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Abstract

Vertex coloring of plane graphs

Ho-Seok Choe

Department of Mathematical Sciences

The Graduate School

Seoul National University

The four color theorem states that only four colors are needed to color the re-

gions of any simple planar map so that any two adjacent regions have different

colors. This theorem can be interpreted as finding a vertex coloring of plane

graphs. This thesis suggests a method to find a vertex coloring of plane graphs

with four available colors that includes the following steps:

(i) Convert the given map to a graph and find a maximal plane graph that

contains the graph.

(ii) Remove vertices of degree 3 from the maximal plane graph if they exist.

(iii) Find a hubset that is a set of independent hubs of wheels.

(iv) Color the vertices that are not the elements of the hubset with three

available colors.

(v) Color the vertices contained in the hubset with the fourth color.

(vi) Finally, apply the coloring result to the given map.

Using this process, we obtained a 98% success rate in computer experiments

for random graphs of order 40. We will discuss how to improve the coloring

process.

Key words: vertex coloring, plane graph, four color, 4-color

Student Number: 2009-20284
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Chapter 1

Introduction

1.1 What is the Four Color Theorem?

Suppose that we are going to make a (geographic) map of our nation or a

blueprint of our house. We would draw several lines to distinguish each region,

and color the regions to increase the visibility of our work. If we are only

interested in distinguishing the regions, at least how many colors do we need?

In other words, suppose that two regions have different colors if they share

a line as their boundary. Then, at least how many colors do we need? The

conjecture that only four colors are needed to complete such a coloring task for

an arbitrary map was first proposed in 1852 by Francis Guthrie [3]. At long

last, Kenneth Appel and Wolfgang Haken proved the four color theorem using

a computer in 1976, and their proof was improved in 1996 by Neil Robertson,

Daniel Sanders, Paul Seymour, and Robin Thomas [7].

A region is a connected open subset of the plane. A planar map is a set

of disjoint regions of the plane. A point is a corner of a map if it is contained

in the closures of at least three regions. Two regions of a map are adjacent if

their closures share a point that is not a corner. The four color theorem asserts

that only four colors are needed to color the regions of any simple planar map

so that any two adjacent regions have different colors [3].1

1[3] defines a planar map as a set of pairwise disjoint subsets called regions of the plane,

1



CHAPTER 1. INTRODUCTION

1.2 Generalization of the Four Color Theorem

People may wonder where the number “4” comes from. And the dimensions,

the topological structures, or some properties of the spaces containing the given

map would probably cross their minds. Here are some examples that help us

check our conjectures.

Example 1.2.1.

1

23

4

Figure 1.2.1: Map that requires four colors to color the regions

In Figure 1.2.1, we show a map containing four regions (five regions if we

count the unbounded region) on a plane. All the regions are pairwise adja-

cent. Therefore, at least four colors are required to color this map.

and a simple planar map as a planar map whose regions are connected open sets.

2



CHAPTER 1. INTRODUCTION

Example 1.2.2.

1           2            1

2           1            2

1           2            1

Figure 1.2.2: Chessboard

1

2

1
2

1

2

3

Figure 1.2.3: Pizza with odd pieces

Figure 1.2.2 and Figure 1.2.3 show maps that require less than 4 colors since

they have specific structures.

What if the spaces containing the maps are not two dimensional?

Example 1.2.3.

...1       2    1    2   1    2 ...

Figure 1.2.4: an interval of the real

line

1

2

1
2

1

2

3

Figure 1.2.5: a circle

Figure 1.2.4 shows an interval of the real line R and It does not contain a

corner since any point p of R separates R \ {p} into two distinct partitions

({x ∈ R : x < p} and {x ∈ R : x > p}). Therefore, if two regions A and B of

R share a point p as a common frontier and A has been assigned a color, say

color 1, then B can be assigned another color, say color 2. By repeating this

3



CHAPTER 1. INTRODUCTION

work for another frontier of the sum of colored regions, we can color all the

regions with only two colors. Figure 1.2.5 shows a circle that can be viewed as

joining two ends of a bounded interval containing an odd number of regions.

The map in this figure requires three colors since the ends of the interval are

joined: The first region and the last region are not adjacent before joining the

ends, but they are adjacent after joining the ends. Compare Figure 1.2.5 with

Figure 1.2.3.

Example 1.2.4.

(a)                                        (b)

Figure 1.2.6: regions of 3-dimensional space

In Figure 1.2.6, (a) shows a map with seven regions (containing a cylindri-

cal region) of 3-dimensional space. Most regions have shapes such as a sum of

a tube and a stick like (b). This map requires seven colors since all the regions

are pairwise adjacent. From this figure, we can guess the existence of maps

that require infinitely many colors: by adjusting some parameters (width of

stick, height of tube, and so on) of each region, and adding more regions of

similar shape, we can make a map that requires as many colors as we want.

4



CHAPTER 1. INTRODUCTION

As the previous example shows, it seems pointless to consider this type

of problem for maps of three or higher dimensional spaces. Instead, let us

consider maps of 2-dimensional surfaces embedded into a 3-dimensional space.

The next example shows that the coloring problems are more complicated and

that the topological structures presumably influence the number of required

colors.

Example 1.2.5.

1

2
2

3

4

4
5

55

5
6

6

7 7

Figure 1.2.7: a map of torus requir-

ing seven colors

A

A’

B

C

B’

C’

Figure 1.2.8: annulus in the plane

and annulus in a torus

Figure 1.2.7 shows a map of a torus requiring seven colors. As we obtain

a new adjacency condition by joining the ends of an interval (a region of the

real line) in Example 1.2.3, we may get new adjacency conditions by pasting

the opposite edges of a square (a region of the plane). In Figure 1.2.8, A is an

annular region with its two frontiers B and C in a plane. A′ is also an annular

region with its two frontiers B′ and C ′ in a torus. A separates its exterior into

two pieces but A′ does not. If there was a regions whose frontier intersects with

B and another region whose frontier intersects with C in the plane, these two

regions would never be adjacent. However, if there was a region whose frontier

5



CHAPTER 1. INTRODUCTION

intersects with B′ and another region whose frontier intersects with C ′ in the

torus, these two regions may be adjacent. Considering the fact that a cycle

(or a polygon) is a deformation retract of an annulus [6], the plane case agrees

with the Jordan curve theorem (Theorem 2.2.1), but the torus case does not.

1.3 Maps with finite regions

In this thesis, we treat maps that contain finite regions of the plane. However,

a map may have two or more unbounded regions and we may want to find

another map that conserves the adjacency of all the pairs of regions and has

only one unbounded region.

x

y

z

rotM

Figure 1.3.1: Example of getting a map that has only one unbounded

region from another map that has four unbounded regions.

Recall the well-known stereographic projection π : S2 \ N → R2 where S2

is a unit sphere, N = (0, 0, 1) is the north pole of the sphere, and R2 is the

plane isomorphic to the plane {(x, y, z)|z = 0} in three-dimensional space [5].

With the help of this projection, we can find the wanted map. Assume that

6



CHAPTER 1. INTRODUCTION

a map M of the plane has two or more unbounded regions, say R1, R2, · · ·Rn.

Considering that π−1(Ri) and π−1(Rj) are distinguished in S2 (1 ≤ i 6= j ≤ n),

it is reasonable to treat the north pole N as a point contained in frontier of

every π−1(Rk), where k = 1, 2, · · · , n. Let rotM : S2 → S2 be a rotation of

S2 such that the north pole N is contained in rotM(π−1(R)) for some R ∈M .

Let us remove N and re-send regions of rotM(π−1(M)) to the plane by the

projection π so that we obtain a new map of the plane that contains only one

unbounded region. This method does not break the adjacency of the regions

since the projection π and the rotation rotM are continuous and bijective. If

we want a region with special properties to be unbounded, we can use a similar

method.

7



Chapter 2

Graph representation

This chapter introduces the standard terminologies and some well-known facts

from [2].

2.1 Graphs

A graph is a pair G = (V,E) of sets such that E ⊆ [V ]2. The elements of V

are the vertices of the graph G, the elements of E are its edges. The usual

way to picture a graph is by drawing a dot for each vertex and joining two of

these dots by a line if the corresponding two vertices form an edge.

A graph with vertex set V is said to be a graph on V . The vertex set of

a graph G is referred to as V (G), its edge set as E(G). We shall not always

distinguish strictly between a graph and its vertex or edge set. For example,

we may speak of a vertex v ∈ G (rather than v ∈ V (G)), and edge e ∈ G, and

so on.

The number of vertices of a graph G is its order written as |G|, and the

number of its edges is denoted by ‖G‖.
A vertex v is incident with an edge e if v ∈ e. And e is an edge at v.

The two vertices incident with an edge are its endvertices or ends, and an edge

joins its ends. An edge {x, y} is usually written as xy (or yx). If x ∈ X and

y ∈ Y , then xy is an X − Y edge. The set of all X − Y edges in a set E

8



CHAPTER 2. GRAPH REPRESENTATION

is denoted by E(X, Y ); instead of E({x}, Y ) and E(X, {y}) we simply write

E(x, Y ) and E(X, y). The set of all the edges in E at a vertex v is denoted by

E(v).

Two vertices x, y of G are adjacent or neighbors, if xy is an edge of G.

Also, two edges e 6= f are adjacent if they have an end in common. If all the

vertices of G are pairwise adjacent, then G is complete. A complete graph on

n vertices is a Kn. K3 is called a triangle. Pairwise non-adjacent vertices or

edges are called independent. More formally, a set of vertices or of edges is

independent (or stable) if no two of its elements are adjacent.

Let G = (V,E) and G′ = (V ′, E ′) be two graphs. We call G and G′

isomorphic, and write G ' G′ if there exists a bijection ϕ : V → V ′ with

xy ∈ E ⇔ ϕ(x)ϕ(y) ∈ E ′ for all x, y ∈ V . Such a bijection ϕ is called an

isomorphism.

A class of graphs that is closed under isomorphism is called a graph prop-

erty. For example, ‘containing of triangle’ is a graph property.

We set G∪G′ := (V ∪V ′, E∪E ′) and G∩G′ := (V ∩V ′, E∩E ′). If V ′ ⊆ V

and E ′ ⊆ E then G′ is a subgraph of G (and G a supergraph of G′), written as

G′ ⊆ G. If G′ ⊆ G and G′ contains all the edges xy ∈ E with x, y ∈ V ′, then

G′ is an induced subgraph of G and we say that V ′ induces or spans G′ in G,

write G′ =: G[V ′].

If U is any set of vertices (usually of G), we write G− U for G[V \ U ]. If

U = {v} is a singleton, we write G−v rather than G−{v}. Instead of G−V (G′)

we simply write G−G′. For a subset F of [V ]2 we write G− F := (V,E \ F )

and G + F := (V,E ∪ F ). As above, G − {e} and G + {e} are abbreviated

to G − e and G + e. We call G edge-maximal with a given graph property

if G itself has the property but no graph G + xy := (V,E ∪ {xy}) does, for

non-adjacent vertices x, y ∈ G.

The set of neighbors of a vertex v in G is denoted by NG(v) or briefly by

N(v). More generally for U ⊆ V , the neighbors in V \ U of vertices in U are

called neighbors of U , denoted by N(U).

The degree dG(v) = d(v) of a vertex v is the number |E(v)|. The number

δ(G) := min{d(v)|v ∈ V } is the minimum degree of G, the number ∆(G) :=

9



CHAPTER 2. GRAPH REPRESENTATION

max{d(v)|v ∈ V } is its maximum degree. The number

d(G) :=
1

|V |
∑
v∈V

d(v)

is the average degree of G. If we sum up all the vertex degrees in G we count

every edge exactly twice: once from each of its ends. Thus

|E| = 1

2
d(G) · |V |. (2.1.0.1)

A path is a non-empty graph P = (V,E) of the form

V = {x0, x1, · · · , xk}, E = {x0x1, x1x2, · · · , xk−1xk}

where the xi are all distinct. The vertices x0 and xk are linked by P and

are called its ends. The vertices x1, · · ·xk−1 are the inner vertices of P . The

number of edges of a path is its length. We often refer to a path by the natural

sequence of its vertices, writing P = x0x1 · · ·xk and calling P a path from x0
to xk (as well as between x0 and xk).

Given sets A,B of vertices, we call P = x0 · · ·xk an A−B path if V (P )∩
A = {x0} and V (P ) ∩ B = {xk}. As before, we write a− B path rather than

{a} −B path, etc.

If P = x0x1 · · ·xk−1 is a path and k ≥ 3, then the graph C := P+xk−1x0 is

called a cycle. As with paths, we often denote a cycle by its (cyclic) sequence

of vertices such as C = x0, · · · , xk−1, x0. The length of a cycle is its number of

edges (or vertices). An edge that joins two vertices of a cycle but is not itself

an edge of the cycle is a chord of that cycle. An induced cycle in G, a cycle in

G forming an induced subgraph, is one that has no chords.

A non-empty graph G is called connected if any two of its vertices are linked

by a path in G. A maximal connected subgraph of G is called a component of

G.

An acyclic graph, one not containing any cycles, is called a forest. A

connected forest is called a tree. The vertices of degree 1 in a tree are its

leaves.

10



CHAPTER 2. GRAPH REPRESENTATION

Let r ≥ 2 be an integer. A graph G = (V,E) is called r-partite if V admits

a partition into r classes such that every edge has its ends in different classes.

Vertices in the same partition class must not be adjacent. Instead of ‘2-partite’

one usually says bipartite. An r-partite graph in which every two vertices from

different partition classes are adjacent is called complete multipartite(r-partite)

graph and denoted by Kn1,··· ,nk
where each ni is the number of vertices of each

partition class. If n1 = · · · = nr =: s we abbreviate this to Kr
s .

Let e = xy be an edge of a graph G = (V,E). By G/e we denote the graph

(V ′, E ′) with vertex set V ′ := (V \ {x, y}) ∪ {ve} and edge set

E ′ := {vw ∈ E|{v, w} ∩ {x, y} = ∅} ∪ {vew|xw ∈ E \ {e}or yw ∈ E \ {e}}.

More generally, if X is another graph and {Vx|x ∈ V (X)} is a partition

of V into connected subsets such that, for any two vertices x, y ∈ X, there is

a Vx − Vy edge in G if and only if xy ∈ E(X), we call G an MX and write

G = MX. The sets Vx are the branch sets of this MX. If G = MX is a

subgraph of another graph Y , we call X a minor of Y and write X 4 Y .

If we replace the edges of X with independent paths between their ends

(so that none of these paths has an inner vertex on another path or in X), we

call the graph G obtained a subdivision of X and write G = TX. If G = TX

is the subgraph of another graph Y , then X is a topological minor of Y .

2.2 Planar graphs

A straight line segment in the Euclidean plane is a subset of R2 that has the

form {p + λ(q − p)|0 ≤ λ ≤ 1} for distinct points p, q ∈ R2. A polygon is a

subset of R2 that is the union of finitely many straight line segments and is

homeomorphic to the unit circle S1. A polygonal arc, or simply an arc, is a

subset of R2 which is the union of finitely many straight line segments and

is homeomorphic to the closed unit interval [0, 1]. The images of 0 and of 1

under such a homeomorphism are the endpoints of this polygonal arc, which

links them and runs between them. If P is an arc between x and y, the point

set P \ {x, y} is the interior of P and we denote it by P̊ .

11



CHAPTER 2. GRAPH REPRESENTATION

Let O ⊆ R2 be an open set. Being linked by an arc in O defines an

equivalence relation on O. The corresponding equivalence classes are again

open and they are the regions of O. The frontier of a set X ⊆ R2 is the set

Y of all points y ∈ R2 such that every neighborhood of y meets both X and

R2 \X.

Theorem 2.2.1 (Jordan Curve Theorem for Polygons). For every polygon

P ⊆ R2, the set R2 \ P has exactly two regions. Each of these has the entire

polygon P as its frontier.

A good account of the Jordan curve theorem is given in [8] or [6].

Lemma 2.2.2. Let P1, P2, P3 be three arcs, between the same two endpoint

but otherwise disjoint.

(i) R2\(P1∪P2∪P3) has exactly three regions, with frontiers P1∪P2, P2∪P3

and P3 ∪ P1.

(ii) If P is an arc between an inner point of P1 and an inner point of P3,

whose interior lies in the region of R2 \ (P1 ∪ P3) that contains P2, then

P̊ ∩ P̊2 6= ∅.

A plane graph is a pair (V,E) of finite sets with the following properties

(the elements of V are again called vertices, those of E edges):

(i) V ⊆ R2;

(ii) every edge is an arc between two vertices;

(iii) different edges have different sets of endpoints;

(iv) the interior of an edge contains no vertex and no point of any other edge.

For every plane graph G, the set R2 \ G is open. Its regions are the faces of

G. We denote the set of faces of G by F (G).

The subgraph of G whose point set is the frontier of a face f is said to

bound f and is called its boundary, and we denote it by G[f ]. A face is said

to be incident with the vertices and edges of its boundary.

A plane graph G is called maximally plane, or just maximal, if we cannot

add a new edge to form a plane graph G′ ) G with V (G′) = V (G). We call G

12
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a plane triangulation if every face of G (including the outer face) is bounded

by a triangle.

A wheel Wn is a graph with n vertices (n ≥ 4) formed by connecting a

single vertex v to all vertices of an (n − 1)-cycle. The single vertex v is hub

and the edges incident with v are called spokes. We simply denote it by W

when we do not need to consider the length of the cycle. If W is a wheel in a

graph G and h is its hub, we say that h forms a wheel W in G.

Proposition 2.2.3. A plane graph of order at least 3 is maximally plane if

and only if it is a plane triangulation.

Theorem 2.2.4 (Euler’s Formula). Let G be a connected plane graph with n

vertices, m edges, and l faces. Then

n−m+ l = 2. (2.2.4.1)

Corollary 2.2.5. A plane graph with n ≥ 3 vertices has at most 3n−6 edges.

Every plane triangulation with n vertices has 3n− 6 edges.

An embedding in the plane, or planar embedding, of an (abstract) graph G

is an isomorphism between G and a plane graph H. The latter will be called

a drawing of G. A graph is called planar if it can be embedded in the plane.

A planar graph is maximal, or maximally planar, if it is planar but cannot be

extended to a larger planar graph by adding an edge (but no vertex).

Proposition 2.2.6.

(i) Every maximal plane graph is maximally planar.

(ii) A planar graph with n ≥ 3 vertices is maximally planar if and only if it

has 3n− 6 edges.

Theorem 2.2.7 (Kuratowski 1930; Wagner 1937). The following assertions

are equivalent for graphs G:

(i) G is planar;

(ii) G contains neither K5 nor K3,3 as a minor;

(iii) G contains neither K5 nor K3,3 as a topological minor.

13
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2.3 Plane graph representation of a map

For a given map V = {v1, v2, · · · , vn} of plane (n ≥ 4), let us define E :=

{vw ⊂ V |v, w are adjacent }, then G = (V,E) forms a graph on V . Two

adjacent regions (their closures share a point that is not a corner) in V are

also adjacent (they are joined by an edge) in G. The graph G is planar since

G has a drawing H in the following sense: let V ′ := {p1, p2, · · · , pn} be a set of

inner points of regions of the plane such that pi ∈ vi for each i = 1, 2, · · · , n.
For an adjacent pair of regions, vi and vj, there exists a point q that is not a

corner on a common frontier of vi and vj. Let Pi,q be an arc from p1 to q lying

in v1, and Pq,j be an arc from q to p2 lying in v2. Let Pi,j := Pi,q ∪ Pq,j be the

sum of the arcs and E ′ be the set of such Pi,j. Let us define a drawing H on

V ′, setting H := (V ′, E ′). Then, we can find (graph) isomorphism φ : V → V ′

such that φ(vi) = pi and φ(vivj) = Pi,j. Therefore, we can convert the coloring

problem of a map of the plane to the coloring problem of vertices of a plane

graph.

A vertex coloring of a graph G = (V,E) is a function c : V → S from the

vertex set V to a set S such that c(v) 6= c(w) whenever v and w are adjacent.

The elements of the set S are called the available colors. The smallest integer

k is the (vertex-) chromatic number of G if G has a k-coloring that is a vertex

coloring c : V → {1, · · · , k}. We denote the chromatic number by χ(G). A

graph G with χ(G) = k is called k-chromatic; if χ(G) ≤ k, we call G k-

colorable [2]. We also call a vertex coloring with |S| ≤ n an n-coloring solution

of G. Clearly, we are looking for the 4-coloring solutions.

Suppose that G and G+ xy are plane graphs such that x, y ∈ G are non-

adjacent vertices. Then all the coloring solutions of G+xy are also the coloring

solutions of G. Therefore, we have only to consider a maximal plane graph

containing the given graph G. By Proposition 2.2.6, we shall not distinguish

between maximal plane graphs and maximal planar graphs. And by Proposi-

tion 2.2.3, all the faces, including unbounded faces, of maximal plane graphs

are bounded by triangles.

Proposition 2.3.1. Let G be a maximal plane graph with n vertices. The

minimum degree δ(G) of G is at least 3.

14
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Proof. By Corollary 2.2.5, G has 3n − 6 edges. A graph G′ obtained by re-

moving vertices or edges from G is also a plane graph. Suppose that there is

a vertex v of degree 2. Set G′ := G − v. Then the order |G′| of G′ is n − 1

and the number ‖G′‖ of its edges is 3n − 6 − 2 = 3n − 8 since the degree of

v is 2. However, ‖G′‖ = 3n − 8 > 3(n − 1) − 6 and by Corollary 2.2.5, this

contradicts the fact that G′ is a plane graph.

Proposition 2.3.2. Let G be a maximal plane graph with n vertices and

v ∈ G be a vertex of degree 3. Then the graph G′ := G− v is also a maximal

plane.

Proof. The number of edges of G′ is (3n−6)−3 = 3(n−1)−6 and by Corollary

2.2.5, G′ is maximally plane.

Suppose that G has a vertex v of degree 3. Let v1, v2, v3 be the neighbors

of v. If we can find a 4-coloring solution c : V (G− v)→ S of G− v, then we

also can find a 4-coloring solution of G by extending c: define c(v) := s where

s ∈ S \ c({v1, v2, v3}). By Proposition 2.3.2, G − v is also maximally plane.

Therefore, we have only to consider a maximal plane graph with a minimum

degree at least 4.

Applying Equation 2.1.0.1 to a maximal plane graph G of order n with

δ(G) ≥ 4, we could easily obtain that

d(G) =
2|E|
|V |

(2.3.2.1)

=
2(3n− 6)

n
(2.3.2.2)

= 6− 12

n
(2.3.2.3)

(2.3.2.4)

∴ lim
n→∞

d(G) = 6. (2.3.2.5)

This means that most vertices have degrees less than 6.

Digressively, the fact that a graph G of order at least 4 has a 4-coloring

solution is equivalent to the fact that G is 4-partite: assume that G has a

15
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4-coloring solution c : V (G) → S. As an equivalence relation, the 4-coloring

solution defines four or less equivalence classes on V (G), and vertices of the

same class are independent. Since the n-partite graph of order m is also m-

partite where m > n, G is 4-partite. Conversely, assume that G is 4-partite.

Let us define a coloring solution c′ on V (G) such that c′(v) = c′(w) if v, w are

in the same class and c′(v) 6= c′(w) if v, w are in different classes. Then the

number of the range of c′ is at most 4.

If we can prove that if an arbitrary graph G is not 4-partite, then it con-

tains K5 or K3,3 as a minor or a topological minor so that it is not a planar

graph by the Theorem of Kuratowski and Wagner (Theorem 2.2.7), then the

contraposition asserts that all planar graphs are 4-partite, and therefore have

4-coloring solutions.

Notation 2.3.3. We can assume that a map has only one unbounded region

(Section 1.3). Let G be a maximal plane graph containing a subgraph that

represents the given map, and let a vertex v of G represent the unbounded

region of the map. The edges at v complicate the figure of G. Thus, in this

thesis, the edges at v would be omitted and the vertex v would be at the proper

location in the figures of the graph representation. And we would represent an

edge as a smooth curve even if it is defined as a polygonal arc which is a union

of finitely many straight line segments. We can easily distinguish the vertices

in the figure of a graph since all vertices have degrees at least 4 by Proposition

2.3.2. See the following example.

Example 2.3.4.

(a)                               (b)

Figure 2.3.1: prefer (b) rather than (a)

Both (a) and (b) of Figure 2.3.1 denote K4. We use a line segment for rep-

resenting an edge. But when it is difficult, we use smooth curves such as (b)

rather than a union of finite line segments such as (a).

16
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Example 2.3.5.

v                               v

(a)                                 (b)                                (c)

Figure 2.3.2: prefer (c) rather than (b) for a graph notation of map (a)

In Figure 2.3.2, (b) and (c) are the same graph representations of map (a).

(c) is obtained from (b) omitting edges at the vertex v that represents the

unbounded region of map (a). We prefer figures such as (c) rather than figures

such as (b) for a graph representation of a map.

Proposition 2.3.6 (Five Color Theorem). Every planar graph is 5-colorable.

The proof of the Five Color Theorem is given in [2].

Theorem 2.3.7 (Grötzsch 1959). Every planar graph not containing a triangle

is 3-colorable [2][9].
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Chapter 3

Finding a 4-coloring solution

In this chapter, we will discuss how to color the vertices.

3.1 An introduction of a coloring method

Let G be a plane graph and v be a vertex of G. Assume that we will color

the vertices of G one by one and that v have k number of colored neighbours

at a moment. Let S denote a set of all colors that have been assigned to the

neighbors. Clearly, |S| =: n ≤ k ≤ dG(v). Then, we say that v has n colors on

its neighbors. If a vertex v has n colors on its neighbors and another vertex w

has m colors on its neighbors and m < n, then we say that v has more colors

on its neighbors than w or that w has less colors on its neighbors than v.

In a plane graph G, a maximal triangle patch without a wheel or simply a

patch is a subgraph P of G with the following properties:

(i) P is a triangulation.

(ii) P does not contain a wheel graph.

(iii) If a triangle T1 of G shares an edge with a triangle T2 of P , then T1 is

also a triangle of P .

A patch P is simple if the closure of the sum of all its faces is a simple region

of the plane. Let P be a set of all patches of G. A vertex v of G is patch-free

from P or simply patch-free if v is not contained in any member of P.
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In a maximal plane graph G, an independent hubset or simply a hubset is

a set H of independent vertices such that each member is a hub of a wheel in

G. H is maximal if G − H does not contain any wheels. Let us refer to the

members of a hubset as hubs unless any confusion arises.

Let G be a plane graph, v be a vertex of G, c : V (G) → S be a vertex

coloring of G, and A be a subset of V (G). A usually does not contain v. A

set of adjacent colors of v with respect to c|A is the image set c|A(A ∩NG(v))

in S and it is denoted by ACc|A(v) or simply ACc(v) or AC(v). The number

|ACc(v)| is the AC-number of v.

Let G be a plane graph of order n. We would like to color its vertices one

by one. Since we do not have enough colors, we should decide which vertex

to color. If, at a moment, a non-colored vertex v ∈ G has three colors on its

neighbors and we have only four available colors, we have to color this vertex

v rather than other vertices. It seems natural to select a vertex that has more

colors on its neighbors rather than other vertices that have less colors on their

neighbors, among the non-colored vertices. In such a point of view, we can

consider a coloring method by constructing a finite sequence of pairs (Gk, ck)

in the following way:

(i) G1 = ({v1}, ∅) where v1 ∈ V (G).

(ii) Define a vertex coloring, c1 : G1 → S on G1.

(iii) Define an induced subgraph Gk := G[Gk−1 ∪ {vk}], where vk ∈ G \Gk−1

is a vertex such that the AC-number |ACck−1
(vk)| is maximum.

(iv) Define a vertex coloring, ck : Gk → S such that ck|Gk−1
= ck−1 and

ck(vk) ∈ S \ ACck−1
(v).

The above process does not always work for a 4-element set S, say {1, 2, 3, 4}.
To improve the above process, we can add other conditions for selecting vk or

a process for exchanging some assigned colors. However, this thesis suggests

another way:

(i) Convert the given map to a graph and find a maximal plane graph that

contains the graph.

(ii) Remove vertices of degree 3 from the maximal plane graph if they exist.
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(iii) Find a hubset in the graph.

(iv) Color the vertices that are not the elements of the hubset with three

available colors.

(v) Color the vertices contained in the hubset with the fourth color.

(vi) Finally, apply the coloring result to the given map.

3.2 Examples of coloring

Example 3.2.1. Find a coloring solution of the given map, Figure 3.2.1.

Figure 3.2.1: given map
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a

Figure 3.2.2: Step 1

Solution. Step 1: Find a graph representation of the given map in Figure 3.2.1

as described in Section 2.3.

a

Figure 3.2.3: Step 2

Step 2: Omit the edges at a in the same way as Figure 2.3.3 in Example

2.3.5, where a is the vertex that represents the unbounded region of the given

map.
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a b

Figure 3.2.4: Step 3

Step 3: By Proposition 2.2.3, the graph in Figure 3.2.3 is not a maximally

plane since it contains two faces whose boundaries are not triangles. Find a

maximal plane graph containing Figure 3.2.3.

a

Figure 3.2.5: Step 4, a graph G

Step 4: By Proposition 2.3.2 and the arguments below, the vertex b in Figure

3.2.4 can be removed since its degree is three. Let G denote this graph.
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a

: hub

Figure 3.2.6: Step 5

Step 5: Find a hubset H. In Figure 3.2.6, the hubs are represented by white

circles. Note that a is also a hub of a wheel.

a

: hub

1

2

3

1

2

3

1

2

3

1

3

2

1
3

2

1
2

3
1

3

2

1

Figure 3.2.7: Step 6

Step 6: Following the vertex-selecting order discussed in Section 3.1, color

the patches of G−H with three available colors, say color 1, color 2, and color

3. Note that if G − H had not contained any patches, this step would have

been a specific example of the Grötzsch’s theorem (Theorem 2.3.7).
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a

: hub

1

2

3

1

2

3

1

2

3

1

3

2

1
3

2

1
2

3
1

3

2

1

4

4

4

4

4

Figure 3.2.8: Step 7

Step 7: Color the hubs with color 4. Note that we never used color 4 at

Step 6 and that all the hubs are independent by the definition of the hubset.

a

1

2

3

1

2

3

1

2

3

1

3

2

1
3

2

1
2

3
1

3

2

1

4

4

4

4

4

2b

Figure 3.2.9: Step 8

Step 8: Apply the coloring result to the original graph in Figure 3.2.3 ob-

tained at Step 2. Do not forget to color the vertex b that was removed at Step

4. We have only to assign b color 2 since AC(b) = {1, 3, 4}.
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1        2

3        4

Figure 3.2.10: Step 9

Step 9: Color the region of the given map according to the vertex coloring

we have found.

The coloring process such as the one in Example 3.2.1 does not always

success. See the following examples.

Example 3.2.2.

(a) Unsuccessful                        (b) Successful

1

23

1

3
2

1

3

1
3

e
2

2

1

2
3

1
2

1

3

2

1

3

Figure 3.2.11

Figure 3.2.11 shows the different choices of hubsets for the same graph. (a)

shows the wrong choice of hubset – the ends of an edge e have the same color.
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Example 3.2.3.

1

2

3 1

3

1

2
3

1

2
1

3 2

1

3

2

1

3

2 1

1

2

3

3 1

2 1

2

3

2

3

12

3
1

(a) Unsuccessful                     (b) Successful                         (c) Successful

e f g

1

2

3

1 2

3

2 1

3

1

2

3
1

1

3

2

3

2

Figure 3.2.12

Figure 3.2.12 also shows the different choices of hubsets for the same graph.

The ends of one of the edges {e, f, g} in (a) have the same color: lower ends

of these edges must have the same color, color 1 as figured, but the upper

ends of the edges must have pairwise different colors. Since we have only three

available colors, it is unsuccessful by the pigeonhole principle.

Example 3.2.4.

1

2

3

1

2

1

3

2
1

3

2 1

2

3

3

2
3 1

2

31

2

3

1
2

1

1

3

3 2

1

2
1

2

3

1

A

e

f

1
1

1

1

2

3

2

3

2
32

3

1

2

3
1

3

2

P

Q

P

(a) Unsuccessful                (b) Successful                    (c) Successful

Figure 3.2.13

In Figure 3.2.13 (a), every vertex of a triangle A has color 3 on its neigh-

bors. Thus, it is unsuccessful since we have only three available colors for the

vertices of the triangle A. A path e∪ f of length 2 has color 1 on one end and

color 2 on the other end. Therefore, the only inner vertex has to be assigned

26



CHAPTER 3. FINDING A 4-COLORING SOLUTION

color 3. Every inner vertex of paths P and Q plays a role as a buffer that

prevents the failure of coloring since it always has two neighbors except hubs

so that it has at most two colors on its neighbors before coloring hubs.

Example 3.2.5.

1

23

1

2

3

1

2

3

1

2

1

3

2

3

1

2

A
1

2

3
1

2

3

1
33

21

2
3

1
2 1

3

P

(a) Unsuccessful                                        (b) Successful

Figure 3.2.14

In Figure 3.2.14 (a), P is a path of length 3 and both of its ends have been

assigned color 1. Therefore, one of the two inner points of P has to be colored

with color 2. However, the triangle A contains the two inner points of P , and

has another vertex that already has been colored with color 2. Therefore, (a)

is unsuccessful.

3.3 Observations

Definition 3.3.1. Let G be a plane graph containing at least one triangle. An

overedge sequence is a sequence {v1, v2, · · · } of vertices such that there exists

an edge ei that is the opposite edge of vertex vi in a triangle T and the opposite

edge of vertex vi+1 in a triangle T ′ of G. Note that T and T ′ can denote the

same triangle, and that vi and vj can denote the same vertex even if i 6= j.

Two vertices v1 and v2 of G are overedge if there exists an overedge sequence

containing both v1 and v2.

27



CHAPTER 3. FINDING A 4-COLORING SOLUTION

Proposition 3.3.2. For the vertices in a patch P , the overedge relation is an

equivalence relation.

Proof. (Reflexivity) Since P is a triangulation, for any vertex v of P , there

exists a triangle T that contains v. Let e be an opposite edge of v in T , then

a sequence {v, v, · · · } is an overedge sequence since e is an opposite edge of

every element of the sequence in T .

(Symmetry) If v1 and v2 are members of a sequence, then v2 and v1 are also

members of the sequence.

(Transitivity) Assume that vi and vj are members of an overedge sequence

A, and vj and vk are members of an overedge sequence B. Then we have a

subsequence {vi, · · · , vj} of A and another subsequence {vj, · · · , vk} of B. By

joining the two sequences, we get an overedge sequence {vi, · · · , vj, · · · , vk}.

Proposition 3.3.3. The overedge relation defines three equivalence classes on

a simple patch P .

Proof. Let P be a simple patch and T1 be a triangle of P . We have three

distinct pairs, each of which is a form of (vi1, e
i
1) such that vi1 is an opposite

vertex of edge ei1 where i = 1, 2, 3. Let T2 be another triangle of P that shares

an edge ei1 with T1. There is only one opposite vertex of the edge ei1 in T2 and

let vi2 denote this vertex. Similarly, in a triangle Tj of P that shares an edge

eik with T1 ∪ · · · ∪ Tj−1, let the opposite vertex of eik be denoted by vik+1 for

some index k. Note that Tj shares only one edge with T1 ∪ · · · ∪ Tj−1 and that

there exists only one opposite vertex of eik in Tj since P is simple and it does

not contain any wheels. Therefore, a vertex v of T1 ∪ · · · ∪ Tj cannot have two

notations; for example, vi1k1 = v = vi2k2 where i1 6= i2, so that the number of

equivalence classes is less than three.

Corollary 3.3.4. A simple patch P requires exactly three colors to color its

vertices. Two vertices v and w of P have the same color if they are overedge.

Proof. Assume that the two vertices v and w are overedge in a simple patch

P . Then v and w are non-adjacent in P since P does not contain K4 that is
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a wheel graph. (However, v and w can be adjacent in a supergraph of P . See

the Example 3.3.7.) Therefore, we can assign the same color to vertices in the

same equivalence class. By Proposition 3.3.3, we need exactly three colors.

Assume that we find a maximal hubset H of a plane graph G. Consider

the graph G − H. A patch has six numbers of 3-coloring solutions since a

triangle also has six numbers of 3-coloring solutions. And for a colored patch

P , if we want a vertex v ∈ P that was already colored to have a different color,

we can just exchange the color of [v] and the color of [w], where [v] and [w]

are the different equivalence classes containing v and w, respectively.

Let us consider how a colored patch affects the colorings of another patch

in G−H. Assume that P and Q are two patches and P has been colored. If

they share a vertex v, then we have two choices of 3-coloring solutions for Q.

If the patches are linked by an edge vw where v ∈ P , w ∈ Q, then we have

four choices of 3-coloring solutions for Q. If the patches are linked by a P −Q
path vuw of length 2, where v ∈ P , w ∈ Q, then the vertex coloring of P

does not affect the choice of the vertex coloring of Q. Even if the ends of the

path have different colors, we can always assign the third color to the inner

vertices of the path since the degree of all the inner vertices is 2 in G − H.

This means that a coloring of P never affects the coloring of Q if all P − Q
paths have lengths at least 2. Such a path of length at least 2 can be seen

as a graph representation of an interval of the real line such as Figure 1.2.4.

Three available colors are enough to color maps of such an interval. When

we finish coloring some patches and if there does not exist non-colored vertex

of AC-number 2, we should select a vertex that is contained in a non-colored

patch linked to the sum of colored patches by a path of shorter length. Note

that a vertex that is shared by two patches can be thought as a linking path of

length 0. However, which vertices would be the inner vertices of such a path

linking two patches in G−H? The answer is vertices of degree 4 in G.

Proposition 3.3.5. Let G be a maximal plane graph with δ(G) ≥ 4 and H be

a maximal hubset of G. Let W 1 and W 2 be two wheels such that h1, h2 ∈ H
are hubs of W 1 and W 2, respectively, and W 1 and W 2 share a path P of length

at least 2. Then the degree of the inner vertices of P is 4 in G.
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Proof. Let v be an inner vertex of P . Then we obtain dG(v) ≥ 4 since δ(G) ≥ 4.

The vertex v has two neighbors v1 and v2 in P and two neighbors h1 and h2
that are not vertices in P . However, v does not have any other neighbors:

each vhivjv (i, j = 1, 2) forms a triangle. If a vertex w is inside of one of

the triangles, the degree dG(w) of w is 3 since G is maximally planar. This

contradicts the assumption that δ(G) ≥ 4. If w is outside all the triangles, this

also contradicts the Jordan curve theorem (Theorem 2.2.1) since h1v1h2v2h1
forms a cycle containing all the triangles.

For a maximal hubset H of a maximal plane graph G, we can always color

the patch-free vertices of G −H with 3 available colors if they have degree 4

in G. However, if a patch-free vertex v of G−H has a degree at least 6 in G,

we are not always able to color the vertex v. See the next example.

Example 3.3.6.

(coloring order, color)

(1,1)

(2,2)

(3,3)

(4,2)

(5,2)

(6,2)

(7,2)

(8,1)
(9,3)

(10,3)

v

P

Q

R

S

: hubs
P, Q, R, S : patches

Figure 3.3.1
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Due to the wrong choice of a maximal hubset, finding a 3-coloring solution is

unsuccessful (Figure 3.3.1). Let vi denote the i-th colored vertex in the figure.

We start coloring v1 with color 1 and we have no problem until the vertex v4 is

colored with color 2. In patch Q, v5, v6 and v7 should be colored with color 2

since they are overedge with v4 which has been colored with color 2. When we

color the vertex v8, we have to color it with color 1 because if we color it with

color 3 then v which is not a hub, would have three colors on its neighbors.

Also, v already has hubs that would be colored with color 4 as its neighbors;

thus, v would require the fifth color. This implies that v9 should be colored

with color 3. Since v10 is overedge with v9, it should be colored with color 3.

Finally, v requires the fifth color.

A patch-free vertex such as v in Figure 3.3.1 has a degree at least 6.

However, Equation 2.3.2.5 says that such a vertex does not appear frequently.

Despite this, we can usually find another 3-coloring solution by exchanging

colors of two classes of some patches. As Example 3.3.6 states, if there is no

3-coloring solution, we should take another maximal hubset.

Example 3.3.7.

(a)                                       (b)                                       (c)

v
ee

: vertices in overedge relation

Figure 3.3.2
The patch of (a) in Figure 3.3.2 is not simple and the overedge relation cannot

define three equivalence classes. (b) shows that two ends of an edge e that are

contained in different patches. They are overedge with a vertex v so that they
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are also overedge. (c) shows a situation similar to the case of (b), two vertices

are overedge in a patch but they are linked by an edge e.

Situations such as the next example frequently occur.

Example 3.3.8. Consider a path P of length 3 whose ends are colored with

the same color, say color 1. Then the two inner vertices v1 and v2 have to be

colored with color 2 and color 3 or with color 3 and color 2, respectively. See

Figure 3.2.14 in Example 3.2.5.

The previous example shows that although the length of a path (that links

two patches) is at least 2, if some inner vertices of the path have degrees more

than 4, we have to consider these inner vertices when we color the patches

containing some of these inner vertices or the patches containing other vertices

that are adjacent to some of these inner vertices.

What should we also consider? Let G be a maximal plane graph and H

be a maximal hubset in G. Let G′ be a graph on P ∪ P̄ where P is the set of

patches in G − H and P̄ is the set of patch-free vertices that have degree at

least 2 in G−H. Let us define an edge set E(G′) of G′ such that vw ∈ E(G′) if

v, w ∈ V (G′) share a vertex or are linked by an edge. Obviously, G′ is a plane

graph. The difficult concepts are perhaps the cycles in G′ because a coloring

of a vertex v ∈ G′ affects the coloring of other vertices along the cycles of G′

that contain v and it affects v again. Since the cycles containing v may form

complex structures in G′ or the colorings of two neighbors of v may affect each

other, we should consider the structure when we color v. However, we should

only consider the subgraphs of G′ that are isomorphic to the subdivisions of two

complete graphs, K3 and K4, since the Theorem of Kuratowski and Wagner

(Theorem 2.2.7) asserts that any subdivision of Kn for n ≥ 5 does not appear

in the planar graph G′. Let K be a subdivision of a complete graph containing

v in G′. Set a weight on each edge of K for vw ∈ E(K): if v and w share n

vertices and are linked by m edges, then set the weight W (vw) of vw ∈ E(K)

as 3n+ 2m. The quantity (
∑

e∈E(K)W (e))/|K| can be a standard for guessing

the success rate of coloring locally. The heavier weight, the harder it is for the

coloring to be successful.
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We have to choose a “good” maximal hubset. Most of the unsuccessful

cases of the previous examples contain a patch comparatively bigger than the

patches of the successful cases if we define the size of a patch as the number of

its faces. It seems better to break the “big” patches into smaller pieces. Assume

that we construct a maximal hubset H by adding new members (hubs) one by

one. To avoid generating “big” patches or non-simple patches, we can select

a vertex as a new hub forming a wheel that shares as many edges as possible

with some other wheels that are formed by the hubs that we already found.

It would also be better to take a hubset H in plane graph G such that

the patches in G − H are linked by paths of longest possible length. By

Proposition 3.3.5 and the arguments before it, it seems better not to select

vertices of degree 4 in G as members of the hubset. However, for a maximal

plane graph G containing vertices of degree 4, assume that we have found

a “good” hubset H so that we have a 4-coloring solution c that assigns the

members of H color 4 and assigns some other vertices of degree 4, without loss

of generality, color 1. Note that the other vertex coloring c′ obtained from c

by exchanging color 1 and color 4 is also a 4-coloring solution of G. Inversely,

we can find another hubset H ′ by taking vertices that are assigned color 4 by

c′ as its members. H ′ contains vertices of degree 4 in G, and it may not be a

maximal.

We suggest the following conditions for finding a maximal hubset.

(i) Select a vertex as a new hub such that the wheel formed by this hub

shares as many edges as possible with other wheels formed by hubs that

are already selected.

(ii) If a vertex v is overedge with a hub h that we already found, and if v

and h are simultaneously adjacent to other 4-degree vertices, select the

vertex v as new hub rather than other vertices. If there exist multiple

vertices such as v, select the one that has more neighbors of degree 4.

(iii) Choose a maximal hubset H such that G−H would contain less number

of faces that are bounded by triangles.
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Computer experiments

Since the method for finding the vertex coloring is not always successful, we

would like to check the success rate. This chapter provides some source codes

of computer programs and the explanations of them. You can also refer to the

comments that are contained in the codes. The codes are written in MATLAB-

like language. These codes may work for MATLAB, FreeMat, Octave, and

so on. In fact, the codes are written and checked in FreeMat. This thesis,

therefore, recommends running the codes in FreeMat.

The adjacency matrix A = (aij)n×n of a graph G := (V,E) is defined by

aij :=

{
1 if vivj ∈ E
0 otherwise.

For convenience, we do not distinguish a graph and its adjacency matrix

as long as no confusion arises. For example, the adjacency matrix of a graph

G is denoted by G, and the graph whose adjacency matrix is A is denoted by

A.

4.1 Process flow and the result

The process flow of computer codes is described as follows:

(i) Generate a random maximal plane graph. In fact, the codes generate a

random adjacency matrix A of a maximal plane graph.
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(ii) Get B by removing the vertices of degree 3 from A and find a hubset H

of B. Even if the thesis suggest three conditions for finding the maximal

hubset at the end of Section 3.3, the codes takes only condition (i) to

find new hubs while constructing a hubset because implementing all the

conditions complicates the codes.

(iii) Find patches in B −H.

(iv) Construct another adjacency matrix C of a virtual graph whose vertices

are equivalence classes of the overedge relation or patch-free vertices of

degree more than 4 in B.

(v) Generate the list of probable colorings of C with three available colors.

(vi) If a vertex coloring of C exists in the list then return success=1; other-

wise return success=0.

For a random maximal plane graph of order 40, we obtained the success

rate: (number of successes)/(number of tries)= 923/940 ≈ 98%.

4.2 Source codes

hoRun.m :

numSuccess = 0;

wrongEqClassVertexTable = 0;

for loopCount =1:1000

% Iterate 1000 times.

disp(’free memory ’)

clear A faces maxIndHubset tempMaxIndHubset B indexB facesB

patch patchFree patchFree4Degree sizeEqClass

facesRemovedHub C eqClassVertexTable colorVector success

disp(’Generate random adjacency matrix of a maximal plane

graph ’);

[A,faces] = hoGenRandAdjMat (40);

disp(’Remove vertices of degree 3 and find hubset ’);
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[maxIndHubset ,tempMaxIndHubset ,B,indexB ,facesB ]=

hoSelectArbMaxIndHubset(A,faces);

disp(’Find patches and patch -free vertices ’);

[patch ,patchFree ,patchFree4Degree ,sizeEqClass ,facesRemovedHub

]= hoFindPatches(B,tempMaxIndHubset ,facesB);

disp(’Create a virtual adjacency matrix ’);

[C,eqClassVertexTable] = hoVirtualAdjMat(patch ,patchFree ,B,

tempMaxIndHubset);

disp(’Check the eqClassVertexTable ’);

for i=1: size(eqClassVertexTable ,1)

if(eqClassVertexTable(i,1)== eqClassVertexTable(i,2)|

eqClassVertexTable(i,1)== eqClassVertexTable(i,3)|

eqClassVertexTable(i,2)== eqClassVertexTable(i,3))

disp(’wrong eqClassVertexTable ’);

wrongEqClassVertexTable =1;

break;

end

end

if(wrongEqClassVertexTable ==1)

wrongEqClassVertexTable =0;

continue;

end

disp(’Generate a list of vertex coloring ’);

colorVector=hoGenColorList(C,eqClassVertexTable);

disp(’Check the list of vertex coloring ’);

success=hoCheck3Colorable(C,colorVector);

if(success ==1)

numSuccess=numSuccess +1;

end

disp(’loopCount :’)

loopCount
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disp(’numSuccess : ’)

numSuccess

end

disp(’success rate :’)

numSuccess/loopCount

hoGenRandAdjMat.m :

function [A,faces] = hoGenRandAdjMat(numVertex)

if(numVertex < 5)

% Treat graphs of order > 4

disp(’number of vertices is less than 4’);

exit();

end

% Maximal plane graph has 3*( number of vertices) -6 edges.

numEdge = 3*numVertex -6;

% A will be an adjacency matrix

A = zeros(numVertex ,numVertex);

% To draw maximal graph , we first draw a triangle.

A(2,1) = 1;

A(3,1) = 1;

A(3,2) = 1;

% Faces will be the index set of faces. We got a triangle.

faces (1 ,1:3) = [1,2,3];

% numTriangle is the number of the faces.

numFace = 1;

% Call the vertices incident to the unbounded face by external

% vertices. Boundary(cycle) of the unbounded face for the

% triangle which formed by first , second and third drawn

% vertices.
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boundaryUnboundedFace = [1,2,3];

% Length of the boundary of the unbounded face. When a new

% vertex and new edges incident to the new vertex are added ,

% this value will increse by (3 - (number of the new edges)).

lengthBoundary = 3;

% Now we add a new vertex.

% We draw a new vertex in the unbounded face and draw edges to

% vertices already drawn. the availableNumEdge is maximum

% number of edges incident to new vertex. If a new vertex

% added there need at least 2 edges incident to the new

% vertex. And we already used 3 edges for the first

% triangle. Since the new vertex would drawn in unbounded

% face , the number of edges also bounded by the number of

% vertices of the unbounded face.

%

% original code :

% availableNumEdge =

% min(numEdge -3 -2*( numVertex -3),lengthBoundary);

% optimized code :

%

availableNumEdge = min(numEdge -2* numVertex+3, lengthBoundary);

for i=4: numVertex -1

% i-th vertex would have currentNumEdge number of edge with

% vertices already drawn. And we know 1 < currentNumEdge <

% availableNumbEdge +1, so we choose randomly between 2 and

% availableNumbEdge

if(availableNumEdge ==2)

currentNumEdge = 2;

else

currentNumEdge = rem(floor (10000* rand (1,1)),availableNumEdge

-2) +2;

end

% The vertices adjacent to the new i-th vertex forms a path

% P in the boundary(cycle) of the unbounded face. Thus we

% can choose the path by choosing its end. Choose it randomly
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% among external vertices.

currentStartingVertex = rem(floor (10000* rand (1,1)),

lengthBoundary)+1;

% The boundary of the unbounded face is a cycle but we

% denoted it as vector whose name is boundaryUnboundedFace.

% To use this vector as like a cycle we write this vector

% twice and take some needed part of it.

tempBoundary = [boundaryUnboundedFace ,boundaryUnboundedFace (1:

size(boundaryUnboundedFace ,2) -1)];

% Initiate currentAddedRow which would be i-th row of

% Adjacency matrix A.

currentAddedRow = zeros(1,i-1);

% From the informations of currentNumEdge and

% currentStartingVertex , construct currentAddedRow.

for j=1: currentNumEdge

index=j-1+ currentStartingVertex;

currentAddedRow(tempBoundary(index)) = 1;

end

% Add new i-th row to the adjacency matrix A.

A(i,1:i-1) = currentAddedRow;

clear currentAddedRow;

% And we also have new faces. Add them

for j=1: currentNumEdge -1

numFace = numFace +1;

index=j-1+ currentStartingVertex;

faces(numFace ,1:3)=[ tempBoundary(index),tempBoundary(index +1)

,i];

end

% lengthBoundary was changed. Reset it.

lengthBoundary = lengthBoundary +3- currentNumEdge;

% The boundary of the unbounded face was also changed. Its

% new boundary is (an end of P) - (the new vertex) -
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% (another end of P) - (vertices on boundary \ vertices on P))

boundaryUnboundedFace = [tempBoundary(currentStartingVertex),i

,tempBoundary(currentStartingVertex+currentNumEdge -1: size(

tempBoundary ,2))];

boundaryUnboundedFace = boundaryUnboundedFace (1: lengthBoundary

);

clear tempBoundary;

% availableNumEdge could also be changed. Reset it.

availableNumEdge = min(numEdge -3-currentNumEdge -2*( numVertex -i

),lengthBoundary);

end

% We construct the last row of the adjacency matrix A.

currentAddedRow = zeros(1,numVertex);

% The last vertex is adjacent with all vertices of the

% boundary of the unbounded face.

for j=1: lengthBoundary

currentAddedRow(boundaryUnboundedFace(j))=1;

end

% Add the last row to the adjaency matrix A.

A(numVertex ,:) = currentAddedRow;

% Add the faces.

for j=1: lengthBoundary -1

numFace = numFace +1;

faces(numFace ,1:3) =[ boundaryUnboundedFace(j),

boundaryUnboundedFace(j+1),numVertex ];

end

numFace=numFace +1;

faces(numFace ,1:3) =[ boundaryUnboundedFace (1),

boundaryUnboundedFace(lengthBoundary),numVertex ];

% A is symmetric. For convenience we do not consider this ,

% and we just only construct the lower part of A. By adding
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% the transpose matrix of A, we complete it.

A=A+A’;

% Sum of all ’1’ of A have to be equal to the twice of

% number of edges. Check it.

sum(sum(A)) == numEdge *2;

hoRemove3degree.m :

function [B,indexB ,faceB] = hoRemove3degree(A,indexB ,faces)

% Remove vertices of 3 degree from given adjacency matrix A.

% give indexB = 0 at first.

% When we remove a 3-degree vertex , another vertex could be

% 3-degree vertex (The vertex of degree 4 which is adjacent

% to the removed vertex). Thus we remove a 3-degree vertex ,

% we should restart the removing operation on result matrix.

% In the given adjacency matrix A, i-th row(or column)

% represent i-th drawn vertex. However , in the result matrix

% B, the i-th row does not represent i-th vertex , anymore.

% Thus indexB would tell us, which vertex i-th row of B

% represent for. For example if indexB (3)=5 then the third

% row of B contains the adjacency information of fifth

% vertex of which adjacency information in A is obviously

% fifth row of A.

% When we remove 3-degree vertex , the three faces that are

% incident to the vertex were removed and there appear a new

% face bounded by the triangle containing the three neighbours

% of the removed vertex.

% Initiate result matrix.

B = A;

% Get size of B for FOR sentence.

numVertex = size(B,1);

% Initiate faces.

faceB = faces;

% Get number of faces that we have found.
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numFace = size(faceB ,1);

% Initiate indexB.

if(indexB == 0)

indexB = 1: numVertex;

end

for i = 1: numVertex

% If we find 3-degree vertex , remove it and reset the indexB.

if(sum(B(i,:))==3)

% If the sum of i-th row of B is equal to 3, the i-th vertex

% of B has the degree 3. We remove the i-th row and the i-th

% column of B.

if(i==1)

B = B(2: numVertex ,2: numVertex);

indexB = indexB (2: numVertex);

elseif (i== numVertex)

B = B(1: numVertex -1,1: numVertex -1);

indexB = indexB (1: numVertex -1);

else

B = [B(1:i-1,1:i-1),B(1:i-1,i+1: numVertex);B(i+1: numVertex

,1:i-1),B(i+1: numVertex ,i+1: numVertex)];

indexB = [indexB (1:i-1),indexB(i+1: numVertex)];

end

j=1;

tempCount = 0;

% We delete the faces containing the vertices of degree 3,

% that were removed at previous IF sentence.

while(j<numFace +1)

tempFaceBit =hoConvertIndexToBit(faceB(j,:),numVertex);

% Since we have deleted the i-th 3-degree vertex , we remove

% the faces that is incident to the i-th vertex.

if(tempFaceBit(i)==1)

if(j==1)
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faceB = faceB (2: numFace ,:);

elseif(j== numFace)

faceB = faceB (1: numFace -1,:);

else

faceB = [faceB (1:j-1,:);faceB(j+1: numFace ,:)];

end

numFace = numFace -1;

tempCount = tempCount +1;

else

j = j+1;

tempCount = 0;

end

end

% We add a new face that is bounded by the triangle whose

% vertices are the neighbors of i-th vertex.

faceB(numFace +1,:) = hoConvertBitToIndex(A(i,:));

numFace = numFace +1;

% Convert the index of A to the index of B.

% Since we removed a vertex , the vertices that has indices

% greater than the index of the removed vertex have indices

% decreased.

for j=1: numFace

for k=1:3

if(faceB(j,k)>i)

faceB(j,k)=faceB(j,k) -1;

end

end

end

% Stop the process and restart same removing process with B

% again.

[B,indexB ,faceB] = hoRemove3degree(B,indexB ,faceB);

break;

end

end
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hoSelectArbMaxIndHubset.m :

function [maxIndHubset ,tempMaxIndHubset ,B,indexB ,facesB ]=

hoSelectArbMaxIndHubset(A,faces)

% A is an adjacency matrix of a maximal plane graph G.

% maxIndHubset(i) = 1 if i-th vertex of G is contained

% in maximal independent hubset which we would construct.

% Remove vertices of degree 3.

[B,indexB ,facesB] = hoRemove3degree(A,0,faces);

% number of vertices of G.

numVertex = size(B,1);

% Initiate the tempMaxIndHubset of which i-th component

% is 1 if i-th vertex , of which information of adjacency is

% denoted by i-th row of B, would be contained in

% maximal independent hubset.

tempMaxIndHubset = zeros(1, numVertex);

% Initiate canBeHub which is vertices that can be an hub.

canBeHub = ones(1,numVertex);

% If we consider about the relation between the sphere

% and the plane all vertices have same conditions for

% being selected as the first hub. However , for the

% convenience to figure the graph in our thesis , we select

% the last vertex.

tempMaxIndHubset(numVertex) = 1;

% And the vertices adjacent to the new hub can be hub

% any more. remove these from canBeHub.

for i=1: numVertex

if(B(numVertex ,i)==1)

inversedAdjRow(i)=0;

elseif (B(numVertex ,i)==0)

inversedAdjRow(i)=1;

end

end
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canBeHub(numVertex) = 0;

canBeHub = canBeHub .* inversedAdjRow;

% We would select new hubs till canBeHub is empty set.

preventInfiniteLoop = 1;

while((sum(canBeHub) ~= 0) & (preventInfiniteLoop < (numVertex

*3)))

% We would select a new hub which has neighbors that are also

% the neighbors of hubs we already selected , as many as

% possible. countNb(i) is the number of neighbors that are

% also the neighbors of hubs we already selected , of i-th

% vertex. countNb(i) = 0 if the i-th vertex does NOT

% contained in canBeHub.

countNb = zeros(1, numVertex);

for i=1: numVertex

if(canBeHub(i)==1)

for j=1: numVertex

if(tempMaxIndHubset(j)==1)

countNb(i) = countNb(i)+sum(B(i,:).*B(j,:));

end

end

end

end

% Find vertices that have maximum number of neighbors

% that are also neighbors of hubs we already selected ,

% among the elements of canBeHub.

tempMaxValue = 0;

for i=1: numVertex

if(tempMaxValue < countNb(i))

tempMaxValue = countNb(i);

end

end

% Make set of indices of vertices of which countNb(i) is

% equal to the tempMaxValue.
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j = 1;

for i=1: numVertex

if(countNb(i) == tempMaxValue)

indexSetMaxValue(j) = i;

j = j+1;

end

end

% Select the vertex as a new hub RANDOMLY

selectedIndex = indexSetMaxValue(rem(floor (10000* rand (1,1)),j

-1)+1);

clear indexSetMaxValue;

% and insert it into maxIndHubset.

tempMaxIndHubset(selectedIndex) = 1;

% Remove the vertices that are adjacent to the new hub from

% canBeHub.

for i=1: numVertex

if (B(selectedIndex ,i)==1)

inversedAdjRow(i)=0;

elseif (B(selectedIndex ,i)==0)

inversedAdjRow(i)=1;

end

end

canBeHub(selectedIndex)=0;

canBeHub = canBeHub .* inversedAdjRow;

% prevent infinitely many loop of WHILE statement.

preventInfiniteLoop = preventInfiniteLoop +1;

end

% Initiate maxIndHubset.

maxIndHubset = zeros(1,size(A,1));

% Convert hubs on B to hubs on A.

for i=1: numVertex

if(tempMaxIndHubset(i)==1)
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maxIndHubset(indexB(i))=1;

end

end

hoFindPatches.m :

function [patch ,patchFree ,patchFree4Degree ,sizeEqClass ,

facesRemovedHub ]= hoFindPatches(B,tempMaxIndHubset ,facesB)

% B is adjacency matrix which does not contain 3 degree

% vertices; B could be obtained by ’hoRemove3degree(A)’ where

% A is an adjacency matrix A which could be generated by

%’hoGenRanAdjMat ’ tempMaxIndHubset is a maximal independent

% hubset of B.

% Get size of B

numVertex = size(B,1);

% Initiate nonHubVertices that would not be hubs.

nonHubVertices = ones(1, numVertex);

% Initiate faces. Put face information of B into ’faces ’.

facesRemovedHub = facesB;

% Get number of faces

numFace = size(facesRemovedHub ,1);

% Remove hubs specified in tempMaxIndHubset from

% nonHubVertices.

for i=1: numVertex

% Generate inversed vector of tempMaxIndHubset.

% In this vector , if i-th vertex contained in the hubset ,

% the value of i-th component is 0, otherwise 1.

if(tempMaxIndHubset(i)==1)

inversedTempMaxIndHubset(i)=0;

elseif(tempMaxIndHubset(i)==0)

inversedTempMaxIndHubset(i)=1;

end

end

% The componentwise multiplication of a nonHubVertices and
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% the inversed vector of tempMaxIndHubset , removes the hubs

% described by tempMaxIndHubset from nonHubverices.

nonHubVertices = nonHubVertices .* inversedTempMaxIndHubset;

% Remove faces containing hubs.

% In fact , this removes rows of facesReovedHub that contains

% hubs.

for i=1: numVertex

if(tempMaxIndHubset(i)==1)

% i-th vertex is a hub.

j=1;

while(j<numFace +1)

tempFaceBit = hoConvertIndexToBit(facesRemovedHub(j,:),

numVertex);

if(tempFaceBit(i)==1)

% If a j-th row of facesRemovedHub contains i-th vertex

% remove it from facesRemovedHub that is a list of faces.

if(j==1)

facesRemovedHub = facesRemovedHub (2: numFace ,:);

elseif(j== numFace)

facesRemovedHub = facesRemovedHub (1: numFace -1,:);

else

facesRemovedHub = [facesRemovedHub (1:j-1,:);

facesRemovedHub(j+1: numFace ,:)];

end

numFace = numFace -1;

else

j = j+1;

end

end

end

end

% Initiate some variables.

isFace = 0;

containFace = 0;

numPatch = 0;

% And rename the list of faces.
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facesDB = facesRemovedHub;

sizeFacesDB = size(facesDB ,1);

% Since all the faces in facesDB are triangles , each of them

% are contained in some patches.

while(sizeFacesDB > 0)

numPatch=numPatch +1;

% patch(i,j,k)-th vertex is contained in i-th patch.

% And this vertex is classed by overedge relation so that

% patch(i,j,k)-th vertex is contained in j-th class.

% Process first face

patch(numPatch ,1,1) = facesDB (1,1);

patch(numPatch ,2,1) = facesDB (1,2);

patch(numPatch ,3,1) = facesDB (1,3);

sizeEqClass(numPatch ,1:3) =[1 ,1 ,1];

% Remove the face processed from facesDB.

facesDB = facesDB (2: sizeFacesDB ,:);

sizeFacesDB = sizeFacesDB -1;

if(sizeFacesDB >0)

i=1;

while(i<1+ sizeFacesDB)

eqClass = 0;

for j=1: sizeEqClass(numPatch ,1)

for k=1: sizeEqClass(numPatch ,2)

if(B(patch(numPatch ,1,j),patch(numPatch ,2,k))==1)

% Check whether both patch(numPatch ,1,j)-th vertex and

% patch(numPatch ,2,k)-th vertex are the ends of the same edge.

% One end is from class 1 the other end is from class 2.

% Therefore if the face (triangle) shares the edge with this

% patch , the opposite vertex of the edge in the face is

% contained in class 3.

tempEdgeContainedBit = hoConvertIndexToBit ([ patch(

numPatch ,1,j),patch(numPatch ,2,k)],numVertex);

for l=1: sizeFacesDB
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tempFaceBit = hoConvertIndexToBit(facesDB(l,:),numVertex

);

checkShareEdgeBit = tempFaceBit -tempEdgeContainedBit;

countOne = 0;

countZero = 0;

for m=1: numVertex

if(checkShareEdgeBit(m)==1)

countOne = countOne +1;

elseif(checkShareEdgeBit(m)==0)

countZero = countZero +1;

end

end

if(countOne ==1& countZero ==numVertex -1)

% We can use only countOne ==1 for the IF sentence , but for

% precision , additional condition contZero ==numVertex -1 is

% used.

isFace =1;

% The opposite vertex of the edge in the face is contained in

% class 3.

eqClass = 3;

break;

end

end

end

if(isFace ==1)

break;

end

end

if(isFace ==1)

break;

end

end

if(isFace ==0)

for j=1: sizeEqClass(numPatch ,2)

for k=1: sizeEqClass(numPatch ,3)

if(B(patch(numPatch ,2,j),patch(numPatch ,3,k))==1)

% Check whether both patch(numPatch ,2,j)-th vertex and

% patch(numPatch ,3,k)-th vertex are the ends of the same edge.
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% One end is from class 2 the other end is from class 3.

% Therefore if the face (triangle) shares the edge with this

% patch ,the opposite vertex of the edge in the face is

% contained in class 1.

tempEdgeContainedBit = hoConvertIndexToBit ([ patch(

numPatch ,2,j),patch(numPatch ,3,k)],numVertex);

for l=1: sizeFacesDB

tempFaceBit = hoConvertIndexToBit(facesDB(l,:),

numVertex);

checkShareEdgeBit = tempFaceBit -tempEdgeContainedBit;

countOne = 0;

countZero = 0;

for m=1: numVertex

if(checkShareEdgeBit(m)==1)

countOne = countOne +1;

elseif(checkShareEdgeBit(m)==0)

countZero = countZero +1;

end

end

if(countOne ==1& countZero ==numVertex -1)

% We can use only countOne ==1 for the IF sentence , but for

% precision , additional condition contZero ==numVertex -1 is

% used.

isFace =1;

% The opposite vertex of the edge in the face is contained in

% class 1.

eqClass = 1;

break;

end

end

end

if(isFace ==1)

break;

end

end

if(isFace ==1)

break;

end

end
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end

if(isFace ==0)

for j=1: sizeEqClass(numPatch ,3)

for k=1: sizeEqClass(numPatch ,1)

if(B(patch(numPatch ,3,j),patch(numPatch ,1,k))==1)

% Check whether both patch(numPatch ,3,j)-th vertex and

% patch(numPatch ,1,k)-th vertex are the ends of the same edge.

% One end is from class 3 the other end is from class 1.

% Therefore if the face (triangle) shares the edge with this

% patch ,the opposite vertex of the edge in the face is

% contained in class 2.

tempEdgeContainedBit = hoConvertIndexToBit ([ patch(

numPatch ,3,j),patch(numPatch ,1,k)],numVertex);

for l=1: sizeFacesDB

tempFaceBit = hoConvertIndexToBit(facesDB(l,:),

numVertex);

checkShareEdgeBit = tempFaceBit -tempEdgeContainedBit;

countOne = 0;

countZero = 0;

for m=1: numVertex

if(checkShareEdgeBit(m)==1)

countOne = countOne +1;

elseif(checkShareEdgeBit(m)==0)

countZero = countZero +1;

end

end

if(countOne ==1& countZero ==numVertex -1)

% We can use only countOne ==1 for the IF sentence , but for

% precision , additional condition contZero ==numVertex -1 is

% used.

isFace =1;

% The opposite vertex of the edge in the face is contained in

% class 2.

eqClass = 2;

break;

end

end

end
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if(isFace ==1)

break;

end

end

if(isFace ==1)

break;

end

end

end

if(isFace ==1)

% Remove the processed face form facesDB

if(l==1)

facesDB = facesDB (2: sizeFacesDB ,:);

elseif(l== sizeFacesDB)

facesDB = facesDB (1: sizeFacesDB -1,:);

else

facesDB = [facesDB (1:l-1,:);facesDB(l+1: sizeFacesDB ,:)];

end

sizeFacesDB = sizeFacesDB -1;

% Update the information.

sizeEqClass(numPatch ,eqClass)=sizeEqClass(numPatch ,eqClass)

+1;

patch(numPatch ,eqClass ,sizeEqClass(numPatch ,eqClass))=

hoConvertBitToIndex(checkShareEdgeBit);

isFace =0;

i=1;

else

i=i+1;

end

end

end

end

% Find patch -free vertices among described in nonHubVertices.

index4 = 0;

indexGeneral = 0;

patchFree4Degree = 0;
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patchFree = 0;

for i=1: numVertex

if(nonHubVertices(i)==1)

incidentToFace = 0;

for j=1: numFace

for k=1:3

if(facesRemovedHub(j,k)==i)

% If i-th vertex is incident to some faces described in

% facesRemovedHub then the vertex is not patch -free.

incidentToFace = 1;

break;

end

end

if(incidentToFace ==1)

break;

end

end

if(incidentToFace ==0)

% i-th vertex is patch -free.

% Check whether i-th vertex has the degree 4.

if(sum(B(i,:))==4)

index4 = index4 +1;

patchFree4Degree(index4)=i;

else

indexGeneral = indexGeneral +1;

patchFree(indexGeneral)=i;

end

end

end

end

hoVirtualAdjMat.m :

function [C,eqClassVertexTable] = hoVirtualAdjMat(patch ,

patchFree ,B,tempMaxIndHubset)

% This function generate the virtual graph C whose vertices

% symbolize the equivalence classes of patches of B, or

% patch -free vertices of B.
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numVertex = size(B,1);

numPatch = size(patch ,1);

numPatchFree = size(patchFree ,2);

maxNumVertexInEqClass = size(patch ,3);

% eqClassVertexTable(i,j)-th vertex of C symbolize an

% equivalence class of i-th patch of B - "hubset", where the

% members of "hubset" is described in tempMaxIndHubset.

%

% In the first patch , there are three equivalence classes.

% We denote each equivalence class 1,2,3.

eqClassVertexTable (1 ,1:3) =[1,2 ,3];

newVertexIndex = 3;

shareVertex = 0;

% Check whether two patches , tempPatchBit_1 and

% tempPatchBit_2 , share a vertex.

% If they share a vertex v, [v] of tempPatchBit_1 and [v] of

% tempPatchBit_2 has the same name , where [v] is the

% equivalence class that contains [v].

for indexPatch =2: numPatch

for i=1: indexPatch -1

for j=1:3

for k=1:3

tempPatchBit_1 = zeros(1, numVertex);

tempPatchBit_2 = zeros(1, numVertex);

for n=1: maxNumVertexInEqClass

if(patch(i,j,n)~=0)

tempPatchBit_1(patch(i,j,n))=1;

end

if(patch(indexPatch ,k,n)~=0)

tempPatchBit_2(patch(indexPatch ,k,n))=1;

end

end

% If two patches shares a vertex ....

if(sum(tempPatchBit_1 .* tempPatchBit_2)~=0)

shareVertex = 1;

% the k-th equivalence class in (indexPatch)-th patch and
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% j-th equivalence class in i-th patch are symbolized by same

% vertex of C.

eqClassVertexTable(indexPatch ,k) = eqClassVertexTable(i,j)

;

break;

end

end

if(shareVertex == 1)

break;

end

end

end

if(shareVertex == 1)

for l=1:3

% Give names to the equivalence classes that does not contain

% the shared vertex of (indexPatch)-th patch.

if(eqClassVertexTable(indexPatch ,l)==0)

newVertexIndex=newVertexIndex +1;

eqClassVertexTable(indexPatch ,l)=newVertexIndex;

end

end

% Reset shareVertex.

shareVertex = 0;

elseif(shareVertex == 0)

% If (indexPatch)-th patch does not share any vertex with

% other m-th patch , where m<indexPatch , give names to these

% three equivalence classes of (indexPatch)-th patch.

for l=1:3

newVertexIndex=newVertexIndex +1;

eqClassVertexTable(indexPatch ,l)=newVertexIndex;

end

end

end

% Construct Virtual Adjacency Matrix C

% If i-th row (or column) of C symbolize an equivalence class

% in a patch and j-th row (or column) symbolize a path -free

% vertex , then i < j.

%
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% First , we construct lower triangular matrix.

% The three vertices that symbolize the three equivalence

% classes in the same patch are pairwise adjacent in C.

for i=1: numPatch

if(eqClassVertexTable(i,1)>eqClassVertexTable(i,2))

C(eqClassVertexTable(i,1),eqClassVertexTable(i,2))=1;

elseif(eqClassVertexTable(i,1)<eqClassVertexTable(i,2))

C(eqClassVertexTable(i,2),eqClassVertexTable(i,1))=1;

end

if(eqClassVertexTable(i,1)>eqClassVertexTable(i,3))

C(eqClassVertexTable(i,1),eqClassVertexTable(i,3))=1;

elseif(eqClassVertexTable(i,1)<eqClassVertexTable(i,3))

C(eqClassVertexTable(i,3),eqClassVertexTable(i,1))=1;

end

if(eqClassVertexTable(i,2)>eqClassVertexTable(i,3))

C(eqClassVertexTable(i,2),eqClassVertexTable(i,3))=1;

elseif(eqClassVertexTable(i,2)<eqClassVertexTable(i,3))

C(eqClassVertexTable(i,3),eqClassVertexTable(i,2))=1;

end

end

% If a vertex in the equivalence class of a patch and another

% vertex in the equivalence class of another patch are adjacent

% in B, the vertices that symbolize the two equivalence

% classes are adjacent in C.

for i=1: numPatch -1

for j=1+i:numPatch

for k=1:3

for l=1:3

for m=1: maxNumVertexInEqClass

for n=1: maxNumVertexInEqClass

if(( patch(i,k,m)~=0)&( patch(j,l,n)~=0))

if(B(patch(i,k,m),patch(j,l,n))==1)

if(eqClassVertexTable(i,k)>eqClassVertexTable(j,l))

C(eqClassVertexTable(i,k),eqClassVertexTable(j,l))=1;

else

C(eqClassVertexTable(j,l),eqClassVertexTable(i,k))=1;

end

end
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end

end

end

end

end

end

end

% Specify the adjacency of patch -free vertices.

if(patchFree ~=0)

numNonPatchFreeVertex = size(C,1);

for i=1: numPatchFree

newVertexIndex=newVertexIndex +1;

% Find the neighbors of the i-th patch -free vertex in B.

tempNeighborsIndex=hoConvertBitToIndex(B(patchFree(i) ,:));

twoPatchFreesAreAdj = 0;

for j=1: size(tempNeighborsIndex ,2)

includingPatchNumJ =0;

for s=1: numPatch

for t=1:3

for u=1: maxNumVertexInEqClass

if(patch(s,t,u)== tempNeighborsIndex(j))

% If a patch include some neighbors of i-th patch -free

% vertex ....

includingPatchNumJ =1;

break;

end

end

if(includingPatchNumJ ==1)

break;

end

end

if(includingPatchNumJ ==1)

break;

end

end

if(includingPatchNumJ ==1)

% ... then specify the adjacency information in C.

C(newVertexIndex ,eqClassVertexTable(s,t))=1;

58



CHAPTER 4. COMPUTER EXPERIMENTS

elseif(includingPatchNumJ ==0&i==1)

% If the first patch -free vertex is never adjacent to any

% other vertices contained in some patch then add zero vector

% in C for the vertex symbolizing the first patch -free vertex

% in C.

C(newVertexIndex ,:)=zeros(1,size(C,2));

elseif(includingPatchNumJ ==0&i~=1)

% If the i-th patch -free vertex is never adjacent to any

% other vertices contained in some patch (i~=1) then Check

% whether this i-th patch -free vertex is adjacent to the

% other u-th patch -free vertices where u<i.

for u=1:i-1

if(tempNeighborsIndex(j)== patchFree(u))

% If i-th patch -free vertex and m-th patch -free vertex are

% adjacent , specify the adjacency information in C.

twoPatchFreesAreAdj =1;

C(newVertexIndex ,numNonPatchFreeVertex+u)=1;

end

end

if(twoPatchFreesAreAdj == 0)

% If not , add zero vector in C for the vertex symbolizing

% this i-th patch -free vertex in C.

C(newVertexIndex ,:)=zeros(1,size(C,2));

end

end

end

end

end

% The adjacency matrix C should be symmetric.

% We constructed only lower triangular part of C.

% Let us make C symmetric matrix.

tempC = zeros(newVertexIndex ,newVertexIndex);

tempC (:,1: size(C,2))=C;

clear C

C = tempC+tempC ’;
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hoGenColorList.m :

function colorVector=hoGenColorList(C,eqClassVertexTable)

% This function generate a list of 3-colorings for the virtual

% graph C.

% Free the memory.

clear colorVector;

numVertex=size(C,1);

numTriangle = size(eqClassVertexTable ,1);

% Since we have at least one patches , each of the first three

% rows (or column) of C represents each equivalence class of

% the first patch. i-th vertex of C will have the color that

% the value of colorVector(i). Since different equivalence

% class have to be assigned different color , the first three

% can be [1,2,3], [2,1,3], [3,2,1], [2,3,1], [3,1,2] or

% [1,3,2]. Without loss of generality , we select [1,2,3].

colorVector = [1,2,3];

for i=2: numTriangle

numColoredVertex = size(colorVector ,2);

numVertexAppeared = 0;

for j=1:3

% eqClassVertexTable contain the information of vertices of C

% that are equivalence classes of patches of B (each row of

% eqClassVertexTable is symbolize a patch). Each row of

% eqClassVertexTable is also a face bounded by a triangle in C.

if(eqClassVertexTable(i,j)<numColoredVertex +1)

% We are deciding the color of eqClassvertextable(i,j)-th

% VERTICES , for j=1,2,3. We are deciding the colors of the

% three vertices at once. However , some of these vertices can

% be specified in eqClassVertexTable MULTIPLE times. If some

% of these vertices were already colored , we should skip

% coloring them. This IF sentence check how many vertices of

% the three vertices (for j=1,2,3) have been colored.
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% numVertexAppeared has the value of the numbers of vertices

% that have already been colored.

numVertexAppeared = numVertexAppeared +1;

end

end

if(numVertexAppeared ==0)

% All the vertices described in the i-th row of

% eqClassVertexTable are never appeared. There is not a

% vertex that was colored at previous step(<i). Locally , we

% have six possible colorings.

for j=1: size(colorVector ,1)

tempColorVector (6*(j-1)+1,:)=[ colorVector(j,:) ,1,2,3];

tempColorVector (6*(j-1)+2,:)=[ colorVector(j,:) ,1,3,2];

tempColorVector (6*(j-1)+3,:)=[ colorVector(j,:) ,2,1,3];

tempColorVector (6*(j-1)+4,:)=[ colorVector(j,:) ,2,3,1];

tempColorVector (6*(j-1)+5,:)=[ colorVector(j,:) ,3,1,2];

tempColorVector (6*(j-1)+6,:)=[ colorVector(j,:) ,3,2,1];

end

colorVector=tempColorVector;

clear tempColorVector;

elseif(numVertexAppeared ==1)

% One of vertices described in the i-th row of

% eqClassVertexTable was appeared. The one of

% eqClassVertexTable(i,j) (j=1,2,3) have been colored at

% previous step(<i). Locally , we have two possible colorings.

for j=1:3

if(eqClassVertexTable(i,j)<numColoredVertex +1)

break;

end

end

for k=1: size(colorVector ,1)

if(colorVector(k,eqClassVertexTable(i,j))==1)

% If the color of the vertex that was already colored is

% color 1, the rest two vertices can have color 2, color 3 or

% color 3, color 2.

tempColorVector (2*(k-1)+1,:)=[ colorVector(k,:) ,2,3];
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tempColorVector (2*(k-1)+2,:)=[ colorVector(k,:) ,3,2];

elseif(colorVector(k,eqClassVertexTable(i,j))==2)

% If the color of the vertex that was already colored is

% color 2, the rest two vertices can have color 1, color 3 or

% color 3, color 1.

tempColorVector (2*(k-1)+1,:)=[ colorVector(k,:) ,1,3];

tempColorVector (2*(k-1)+2,:)=[ colorVector(k,:) ,3,1];

elseif(colorVector(k,eqClassVertexTable(i,j))==3)

% If the color of the vertex that was already colored is

% color 3, the rest two vertices can have color 1, color 3 or

% color 2, color 1.

tempColorVector (2*(k-1)+1,:)=[ colorVector(k,:) ,1,2];

tempColorVector (2*(k-1)+2,:)=[ colorVector(k,:) ,2,1];

end

end

colorVector=tempColorVector;

clear tempColorVector;

elseif(numVertexAppeared ==2)

% Two of vertices described in the i-th row of

% eqClassVertexTable was appeared. The Two of

% eqClassVertexTable(i,j) (j=1,2,3) have been colored at

% previous step(<i). Locally , we have one possible coloring.

for j=1:3

if(eqClassVertexTable(i,j)>numColoredVertex)

break;

end

end

for k=1: size(colorVector ,1)

if(j==3)

% The non -colored vertex is eqClassVertexTable(i,3)-th vertex.

if(( colorVector(k,eqClassVertexTable(i,1))==1& colorVector(k

,eqClassVertexTable(i,2))==2)|( colorVector(k,

eqClassVertexTable(i,1))==2& colorVector(k,

eqClassVertexTable(i,2))==1))

% The colors of the two colored vertices are color 1, color 2

% or color 2, color 1. Locally , we can assign only color 3 to

% the rest vertex.

tempColorVector(k,:)=[ colorVector(k,:) ,3];
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elseif (( colorVector(k,eqClassVertexTable(i,1))==1&

colorVector(k,eqClassVertexTable(i,2))==3)|( colorVector(

k,eqClassVertexTable(i,1))==3& colorVector(k,

eqClassVertexTable(i,2))==1))

% The colors of the two colored vertices are color 1, color 3

% or color 3, color 1. Locally , we can assign only color 2 to

% the rest vertex.

tempColorVector(k,:)=[ colorVector(k,:) ,2];

elseif (( colorVector(k,eqClassVertexTable(i,1))==2&

colorVector(k,eqClassVertexTable(i,2))==3)|( colorVector(

k,eqClassVertexTable(i,1))==3& colorVector(k,

eqClassVertexTable(i,2))==2))

% The colors of the two colored vertices are color 2, color 3

% or color 3, color 2. Locally , we can assign only color 1 to

% the rest vertex.

tempColorVector(k,:)=[ colorVector(k,:) ,1];

elseif(colorVector(k,eqClassVertexTable(i,1))== colorVector(

k,eqClassVertexTable(i,2)))

% The two colored vertice could have the same color and this

% is wrong. Temporarily , we can assign only color 4 to the

% rest vertex.

tempColorVector(k,:)=[ colorVector(k,:) ,4];

end

elseif(j==2)

% The non -colored vertex is eqClassVertexTable(i,2)-th vertex.

if(( colorVector(k,eqClassVertexTable(i,1))==1& colorVector(k

,eqClassVertexTable(i,3))==2)|( colorVector(k,

eqClassVertexTable(i,1))==2& colorVector(k,

eqClassVertexTable(i,3))==1))

% The colors of the two colored vertices are color 1, color 2

% or color 2, color 1. Locally , we can assign only color 3 to

% the rest vertex.

tempColorVector(k,:)=[ colorVector(k,:) ,3];

elseif (( colorVector(k,eqClassVertexTable(i,1))==1&

colorVector(k,eqClassVertexTable(i,3))==3)|( colorVector(

k,eqClassVertexTable(i,1))==3& colorVector(k,

eqClassVertexTable(i,3))==1))

% The colors of the two colored vertices are color 1, color 3

% or color 3, color 1. Locally , we can assign only color 2 to
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% the rest vertex.

tempColorVector(k,:)=[ colorVector(k,:) ,2];

elseif (( colorVector(k,eqClassVertexTable(i,1))==2&

colorVector(k,eqClassVertexTable(i,3))==3)|( colorVector(

k,eqClassVertexTable(i,1))==3& colorVector(k,

eqClassVertexTable(i,3))==2))

% The colors of the two colored vertices are color 2, color 3

% or color 3, color 2. Locally , we can assign only color 1 to

% the rest vertex.

tempColorVector(k,:)=[ colorVector(k,:) ,1];

elseif(colorVector(k,eqClassVertexTable(i,1))== colorVector(

k,eqClassVertexTable(i,3)))

% The two colored vertice could have the same color and this

% is wrong. Temporarily , we can assign only color 4 to the

% rest vertex.

tempColorVector(k,:)=[ colorVector(k,:) ,4];

end

elseif(j==1)

% The non -colored vertex is eqClassVertexTable(i,1)-th vertex.

if(( colorVector(k,eqClassVertexTable(i,2))==1& colorVector(k

,eqClassVertexTable(i,3))==2)|( colorVector(k,

eqClassVertexTable(i,2))==2& colorVector(k,

eqClassVertexTable(i,3))==1))

% The colors of the two colored vertices are color 1, color 2

% or color 2, color 1. Locally , we can assign only color 3 to

% the rest vertex.

tempColorVector(k,:)=[ colorVector(k,:) ,3];

elseif (( colorVector(k,eqClassVertexTable(i,2))==1&

colorVector(k,eqClassVertexTable(i,3))==3)|( colorVector(

k,eqClassVertexTable(i,2))==3& colorVector(k,

eqClassVertexTable(i,3))==1))

% The colors of the two colored vertices are color 1, color 3

% or color 3, color 1. Locally , we can assign only color 2 to

% the rest vertex.

tempColorVector(k,:)=[ colorVector(k,:) ,2];

elseif (( colorVector(k,eqClassVertexTable(i,2))==2&

colorVector(k,eqClassVertexTable(i,3))==3)|( colorVector(

k,eqClassVertexTable(i,2))==3& colorVector(k,

eqClassVertexTable(i,3))==2))
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% The colors of the two colored vertices are color 2, color 3

% or color 3, color 2. Locally , we can assign only color 1 to

% the rest vertex.

tempColorVector(k,:)=[ colorVector(k,:) ,1];

elseif(colorVector(k,eqClassVertexTable(i,2))== colorVector(

k,eqClassVertexTable(i,3)))

% The two colored vertices could have the same color and this

% is wrong. Temporarily , we can assign only color 4 to the

% rest vertex.

tempColorVector(k,:)=[ colorVector(k,:) ,4];

end

end

end

colorVector=tempColorVector;

clear tempColorVector;

% Remove the rows of colorVector that contain color 4.

l=size(colorVector ,2);

tempIndex = 1;

for k=1: size(colorVector ,1)

if(colorVector(k,l)~=4)

tempColorVector(tempIndex ,:) = colorVector(k,:);

tempIndex=tempIndex +1;

end

end

colorVector=tempColorVector;

clear tempColorVector;

end

end

% The coloring of vertices of C that symbolize the

% equivalence class of patches was Done. Now , we decide the

% coloring of patch -free vertices , one by one.

%

% numVerticesInPatch is the number of vertices that have been

% already colored.

numVerticesInPatch = size(colorVector ,2);
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% The number of patch -free vertices is

% (the numVertex - numVerticesInPatch)

for i = numVerticesInPatch +1: numVertex

newLengthColorVector = size(colorVector ,2) +1;

tempIndex = 1;

for j=1: size(colorVector ,1)

% If the (i-th) patch -free vertex has ’color m’ we set

% adjacentColorSet(m) = 1, for m=1,2,3.

adjacentColorSet = [0,0,0];

for k=1:i-1

if(C(i,k)==1)

adjacentColorSet(colorVector(j,k))=1;

end

end

if(sum(adjacentColorSet)==3)

% The (i-th) patch -free vertex has three different colors on

% its neighbors. This is wrong. We temporarily set the color

% of this vertex as color 4.

tempColorVector(tempIndex ,:) = [colorVector(j,:) ,4];

tempIndex = tempIndex +1;

elseif(sum(adjacentColorSet)==2)

% The (i-th) patch -free vertex has two different colors on

% its neighbors.

for l=1:3

% The (i-th) patch -free vertex does NOT have ’color l’ on its

% neighbor.

if(adjacentColorSet(l)==0)

break;

end

end

% We assign this (i-th) patch -free vertex the last color.

tempColorVector(tempIndex ,:)=[ colorVector(j,:),l];

tempIndex=tempIndex +1;

elseif(sum(adjacentColorSet)==1)

% The (i-th) patch -free vertex has one color on its neighbors.

for l=1:3

% The (i-th) patch -free vertex have ’color l’ on its neighbor.

if(adjacentColorSet(l)==1)

break;

66



CHAPTER 4. COMPUTER EXPERIMENTS

end

end

% We assign this (i-th) patch -free vertex the two possible

% colors.

if(l==1)

% color l is color 1.

tempColorVector(tempIndex ,:)=[ colorVector(j,:) ,2];

tempColorVector(tempIndex +1,:)=[ colorVector(j,:) ,3];

tempIndex=tempIndex +2;

elseif(l==2)

% color l is color 2.

tempColorVector(tempIndex ,:)=[ colorVector(j,:) ,1];

tempColorVector(tempIndex +1,:)=[ colorVector(j,:) ,3];

tempIndex=tempIndex +2;

elseif(l==3)

% color l is color 3.

tempColorVector(tempIndex ,:)=[ colorVector(j,:) ,1];

tempColorVector(tempIndex +1,:)=[ colorVector(j,:) ,2];

tempIndex=tempIndex +2;

end

elseif(sum(adjacentColorSet)==0)

% The (i-th) patch -free vertex not colored neighbor.

% We can assign any colors (among the three colors) on it.

tempColorVector(tempIndex ,:)=[ colorVector(j,:) ,1];

tempColorVector(tempIndex +1,:)=[ colorVector(j,:) ,2];

tempColorVector(tempIndex +2,:)=[ colorVector(j,:) ,3];

tempIndex=tempIndex +3;

end

end

colorVector = tempColorVector;

clear tempColorVector;

% Remove the rows of colorVector that contain color 4.

l=size(colorVector ,2);

tempIndex = 1;

for k=1: size(colorVector ,1)

if(colorVector(k,l)~=4)

tempColorVector(tempIndex ,:)=colorVector(k,:);

tempIndex=tempIndex +1;
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end

end

colorVector=tempColorVector;

clear tempColorVector;

end

hoCheck3Colorable.m :

function success=hoCheck3Colorable(C,colorVector)

% This checks whether the 3-coloring solution of C is contained

% in colorVector. If it is return 1, otherwise return 0.

numColorList = size(colorVector ,1);

numVertex = size(C,1);

for i=1: numColorList

% Assume the row is a 3-coloring solution.

success =1;

for j=1: numVertex

for k=1:j-1

% Check every pair of adjacent vertices.

if(C(j,k)==1& colorVector(i,j)== colorVector(i,k))

% If the two adjacent vertices have the same color , return 0.

success = 0;

break;

end

end

if(success == 0)

% escape the FOR sentence.

break;

end

end

if(success ==1)

% If there exists a 3-coloring solution , print it.

colorVector(i,:)

break;

end

end
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hoConvertBitToIndex.m :

function result=hoConvertBitToIndex(v)

% This convert Bit -representation of set of vertices to

% Index -representation. For example , let V = {1,3,5} be a set

% of vertices. V can be represent as [1,3,5] or [1,0,1,0,1].

% This function convert [1,0,1,0,1] to [1,3,5].

index = 1;

for i=1: size(v,2)

if(v(i)==1)

result(index)=i;

index=index +1;

end

end

hoConvertIndexToBit.m :

function result=hoConvertIndexToBit(v,numVertex)

% This convert Index -representation of set of vertices to

% Bit -representation. For example , let V = {1,3,5} be a set of

% vertices. V can be represent as [1,3,5] or [1,0,1,0,1]. This

% function convert [1,3,5] to [1,0,1,0,1].

result = zeros(1,numVertex);

for i=1: size(v,2)

result(v(i))=1;

end

hoTranslateAdjMat.m :

function trans=hoTranslateAdjMat(A)

% This is a utility to help drawing the graph of A. When we

% draw i-th vertex of graph of A, the i-th row of ’trans ’ tell

% us which vertices should be adjacent to the i-th vertex. For

% example , if the sixth row of ’trans ’ is [1,4,0,0,0], we

% should draw line between first vertex and sixth vertex , and

% between fourth vertex and sixth vertex when we draw the

% sixth vertex.
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for i=2: size(A,1)

tempIndex =1;

for j=1:i-1

if(A(i,j)==1)

trans(i-1,tempIndex)=j

tempIndex=tempIndex +1;

end

end

end

trans

If you have all the previously specified codes, then you can get the result just

by executing the following command.

--> hoRun
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4.3 Manual of the programs

This section contains an example describing how to use the codes.

The [A,faces] = hoGenRandAdjMat(20) command generates a random

adjacency matrix A of a maximal plane graph of order 20 and faces which is

a list of its faces.

--> [A,faces] = hoGenRandAdjMat (20)

A =

0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0

.

.

.

(omitted)

faces =

1 2 3

1 2 4

3 1 5

.

.

.

(omitted)

The [maxIndHubset,tempMaxIndHubset,B,indexB,facesB] =

hoSelectArbMaxIndHubset(A,faces) command generates an adjacency ma-

trix B obtained from A by removing the information of the vertices of degree

3. It also generates a vector tempMaxIndHubset that contains the information

of a maximal hubset of B.

--> [maxIndHubset ,tempMaxIndHubset ,B,indexB ,facesB ]=

hoSelectArbMaxIndHubset(A,faces)

maxIndHubset =

0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0

tempMaxIndHubset =

0 0 0 0 1 0 1 0 0 0 0 1
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B =

0 1 1 1 1 1 0 0 0 0 0 0

1 0 1 1 0 0 1 0 0 0 0 0

1 1 0 0 1 0 1 0 1 0 1 1

1 1 0 0 0 1 1 0 1 0 0 0

1 0 1 0 0 1 0 1 0 1 1 0

1 0 0 1 1 0 0 1 1 0 0 0

0 1 1 1 0 0 0 0 1 0 0 0

0 0 0 0 1 1 0 0 1 1 0 0

0 0 1 1 0 1 1 1 0 1 0 1

0 0 0 0 1 0 0 1 1 0 1 1

0 0 1 0 1 0 0 0 0 1 0 1

0 0 1 0 0 0 0 0 1 1 1 0

indexB =

1 2 3 4 5 6 8 9 10 12 15 18

facesB =

1 2 3

1 2 4

3 1 5

.

.

(omitted)

The [patch,patchFree,patchFree4Degree,sizeEqClass,

facesRemovedHub]=hoFindPatches(B,tempMaxIndHubset,facesB) command

finds patches (patch), patch-free vertices (patchFree), and some other infor-

mation. The patch is a 3-dimensional array of numbers. The member (m,n, l)

of patch denotes the l-th vertex of the n-th equivalence class of the overedge

relation in the m-th patch. In the following example, there is one patch that

is refined into three equivalence classes. The vertices 1 and 9 are contained in

the first equivalence class of the first patch. ‘0’ means empty.

--> [patch ,patchFree ,patchFree4Degree ,sizeEqClass ,

facesRemovedHub ]= hoFindPatches(B,tempMaxIndHubset ,facesB)

patch =

(:,:,1) =

1 2 3

(:,:,2) =
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9 6 4

(:,:,3) =

0 10 8

patchFree =

0

patchFree4Degree =

11

sizeEqClass =

2 3 3

facesRemovedHub =

1 2 3

1 2 4

1 4 6

8 6 9

6 4 9

8 9 10

The [C,eqClassVertexTable] = hoVirtualAdjMat(patch,patchFree,B

,tempMaxIndHubset) command creates a virtual adjacency matrix C of an

abstract graph on the sum of equivalence classes of patches and patch-free

vertices of degree more than 4 in B. In the example, C describes a triangle

since we had one patch without a patch-free vertex of degree more than 4.

--> [C,eqClassVertexTable] = hoVirtualAdjMat(patch ,patchFree ,B,

tempMaxIndHubset)

C =

0 1 1

1 0 1

1 1 0

eqClassVertexTable =

1 2 3

The colorVector=hoGencolorList(C,eqClassVertexTable) command gen-

erates colorVector which is a list of probable 3-colorings of C.

--> colorVector=hoGencolorList(C,eqClassVertexTable)

colorVector =

1 2 3
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The success=hoCheck3Colorable(C,colorVector) command checks whether

the list contains a 3-coloring solution of C. If so, it returns success=1 and if

not, it returns success=0. This command also shows the 3-coloring solution.

The value of the n-th component of the vector ans is the color assigned to the

n-th vertex of C. We can find the vertex coloring of B with the information

contained in patch. In this example, vertices 1 and 9 would be colored with

color 1; vertices 2, 6, and 10 would be colored with color 2; and vertices 3, 4,

and 8 would be colored with color 3.

--> success=hoCheck3Colorable(C,colorVector)

ans =

1 2 3

success =

1

The checking process is finished. However, the hoTranslateAdjMat(B) helps

us to figure the graph of B. See the following.

--> hoTranslateAdjMat(B)

.

.

.

(omitted)

.

.

.

ans =

1 0 0 0 0

1 2 0 0 0

1 2 0 0 0

1 3 0 0 0

1 4 5 0 0

2 3 4 0 0

5 6 0 0 0

3 4 6 7 8

5 8 9 0 0

3 5 10 0 0

3 9 10 11 0
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From the matrix named ans, we can figure the graph on the paper. The n-th

row of ans shows what vertices would be the neighbors of the (n + 1)-th ver-

tex among n vertices (that are already drawn) when we draw the (n + 1)-th

vertex. For example, when we draw the sixth vertex on the paper, we draw

lines between the sixth vertex and the first vertex, between the sixth vertex

and the fourth vertex, and between the sixth vertex and the fifth vertex, since

the fifth row of ans is [1 4 5 0 0]. Note that whenever we finish adding a

vertex on the paper, There should be at most one face whose boundary is not

a triangle. Obviously, if there exists the unique face whose boundary is not a

triangle, then it is the unique unbounded face.
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Figure 4.3.1: Drawing graph B.

Also, we can figure the hubs and their wheels with the help of the command

hoConvertBitToIndex(tempMaxIndHubset). In the example, hubs are the

fifth, seventh, and twelfth drawn vertices.
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--> hoConvertBitToIndex(tempMaxIndHubset)

ans =

5 7 12

1

2

3

4

5

6

7

8

9

10

11

12

: hubs

Figure 4.3.2: Drawing hubs and wheels on graph B.

It shows that there is one patch, and the members of each equivalence class of

the patch are as the 3-dimensional array patch describes. We can easily find

a 4-coloring solution of this graph.
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Journal of Combinatorial Theory, Series B 88 (2003), 189–192.

77



국문초록

사색 문제로 알려진 사색 이론은 지도 상의 서로 인접한 두 영역들이 같은

색상을 가지지 않도록 채색할 때, 네 가지 색상만으로도 조건을 충분히 만

족시키며 모든 영역들을 채색할 수 있다는 이론이다. 사색 이론은 평면 그

래프의 꼭짓점을 채색하는 문제로 해석될 수 있다. 평면 그래프의 꼭짓점을

채색하기 위해 우리는 다음과 같은 방법에 대해 알아보도록 한다.

1. 주어진 지도를 그래프로 표현하고, 이 그래프를 포함하며 꼭짓점의 수는

같고 가능한 많은 모서리를 가지는 평면 그래프를 하나 찾는다.

2. 이 평면 그래프에서 차수가 3 이하인 꼭짓점이 있다면 제거한다.

3. 이 그래프에서 서로 인접하지 않으며 각각 어떤 차륜형 부분 그래프들의

중심이 되는 꼭짓점들로 이루어진 중심점 집합을 찾는다.

4. 중심점 집합에 원소가 아닌 꼭짓점들을 세 가지 색상로만 채색한다.

5. 중심점집합의원소가되는꼭짓점들을앞의세가지색상과는다른네번

째 색상으로 채색한다.

6. 이 결과를 처음에 주어진 지도에 적용한다.

위와 같은 방법을 이용하여, 무작위로 생성된 꼭짓점의 개수가 40인 그래프

를 채색하는 컴퓨터 실험에서 약 98%의 채색 성공률을 얻을 수 있었다. 이

채색 방법을 개선하는 것에 대해 논하도록 한다.

주요어휘: 꼭짓점 색칠하기, 평면 그래프, 4색, 사색, 사색문제, 사색이론

학번: 2009-20284
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Abstract

Vertex coloring of plane graphs

Ho-Seok Choe

Department of Mathematical Sciences

The Graduate School

Seoul National University

The four color theorem states that only four colors are needed to color the re-

gions of any simple planar map so that any two adjacent regions have different

colors. This theorem can be interpreted as finding a vertex coloring of plane

graphs. This thesis suggests a method to find a vertex coloring of plane graphs

with four available colors that includes the following steps:

(i) Convert the given map to a graph and find a maximal plane graph that

contains the graph.

(ii) Remove vertices of degree 3 from the maximal plane graph if they exist.

(iii) Find a hubset that is a set of independent hubs of wheels.

(iv) Color the vertices that are not the elements of the hubset with three

available colors.

(v) Color the vertices contained in the hubset with the fourth color.

(vi) Finally, apply the coloring result to the given map.

Using this process, we obtained a 98% success rate in computer experiments

for random graphs of order 40. We will discuss how to improve the coloring

process.

Key words: vertex coloring, plane graph, four color, 4-color

Student Number: 2009-20284
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Chapter 1

Introduction

1.1 What is the Four Color Theorem?

Suppose that we are going to make a (geographic) map of our nation or a

blueprint of our house. We would draw several lines to distinguish each region,

and color the regions to increase the visibility of our work. If we are only

interested in distinguishing the regions, at least how many colors do we need?

In other words, suppose that two regions have different colors if they share

a line as their boundary. Then, at least how many colors do we need? The

conjecture that only four colors are needed to complete such a coloring task for

an arbitrary map was first proposed in 1852 by Francis Guthrie [3]. At long

last, Kenneth Appel and Wolfgang Haken proved the four color theorem using

a computer in 1976, and their proof was improved in 1996 by Neil Robertson,

Daniel Sanders, Paul Seymour, and Robin Thomas [7].

A region is a connected open subset of the plane. A planar map is a set

of disjoint regions of the plane. A point is a corner of a map if it is contained

in the closures of at least three regions. Two regions of a map are adjacent if

their closures share a point that is not a corner. The four color theorem asserts

that only four colors are needed to color the regions of any simple planar map

so that any two adjacent regions have different colors [3].1

1[3] defines a planar map as a set of pairwise disjoint subsets called regions of the plane,

1



CHAPTER 1. INTRODUCTION

1.2 Generalization of the Four Color Theorem

People may wonder where the number “4” comes from. And the dimensions,

the topological structures, or some properties of the spaces containing the given

map would probably cross their minds. Here are some examples that help us

check our conjectures.

Example 1.2.1.

1

23

4

Figure 1.2.1: Map that requires four colors to color the regions

In Figure 1.2.1, we show a map containing four regions (five regions if we

count the unbounded region) on a plane. All the regions are pairwise adja-

cent. Therefore, at least four colors are required to color this map.

and a simple planar map as a planar map whose regions are connected open sets.

2



CHAPTER 1. INTRODUCTION

Example 1.2.2.

1           2            1

2           1            2

1           2            1

Figure 1.2.2: Chessboard

1

2

1
2

1

2

3

Figure 1.2.3: Pizza with odd pieces

Figure 1.2.2 and Figure 1.2.3 show maps that require less than 4 colors since

they have specific structures.

What if the spaces containing the maps are not two dimensional?

Example 1.2.3.

...1       2    1    2   1    2 ...

Figure 1.2.4: an interval of the real

line

1

2

1
2

1

2

3

Figure 1.2.5: a circle

Figure 1.2.4 shows an interval of the real line R and It does not contain a

corner since any point p of R separates R \ {p} into two distinct partitions

({x ∈ R : x < p} and {x ∈ R : x > p}). Therefore, if two regions A and B of

R share a point p as a common frontier and A has been assigned a color, say

color 1, then B can be assigned another color, say color 2. By repeating this

3



CHAPTER 1. INTRODUCTION

work for another frontier of the sum of colored regions, we can color all the

regions with only two colors. Figure 1.2.5 shows a circle that can be viewed as

joining two ends of a bounded interval containing an odd number of regions.

The map in this figure requires three colors since the ends of the interval are

joined: The first region and the last region are not adjacent before joining the

ends, but they are adjacent after joining the ends. Compare Figure 1.2.5 with

Figure 1.2.3.

Example 1.2.4.

(a)                                        (b)

Figure 1.2.6: regions of 3-dimensional space

In Figure 1.2.6, (a) shows a map with seven regions (containing a cylindri-

cal region) of 3-dimensional space. Most regions have shapes such as a sum of

a tube and a stick like (b). This map requires seven colors since all the regions

are pairwise adjacent. From this figure, we can guess the existence of maps

that require infinitely many colors: by adjusting some parameters (width of

stick, height of tube, and so on) of each region, and adding more regions of

similar shape, we can make a map that requires as many colors as we want.

4



CHAPTER 1. INTRODUCTION

As the previous example shows, it seems pointless to consider this type

of problem for maps of three or higher dimensional spaces. Instead, let us

consider maps of 2-dimensional surfaces embedded into a 3-dimensional space.

The next example shows that the coloring problems are more complicated and

that the topological structures presumably influence the number of required

colors.

Example 1.2.5.

1

2
2

3

4

4
5

55

5
6

6

7 7

Figure 1.2.7: a map of torus requir-

ing seven colors

A

A’

B

C

B’

C’

Figure 1.2.8: annulus in the plane

and annulus in a torus

Figure 1.2.7 shows a map of a torus requiring seven colors. As we obtain

a new adjacency condition by joining the ends of an interval (a region of the

real line) in Example 1.2.3, we may get new adjacency conditions by pasting

the opposite edges of a square (a region of the plane). In Figure 1.2.8, A is an

annular region with its two frontiers B and C in a plane. A′ is also an annular

region with its two frontiers B′ and C ′ in a torus. A separates its exterior into

two pieces but A′ does not. If there was a regions whose frontier intersects with

B and another region whose frontier intersects with C in the plane, these two

regions would never be adjacent. However, if there was a region whose frontier

5



CHAPTER 1. INTRODUCTION

intersects with B′ and another region whose frontier intersects with C ′ in the

torus, these two regions may be adjacent. Considering the fact that a cycle

(or a polygon) is a deformation retract of an annulus [6], the plane case agrees

with the Jordan curve theorem (Theorem 2.2.1), but the torus case does not.

1.3 Maps with finite regions

In this thesis, we treat maps that contain finite regions of the plane. However,

a map may have two or more unbounded regions and we may want to find

another map that conserves the adjacency of all the pairs of regions and has

only one unbounded region.

x

y

z

rotM

Figure 1.3.1: Example of getting a map that has only one unbounded

region from another map that has four unbounded regions.

Recall the well-known stereographic projection π : S2 \ N → R2 where S2

is a unit sphere, N = (0, 0, 1) is the north pole of the sphere, and R2 is the

plane isomorphic to the plane {(x, y, z)|z = 0} in three-dimensional space [5].

With the help of this projection, we can find the wanted map. Assume that

6



CHAPTER 1. INTRODUCTION

a map M of the plane has two or more unbounded regions, say R1, R2, · · ·Rn.

Considering that π−1(Ri) and π−1(Rj) are distinguished in S2 (1 ≤ i 6= j ≤ n),

it is reasonable to treat the north pole N as a point contained in frontier of

every π−1(Rk), where k = 1, 2, · · · , n. Let rotM : S2 → S2 be a rotation of

S2 such that the north pole N is contained in rotM(π−1(R)) for some R ∈M .

Let us remove N and re-send regions of rotM(π−1(M)) to the plane by the

projection π so that we obtain a new map of the plane that contains only one

unbounded region. This method does not break the adjacency of the regions

since the projection π and the rotation rotM are continuous and bijective. If

we want a region with special properties to be unbounded, we can use a similar

method.

7



Chapter 2

Graph representation

This chapter introduces the standard terminologies and some well-known facts

from [2].

2.1 Graphs

A graph is a pair G = (V,E) of sets such that E ⊆ [V ]2. The elements of V

are the vertices of the graph G, the elements of E are its edges. The usual

way to picture a graph is by drawing a dot for each vertex and joining two of

these dots by a line if the corresponding two vertices form an edge.

A graph with vertex set V is said to be a graph on V . The vertex set of

a graph G is referred to as V (G), its edge set as E(G). We shall not always

distinguish strictly between a graph and its vertex or edge set. For example,

we may speak of a vertex v ∈ G (rather than v ∈ V (G)), and edge e ∈ G, and

so on.

The number of vertices of a graph G is its order written as |G|, and the

number of its edges is denoted by ‖G‖.
A vertex v is incident with an edge e if v ∈ e. And e is an edge at v.

The two vertices incident with an edge are its endvertices or ends, and an edge

joins its ends. An edge {x, y} is usually written as xy (or yx). If x ∈ X and

y ∈ Y , then xy is an X − Y edge. The set of all X − Y edges in a set E

8



CHAPTER 2. GRAPH REPRESENTATION

is denoted by E(X, Y ); instead of E({x}, Y ) and E(X, {y}) we simply write

E(x, Y ) and E(X, y). The set of all the edges in E at a vertex v is denoted by

E(v).

Two vertices x, y of G are adjacent or neighbors, if xy is an edge of G.

Also, two edges e 6= f are adjacent if they have an end in common. If all the

vertices of G are pairwise adjacent, then G is complete. A complete graph on

n vertices is a Kn. K3 is called a triangle. Pairwise non-adjacent vertices or

edges are called independent. More formally, a set of vertices or of edges is

independent (or stable) if no two of its elements are adjacent.

Let G = (V,E) and G′ = (V ′, E ′) be two graphs. We call G and G′

isomorphic, and write G ' G′ if there exists a bijection ϕ : V → V ′ with

xy ∈ E ⇔ ϕ(x)ϕ(y) ∈ E ′ for all x, y ∈ V . Such a bijection ϕ is called an

isomorphism.

A class of graphs that is closed under isomorphism is called a graph prop-

erty. For example, ‘containing of triangle’ is a graph property.

We set G∪G′ := (V ∪V ′, E∪E ′) and G∩G′ := (V ∩V ′, E∩E ′). If V ′ ⊆ V

and E ′ ⊆ E then G′ is a subgraph of G (and G a supergraph of G′), written as

G′ ⊆ G. If G′ ⊆ G and G′ contains all the edges xy ∈ E with x, y ∈ V ′, then

G′ is an induced subgraph of G and we say that V ′ induces or spans G′ in G,

write G′ =: G[V ′].

If U is any set of vertices (usually of G), we write G− U for G[V \ U ]. If

U = {v} is a singleton, we write G−v rather than G−{v}. Instead of G−V (G′)

we simply write G−G′. For a subset F of [V ]2 we write G− F := (V,E \ F )

and G + F := (V,E ∪ F ). As above, G − {e} and G + {e} are abbreviated

to G − e and G + e. We call G edge-maximal with a given graph property

if G itself has the property but no graph G + xy := (V,E ∪ {xy}) does, for

non-adjacent vertices x, y ∈ G.

The set of neighbors of a vertex v in G is denoted by NG(v) or briefly by

N(v). More generally for U ⊆ V , the neighbors in V \ U of vertices in U are

called neighbors of U , denoted by N(U).

The degree dG(v) = d(v) of a vertex v is the number |E(v)|. The number

δ(G) := min{d(v)|v ∈ V } is the minimum degree of G, the number ∆(G) :=

9



CHAPTER 2. GRAPH REPRESENTATION

max{d(v)|v ∈ V } is its maximum degree. The number

d(G) :=
1

|V |
∑
v∈V

d(v)

is the average degree of G. If we sum up all the vertex degrees in G we count

every edge exactly twice: once from each of its ends. Thus

|E| = 1

2
d(G) · |V |. (2.1.0.1)

A path is a non-empty graph P = (V,E) of the form

V = {x0, x1, · · · , xk}, E = {x0x1, x1x2, · · · , xk−1xk}

where the xi are all distinct. The vertices x0 and xk are linked by P and

are called its ends. The vertices x1, · · ·xk−1 are the inner vertices of P . The

number of edges of a path is its length. We often refer to a path by the natural

sequence of its vertices, writing P = x0x1 · · ·xk and calling P a path from x0
to xk (as well as between x0 and xk).

Given sets A,B of vertices, we call P = x0 · · ·xk an A−B path if V (P )∩
A = {x0} and V (P ) ∩ B = {xk}. As before, we write a− B path rather than

{a} −B path, etc.

If P = x0x1 · · ·xk−1 is a path and k ≥ 3, then the graph C := P+xk−1x0 is

called a cycle. As with paths, we often denote a cycle by its (cyclic) sequence

of vertices such as C = x0, · · · , xk−1, x0. The length of a cycle is its number of

edges (or vertices). An edge that joins two vertices of a cycle but is not itself

an edge of the cycle is a chord of that cycle. An induced cycle in G, a cycle in

G forming an induced subgraph, is one that has no chords.

A non-empty graph G is called connected if any two of its vertices are linked

by a path in G. A maximal connected subgraph of G is called a component of

G.

An acyclic graph, one not containing any cycles, is called a forest. A

connected forest is called a tree. The vertices of degree 1 in a tree are its

leaves.

10



CHAPTER 2. GRAPH REPRESENTATION

Let r ≥ 2 be an integer. A graph G = (V,E) is called r-partite if V admits

a partition into r classes such that every edge has its ends in different classes.

Vertices in the same partition class must not be adjacent. Instead of ‘2-partite’

one usually says bipartite. An r-partite graph in which every two vertices from

different partition classes are adjacent is called complete multipartite(r-partite)

graph and denoted by Kn1,··· ,nk
where each ni is the number of vertices of each

partition class. If n1 = · · · = nr =: s we abbreviate this to Kr
s .

Let e = xy be an edge of a graph G = (V,E). By G/e we denote the graph

(V ′, E ′) with vertex set V ′ := (V \ {x, y}) ∪ {ve} and edge set

E ′ := {vw ∈ E|{v, w} ∩ {x, y} = ∅} ∪ {vew|xw ∈ E \ {e}or yw ∈ E \ {e}}.

More generally, if X is another graph and {Vx|x ∈ V (X)} is a partition

of V into connected subsets such that, for any two vertices x, y ∈ X, there is

a Vx − Vy edge in G if and only if xy ∈ E(X), we call G an MX and write

G = MX. The sets Vx are the branch sets of this MX. If G = MX is a

subgraph of another graph Y , we call X a minor of Y and write X 4 Y .

If we replace the edges of X with independent paths between their ends

(so that none of these paths has an inner vertex on another path or in X), we

call the graph G obtained a subdivision of X and write G = TX. If G = TX

is the subgraph of another graph Y , then X is a topological minor of Y .

2.2 Planar graphs

A straight line segment in the Euclidean plane is a subset of R2 that has the

form {p + λ(q − p)|0 ≤ λ ≤ 1} for distinct points p, q ∈ R2. A polygon is a

subset of R2 that is the union of finitely many straight line segments and is

homeomorphic to the unit circle S1. A polygonal arc, or simply an arc, is a

subset of R2 which is the union of finitely many straight line segments and

is homeomorphic to the closed unit interval [0, 1]. The images of 0 and of 1

under such a homeomorphism are the endpoints of this polygonal arc, which

links them and runs between them. If P is an arc between x and y, the point

set P \ {x, y} is the interior of P and we denote it by P̊ .

11
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Let O ⊆ R2 be an open set. Being linked by an arc in O defines an

equivalence relation on O. The corresponding equivalence classes are again

open and they are the regions of O. The frontier of a set X ⊆ R2 is the set

Y of all points y ∈ R2 such that every neighborhood of y meets both X and

R2 \X.

Theorem 2.2.1 (Jordan Curve Theorem for Polygons). For every polygon

P ⊆ R2, the set R2 \ P has exactly two regions. Each of these has the entire

polygon P as its frontier.

A good account of the Jordan curve theorem is given in [8] or [6].

Lemma 2.2.2. Let P1, P2, P3 be three arcs, between the same two endpoint

but otherwise disjoint.

(i) R2\(P1∪P2∪P3) has exactly three regions, with frontiers P1∪P2, P2∪P3

and P3 ∪ P1.

(ii) If P is an arc between an inner point of P1 and an inner point of P3,

whose interior lies in the region of R2 \ (P1 ∪ P3) that contains P2, then

P̊ ∩ P̊2 6= ∅.

A plane graph is a pair (V,E) of finite sets with the following properties

(the elements of V are again called vertices, those of E edges):

(i) V ⊆ R2;

(ii) every edge is an arc between two vertices;

(iii) different edges have different sets of endpoints;

(iv) the interior of an edge contains no vertex and no point of any other edge.

For every plane graph G, the set R2 \ G is open. Its regions are the faces of

G. We denote the set of faces of G by F (G).

The subgraph of G whose point set is the frontier of a face f is said to

bound f and is called its boundary, and we denote it by G[f ]. A face is said

to be incident with the vertices and edges of its boundary.

A plane graph G is called maximally plane, or just maximal, if we cannot

add a new edge to form a plane graph G′ ) G with V (G′) = V (G). We call G

12
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a plane triangulation if every face of G (including the outer face) is bounded

by a triangle.

A wheel Wn is a graph with n vertices (n ≥ 4) formed by connecting a

single vertex v to all vertices of an (n − 1)-cycle. The single vertex v is hub

and the edges incident with v are called spokes. We simply denote it by W

when we do not need to consider the length of the cycle. If W is a wheel in a

graph G and h is its hub, we say that h forms a wheel W in G.

Proposition 2.2.3. A plane graph of order at least 3 is maximally plane if

and only if it is a plane triangulation.

Theorem 2.2.4 (Euler’s Formula). Let G be a connected plane graph with n

vertices, m edges, and l faces. Then

n−m+ l = 2. (2.2.4.1)

Corollary 2.2.5. A plane graph with n ≥ 3 vertices has at most 3n−6 edges.

Every plane triangulation with n vertices has 3n− 6 edges.

An embedding in the plane, or planar embedding, of an (abstract) graph G

is an isomorphism between G and a plane graph H. The latter will be called

a drawing of G. A graph is called planar if it can be embedded in the plane.

A planar graph is maximal, or maximally planar, if it is planar but cannot be

extended to a larger planar graph by adding an edge (but no vertex).

Proposition 2.2.6.

(i) Every maximal plane graph is maximally planar.

(ii) A planar graph with n ≥ 3 vertices is maximally planar if and only if it

has 3n− 6 edges.

Theorem 2.2.7 (Kuratowski 1930; Wagner 1937). The following assertions

are equivalent for graphs G:

(i) G is planar;

(ii) G contains neither K5 nor K3,3 as a minor;

(iii) G contains neither K5 nor K3,3 as a topological minor.

13
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2.3 Plane graph representation of a map

For a given map V = {v1, v2, · · · , vn} of plane (n ≥ 4), let us define E :=

{vw ⊂ V |v, w are adjacent }, then G = (V,E) forms a graph on V . Two

adjacent regions (their closures share a point that is not a corner) in V are

also adjacent (they are joined by an edge) in G. The graph G is planar since

G has a drawing H in the following sense: let V ′ := {p1, p2, · · · , pn} be a set of

inner points of regions of the plane such that pi ∈ vi for each i = 1, 2, · · · , n.
For an adjacent pair of regions, vi and vj, there exists a point q that is not a

corner on a common frontier of vi and vj. Let Pi,q be an arc from p1 to q lying

in v1, and Pq,j be an arc from q to p2 lying in v2. Let Pi,j := Pi,q ∪ Pq,j be the

sum of the arcs and E ′ be the set of such Pi,j. Let us define a drawing H on

V ′, setting H := (V ′, E ′). Then, we can find (graph) isomorphism φ : V → V ′

such that φ(vi) = pi and φ(vivj) = Pi,j. Therefore, we can convert the coloring

problem of a map of the plane to the coloring problem of vertices of a plane

graph.

A vertex coloring of a graph G = (V,E) is a function c : V → S from the

vertex set V to a set S such that c(v) 6= c(w) whenever v and w are adjacent.

The elements of the set S are called the available colors. The smallest integer

k is the (vertex-) chromatic number of G if G has a k-coloring that is a vertex

coloring c : V → {1, · · · , k}. We denote the chromatic number by χ(G). A

graph G with χ(G) = k is called k-chromatic; if χ(G) ≤ k, we call G k-

colorable [2]. We also call a vertex coloring with |S| ≤ n an n-coloring solution

of G. Clearly, we are looking for the 4-coloring solutions.

Suppose that G and G+ xy are plane graphs such that x, y ∈ G are non-

adjacent vertices. Then all the coloring solutions of G+xy are also the coloring

solutions of G. Therefore, we have only to consider a maximal plane graph

containing the given graph G. By Proposition 2.2.6, we shall not distinguish

between maximal plane graphs and maximal planar graphs. And by Proposi-

tion 2.2.3, all the faces, including unbounded faces, of maximal plane graphs

are bounded by triangles.

Proposition 2.3.1. Let G be a maximal plane graph with n vertices. The

minimum degree δ(G) of G is at least 3.

14
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Proof. By Corollary 2.2.5, G has 3n − 6 edges. A graph G′ obtained by re-

moving vertices or edges from G is also a plane graph. Suppose that there is

a vertex v of degree 2. Set G′ := G − v. Then the order |G′| of G′ is n − 1

and the number ‖G′‖ of its edges is 3n − 6 − 2 = 3n − 8 since the degree of

v is 2. However, ‖G′‖ = 3n − 8 > 3(n − 1) − 6 and by Corollary 2.2.5, this

contradicts the fact that G′ is a plane graph.

Proposition 2.3.2. Let G be a maximal plane graph with n vertices and

v ∈ G be a vertex of degree 3. Then the graph G′ := G− v is also a maximal

plane.

Proof. The number of edges of G′ is (3n−6)−3 = 3(n−1)−6 and by Corollary

2.2.5, G′ is maximally plane.

Suppose that G has a vertex v of degree 3. Let v1, v2, v3 be the neighbors

of v. If we can find a 4-coloring solution c : V (G− v)→ S of G− v, then we

also can find a 4-coloring solution of G by extending c: define c(v) := s where

s ∈ S \ c({v1, v2, v3}). By Proposition 2.3.2, G − v is also maximally plane.

Therefore, we have only to consider a maximal plane graph with a minimum

degree at least 4.

Applying Equation 2.1.0.1 to a maximal plane graph G of order n with

δ(G) ≥ 4, we could easily obtain that

d(G) =
2|E|
|V |

(2.3.2.1)

=
2(3n− 6)

n
(2.3.2.2)

= 6− 12

n
(2.3.2.3)

(2.3.2.4)

∴ lim
n→∞

d(G) = 6. (2.3.2.5)

This means that most vertices have degrees less than 6.

Digressively, the fact that a graph G of order at least 4 has a 4-coloring

solution is equivalent to the fact that G is 4-partite: assume that G has a

15
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4-coloring solution c : V (G) → S. As an equivalence relation, the 4-coloring

solution defines four or less equivalence classes on V (G), and vertices of the

same class are independent. Since the n-partite graph of order m is also m-

partite where m > n, G is 4-partite. Conversely, assume that G is 4-partite.

Let us define a coloring solution c′ on V (G) such that c′(v) = c′(w) if v, w are

in the same class and c′(v) 6= c′(w) if v, w are in different classes. Then the

number of the range of c′ is at most 4.

If we can prove that if an arbitrary graph G is not 4-partite, then it con-

tains K5 or K3,3 as a minor or a topological minor so that it is not a planar

graph by the Theorem of Kuratowski and Wagner (Theorem 2.2.7), then the

contraposition asserts that all planar graphs are 4-partite, and therefore have

4-coloring solutions.

Notation 2.3.3. We can assume that a map has only one unbounded region

(Section 1.3). Let G be a maximal plane graph containing a subgraph that

represents the given map, and let a vertex v of G represent the unbounded

region of the map. The edges at v complicate the figure of G. Thus, in this

thesis, the edges at v would be omitted and the vertex v would be at the proper

location in the figures of the graph representation. And we would represent an

edge as a smooth curve even if it is defined as a polygonal arc which is a union

of finitely many straight line segments. We can easily distinguish the vertices

in the figure of a graph since all vertices have degrees at least 4 by Proposition

2.3.2. See the following example.

Example 2.3.4.

(a)                               (b)

Figure 2.3.1: prefer (b) rather than (a)

Both (a) and (b) of Figure 2.3.1 denote K4. We use a line segment for rep-

resenting an edge. But when it is difficult, we use smooth curves such as (b)

rather than a union of finite line segments such as (a).

16
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Example 2.3.5.

v                               v

(a)                                 (b)                                (c)

Figure 2.3.2: prefer (c) rather than (b) for a graph notation of map (a)

In Figure 2.3.2, (b) and (c) are the same graph representations of map (a).

(c) is obtained from (b) omitting edges at the vertex v that represents the

unbounded region of map (a). We prefer figures such as (c) rather than figures

such as (b) for a graph representation of a map.

Proposition 2.3.6 (Five Color Theorem). Every planar graph is 5-colorable.

The proof of the Five Color Theorem is given in [2].

Theorem 2.3.7 (Grötzsch 1959). Every planar graph not containing a triangle

is 3-colorable [2][9].

17



Chapter 3

Finding a 4-coloring solution

In this chapter, we will discuss how to color the vertices.

3.1 An introduction of a coloring method

Let G be a plane graph and v be a vertex of G. Assume that we will color

the vertices of G one by one and that v have k number of colored neighbours

at a moment. Let S denote a set of all colors that have been assigned to the

neighbors. Clearly, |S| =: n ≤ k ≤ dG(v). Then, we say that v has n colors on

its neighbors. If a vertex v has n colors on its neighbors and another vertex w

has m colors on its neighbors and m < n, then we say that v has more colors

on its neighbors than w or that w has less colors on its neighbors than v.

In a plane graph G, a maximal triangle patch without a wheel or simply a

patch is a subgraph P of G with the following properties:

(i) P is a triangulation.

(ii) P does not contain a wheel graph.

(iii) If a triangle T1 of G shares an edge with a triangle T2 of P , then T1 is

also a triangle of P .

A patch P is simple if the closure of the sum of all its faces is a simple region

of the plane. Let P be a set of all patches of G. A vertex v of G is patch-free

from P or simply patch-free if v is not contained in any member of P.

18



CHAPTER 3. FINDING A 4-COLORING SOLUTION

In a maximal plane graph G, an independent hubset or simply a hubset is

a set H of independent vertices such that each member is a hub of a wheel in

G. H is maximal if G − H does not contain any wheels. Let us refer to the

members of a hubset as hubs unless any confusion arises.

Let G be a plane graph, v be a vertex of G, c : V (G) → S be a vertex

coloring of G, and A be a subset of V (G). A usually does not contain v. A

set of adjacent colors of v with respect to c|A is the image set c|A(A ∩NG(v))

in S and it is denoted by ACc|A(v) or simply ACc(v) or AC(v). The number

|ACc(v)| is the AC-number of v.

Let G be a plane graph of order n. We would like to color its vertices one

by one. Since we do not have enough colors, we should decide which vertex

to color. If, at a moment, a non-colored vertex v ∈ G has three colors on its

neighbors and we have only four available colors, we have to color this vertex

v rather than other vertices. It seems natural to select a vertex that has more

colors on its neighbors rather than other vertices that have less colors on their

neighbors, among the non-colored vertices. In such a point of view, we can

consider a coloring method by constructing a finite sequence of pairs (Gk, ck)

in the following way:

(i) G1 = ({v1}, ∅) where v1 ∈ V (G).

(ii) Define a vertex coloring, c1 : G1 → S on G1.

(iii) Define an induced subgraph Gk := G[Gk−1 ∪ {vk}], where vk ∈ G \Gk−1

is a vertex such that the AC-number |ACck−1
(vk)| is maximum.

(iv) Define a vertex coloring, ck : Gk → S such that ck|Gk−1
= ck−1 and

ck(vk) ∈ S \ ACck−1
(v).

The above process does not always work for a 4-element set S, say {1, 2, 3, 4}.
To improve the above process, we can add other conditions for selecting vk or

a process for exchanging some assigned colors. However, this thesis suggests

another way:

(i) Convert the given map to a graph and find a maximal plane graph that

contains the graph.

(ii) Remove vertices of degree 3 from the maximal plane graph if they exist.
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(iii) Find a hubset in the graph.

(iv) Color the vertices that are not the elements of the hubset with three

available colors.

(v) Color the vertices contained in the hubset with the fourth color.

(vi) Finally, apply the coloring result to the given map.

3.2 Examples of coloring

Example 3.2.1. Find a coloring solution of the given map, Figure 3.2.1.

Figure 3.2.1: given map
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a

Figure 3.2.2: Step 1

Solution. Step 1: Find a graph representation of the given map in Figure 3.2.1

as described in Section 2.3.

a

Figure 3.2.3: Step 2

Step 2: Omit the edges at a in the same way as Figure 2.3.3 in Example

2.3.5, where a is the vertex that represents the unbounded region of the given

map.
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a b

Figure 3.2.4: Step 3

Step 3: By Proposition 2.2.3, the graph in Figure 3.2.3 is not a maximally

plane since it contains two faces whose boundaries are not triangles. Find a

maximal plane graph containing Figure 3.2.3.

a

Figure 3.2.5: Step 4, a graph G

Step 4: By Proposition 2.3.2 and the arguments below, the vertex b in Figure

3.2.4 can be removed since its degree is three. Let G denote this graph.
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a

: hub

Figure 3.2.6: Step 5

Step 5: Find a hubset H. In Figure 3.2.6, the hubs are represented by white

circles. Note that a is also a hub of a wheel.

a

: hub

1

2

3

1

2

3

1

2

3

1

3

2

1
3

2

1
2

3
1

3

2

1

Figure 3.2.7: Step 6

Step 6: Following the vertex-selecting order discussed in Section 3.1, color

the patches of G−H with three available colors, say color 1, color 2, and color

3. Note that if G − H had not contained any patches, this step would have

been a specific example of the Grötzsch’s theorem (Theorem 2.3.7).
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a

: hub

1

2

3

1

2

3

1

2

3

1

3

2

1
3

2

1
2

3
1

3

2

1

4

4

4

4

4

Figure 3.2.8: Step 7

Step 7: Color the hubs with color 4. Note that we never used color 4 at

Step 6 and that all the hubs are independent by the definition of the hubset.

a

1

2

3

1

2

3

1

2

3

1

3

2

1
3

2

1
2

3
1

3

2

1

4

4

4

4

4

2b

Figure 3.2.9: Step 8

Step 8: Apply the coloring result to the original graph in Figure 3.2.3 ob-

tained at Step 2. Do not forget to color the vertex b that was removed at Step

4. We have only to assign b color 2 since AC(b) = {1, 3, 4}.
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1        2

3        4

Figure 3.2.10: Step 9

Step 9: Color the region of the given map according to the vertex coloring

we have found.

The coloring process such as the one in Example 3.2.1 does not always

success. See the following examples.

Example 3.2.2.

(a) Unsuccessful                        (b) Successful

1

23

1

3
2

1

3

1
3

e
2

2

1

2
3

1
2

1

3

2

1

3

Figure 3.2.11

Figure 3.2.11 shows the different choices of hubsets for the same graph. (a)

shows the wrong choice of hubset – the ends of an edge e have the same color.
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Example 3.2.3.

1

2

3 1

3

1

2
3

1

2
1

3 2

1

3

2

1

3

2 1

1

2

3

3 1

2 1

2

3

2

3

12

3
1

(a) Unsuccessful                     (b) Successful                         (c) Successful

e f g

1

2

3

1 2

3

2 1

3

1

2

3
1

1

3

2

3

2

Figure 3.2.12

Figure 3.2.12 also shows the different choices of hubsets for the same graph.

The ends of one of the edges {e, f, g} in (a) have the same color: lower ends

of these edges must have the same color, color 1 as figured, but the upper

ends of the edges must have pairwise different colors. Since we have only three

available colors, it is unsuccessful by the pigeonhole principle.

Example 3.2.4.

1

2

3

1

2

1

3

2
1

3

2 1

2

3

3

2
3 1

2

31

2

3

1
2

1

1

3

3 2

1

2
1

2

3

1

A

e

f

1
1

1

1

2

3

2

3

2
32

3

1

2

3
1

3

2

P

Q

P

(a) Unsuccessful                (b) Successful                    (c) Successful

Figure 3.2.13

In Figure 3.2.13 (a), every vertex of a triangle A has color 3 on its neigh-

bors. Thus, it is unsuccessful since we have only three available colors for the

vertices of the triangle A. A path e∪ f of length 2 has color 1 on one end and

color 2 on the other end. Therefore, the only inner vertex has to be assigned
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color 3. Every inner vertex of paths P and Q plays a role as a buffer that

prevents the failure of coloring since it always has two neighbors except hubs

so that it has at most two colors on its neighbors before coloring hubs.

Example 3.2.5.

1

23

1

2

3

1

2

3

1

2

1

3

2

3

1

2

A
1

2

3
1

2

3

1
33

21

2
3

1
2 1

3

P

(a) Unsuccessful                                        (b) Successful

Figure 3.2.14

In Figure 3.2.14 (a), P is a path of length 3 and both of its ends have been

assigned color 1. Therefore, one of the two inner points of P has to be colored

with color 2. However, the triangle A contains the two inner points of P , and

has another vertex that already has been colored with color 2. Therefore, (a)

is unsuccessful.

3.3 Observations

Definition 3.3.1. Let G be a plane graph containing at least one triangle. An

overedge sequence is a sequence {v1, v2, · · · } of vertices such that there exists

an edge ei that is the opposite edge of vertex vi in a triangle T and the opposite

edge of vertex vi+1 in a triangle T ′ of G. Note that T and T ′ can denote the

same triangle, and that vi and vj can denote the same vertex even if i 6= j.

Two vertices v1 and v2 of G are overedge if there exists an overedge sequence

containing both v1 and v2.
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Proposition 3.3.2. For the vertices in a patch P , the overedge relation is an

equivalence relation.

Proof. (Reflexivity) Since P is a triangulation, for any vertex v of P , there

exists a triangle T that contains v. Let e be an opposite edge of v in T , then

a sequence {v, v, · · · } is an overedge sequence since e is an opposite edge of

every element of the sequence in T .

(Symmetry) If v1 and v2 are members of a sequence, then v2 and v1 are also

members of the sequence.

(Transitivity) Assume that vi and vj are members of an overedge sequence

A, and vj and vk are members of an overedge sequence B. Then we have a

subsequence {vi, · · · , vj} of A and another subsequence {vj, · · · , vk} of B. By

joining the two sequences, we get an overedge sequence {vi, · · · , vj, · · · , vk}.

Proposition 3.3.3. The overedge relation defines three equivalence classes on

a simple patch P .

Proof. Let P be a simple patch and T1 be a triangle of P . We have three

distinct pairs, each of which is a form of (vi1, e
i
1) such that vi1 is an opposite

vertex of edge ei1 where i = 1, 2, 3. Let T2 be another triangle of P that shares

an edge ei1 with T1. There is only one opposite vertex of the edge ei1 in T2 and

let vi2 denote this vertex. Similarly, in a triangle Tj of P that shares an edge

eik with T1 ∪ · · · ∪ Tj−1, let the opposite vertex of eik be denoted by vik+1 for

some index k. Note that Tj shares only one edge with T1 ∪ · · · ∪ Tj−1 and that

there exists only one opposite vertex of eik in Tj since P is simple and it does

not contain any wheels. Therefore, a vertex v of T1 ∪ · · · ∪ Tj cannot have two

notations; for example, vi1k1 = v = vi2k2 where i1 6= i2, so that the number of

equivalence classes is less than three.

Corollary 3.3.4. A simple patch P requires exactly three colors to color its

vertices. Two vertices v and w of P have the same color if they are overedge.

Proof. Assume that the two vertices v and w are overedge in a simple patch

P . Then v and w are non-adjacent in P since P does not contain K4 that is
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a wheel graph. (However, v and w can be adjacent in a supergraph of P . See

the Example 3.3.7.) Therefore, we can assign the same color to vertices in the

same equivalence class. By Proposition 3.3.3, we need exactly three colors.

Assume that we find a maximal hubset H of a plane graph G. Consider

the graph G − H. A patch has six numbers of 3-coloring solutions since a

triangle also has six numbers of 3-coloring solutions. And for a colored patch

P , if we want a vertex v ∈ P that was already colored to have a different color,

we can just exchange the color of [v] and the color of [w], where [v] and [w]

are the different equivalence classes containing v and w, respectively.

Let us consider how a colored patch affects the colorings of another patch

in G−H. Assume that P and Q are two patches and P has been colored. If

they share a vertex v, then we have two choices of 3-coloring solutions for Q.

If the patches are linked by an edge vw where v ∈ P , w ∈ Q, then we have

four choices of 3-coloring solutions for Q. If the patches are linked by a P −Q
path vuw of length 2, where v ∈ P , w ∈ Q, then the vertex coloring of P

does not affect the choice of the vertex coloring of Q. Even if the ends of the

path have different colors, we can always assign the third color to the inner

vertices of the path since the degree of all the inner vertices is 2 in G − H.

This means that a coloring of P never affects the coloring of Q if all P − Q
paths have lengths at least 2. Such a path of length at least 2 can be seen

as a graph representation of an interval of the real line such as Figure 1.2.4.

Three available colors are enough to color maps of such an interval. When

we finish coloring some patches and if there does not exist non-colored vertex

of AC-number 2, we should select a vertex that is contained in a non-colored

patch linked to the sum of colored patches by a path of shorter length. Note

that a vertex that is shared by two patches can be thought as a linking path of

length 0. However, which vertices would be the inner vertices of such a path

linking two patches in G−H? The answer is vertices of degree 4 in G.

Proposition 3.3.5. Let G be a maximal plane graph with δ(G) ≥ 4 and H be

a maximal hubset of G. Let W 1 and W 2 be two wheels such that h1, h2 ∈ H
are hubs of W 1 and W 2, respectively, and W 1 and W 2 share a path P of length

at least 2. Then the degree of the inner vertices of P is 4 in G.
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Proof. Let v be an inner vertex of P . Then we obtain dG(v) ≥ 4 since δ(G) ≥ 4.

The vertex v has two neighbors v1 and v2 in P and two neighbors h1 and h2
that are not vertices in P . However, v does not have any other neighbors:

each vhivjv (i, j = 1, 2) forms a triangle. If a vertex w is inside of one of

the triangles, the degree dG(w) of w is 3 since G is maximally planar. This

contradicts the assumption that δ(G) ≥ 4. If w is outside all the triangles, this

also contradicts the Jordan curve theorem (Theorem 2.2.1) since h1v1h2v2h1
forms a cycle containing all the triangles.

For a maximal hubset H of a maximal plane graph G, we can always color

the patch-free vertices of G −H with 3 available colors if they have degree 4

in G. However, if a patch-free vertex v of G−H has a degree at least 6 in G,

we are not always able to color the vertex v. See the next example.

Example 3.3.6.

(coloring order, color)

(1,1)

(2,2)

(3,3)

(4,2)

(5,2)

(6,2)

(7,2)

(8,1)
(9,3)

(10,3)

v

P

Q

R

S

: hubs
P, Q, R, S : patches

Figure 3.3.1
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Due to the wrong choice of a maximal hubset, finding a 3-coloring solution is

unsuccessful (Figure 3.3.1). Let vi denote the i-th colored vertex in the figure.

We start coloring v1 with color 1 and we have no problem until the vertex v4 is

colored with color 2. In patch Q, v5, v6 and v7 should be colored with color 2

since they are overedge with v4 which has been colored with color 2. When we

color the vertex v8, we have to color it with color 1 because if we color it with

color 3 then v which is not a hub, would have three colors on its neighbors.

Also, v already has hubs that would be colored with color 4 as its neighbors;

thus, v would require the fifth color. This implies that v9 should be colored

with color 3. Since v10 is overedge with v9, it should be colored with color 3.

Finally, v requires the fifth color.

A patch-free vertex such as v in Figure 3.3.1 has a degree at least 6.

However, Equation 2.3.2.5 says that such a vertex does not appear frequently.

Despite this, we can usually find another 3-coloring solution by exchanging

colors of two classes of some patches. As Example 3.3.6 states, if there is no

3-coloring solution, we should take another maximal hubset.

Example 3.3.7.

(a)                                       (b)                                       (c)

v
ee

: vertices in overedge relation

Figure 3.3.2
The patch of (a) in Figure 3.3.2 is not simple and the overedge relation cannot

define three equivalence classes. (b) shows that two ends of an edge e that are

contained in different patches. They are overedge with a vertex v so that they
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are also overedge. (c) shows a situation similar to the case of (b), two vertices

are overedge in a patch but they are linked by an edge e.

Situations such as the next example frequently occur.

Example 3.3.8. Consider a path P of length 3 whose ends are colored with

the same color, say color 1. Then the two inner vertices v1 and v2 have to be

colored with color 2 and color 3 or with color 3 and color 2, respectively. See

Figure 3.2.14 in Example 3.2.5.

The previous example shows that although the length of a path (that links

two patches) is at least 2, if some inner vertices of the path have degrees more

than 4, we have to consider these inner vertices when we color the patches

containing some of these inner vertices or the patches containing other vertices

that are adjacent to some of these inner vertices.

What should we also consider? Let G be a maximal plane graph and H

be a maximal hubset in G. Let G′ be a graph on P ∪ P̄ where P is the set of

patches in G − H and P̄ is the set of patch-free vertices that have degree at

least 2 in G−H. Let us define an edge set E(G′) of G′ such that vw ∈ E(G′) if

v, w ∈ V (G′) share a vertex or are linked by an edge. Obviously, G′ is a plane

graph. The difficult concepts are perhaps the cycles in G′ because a coloring

of a vertex v ∈ G′ affects the coloring of other vertices along the cycles of G′

that contain v and it affects v again. Since the cycles containing v may form

complex structures in G′ or the colorings of two neighbors of v may affect each

other, we should consider the structure when we color v. However, we should

only consider the subgraphs of G′ that are isomorphic to the subdivisions of two

complete graphs, K3 and K4, since the Theorem of Kuratowski and Wagner

(Theorem 2.2.7) asserts that any subdivision of Kn for n ≥ 5 does not appear

in the planar graph G′. Let K be a subdivision of a complete graph containing

v in G′. Set a weight on each edge of K for vw ∈ E(K): if v and w share n

vertices and are linked by m edges, then set the weight W (vw) of vw ∈ E(K)

as 3n+ 2m. The quantity (
∑

e∈E(K)W (e))/|K| can be a standard for guessing

the success rate of coloring locally. The heavier weight, the harder it is for the

coloring to be successful.
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We have to choose a “good” maximal hubset. Most of the unsuccessful

cases of the previous examples contain a patch comparatively bigger than the

patches of the successful cases if we define the size of a patch as the number of

its faces. It seems better to break the “big” patches into smaller pieces. Assume

that we construct a maximal hubset H by adding new members (hubs) one by

one. To avoid generating “big” patches or non-simple patches, we can select

a vertex as a new hub forming a wheel that shares as many edges as possible

with some other wheels that are formed by the hubs that we already found.

It would also be better to take a hubset H in plane graph G such that

the patches in G − H are linked by paths of longest possible length. By

Proposition 3.3.5 and the arguments before it, it seems better not to select

vertices of degree 4 in G as members of the hubset. However, for a maximal

plane graph G containing vertices of degree 4, assume that we have found

a “good” hubset H so that we have a 4-coloring solution c that assigns the

members of H color 4 and assigns some other vertices of degree 4, without loss

of generality, color 1. Note that the other vertex coloring c′ obtained from c

by exchanging color 1 and color 4 is also a 4-coloring solution of G. Inversely,

we can find another hubset H ′ by taking vertices that are assigned color 4 by

c′ as its members. H ′ contains vertices of degree 4 in G, and it may not be a

maximal.

We suggest the following conditions for finding a maximal hubset.

(i) Select a vertex as a new hub such that the wheel formed by this hub

shares as many edges as possible with other wheels formed by hubs that

are already selected.

(ii) If a vertex v is overedge with a hub h that we already found, and if v

and h are simultaneously adjacent to other 4-degree vertices, select the

vertex v as new hub rather than other vertices. If there exist multiple

vertices such as v, select the one that has more neighbors of degree 4.

(iii) Choose a maximal hubset H such that G−H would contain less number

of faces that are bounded by triangles.
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Computer experiments

Since the method for finding the vertex coloring is not always successful, we

would like to check the success rate. This chapter provides some source codes

of computer programs and the explanations of them. You can also refer to the

comments that are contained in the codes. The codes are written in MATLAB-

like language. These codes may work for MATLAB, FreeMat, Octave, and

so on. In fact, the codes are written and checked in FreeMat. This thesis,

therefore, recommends running the codes in FreeMat.

The adjacency matrix A = (aij)n×n of a graph G := (V,E) is defined by

aij :=

{
1 if vivj ∈ E
0 otherwise.

For convenience, we do not distinguish a graph and its adjacency matrix

as long as no confusion arises. For example, the adjacency matrix of a graph

G is denoted by G, and the graph whose adjacency matrix is A is denoted by

A.

4.1 Process flow and the result

The process flow of computer codes is described as follows:

(i) Generate a random maximal plane graph. In fact, the codes generate a

random adjacency matrix A of a maximal plane graph.
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(ii) Get B by removing the vertices of degree 3 from A and find a hubset H

of B. Even if the thesis suggest three conditions for finding the maximal

hubset at the end of Section 3.3, the codes takes only condition (i) to

find new hubs while constructing a hubset because implementing all the

conditions complicates the codes.

(iii) Find patches in B −H.

(iv) Construct another adjacency matrix C of a virtual graph whose vertices

are equivalence classes of the overedge relation or patch-free vertices of

degree more than 4 in B.

(v) Generate the list of probable colorings of C with three available colors.

(vi) If a vertex coloring of C exists in the list then return success=1; other-

wise return success=0.

For a random maximal plane graph of order 40, we obtained the success

rate: (number of successes)/(number of tries)= 923/940 ≈ 98%.

4.2 Source codes

hoRun.m :

numSuccess = 0;

wrongEqClassVertexTable = 0;

for loopCount =1:1000

% Iterate 1000 times.

disp(’free memory ’)

clear A faces maxIndHubset tempMaxIndHubset B indexB facesB

patch patchFree patchFree4Degree sizeEqClass

facesRemovedHub C eqClassVertexTable colorVector success

disp(’Generate random adjacency matrix of a maximal plane

graph ’);

[A,faces] = hoGenRandAdjMat (40);

disp(’Remove vertices of degree 3 and find hubset ’);
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[maxIndHubset ,tempMaxIndHubset ,B,indexB ,facesB ]=

hoSelectArbMaxIndHubset(A,faces);

disp(’Find patches and patch -free vertices ’);

[patch ,patchFree ,patchFree4Degree ,sizeEqClass ,facesRemovedHub

]= hoFindPatches(B,tempMaxIndHubset ,facesB);

disp(’Create a virtual adjacency matrix ’);

[C,eqClassVertexTable] = hoVirtualAdjMat(patch ,patchFree ,B,

tempMaxIndHubset);

disp(’Check the eqClassVertexTable ’);

for i=1: size(eqClassVertexTable ,1)

if(eqClassVertexTable(i,1)== eqClassVertexTable(i,2)|

eqClassVertexTable(i,1)== eqClassVertexTable(i,3)|

eqClassVertexTable(i,2)== eqClassVertexTable(i,3))

disp(’wrong eqClassVertexTable ’);

wrongEqClassVertexTable =1;

break;

end

end

if(wrongEqClassVertexTable ==1)

wrongEqClassVertexTable =0;

continue;

end

disp(’Generate a list of vertex coloring ’);

colorVector=hoGenColorList(C,eqClassVertexTable);

disp(’Check the list of vertex coloring ’);

success=hoCheck3Colorable(C,colorVector);

if(success ==1)

numSuccess=numSuccess +1;

end

disp(’loopCount :’)

loopCount
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disp(’numSuccess : ’)

numSuccess

end

disp(’success rate :’)

numSuccess/loopCount

hoGenRandAdjMat.m :

function [A,faces] = hoGenRandAdjMat(numVertex)

if(numVertex < 5)

% Treat graphs of order > 4

disp(’number of vertices is less than 4’);

exit();

end

% Maximal plane graph has 3*( number of vertices) -6 edges.

numEdge = 3*numVertex -6;

% A will be an adjacency matrix

A = zeros(numVertex ,numVertex);

% To draw maximal graph , we first draw a triangle.

A(2,1) = 1;

A(3,1) = 1;

A(3,2) = 1;

% Faces will be the index set of faces. We got a triangle.

faces (1 ,1:3) = [1,2,3];

% numTriangle is the number of the faces.

numFace = 1;

% Call the vertices incident to the unbounded face by external

% vertices. Boundary(cycle) of the unbounded face for the

% triangle which formed by first , second and third drawn

% vertices.
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boundaryUnboundedFace = [1,2,3];

% Length of the boundary of the unbounded face. When a new

% vertex and new edges incident to the new vertex are added ,

% this value will increse by (3 - (number of the new edges)).

lengthBoundary = 3;

% Now we add a new vertex.

% We draw a new vertex in the unbounded face and draw edges to

% vertices already drawn. the availableNumEdge is maximum

% number of edges incident to new vertex. If a new vertex

% added there need at least 2 edges incident to the new

% vertex. And we already used 3 edges for the first

% triangle. Since the new vertex would drawn in unbounded

% face , the number of edges also bounded by the number of

% vertices of the unbounded face.

%

% original code :

% availableNumEdge =

% min(numEdge -3 -2*( numVertex -3),lengthBoundary);

% optimized code :

%

availableNumEdge = min(numEdge -2* numVertex+3, lengthBoundary);

for i=4: numVertex -1

% i-th vertex would have currentNumEdge number of edge with

% vertices already drawn. And we know 1 < currentNumEdge <

% availableNumbEdge +1, so we choose randomly between 2 and

% availableNumbEdge

if(availableNumEdge ==2)

currentNumEdge = 2;

else

currentNumEdge = rem(floor (10000* rand (1,1)),availableNumEdge

-2) +2;

end

% The vertices adjacent to the new i-th vertex forms a path

% P in the boundary(cycle) of the unbounded face. Thus we

% can choose the path by choosing its end. Choose it randomly
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% among external vertices.

currentStartingVertex = rem(floor (10000* rand (1,1)),

lengthBoundary)+1;

% The boundary of the unbounded face is a cycle but we

% denoted it as vector whose name is boundaryUnboundedFace.

% To use this vector as like a cycle we write this vector

% twice and take some needed part of it.

tempBoundary = [boundaryUnboundedFace ,boundaryUnboundedFace (1:

size(boundaryUnboundedFace ,2) -1)];

% Initiate currentAddedRow which would be i-th row of

% Adjacency matrix A.

currentAddedRow = zeros(1,i-1);

% From the informations of currentNumEdge and

% currentStartingVertex , construct currentAddedRow.

for j=1: currentNumEdge

index=j-1+ currentStartingVertex;

currentAddedRow(tempBoundary(index)) = 1;

end

% Add new i-th row to the adjacency matrix A.

A(i,1:i-1) = currentAddedRow;

clear currentAddedRow;

% And we also have new faces. Add them

for j=1: currentNumEdge -1

numFace = numFace +1;

index=j-1+ currentStartingVertex;

faces(numFace ,1:3)=[ tempBoundary(index),tempBoundary(index +1)

,i];

end

% lengthBoundary was changed. Reset it.

lengthBoundary = lengthBoundary +3- currentNumEdge;

% The boundary of the unbounded face was also changed. Its

% new boundary is (an end of P) - (the new vertex) -
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% (another end of P) - (vertices on boundary \ vertices on P))

boundaryUnboundedFace = [tempBoundary(currentStartingVertex),i

,tempBoundary(currentStartingVertex+currentNumEdge -1: size(

tempBoundary ,2))];

boundaryUnboundedFace = boundaryUnboundedFace (1: lengthBoundary

);

clear tempBoundary;

% availableNumEdge could also be changed. Reset it.

availableNumEdge = min(numEdge -3-currentNumEdge -2*( numVertex -i

),lengthBoundary);

end

% We construct the last row of the adjacency matrix A.

currentAddedRow = zeros(1,numVertex);

% The last vertex is adjacent with all vertices of the

% boundary of the unbounded face.

for j=1: lengthBoundary

currentAddedRow(boundaryUnboundedFace(j))=1;

end

% Add the last row to the adjaency matrix A.

A(numVertex ,:) = currentAddedRow;

% Add the faces.

for j=1: lengthBoundary -1

numFace = numFace +1;

faces(numFace ,1:3) =[ boundaryUnboundedFace(j),

boundaryUnboundedFace(j+1),numVertex ];

end

numFace=numFace +1;

faces(numFace ,1:3) =[ boundaryUnboundedFace (1),

boundaryUnboundedFace(lengthBoundary),numVertex ];

% A is symmetric. For convenience we do not consider this ,

% and we just only construct the lower part of A. By adding
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% the transpose matrix of A, we complete it.

A=A+A’;

% Sum of all ’1’ of A have to be equal to the twice of

% number of edges. Check it.

sum(sum(A)) == numEdge *2;

hoRemove3degree.m :

function [B,indexB ,faceB] = hoRemove3degree(A,indexB ,faces)

% Remove vertices of 3 degree from given adjacency matrix A.

% give indexB = 0 at first.

% When we remove a 3-degree vertex , another vertex could be

% 3-degree vertex (The vertex of degree 4 which is adjacent

% to the removed vertex). Thus we remove a 3-degree vertex ,

% we should restart the removing operation on result matrix.

% In the given adjacency matrix A, i-th row(or column)

% represent i-th drawn vertex. However , in the result matrix

% B, the i-th row does not represent i-th vertex , anymore.

% Thus indexB would tell us, which vertex i-th row of B

% represent for. For example if indexB (3)=5 then the third

% row of B contains the adjacency information of fifth

% vertex of which adjacency information in A is obviously

% fifth row of A.

% When we remove 3-degree vertex , the three faces that are

% incident to the vertex were removed and there appear a new

% face bounded by the triangle containing the three neighbours

% of the removed vertex.

% Initiate result matrix.

B = A;

% Get size of B for FOR sentence.

numVertex = size(B,1);

% Initiate faces.

faceB = faces;

% Get number of faces that we have found.
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numFace = size(faceB ,1);

% Initiate indexB.

if(indexB == 0)

indexB = 1: numVertex;

end

for i = 1: numVertex

% If we find 3-degree vertex , remove it and reset the indexB.

if(sum(B(i,:))==3)

% If the sum of i-th row of B is equal to 3, the i-th vertex

% of B has the degree 3. We remove the i-th row and the i-th

% column of B.

if(i==1)

B = B(2: numVertex ,2: numVertex);

indexB = indexB (2: numVertex);

elseif (i== numVertex)

B = B(1: numVertex -1,1: numVertex -1);

indexB = indexB (1: numVertex -1);

else

B = [B(1:i-1,1:i-1),B(1:i-1,i+1: numVertex);B(i+1: numVertex

,1:i-1),B(i+1: numVertex ,i+1: numVertex)];

indexB = [indexB (1:i-1),indexB(i+1: numVertex)];

end

j=1;

tempCount = 0;

% We delete the faces containing the vertices of degree 3,

% that were removed at previous IF sentence.

while(j<numFace +1)

tempFaceBit =hoConvertIndexToBit(faceB(j,:),numVertex);

% Since we have deleted the i-th 3-degree vertex , we remove

% the faces that is incident to the i-th vertex.

if(tempFaceBit(i)==1)

if(j==1)
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faceB = faceB (2: numFace ,:);

elseif(j== numFace)

faceB = faceB (1: numFace -1,:);

else

faceB = [faceB (1:j-1,:);faceB(j+1: numFace ,:)];

end

numFace = numFace -1;

tempCount = tempCount +1;

else

j = j+1;

tempCount = 0;

end

end

% We add a new face that is bounded by the triangle whose

% vertices are the neighbors of i-th vertex.

faceB(numFace +1,:) = hoConvertBitToIndex(A(i,:));

numFace = numFace +1;

% Convert the index of A to the index of B.

% Since we removed a vertex , the vertices that has indices

% greater than the index of the removed vertex have indices

% decreased.

for j=1: numFace

for k=1:3

if(faceB(j,k)>i)

faceB(j,k)=faceB(j,k) -1;

end

end

end

% Stop the process and restart same removing process with B

% again.

[B,indexB ,faceB] = hoRemove3degree(B,indexB ,faceB);

break;

end

end
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hoSelectArbMaxIndHubset.m :

function [maxIndHubset ,tempMaxIndHubset ,B,indexB ,facesB ]=

hoSelectArbMaxIndHubset(A,faces)

% A is an adjacency matrix of a maximal plane graph G.

% maxIndHubset(i) = 1 if i-th vertex of G is contained

% in maximal independent hubset which we would construct.

% Remove vertices of degree 3.

[B,indexB ,facesB] = hoRemove3degree(A,0,faces);

% number of vertices of G.

numVertex = size(B,1);

% Initiate the tempMaxIndHubset of which i-th component

% is 1 if i-th vertex , of which information of adjacency is

% denoted by i-th row of B, would be contained in

% maximal independent hubset.

tempMaxIndHubset = zeros(1, numVertex);

% Initiate canBeHub which is vertices that can be an hub.

canBeHub = ones(1,numVertex);

% If we consider about the relation between the sphere

% and the plane all vertices have same conditions for

% being selected as the first hub. However , for the

% convenience to figure the graph in our thesis , we select

% the last vertex.

tempMaxIndHubset(numVertex) = 1;

% And the vertices adjacent to the new hub can be hub

% any more. remove these from canBeHub.

for i=1: numVertex

if(B(numVertex ,i)==1)

inversedAdjRow(i)=0;

elseif (B(numVertex ,i)==0)

inversedAdjRow(i)=1;

end

end
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canBeHub(numVertex) = 0;

canBeHub = canBeHub .* inversedAdjRow;

% We would select new hubs till canBeHub is empty set.

preventInfiniteLoop = 1;

while((sum(canBeHub) ~= 0) & (preventInfiniteLoop < (numVertex

*3)))

% We would select a new hub which has neighbors that are also

% the neighbors of hubs we already selected , as many as

% possible. countNb(i) is the number of neighbors that are

% also the neighbors of hubs we already selected , of i-th

% vertex. countNb(i) = 0 if the i-th vertex does NOT

% contained in canBeHub.

countNb = zeros(1, numVertex);

for i=1: numVertex

if(canBeHub(i)==1)

for j=1: numVertex

if(tempMaxIndHubset(j)==1)

countNb(i) = countNb(i)+sum(B(i,:).*B(j,:));

end

end

end

end

% Find vertices that have maximum number of neighbors

% that are also neighbors of hubs we already selected ,

% among the elements of canBeHub.

tempMaxValue = 0;

for i=1: numVertex

if(tempMaxValue < countNb(i))

tempMaxValue = countNb(i);

end

end

% Make set of indices of vertices of which countNb(i) is

% equal to the tempMaxValue.
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j = 1;

for i=1: numVertex

if(countNb(i) == tempMaxValue)

indexSetMaxValue(j) = i;

j = j+1;

end

end

% Select the vertex as a new hub RANDOMLY

selectedIndex = indexSetMaxValue(rem(floor (10000* rand (1,1)),j

-1)+1);

clear indexSetMaxValue;

% and insert it into maxIndHubset.

tempMaxIndHubset(selectedIndex) = 1;

% Remove the vertices that are adjacent to the new hub from

% canBeHub.

for i=1: numVertex

if (B(selectedIndex ,i)==1)

inversedAdjRow(i)=0;

elseif (B(selectedIndex ,i)==0)

inversedAdjRow(i)=1;

end

end

canBeHub(selectedIndex)=0;

canBeHub = canBeHub .* inversedAdjRow;

% prevent infinitely many loop of WHILE statement.

preventInfiniteLoop = preventInfiniteLoop +1;

end

% Initiate maxIndHubset.

maxIndHubset = zeros(1,size(A,1));

% Convert hubs on B to hubs on A.

for i=1: numVertex

if(tempMaxIndHubset(i)==1)
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maxIndHubset(indexB(i))=1;

end

end

hoFindPatches.m :

function [patch ,patchFree ,patchFree4Degree ,sizeEqClass ,

facesRemovedHub ]= hoFindPatches(B,tempMaxIndHubset ,facesB)

% B is adjacency matrix which does not contain 3 degree

% vertices; B could be obtained by ’hoRemove3degree(A)’ where

% A is an adjacency matrix A which could be generated by

%’hoGenRanAdjMat ’ tempMaxIndHubset is a maximal independent

% hubset of B.

% Get size of B

numVertex = size(B,1);

% Initiate nonHubVertices that would not be hubs.

nonHubVertices = ones(1, numVertex);

% Initiate faces. Put face information of B into ’faces ’.

facesRemovedHub = facesB;

% Get number of faces

numFace = size(facesRemovedHub ,1);

% Remove hubs specified in tempMaxIndHubset from

% nonHubVertices.

for i=1: numVertex

% Generate inversed vector of tempMaxIndHubset.

% In this vector , if i-th vertex contained in the hubset ,

% the value of i-th component is 0, otherwise 1.

if(tempMaxIndHubset(i)==1)

inversedTempMaxIndHubset(i)=0;

elseif(tempMaxIndHubset(i)==0)

inversedTempMaxIndHubset(i)=1;

end

end

% The componentwise multiplication of a nonHubVertices and
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% the inversed vector of tempMaxIndHubset , removes the hubs

% described by tempMaxIndHubset from nonHubverices.

nonHubVertices = nonHubVertices .* inversedTempMaxIndHubset;

% Remove faces containing hubs.

% In fact , this removes rows of facesReovedHub that contains

% hubs.

for i=1: numVertex

if(tempMaxIndHubset(i)==1)

% i-th vertex is a hub.

j=1;

while(j<numFace +1)

tempFaceBit = hoConvertIndexToBit(facesRemovedHub(j,:),

numVertex);

if(tempFaceBit(i)==1)

% If a j-th row of facesRemovedHub contains i-th vertex

% remove it from facesRemovedHub that is a list of faces.

if(j==1)

facesRemovedHub = facesRemovedHub (2: numFace ,:);

elseif(j== numFace)

facesRemovedHub = facesRemovedHub (1: numFace -1,:);

else

facesRemovedHub = [facesRemovedHub (1:j-1,:);

facesRemovedHub(j+1: numFace ,:)];

end

numFace = numFace -1;

else

j = j+1;

end

end

end

end

% Initiate some variables.

isFace = 0;

containFace = 0;

numPatch = 0;

% And rename the list of faces.

48



CHAPTER 4. COMPUTER EXPERIMENTS

facesDB = facesRemovedHub;

sizeFacesDB = size(facesDB ,1);

% Since all the faces in facesDB are triangles , each of them

% are contained in some patches.

while(sizeFacesDB > 0)

numPatch=numPatch +1;

% patch(i,j,k)-th vertex is contained in i-th patch.

% And this vertex is classed by overedge relation so that

% patch(i,j,k)-th vertex is contained in j-th class.

% Process first face

patch(numPatch ,1,1) = facesDB (1,1);

patch(numPatch ,2,1) = facesDB (1,2);

patch(numPatch ,3,1) = facesDB (1,3);

sizeEqClass(numPatch ,1:3) =[1 ,1 ,1];

% Remove the face processed from facesDB.

facesDB = facesDB (2: sizeFacesDB ,:);

sizeFacesDB = sizeFacesDB -1;

if(sizeFacesDB >0)

i=1;

while(i<1+ sizeFacesDB)

eqClass = 0;

for j=1: sizeEqClass(numPatch ,1)

for k=1: sizeEqClass(numPatch ,2)

if(B(patch(numPatch ,1,j),patch(numPatch ,2,k))==1)

% Check whether both patch(numPatch ,1,j)-th vertex and

% patch(numPatch ,2,k)-th vertex are the ends of the same edge.

% One end is from class 1 the other end is from class 2.

% Therefore if the face (triangle) shares the edge with this

% patch , the opposite vertex of the edge in the face is

% contained in class 3.

tempEdgeContainedBit = hoConvertIndexToBit ([ patch(

numPatch ,1,j),patch(numPatch ,2,k)],numVertex);

for l=1: sizeFacesDB
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tempFaceBit = hoConvertIndexToBit(facesDB(l,:),numVertex

);

checkShareEdgeBit = tempFaceBit -tempEdgeContainedBit;

countOne = 0;

countZero = 0;

for m=1: numVertex

if(checkShareEdgeBit(m)==1)

countOne = countOne +1;

elseif(checkShareEdgeBit(m)==0)

countZero = countZero +1;

end

end

if(countOne ==1& countZero ==numVertex -1)

% We can use only countOne ==1 for the IF sentence , but for

% precision , additional condition contZero ==numVertex -1 is

% used.

isFace =1;

% The opposite vertex of the edge in the face is contained in

% class 3.

eqClass = 3;

break;

end

end

end

if(isFace ==1)

break;

end

end

if(isFace ==1)

break;

end

end

if(isFace ==0)

for j=1: sizeEqClass(numPatch ,2)

for k=1: sizeEqClass(numPatch ,3)

if(B(patch(numPatch ,2,j),patch(numPatch ,3,k))==1)

% Check whether both patch(numPatch ,2,j)-th vertex and

% patch(numPatch ,3,k)-th vertex are the ends of the same edge.

50



CHAPTER 4. COMPUTER EXPERIMENTS

% One end is from class 2 the other end is from class 3.

% Therefore if the face (triangle) shares the edge with this

% patch ,the opposite vertex of the edge in the face is

% contained in class 1.

tempEdgeContainedBit = hoConvertIndexToBit ([ patch(

numPatch ,2,j),patch(numPatch ,3,k)],numVertex);

for l=1: sizeFacesDB

tempFaceBit = hoConvertIndexToBit(facesDB(l,:),

numVertex);

checkShareEdgeBit = tempFaceBit -tempEdgeContainedBit;

countOne = 0;

countZero = 0;

for m=1: numVertex

if(checkShareEdgeBit(m)==1)

countOne = countOne +1;

elseif(checkShareEdgeBit(m)==0)

countZero = countZero +1;

end

end

if(countOne ==1& countZero ==numVertex -1)

% We can use only countOne ==1 for the IF sentence , but for

% precision , additional condition contZero ==numVertex -1 is

% used.

isFace =1;

% The opposite vertex of the edge in the face is contained in

% class 1.

eqClass = 1;

break;

end

end

end

if(isFace ==1)

break;

end

end

if(isFace ==1)

break;

end

end
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end

if(isFace ==0)

for j=1: sizeEqClass(numPatch ,3)

for k=1: sizeEqClass(numPatch ,1)

if(B(patch(numPatch ,3,j),patch(numPatch ,1,k))==1)

% Check whether both patch(numPatch ,3,j)-th vertex and

% patch(numPatch ,1,k)-th vertex are the ends of the same edge.

% One end is from class 3 the other end is from class 1.

% Therefore if the face (triangle) shares the edge with this

% patch ,the opposite vertex of the edge in the face is

% contained in class 2.

tempEdgeContainedBit = hoConvertIndexToBit ([ patch(

numPatch ,3,j),patch(numPatch ,1,k)],numVertex);

for l=1: sizeFacesDB

tempFaceBit = hoConvertIndexToBit(facesDB(l,:),

numVertex);

checkShareEdgeBit = tempFaceBit -tempEdgeContainedBit;

countOne = 0;

countZero = 0;

for m=1: numVertex

if(checkShareEdgeBit(m)==1)

countOne = countOne +1;

elseif(checkShareEdgeBit(m)==0)

countZero = countZero +1;

end

end

if(countOne ==1& countZero ==numVertex -1)

% We can use only countOne ==1 for the IF sentence , but for

% precision , additional condition contZero ==numVertex -1 is

% used.

isFace =1;

% The opposite vertex of the edge in the face is contained in

% class 2.

eqClass = 2;

break;

end

end

end
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if(isFace ==1)

break;

end

end

if(isFace ==1)

break;

end

end

end

if(isFace ==1)

% Remove the processed face form facesDB

if(l==1)

facesDB = facesDB (2: sizeFacesDB ,:);

elseif(l== sizeFacesDB)

facesDB = facesDB (1: sizeFacesDB -1,:);

else

facesDB = [facesDB (1:l-1,:);facesDB(l+1: sizeFacesDB ,:)];

end

sizeFacesDB = sizeFacesDB -1;

% Update the information.

sizeEqClass(numPatch ,eqClass)=sizeEqClass(numPatch ,eqClass)

+1;

patch(numPatch ,eqClass ,sizeEqClass(numPatch ,eqClass))=

hoConvertBitToIndex(checkShareEdgeBit);

isFace =0;

i=1;

else

i=i+1;

end

end

end

end

% Find patch -free vertices among described in nonHubVertices.

index4 = 0;

indexGeneral = 0;

patchFree4Degree = 0;
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patchFree = 0;

for i=1: numVertex

if(nonHubVertices(i)==1)

incidentToFace = 0;

for j=1: numFace

for k=1:3

if(facesRemovedHub(j,k)==i)

% If i-th vertex is incident to some faces described in

% facesRemovedHub then the vertex is not patch -free.

incidentToFace = 1;

break;

end

end

if(incidentToFace ==1)

break;

end

end

if(incidentToFace ==0)

% i-th vertex is patch -free.

% Check whether i-th vertex has the degree 4.

if(sum(B(i,:))==4)

index4 = index4 +1;

patchFree4Degree(index4)=i;

else

indexGeneral = indexGeneral +1;

patchFree(indexGeneral)=i;

end

end

end

end

hoVirtualAdjMat.m :

function [C,eqClassVertexTable] = hoVirtualAdjMat(patch ,

patchFree ,B,tempMaxIndHubset)

% This function generate the virtual graph C whose vertices

% symbolize the equivalence classes of patches of B, or

% patch -free vertices of B.
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numVertex = size(B,1);

numPatch = size(patch ,1);

numPatchFree = size(patchFree ,2);

maxNumVertexInEqClass = size(patch ,3);

% eqClassVertexTable(i,j)-th vertex of C symbolize an

% equivalence class of i-th patch of B - "hubset", where the

% members of "hubset" is described in tempMaxIndHubset.

%

% In the first patch , there are three equivalence classes.

% We denote each equivalence class 1,2,3.

eqClassVertexTable (1 ,1:3) =[1,2 ,3];

newVertexIndex = 3;

shareVertex = 0;

% Check whether two patches , tempPatchBit_1 and

% tempPatchBit_2 , share a vertex.

% If they share a vertex v, [v] of tempPatchBit_1 and [v] of

% tempPatchBit_2 has the same name , where [v] is the

% equivalence class that contains [v].

for indexPatch =2: numPatch

for i=1: indexPatch -1

for j=1:3

for k=1:3

tempPatchBit_1 = zeros(1, numVertex);

tempPatchBit_2 = zeros(1, numVertex);

for n=1: maxNumVertexInEqClass

if(patch(i,j,n)~=0)

tempPatchBit_1(patch(i,j,n))=1;

end

if(patch(indexPatch ,k,n)~=0)

tempPatchBit_2(patch(indexPatch ,k,n))=1;

end

end

% If two patches shares a vertex ....

if(sum(tempPatchBit_1 .* tempPatchBit_2)~=0)

shareVertex = 1;

% the k-th equivalence class in (indexPatch)-th patch and
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% j-th equivalence class in i-th patch are symbolized by same

% vertex of C.

eqClassVertexTable(indexPatch ,k) = eqClassVertexTable(i,j)

;

break;

end

end

if(shareVertex == 1)

break;

end

end

end

if(shareVertex == 1)

for l=1:3

% Give names to the equivalence classes that does not contain

% the shared vertex of (indexPatch)-th patch.

if(eqClassVertexTable(indexPatch ,l)==0)

newVertexIndex=newVertexIndex +1;

eqClassVertexTable(indexPatch ,l)=newVertexIndex;

end

end

% Reset shareVertex.

shareVertex = 0;

elseif(shareVertex == 0)

% If (indexPatch)-th patch does not share any vertex with

% other m-th patch , where m<indexPatch , give names to these

% three equivalence classes of (indexPatch)-th patch.

for l=1:3

newVertexIndex=newVertexIndex +1;

eqClassVertexTable(indexPatch ,l)=newVertexIndex;

end

end

end

% Construct Virtual Adjacency Matrix C

% If i-th row (or column) of C symbolize an equivalence class

% in a patch and j-th row (or column) symbolize a path -free

% vertex , then i < j.

%

56



CHAPTER 4. COMPUTER EXPERIMENTS

% First , we construct lower triangular matrix.

% The three vertices that symbolize the three equivalence

% classes in the same patch are pairwise adjacent in C.

for i=1: numPatch

if(eqClassVertexTable(i,1)>eqClassVertexTable(i,2))

C(eqClassVertexTable(i,1),eqClassVertexTable(i,2))=1;

elseif(eqClassVertexTable(i,1)<eqClassVertexTable(i,2))

C(eqClassVertexTable(i,2),eqClassVertexTable(i,1))=1;

end

if(eqClassVertexTable(i,1)>eqClassVertexTable(i,3))

C(eqClassVertexTable(i,1),eqClassVertexTable(i,3))=1;

elseif(eqClassVertexTable(i,1)<eqClassVertexTable(i,3))

C(eqClassVertexTable(i,3),eqClassVertexTable(i,1))=1;

end

if(eqClassVertexTable(i,2)>eqClassVertexTable(i,3))

C(eqClassVertexTable(i,2),eqClassVertexTable(i,3))=1;

elseif(eqClassVertexTable(i,2)<eqClassVertexTable(i,3))

C(eqClassVertexTable(i,3),eqClassVertexTable(i,2))=1;

end

end

% If a vertex in the equivalence class of a patch and another

% vertex in the equivalence class of another patch are adjacent

% in B, the vertices that symbolize the two equivalence

% classes are adjacent in C.

for i=1: numPatch -1

for j=1+i:numPatch

for k=1:3

for l=1:3

for m=1: maxNumVertexInEqClass

for n=1: maxNumVertexInEqClass

if(( patch(i,k,m)~=0)&( patch(j,l,n)~=0))

if(B(patch(i,k,m),patch(j,l,n))==1)

if(eqClassVertexTable(i,k)>eqClassVertexTable(j,l))

C(eqClassVertexTable(i,k),eqClassVertexTable(j,l))=1;

else

C(eqClassVertexTable(j,l),eqClassVertexTable(i,k))=1;

end

end
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end

end

end

end

end

end

end

% Specify the adjacency of patch -free vertices.

if(patchFree ~=0)

numNonPatchFreeVertex = size(C,1);

for i=1: numPatchFree

newVertexIndex=newVertexIndex +1;

% Find the neighbors of the i-th patch -free vertex in B.

tempNeighborsIndex=hoConvertBitToIndex(B(patchFree(i) ,:));

twoPatchFreesAreAdj = 0;

for j=1: size(tempNeighborsIndex ,2)

includingPatchNumJ =0;

for s=1: numPatch

for t=1:3

for u=1: maxNumVertexInEqClass

if(patch(s,t,u)== tempNeighborsIndex(j))

% If a patch include some neighbors of i-th patch -free

% vertex ....

includingPatchNumJ =1;

break;

end

end

if(includingPatchNumJ ==1)

break;

end

end

if(includingPatchNumJ ==1)

break;

end

end

if(includingPatchNumJ ==1)

% ... then specify the adjacency information in C.

C(newVertexIndex ,eqClassVertexTable(s,t))=1;
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elseif(includingPatchNumJ ==0&i==1)

% If the first patch -free vertex is never adjacent to any

% other vertices contained in some patch then add zero vector

% in C for the vertex symbolizing the first patch -free vertex

% in C.

C(newVertexIndex ,:)=zeros(1,size(C,2));

elseif(includingPatchNumJ ==0&i~=1)

% If the i-th patch -free vertex is never adjacent to any

% other vertices contained in some patch (i~=1) then Check

% whether this i-th patch -free vertex is adjacent to the

% other u-th patch -free vertices where u<i.

for u=1:i-1

if(tempNeighborsIndex(j)== patchFree(u))

% If i-th patch -free vertex and m-th patch -free vertex are

% adjacent , specify the adjacency information in C.

twoPatchFreesAreAdj =1;

C(newVertexIndex ,numNonPatchFreeVertex+u)=1;

end

end

if(twoPatchFreesAreAdj == 0)

% If not , add zero vector in C for the vertex symbolizing

% this i-th patch -free vertex in C.

C(newVertexIndex ,:)=zeros(1,size(C,2));

end

end

end

end

end

% The adjacency matrix C should be symmetric.

% We constructed only lower triangular part of C.

% Let us make C symmetric matrix.

tempC = zeros(newVertexIndex ,newVertexIndex);

tempC (:,1: size(C,2))=C;

clear C

C = tempC+tempC ’;
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hoGenColorList.m :

function colorVector=hoGenColorList(C,eqClassVertexTable)

% This function generate a list of 3-colorings for the virtual

% graph C.

% Free the memory.

clear colorVector;

numVertex=size(C,1);

numTriangle = size(eqClassVertexTable ,1);

% Since we have at least one patches , each of the first three

% rows (or column) of C represents each equivalence class of

% the first patch. i-th vertex of C will have the color that

% the value of colorVector(i). Since different equivalence

% class have to be assigned different color , the first three

% can be [1,2,3], [2,1,3], [3,2,1], [2,3,1], [3,1,2] or

% [1,3,2]. Without loss of generality , we select [1,2,3].

colorVector = [1,2,3];

for i=2: numTriangle

numColoredVertex = size(colorVector ,2);

numVertexAppeared = 0;

for j=1:3

% eqClassVertexTable contain the information of vertices of C

% that are equivalence classes of patches of B (each row of

% eqClassVertexTable is symbolize a patch). Each row of

% eqClassVertexTable is also a face bounded by a triangle in C.

if(eqClassVertexTable(i,j)<numColoredVertex +1)

% We are deciding the color of eqClassvertextable(i,j)-th

% VERTICES , for j=1,2,3. We are deciding the colors of the

% three vertices at once. However , some of these vertices can

% be specified in eqClassVertexTable MULTIPLE times. If some

% of these vertices were already colored , we should skip

% coloring them. This IF sentence check how many vertices of

% the three vertices (for j=1,2,3) have been colored.
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% numVertexAppeared has the value of the numbers of vertices

% that have already been colored.

numVertexAppeared = numVertexAppeared +1;

end

end

if(numVertexAppeared ==0)

% All the vertices described in the i-th row of

% eqClassVertexTable are never appeared. There is not a

% vertex that was colored at previous step(<i). Locally , we

% have six possible colorings.

for j=1: size(colorVector ,1)

tempColorVector (6*(j-1)+1,:)=[ colorVector(j,:) ,1,2,3];

tempColorVector (6*(j-1)+2,:)=[ colorVector(j,:) ,1,3,2];

tempColorVector (6*(j-1)+3,:)=[ colorVector(j,:) ,2,1,3];

tempColorVector (6*(j-1)+4,:)=[ colorVector(j,:) ,2,3,1];

tempColorVector (6*(j-1)+5,:)=[ colorVector(j,:) ,3,1,2];

tempColorVector (6*(j-1)+6,:)=[ colorVector(j,:) ,3,2,1];

end

colorVector=tempColorVector;

clear tempColorVector;

elseif(numVertexAppeared ==1)

% One of vertices described in the i-th row of

% eqClassVertexTable was appeared. The one of

% eqClassVertexTable(i,j) (j=1,2,3) have been colored at

% previous step(<i). Locally , we have two possible colorings.

for j=1:3

if(eqClassVertexTable(i,j)<numColoredVertex +1)

break;

end

end

for k=1: size(colorVector ,1)

if(colorVector(k,eqClassVertexTable(i,j))==1)

% If the color of the vertex that was already colored is

% color 1, the rest two vertices can have color 2, color 3 or

% color 3, color 2.

tempColorVector (2*(k-1)+1,:)=[ colorVector(k,:) ,2,3];
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tempColorVector (2*(k-1)+2,:)=[ colorVector(k,:) ,3,2];

elseif(colorVector(k,eqClassVertexTable(i,j))==2)

% If the color of the vertex that was already colored is

% color 2, the rest two vertices can have color 1, color 3 or

% color 3, color 1.

tempColorVector (2*(k-1)+1,:)=[ colorVector(k,:) ,1,3];

tempColorVector (2*(k-1)+2,:)=[ colorVector(k,:) ,3,1];

elseif(colorVector(k,eqClassVertexTable(i,j))==3)

% If the color of the vertex that was already colored is

% color 3, the rest two vertices can have color 1, color 3 or

% color 2, color 1.

tempColorVector (2*(k-1)+1,:)=[ colorVector(k,:) ,1,2];

tempColorVector (2*(k-1)+2,:)=[ colorVector(k,:) ,2,1];

end

end

colorVector=tempColorVector;

clear tempColorVector;

elseif(numVertexAppeared ==2)

% Two of vertices described in the i-th row of

% eqClassVertexTable was appeared. The Two of

% eqClassVertexTable(i,j) (j=1,2,3) have been colored at

% previous step(<i). Locally , we have one possible coloring.

for j=1:3

if(eqClassVertexTable(i,j)>numColoredVertex)

break;

end

end

for k=1: size(colorVector ,1)

if(j==3)

% The non -colored vertex is eqClassVertexTable(i,3)-th vertex.

if(( colorVector(k,eqClassVertexTable(i,1))==1& colorVector(k

,eqClassVertexTable(i,2))==2)|( colorVector(k,

eqClassVertexTable(i,1))==2& colorVector(k,

eqClassVertexTable(i,2))==1))

% The colors of the two colored vertices are color 1, color 2

% or color 2, color 1. Locally , we can assign only color 3 to

% the rest vertex.

tempColorVector(k,:)=[ colorVector(k,:) ,3];
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elseif (( colorVector(k,eqClassVertexTable(i,1))==1&

colorVector(k,eqClassVertexTable(i,2))==3)|( colorVector(

k,eqClassVertexTable(i,1))==3& colorVector(k,

eqClassVertexTable(i,2))==1))

% The colors of the two colored vertices are color 1, color 3

% or color 3, color 1. Locally , we can assign only color 2 to

% the rest vertex.

tempColorVector(k,:)=[ colorVector(k,:) ,2];

elseif (( colorVector(k,eqClassVertexTable(i,1))==2&

colorVector(k,eqClassVertexTable(i,2))==3)|( colorVector(

k,eqClassVertexTable(i,1))==3& colorVector(k,

eqClassVertexTable(i,2))==2))

% The colors of the two colored vertices are color 2, color 3

% or color 3, color 2. Locally , we can assign only color 1 to

% the rest vertex.

tempColorVector(k,:)=[ colorVector(k,:) ,1];

elseif(colorVector(k,eqClassVertexTable(i,1))== colorVector(

k,eqClassVertexTable(i,2)))

% The two colored vertice could have the same color and this

% is wrong. Temporarily , we can assign only color 4 to the

% rest vertex.

tempColorVector(k,:)=[ colorVector(k,:) ,4];

end

elseif(j==2)

% The non -colored vertex is eqClassVertexTable(i,2)-th vertex.

if(( colorVector(k,eqClassVertexTable(i,1))==1& colorVector(k

,eqClassVertexTable(i,3))==2)|( colorVector(k,

eqClassVertexTable(i,1))==2& colorVector(k,

eqClassVertexTable(i,3))==1))

% The colors of the two colored vertices are color 1, color 2

% or color 2, color 1. Locally , we can assign only color 3 to

% the rest vertex.

tempColorVector(k,:)=[ colorVector(k,:) ,3];

elseif (( colorVector(k,eqClassVertexTable(i,1))==1&

colorVector(k,eqClassVertexTable(i,3))==3)|( colorVector(

k,eqClassVertexTable(i,1))==3& colorVector(k,

eqClassVertexTable(i,3))==1))

% The colors of the two colored vertices are color 1, color 3

% or color 3, color 1. Locally , we can assign only color 2 to
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% the rest vertex.

tempColorVector(k,:)=[ colorVector(k,:) ,2];

elseif (( colorVector(k,eqClassVertexTable(i,1))==2&

colorVector(k,eqClassVertexTable(i,3))==3)|( colorVector(

k,eqClassVertexTable(i,1))==3& colorVector(k,

eqClassVertexTable(i,3))==2))

% The colors of the two colored vertices are color 2, color 3

% or color 3, color 2. Locally , we can assign only color 1 to

% the rest vertex.

tempColorVector(k,:)=[ colorVector(k,:) ,1];

elseif(colorVector(k,eqClassVertexTable(i,1))== colorVector(

k,eqClassVertexTable(i,3)))

% The two colored vertice could have the same color and this

% is wrong. Temporarily , we can assign only color 4 to the

% rest vertex.

tempColorVector(k,:)=[ colorVector(k,:) ,4];

end

elseif(j==1)

% The non -colored vertex is eqClassVertexTable(i,1)-th vertex.

if(( colorVector(k,eqClassVertexTable(i,2))==1& colorVector(k

,eqClassVertexTable(i,3))==2)|( colorVector(k,

eqClassVertexTable(i,2))==2& colorVector(k,

eqClassVertexTable(i,3))==1))

% The colors of the two colored vertices are color 1, color 2

% or color 2, color 1. Locally , we can assign only color 3 to

% the rest vertex.

tempColorVector(k,:)=[ colorVector(k,:) ,3];

elseif (( colorVector(k,eqClassVertexTable(i,2))==1&

colorVector(k,eqClassVertexTable(i,3))==3)|( colorVector(

k,eqClassVertexTable(i,2))==3& colorVector(k,

eqClassVertexTable(i,3))==1))

% The colors of the two colored vertices are color 1, color 3

% or color 3, color 1. Locally , we can assign only color 2 to

% the rest vertex.

tempColorVector(k,:)=[ colorVector(k,:) ,2];

elseif (( colorVector(k,eqClassVertexTable(i,2))==2&

colorVector(k,eqClassVertexTable(i,3))==3)|( colorVector(

k,eqClassVertexTable(i,2))==3& colorVector(k,

eqClassVertexTable(i,3))==2))
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% The colors of the two colored vertices are color 2, color 3

% or color 3, color 2. Locally , we can assign only color 1 to

% the rest vertex.

tempColorVector(k,:)=[ colorVector(k,:) ,1];

elseif(colorVector(k,eqClassVertexTable(i,2))== colorVector(

k,eqClassVertexTable(i,3)))

% The two colored vertices could have the same color and this

% is wrong. Temporarily , we can assign only color 4 to the

% rest vertex.

tempColorVector(k,:)=[ colorVector(k,:) ,4];

end

end

end

colorVector=tempColorVector;

clear tempColorVector;

% Remove the rows of colorVector that contain color 4.

l=size(colorVector ,2);

tempIndex = 1;

for k=1: size(colorVector ,1)

if(colorVector(k,l)~=4)

tempColorVector(tempIndex ,:) = colorVector(k,:);

tempIndex=tempIndex +1;

end

end

colorVector=tempColorVector;

clear tempColorVector;

end

end

% The coloring of vertices of C that symbolize the

% equivalence class of patches was Done. Now , we decide the

% coloring of patch -free vertices , one by one.

%

% numVerticesInPatch is the number of vertices that have been

% already colored.

numVerticesInPatch = size(colorVector ,2);
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% The number of patch -free vertices is

% (the numVertex - numVerticesInPatch)

for i = numVerticesInPatch +1: numVertex

newLengthColorVector = size(colorVector ,2) +1;

tempIndex = 1;

for j=1: size(colorVector ,1)

% If the (i-th) patch -free vertex has ’color m’ we set

% adjacentColorSet(m) = 1, for m=1,2,3.

adjacentColorSet = [0,0,0];

for k=1:i-1

if(C(i,k)==1)

adjacentColorSet(colorVector(j,k))=1;

end

end

if(sum(adjacentColorSet)==3)

% The (i-th) patch -free vertex has three different colors on

% its neighbors. This is wrong. We temporarily set the color

% of this vertex as color 4.

tempColorVector(tempIndex ,:) = [colorVector(j,:) ,4];

tempIndex = tempIndex +1;

elseif(sum(adjacentColorSet)==2)

% The (i-th) patch -free vertex has two different colors on

% its neighbors.

for l=1:3

% The (i-th) patch -free vertex does NOT have ’color l’ on its

% neighbor.

if(adjacentColorSet(l)==0)

break;

end

end

% We assign this (i-th) patch -free vertex the last color.

tempColorVector(tempIndex ,:)=[ colorVector(j,:),l];

tempIndex=tempIndex +1;

elseif(sum(adjacentColorSet)==1)

% The (i-th) patch -free vertex has one color on its neighbors.

for l=1:3

% The (i-th) patch -free vertex have ’color l’ on its neighbor.

if(adjacentColorSet(l)==1)

break;
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end

end

% We assign this (i-th) patch -free vertex the two possible

% colors.

if(l==1)

% color l is color 1.

tempColorVector(tempIndex ,:)=[ colorVector(j,:) ,2];

tempColorVector(tempIndex +1,:)=[ colorVector(j,:) ,3];

tempIndex=tempIndex +2;

elseif(l==2)

% color l is color 2.

tempColorVector(tempIndex ,:)=[ colorVector(j,:) ,1];

tempColorVector(tempIndex +1,:)=[ colorVector(j,:) ,3];

tempIndex=tempIndex +2;

elseif(l==3)

% color l is color 3.

tempColorVector(tempIndex ,:)=[ colorVector(j,:) ,1];

tempColorVector(tempIndex +1,:)=[ colorVector(j,:) ,2];

tempIndex=tempIndex +2;

end

elseif(sum(adjacentColorSet)==0)

% The (i-th) patch -free vertex not colored neighbor.

% We can assign any colors (among the three colors) on it.

tempColorVector(tempIndex ,:)=[ colorVector(j,:) ,1];

tempColorVector(tempIndex +1,:)=[ colorVector(j,:) ,2];

tempColorVector(tempIndex +2,:)=[ colorVector(j,:) ,3];

tempIndex=tempIndex +3;

end

end

colorVector = tempColorVector;

clear tempColorVector;

% Remove the rows of colorVector that contain color 4.

l=size(colorVector ,2);

tempIndex = 1;

for k=1: size(colorVector ,1)

if(colorVector(k,l)~=4)

tempColorVector(tempIndex ,:)=colorVector(k,:);

tempIndex=tempIndex +1;
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end

end

colorVector=tempColorVector;

clear tempColorVector;

end

hoCheck3Colorable.m :

function success=hoCheck3Colorable(C,colorVector)

% This checks whether the 3-coloring solution of C is contained

% in colorVector. If it is return 1, otherwise return 0.

numColorList = size(colorVector ,1);

numVertex = size(C,1);

for i=1: numColorList

% Assume the row is a 3-coloring solution.

success =1;

for j=1: numVertex

for k=1:j-1

% Check every pair of adjacent vertices.

if(C(j,k)==1& colorVector(i,j)== colorVector(i,k))

% If the two adjacent vertices have the same color , return 0.

success = 0;

break;

end

end

if(success == 0)

% escape the FOR sentence.

break;

end

end

if(success ==1)

% If there exists a 3-coloring solution , print it.

colorVector(i,:)

break;

end

end
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hoConvertBitToIndex.m :

function result=hoConvertBitToIndex(v)

% This convert Bit -representation of set of vertices to

% Index -representation. For example , let V = {1,3,5} be a set

% of vertices. V can be represent as [1,3,5] or [1,0,1,0,1].

% This function convert [1,0,1,0,1] to [1,3,5].

index = 1;

for i=1: size(v,2)

if(v(i)==1)

result(index)=i;

index=index +1;

end

end

hoConvertIndexToBit.m :

function result=hoConvertIndexToBit(v,numVertex)

% This convert Index -representation of set of vertices to

% Bit -representation. For example , let V = {1,3,5} be a set of

% vertices. V can be represent as [1,3,5] or [1,0,1,0,1]. This

% function convert [1,3,5] to [1,0,1,0,1].

result = zeros(1,numVertex);

for i=1: size(v,2)

result(v(i))=1;

end

hoTranslateAdjMat.m :

function trans=hoTranslateAdjMat(A)

% This is a utility to help drawing the graph of A. When we

% draw i-th vertex of graph of A, the i-th row of ’trans ’ tell

% us which vertices should be adjacent to the i-th vertex. For

% example , if the sixth row of ’trans ’ is [1,4,0,0,0], we

% should draw line between first vertex and sixth vertex , and

% between fourth vertex and sixth vertex when we draw the

% sixth vertex.
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for i=2: size(A,1)

tempIndex =1;

for j=1:i-1

if(A(i,j)==1)

trans(i-1,tempIndex)=j

tempIndex=tempIndex +1;

end

end

end

trans

If you have all the previously specified codes, then you can get the result just

by executing the following command.

--> hoRun
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4.3 Manual of the programs

This section contains an example describing how to use the codes.

The [A,faces] = hoGenRandAdjMat(20) command generates a random

adjacency matrix A of a maximal plane graph of order 20 and faces which is

a list of its faces.

--> [A,faces] = hoGenRandAdjMat (20)

A =

0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0

.

.

.

(omitted)

faces =

1 2 3

1 2 4

3 1 5

.

.

.

(omitted)

The [maxIndHubset,tempMaxIndHubset,B,indexB,facesB] =

hoSelectArbMaxIndHubset(A,faces) command generates an adjacency ma-

trix B obtained from A by removing the information of the vertices of degree

3. It also generates a vector tempMaxIndHubset that contains the information

of a maximal hubset of B.

--> [maxIndHubset ,tempMaxIndHubset ,B,indexB ,facesB ]=

hoSelectArbMaxIndHubset(A,faces)

maxIndHubset =

0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0

tempMaxIndHubset =

0 0 0 0 1 0 1 0 0 0 0 1
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B =

0 1 1 1 1 1 0 0 0 0 0 0

1 0 1 1 0 0 1 0 0 0 0 0

1 1 0 0 1 0 1 0 1 0 1 1

1 1 0 0 0 1 1 0 1 0 0 0

1 0 1 0 0 1 0 1 0 1 1 0

1 0 0 1 1 0 0 1 1 0 0 0

0 1 1 1 0 0 0 0 1 0 0 0

0 0 0 0 1 1 0 0 1 1 0 0

0 0 1 1 0 1 1 1 0 1 0 1

0 0 0 0 1 0 0 1 1 0 1 1

0 0 1 0 1 0 0 0 0 1 0 1

0 0 1 0 0 0 0 0 1 1 1 0

indexB =

1 2 3 4 5 6 8 9 10 12 15 18

facesB =

1 2 3

1 2 4

3 1 5

.

.

(omitted)

The [patch,patchFree,patchFree4Degree,sizeEqClass,

facesRemovedHub]=hoFindPatches(B,tempMaxIndHubset,facesB) command

finds patches (patch), patch-free vertices (patchFree), and some other infor-

mation. The patch is a 3-dimensional array of numbers. The member (m,n, l)

of patch denotes the l-th vertex of the n-th equivalence class of the overedge

relation in the m-th patch. In the following example, there is one patch that

is refined into three equivalence classes. The vertices 1 and 9 are contained in

the first equivalence class of the first patch. ‘0’ means empty.

--> [patch ,patchFree ,patchFree4Degree ,sizeEqClass ,

facesRemovedHub ]= hoFindPatches(B,tempMaxIndHubset ,facesB)

patch =

(:,:,1) =

1 2 3

(:,:,2) =
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9 6 4

(:,:,3) =

0 10 8

patchFree =

0

patchFree4Degree =

11

sizeEqClass =

2 3 3

facesRemovedHub =

1 2 3

1 2 4

1 4 6

8 6 9

6 4 9

8 9 10

The [C,eqClassVertexTable] = hoVirtualAdjMat(patch,patchFree,B

,tempMaxIndHubset) command creates a virtual adjacency matrix C of an

abstract graph on the sum of equivalence classes of patches and patch-free

vertices of degree more than 4 in B. In the example, C describes a triangle

since we had one patch without a patch-free vertex of degree more than 4.

--> [C,eqClassVertexTable] = hoVirtualAdjMat(patch ,patchFree ,B,

tempMaxIndHubset)

C =

0 1 1

1 0 1

1 1 0

eqClassVertexTable =

1 2 3

The colorVector=hoGencolorList(C,eqClassVertexTable) command gen-

erates colorVector which is a list of probable 3-colorings of C.

--> colorVector=hoGencolorList(C,eqClassVertexTable)

colorVector =

1 2 3
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The success=hoCheck3Colorable(C,colorVector) command checks whether

the list contains a 3-coloring solution of C. If so, it returns success=1 and if

not, it returns success=0. This command also shows the 3-coloring solution.

The value of the n-th component of the vector ans is the color assigned to the

n-th vertex of C. We can find the vertex coloring of B with the information

contained in patch. In this example, vertices 1 and 9 would be colored with

color 1; vertices 2, 6, and 10 would be colored with color 2; and vertices 3, 4,

and 8 would be colored with color 3.

--> success=hoCheck3Colorable(C,colorVector)

ans =

1 2 3

success =

1

The checking process is finished. However, the hoTranslateAdjMat(B) helps

us to figure the graph of B. See the following.

--> hoTranslateAdjMat(B)

.

.

.

(omitted)

.

.

.

ans =

1 0 0 0 0

1 2 0 0 0

1 2 0 0 0

1 3 0 0 0

1 4 5 0 0

2 3 4 0 0

5 6 0 0 0

3 4 6 7 8

5 8 9 0 0

3 5 10 0 0

3 9 10 11 0
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From the matrix named ans, we can figure the graph on the paper. The n-th

row of ans shows what vertices would be the neighbors of the (n + 1)-th ver-

tex among n vertices (that are already drawn) when we draw the (n + 1)-th

vertex. For example, when we draw the sixth vertex on the paper, we draw

lines between the sixth vertex and the first vertex, between the sixth vertex

and the fourth vertex, and between the sixth vertex and the fifth vertex, since

the fifth row of ans is [1 4 5 0 0]. Note that whenever we finish adding a

vertex on the paper, There should be at most one face whose boundary is not

a triangle. Obviously, if there exists the unique face whose boundary is not a

triangle, then it is the unique unbounded face.
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Figure 4.3.1: Drawing graph B.

Also, we can figure the hubs and their wheels with the help of the command

hoConvertBitToIndex(tempMaxIndHubset). In the example, hubs are the

fifth, seventh, and twelfth drawn vertices.
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--> hoConvertBitToIndex(tempMaxIndHubset)

ans =

5 7 12

1

2

3

4

5

6

7

8

9

10

11

12

: hubs

Figure 4.3.2: Drawing hubs and wheels on graph B.

It shows that there is one patch, and the members of each equivalence class of

the patch are as the 3-dimensional array patch describes. We can easily find

a 4-coloring solution of this graph.
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국문초록

사색 문제로 알려진 사색 이론은 지도 상의 서로 인접한 두 영역들이 같은

색상을 가지지 않도록 채색할 때, 네 가지 색상만으로도 조건을 충분히 만

족시키며 모든 영역들을 채색할 수 있다는 이론이다. 사색 이론은 평면 그

래프의 꼭짓점을 채색하는 문제로 해석될 수 있다. 평면 그래프의 꼭짓점을

채색하기 위해 우리는 다음과 같은 방법에 대해 알아보도록 한다.

1. 주어진 지도를 그래프로 표현하고, 이 그래프를 포함하며 꼭짓점의 수는

같고 가능한 많은 모서리를 가지는 평면 그래프를 하나 찾는다.

2. 이 평면 그래프에서 차수가 3 이하인 꼭짓점이 있다면 제거한다.

3. 이 그래프에서 서로 인접하지 않으며 각각 어떤 차륜형 부분 그래프들의

중심이 되는 꼭짓점들로 이루어진 중심점 집합을 찾는다.

4. 중심점 집합에 원소가 아닌 꼭짓점들을 세 가지 색상로만 채색한다.

5. 중심점집합의원소가되는꼭짓점들을앞의세가지색상과는다른네번

째 색상으로 채색한다.

6. 이 결과를 처음에 주어진 지도에 적용한다.

위와 같은 방법을 이용하여, 무작위로 생성된 꼭짓점의 개수가 40인 그래프

를 채색하는 컴퓨터 실험에서 약 98%의 채색 성공률을 얻을 수 있었다. 이

채색 방법을 개선하는 것에 대해 논하도록 한다.

주요어휘: 꼭짓점 색칠하기, 평면 그래프, 4색, 사색, 사색문제, 사색이론

학번: 2009-20284
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