numVertex) ;
checkShareEdgeBit = tempFaceBit-tempEdgeContainedBit;
countOne = O0;
countZero = 0;
for m=1:numVertex
if (checkShareEdgeBit (m)==1)

countOne = countOne+1;

elseif (checkShareEdgeBit (m)==0)
countZero = countZero+1;

end

end

if (countOne==1&countZero==numVertex -1)
% We can use only countOne==1 for the IF sentence, but for
% precision, additional condition contZero==numVertex-1 is
% used.
isFace=1;
% The opposite vertex of the edge in the face is contained in
% class 1.
eqClass = 1;
break;
end
end
end
if (isFace==1)
break;
end
end
if (isFace==1)
break;
end
end
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end

if (isFace==0)
for j=1:sizeEqClass (numPatch,3)
for k=1:sizeEqClass (numPatch,1)
if (B(patch (numPatch,3,j),patch(numPatch,1,k))==1)
% Check whether both patch(numPatch,3,j)-th vertex and
% patch(numPatch,1,k)-th vertex are the ends of the same edge.
% One end is from class 3 the other end is from class 1.
% Therefore if the face (triangle) shares the edge with this
% patch,the opposite vertex of the edge in the face is
% contained in class 2.
tempEdgeContainedBit = hoConvertIndexToBit ([patch(
numPatch,3,j) ,patch(numPatch,1,k)],numVertex) ;
for 1=1:sizeFacesDB
tempFaceBit = hoConvertIndexToBit (facesDB(1,:),
numVertex) ;
checkShareEdgeBit = tempFaceBit-tempEdgeContainedBit;
countOne = 0;
countZero = 0;
for m=1:numVertex
if (checkShareEdgeBit (m)==1)

countOne = countOne+1;

elseif (checkShareEdgeBit (m)==0)
countZero = countZero+l;

end

end

if (countOne==1&countZero==numVertex -1)
% We can use only countOne==1 for the IF sentence, but for
% precision, additional condition contZero==numVertex-1 is
% used.
isFace=1;
% The opposite vertex of the edge in the face is contained in
% class 2.
eqClass = 2;
break;
end
end
end
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if (isFace
break;
end
end

if (isFace=

break;
end
end
end

if (isFace==1

==1)

=1)

)

% Remove the processed face form facesDB

if (1==1)
facesDB

facesDB(2:sizeFacesDB, :);

elseif (1==sizeFacesDB)

facesDB
else

facesDB
end

sizeFacesDB

facesDB(1:sizeFacesDB-1,:)

>

[facesDB(1:1-1,:);facesDB(l+1:sizeFacesDB,:)];

= sizeFacesDB-1;

% Update the information.

sizeEqClass (numPatch,eqClass)=sizeEqClass (numPatch,eqClass)

+1;

patch(numPatch,eqClass,sizeEqClass (numPatch,eqClass))=
hoConvertBitToIndex (checkShareEdgeBit) ;

isFace=0;
i=1;

else
i=i+1;

end

end
end
end

% Find patch-fr
index4 = 0;

indexGeneral

ee vertices among described in nonHubVertices.

0;

patchFreed4Degree = 0;
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patchFree = 0;
for i=1:numVertex
if (nonHubVertices (i) ==1)
incidentToFace = 0;
for j=1:numFace
for k=1:3
if (facesRemovedHub (j,k)==1)
% If i-th vertex is incident to some faces described in
% facesRemovedHub then the vertex is not patch-free.
incidentToFace = 1;
break;
end
end
if (incidentToFace==1)
break;
end
end
if (incidentToFace==0)
% i-th vertex is patch-free.
% Check whether i-th vertex has the degree 4.
if (sum(B(i,:))==4)

index4 = index4+1;
patchFreed4Degree (index4)=1i;
else

indexGeneral = indexGeneral+1;

patchFree (indexGeneral)=1i;
end
end
end
end

hoVirtualAdjMat.m :

function [C,eqClassVertexTable] = hoVirtualAdjMat (patch,
patchFree,B,tempMaXIndHubset)

% This function generate the virtual graph C whose vertices

% symbolize the equivalence classes of patches of B, or

% patch-free vertices of B.
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numVertex = size(B,1);
numPatch = size(patch,1);
numPatchFree = size(patchFree,b2);

maxNumVertexInEqClass = size(patch,3);

% eqClassVertexTable(i,j)-th vertex of C symbolize an
% equivalence class of i-th patch of B - "hubset", where the
% members of "hubset" is described in tempMaxIndHubset.

% In the first patch, there are three equivalence classes.
% We denote each equivalence class 1,2,3.
eqClassVertexTable (1,1:3)=[1,2,3];

newVertexIndex = 3;

shareVertex = 0;

% Check whether two patches, tempPatchBit_1 and
% tempPatchBit_2, share a vertex.
% If they share a vertex v, [v] of tempPatchBit_1 and [v] of
% tempPatchBit_2 has the same name, where [v] is the
% equivalence class that contains [v].
for indexPatch=2:numPatch
for i=1:indexPatch-1
for j=1:3
for k=1:3
tempPatchBit_1
tempPatchBit_2
for n=1:maxNumVertexInEqClass
if (patch(i,j,n) ~=0)
tempPatchBit_1(patch(i,j,n))=1;
end
if (patch(indexPatch ,k,n) "=0)
tempPatchBit_2 (patch(indexPatch ,k,n))=1;
end

zeros (1, numVertex) ;

zeros (1, numVertex) ;

end
% If two patches shares a vertex....
if (sum(tempPatchBit_1.*tempPatchBit_2) "=0)
shareVertex = 1;
% the k-th equivalence class in (indexPatch)-th patch and
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% j-th equivalence class in i-th patch are symbolized by same

% vertex of C.
eqClassVertexTable (indexPatch ,k) = eqClassVertexTable (i, j)
break;
end
end
if (shareVertex == 1)
break;
end
end
end
if (shareVertex == 1)
for 1=1:3
% Give names to the equivalence classes that does not contain
% the shared vertex of (indexPatch)-th patch.
if (eqClassVertexTable (indexPatch,1)==0)
newVertexIndex=newVertexIndex+1;
eqClassVertexTable (indexPatch,l)=newVertexIndex;
end
end
% Reset shareVertex.
shareVertex = 0;
elseif (shareVertex == 0)
% If (indexPatch)-th patch does not share any vertex with
% other m-th patch, where m<indexPatch, give names to these
% three equivalence classes of (indexPatch)-th patch.
for 1=1:3
newVertexIndex=newVertexIndex+1;
eqClassVertexTable (indexPatch,l)=newVertexIndex;
end
end
end
% Construct Virtual Adjacency Matrix C
% If i-th row (or column) of C symbolize an equivalence class

in a patch and j-th row (or column) symbolize a path-free

vertex, then i < j.
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b

First, we construct lower triangular matrix.

% The three vertices that symbolize the three equivalence

/)

classes in the same patch are pairwise adjacent in

for i=1:numPatch

if (eqClassVertexTable(i,1) >eqClassVertexTable (i,2))
C(eqClassVertexTable(i,1) ,eqClassVertexTable(i,2))
elseif (eqClassVertexTable(i,1)<eqClassVertexTable (i
C(eqClassVertexTable(i,2) ,eqClassVertexTable(i,1))
end

if (eqClassVertexTable(i,1)>eqClassVertexTable(i,3))
C(eqClassVertexTable(i,1) ,eqClassVertexTable (i,3))
elseif (eqClassVertexTable(i,1)<eqClassVertexTable (i
C(eqClassVertexTable(i,3) ,eqClassVertexTable(i,1))
end

if (eqClassVertexTable (i,2)>eqClassVertexTable(i,3))
C(eqClassVertexTable(i,2) ,eqClassVertexTable (i,3))
elseif (eqClassVertexTable (i,2)<eqClassVertexTable (i
C(eqClassVertexTable(i,3) ,eqClassVertexTable(i,2))
end

end

b
h
h
h
£

C.

=1;
»2))
=1;

=1;
»3))
=1;

=1;
,3))
=1;

If a vertex in the equivalence class of a patch and another

vertex in the equivalence class of another patch are adjacent

in B, the vertices that symbolize the two equivalence

classes are adjacent in C.
or i=1:numPatch-1
for j=1+i:numPatch
for k=1:3
for 1=1:3
for m=1:maxNumVertexInEqClass
for n=1:maxNumVertexInEqClass
if ((patch(i,k,m) "=0)&(patch(j,1,n) " =0))
if (B(patch(i,k,m),patch(j,1l,n))==1)

if (eqClassVertexTable (i,k)>eqClassVertexTable(j,1))

C(eqClassVertexTable(i,k),eqClassVertexTable(j,1))=1;

else

C(eqClassVertexTable(j,1l) ,eqClassVertexTable(i,k))=1;

end
end
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end
end
end
end
end
end
end

% Specify the adjacency of patch-free vertices.

if (patchFree~"=0)

numNonPatchFreeVertex = size(C,1);
for i=1:numPatchFree
newVertexIndex=newVertexIndex+1;

% Find the neighbors of the i-th patch-free vertex in B.
tempNeighborsIndex=hoConvertBitToIndex (B(patchFree (i) ,:));
twoPatchFreesAreAdj = O0;
for j=1:size(tempNeighborsIndex ,2)

includingPatchNumJ=0;
for s=1:numPatch
for t=1:3
for u=1:maxNumVertexInEqClass
if (patch(s,t,u)==tempNeighborsIndex (j))
% If a patch include some neighbors of i-th patch-free
% vertex....
includingPatchNumJ=1;
break;
end
end
if (includingPatchNumJ==1)
break;
end
end
if (includingPatchNumJ==1)
break;
end
end
if (includingPatchNumJ==1)
% ...then specify the adjacency information in C.
C(newVertexIndex ,eqClassVertexTable(s,t))=1;
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elseif (includingPatchNumJ==0&i==1)
% If the first patch-free vertex is never adjacent to any
% other vertices contained in some patch then add zero vector
% in C for the vertex symbolizing the first patch-free vertex
% in C.
C(newVertexIndex,:)=zeros(1l,size(C,2));
elseif (includingPatchNumJ==0&1i~=1)
% If the i-th patch-free vertex is never adjacent to any
% other vertices contained in some patch (i”=1) then Check
% whether this i-th patch-free vertex is adjacent to the
% other u-th patch-free vertices where u<i.
for u=1:1-1
if (tempNeighborsIndex (j)==patchFree (u))
% If i-th patch-free vertex and m-th patch-free vertex are
% adjacent, specify the adjacency information in C.
twoPatchFreesAreAdj=1;
C(newVertexIndex ,numNonPatchFreeVertex+u)=1;
end
end
if (twoPatchFreesAreAdj == 0)
% If not, add zero vector in C for the vertex symbolizing
% this i-th patch-free vertex in C.
C(newVertexIndex,:)=zeros(1,size(C,2));
end
end
end
end
end

% The adjacency matrix C should be symmetric.
% We constructed only lower triangular part of C.
% Let us make C symmetric matrix.

tempC = zeros(newVertexIndex ,newVertexIndex) ;
tempC(:,1:size(C,2))=C;
clear C

C = tempC+tempC’;
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hoGenColorList.m

function colorVector=hoGenColorList (C,eqClassVertexTable)

% This function generate a list of 3-colorings for the virtual

%

b

graph C.

Free the memory.

clear colorVector;

numVertex=size (C,1);

numTriangle = size(eqClassVertexTable ,1);

Since we have at least one patches, each of the first three

rows (or column) of C represents each equivalence class

of

the first patch. i-th vertex of C will have the color that

the value of colorVector(i). Since different equivalence

class have to be assigned different color, the first three

can be [1,2,3]1, [2,1,3], [3,2,1], [2,3,1], [3,1,2] or
[1,3,2]. Without loss of generality, we select [1,2,3].

colorVector = [1,2,3];
for i=2:numTriangle

numColoredVertex = size(colorVector ,2);
numVertexAppeared = 0;
for j=1:3

eqClassVertexTable contain the information of vertices of C

that are equivalence classes of patches of B (each row of

eqClassVertexTable is symbolize a patch). Each row of

eqClassVertexTable is also a face bounded by a triangle in C.

if (eqClassVertexTable (i, j)<numColoredVertex+1)

We are deciding the color of eqClassvertextable(i,j)-th
VERTICES, for j=1,2,3. We are deciding the colors of the
three vertices at once. However, some of these vertices

can

be specified in eqClassVertexTable MULTIPLE times. If some

of these vertices were already colored, we should skip
coloring them. This IF sentence check how many vertices
the three vertices (for j=1,2,3) have been colored.
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%» numVertexAppeared has the value of the numbers of vertices
% that have already been colored.
numVertexAppeared = numVertexAppeared+i;
end
end

if (numVertexAppeared==0)
% All the vertices described in the i-th row of
% eqClassVertexTable are never appeared. There is not a
% vertex that was colored at previous step(<i). Locally, we
%» have six possible colorings.
for j=1:size(colorVector,1)
tempColorVector (6*x(j-1)+1,:)=[colorVector(j,:) ,1,2
tempColorVector (6*x(j-1)+2,:)=[colorVector(j,:) ,1,3,2]
tempColorVector (6x(j-1)+3,:)=[colorVector(j,:) ,2,1,3]
tempColorVector (6*x(j-1)+4,:)=[colorVector(j,:),2,3,1];
tempColorVector (6*x(j-1)+5,:)=[colorVector(j,:) ,3,1,2]
tempColorVector (6*x(j-1)+6,:)=[colorVector(j,:) ,3,2,1]
end
colorVector=tempColorVector;
clear tempColorVector;

elseif (numVertexAppeared==1)
% One of vertices described in the i-th row of
% eqClassVertexTable was appeared. The one of
% eqClassVertexTable(i,j) (j=1,2,3) have been colored at
% previous step(<i). Locally, we have two possible colorings.

for j=1:3
if (eqClassVertexTable (i, j)<numColoredVertex+1)
break;
end
end
for k=1:size(colorVector ,1)
if (colorVector (k,eqClassVertexTable (i, j))==1)
% If the color of the vertex that was already colored is
% color 1, the rest two vertices can have color 2, color 3 or
% color 3, color 2.
tempColorVector (2x(k-1)+1,:)=[colorVector(k,:) ,2,3];
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tempColorVector (2*(k-1)+2,:)=[colorVector(k,:) ,3,2];
elseif (colorVector (k,eqClassVertexTable (i, j))==2)
If the color of the vertex that was already colored is
color 2, the rest two vertices can have color 1, color
color 3, color 1.
tempColorVector (2*(k-1)+1,:)=[colorVector(k,:) ,1,3];
tempColorVector (2x(k-1)+2,:)=[colorVector(k,:) ,3,1];
elseif (colorVector (k,eqClassVertexTable (i, j))==3)
If the color of the vertex that was already colored is
color 3, the rest two vertices can have color 1, color
color 2, color 1.
tempColorVector (2x(k-1)+1,:)=[colorVector(k,:) ,1,2];
tempColorVector (2x(k-1)+2,:)=[colorVector(k,:) ,2,1];
end
end
colorVector=tempColorVector;
clear tempColorVector;

elseif (numVertexAppeared==2)
Two of vertices described in the i-th row of
eqClassVertexTable was appeared. The Two of
eqClassVertexTable(i, j) (j=1,2,3) have been colored at

or

or

previous step(<i). Locally, we have one possible coloring.

for j=1:3
if (eqClassVertexTable (i, j)>numColoredVertex)
break;
end
end
for k=1:size(colorVector ,1)
if (j==3)

The non-colored vertex is eqClassVertexTable(i,3)-th vertex.

if ((colorVector (k,eqClassVertexTable(i,1))==1&colorVector (k

,eqClassVertexTable (i,2))==2)|(colorVector (k,
eqClassVertexTable(i,1))==2&colorVector (k,
eqClassVertexTable (i,2))==1))

The colors of the two colored vertices are color 1, color 2

or color 2, color 1. Locally, we can assign only color 3 to

the rest vertex.
tempColorVector (k,:)=[colorVector(k,:) ,3];
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elseif ((colorVector (k,eqClassVertexTable(i,1))==1&
colorVector (k,eqClassVertexTable(i,2))==3)|(colorVector (
k,eqClassVertexTable(i,1))==3&colorVector (k,
eqClassVertexTable (i,2))==1))
% The colors of the two colored vertices are color 1, color 3
% or color 3, color 1. Locally, we can assign only color 2 to
% the rest vertex.
tempColorVector (k,:)=[colorVector (k,:) ,2];
elseif ((colorVector (k,eqClassVertexTable(i,1))==2&
colorVector (k,eqClassVertexTable(i,2))==3)|(colorVector(
k,eqClassVertexTable(i,1))==3&colorVector (k,
eqClassVertexTable (i,2))==2))
% The colors of the two colored vertices are color 2, color 3
% or color 3, color 2. Locally, we can assign only color 1 to
% the rest vertex.
tempColorVector (k,:)=[colorVector(k,:) ,1];
elseif (colorVector (k,eqClassVertexTable(i,1))==colorVector (
k,eqClassVertexTable (i,2)))
% The two colored vertice could have the same color and this
% is wrong. Temporarily, we can assign only color 4 to the
% rest vertex.
tempColorVector (k,:)=[colorVector (k,:) ,4];
end
elseif (j==2)
% The non-colored vertex is eqClassVertexTable(i,2)-th vertex.
if ((colorVector(k,eqClassVertexTable(i,1))==1&colorVector (k
,eqClassVertexTable (i,3))==2) | (colorVector (k,
eqClassVertexTable(i,1))==2&colorVector (k,
eqClassVertexTable (i,3))==1))
% The colors of the two colored vertices are color 1, color 2
% or color 2, color 1. Locally, we can assign only color 3 to
% the rest vertex.
tempColorVector (k,:)=[colorVector(k,:) ,3];
elseif ((colorVector (k,eqClassVertexTable(i,1))==1&
colorVector (k,eqClassVertexTable(i,3))==3)|(colorVector(
k,eqClassVertexTable(i,1))==3&colorVector (k,
eqClassVertexTable (i,3))==1))
% The colors of the two colored vertices are color 1, color 3
% or color 3, color 1. Locally, we can assign only color 2 to
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% the rest vertex.
tempColorVector (k,:)=[colorVector (k,:) ,2];
elseif ((colorVector (k,eqClassVertexTable(i,1))==2&
colorVector (k,eqClassVertexTable(i,3))==3)|(colorVector (
k,eqClassVertexTable(i,1))==3&colorVector (k,
eqClassVertexTable (i,3))==2))
% The colors of the two colored vertices are color 2, color 3
% or color 3, color 2. Locally, we can assign only color 1 to
% the rest vertex.
tempColorVector (k,:)=[colorVector(k,:) ,1];
elseif (colorVector(k,eqClassVertexTable(i,1))==colorVector (
k,eqClassVertexTable (i,3)))
% The two colored vertice could have the same color and this
% is wrong. Temporarily, we can assign only color 4 to the
% rest vertex.
tempColorVector (k,:)=[colorVector(k,:) ,4];
end
elseif (j==1)
% The non-colored vertex is eqClassVertexTable(i,1)-th vertex.
if ((colorVector (k,eqClassVertexTable(i,2))==1&colorVector (k
,eqClassVertexTable(i,3))==2) | (colorVector (k,
eqClassVertexTable (i,2))==2&colorVector (k,
eqClassVertexTable (i,3))==1))
% The colors of the two colored vertices are color 1, color 2
% or color 2, color 1. Locally, we can assign only color 3 to
% the rest vertex.
tempColorVector (k,:)=[colorVector(k,:) ,3];
elseif ((colorVector (k,eqClassVertexTable(i,2))==1%&
colorVector (k,eqClassVertexTable(i,3))==3)|(colorVector (
k,eqClassVertexTable (i,2))==3&colorVector (k,
eqClassVertexTable (i,3))==1))
% The colors of the two colored vertices are color 1, color 3
% or color 3, color 1. Locally, we can assign only color 2 to
% the rest vertex.
tempColorVector (k,:)=[colorVector(k,:) ,2];
elseif ((colorVector (k,eqClassVertexTable(i,2))==2&
colorVector (k,eqClassVertexTable(i,3))==3)|(colorVector (
k,eqClassVertexTable (i,2))==3&colorVector (k,
eqClassVertexTable (i,3))==2))
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% The colors of the two colored vertices are color 2, color 3
% or color 3, color 2. Locally, we can assign only color 1 to
% the rest vertex.
tempColorVector (k,:)=[colorVector(k,:) ,1];
elseif (colorVector (k,eqClassVertexTable(i,2))==colorVector(
k,eqClassVertexTable (i,3)))
% The two colored vertices could have the same color and this
% is wrong. Temporarily, we can assign only color 4 to the
% rest vertex.
tempColorVector (k,:)=[colorVector(k,:) ,4];
end
end
end
colorVector=tempColorVector;
clear tempColorVector;

% Remove the rows of colorVector that contain color 4.
l=size(colorVector ,2);
tempIndex = 1;
for k=1:size(colorVector ,1)
if (colorVector(k,1l) "=4)
tempColorVector (tempIndex ,:) = colorVector(k,:);
tempIndex=tempIndex+1;
end
end
colorVector=tempColorVector;
clear tempColorVector;

end
end

% The coloring of vertices of C that symbolize the
% equivalence class of patches was Done. Now, we decide the
% coloring of patch-free vertices, one by one.

% numVerticesInPatch is the number of vertices that have been

% already colored.
numVerticesInPatch = size(colorVector,b2);
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% The number of patch-free vertices is
% (the numVertex - numVerticesInPatch)
for i = numVerticesInPatch+l:numVertex
newlLengthColorVector = size(colorVector ,2)+1;
tempIndex = 1;
for j=1:size(colorVector,1)
% If the (i-th) patch-free vertex has ’color m’ we set
% adjacentColorSet(m) = 1, for m=1,2,3.
adjacentColorSet = [0,0,0];
for k=1:i-1
if (C(i,k)==1)
adjacentColorSet (colorVector (j,k))=1;
end
end
if (sum(adjacentColorSet)==3)
%» The (i-th) patch-free vertex has three different colors on
% its neighbors. This is wrong. We temporarily set the color
% of this vertex as color 4.
tempColorVector (tempIndex ,:) = [colorVector(j,:) ,4];
tempIndex = templndex+1;
elseif (sum(adjacentColorSet)==2)
% The (i-th) patch-free vertex has two different colors on
% its neighbors.
for 1=1:3
% The (i-th) patch-free vertex does NOT have ’color 1’ on its
% neighbor.
if (adjacentColorSet (1)==0)
break;
end
end
% We assign this (i-th) patch-free vertex the last color.
tempColorVector (tempIndex ,:)=[colorVector(j,:),1];
tempIndex=tempIndex+1;
elseif (sum(adjacentColorSet)==1)
% The (i-th) patch-free vertex has one color on its neighbors.
for 1=1:3
% The (i-th) patch-free vertex have ’color 1’ on its neighbor.
if (adjacentColorSet (1)==1)
break;
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h

end
end
We assign this (i-th) patch-free vertex the two possible
colors.
if(1==1)
color 1 is color 1.
tempColorVector (tempIndex ,:)=[colorVector(j,:) ,2];
tempColorVector (tempIndex+1,:)=[colorVector(j,:) ,3];
tempIndex=tempIndex+2;
elseif (1==2)
color 1 is color 2.
tempColorVector (tempIndex ,:)=[colorVector(j,:) ,1];
tempColorVector (tempIndex+1,:)=[colorVector(j,:) ,3];
tempIndex=tempIndex+2;
elseif (1==3)

color 1 is color 3.
tempColorVector (tempIndex,:)=[colorVector(j,:) ,1];
tempColorVector (tempIndex+1,:)=[colorVector(j,:) ,2];
tempIndex=tempIndex+2;

end

elseif (sum(adjacentColorSet)==0)

The (i-th) patch-free vertex not colored neighbor.

We can assign any colors (among the three colors) on it.
tempColorVector (tempIndex ,:)=[colorVector (j,:) ,1];
tempColorVector (tempIndex+1,:)=[colorVector(j,:) ,2];
tempColorVector (tempIndex+2,:)=[colorVector(j,:) ,3];
tempIndex=tempIndex+3;

end

end
colorVector = tempColorVector;

clear tempColorVector;

Remove the rows of colorVector that contain color 4.

l=size(colorVector ,b2);

tempIndex = 1;

for k=1:size(colorVector ,1)

if (colorVector (k,1l) "=4)
tempColorVector (tempIndex ,:)=colorVector(k,:);
tempIndex=tempIndex+1;
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end
end
colorVector=tempColorVector;
clear tempColorVector;
end

hoCheck3Colorable.m :

function success=hoCheck3Colorable(C,colorVector)

% This checks whether the 3-coloring solution of C is contained
% in colorVector. If it is return 1, otherwise return O.
numColorList = size(colorVector,1);

numVertex = size(C,1);

for i=1:numColorlList
% Assume the row is a 3-coloring solution.
success=1;
for j=1l:numVertex
for k=1:j-1
% Check every pair of adjacent vertices.
if (C(j,k)==1&colorVector (i, j)==colorVector (i,k))
% If the two adjacent vertices have the same color, return O.
success = 0;
break;
end
end
if (success == 0)
% escape the FOR sentence.
break;
end
end
if (success==1)
% If there exists a 3-coloring solution, print it.
colorVector (i, :)
break;
end
end
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hoConvertBitTolndex.m :

function result=hoConvertBitToIndex (v)
% This convert Bit-representation of set of vertices to

% Index-representation. For example, let V = {1,3,5} be a set
% of vertices. V can be represent as [1,3,5] or [1,0,1,0,1].

% This function convert [1,0,1,0,1] to [1,3,5].

index = 1;
for i=1:size(v,2)
if (v(i)==1)
result (index)=1i;
index=index+1;
end
end

hoConvertlndexToBit.m :

function result=hoConvertIndexToBit (v,numVertex)
% This convert Index-representation of set of vertices to

% Bit-representation. For example, let V = {1,3,5} be a set of

% vertices. V can be represent as [1,3,5] or [1,0,1,0,1].
% function convert [1,3,5] to [1,0,1,0,1].

result = zeros (1,numVertex) ;
for i=1:size(v,2)

result (v(i))=1;

end

hoTranslateAdjMat.m :

function trans=hoTranslateAdjMat (A)

This

% This is a utility to help drawing the graph of A. When we

% draw i-th vertex of graph of A, the i-th row of ’trans’

% us which vertices should be adjacent to the i-th vertex.

% example, if the sixth row of ’trams’ is [1,4,0,0,0], we
% should draw line between first vertex and sixth vertex,
% between fourth vertex and sixth vertex when we draw the
% sixth vertex.
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for i=2:size(A,1)
tempIndex=1;
for j=1:i-1
if (A(i,j)==1)
trans(i-1,tempIndex)=j
tempIndex=tempIndex+1;
end
end
end

trans

If you have all the previously specified codes, then you can get the result just

by executing the following command.

--> hoRun
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4.3 Manual of the programs

This section contains an example describing how to use the codes.

The [A,faces] = hoGenRandAdjMat(20) command generates a random
adjacency matrix A of a maximal plane graph of order 20 and faces which is
a list of its faces.

--> [A,faces] = hoGenRandAdjMat (20)

A =
0111 110O0O0O0O0O0O0O0O0OO0OO0ODO0ODO0ODO0
1011 00110O0O0O0O0O0O0OO0OO0ODO0ODO0ODO0
1100100101 000O01O0O0O1O00O0

(omitted)

faces =

1 2 3
1 2 4
3 1 5
(omitted)

The [maxIndHubset,tempMaxIndHubset,B,indexB,facesB] =
hoSelectArbMaxIndHubset (A,faces) command generates an adjacency ma-

trix B obtained from A by removing the information of the vertices of degree

3. It also generates a vector tempMaxIndHubset that contains the information

of a maximal hubset of B.

--> [maxIndHubset ,tempMaxIndHubset ,B,indexB,facesB]=

hoSelectArbMaxIndHubset (A, faces)

maxIndHubset =

00O0O01O0O01

0
tempMaxIndHubset =
000010100

000O0OO0OO0OOO0O1O0O0
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B =
0111110000O00O00O0
101100100000
110010101011
11 0001101000
101001010110
100110011000
011100001000
000011001100
001101110101
000010011011
001010000101
001000001110
indexB =

i 2 3 4 5 6 8 9 10 12 15 18
facesB =

1 2 3

1 2 4

3 1 5

(omitted)

The [patch,patchFree,patchFree4Degree,sizeEqClass,
facesRemovedHub]=hoFindPatches (B, tempMaxIndHubset,facesB) command
finds patches (patch), patch-free vertices (patchFree), and some other infor-
mation. The patch is a 3-dimensional array of numbers. The member (m,n, )
of patch denotes the [-th vertex of the n-th equivalence class of the overedge
relation in the m-th patch. In the following example, there is one patch that
is refined into three equivalence classes. The vertices 1 and 9 are contained in
the first equivalence class of the first patch. ‘0’ means empty.

--> [patch,patchFree,patchFree4Degree ,hsizeEqClass,
facesRemovedHub]=hoFindPatches(B,tempMaXIndHubset,facesB)

patch =

(:,:,1) =
1 2 3

(:,:,2) =
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9

YY)
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patchFre

0

patchFree4Degree
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sizeEqClass
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facesRemovedHub
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0 O 00 =

3

2

O & O PN

3

O © O O b

The [C,eqClassVertexTable] = hoVirtualAdjMat(patch,patchFree,B
,tempMaxIndHubset) command creates a virtual adjacency matrix C of an

abstract graph on the sum of equivalence classes of patches and patch-free
vertices of degree more than 4 in B. In the example, C describes a triangle
since we had one patch without a patch-free vertex of degree more than 4.

--> [C,eqClassVertexTable]
tempMaxIndHubset)

G =

eqC

0
1
1
qCla
1

N R e O

W n O - =

sVertexTable

hoVirtualAdeat(patch,patchFree,B,

The colorVector=hoGencolorList (C,eqClassVertexTable) command gen-

erates colorVector which is a list of probable 3-colorings of C.

--> colorVector=hoGencolorList (C,eqClassVertexTable)

colorVector

1 2
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The success=hoCheck3Colorable(C,colorVector) command checks whether
the list contains a 3-coloring solution of C. If so, it returns success=1 and if
not, it returns success=0. This command also shows the 3-coloring solution.
The value of the n-th component of the vector ans is the color assigned to the
n-th vertex of C. We can find the vertex coloring of B with the information
contained in patch. In this example, vertices 1 and 9 would be colored with
color 1; vertices 2, 6, and 10 would be colored with color 2; and vertices 3, 4,
and 8 would be colored with color 3.
--> success=hoCheck3Colorable(C,colorVector)
ans =

1 2 3

success =
1

The checking process is finished. However, the hoTranslateAdjMat (B) helps
us to figure the graph of B. See the following.

--> hoTranslateAdjMat (B)

(omitted)

ans =

W W o woN PR PR
© 01 00 P OO Wb W NN O
O O © OO O b U1 O O O O
H O O N OO O o o o o
O O O 0 ©O O O © © © O

=
-
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From the matrix named ans, we can figure the graph on the paper. The n-th
row of ans shows what vertices would be the neighbors of the (n + 1)-th ver-
tex among n vertices (that are already drawn) when we draw the (n + 1)-th
vertex. For example, when we draw the sixth vertex on the paper, we draw
lines between the sixth vertex and the first vertex, between the sixth vertex
and the fourth vertex, and between the sixth vertex and the fifth vertex, since
the fifth row of ans is [1 4 5 0 0]. Note that whenever we finish adding a
vertex on the paper, There should be at most one face whose boundary is not
a triangle. Obviously, if there exists the unique face whose boundary is not a
triangle, then it is the unique unbounded face.

Figure 4.3.1: Drawing graph B.

Also, we can figure the hubs and their wheels with the help of the command
hoConvertBitToIndex (tempMaxIndHubset). In the example, hubs are the
fifth, seventh, and twelfth drawn vertices.

75



CHAPTER 4. COMPUTER EXPERIMENTS

--> hoConvertBitToIndex (tempMaxIndHubset)
ans =
5 7 12

Figure 4.3.2: Drawing hubs and wheels on graph B.

It shows that there is one patch, and the members of each equivalence class of
the patch are as the 3-dimensional array patch describes. We can easily find
a 4-coloring solution of this graph.
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Abstract

Vertex coloring of plane graphs

Ho-Seok Choe

Department of Mathematical Sciences
The Graduate School
Seoul National University

The four color theorem states that only four colors are needed to color the re-
gions of any simple planar map so that any two adjacent regions have different
colors. This theorem can be interpreted as finding a vertex coloring of plane
graphs. This thesis suggests a method to find a vertex coloring of plane graphs
with four available colors that includes the following steps:

(i) Convert the given map to a graph and find a maximal plane graph that

contains the graph.

(ii) Remove vertices of degree 3 from the maximal plane graph if they exist.

(iii) Find a hubset that is a set of independent hubs of wheels.

(iv) Color the vertices that are not the elements of the hubset with three
available colors.

(v) Color the vertices contained in the hubset with the fourth color.

(vi) Finally, apply the coloring result to the given map.

Using this process, we obtained a 98% success rate in computer experiments
for random graphs of order 40. We will discuss how to improve the coloring
process.

Key words: vertex coloring, plane graph, four color, 4-color
Student Number: 2009-20284
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Chapter 1

Introduction

1.1 What is the Four Color Theorem?

Suppose that we are going to make a (geographic) map of our nation or a
blueprint of our house. We would draw several lines to distinguish each region,
and color the regions to increase the visibility of our work. If we are only
interested in distinguishing the regions, at least how many colors do we need?
In other words, suppose that two regions have different colors if they share
a line as their boundary. Then, at least how many colors do we need? The
conjecture that only four colors are needed to complete such a coloring task for
an arbitrary map was first proposed in 1852 by Francis Guthrie [3]. At long
last, Kenneth Appel and Wolfgang Haken proved the four color theorem using
a computer in 1976, and their proof was improved in 1996 by Neil Robertson,
Daniel Sanders, Paul Seymour, and Robin Thomas [7].

A region is a connected open subset of the plane. A planar map is a set
of disjoint regions of the plane. A point is a corner of a map if it is contained
in the closures of at least three regions. Two regions of a map are adjacent if
their closures share a point that is not a corner. The four color theorem asserts
that only four colors are needed to color the regions of any simple planar map

so that any two adjacent regions have different colors [3].!

1[3] defines a planar map as a set of pairwise disjoint subsets called regions of the plane,
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1.2 Generalization of the Four Color Theorem

People may wonder where the number “4” comes from. And the dimensions,
the topological structures, or some properties of the spaces containing the given
map would probably cross their minds. Here are some examples that help us
check our conjectures.

Example 1.2.1.

Figure 1.2.1: Map that requires four colors to color the regions

In Figure 1.2.1, we show a map containing four regions (five regions if we
count the unbounded region) on a plane. All the regions are pairwise adja-
cent. Therefore, at least four colors are required to color this map.

and a stmple planar map as a planar map whose regions are connected open sets.
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Example 1.2.2.

2 D
il
Figure 1.2.2: Chessboard Figure 1.2.3: Pizza with odd pieces

Figure 1.2.2 and Figure 1.2.3 show maps that require less than 4 colors since
they have specific structures.

What if the spaces containing the maps are not two dimensional?

Example 1.2.3.

L1201 21 2.

% N NN

Figure 1.2.4: an interval of the real Figure 1.2.5: a circle
line

Figure 1.2.4 shows an interval of the real line R and It does not contain a
corner since any point p of R separates R \ {p} into two distinct partitions
({xr e R:z < p}and {x € R:x > p}). Therefore, if two regions A and B of
R share a point p as a common frontier and A has been assigned a color, say
color 1, then B can be assigned another color, say color 2. By repeating this
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work for another frontier of the sum of colored regions, we can color all the
regions with only two colors. Figure 1.2.5 shows a circle that can be viewed as
joining two ends of a bounded interval containing an odd number of regions.
The map in this figure requires three colors since the ends of the interval are
joined: The first region and the last region are not adjacent before joining the
ends, but they are adjacent after joining the ends. Compare Figure 1.2.5 with
Figure 1.2.3.

Example 1.2.4.

(@) (b)

Figure 1.2.6: regions of 3-dimensional space

In Figure 1.2.6, (a) shows a map with seven regions (containing a cylindri-
cal region) of 3-dimensional space. Most regions have shapes such as a sum of
a tube and a stick like (b). This map requires seven colors since all the regions
are pairwise adjacent. From this figure, we can guess the existence of maps
that require infinitely many colors: by adjusting some parameters (width of
stick, height of tube, and so on) of each region, and adding more regions of
similar shape, we can make a map that requires as many colors as we want.
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As the previous example shows, it seems pointless to consider this type
of problem for maps of three or higher dimensional spaces. Instead, let us
consider maps of 2-dimensional surfaces embedded into a 3-dimensional space.
The next example shows that the coloring problems are more complicated and
that the topological structures presumably influence the number of required
colors.

Example 1.2.5.

v

Figure 1.2.7: a map of torus requir- Figure 1.2.8: annulus in the plane
ing seven colors and annulus in a torus

Figure 1.2.7 shows a map of a torus requiring seven colors. As we obtain
a new adjacency condition by joining the ends of an interval (a region of the
real line) in Example 1.2.3, we may get new adjacency conditions by pasting
the opposite edges of a square (a region of the plane). In Figure 1.2.8, A is an
annular region with its two frontiers B and C' in a plane. A’ is also an annular
region with its two frontiers B’ and C” in a torus. A separates its exterior into
two pieces but A" does not. If there was a regions whose frontier intersects with
B and another region whose frontier intersects with C' in the plane, these two
regions would never be adjacent. However, if there was a region whose frontier
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intersects with B’ and another region whose frontier intersects with C’ in the
torus, these two regions may be adjacent. Considering the fact that a cycle
(or a polygon) is a deformation retract of an annulus [6], the plane case agrees
with the Jordan curve theorem (Theorem 2.2.1), but the torus case does not.

1.3 Maps with finite regions

In this thesis, we treat maps that contain finite regions of the plane. However,
a map may have two or more unbounded regions and we may want to find
another map that conserves the adjacency of all the pairs of regions and has
only one unbounded region.

Y
)X_’ §? A

rotu

_—
1 0 0
0 cos 180" -sin 180°

0 sin 180° cos 180",

A

Figure 1.3.1: Example of getting a map that has only one unbounded
region from another map that has four unbounded regions.

Recall the well-known stereographic projection 7 : S? \ N — R? where S?
is a unit sphere, N = (0,0,1) is the north pole of the sphere, and R? is the
plane isomorphic to the plane {(z,y, z)|z = 0} in three-dimensional space [5].
With the help of this projection, we can find the wanted map. Assume that

.-';r'\-\.-'! -k::l - 1_] ."‘.l'l

1V
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a map M of the plane has two or more unbounded regions, say Ry, Rs, - - R,.
Considering that 77! (R;) and 7~ !(R;) are distinguished in S? (1 < i # j < n),
it is reasonable to treat the north pole N as a point contained in frontier of
every m '(Ry), where k = 1,2,--- ,n. Let roty; : S — S? be a rotation of
5% such that the north pole N is contained in roty (7! (R)) for some R € M.
Let us remove N and re-send regions of roty (7~ *(M)) to the plane by the
projection 7 so that we obtain a new map of the plane that contains only one
unbounded region. This method does not break the adjacency of the regions
since the projection 7 and the rotation rot,; are continuous and bijective. If
we want a region with special properties to be unbounded, we can use a similar
method.

&

| &1



Chapter 2

Graph representation

This chapter introduces the standard terminologies and some well-known facts
from [2].

2.1 Graphs

A graph is a pair G = (V, E) of sets such that E C [V]?. The elements of V'
are the vertices of the graph (G, the elements of £ are its edges. The usual
way to picture a graph is by drawing a dot for each vertex and joining two of
these dots by a line if the corresponding two vertices form an edge.

A graph with vertex set V is said to be a graph on V. The vertex set of
a graph G is referred to as V(G), its edge set as F(G). We shall not always
distinguish strictly between a graph and its vertex or edge set. For example,
we may speak of a vertex v € G (rather than v € V(G)), and edge e € G, and
so on.

The number of vertices of a graph G is its order written as |G|, and the
number of its edges is denoted by |G|

A vertex v is incident with an edge e if v € e. And e is an edge at v.
The two vertices incident with an edge are its endvertices or ends, and an edge
joins its ends. An edge {x,y} is usually written as zy (or yx). If z € X and
y € Y, then xy is an X — Y edge. The set of all X —Y edges in a set F
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is denoted by E(X,Y); instead of E({z},Y) and E(X,{y}) we simply write
E(z,Y) and E(X,y). The set of all the edges in E at a vertex v is denoted by
E(v).

Two vertices x,y of G are adjacent or neighbors, if xy is an edge of G.
Also, two edges e # f are adjacent if they have an end in common. If all the
vertices of GG are pairwise adjacent, then G is complete. A complete graph on
n vertices is a K™. K3 is called a triangle. Pairwise non-adjacent vertices or
edges are called independent. More formally, a set of vertices or of edges is
independent (or stable) if no two of its elements are adjacent.

Let G = (V,FE) and G’ = (V' E’) be two graphs. We call G and G’
isomorphic, and write G ~ G’ if there exists a bijection ¢ : V — V' with
xy € E < ¢(x)p(y) € E' for all z,y € V. Such a bijection ¢ is called an
isomorphism.

A class of graphs that is closed under isomorphism is called a graph prop-
erty. For example, ‘containing of triangle’ is a graph property.

We set GUG" := (VUV/, EUE") and GNG' = (VNV' ENE'). V' CV
and E' C F then G’ is a subgraph of G (and G a supergraph of G'), written as
G' C G. If G C G and G’ contains all the edges ry € E with x,y € V’, then
G’ is an induced subgraph of G and we say that V' induces or spans G’ in G,
write G’ =: G[V'].

If U is any set of vertices (usually of G), we write G — U for G[V \ U]. If
U = {v} is a singleton, we write G—v rather than G—{v}. Instead of G-V (G")
we simply write G — G'. For a subset F of [V]? we write G — F := (V,E \ F)
and G+ F = (V,EUF). As above, G — {e} and G + {e} are abbreviated
to G —e and G + e. We call G edge-mazximal with a given graph property
if G itself has the property but no graph G + zy := (V, E U {zy}) does, for
non-adjacent vertices z,y € G.

The set of neighbors of a vertex v in G is denoted by Ng(v) or briefly by
N(v). More generally for U C V, the neighbors in V' \ U of vertices in U are
called neighbors of U, denoted by N(U).

The degree dg(v) = d(v) of a vertex v is the number |E(v)|. The number
d(@) := min{d(v)|v € V'} is the minimum degree of G, the number A(G) :=
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max{d(v)|v € V'} is its mazimum degree. The number

d(G) = % S d(w)

veV

is the average degree of G. If we sum up all the vertex degrees in G we count
every edge exactly twice: once from each of its ends. Thus

B = %d(G) V. (2.1.0.1)

A path is a non-empty graph P = (V, E) of the form
V={zo, 1, -, i}, B = {071, 0172, , Tp_174}

where the x; are all distinct. The vertices xy and xp are linked by P and
are called its ends. The vertices x1,---x,_1 are the inner vertices of P. The
number of edges of a path is its length. We often refer to a path by the natural
sequence of its vertices, writing P = xqz - - - 1, and calling P a path from xq
to xy, (as well as between xy and zy).

Given sets A, B of vertices, we call P = x¢---x, an A — B path if V(P)N
A = {xo} and V(P) N B = {xx}. As before, we write a — B path rather than
{a} — B path, etc.

If P=xqxy---xp_1is a path and k > 3, then the graph C' := P+x;_1x is
called a cycle. As with paths, we often denote a cycle by its (cyclic) sequence
of vertices such as C' = xq, -+ ,Tr_1,x9. The length of a cycle is its number of
edges (or vertices). An edge that joins two vertices of a cycle but is not itself
an edge of the cycle is a chord of that cycle. An induced cycle in G, a cycle in
G forming an induced subgraph, is one that has no chords.

A non-empty graph G is called connected if any two of its vertices are linked
by a path in G. A maximal connected subgraph of G is called a component of
G.

An acyclic graph, one not containing any cycles, is called a forest. A
connected forest is called a tree. The vertices of degree 1 in a tree are its
leaves.

10
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Let r > 2 be an integer. A graph G = (V| E) is called r-partite if V admits
a partition into r classes such that every edge has its ends in different classes.
Vertices in the same partition class must not be adjacent. Instead of ‘2-partite’
one usually says bipartite. An r-partite graph in which every two vertices from
different partition classes are adjacent is called complete multipartite(r-partite)
graph and denoted by K, ... ,, where each n; is the number of vertices of each
partition class. If ny = --- = n, =: s we abbreviate this to K.

Let e = zy be an edge of a graph G = (V, E). By G /e we denote the graph
(V') E') with vertex set V' := (V \ {z,y}) U {v.} and edge set

E":={vw € E{v,w}n{z,y} = 0} U{vew|zw € E\ {e}or yw € E'\ {e}}.

More generally, if X is another graph and {V,|z € V(X)} is a partition
of V into connected subsets such that, for any two vertices x,y € X, there is
a V, —V, edge in G if and only if zy € E(X), we call G an M X and write
G = MX. The sets V, are the branch sets of this MX. If G = MX is a
subgraph of another graph Y, we call X a minor of Y and write X Y.

If we replace the edges of X with independent paths between their ends
(so that none of these paths has an inner vertex on another path or in X)), we
call the graph G obtained a subdivision of X and write G =TX. f G =TX
is the subgraph of another graph Y, then X is a topological minor of Y.

2.2 Planar graphs

A straight line segment in the Euclidean plane is a subset of R? that has the
form {p + Mg — p)|0 < X < 1} for distinct points p,q € R%. A polygon is a
subset of R? that is the union of finitely many straight line segments and is
homeomorphic to the unit circle S'. A polygonal arc, or simply an arc, is a
subset of R? which is the union of finitely many straight line segments and
is homeomorphic to the closed unit interval [0,1]. The images of 0 and of 1
under such a homeomorphism are the endpoints of this polygonal arc, which
links them and runs between them. If P is an arc between x and y, the point
set P\ {x,y} is the interior of P and we denote it by P.

11
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Let O C R? be an open set. Being linked by an arc in O defines an
equivalence relation on O. The corresponding equivalence classes are again
open and they are the regions of O. The frontier of a set X C R? is the set
Y of all points y € R? such that every neighborhood of 4 meets both X and
R%\ X.

Theorem 2.2.1 (Jordan Curve Theorem for Polygons). For every polygon
P C R? the set R?\ P has exactly two regions. Each of these has the entire
polygon P as its frontier.

A good account of the Jordan curve theorem is given in [8] or [6].

Lemma 2.2.2. Let P, P, P; be three arcs, between the same two endpoint
but otherwise disjoint.

(i) R?\ (PyUPU P) has exactly three regions, with frontiers PyUP,, P,U P3
and P U P;.

(ii) If P is an arc between an inner point of P; and an inner point of Pj,
whose interior lies in the region of R? \ (P, U P3) that contains P», then
PPy #£0.

A plane graph is a pair (V, E) of finite sets with the following properties
(the elements of V' are again called vertices, those of E edges):

(i) V C R%

(ii) every edge is an arc between two vertices;

(i)

(iv)

For every plane graph G, the set R? \ G is open. Its regions are the faces of

G. We denote the set of faces of G by F(G).
The subgraph of G whose point set is the frontier of a face f is said to

different edges have different sets of endpoints;

the interior of an edge contains no vertex and no point of any other edge.

bound f and is called its boundary, and we denote it by G|[f]. A face is said
to be incident with the vertices and edges of its boundary.

A plane graph G is called maximally plane, or just mazimal, if we cannot
add a new edge to form a plane graph G’ 2 G with V(G’) = V(G). We call G

12
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a plane triangulation if every face of G (including the outer face) is bounded
by a triangle.

A wheel W, is a graph with n vertices (n > 4) formed by connecting a
single vertex v to all vertices of an (n — 1)-cycle. The single vertex v is hub
and the edges incident with v are called spokes. We simply denote it by W
when we do not need to consider the length of the cycle. If W is a wheel in a
graph G and h is its hub, we say that h forms a wheel W in G.

Proposition 2.2.3. A plane graph of order at least 3 is maximally plane if
and only if it is a plane triangulation.

Theorem 2.2.4 (Euler’s Formula). Let G be a connected plane graph with n
vertices, m edges, and [ faces. Then

n—m+1l=2 (2.2.4.1)

Corollary 2.2.5. A plane graph with n > 3 vertices has at most 3n — 6 edges.
Every plane triangulation with n vertices has 3n — 6 edges.

An embedding in the plane, or planar embedding, of an (abstract) graph G
is an isomorphism between G and a plane graph H. The latter will be called
a drawing of G. A graph is called planar if it can be embedded in the plane.
A planar graph is mazimal, or maximally planar, if it is planar but cannot be
extended to a larger planar graph by adding an edge (but no vertex).

Proposition 2.2.6.

(i) Every maximal plane graph is maximally planar.
(ii) A planar graph with n > 3 vertices is maximally planar if and only if it
has 3n — 6 edges.

Theorem 2.2.7 (Kuratowski 1930; Wagner 1937). The following assertions
are equivalent for graphs G:

(i) G is planar;

(ii) G contains neither K® nor K33 as a minor;

iii) G contains neither K® nor K33 as a topological minor.
) g

13
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2.3 Plane graph representation of a map

For a given map V = {vy,vq,--- ,v,} of plane (n > 4), let us define F :=
{vw C Vv, w are adjacent }, then G = (V,E) forms a graph on V. Two
adjacent regions (their closures share a point that is not a corner) in V' are
also adjacent (they are joined by an edge) in G. The graph G is planar since
G has a drawing H in the following sense: let V' := {p1,ps, -+, pn} be a set of
inner points of regions of the plane such that p; € v; for each i = 1,2,--- n.
For an adjacent pair of regions, v; and v;, there exists a point ¢ that is not a
corner on a common frontier of v; and v;. Let P; ; be an arc from p; to ¢ lying
in v1, and F,; be an arc from ¢ to p, lying in vy. Let P, ; := P, ,U P, ; be the
sum of the arcs and E’ be the set of such P, ;. Let us define a drawing H on
V', setting H := (V' E’). Then, we can find (graph) isomorphism ¢ : V' — V'
such that ¢(v;) = p; and ¢(v;v;) = P, ;. Therefore, we can convert the coloring
problem of a map of the plane to the coloring problem of vertices of a plane
graph.

A wvertex coloring of a graph G = (V, E) is a function ¢ : V' — S from the
vertex set V' to a set S such that ¢(v) # c¢(w) whenever v and w are adjacent.
The elements of the set S are called the available colors. The smallest integer
k is the (vertex-) chromatic number of G if G has a k-coloring that is a vertex
coloring ¢ : V- — {1,--- ,k}. We denote the chromatic number by x(G). A
graph G with x(G) = k is called k-chromatic; if x(G) < k, we call G k-
colorable [2]. We also call a vertex coloring with |S| < n an n-coloring solution
of G. Clearly, we are looking for the 4-coloring solutions.

Suppose that G and G + xy are plane graphs such that x,y € G are non-
adjacent vertices. Then all the coloring solutions of G+ zy are also the coloring
solutions of G. Therefore, we have only to consider a maximal plane graph
containing the given graph G. By Proposition 2.2.6, we shall not distinguish
between maximal plane graphs and maximal planar graphs. And by Proposi-
tion 2.2.3, all the faces, including unbounded faces, of maximal plane graphs
are bounded by triangles.

Proposition 2.3.1. Let G be a maximal plane graph with n vertices. The
minimum degree 6(G) of G is at least 3.
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CHAPTER 2. GRAPH REPRESENTATION

Proof. By Corollary 2.2.5, G has 3n — 6 edges. A graph G’ obtained by re-
moving vertices or edges from G is also a plane graph. Suppose that there is
a vertex v of degree 2. Set G’ := G — v. Then the order |G'| of G’ is n — 1
and the number ||G’|| of its edges is 3n — 6 — 2 = 3n — 8 since the degree of
v is 2. However, ||G'|| = 3n — 8 > 3(n — 1) — 6 and by Corollary 2.2.5, this
contradicts the fact that G’ is a plane graph. m

Proposition 2.3.2. Let G be a maximal plane graph with n vertices and
v € G be a vertex of degree 3. Then the graph G’ := G — v is also a maximal
plane.

Proof. The number of edges of G’ is (3n—6) —3 = 3(n—1)—6 and by Corollary
2.2.5, ¢ is maximally plane. O

Suppose that G has a vertex v of degree 3. Let vy, vy, v3 be the neighbors
of v. If we can find a 4-coloring solution ¢ : V(G —v) — S of G — v, then we
also can find a 4-coloring solution of G by extending c: define ¢(v) := s where
s € S\ c({vi,v2,v3}). By Proposition 2.3.2, G — v is also maximally plane.
Therefore, we have only to consider a maximal plane graph with a minimum
degree at least 4.

Applying Equation 2.1.0.1 to a maximal plane graph G of order n with
d(G) > 4, we could easily obtain that

d(G) % (2.3.2.1)
= w (2.3.2.2)

— 6-— % (2.3.2.3)
(2.3.2.4)

. lim d(G) =6. (2.3.2.5)

This means that most vertices have degrees less than 6.
Digressively, the fact that a graph G of order at least 4 has a 4-coloring
solution is equivalent to the fact that G is 4-partite: assume that G has a
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4-coloring solution ¢ : V(G) — S. As an equivalence relation, the 4-coloring
solution defines four or less equivalence classes on V(G), and vertices of the
same class are independent. Since the n-partite graph of order m is also m-
partite where m > n, GG is 4-partite. Conversely, assume that G is 4-partite.
Let us define a coloring solution ¢ on V(&) such that ¢'(v) = ¢(w) if v, w are
in the same class and ¢(v) # ¢/(w) if v,w are in different classes. Then the
number of the range of ¢’ is at most 4.

If we can prove that if an arbitrary graph G is not 4-partite, then it con-
tains K° or K33 as a minor or a topological minor so that it is not a planar
graph by the Theorem of Kuratowski and Wagner (Theorem 2.2.7), then the
contraposition asserts that all planar graphs are 4-partite, and therefore have
4-coloring solutions.

Notation 2.3.3. We can assume that a map has only one unbounded region
(Section 1.3). Let G be a maximal plane graph containing a subgraph that
represents the given map, and let a vertex v of G represent the unbounded
region of the map. The edges at v complicate the figure of G. Thus, in this
thesis, the edges at v would be omitted and the vertex v would be at the proper
location in the figures of the graph representation. And we would represent an
edge as a smooth curve even if it is defined as a polygonal arc which is a union
of finitely many straight line segments. We can easily distinguish the vertices
in the figure of a graph since all vertices have degrees at least 4 by Proposition
2.3.2. See the following example.

Example 2.3.4.

(a) (b)
Figure 2.3.1: prefer (b) rather than (a)

Both (a) and (b) of Figure 2.3.1 denote K*. We use a line segment for rep-
resenting an edge. But when it is difficult, we use smooth curves such as (b)
rather than a union of finite line segments such as (a).
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Example 2.3.5.

(a) (b) (c)

Figure 2.3.2: prefer (c) rather than (b) for a graph notation of map (a)

In Figure 2.3.2, (b) and (c) are the same graph representations of map (a).
(c) is obtained from (b) omitting edges at the vertex v that represents the
unbounded region of map (a). We prefer figures such as (c) rather than figures
such as (b) for a graph representation of a map.

Proposition 2.3.6 (Five Color Theorem). Every planar graph is 5-colorable.
The proof of the Five Color Theorem is given in [2].

Theorem 2.3.7 (Grotzsch 1959). Every planar graph not containing a triangle
is 3-colorable [2][9].

17
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Chapter 3

Finding a 4-coloring solution

In this chapter, we will discuss how to color the vertices.

3.1 An introduction of a coloring method

Let G be a plane graph and v be a vertex of G. Assume that we will color
the vertices of G’ one by one and that v have £ number of colored neighbours
at a moment. Let S denote a set of all colors that have been assigned to the
neighbors. Clearly, |S| =: n < k < dg(v). Then, we say that v has n colors on
its neighbors. If a vertex v has n colors on its neighbors and another vertex w
has m colors on its neighbors and m < n, then we say that v has more colors
on its neighbors than w or that w has less colors on its neighbors than v.

In a plane graph G, a maximal triangle patch without a wheel or simply a
patch is a subgraph P of G with the following properties:

(i) P is a triangulation.
(ii) P does not contain a wheel graph.
(iii) If a triangle T} of G shares an edge with a triangle T, of P, then T} is
also a triangle of P.

A patch P is simple if the closure of the sum of all its faces is a simple region
of the plane. Let P be a set of all patches of G. A vertex v of G is patch-free
from P or simply patch-free if v is not contained in any member of P.

18



CHAPTER 3. FINDING A 4-COLORING SOLUTION

In a maximal plane graph G, an independent hubset or simply a hubset is
a set H of independent vertices such that each member is a hub of a wheel in
G. H is mazimal if G — H does not contain any wheels. Let us refer to the
members of a hubset as hubs unless any confusion arises.

Let G be a plane graph, v be a vertex of G, ¢ : V(G) — S be a vertex
coloring of G, and A be a subset of V(G). A usually does not contain v. A
set of adjacent colors of v with respect to c|4 is the image set ¢|4(A N Ng(v))
in S and it is denoted by AC,,(v) or simply AC.(v) or AC(v). The number
|AC.(v)| is the AC-number of v.

Let G be a plane graph of order n. We would like to color its vertices one
by one. Since we do not have enough colors, we should decide which vertex
to color. If, at a moment, a non-colored vertex v € G has three colors on its
neighbors and we have only four available colors, we have to color this vertex
v rather than other vertices. It seems natural to select a vertex that has more
colors on its neighbors rather than other vertices that have less colors on their
neighbors, among the non-colored vertices. In such a point of view, we can
consider a coloring method by constructing a finite sequence of pairs (G, cx.)
in the following way:

(i) G1 = ({v1},0) where v; € V(G).
(ii) Define a vertex coloring, ¢; : Gy — S on G.
(iii) Define an induced subgraph Gy := G[Gj_1 U {vg}], where v, € G\ Gg_1
is a vertex such that the AC-number |AC., _, (vg)| is maximum.

(iv) Define a vertex coloring, ¢ : Gj — S such that c¢|g,_, = cx—1 and
Ck(’l)k) < S \ ACCk—l (U)

The above process does not always work for a 4-element set S, say {1,2,3,4}.
To improve the above process, we can add other conditions for selecting vy or
a process for exchanging some assigned colors. However, this thesis suggests
another way:

(i) Convert the given map to a graph and find a maximal plane graph that
contains the graph.

(ii) Remove vertices of degree 3 from the maximal plane graph if they exist.
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CHAPTER 3. FINDING A 4-COLORING SOLUTION

(iii) Find a hubset in the graph.
(iv) Color the vertices that are not the elements of the hubset with three
available colors.

(v) Color the vertices contained in the hubset with the fourth color.
(vi) Finally, apply the coloring result to the given map.

3.2 Examples of coloring

Example 3.2.1. Find a coloring solution of the given map, Figure 3.2.1.

Figure 3.2.1: given map
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CHAPTER 3. FINDING A 4-COLORING SOLUTION

Figure 3.2.2: Step 1

Solution. Step 1: Find a graph representation of the given map in Figure 3.2.1
as described in Section 2.3.

Figure 3.2.3: Step 2

Step 2: Omit the edges at a in the same way as Figure 2.3.3 in Example
2.3.5, where a is the vertex that represents the unbounded region of the given
map.
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Figure 3.2.4: Step 3

Step 3: By Proposition 2.2.3, the graph in Figure 3.2.3 is not a maximally
plane since it contains two faces whose boundaries are not triangles. Find a
maximal plane graph containing Figure 3.2.3.

Figure 3.2.5: Step 4, a graph G

Step 4: By Proposition 2.3.2 and the arguments below, the vertex b in Figure
3.2.4 can be removed since its degree is three. Let GG denote this graph.
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aO

Figure 3.2.6: Step 5

Step 5: Find a hubset H. In Figure 3.2.6, the hubs are represented by white
circles. Note that a is also a hub of a wheel.

Figure 3.2.7: Step 6

Step 6: Following the vertex-selecting order discussed in Section 3.1, color
the patches of G — H with three available colors, say color 1, color 2, and color
3. Note that if G — H had not contained any patches, this step would have
been a specific example of the Grotzsch’s theorem (Theorem 2.3.7).
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Figure 3.2.8: Step 7

Step 7: Color the hubs with color 4. Note that we never used color 4 at
Step 6 and that all the hubs are independent by the definition of the hubset.

Figure 3.2.9: Step 8

Step 8: Apply the coloring result to the original graph in Figure 3.2.3 ob-
tained at Step 2. Do not forget to color the vertex b that was removed at Step
4. We have only to assign b color 2 since AC(b) = {1, 3,4}.
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|

Figure 3.2.10: Step 9

b
== [

Step 9: Color the region of the given map according to the vertex coloring
we have found. O

The coloring process such as the one in Example 3.2.1 does not always
success. See the following examples.
Example 3.2.2.

(a) Unsuccessful (b) Successful

Figure 3.2.11

Figure 3.2.11 shows the different choices of hubsets for the same graph. (a)
shows the wrong choice of hubset — the ends of an edge e have the same color.
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CHAPTER 3. FINDING A 4-COLORING SOLUTION

Example 3.2.3.

(a@) Unsuccessful (b) Successful (c) Successful

Figure 3.2.12

Figure 3.2.12 also shows the different choices of hubsets for the same graph.
The ends of one of the edges {e, f,g} in (a) have the same color: lower ends
of these edges must have the same color, color 1 as figured, but the upper
ends of the edges must have pairwise different colors. Since we have only three
available colors, it is unsuccessful by the pigeonhole principle.

Example 3.2.4.

(@) Unsuccessful (b) Successful (c) Successful

Figure 3.2.13

In Figure 3.2.13 (a), every vertex of a triangle A has color 3 on its neigh-
bors. Thus, it is unsuccessful since we have only three available colors for the
vertices of the triangle A. A path eU f of length 2 has color 1 on one end and
color 2 on the other end. Therefore, the only inner vertex has to be assigned
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color 3. Every inner vertex of paths P and @) plays a role as a buffer that
prevents the failure of coloring since it always has two neighbors except hubs
so that it has at most two colors on its neighbors before coloring hubs.

Example 3.2.5.

Successful

1
)

(@) Unsuccessful (b

Figure 3.2.14

In Figure 3.2.14 (a), P is a path of length 3 and both of its ends have been
assigned color 1. Therefore, one of the two inner points of P has to be colored
with color 2. However, the triangle A contains the two inner points of P, and
has another vertex that already has been colored with color 2. Therefore, (a)
is unsuccessful.

3.3 Observations

Definition 3.3.1. Let GG be a plane graph containing at least one triangle. An
overedge sequence is a sequence {vy,vg, - - - } of vertices such that there exists
an edge e; that is the opposite edge of vertex v; in a triangle T" and the opposite
edge of vertex v;;1 in a triangle 7" of GG. Note that T and 7" can denote the
same triangle, and that v; and v; can denote the same vertex even if ¢ # j.
Two vertices v; and vy of G are overedge if there exists an overedge sequence
containing both v; and v,.
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Proposition 3.3.2. For the vertices in a patch P, the overedge relation is an
equivalence relation.

Proof. (Reflexivity) Since P is a triangulation, for any vertex v of P, there
exists a triangle T" that contains v. Let e be an opposite edge of v in T', then
a sequence {v,v,---} is an overedge sequence since e is an opposite edge of
every element of the sequence in 7T'.
(Symmetry) If v; and vy are members of a sequence, then vy and v; are also
members of the sequence.
(Transitivity) Assume that v; and v; are members of an overedge sequence
A, and v; and v, are members of an overedge sequence B. Then we have a
subsequence {v;, - -+ ,v;} of A and another subsequence {v;,--- ,v;} of B. By
joining the two sequences, we get an overedge sequence {v;,--- ,v;,- - , U}
m

Proposition 3.3.3. The overedge relation defines three equivalence classes on
a simple patch P.

Proof. Let P be a simple patch and 77 be a triangle of P. We have three
distinct pairs, each of which is a form of (v}, e?) such that v! is an opposite
vertex of edge e} where i = 1,2, 3. Let T, be another triangle of P that shares
an edge e} with T}. There is only one opposite vertex of the edge e! in T, and
let v4 denote this vertex. Similarly, in a triangle T; of P that shares an edge
e, with 77 U --- U Tj_y, let the opposite vertex of e, be denoted by v}, for
some index k. Note that T} shares only one edge with 71 U---UT;_; and that
there exists only one opposite vertex of e in T} since P is simple and it does
not contain any wheels. Therefore, a vertex v of T} U - -- U T} cannot have two
notations; for example, v,?l =v = v,g where i; # iy, so that the number of
equivalence classes is less than three. O

Corollary 3.3.4. A simple patch P requires exactly three colors to color its
vertices. Two vertices v and w of P have the same color if they are overedge.

Proof. Assume that the two vertices v and w are overedge in a simple patch
P. Then v and w are non-adjacent in P since P does not contain K* that is
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a wheel graph. (However, v and w can be adjacent in a supergraph of P. See
the Example 3.3.7.) Therefore, we can assign the same color to vertices in the
same equivalence class. By Proposition 3.3.3, we need exactly three colors. [J

Assume that we find a maximal hubset H of a plane graph G. Consider
the graph G — H. A patch has six numbers of 3-coloring solutions since a
triangle also has six numbers of 3-coloring solutions. And for a colored patch
P, if we want a vertex v € P that was already colored to have a different color,
we can just exchange the color of [v] and the color of [w], where [v] and [w]
are the different equivalence classes containing v and w, respectively.

Let us consider how a colored patch affects the colorings of another patch
in G — H. Assume that P and @) are two patches and P has been colored. If
they share a vertex v, then we have two choices of 3-coloring solutions for Q).
If the patches are linked by an edge vw where v € P, w € @), then we have
four choices of 3-coloring solutions for (). If the patches are linked by a P — @)
path vuw of length 2, where v € P, w € (@), then the vertex coloring of P
does not affect the choice of the vertex coloring of ). Even if the ends of the
path have different colors, we can always assign the third color to the inner
vertices of the path since the degree of all the inner vertices is 2 in G — H.
This means that a coloring of P never affects the coloring of @) if all P — @)
paths have lengths at least 2. Such a path of length at least 2 can be seen
as a graph representation of an interval of the real line such as Figure 1.2.4.
Three available colors are enough to color maps of such an interval. When
we finish coloring some patches and if there does not exist non-colored vertex
of AC-number 2, we should select a vertex that is contained in a non-colored
patch linked to the sum of colored patches by a path of shorter length. Note
that a vertex that is shared by two patches can be thought as a linking path of
length 0. However, which vertices would be the inner vertices of such a path
linking two patches in G — H? The answer is vertices of degree 4 in G.

Proposition 3.3.5. Let G be a maximal plane graph with 6(G) > 4 and H be
a maximal hubset of G. Let W' and W? be two wheels such that hi, hy € H
are hubs of W' and W2, respectively, and W' and W? share a path P of length
at least 2. Then the degree of the inner vertices of P is 4 in G.
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Proof. Let v be an inner vertex of P. Then we obtain dg(v) > 4 since 6(G) > 4.
The vertex v has two neighbors v; and vy in P and two neighbors hy and hy
that are not vertices in P. However, v does not have any other neighbors:
each vhyv;v (i,j7 = 1,2) forms a triangle. If a vertex w is inside of one of
the triangles, the degree dg(w) of w is 3 since G is maximally planar. This
contradicts the assumption that 6(G) > 4. If w is outside all the triangles, this
also contradicts the Jordan curve theorem (Theorem 2.2.1) since hyvyhovohy
forms a cycle containing all the triangles. O

For a maximal hubset H of a maximal plane graph G, we can always color
the patch-free vertices of G — H with 3 available colors if they have degree 4
in G. However, if a patch-free vertex v of G — H has a degree at least 6 in G,
we are not always able to color the vertex v. See the next example.

Example 3.3.6.

(coloring order, color)

O :hubs
P, Q R, S: patches

Figure 3.3.1
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Due to the wrong choice of a maximal hubset, finding a 3-coloring solution is
unsuccessful (Figure 3.3.1). Let v; denote the i-th colored vertex in the figure.
We start coloring v; with color 1 and we have no problem until the vertex vy is
colored with color 2. In patch @), vs, vs and v; should be colored with color 2
since they are overedge with v, which has been colored with color 2. When we
color the vertex vg, we have to color it with color 1 because if we color it with
color 3 then v which is not a hub, would have three colors on its neighbors.
Also, v already has hubs that would be colored with color 4 as its neighbors;
thus, v would require the fifth color. This implies that vy should be colored
with color 3. Since vy is overedge with wvg, it should be colored with color 3.
Finally, v requires the fifth color.

A patch-free vertex such as v in Figure 3.3.1 has a degree at least 6.
However, Equation 2.3.2.5 says that such a vertex does not appear frequently.
Despite this, we can usually find another 3-coloring solution by exchanging
colors of two classes of some patches. As Example 3.3.6 states, if there is no
3-coloring solution, we should take another maximal hubset.

Example 3.3.7.
O O : vertices in overedge relation

(a) (b) ()

Figure 3.3.2
The patch of (a) in Figure 3.3.2 is not simple and the overedge relation cannot
define three equivalence classes. (b) shows that two ends of an edge e that are
contained in different patches. They are overedge with a vertex v so that they
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are also overedge. (c) shows a situation similar to the case of (b), two vertices
are overedge in a patch but they are linked by an edge e.

Situations such as the next example frequently occur.

Example 3.3.8. Consider a path P of length 3 whose ends are colored with
the same color, say color 1. Then the two inner vertices v; and v, have to be
colored with color 2 and color 3 or with color 3 and color 2, respectively. See
Figure 3.2.14 in Example 3.2.5.

The previous example shows that although the length of a path (that links
two patches) is at least 2, if some inner vertices of the path have degrees more
than 4, we have to consider these inner vertices when we color the patches
containing some of these inner vertices or the patches containing other vertices
that are adjacent to some of these inner vertices.

What should we also consider? Let G be a maximal plane graph and H
be a maximal hubset in G. Let G’ be a graph on P U P where PP is the set of
patches in G — H and P is the set of patch-free vertices that have degree at
least 2 in G — H. Let us define an edge set E(G’) of G’ such that vw € E(G’) if
v,w € V(G') share a vertex or are linked by an edge. Obviously, G’ is a plane
graph. The difficult concepts are perhaps the cycles in G’ because a coloring
of a vertex v € G’ affects the coloring of other vertices along the cycles of G’
that contain v and it affects v again. Since the cycles containing v may form
complex structures in G’ or the colorings of two neighbors of v may affect each
other, we should consider the structure when we color v. However, we should
only consider the subgraphs of G’ that are isomorphic to the subdivisions of two
complete graphs, K? and K*, since the Theorem of Kuratowski and Wagner
(Theorem 2.2.7) asserts that any subdivision of K™ for n > 5 does not appear
in the planar graph G’. Let K be a subdivision of a complete graph containing
vin G'. Set a weight on each edge of K for vw € E(K): if v and w share n
vertices and are linked by m edges, then set the weight W (vw) of vw € E(K)
as 3n+2m. The quantity (3_.c () W(e))/| K| can be a standard for guessing
the success rate of coloring locally. The heavier weight, the harder it is for the
coloring to be successful.

32



CHAPTER 3. FINDING A 4-COLORING SOLUTION

We have to choose a “good” maximal hubset. Most of the unsuccessful
cases of the previous examples contain a patch comparatively bigger than the
patches of the successful cases if we define the size of a patch as the number of
its faces. It seems better to break the “big” patches into smaller pieces. Assume
that we construct a maximal hubset H by adding new members (hubs) one by
one. To avoid generating “big” patches or non-simple patches, we can select
a vertex as a new hub forming a wheel that shares as many edges as possible
with some other wheels that are formed by the hubs that we already found.

It would also be better to take a hubset H in plane graph G such that
the patches in G — H are linked by paths of longest possible length. By
Proposition 3.3.5 and the arguments before it, it seems better not to select
vertices of degree 4 in G as members of the hubset. However, for a maximal
plane graph G containing vertices of degree 4, assume that we have found
a “good” hubset H so that we have a 4-coloring solution ¢ that assigns the
members of H color 4 and assigns some other vertices of degree 4, without loss
of generality, color 1. Note that the other vertex coloring ¢’ obtained from ¢
by exchanging color 1 and color 4 is also a 4-coloring solution of G. Inversely,
we can find another hubset H' by taking vertices that are assigned color 4 by
¢ as its members. H’ contains vertices of degree 4 in G, and it may not be a
maximal.

We suggest the following conditions for finding a maximal hubset.

(i) Select a vertex as a new hub such that the wheel formed by this hub
shares as many edges as possible with other wheels formed by hubs that
are already selected.

(ii) If a vertex v is overedge with a hub h that we already found, and if v
and h are simultaneously adjacent to other 4-degree vertices, select the
vertex v as new hub rather than other vertices. If there exist multiple
vertices such as v, select the one that has more neighbors of degree 4.

(iii) Choose a maximal hubset H such that G — H would contain less number
of faces that are bounded by triangles.
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Computer experiments

Since the method for finding the vertex coloring is not always successful, we
would like to check the success rate. This chapter provides some source codes
of computer programs and the explanations of them. You can also refer to the
comments that are contained in the codes. The codes are written in MATLAB-
like language. These codes may work for MATLAB, FreeMat, Octave, and
so on. In fact, the codes are written and checked in FreeMat. This thesis,
therefore, recommends running the codes in FreeMat.

The adjacency matrizc A = (a;j)nxn of a graph G := (V, E) is defined by

1 v eE
g = { 0 otherwise.

For convenience, we do not distinguish a graph and its adjacency matrix
as long as no confusion arises. For example, the adjacency matrix of a graph
G is denoted by G, and the graph whose adjacency matrix is A is denoted by
A.

4.1 Process flow and the result

The process flow of computer codes is described as follows:

(i) Generate a random maximal plane graph. In fact, the codes generate a
random adjacency matrix A of a maximal plane graph.
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(ii) Get B by removing the vertices of degree 3 from A and find a hubset H
of B. Even if the thesis suggest three conditions for finding the maximal
hubset at the end of Section 3.3, the codes takes only condition (i) to
find new hubs while constructing a hubset because implementing all the
conditions complicates the codes.

(iii) Find patches in B — H.

(iv) Construct another adjacency matrix C' of a virtual graph whose vertices
are equivalence classes of the overedge relation or patch-free vertices of
degree more than 4 in B.

(v) Generate the list of probable colorings of C' with three available colors.

(vi) If a vertex coloring of C' exists in the list then return success=1; other-
wise return success=0.

For a random maximal plane graph of order 40, we obtained the success
rate: (number of successes)/(number of tries)= 923/940 ~ 98%.

4.2 Source codes

hoRun.m :

numSuccess = 0;
wrongEqClassVertexTable = 0;

for loopCount=1:1000
% Iterate 1000 times.
disp(’free memory’)
clear A faces maxIndHubset tempMaxIndHubset B indexB facesB
patch patchFree patchFreed4Degree sizeEqClass
facesRemovedHub C eqClassVertexTable colorVector success

disp(’Generate random adjacency matrix of a maximal plane
graph’);
[A,faces] = hoGenRandAdjMat (40) ;

disp(’Remove vertices of degree 3 and find hubset’);
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[maxIndHubset , tempMaxIndHubset ,B, indexB,facesB]=
hoSelectArbMaxIndHubset (A, faces) ;

disp(’Find patches and patch-free vertices’);
[patch,patchFree ,patchFree4Degree ,sizeEqClass ,facesRemovedHub
]=hoFindPatches (B, tempMaxIndHubset ,facesB);

disp(’Create a virtual adjacency matrix’);
[C,eqClassVertexTable] = hoVirtualAdjMat (patch,patchFree,B,
tempMaxIndHubset) ;

disp(’Check the eqClassVertexTable ’);
for i=1:size(eqClassVertexTable ,1)
if (eqClassVertexTable(i,1)==eqClassVertexTable(i,2) |
eqClassVertexTable(i,1)==eqClassVertexTable (i,3) |
eqClassVertexTable(i,2)==eqClassVertexTable(i,3))
disp(’wrong eqClassVertexTable’) ;
wrongEqClassVertexTable=1;
break;
end
end

if (wrongEqClassVertexTable==1)
wrongEqClassVertexTable=0;
continue;

end

disp(’Generate a list of vertex coloring’);
colorVector=hoGenColorList (C,eqClassVertexTable) ;

disp(’Check the list of vertex coloring’);
success=hoCheck3Colorable (C,colorVector) ;

if (success==1)
numSuccess=numSuccess+1;

end

disp(’loopCount :’)
loopCount
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disp(’numSuccess : ’)
numSuccess

end

disp(’success rate :’)

numSuccess/loopCount

hoGenRandAdjMat.m :

function [A,faces] = hoGenRandAdjMat (numVertex)

if (numVertex < 5)

% Treat graphs of order > 4

disp(’number of vertices is less than 4°);
exit () ;

end

% Maximal plane graph has 3*(number of vertices)-6 edges.
numEdge = 3*numVertex-6;

% A will be an adjacency matrix
A = zeros(numVertex ,numVertex) ;

% To draw maximal graph, we first draw a triangle.
A(C2,1) =
A(3,1)
A(3,2)

ig
ig
1;

% Faces will be the index set of faces. We got a triangle.
faces(1,1:3) = [1,2,3];

% numTriangle is the number of the faces.
numFace = 1;

% Call the vertices incident to the unbounded face by external
% vertices. Boundary(cycle) of the unbounded face for the

% triangle which formed by first, second and third drawn

% vertices.

37



CHAPTER 4. COMPUTER EXPERIMENTS

boundaryUnboundedFace = [1,2,3];

%» Length of the boundary of the unbounded face. When a new

% vertex and new edges incident to the new vertex are added,
% this value will increse by (3 - (number of the new edges)).
lengthBoundary = 3;

% Now we add a new vertex.

% We draw a new vertex in the unbounded face and draw edges to
% vertices already drawn. the availableNumEdge is maximum

%» number of edges incident to new vertex. If a new vertex

% added there need at least 2 edges incident to the new

% vertex. And we already used 3 edges for the first

% triangle. Since the new vertex would drawn in unbounded

% face, the number of edges also bounded by the number of

% vertices of the unbounded face.

% original code

% availableNumEdge =

% min(numEdge -3-2*(numVertex -3) ,lengthBoundary) ;
% optimized code

availableNumEdge = min(numEdge -2*numVertex+3, lengthBoundary) ;

for i=4:numVertex-1
% i-th vertex would have currentNumEdge number of edge with
% vertices already drawn. And we know 1 < currentNumEdge <
% availableNumbEdge+l, so we choose randomly between 2 and
% availableNumbEdge

if (availableNumEdge==2)

currentNumEdge = 2;
else
currentNumEdge = rem(floor (10000*rand(1,1)) ,availableNumEdge
-2) +2;
end

% The vertices adjacent to the new i-th vertex forms a path
% P in the boundary(cycle) of the unbounded face. Thus we
% can choose the path by choosing its end. Choose it randomly
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% among external vertices.
currentStartingVertex = rem(floor (10000*rand(1,1)),
lengthBoundary) +1;

% The boundary of the unbounded face is a cycle but we
% denoted it as vector whose name is boundaryUnboundedFace.
% To use this vector as like a cycle we write this vector
% twice and take some needed part of it.
tempBoundary = [boundaryUnboundedFace ,boundaryUnboundedFace (1:
size (boundaryUnboundedFace ,2) -1)1];

% Initiate currentAddedRow which would be i-th row of
% Adjacency matrix A.
currentAddedRow = zeros(1l,i-1);

% From the informations of currentNumEdge and
% currentStartingVertex, construct currentAddedRow.
for j=1:currentNumEdge
index=j-1l+currentStartingVertex;
currentAddedRow (tempBoundary (index)) = 1;
end

% Add new i-th row to the adjacency matrix A.
A(i,1:1i-1) = currentAddedRow;
clear currentAddedRow;

% And we also have new faces. Add them
for j=1:currentNumEdge -1
numFace = numFace+1;
index=j-1l+currentStartingVertex;
faces (numFace ,1:3)=[tempBoundary (index) , tempBoundary (index+1)
,il;
end

% lengthBoundary was changed. Reset it.
lengthBoundary = lengthBoundary+3-currentNumEdge;

% The boundary of the unbounded face was also changed. Its
% new boundary is (an end of P) - (the new vertex) -
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% (another end of P) - (vertices on boundary \ vertices on P))
boundaryUnboundedFace = [tempBoundary(currentStartingVertex),i
,tempBoundary (currentStartingVertex+currentNumEdge -1:size(
tempBoundary ,2))1;
boundaryUnboundedFace = boundaryUnboundedFace (1:lengthBoundary
)

clear tempBoundary;

% availableNumEdge could also be changed. Reset it.
availableNumEdge = min(numEdge-3-currentNumEdge -2* (numVertex -i
) ,lengthBoundary) ;
end

% We construct the last row of the adjacency matrix A.
currentAddedRow = zeros(1l,numVertex) ;

% The last vertex is adjacent with all vertices of the
% boundary of the unbounded face.
for j=1:lengthBoundary
currentAddedRow (boundaryUnboundedFace (j))=1;
end

% Add the last row to the adjaency matrix A.
A(numVertex ,:) = currentAddedRow;

% Add the faces.
for j=1:lengthBoundary-1
numFace = numFace+1;
faces (numFace ,1:3)=[boundaryUnboundedFace (j),
boundaryUnboundedFace (j+1) ,numVertex];
end

numFace=numFace+1;
faces (numFace ,1:3)=[boundaryUnboundedFace (1),

boundaryUnboundedFace (lengthBoundary) ,numVertex];

% A is symmetric. For convenience we do not consider this,
% and we just only construct the lower part of A. By adding
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b

Ne

h
h

the transpose matrix of A, we complete it.
A+A’;

Sum of all ’1’ of A have to be equal to the twice of
number of edges. Check it.

sum(sum(A)) == numEdgex*2;

hoRemove3degree.m :

function [B,indexB,faceB] = hoRemove3degree (A,indexB,faces)

Remove vertices of 3 degree from given adjacency matrix A.
give indexB = 0 at first.

When we remove a 3-degree vertex, another vertex could be
3-degree vertex (The vertex of degree 4 which is adjacent
to the removed vertex). Thus we remove a 3-degree vertex,
we should restart the removing operation on result matrix.
In the given adjacency matrix A, i-th row(or column)
represent i-th drawn vertex. However , in the result matrix
B, the i-th row does not represent i-th vertex, anymore.
Thus indexB would tell us, which vertex i-th row of B
represent for. For example if indexB(3)=5 then the third
row of B contains the adjacency information of fifth
vertex of which adjacency information in A is obviously
fifth row of A.

When we remove 3-degree vertex, the three faces that are
incident to the vertex were removed and there appear a new
face bounded by the triangle containing the three neighbours
of the removed vertex.

Initiate result matrix.
= A;

Get size of B for FOR sentence.

numVertex = size(B,1);

)

Initiate faces.

faceB = faces;

b

Get number of faces that we have found.
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numFace = size(faceB,1);

/)

Initiate indexB.

if (indexB == 0)

indexB = 1:numVertex;

end

for i = 1:numVertex

h

b
h
h

If we find 3-degree vertex, remove it and reset the indexB.

if (sum(B(i,:))==3)

If the sum of i-th row of B is equal to 3, the i-th vertex
of B has the degree 3. We remove the i-th row and the i-th
column of B.

if (i==1)

B = B(2:numVertex ,2:numVertex) ;
indexB = indexB(2:numVertex) ;
elseif (i==numVertex)

B = B(1:numVertex-1,1:numVertex-1) ;
indexB = indexB(1:numVertex-1);
else

B = [B(1:i-1,1:i-1),B(1:i-1,i+1:numVertex) ;B(i+1:numVertex
,1:i-1) ,B(i+1:numVertex,i+l:numVertex)];
indexB = [indexB(1:i-1),indexB(i+1:numVertex)];
end

j=1;
tempCount = 0;

We delete the faces containing the vertices of degree 3,
that were removed at previous IF sentence.
while (j<numFace+1)

tempFaceBit =hoConvertIndexToBit (faceB(j,:) ,numVertex);

Since we have deleted the i-th 3-degree vertex, we remove
the faces that is incident to the i-th vertex.

if (tempFaceBit (i)==1)

if (j==1)
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faceB = faceB(2:numFace,:) ;

elseif (j==numFace)

faceB = faceB(1:numFace-1,:);
else

faceB = [faceB(1:j-1,:);faceB(j+1l:numFace,:)];
end
numFace = numFace-1;

tempCount = tempCount+1;
else

jo= i1
tempCount

]
o

end
end

We add a new face that is bounded by the triangle whose
vertices are the neighbors of i-th vertex.
faceB(numFace+1,:) = hoConvertBitToIndex(A(i,:));
numFace = numFace+1;

Convert the index of A to the index of B.
Since we removed a vertex, the vertices that has indices
greater than the index of the removed vertex have indices
decreased.
for j=1:numFace

for k=1:3

if (faceB(j,k)>1i)

faceB(j,k)=faceB(j,k)-1;

end

end
end

Stop the process and restart same removing process with B
again.

[B,indexB,faceB] = hoRemove3degree (B, indexB,faceB);
break;
end

end
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hoSelectArbMaxIndHubset.m :

function [maXIndHubset,tempMaxIndHubset,B,indexB,facesB]=
hoSelectArbMaxIndHubset (A, faces)

% A is an adjacency matrix of a maximal plane graph G.

% maxIndHubset (i) = 1 if i-th vertex of G is contained

% in maximal independent hubset which we would construct.

% Remove vertices of degree 3.
[B,indexB,facesB] = hoRemove3degree(A,0,faces);

% number of vertices of G.
numVertex = size(B,1);

% Initiate the tempMaxIndHubset of which i-th component

% is 1 if i-th vertex, of which information of adjacency is
% denoted by i-th row of B, would be contained in

% maximal independent hubset.

tempMaxIndHubset = zeros(l,numVertex);

% Initiate canBeHub which is vertices that can be an hub.
canBeHub = ones (1,numVertex) ;

% If we consider about the relation between the sphere

% and the plane all vertices have same conditions for

% being selected as the first hub. However, for the

% convenience to figure the graph in our thesis, we select
% the last vertex.

tempMaxIndHubset (numVertex) = 1;

% And the vertices adjacent to the new hub can be hub
% any more. remove these from canBeHub.
for i=1:numVertex
if (B(numVertex ,i)==1)
inversedAdjRow (i) =0;
elseif (B(numVertex,i)==0)
inversedAdjRow (i)=1;
end
end
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canBeHub (numVertex) = 0;
canBeHub = canBeHub.*inversedAdjRow;

% We would select new hubs till canBeHub is empty set.
preventInfinitelLoop = 1;

while ((sum(canBeHub) "= 0) & (preventInfinitelLoop < (numVertex
*3)))

% We would select a new hub which has neighbors that are also

% the neighbors of hubs we already selected, as many as

% possible. countNb(i) is the number of neighbors that are

% also the neighbors of hubs we already selected, of i-th

% vertex. countNb(i) = 0 if the i-th vertex does NOT

% contained in canBeHub.

countNb = zeros (1,numVertex) ;

for i=1:numVertex
if (canBeHub (i)==1)
for j=1:numVertex
if (tempMaxIndHubset (j)==1)
countNb (i) = countNb(i)+sum(B(i,:).*B(j,:));
end
end
end
end
% Find vertices that have maximum number of neighbors
% that are also neighbors of hubs we already selected,
% among the elements of canBeHub.
tempMaxValue = O0O;
for i=1:numVertex
if (tempMaxValue < countNb(i))
tempMaxValue = countNb(i);
end
end

% Make set of indices of vertices of which countNb(i) is
% equal to the tempMaxValue.
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0=
for i=1:numVertex
if (countNb (i) == tempMaxValue)
indexSetMaxValue(j) = 1ij;
j o= 3+
end
end

% Select the vertex as a new hub RANDOMLY
selectedIndex = indexSetMaxValue (rem(floor (10000*rand(1,1)),]
-1)+1) ;
clear indexSetMaxValue;

% and insert it into maxIndHubset.
tempMaxIndHubset (selectedIndex) = 1;

%» Remove the vertices that are adjacent to the new hub from
% canBeHub.
for i=1:numVertex
if (B(selectedIndex ,i)==1)
inversedAdjRow (i)=0;
elseif (B(selectedIndex,i)==0)
inversedAdjRow (i) =1;
end
end

canBeHub (selectedIndex) =0;
canBeHub = canBeHub.*inversedAdjRow;

%» prevent infinitely many loop of WHILE statement.
preventInfiniteloop = preventInfinitelLoop+1;

end

% Initiate maxIndHubset.
maxIndHubset = zeros(l,size(A,1));

% Convert hubs on B to hubs on A.

for i=1:numVertex
if (tempMaxIndHubset (i)==1)
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maxIndHubset (indexB (i) )=1;
end
end

hoFindPatches.m :

function [patch,patchFree,patchFree4Degree,hbsizeEqClass,
facesRemovedHub]=hoFindPatches (B, tempMaxIndHubset ,facesB)

% B is adjacency matrix which does not contain 3 degree

% vertices; B could be obtained by ’hoRemove3degree(A)’ where

% A is an adjacency matrix A which could be generated by

%’hoGenRanAdjMat ’ tempMaxIndHubset is a maximal independent

% hubset of B.

% Get size of B
numVertex = size(B,1);

% Initiate nonHubVertices that would not be hubs.
nonHubVertices = ones(1,numVertex);

% Initiate faces. Put face information of B into ’faces’.
facesRemovedHub = facesB;

% Get number of faces
numFace = size(facesRemovedHub,1);

% Remove hubs specified in tempMaxIndHubset from
% nonHubVertices.
for i=1:numVertex
% Generate inversed vector of tempMaxIndHubset.
% In this vector, if i-th vertex contained in the hubset,
% the value of i-th component is 0O, otherwise 1.
if (tempMaxIndHubset (i)==1)
inversedTempMaxIndHubset (i)=0;
elseif (tempMaxIndHubset (i)==0)
inversedTempMaxIndHubset (i)=1;
end
end
%» The componentwise multiplication of a nonHubVertices and
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% the inversed vector of tempMaxIndHubset, removes the hubs
% described by tempMaxIndHubset from nonHubverices.
nonHubVertices = nonHubVertices.*inversedTempMaxIndHubset;

% Remove faces containing hubs.
% In fact, this removes rows of facesReovedHub that contains
% hubs.
for i=1:numVertex
if (tempMaxIndHubset (i)==1)
% i-th vertex is a hub.
j=1
while (j<numFace+1)
tempFaceBit = hoConvertIndexToBit (facesRemovedHub(j,:),
numVertex) ;
if (tempFaceBit (i)==1)
% If a j-th row of facesRemovedHub contains i-th vertex
% remove it from facesRemovedHub that is a list of faces.
if (j==1)
facesRemovedHub = facesRemovedHub (2:numFace, :) ;
elseif (j==numFace)
facesRemovedHub

facesRemovedHub (1: numFace-1,:) ;
else
facesRemovedHub = [facesRemovedHub (1:j-1,:);
facesRemovedHub (j+1:numFace,:)];
end
numFace = numFace-1;
else
j = j+1;
end
end
end
end

% Initiate some variables.
isFace = 0;
containFace = 0;

numPatch = O0;

% And rename the list of faces.
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facesDB = facesRemovedHub;
sizeFacesDB = size(facesDB,1);

% Since all the faces in facesDB are triangles, each of them
% are contained in some patches.
while (sizeFacesDB > 0)
numPatch=numPatch+1;
% patch(i,j,k)-th vertex is contained in i-th patch.
% And this vertex is classed by overedge relation so that
% patch(i,j,k)-th vertex is contained in j-th class.

% Process first face
patch (numPatch ,1,1)
patch (numPatch ,2,1)
patch (numPatch,3,1)

facesDB(1,1);
facesDB(1,2);
facesDB(1,3);

sizeEqClass (numPatch,1:3)=[1,1,1];

% Remove the face processed from facesDB.
facesDB = facesDB(2:sizeFacesDB,:);
sizeFacesDB = sizeFacesDB-1;

if (sizeFacesDB>0)
i=1;
while(i<1+sizeFacesDB)
eqClass = 0;
for j=1:sizeEqClass (numPatch,1)
for k=1:sizeEqClass (numPatch,2)
if (B(patch (numPatch,1,j),patch(numPatch,2,k))==1)
% Check whether both patch(numPatch,1,j)-th vertex and
% patch(numPatch,2,k)-th vertex are the ends of the same edge.
% One end is from class 1 the other end is from class 2.
% Therefore if the face (triangle) shares the edge with this
% patch, the opposite vertex of the edge in the face is
% contained in class 3.
tempEdgeContainedBit = hoConvertIndexToBit ([patch(
numPatch,1,j) ,patch(numPatch,2,k)],numVertex) ;
for 1=1:sizeFacesDB
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tempFaceBit = hoConvertIndexToBit (facesDB(1l,:),numVertex
);
checkShareEdgeBit = tempFaceBit-tempEdgeContainedBit;
countOne = 0;
countZero = 0;
for m=1:numVertex
if (checkShareEdgeBit (m)==1)

countOne = countOne+1;

elseif (checkShareEdgeBit (m)==0)
countZero = countZero+1;

end

end

if (countOne==1& countZero==numVertex —-1)
% We can use only countOne==1 for the IF sentence, but for
% precision, additional condition contZero==numVertex-1 is
% used.
isFace=1;
% The opposite vertex of the edge in the face is contained in
% class 3.
eqClass = 3;
break;
end
end
end
if (isFace==1)
break;
end
end
if (isFace==1)
break;
end
end

if (isFace==0)
for j=1:sizeEqClass (numPatch,2)
for k=1:sizeEqClass (numPatch,3)
if (B(patch (numPatch,2, j),patch(numPatch,3,k))==1)
% Check whether both patch(numPatch,2,j)-th vertex and
% patch(numPatch,3,k)-th vertex are the ends of the same edge.
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% One end is from class 2 the other end is from class 3.
% Therefore if the face (triangle) shares the edge with this
% patch,the opposite vertex of the edge in the face is
% contained in class 1.
tempEdgeContainedBit = hoConvertIndexToBit ([patch(
numPatch,2,j) ,patch(numPatch,3,k)],numVertex) ;
for 1=1:sizeFacesDB
tempFaceBit = hoConvertIndexToBit (facesDB(1l,:),
numVertex) ;
checkShareEdgeBit = tempFaceBit-tempEdgeContainedBit
countOne = O0;
countZero = 0;
for m=1:numVertex
if (checkShareEdgeBit (m)==1)

countOne = countOne+1;

elseif (checkShareEdgeBit (m)==0)
countZero = countZero+1;

end

end

if (countOne==1&countZero==numVertex -1)
% We can use only countOne==1 for the IF sentence, but for
% precision, additional condition contZero==numVertex-1 is
% used.
isFace=1;

% The opposite vertex of the edge in the face is contained in

% class 1.
eqClass = 1;
break;
end
end
end
if (isFace==1)
break;
end
end
if (isFace==1)
break;
end
end

o1
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end

if (isFace==0)
for j=1:sizeEqClass (numPatch,3)
for k=1:sizeEqClass (numPatch,1)
if (B(patch (numPatch,3,j),patch(numPatch,1,k))==1)
% Check whether both patch(numPatch,3,j)-th vertex and
% patch(numPatch,1,k)-th vertex are the ends of the same edge.
% One end is from class 3 the other end is from class 1.
% Therefore if the face (triangle) shares the edge with this
% patch,the opposite vertex of the edge in the face is
% contained in class 2.
tempEdgeContainedBit = hoConvertIndexToBit ([patch(
numPatch,3,j) ,patch(numPatch,1,k)],numVertex) ;
for 1=1:sizeFacesDB
tempFaceBit = hoConvertIndexToBit (facesDB(1,:),
numVertex) ;
checkShareEdgeBit = tempFaceBit-tempEdgeContainedBit;
countOne = 0;
countZero = 0;
for m=1:numVertex
if (checkShareEdgeBit (m)==1)

countOne = countOne+1;

elseif (checkShareEdgeBit (m)==0)
countZero = countZero+l;

end

end

if (countOne==1&countZero==numVertex -1)
% We can use only countOne==1 for the IF sentence, but for
% precision, additional condition contZero==numVertex-1 is
% used.
isFace=1;
% The opposite vertex of the edge in the face is contained in
% class 2.
eqClass = 2;
break;
end
end
end
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if (isFace==1)
break;
end
end
if (isFace==1)
break;
end
end
end

if (isFace==1)
% Remove the processed face form facesDB
if (1==1)
facesDB = facesDB(2:sizeFacesDB,:);
elseif (1==sizeFacesDB)

facesDB = facesDB(1:sizeFacesDB-1,:);

else

facesDB = [facesDB(1:1-1,:);facesDB(1l+1:sizeFacesDB,:)];
end

sizeFacesDB = sizeFacesDB-1;

% Update the information.

sizeEqClass (numPatch,eqClass)=sizeEqClass (numPatch,eqClass)

+1;

patch(numPatch,eqClass,sizeEqClass (numPatch,eqClass))=
hoConvertBitToIndex (checkShareEdgeBit) ;

isFace=0;
i=1;

else
i=i+1;

end

end
end
end

% Find patch-free vertices among described in nonHubVertices.

index4 = 0;
indexGeneral = 0;
patchFreed4Degree = 0;
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patchFree = 0;
for i=1:numVertex
if (nonHubVertices (i) ==1)
incidentToFace = 0;
for j=1:numFace
for k=1:3
if (facesRemovedHub (j,k)==1)
% If i-th vertex is incident to some faces described in
% facesRemovedHub then the vertex is not patch-free.
incidentToFace = 1;
break;
end
end
if (incidentToFace==1)
break;
end
end
if (incidentToFace==0)
% i-th vertex is patch-free.
% Check whether i-th vertex has the degree 4.
if (sum(B(i,:))==4)
index4 = index4+1;
patchFree4Degree (index4)=1i;
else
indexGeneral = indexGeneral+1;
patchFree (indexGeneral)=1i;
end
end
end
end

hoVirtualAdjMat.m :

function [C,eqClassVertexTable] = hoVirtualAdjMat (patch,
patchFree,B,tempMaxIndHubset)

% This function generate the virtual graph C whose vertices

% symbolize the equivalence classes of patches of B, or

% patch-free vertices of B.
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numVertex = size(B,1);

numPatch = size(patch,1);

numPatchFree = size(patchFree,b2);
maxNumVertexInEqClass = size(patch,3);

% eqClassVertexTable(i,j)-th vertex of C symbolize an

e

equivalence class of i-th patch of B - "hubset", where the
members of "hubset" is described in tempMaxIndHubset.

In the first patch, there are three equivalence classes.
We denote each equivalence class 1,2,3.
qClassVertexTable (1,1:3)=[1,2,3];

newVertexIndex = 3;

S

f

b

h

hareVertex = 0;

Check whether two patches, tempPatchBit_1 and
tempPatchBit_2, share a vertex.
If they share a vertex v, [v] of tempPatchBit_1 and [v] of
tempPatchBit_2 has the same name, where [v] is the
equivalence class that contains [v].
or indexPatch=2:numPatch
for i=1:indexPatch-1
for j=1:3
for k=1:3
tempPatchBit_1
tempPatchBit_2
for n=1:maxNumVertexInEqClass
if (patch(i,j,n) ~=0)
tempPatchBit_1(patch(i,j,n))=1;
end
if (patch(indexPatch ,k,n) "=0)
tempPatchBit_2 (patch(indexPatch ,k,n))=1;
end

zeros (1, numVertex) ;

zeros (1, numVertex) ;

end
If two patches shares a vertex....
if (sum(tempPatchBit_1.*tempPatchBit_2) "=0)
shareVertex = 1;
the k-th equivalence class in (indexPatch)-th patch and
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% j-th equivalence class in i-th patch are symbolized by same
% vertex of C.
eqClassVertexTable (indexPatch ,k) = eqClassVertexTable (i, j)
break;
end
end
if (shareVertex == 1)
break;
end
end
end
if (shareVertex == 1)
for 1=1:3
% Give names to the equivalence classes that does not contain
% the shared vertex of (indexPatch)-th patch.
if (eqClassVertexTable (indexPatch,1)==0)
newVertexIndex=newVertexIndex+1;
eqClassVertexTable (indexPatch,l)=newVertexIndex;
end
end
% Reset shareVertex.
shareVertex = 0;
elseif (shareVertex == 0)
% If (indexPatch)-th patch does not share any vertex with
% other m-th patch, where m<indexPatch, give names to these
% three equivalence classes of (indexPatch)-th patch.
for 1=1:3
newVertexIndex=newVertexIndex+1;
eqClassVertexTable (indexPatch,l)=newVertexIndex;
end
end
end

% Construct Virtual Adjacency Matrix C

% If i-th row (or column) of C symbolize an equivalence class
% in a patch and j-th row (or column) symbolize a path-free

% vertex, then i < j.
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% First, we construct lower triangular matrix.

% The three vertices that symbolize the three equivalence

% classes in the same patch are pairwise adjacent in C.

for i=1:numPatch
if (eqClassVertexTable(i,1) >eqClassVertexTable (i,2))
C(eqClassVertexTable(i,1) ,eqClassVertexTable(i,2))=1;
elseif (eqClassVertexTable(i,1)<eqClassVertexTable (i,2))
C(eqClassVertexTable(i,2) ,eqClassVertexTable(i,1))=1;
end
if (eqClassVertexTable(i,1)>eqClassVertexTable(i,3))
C(eqClassVertexTable(i,1) ,eqClassVertexTable (i,3))=1;
elseif (eqClassVertexTable(i,1)<eqClassVertexTable (i,3))
C(eqClassVertexTable(i,3) ,eqClassVertexTable(i,1))=1;
end
if (eqClassVertexTable (i,2)>eqClassVertexTable(i,3))
C(eqClassVertexTable(i,2) ,eqClassVertexTable (i,3))=1;
elseif (eqClassVertexTable (i,2)<eqClassVertexTable (i,3))
C(eqClassVertexTable(i,3) ,eqClassVertexTable(i,2))=1;
end

end

% If a vertex in the equivalence class of a patch and another
% vertex in the equivalence class of another patch are adjacent
% in B, the vertices that symbolize the two equivalence
% classes are adjacent in C.
for i=1:numPatch-1
for j=1+i:numPatch
for k=1:3
for 1=1:3
for m=1:maxNumVertexInEqClass
for n=1:maxNumVertexInEqClass
if ((patch(i,k,m) "=0)&(patch(j,1,n) " =0))
if (B(patch(i,k,m),patch(j,1l,n))==1)
if (eqClassVertexTable (i,k)>eqClassVertexTable(j,1))
C(eqClassVertexTable(i,k),eqClassVertexTable(j,1))=1;
else
C(eqClassVertexTable(j,1l) ,eqClassVertexTable(i,k))=1;
end
end
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end
end
end
end
end
end
end

% Specify the adjacency of patch-free vertices.
if (patchFree~"=0)
numNonPatchFreeVertex = size(C,1);
for i=1:numPatchFree
newVertexIndex=newVertexIndex+1;
% Find the neighbors of the i-th patch-free vertex in B.

tempNeighborsIndex=hoConvertBitToIndex (B(patchFree (i) ,:));

twoPatchFreesAreAdj = O0;
for j=1:size(tempNeighborsIndex ,2)
includingPatchNumJ=0;
for s=1:numPatch
for t=1:3
for u=1:maxNumVertexInEqClass
if (patch(s,t,u)==tempNeighborsIndex (j))
% If a patch include some neighbors of i-th patch-free
% vertex....
includingPatchNumJ=1;
break;
end
end
if (includingPatchNumJ==1)
break;
end
end
if (includingPatchNumJ==1)
break;
end
end
if (includingPatchNumJ==1)
% ...then specify the adjacency information in C.
C(newVertexIndex ,eqClassVertexTable(s,t))=1;
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elseif (includingPatchNumJ==0&i==1)
% If the first patch-free vertex is never adjacent to any
% other vertices contained in some patch then add zero vector
% in C for the vertex symbolizing the first patch-free vertex
% in C.
C(newVertexIndex,:)=zeros(1l,size(C,2));
elseif (includingPatchNumJ==0&1i~=1)
% If the i-th patch-free vertex is never adjacent to any
% other vertices contained in some patch (i”=1) then Check
% whether this i-th patch-free vertex is adjacent to the
% other u-th patch-free vertices where u<i.
for u=1:1-1
if (tempNeighborsIndex (j)==patchFree (u))
% If i-th patch-free vertex and m-th patch-free vertex are
% adjacent, specify the adjacency information in C.
twoPatchFreesAreAdj=1;
C(newVertexIndex ,numNonPatchFreeVertex+u)=1;
end
end
if (twoPatchFreesAreAdj == 0)
% If not, add zero vector in C for the vertex symbolizing
% this i-th patch-free vertex in C.
C(newVertexIndex,:)=zeros(1,size(C,2));
end
end
end
end
end

% The adjacency matrix C should be symmetric.
% We constructed only lower triangular part of C.
% Let us make C symmetric matrix.

tempC = zeros(newVertexIndex ,newVertexIndex) ;
tempC(:,1:size(C,2))=C;
clear C

C = tempC+tempC’;
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hoGenColorList.m

function colorVector=hoGenColorList (C,eqClassVertexTable)
% This function generate a list of 3-colorings for the virtual
% graph C.

% Free the memory.
clear colorVector;

numVertex=size (C,1);
numTriangle = size(eqClassVertexTable ,1);

% Since we have at least one patches, each of the first three
% rows (or column) of C represents each equivalence class of
% the first patch. i-th vertex of C will have the color that
% the value of colorVector(i). Since different equivalence

% class have to be assigned different color, the first three
% can be [1,2,3], [2,1,3], [3,2,1]1, [2,3,1], [3,1,2] or

% [1,3,2]. Without loss of generality, we select [1,2,3].
colorVector = [1,2,3];

for i=2:numTriangle

numColoredVertex = size(colorVector ,2);
numVertexAppeared = 0;
for j=1:3

% eqClassVertexTable contain the information of vertices of C
% that are equivalence classes of patches of B (each row of

% eqClassVertexTable is symbolize a patch). Each row of

% eqClassVertexTable is also a face bounded by a triangle in C.

if (eqClassVertexTable (i, j)<numColoredVertex+1)

% We are deciding the color of eqClassvertextable(i,j)-th

% VERTICES, for j=1,2,3. We are deciding the colors of the

% three vertices at once. However , some of these vertices can
% be specified in eqClassVertexTable MULTIPLE times. If some
% of these vertices were already colored, we should skip

% coloring them. This IF sentence check how many vertices of
% the three vertices (for j=1,2,3) have been colored.
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b
b

numVertexAppeared has the value of the numbers of vertices

that have already been colored.
numVertexAppeared = numVertexAppeared+i;
end

end

if (numVertexAppeared==0)
All the vertices described in the i-th row of

eqClassVertexTable are never appeared. There is not a

vertex that was colored at previous step(<i). Locally, we

have six possible colorings.

for j=1:size(colorVector,1)
tempColorVector (6*x(j-1)+1,:)=[colorVector(j,:) ,1,2,3];
tempColorVector (6*x(j-1)+2,:)=[colorVector(j,:) ,1,3,2];
tempColorVector (6x(j-1)+3,:)=[colorVector(j,:) ,2,1,3];
tempColorVector (6*x(j-1)+4,:)=[colorVector(j,:),2,3,1];
tempColorVector (6*x(j-1)+5,:)=[colorVector(j,:) ,3,1,2];
tempColorVector (6*x(j-1)+6,:)=[colorVector(j,:) ,3,2,1];

end
colorVector=tempColorVector;
clear tempColorVector;

elseif (numVertexAppeared==1)
One of vertices described in the i-th row of
eqClassVertexTable was appeared. The one of
eqClassVertexTable(i,j) (j=1,2,3) have been colored at
previous step(<i). Locally, we have two possible colorings.
for j=1:3
if (eqClassVertexTable (i, j)<numColoredVertex+1)
break;
end
end
for k=1:size(colorVector ,1)
if (colorVector (k,eqClassVertexTable (i, j))==1)
If the color of the vertex that was already colored is
color 1, color 3 or
color 3, color 2.

tempColorVector (2x(k-1)+1,:)=[colorVector(k,:) ,2,3];

the rest two vertices can have color 2,
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tempColorVector (2*(k-1)+2,:)=[colorVector(k,:) ,3,2];
elseif (colorVector (k,eqClassVertexTable (i, j))==2)
If the color of the vertex that was already colored is
color 2, the rest two vertices can have color 1, color 3 or
color 3, color 1.
tempColorVector (2*(k-1)+1,:)=[colorVector(k,:) ,1,3];
tempColorVector (2x(k-1)+2,:)=[colorVector(k,:) ,3,1];
elseif (colorVector (k,eqClassVertexTable (i, j))==3)
If the color of the vertex that was already colored is
color 3, the rest two vertices can have color 1, color 3 or
color 2, color 1.
tempColorVector (2x(k-1)+1,:)=[colorVector(k,:) ,1,2];
tempColorVector (2x(k-1)+2,:)=[colorVector(k,:) ,2,1];
end
end
colorVector=tempColorVector;
clear tempColorVector;

elseif (numVertexAppeared==2)
Two of vertices described in the i-th row of
eqClassVertexTable was appeared. The Two of
eqClassVertexTable(i, j) (j=1,2,3) have been colored at
previous step(<i). Locally, we have one possible coloring.
for j=1:3
if (eqClassVertexTable (i, j)>numColoredVertex)
break;
end
end
for k=1:size(colorVector ,1)
if (j==3)
The non-colored vertex is eqClassVertexTable(i,3)-th vertex.
if ((colorVector (k,eqClassVertexTable(i,1))==1&colorVector (k
,eqClassVertexTable (i,2))==2)|(colorVector (k,
eqClassVertexTable(i,1))==2&colorVector (k,
eqClassVertexTable (i,2))==1))
The colors of the two colored vertices are color 1, color 2
or color 2, color 1. Locally, we can assign only color 3 to
the rest vertex.
tempColorVector (k,:)=[colorVector(k,:) ,3];
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elseif ((colorVector (k,eqClassVertexTable(i,1))==1&
colorVector (k,eqClassVertexTable(i,2))==3)|(colorVector (
k,eqClassVertexTable(i,1))==3&colorVector (k,
eqClassVertexTable (i,2))==1))
The colors of the two colored vertices are color 1, color 3
or color 3, color 1. Locally, we can assign only color 2 to
the rest vertex.
tempColorVector (k,:)=[colorVector (k,:) ,2];
elseif ((colorVector (k,eqClassVertexTable(i,1))==2&
colorVector (k,eqClassVertexTable(i,2))==3)|(colorVector(
k,eqClassVertexTable(i,1))==3&colorVector (k,
eqClassVertexTable (i,2))==2))
The colors of the two colored vertices are color 2, color 3
or color 3, color 2. Locally, we can assign only color 1 to
the rest vertex.
tempColorVector (k,:)=[colorVector(k,:) ,1];
elseif (colorVector (k,eqClassVertexTable(i,1))==colorVector (
k,eqClassVertexTable (i,2)))
The two colored vertice could have the same color and this
is wrong. Temporarily, we can assign only color 4 to the
rest vertex.
tempColorVector (k,:)=[colorVector (k,:) ,4];
end
elseif (j==2)
The non-colored vertex is eqClassVertexTable(i,2)-th vertex.
if ((colorVector(k,eqClassVertexTable(i,1))==1&colorVector (k
,eqClassVertexTable (i,3))==2) | (colorVector (k,
eqClassVertexTable(i,1))==2&colorVector (k,
eqClassVertexTable (i,3))==1))
The colors of the two colored vertices are color 1, color 2
or color 2, color 1. Locally, we can assign only color 3 to
the rest vertex.
tempColorVector (k,:)=[colorVector(k,:) ,3];
elseif ((colorVector (k,eqClassVertexTable(i,1))==1&
colorVector (k,eqClassVertexTable(i,3))==3)|(colorVector(
k,eqClassVertexTable(i,1))==3&colorVector (k,
eqClassVertexTable (i,3))==1))
The colors of the two colored vertices are color 1, color 3
or color 3, color 1. Locally, we can assign only color 2 to
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the rest vertex.
tempColorVector (k,:)=[colorVector (k,:) ,2];
elseif ((colorVector (k,eqClassVertexTable(i,1))==2&
colorVector (k,eqClassVertexTable(i,3))==3)|(colorVector (
k,eqClassVertexTable(i,1))==3&colorVector (k,
eqClassVertexTable (i,3))==2))
The colors of the two colored vertices are color 2, color 3
or color 3, color 2. Locally, we can assign only color 1 to
the rest vertex.
tempColorVector (k,:)=[colorVector(k,:) ,1];
elseif (colorVector(k,eqClassVertexTable(i,1))==colorVector (
k,eqClassVertexTable (i,3)))
The two colored vertice could have the same color and this
is wrong. Temporarily, we can assign only color 4 to the
rest vertex.
tempColorVector (k,:)=[colorVector(k,:) ,4];
end
elseif (j==1)
The non-colored vertex is eqClassVertexTable(i,1)-th vertex.
if ((colorVector (k,eqClassVertexTable(i,2))==1&colorVector (k
,eqClassVertexTable(i,3))==2) | (colorVector (k,
eqClassVertexTable (i,2))==2&colorVector (k,
eqClassVertexTable (i,3))==1))
The colors of the two colored vertices are color 1, color 2
or color 2, color 1. Locally, we can assign only color 3 to
the rest vertex.
tempColorVector (k,:)=[colorVector(k,:) ,3];
elseif ((colorVector (k,eqClassVertexTable(i,2))==1%&
colorVector (k,eqClassVertexTable(i,3))==3)|(colorVector (
k,eqClassVertexTable (i,2))==3&colorVector (k,
eqClassVertexTable(i,3))==1))
The colors of the two colored vertices are color 1, color 3
or color 3, color 1. Locally, we can assign only color 2 to
the rest vertex.
tempColorVector (k,:)=[colorVector(k,:) ,2];
elseif ((colorVector (k,eqClassVertexTable(i,2))==2&
colorVector (k,eqClassVertexTable(i,3))==3)|(colorVector (
k,eqClassVertexTable (i,2))==3&colorVector (k,
eqClassVertexTable (i,3))==2))
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The colors of the two colored vertices are color 2, color 3

% or color 3, color 2. Locally, we can assign only color 1 to
% the rest vertex.
tempColorVector (k,:)=[colorVector(k,:) ,1];
elseif (colorVector (k,eqClassVertexTable(i,2))==colorVector(
k,eqClassVertexTable (i,3)))
% The two colored vertices could have the same color and this
% is wrong. Temporarily, we can assign only color 4 to the
% rest vertex.
tempColorVector (k,:)=[colorVector(k,:) ,4];
end
end
end
colorVector=tempColorVector;
clear tempColorVector;
% Remove the rows of colorVector that contain color 4.
l=size(colorVector ,2);
tempIndex = 1;
for k=1:size(colorVector ,1)
if (colorVector(k,1l) "=4)
tempColorVector (tempIndex ,:) = colorVector(k,:);
tempIndex=tempIndex+1;
end
end
colorVector=tempColorVector;
clear tempColorVector;
end
end
% The coloring of vertices of C that symbolize the
% equivalence class of patches was Done. Now, we decide the
% coloring of patch-free vertices, one by one.
yA
% numVerticesInPatch is the number of vertices that have been
% already colored.
numVerticesInPatch = size(colorVector,b2);
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The number of patch-free vertices is
(the numVertex - numVerticesInPatch)
or i = numVerticesInPatch+1l:numVertex
newlLengthColorVector = size(colorVector ,2)+1;
tempIndex = 1;
for j=1:size(colorVector,1)
If the (i-th) patch-free vertex has ’color m’ we set
adjacentColorSet(m) = 1, for m=1,2,3.
adjacentColorSet = [0,0,0];
for k=1:i-1
if (C(i,k)==1)
adjacentColorSet (colorVector (j,k))=1;
end
end
if (sum(adjacentColorSet)==3)
The (i-th) patch-free vertex has three different colors on
its neighbors. This is wrong. We temporarily set the color
of this vertex as color 4.
tempColorVector (tempIndex ,:) = [colorVector(j,:) ,4];
tempIndex = templndex+1;
elseif (sum(adjacentColorSet)==2)
The (i-th) patch-free vertex has two different colors on
its neighbors.
for 1=1:3
The (i-th) patch-free vertex does NOT have ’color 1’ on its
neighbor.
if (adjacentColorSet (1)==0)
break;
end
end
We assign this (i-th) patch-free vertex the last color.
tempColorVector (tempIndex ,:)=[colorVector(j,:),1];
tempIndex=tempIndex+1;
elseif (sum(adjacentColorSet)==1)
The (i-th) patch-free vertex has one color on its neighbors.
for 1=1:3
The (i-th) patch-free vertex have ’color 1’ on its neighbor.
if (adjacentColorSet (1)==1)
break;
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h

end
end
We assign this (i-th) patch-free vertex the two possible
colors.
if(1==1)
color 1 is color 1.
tempColorVector (tempIndex ,:)=[colorVector(j,:) ,2];
tempColorVector (tempIndex+1,:)=[colorVector(j,:) ,3];
tempIndex=tempIndex+2;
elseif (1==2)
color 1 is color 2.
tempColorVector (tempIndex ,:)=[colorVector(j,:) ,1];
tempColorVector (tempIndex+1,:)=[colorVector(j,:) ,3];
tempIndex=tempIndex+2;
elseif (1==3)
color 1 is color 3.
tempColorVector (tempIndex,:)=[colorVector(j,:) ,1];
tempColorVector (tempIndex+1,:)=[colorVector(j,:) ,2];
tempIndex=tempIndex+2;
end
elseif (sum(adjacentColorSet)==0)

The (i-th) patch-free vertex not colored neighbor.

We can assign any colors (among the three colors) on it.
tempColorVector (tempIndex ,:)=[colorVector (j,:) ,1];
tempColorVector (tempIndex+1,:)=[colorVector(j,:) ,2];
tempColorVector (tempIndex+2,:)=[colorVector(j,:) ,3];
tempIndex=tempIndex+3;

end

end
colorVector = tempColorVector;

clear tempColorVector;

Remove the rows of colorVector that contain color 4.

l=size(colorVector ,b2);

tempIndex = 1;

for k=1:size(colorVector ,1)

if (colorVector (k,1l) "=4)
tempColorVector (tempIndex ,:)=colorVector(k,:);
tempIndex=tempIndex+1;
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end

end
colorVector=tempColorVector;
clear tempColorVector;
end

hoCheck3Colorable.m :

function success=hoCheck3Colorable(C,colorVector)

% This checks whether the 3-coloring solution of C is contained
% in colorVector. If it is return 1, otherwise return O.
numColorList = size(colorVector,1);

numVertex = size(C,1);

for i=1:numColorlList
% Assume the row is a 3-coloring solution.
success=1;
for j=1l:numVertex
for k=1:j-1
% Check every pair of adjacent vertices.
if (C(j,k)==1&colorVector (i, j)==colorVector (i,k))
% If the two adjacent vertices have the same color, return O.
success = 0;
break;
end
end
if (success == 0)
% escape the FOR sentence.
break;
end
end
if (success==1)
% If there exists a 3-coloring solution, print it.
colorVector (i, :)
break;
end
end
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hoConvertBitTolndex.m :

function result=hoConvertBitToIndex (v)

% This convert Bit-representation of set of vertices to

% Index-representation. For example, let V = {1,3,5} be a set
% of vertices. V can be represent as [1,3,5] or [1,0,1,0,1].
% This function convert [1,0,1,0,1] to [1,3,5].

index = 1;
for i=1:size(v,2)
if (v(i)==1)
result (index)=1i;
index=index+1;
end
end

hoConvertlndexToBit.m :

function result=hoConvertIndexToBit (v,numVertex)

% This convert Index-representation of set of vertices to

% Bit-representation. For example, let V = {1,3,5} be a set of
% vertices. V can be represent as [1,3,5] or [1,0,1,0,1]. This
% function convert [1,3,5] to [1,0,1,0,1].

result = zeros(1l,numVertex);
for i=1:size(v,2)

result (v(i))=1;

end

hoTranslateAdjMat.m :

function trans=hoTranslateAdjMat (A)

% This is a utility to help drawing the graph of A. When we

% draw i-th vertex of graph of A, the i-th row of ’trans’ tell
% us which vertices should be adjacent to the i-th vertex. For
% example, if the sixth row of ’trams’ is [1,4,0,0,0], we

% should draw line between first vertex and sixth vertex, and
% between fourth vertex and sixth vertex when we draw the

% sixth vertex.
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for i=2:size(A,1)
tempIndex=1;
for j=1:i-1
if (A(i,j)==1)
trans(i-1,tempIndex)=j
tempIndex=tempIndex+1;
end
end
end

trans

If you have all the previously specified codes, then you can get the result just

by executing the following command.

--> hoRun
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4.3 Manual of the programs

This section contains an example describing how to use the codes.

The [A,faces] = hoGenRandAdjMat(20) command generates a random
adjacency matrix A of a maximal plane graph of order 20 and faces which is
a list of its faces.

--> [A,faces] = hoGenRandAdjMat (20)

A =
0111 110O0O0O0O0O0O0O0O0OO0OO0ODO0ODO0ODO0
1011 00110O0O0O0O0O0O0OO0OO0ODO0ODO0ODO0
1100100101 000O01O0O0O1O00O0

(omitted)

faces =

1 2 3
1 2 4
3 1 5
(omitted)

The [maxIndHubset,tempMaxIndHubset,B,indexB,facesB] =
hoSelectArbMaxIndHubset (A,faces) command generates an adjacency ma-

trix B obtained from A by removing the information of the vertices of degree

3. It also generates a vector tempMaxIndHubset that contains the information

of a maximal hubset of B.

--> [maxIndHubset ,tempMaxIndHubset ,B,indexB,facesB]=

hoSelectArbMaxIndHubset (A, faces)

maxIndHubset =

00O0O01O0O01

0
tempMaxIndHubset =
000010100

000O0OO0OO0OOO0O1O0O0
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B =
0111110000O00O00O0
101100100000
110010101011
11 0001101000
101001010110
100110011000
011100001000
000011001100
001101110101
000010011011
001010000101
001000001110
indexB =

i 2 3 4 5 6 8 9 10 12 15 18
facesB =

1 2 3

1 2 4

3 1 5

(omitted)

The [patch,patchFree,patchFree4Degree,sizeEqClass,
facesRemovedHub]=hoFindPatches (B, tempMaxIndHubset,facesB) command
finds patches (patch), patch-free vertices (patchFree), and some other infor-
mation. The patch is a 3-dimensional array of numbers. The member (m,n, )
of patch denotes the [-th vertex of the n-th equivalence class of the overedge
relation in the m-th patch. In the following example, there is one patch that
is refined into three equivalence classes. The vertices 1 and 9 are contained in
the first equivalence class of the first patch. ‘0’ means empty.

--> [patch,patchFree,patchFree4Degree ,hsizeEqClass,
facesRemovedHub]=hoFindPatches(B,tempMaXIndHubset,facesB)

patch =

(:,:,1) =
1 2 3

(:,:,2) =
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9 6 4
(:,:,3) =
0 10 8
patchFree =
0
patchFree4Degree =
11
sizeEqClass =
2 3 3
facesRemovedHub =
1 2 3
1 2 4
1 4 6
8 6 9
6 4 9
8 9 10

The [C,eqClassVertexTable] = hoVirtualAdjMat(patch,patchFree,B
,tempMaxIndHubset) command creates a virtual adjacency matrix C of an
abstract graph on the sum of equivalence classes of patches and patch-free
vertices of degree more than 4 in B. In the example, C describes a triangle
since we had one patch without a patch-free vertex of degree more than 4.
--> [C,eqClassVertexTable] = hoVirtualAdjMat (patch,patchFree,B,

tempMaxIndHubset)
G =

eqC sVertexTable =

0
1
1
qCla
1

N H P, O
W n O - =

The colorVector=hoGencolorList (C,eqClassVertexTable) command gen-
erates colorVector which is a list of probable 3-colorings of C.

--> colorVector=hoGencolorList (C,eqClassVertexTable)
colorVector =
12 3
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The success=hoCheck3Colorable(C,colorVector) command checks whether
the list contains a 3-coloring solution of C. If so, it returns success=1 and if
not, it returns success=0. This command also shows the 3-coloring solution.
The value of the n-th component of the vector ans is the color assigned to the
n-th vertex of C. We can find the vertex coloring of B with the information
contained in patch. In this example, vertices 1 and 9 would be colored with
color 1; vertices 2, 6, and 10 would be colored with color 2; and vertices 3, 4,
and 8 would be colored with color 3.
--> success=hoCheck3Colorable(C,colorVector)
ans =

1 2 3

success =
1

The checking process is finished. However, the hoTranslateAdjMat (B) helps
us to figure the graph of B. See the following.

--> hoTranslateAdjMat (B)

(omitted)

ans =

W W o woN PR PR
© 01 00 P OO Wb W NN O
O O © OO O b U1 O O O O
H O O N OO O o o o o
O O O 0 ©O O O © © © O

=
-
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From the matrix named ans, we can figure the graph on the paper. The n-th
row of ans shows what vertices would be the neighbors of the (n + 1)-th ver-
tex among n vertices (that are already drawn) when we draw the (n + 1)-th
vertex. For example, when we draw the sixth vertex on the paper, we draw
lines between the sixth vertex and the first vertex, between the sixth vertex
and the fourth vertex, and between the sixth vertex and the fifth vertex, since
the fifth row of ans is [1 4 5 0 0]. Note that whenever we finish adding a
vertex on the paper, There should be at most one face whose boundary is not
a triangle. Obviously, if there exists the unique face whose boundary is not a
triangle, then it is the unique unbounded face.

Figure 4.3.1: Drawing graph B.

Also, we can figure the hubs and their wheels with the help of the command
hoConvertBitToIndex (tempMaxIndHubset). In the example, hubs are the
fifth, seventh, and twelfth drawn vertices.
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CHAPTER 4. COMPUTER EXPERIMENTS

--> hoConvertBitToIndex (tempMaxIndHubset)
ans =
5 7 12

Figure 4.3.2: Drawing hubs and wheels on graph B.

It shows that there is one patch, and the members of each equivalence class of
the patch are as the 3-dimensional array patch describes. We can easily find
a 4-coloring solution of this graph.
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