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Abstract

It is well-known that there are various ways of representing geodesics
on a surface M of constant negative curvature. There are two different meth-
ods on the bottom line: one is geometric coding and the other is arithmetic
coding. The former is the so-called Morse method which is coding a geodesic
by the cutting sequence as it passes a fixed set of curves on M. The lat-
ter, Artin method, is the construction using concatenating two sequences,
obtained by using a suitable boundary expansion, of two endpoints of a lift
of the geodesic (a geodesic in the unit disc D). In this thesis, we investigate
the more mysterious Artin method for specific examples of surfaces and show
that we obtain a sofic system by using Artin method.

Key words: geodesic coding, symbolic dynamics
Student Number: 2011-20262
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Chapter 1

Introduction

In 1898, Hadamard [10] proposed to use symbolic dynamics techniques in
order to study the geodesic flow on a surface S of constant negative curva-
ture. He constructed a surface of constant negative curvature whose geodesic
can be represented by a sequence through certain “coding procedure”.

This idea was inherited to Morse, Artin, Koebe, Nielsen, and Hedlund
in the 1920’s and 1930’s. Morse and Artin developed the theory of coding
geodesics independently around the same time.

Morse adopted the method known as the cutting sequence method. He
associated a bi-infinite sequence to each geodesic on any open surface of vari-
able negative curvature in 1921 ([16], [17]). He observed that each side of a
given fundamental domain R is naturally associated with a unique generator
of the fundamental group I'. After labelling the same generator on the im-
ages of each side under the I'-action, each geodesic v determines a sequence
of generators which label the successive sides of the images of the fundamen-
tal domain R cut by . This assignment is called the Morse coding and the
sequence is called the cutting sequence of ~.

The Morse coding is canonical in the sense that the cutting sequence of
a geodesic is uniquely determined once a tessellation is chosen. However, the
sequence set obtained by this method may have a complicated structure be-
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cause if the fundamental region has a vertex in the disc, any geodesic passing
through a vertex of its tessellation has multiple coding sequences. In order to
establish a one-to-one correspondence between geodesics and sequences with
certain well-defined admissibility rules, one should take a small deformation
of any geodesic which approaches to a vertex of the net N too closely. Here,
the net N means the images of all sides of the fundamental domain under I'.

In this thesis, we shall concentrate on generic geodesics, that is, geodesics
not passing to any vertex of the net including vertices on S! too closely.

Another approach, by Artin, is the method which codes the endpoints
at infinity of some suitable lift of a given geodesic to H ([1]). Lifts of any
geodesic on § are also geodesics in the upper half plane H and have two
endpoints on R U {oo}. Artin made a symbolic representation of a geodesic
by juxtaposing the continued fraction expansions of its endpoints.

This idea was not entirely new. A similar method was found by Nielsen
previously. For a surface whose fundamental domain R is a symmetric 4g-
sided polygon, he noticed that points on the unit circle S' can be expressed
as a one-sided infinite sequence whose letters are elements of the fundamental
group [' as in the case of the continued fraction expansion of a real number
([19]). Hedlund used this idea to represent a geodesic by juxtaposing the
Nielsen expansions of its endpoints and proved the ergodicity of the geodesic
flow on D/T" using the fact that conjugate geodesics have shift equivalent
sequences and vice versa ([12]).

Now, in this spirit, the so-called Artin coding of a given geodesic v is
defined by simply concatenating two one-sided infinite sequences correspond-
ing to two endpoints of 7 using a suitable boundary map. The Artin coding
is called arithmetic coding since this method is of arithmetic nature. This
method gives different sequences for a fixed geodesic depending on the choice
of the boundary map even with the same tessellation of the plane.

For a given Fuchsian group or a given surface, we want to know how to
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relate two sets obtained by the Morse method and the Artin method. In the
case of a torus with punctures (Section 4.1), a geodesic has the same sequence
both in the Morse coding and in the Artin coding. Moreover, the shift space
can be defined by a single rule, namely, any sequence does not contain a word
of the form gg~! as its finite block where g is a generator of the fundamental
group. This is a I-step Markov chain.

It is known that the set of Morse coding sequences for geodesics not pass-
ing too closely to a vertex of the tessellation is a topological Markov chain
if and only if the fundamental domain R does not have any vertex in D, or
equivalently, all vertices of R lie on the boundary S!. In this case, we will say
that R is a Dirichlet region consisting of an ideal polygon.

The case of a surface with genus two has some difficulty because its fun-
damental domain has interior vertices, in other words, it has vertices in the
disc D. We may choose a boundary map having a nice property, called the
Markov property, with Markov partition on the boundary (see the details in
Section 3.2). The set consisting of sequences defined by this map has a special
property, namely, it is a subshift of finite type. We will see that this process
show that the set of all sequences obtained by Artin coding of S! except for
countable points is a sofic system.

In this paper, we are going to summarize several aspects about the main
two methods describing geodesics on a surface of constant negative curvature.
In Chapter 2, we introduce the notion of the shift spaces. The sets obtained
by the various coding methods are examples of shift spaces. we shall introduce
some terminologies and theorems related to the geometry of the surface in
Section 2.1 and explain the basic notion of symbolic dynamics in Section
2.2. The geometric coding and the arithmetic coding will be introduced in
Section 3.1 and Section 3.2, respectively. We will then give some descriptions
of Artin method on specific examples, namely, a punctured torus and a close
surface of genus two in Section 4.1 and 4.2.



Chapter 2

Preliminaries

Throughout this paper, we write H for the upper half plane, D for the
open unit disc (the Poincaré disc) in the complex plane equipped with the
hyperbolic metric. The boundary of the open unit disc is denoted by 0D,
often by S'. Let N, Z, R and C denote the set of natural numbers, integers,
real numbers, and complex numbers, respectively.

We use both the unit disc model and the upper half plane model of the

hyperbolic geometry without distinction. Define a map A : C — C to be

1
A(z):z+_.Thenthls map and the inverse A~ : w — A™Hw )—zl+w
Z+1 —

are Mobius transformations (and hence conformal maps). The map A sends

the real axis and the point at infinity to the unit circle and leaves the upper
half plane invariant. Through this map, we have analogous facts in the unit
disc model as in the upper half plane model.

2.1 Fuchsian groups and Dirichlet regions

Let C denote the extended complex plane, namely, the union of the com-
plex plane and the point at infinity, C U {oo}. The Mdébius group of all
orientation-preserving Mobius transformations of C onto itself is isomorphic
to the projective general linear group PGL(2,C) over C (that is, the quotient
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group GL(2,C)/{ (;)\ ())\

give the same Mobius transformation as A ([2] §4).

) : A # 0}) since all matrices of the form AA (A # 0)

The projective special linear group PSL(2,R) over R acts on the up-
s ) . b .
per half plane H by Mobius transformations: to each matrix (a d) with
c

a,b,c,d € R, ad — bec = 1, we assign the Mdbius transformation g(z) =

b
az——li_— y (z € H). Notice that PSL(2,R) contains all transformations of the
cz
form z — az 0 with ad — bc > 0.
cz+d

The circle {z € D : |cz + d| = 1} is called the isometric circle of g € T,
where g(z) = (az+b)/(cz+d) since |¢’'(z)| > 1 inside this circle and |¢(z)| < 1
outside.

Let Isom(#) denote the group of all transformations of the upper half
plane H onto itself preserving the hyperbolic distance in H, namely, isome-

tries of H and Isom™ () be the subgroup of Isom(#) consisting of all orientation-

preserving isometries of .

Theorem 2.1.1. ([14], Theorem 4.1) The group Isom(H) is generated by
the Mébius transformations from PSL(2,R) together with the transformation
2+ —Z. The group PSL(2,R) is a subgroup of Isom(H) of index two.

This theorem gives the characterization of all the isometries of the upper

+b (ad—b
ad—bc =

¢ b

az +

ad —
czZ+d (
bc = —1) as orientation-reversing isometries. Thus the group PSL(2,R) con-

az
half plane H. We will refer to transformations of the forms n
cz

1) as orientation-preserving and to transformations of the form

sists exactly of all orientation-preserving isometries in the upper half plane,
Isom™ (H) ([14] pp.8-9, 11). The action of the group PSL(2,R) extends from
H to its Euclidean boundary R U {oo}.
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The group GL(2,C) is a topological group with respect to the metric

a b

induced from R*; for A = ( d)’ the norm ||Al| is given explicitly by
c

1/2
Al = (lal? + b + [ef? + |d]2)".

A subgroup G of GL(2,C) is said to be discrete if the subspace topology
on G is the discrete topology, that is, GG is a discrete set in the topological
space Isom(#). The following are equivalent conditions of the discreteness of
a subgroup G of GL(2,C):

1. For X, Ay, As,... € G, if A, converges to X, then A, = X for all
sufficiently large n. Note that X may not be in G but in GL(2,C).

2. For A, € G, if A, converges to the identity matrix I, then A, = I for
almost all n.

3. In case of SL(2,C), for each positive k, the set {A € G : || Al < k} is
finite, that is, G cannot have any limit points (this criterion shows that
a discrete subgroup G of SL(2,C) is countable).

Any discrete subgroup of Isom () contains a special subgroup which con-
sists of orientation-preserving isometries. We are concerned with a discrete
subgroup of orientation-preserving isometries in the upper half plane.

Definition 2.1.2. A Fuchsian group is a discrete group consisting of orientation-

preserving isometries in the upper half plane H, or equivalently, is a discrete
subgroup of PSL(2,R).

The set of all orientation-preserving transformations in any discrete sub-
group of Isom(#) is a Fuchsian group. Therefore, the study of Fuchsican
groups is of importance when we study discrete subgroups of Isom(H). In
general, discrete subgroups of isometries satisfy a slightly weaker discontinu-
ity condition.
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Definition 2.1.3. Let X be a locally compact metric space, and let G be
a group of isometries of X. We say that G acts properly discontinuously on
X if the G-orbit of any point x € X is locally finite, in other words, for any
compact subset K C X, {gz € K : g € G} is a finite set.

This definition is equivalent to the fact that each orbit has no accumula-
tion point in X and the order of the stabilizer of each point is finite. In fact,
the discreteness of all orbits implies the discreteness of the group.

Theorem 2.1.4. ([14], Theorem 8.6) Let I' be a subgroup of PSL(2,R).
Then I is a Fuchsian group if and only if I' acts properly discontinuously on

H.

Corollary 2.1.5. ([14], Corollary 8.7) Let I" be a subgroup of PSL(2,R).
Then T' acts properly discontinuously on H if and only if for all z € H, the
[-orbit I'z of z is a discrete subset of H.

Therefore, if z € H and {g,} is a sequence of distinct elements in a
Fuchsian group I' such that {g,(z)} has a limit point o € C, then a €
RU{oo}. For any Fuchsian group I', the limit set A(I") lies in RU{oo}; or, in
the unit disc model, A(T') C S'. In the upper half plane model, the centers of
all isometric circles belong to the real axis R. Let CT be the set of the centers
of the isometric circles of all elements in I'. It is known that the limit set
A(T") is equal to the set of all limit points of Cr. We shall classify Fuchsian
groups in the unit disc model as follows([13]):

(a) Fuchsian groups is said to be of the first kind if every point of the unit
circle is a limit point.

(b) Fuchsian groups is said to be of the second kind if its limit points are
nowhere dense on the unit circle, namely, an empty set, a set containing
one or two points, or a perfect (and therefore infinite) nowhere dense
set.

Suppose that I' is a group of isometries acting properly discontinuously
on D. There is a geometric realization for the set of representatives of orbits,

7
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called a fundamental domain, which is a subset of D containing exactly one
point from each of these orbits. The following is a precise definition:

Definition 2.1.6. A closed regoin F' of D is defined to be a fundamental
domain (or fundamental region) for T' if it satisfies the following :

() Yy =D,

gel
(ii) FNg(F) =@ forall g€ T — {id}.

A closed region means a closure of a non-empty open set F , called the interior
of F. The set OF = F\F is called the boundary of F. The collection {g(F) :
g € T'} is called the tessellation or tiling of D.

Suppose now that I' is a Fuchsian group acting discontinuously on D.
Fundamental regions of Fuchsian groups are our main concern. Any Fuch-
sian group possesses a nice fundamental region. Therefore, we are going to
consider only the following special kind of fundamental domains in this arti-
cle:

Definition 2.1.7. Let I' be an arbitrary Fuchsian group and let p € D be not
fixed by any element of I' — {id}. Let D,(I') = {z € D : p(z,p) < p(2,9(p))
for all ¢ € I'} where p is the hyperbolic metric in D. Then we call this set
D,(I") the Dirichlet region for I' centered at p. Equivalently, for each fixed
g € PSL(2,R), if we define the hyperbolic half-plane H, = {z : p(z,p) <
p(z,9(p))}, then Dirichlet region for I' centered at p is the intersection of
such hyperbolic half-planes

DP(F) - ﬂ Hp(g)7
g€l g#id

and thus it is a hyperbolically conver region.

The set obtained from this definition is indeed a connected and convex
fundamental region.
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Theorem 2.1.8. ([14], Theorem 10.3) If p is not fized by any element of
I' — {id}, then Dy(T") is a connected fundamental region for I.

The tessellation {g(F) : g € I'} of D by a Dirichlet region F' is referred
to as a Dirichlet tessellation and all its images under I' are called faces.
The intersection between two bordering faces is said to be an edge, and a
vertex is the point of intersection of three or more bordering faces. We will
sometimes call the collection of all edges in the tessellation the met. This
Dirichlet tessellation has nice local properties, namely, local finiteness.

Proposition 2.1.9. ([14], Proposition 11.3) The vertices of a Dirichlet re-
gion F' are isolated, in other words, every vertexr of F' has a neighborhood
containing no other vertices of F.

Corollary 2.1.10. ([14], Corollary 11.4) A compact Dirichlet region has a
finite number of vertices.

The following theorem suggests a geometric interpretation of the I'-action
in the fundamental domain:

Theorem 2.1.11. ([14], Theorem 11.8) For some fized Dirichlet region F,
let {g;} be the subset of T consisting of those elements which pair the sides
of F. Then {g;} is a set of generators for T.

Theorem 2.1.12. ([14], Theorem 11.7 Let F' be a Dirichlet region for I'. Let
01,0, ,0; be the internal angles at all congruent vertices of F'. Let m be
the order of the stabilizer in T of one of these vertices. Then 61402+ - -+60; =
21 /m.

Remark. Therefore, if a vertex is not a fixed point, then we have m = 1 and
01+ 6y + -+ 0; = 2mw. The following is known: as F' is locally finite, there
are only finitely many vertices in a congruent cycle. As the stabilizers of two
points in a congruent set are conjugate subgroups of I', they have the same
order.
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We shall deal with Fuchsian group of finite covolume and hence the fol-
lowing theorem is worth recording.

Theorem 2.1.13 (Seigel’s Theorem). ([14], Theorem 13.1) If the Fuchsian
group T is such that W(I'\'H) < oo, then T' is geometrically finite, in other
words, any Dirichlet region F' = D,(I') has finitely many sides.

az+b '

cz+d
ad — be = 1} distinguished by the the absolute value of its trace Tr(g) =

la + d|. The transformation g is called elliptic if Tr(g) < 2; parabolic if
az+b

we
cz+d
see that a hyperbolic transformation has two fixed points in R U {oo} (one

There are three types of elements in PSL(2,R) = {z — g(2) =

Tr(g) = 2; hyperbolic if Tr(g) > 2. By solving the equation z =

repulsive and one attractive), a parabolic transformation has one fixed point
in RU {oo} and an elliptic transformation has a pair of complex conjugate
fixed points, and hence, one fixed point in H ([13] §2.1).

Definition 2.1.14. A Fuchsian group is said to be cocompact if the quotient
space ['\H is compact, where # is the hyperbolic upper half plane {z € C:
im(z) > 0}.

The theorem and corollary below explain the relationship between the
compactness of the quotient space and the property of a Fuchsian group I':

Theorem 2.1.15. ([14], Theorem 14.2) If a Fuchsian group T" is cocompact,
that is, I' has a compact Dirichlet region, then I' contains no parabolic ele-
ments.

Since the compactness of a Dirichlet region for a Fuchsian group I' is
equivalent to the cocompactness of I' ([14], Corollary 14.4), we have the
following corollary:

Corollary 2.1.16. ([14], Corollary 14.8) A Fuchsian group I" is cocompact
if and only if W(T\'H) < oo and T' has no parabolic elements.

10
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2.2 Subshifts of finite type and Sofic systems

By a discrete-time dynamical system, we mean a pair (X, f) of a non-empty
set X and a map f : X — X. From now on, we shall introduce the notion
of shift spaces, which are well-known examples of discrete-time dynamical
systems.

For any natural number m > 1, we call aset A, = {1,2,...,m} an alpha-
bet and its elements symbols. we refer a word as a finite sequence consisting
of symbols.

Let (X, f) and (Y, g) be discrete-time dynamical systems. If there exists
a surjective map 7 : Y — X such that 7o g = f on, then we say (X, f) is a
factor of (Y, g) and (Y, g) is an extension of (X, f). In this case, the map 7 is
called a semiconjugacy. The map 7 is also called a factor map or a projection.

vy 9.y

x 1.x

Moreover, if the map 7 is invertible, 7 is called a conjugacy. In this case, X
and Y are said to be conjugate.

Let 3, (= AZ) be the space of all two-sided infinite sequences of sym-
bols in A,,, and X (= AY) be the space of all one-sided infinite sequences of
symbols in A,,. Define the left shift map o on 3, or ¥, so that o(z), = z;11
for all 7. The pair (3,,, 0) is the full two-sided shift; (3, o) the full one-sided
shift. These are typical examples of symbolic dynamical systems.

From now on, we are concerned with two-sided shift in the remaining
section.
The set X, is a topological space (often called the Cantor space) with respect
to the distance d defined by d(z,y) = 27" with n = min{|k| | zx # yx, k € Z}
for x,y € ¥,,.
We are interested in a subset which can be a dynamical system with the

11
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left shift map. We say that a bi-infinite word z € ¥, avoids a set of words
X C X, if z does not contain any word in X (we will call each word in X a
forbidden word). A symbolic dynamical system S of 3, is defined by such a
subset X.

Proposition 2.2.1. ([15], Proposition 1.5.1) A subset S of ¥, is a symbolic
dynamical system if and only if it is closed for the topology and invariant
under the left shift map.

This proposition gives the following definition:

Definition 2.2.2. A subshift is a closed subset X C ¥,,, which remains

invariant under the shift map o and its inverse o~ .

Let X; C 3,,(i = 1,2) be two subshifts. By a code from X; to Xs, we
mean a continuous map from X; to Xy commuting with the shift map o,
that is, ¢ : X7 — X5 such that coo = o o c. Note that a surjective code is a
factor map.

There are two things that can describe a natural class of subshifts: ad-
jacency matrices and their associated directed graphs. An adjacency matrix
is an m X m matrix whose entries are zero or one. To given an adjacency
matrix A = (a;;), we associate a directed graph A4 having m vertices and
the number a;; of edges from vertex ¢ to vertex j for all 7, j. Conversely, a
finite directed graph A with n vertices and no multiple edges determines an
n X n adjacency matrix.

Assume that we have an m x m adjacency matrix A = (a;;). A word or
an infinite sequence z in the alphabet A,, is said to be allowed (accessible
in some other text) provided that a,,,,, > 0 for every i, that is, if there
exists an edge from x; to x;,1 in the associated directed graph A4 for each ¢,
where z; is the index of the vertex visited at time 7. Therefore, we consider
an allowed word or sequence as a walk along directed edges in the graph A 4.
A word or an infinite sequence is forbidden if it is not allowed.

12
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For a given adjacency matrix A, let ¥4 C X, be the set of all allowed
two-sided sequences as explained in the above. Then Y4 is a closed shift-
invariant subset, namely, a subshift. In this case, the pair (X4, 0) is called
the two-sided vertex shift determined by A.

Definition 2.2.3. A subshift X C X, is called a subshift of finite type (SFT)
if there is a finite collection of finite forbidden words which can determine X,
that is, there are finitely many words such that X consists of precisely the
sequences in Y, that do not contain any of these words. X is called a k-step
SF'T if the length of any forbidden word is at most k+ 1. In particular, when
k=1, X is called a topological Markov chain.

A vertex shift is an example of a subshift of finite type, more precisely, a
topological Markov chain. Moreover, we have the converse:

Proposition 2.2.4. ([8], Proposition 3.2.1) Every subshift of finite type is
isomorphic to a vertex shift.

Proof. Let X be a k-step SFT. We want to find an adjacency matrix A
and hence a conjugacy c from X to some vertex shift >, the set of all
allowed sequences defined by A. Let Wy (X) be the set of all words of length
k appearing in X, and let n be the cardinality of W (X). Construct a graph
A as follows:

(1) The vertex set V(A) consists of elements of Wj.(X).

(2) The elements of edge set F(A) are defined as follows: there is a di-
rected edge from a vertex xyxs - - -y to a vertex |z} - - - o} if the words

1Ty - - XX, = T12)2% - -, belong to the set of all words in X of
length k£ + 1, Wi (X).

Then, this edge condition gives an n x n adjacency matrix A, and hence
determines a vertex shift ¥%. Clearly, X% is a subset of X. If we define the
map ¢ : X — X% by ¢(z); = @i Tik—1 € Wi(X), ¢ is an invertible
surjective map, a conjugacy from X to XY. O

More generally, if we consider an n x n matrix with nonnegative integer
entries, we can construct a finite directed graph with multiple directed edges

13
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between some pairs of vertices. To be precise, for an n x n adjacency matrix
B with each entry nonnegative integer, there is a directed graph A with n
vertices and with B;; labelled edges from the vertex ¢ to the vertex j. Let
Y% be the set of all infinite directed paths in A. Then X% is closed and shift-
invariant and is called the edge shift determined by B. Note that any edge
shift is isomorphic to a vertex shift in that we can construct a new graph by
taking an edge of the original as a vertex. Hence it is also a subshift of finite
type by the above proposition.

Corollary 2.2.5. ([8], Corollary 3.2.2) Every subshift of finite type is iso-
morphic to an edge shift.

We sometimes seek the weaker notion than subshifts of finite type; a
generalization of subshifts of finite type, called sofic shift.

Definition 2.2.6. A subshift X € 3, is called sofic if it is a factor of a
subshift of finite type, that is, there is an adjacency matrix A and a surjective
code ¢ : X% — X such that co o = o oc. Here, X% means the edge shift
determined by A.

Let A be a finite directed labelled graph, that is, the edges of A are labelled
by a symbol of a fixed alphabet set. Note that, in this case, the graph A has
the same label on some different edges, in other words, we allow that different
edges of A have the same label (this is the only difference with an edge shift).
The subset X, C ¥, consisting of all infinite directed paths in A is closed
and shift invariant. If a subshift (X, o) is isomorphic to (X,, o) for some
directed labelled graph A, then we say that A is a presentation of X or A
presents X. Now we are ready to introduce the most important proposition
in this section:

Proposition 2.2.7. ([8], Proposition 3.7.1) A subshift X C %, is sofic if
and only if it admits a presentation by a finite directed labelled graph.

Remark. ([6]) There is “almost” the same notion as a sofic system in the
coding theory. A constrained system or constraint system is the set X of
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CHAPTER 2. PRELIMINARIES

all words (finite sequences) obtained from reading the labels of edge paths
in a labelled directed graph A. In this case, we say that A represents X. A
constrained system is equivalent to a regular language in automata theory
which is recognized by an automaton, namely, the states of which are all
accepting. A constrained system is called a sofic system in symbolic dynamics
except that a sofic system usually refers to the bi-infinite symbol sequences
generated by a labelled directed graph. A constrained system should not
be confused with any particular labelled graph because a given constrained
system can be presented by many different labelled directed graphs.

15
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Chapter 3

Symbolic Coding of Geodesics

Recall that a discrete group of linear fractional transformations of the
form z +— (az 4+ b)/(cz + d) with ad — bc = 1 is a Fuchsian group and when
there are points of the unit circle S' with dense orbits, that is, its limit set
is the whole unit circle, I' is said to be of the first kind. Let T’ be a finitely
generated Fuchsian group of the first kind acting in the unit disc D. The
corresponding surface S = D/I" is a Riemann surface of constant negative
curvature of finite area.

Recall that the circle {z € D : |cz + d| = 1} is called the isometric circle
of g € T', where g(z) = (az + b)/(cz + d) since |¢'(z)| > 1 inside this circle
and |¢'(z)| < 1 outside. Such isometric circles are always circles orthogonal
to St = aD.

Throughout this article, we deal with the only case that the fundamental
region R has even corners. This means that the net N = I'(OR) consists of
complete geodesics in D. Series ([5]) redefined this notion as follows:

Definition 3.0.8. we will say that R satisfies property () if, for each side s
of R,

(i) C(s) is the isometric circle of g,

(ii) C(s) lies completely in the net N,
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CHAPTER 3. SYMBOLIC CODING OF GEODESICS

where C(s) is the circle containing s orthogonal to S' and the other side of
R is identified with s by an element g, € T'.

According to the paper [5], we can construct a fundamental domain for
" which satisfies property (%) whenever the quotient space D/T" has positive
area. Therefore, from now on we shall suppose that R satisfy the property (x)
and moreover that R is not a triangle and dose not have elliptic vertices of
order 2.

In this setting, we also assume that the origin O is not fixed by any el-
ement of I' — {id}. Then I" has a fundamental region R (in fact, a Dirichlet
region) R in D which can be chosen to be a polygon consisting of a finite
number of circular arcs and containing the origin O of D inside (Theorem
2.1.8 and Theorem 2.1.13). A Dirichlet region R of I' is a geodesically con-
vex polygon. Note that geodesic converity of R means that the geodesic arc
joining any two points in R lies in R. Therefore, each extension of a side of R
in the Poincaré disc D is a circle orthogonal to the boundary S' of the disc,
namely, R consists of a finite number of geodesic segments.

By property (x), R has an even number of sides, say {si,Sa,..., S}
Moreover, each side s; of R is identified with another side s; by the isometry
g; € I'. Then the set {g1, g2, ..., g2n} is the symmetric set of generators for
[ and its inverses, denoted by I'g (Theorem 2.1.11).

Obviously, geodesics on S are the projections of circular arcs in D orthog-
onal to S'. Note that S is compact if and only if R has no cusps, vertices
lying on S' (Theorem 2.1.15 and Corollary 2.1.16).

We shall describe the Morse method and the Artin method of coding

geodesics on the torus with n punctures and the closed surface with genus
two.

17



CHAPTER 3. SYMBOLIC CODING OF GEODESICS

Figure 3.1: The Morse coding method

3.1 Geometric coding

Let G denote the set of all oriented geodesics in D, R = {y € G :
vyN R # O}, and let ¥ be the set of all reduced bi-infinite sequences in
['gr. Here, reduced means that a generator g € I'g dose not follow or precede
its inverse g1

For a given surface S, after choosing a suitable fundamental domain R,
we label each side s of R on the inside by the element g of I'g if the side
s is identified with ¢(s) in R. This is equivalent to labelling the side s on
the outside by the element ¢g~!, and from now on we call the latter exterior
labelling. Similarly, label all images of side s under I" with the same generator
g on the inside to obtain a labelling of the net N = I'(OR), the images of
sides of R. With this convention, if gR and hR are adjacent along a side s,
then the side of s which is interior to AR is labelled g~'h, and that which is

interior to gR is labelled h™1g.

To an oriented geodesic v € R, we associate a sequence by recording the
labellings of the edges of the net N crossed by + one by one in the direc-
tion of its orientation. This process is called the Morse coding method. More
precisely, define the Morse coding sequence x = z(n) of v as follows: when
the geodesic 7 leaves the fundamental domain R through a side s, z(1) = e;

18
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Figure 3.2: An edge path in Definition 3.1.1

is the exterior label of the side s. Similarly, z(2) = e, is given the exterior
label of the side of e; R intersecting with . 2(0) = ey is the interior label of
the side of R where 7 is entering into R through the side and xz(—1) = e_;
is the interior label of the side of e;' R crossed by 7, so on (see Figure 3.1).
The sequence for x is ---e_je,e165--- ,e; € I'g. This process provides us a
bi-infinite sequence consisting of elements of I'g corresponding to a geodesic.
We call it the cutting sequence or geometric Morse code of the given geodesic.
(Clearly, this sequence is always reduced since the geodesic does not go back-
tracking and the occurrence of consecutive letters ee™! for some e € ' in the
sequence implies that the geodesic cut the side (corresponding the generator
e) twice in a row coming from opposite direction ([21]).

As mentioned, we have that O € R and that O is not a fixed point of
any element of I' — {id}. Let N* be the dual net to N obtained by joining
a geodesic segment from gO to hO whenever g~'h € I's. Note that the dual
net N* may be regarded as the Cayley graph given by I' since O is not a
fixed point of any element of I'.

Definition 3.1.1. Any path in N* will be called an edge path (see Figure
3.2). We may associate such a path with the polygonal path which consists
of the adjacent regions: with initial region gR (¢ € R), for any word w =
e1--er(e; € 'r), we obtain the associated polygonal path being connected
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CHAPTER 3. SYMBOLIC CODING OF GEODESICS

Figure 3.3: Deformation to the left around the vertex

by the regions gR,e1gR,...,e1---exgR. In this case, the corresponding edge
path consisting of the geodesic segments joining gO, 190, ..., e;1 - - - exgO and
the cutting sequence of this path is e - - - . In particular, a path defined by
a geodesic arc in this way is called a geodesic edge path and the corresponding
cutting sequence is called a geodesic word([4]).

This Morse method is natural and well-understood, however, it has a dis-
advantage that we have at least two different sequences corresponding to a
geodesic when that geodesic meets a vertex of the net V.

In this article, for a given geodesic meeting a vertex, we replace it by one
passing the left side of the vertex instead of the vertex, that is, we deform it
to the left around the vertex. Imagine that we walk along the geodesic and
detour to the left of the vertex (see Figure 3.3). This phenomenon happens
when the fundamental region has an interior verter, that is, a vertex in D.

If v is a vertex of the net N, we find a cutting sequence corresponding to
a relation in I' from a small circle around v. By assumption, the sequence has
even length and hence this sequence is represented by e - - - €, (,) for e; € I'g.
By a cycle, we mean any finite sequence of generators whose letters occur in
the order of one of these relations: we call such a sequence with length n(v)
a half cycle, and any cycle with greater length a long cycle.
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Figure 3.4: Consecutive cycles

Suppose that vy, ..., v, are some successive vertices of the net N on some
geodesic [ in N. If a is a curve running almost parallel to and close to [
on one side possibly cutting ! before v; and after v, (see Figure 3.4: in this
case, two geodesics meet at a point v). The cutting sequence of « consists of
cycles at vy, ..., v, and the length of the cycle at each intermediary vertex
v; (1 <i<p)isn(v;) —1. We call such cycles consecutive, and the sequence
of consecutive cycles we call a chain. By a polygonal chain in N (or N*),
we mean a sequence of polygons in N (or N*) each meeting the next in a
common edge.

Definition 3.1.2. A chain is said to be long if it consists of cycles of lengths
n(v1),n(ve) —1,...,n(vy_1) —1,n(v,), where vy, vy, - - - , v, are the vertices of
the net N dual to the corresponding polygonal chain. In other words, a long
chain is a chain with half cycles at the both ends.

The main theorem (Theorem 3.1.8) needs some restriction on the funda-
mental region R. In our situation, we consider the only “good” cases that
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CHAPTER 3. SYMBOLIC CODING OF GEODESICS

S is a surface having no branch point and hence it satisfies the both of the
below conditions.

Hypothesis. ([4], Hypothesis 2.1) Let R be a fundamental region for a group
I.

(i) If R has three sides, then not all vertices of R lie in Int D.

(i1) If R has four sides, and if all vertices of R lie in Int D, then at least
three geodesics in the net N cross at each vertex of R.

Remark. These hypotheses are necessary conditions so that our fundamental
domain R has no branch point, that is, ' has no elliptic elements. If R is
a triangle, then any vertex in Int D will be a branch point. Therefore, we
expect the good situation where at least one vertex lies on 9D. If R has four
sides with all vertices in Int D, and if there is a vertex where exactly two
geodesics meet, the angle between the geodesics is equal to 7/2 and all the
interior angles are exactly equal to 7/2; this means the fundamental domain
is a rectangle which has the Euclidean plane as its universal cover, in other
words, it is not covered by the hyperbolic disc D. To exclude this case, we
put the condition (ii).

Lemma 3.1.3. ([5], Lemma 2.2) A geodesic lying in the net N cuts a geodesic
edge path in N* at most once.

Proof. Let E() be a geodesic edge path in N* connecting ¢, 0, g20, . . ., gxO.
Suppose that a geodesic C'in the net N intersects E(y) between ¢;0 and g,0
and again between g,_10 and ¢, O. Since C'is in the net N, the images of OR
under I', C' contains the geodesic segments of g1 R N ¢goR and gx_1 R N giR.
This means that v crosses from ¢; R into g2 R and from g;_; R into g; R, and
hence the geodesics v and C' meet at two points, which is a contradiction. [

Lemma 3.1.4. ([5], Lemma 2.2) Let s and s’ be nonadjacent sides of R.
Then the geodesics which extend s and s’ do not intersect.

22



CHAPTER 3. SYMBOLIC CODING OF GEODESICS

Proof. Let C(s),C(s") be the geodesics in the disc D containing the side s,
', respectively. Assume that C(s) and C(s’) intersect at a point P so that
it leads to be a contradiction. Let sq,..., s, be the sides of the fundamental
region R between s and s’ connecting in the order s, sq, ..., g, §'. Then k > 1
since s and s’ be nonadjacent sides of R.

Let A be the intersection point (the vertex of R) between s and sy, B
the intersection point (the vertex of R) between s’ and si, and let v be the
geodesic segment between A and B. Since R is geodesically convex, v lies in
R, in other words, s1,..., s, lie in the triangle AABP. Since C(s;) meets
with v at the point B, C'(sy) must cross C(s), otherwise C(sy,) intersects with
7 once more or C'(sg) should be the geodesic C(s’). Let Py be the intersection
point of C(s) and C(si). Then C(s) and C(sy) intersect at P, and there are
(k—1) sides s1,...,St_1 between s and s;. Inductively arguing as above, it
reduces to the case £ = 1 and hence we may assume that s and s’ connect
through the only one side s;.

Consider g1 R, the image of R adjacent to the side s;, that is, the exterior
label of s is g. Let t, t’ be the sides of g;R which pass the point A, B,
respectively. Then ¢ and ¢ must intersect at a point ) within the triangle
AABP because g; R is not a triangle(this means @ is not equal to P) and
tand ¢ meets with C(s) or C'(s") at most once. Therefore, one can find a copy
of R within the triangle AABP. Similarly, after continuing this argument we
obtain an infinite set {g1 R, g2 R, . ..} of (almost) disjoint copies of R contained
in AABP. This contradicts to the fact that AABP has finite area. O

To each cycle or chain is associated a complementary cycle or chain. By
a complementary cycle or chain, we mean the opposite boundary of the cor-
responding polygonal chain, and it also represents the same element of T'.
Clearly, the complement of a long cycle or chain is a path of strictly shorter
length.

Lemma 3.1.5. ([4], Lemma 2.5) The vertez angle along any path E which is
either geodesic or which contains no long cycles are at most 7. If the angle
at v is T then we may replace the cycle at v by its complementary cycle and
obtain another path of the same length.
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Lemma 3.1.6. ([4], Lemma 2.6) Let E be an edge path which is either
geodesic or which contains no long chains. Then the occurrence of a sequence
of vertex angles 7%, m, ..., 7,7 along E is impossible.

If Eis an edge path in N*, we denote the corresponding polygonal chain
in N* by P(E).

Lemma 3.1.7. ([4], Lemma 2.7 or [21], Lemma 5.6) Let E; and E be edge
paths containing no long chains and with coincident initial and final points.

Then there are no copies gR of R lying strictly inside the region bounded by
the polygonal chains P(Ey), P(Es) defined by E; and Es.

We say that an edge path is shortest provided that the corresponding
word is a shortest possible representation of the element in I' defined by the
word. By the above proposition, the regions formed by two shortest polyg-
onal paths with the same initial and final endpoints (possibly at infinity)
should either coincide or be adjacent. Here, a shortest polygonal path means
that the corresponding cutting sequence of the polygonal path is shortest.
The paths differ only by taking complementary cycles round vertices of their
common boundary. When two polygonal paths have common initial and final
regions, the two paths have the same length (Lemma 3.1.5).

We state the main theorem in this section that explains which sequence
can be a cutting sequence of a geodesic:

Theorem 3.1.8. ([21], Theorem 3.1) Suppose that R is not a triangle and
that R has even corners. Assume that R satisfies the conditions of Hypothe-
sis(ii). Then,

(i) an edge path is shortest if and only if it is reduced and contains no long
cycles or long chains, and

(ii) the cutting sequences of geodesic arcs are shortest.
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Q4 Ps

Figure 3.5: An example: labels on a surface with genus 2

3.2 Arithmetic coding

We can describe a real number as an infinite sequence using continued frac-
tion expansion. Artin(1965) obtained a representation of geodesics in the
Poincaré upper half plane H as bi-infinite sequences of positive integers by
juxtaposing the continued fraction expansions of their endpoints. Arithmetic
coding is the method which represents a geodesic as a bi-infinite sequence
by concatenating two sequences of its end points analogous to the continued
fraction expansion.

We find a one-sided sequence for a point on 9D using a particular map,
called a boundary map or a boundary expansion. First, we shall set some la-

bels on the fundamental region R before introducing the map.

Assume that the sides s, s9,..., Sy, of the fundamental domain R sur-
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round R in the counterclockwise order so that the region is on the left when
we trace the boundary of R. The vertex v; is the intersection of s; ; and
s; (with sg = s9,). Let P;, Q;41 be the end points on S! of the complete
geodesic C(s;) containing the side s;, so that the order of points along C(s;)
is P, vy, 041, Qiv1 (see Figure 3.5).

For each i, let g; be the label of s; on the inside and A(s;) the arc [P;Q;]
on 0D. The given Fuchsian group I is of the first kind, and hence U A(g)

g€l'r

= 0D =S

Define a map fr : 0D — 9D by flipp,.,1)(§) = gi(§). Here we assume that
Py,+1 = Py so that fr can be defined on [P, P).

To be more specific, according to the same paper [5], this map f = fr
satisfies the following properties:

Definition 3.2.1. (Markov Property)

(a) Except for a finite number of pairs of z,y € S': x = gy, z,y € S,
g € I' if and only if there exist nonnegative numbers n, m > 0 such tat

fr(@) = f"(y).

(b) fis Markov in the following sense: there is a finite or countable partition
on S! into intervals {I;}%°, such that

(Mi) f is strictly monotonic on each I; and extends to a C2-function f;
on I,

(Mll) f(lk) N [j % @ = f([k> 2 [j; for any ju ka
(Miii) (transitivity condition) U f (1) D I; for any j, k,
r=0
(Miv) (finiteness condition) If I; = [a;, b;] then { fi(a;), fi(b;) }o2, is finite.
Moreover, the partition {/;}$°, is finite if and only if if D/I" is compact,

or equivalently, if R has no cusps.
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(c) (expansion condition)

(Ei) If there are no cusps, then there exists a positive number N such
that inSf1 (VY ()] > A > 1,
e

(Eii) A cusp of R is a periodic point for f with derivative one. There
is a subset K C S, consisting of a union of intervals I;, so that if
fr(x) = 7@ (2), n(z) = min{n > 0: f*(z) € K},z € K, is the
first return map induced on K, then there is a number N such
that jélgfl () (z)] > A > 1.

With this Markov map f, by f-ezpansion of ¢ € S!, we mean the one-
sided infinite sequence £ = ig?1is - - - obtained by iterating the map f where
f*(z) € I;,,n = 0,1,2,---. Then, by the condition (Mii), the word i,i,
appears if and only if f(I,) D I, and hence the set ¥ of all sequences
& = igiyiz- -+ for any £ € S! is a subshift of finite type. More precisely, 3¢
is a 1-step subshift of finite type, or called a Markov chain since the forbid-
den word is of length at most 2, the partition {I;} is called a Markov partition.

The following theorem in the paper [5] guarantees the existence of such
a Markov map under certain conditions:

Theorem 3.2.2. ([5], Theorem 2.1) Let I' be a finitely generated Fuchsian
group of the first kind, with a fundamental region R satisfying the property
(%). Then there is a Markov map fr : S*' — S' which is orbit equivalent to T
on St. Moreover,

(1) if R has no parabolic cusps, the Markov partition is finite and fr sat-
isfies properties (Miii), (Miv), (Fi), (Eii) of Definition 3.2.1.

(2) If R has parabolic cusps, the Markov partition is countable. There is
a subset K C S, consisting of a finite union of sets in the partitions,
minus the countable set of points which eventually map onto one of the
cusps, such that the first return map induced by fr on K has properties

(Miii), (Miv), (Ei), and (Eii).
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Consider the set of all endpoints of intervals forming Markov partition.
Then this Markov map leaves such partitioning points invariant:

Lemma 3.2.3. ([5], Lemma 2.3) There is a finite or countable set W C S*
with f(W) C W which partitions S* into intervals; W is finite if and only if
R has no parabolic vertices.

In order to compare with the geometric coding, we shall replace the par-
tition {;} by {[P;P+1) = (g; ")}, and then now we may represent a se-
quence consisting of the generators 'y of T'. For £ € S!, &4 = gi1Giy - .- if
(&) € (gin), n € N. This is called the Artin method or Artin-type coding.

In this situation, however, the rules deciding which sequences are “valid”
are no longer of finite type.

Definition 3.2.4. A finite sequence ejes - - - €, (€ ') is said to be admissible
it ()7 ([e, ') # 0.
r=1

Let X7 be the set of all admissible sequences consisting of elements of I'g,
that is, X7 = {ejeg -+ € I} : epepyy - - - €4y is admissible for any k,n € N}.
o
Then this subgroup ¥+ C H ['r has the special property:
i=0
Theorem 3.2.5. ([21], Lemma 4.1) The subshift 7 is a sofic system. More
precisely, there is an alphabet B, and a finite-to-one map f: B — 'y, and a
[e.e]

subshift of finite type X C HB, so that the induced map f : Xp — BT is
=0
surjective and injective except at a countable set of points where it is two-to-

one.

There is a criterion whether a given sequence is a member of the set X7:

Theorem 3.2.6. ([21], Theorem 4.2) A word (finite sequence) occurs in £+
if and only if it is shortest and contains no counterclockwise half-cycles.
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Corollary 3.2.7. An infinite sequence occurs in X7 if and only if it is short-
est not containing counterclockwise half-cycles and not ending in an infinite
chain of counterclockwise cycles.

To be specific, we are going to go after the paper [20].

With proceeding along one side to the vertex, we obtain a cycle of con-
gruent vertices and corresponding generators in two directions. First, if you
started at a vertex v; with the side s;, you would obtain a cycle of con-
gruent vertices v; = wi, wy, -+ ,w, and the corresponding generators g; =
hi, ha, -+, h,. More specific process is the following: let v; be a vertex of
R and s; an adjacent side. Initiate wy, = v;, t; = s;, and hy = g; where g;
is the label of s; on inside of R. Then ws = hy(w;) is another vertex and
ts = hy(t1) is an adjacent side. Let ¢}, be the other side of R adjacent to
to. Let ws = ho(ws),ts = ho(ty) where hy is an element of I' such that ¢
is identified with another side of R by hs. We will return to v; in a finite
number of steps, after continuing this process, (w,,t,) = (w1,t1), hy--- My
fixes w; = v; at last. Schematically, we have a part of tessellation around the
vertex v; shown as Figure 3.6.

There are no vertices of R congruent to v; other than those just found,
whence wy, wo, - -, w, constitute a cycle.

Definition 3.2.8. ([9], Sec.26 ) A complete set of congruent vertices of a
fundamental region is called an ordinary cycle.

We say the anticlockwise sequence hy thy'--- h, Yis in left-hand (L) cyclic
order. Similarly, if you started at a vertex v;;; with the side s;, you would
obtain a cycle v;4; = 21,22, -+, 2, and generators ¢, = ji,J2, - ,Jq- The
clockwise sequence j; 'j; ' - - - Jo " is said to be in right-hand (R) cyclic order.

To connect a vertex cycle with a relation, we are going to introduce two
theorems without showing proofs:

Theorem 3.2.9. (9], Theorem 14) The sum of the angles at the vertices of
an ordinary cycle is 2w /k, where k is an integer. If k > 1, each vertez of the
cycle is a fived point of an elliptic transformation of period k.
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hahsz---h1 R
Il Il
Ry

hghgth = R3

hgth = RQ

Figure 3.6: An example of a vertex cycle in left-hand

Theorem 3.2.10. ([9], Theorem 15) Each ordinary cycle determines a re-
lation of the form (hyh,_q - "hghl)k = 1 satisfied by the transformations
connecting congruent sides of R.

By the above theorems, there are integers u, v such that (h;'hy* - h,
(it -j;l)y =1.Ifv; € D, hy,--- hy is elliptic and has order 1 € N, oth-
erwise (i.e., v; € S') it is parabolic. For all elliptic vertices v;, the relations
(hphp—1---h1)" = (hi'hy' -+~ hy')" form a complete set of relations for I'.

Under our circumstance, I' satisfies property (x) (Definition 3.0.8) and
hence the numbers pu, quv of sides of the net N meeting at v;, v;11 are even
numbers; pu = 21, qu = 2k.

Definition 3.2.11. We call L cycles of lengths | — 1,1,1 + 1, D-, H-, S- L
cycles respectively and similarly, for R cycles of lengths k£ — 1, k, k + 1. Here,
D means deficient, half for H and superfluous for S. By a full cycle, we mean
a cycle of length 2/ or 2k.

Clearly, a full cycle is equal to the identity in T'.
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Definition 3.2.12. ([20]) If h = g;, we write hT = g, and h™ = g;_;. If
B=by b, B'=by - b.41,C =c;--c,s are L [respectively, R] cycles with
et (bH}l) [respectively, ¢;* (bril)_], we say B and C are adjacent
or consecutive L [respectively, R] cycles. A sequence By, Bs, ..., B, of con-
secutive L cycles, where By, B, are H-cycles and Bs, ..., B, 1 are D-cycles,
will be called an L H-chain; such a sequence with By an L. D-cycle is an L
D-chain, often denoted by DD --- DH.

Proposition 3.2.13. ([20], Proposition 1.1) A sequence ey ---¢e, € (I'r)" is
admissible if and only if

(1) gg7', g € g, dose not occur,
(2) No R H-cycles occur,
(3) No L S-cycles occur,

(4) No L H-chains occur.

Consider a map 7 : X7 — S! defined by m(ejes - ﬂ fr

Then the image m(ejes - - - ) has exactly one point due to the ﬁmte intersec-
tion property and the expansion condition of f. However, the map 7 is not
one-to-one: for z € S' with f*(s) € {P}, P, ..., Py,} for some n > 0, x has
two representation because P, can be written either as infinite sequence of
consecutive R D-cycles (DD ---), or as an infinite sequence of consecutive L
cycles (HDD ---).

Also, for x € X7, if # does not end in an infinite string of R D-cycles,
(moo)(x) = (f om)(x) where o denotes the shift map. Therefore, it is conve-
nient to take the representation of x as a sequence terminating with L cycles
whenever € S has two symbolic expressions in X*. Actually, this is why
we adopt the definition of f with the arc intervals {[P;P,;1)} rather than

{(P:Pisa]}-
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To associate a two-sided infinite sequence with a geodesic, we juxta-
pose two f-expansions (one-sided infinite sequences) of the end points of
the geodesic. However, we cannot be sure that the new sequence is still ad-
missible. Define a new map f : 9D — 9D by f] (Qi-1Q;] = 9i using the another
partition {(Q;_1Q;]}2", instead of {[P;_1P;)}?", . Clearly, this map f has the
same property (Definition 3.2.1) as the map f and the admissibility rules are
still the same in Proposition 3.2.13 by interchanging ‘R’ and ‘L’. Then we
now check the admissibility of the sequence using the map f:

Lemma 3.2.14. ([20], Lemma 2.1) The sequence ejey--- is admissible for

1

f if and only if the inverse sequence ---e; eyt is admissible for f.
2 €1

Imagine that a directed geodesic v has two end points &, 7 on the bound-
ary 0D and 7 goes from 7 to £. In this case we call £ the positive endpoint,
7 the negative endpoint of . If ejes - - - is the f-expansion of £ and fifs - -
is the f-expansion of 7, the arithmetic coding sequence (&, 7) = n~ £ will
be defined as --- f, ' f; teieg - - whenever --- fy ' fi teiey - - - is admissible.

Let > be the set of bi-infinite admissible sequences with left shift map o.
There are some propositions which explain the action of I' on the space ¥ as
a symbolic dynamical system. First, two are something about the I'-action
on XT:

Proposition 3.2.15. ([20], Proposition 2.2) Let x = ejey--- € X1, g € T'p.
Then

(1) either g(x) = gejes - -+ whenever gejeq--- € X,
(2) or g(x) = egez--- ifg=re;".
Proposition 3.2.16. ([20], Proposition 2.3 ) Suppose v € S, and g € T.

Let x = eyeg- -+, g(x) = fifa--- be the f-expansions of x, g(x). Then there
are s,t > 0 such that gejeq---es = fifo---frinl and es; = fri1,1 >0
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Q

Figure 3.7: Conjugate geodesics in Proposition 3.2.17

The following proposition says that the map f is orbit equivalent to I'
on S'. To put it concretely, except for a finite number of pairs of points, if
(r,y) € S* x S! with = gy for some g € T' then there are nonnegative
integers n, m such that f"(x) = f™(y), and vice versa. Such a pair (z,y) is a
set of endpoints of an admissible geodesic. Therefore the admissible geodesics
are conjugate under the action of I' if and only if the corresponding sequences
are shift equivalent:

Proposition 3.2.17. (][20], Proposition 2.4) Let (P,Q),(R,S) € S' x S! be
such that Q=1 * P,R™' xS € Y. Then there exists an element g € T with
gP = R,gQ = S if and only if there is a number n so that c™(Q~! x P) =
R1'xS.

Recall R = {y € G :yN R # O}, and 3 denotes the set of all bi-infinite
reduced sequences in I'g. Define A = {y =~(,n) € X :n7 ' x & € X, where
&, n are the positive and negative endpoints of v}.

Lemma 3.2.18. ([21], Lemma 5.1) If v € R and n~ ' x& is not shortest, then
v 1s a side of the net N.

33



CHAPTER 3. SYMBOLIC CODING OF GEODESICS

Lemma 3.2.19. ([21], Lemma 5.2) Suppose that v € RAA and that n~ & is
shortest. Then ny ' x&y lies in a cycle or a chain and vy passes near v = v(&, 7).

We say that a sequence contains a pseudo half cycle when the sequence
begins or ends in an infinite chain of cycles of lengths n(vy),n(vy), -+ at
vertices vy, v, - - - . Edge paths of geodesics passing a vertex too nearby always
contain half cycles. More specifically, the following is known:

Lemma 3.2.20. ([21], Lemma 5.3) Suppose v passes near v. Then:

(i) if v € R and cuts off v on R, then E(v) contains a chain beginning or
ending in a half cycle or pseudo half cycle and including the cycle at v.

(11) if n=' * & is shortest and v = v(£,n), then E(n~' x £) has the same
property as in (i).
We write down the proposition in order to relate the two sets A with R:

Proposition 3.2.21. ([21], Proposition 5.6) Suppose ny* * & lies in a cycle
or chain and that v passes near v(&,n). Then

(i) 7 x &€ A= (v goes clockwise around v < v € R),

(ii) n7 ' x & & A = (v goes counterclockwise around v < v € R)
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Artin Method for Some
Examples of Surfaces

Recall R = {y € G :yN R # O}, and 3 denotes the set of all bi-infinite
reduced sequences in ['p. Define A = {v =7(&,n) € L : 71 x £ € X, where
&, n are the positive and negative endpoints of v}.

Theorem 4.0.22. ([21], Theorems I and II) There is a bijection T : A — R
such that To = 1T. A is partioned into a finite number of pieces with geodesic

boundaries such that on each piece, T is some fized element of I', and T gsnr
= 1d.

4.1 Torus with punctures

These are the simplest examples demonstrating the Morse coding because
there is no interior vertex of a fundamental domain R and hence there is
no ambiguity when we choose generators of sides cut by geodesic. Moreover,
the set 3 of all reduced sequences are realized as Morse coding sequences of
elements of I'p of geodesics of § for a properly chosen fundamental domain.

The fundamental group of a torus M, with n punctures is a free group
with n 4+ 1 generators. If we consider each puncture as an ideal vertex, we
may choose its fundamental domain R as an ideal polygon on a Poincaré disc
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o

Figure 4.1: Torus with one puncture

=X

Figure 4.2: Torus with two punctures

© O

Figure 4.3: Torus with three punctures
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Figure 4.4: Torus with four punctures

(this means R has all its vertices on 9D = S'), which projects to M,,.

In this case the relevant shift space is the space of all bi-infinite reduced
sequences whose letters are its generators. We shall mention that the geo-
metric coding sequence of a geodesic except those having an endpoint as a
cusp is the same as the sequence obtained by the boundary expansion coding.

Theorem 4.1.1. If we can choose an ideal polygon as a fundamental domain,

R=Aando=r.

Moreover, the set of all admissible sequences in this case is a subshift
of finite type. In particular, it is a topological Markov chain since the re-
duced word is the only admissibility rule and hence the forbidden words are
of length 2.

The figures explain how to construct a fundamental domain in each case
(see Figure 4.1-4.4).

4.2 A closed surface with genus two

We look into the arithmetic coding of a closed surface S with genus two.

Let T be the fundamental group m(S) of the surface S. Then I' is a
finitely generated Fuchsian group of the first kind acting on the unit disc
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Q4 P Wi
Wio Wi

Figure 4.5: A fundamental region of a surface with genus 2
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D. Choose an octagon R in D as its Dirichlet region as the previous setting
as Section 3.1 and 3.2. Then I' is generated by side pairing maps by Theo-
rem 2.1.11, say {g1, g2, ..., gs}. Since the sides s; and s3 are identified by ¢;
and g3, one element is the inverses of the other ¢; = (93)_1. we will write

a=g = (gs)" Similarly, b = g4 = (g5) "

The boundary map f : 0D — 9D is defined by f|p,p,.,)(§) = gi(§), and
let ¥ be the set of all admissible sequences consisting of elements of T'p.
Then ¥ = {ejeq--- € '} : erepy1 - gy is admissible for any k,n € N}
= {& = GirGin--- = € € SY (&) € (gi,) for each n € N} according to
Section 3.2.

Let A be the alphabet (the set of all symbols) of ¥, then A consists of
the elements of I'g.

Let us state Theorem 3.2.5 again and prove it.

Theorem. ([21], Theorem 4.1) The subshift ¥ is a sofic system. More pre-
cisely, there is an alphabet B, and a finite-to-one map 8 : B — A, and a

o0

subshift of finite type ¥g C HB, so that the induced map B : ¥z — L1 is
i=0
surjective and injective except at a countable set of points where it is two-to-

one.

Series proved the above theorem using a Markov map and a Markov par-
tition ([21], Lemma 4.1). We are going to follow two of her papers first and
then give another proof of Theorem 3.2.5.

Proof by Series. Theorem 3.2.2 assures us that there exists a Markov map
in our situation because all conditions are satisfied.

We will choose another alphabet B and another admissibility rule so that
the new system Xz is a subshift of finite type. As mentioned in Section 3.2,
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it happens when the admissible sequences are defined with Markov partition.

Put another label W; on {P;, Q;}%_, in the counterclockwise order: W; =
Py, Wy = Qs, W3 = P, and so on (see Figure 4.5). Define the arc intervals
I ={I; = [W;Wi 1)}, with Wy; = Wy. Let the f-expansion of a point £ on
the boundary of the disc S* be the one-sided infinite sequence & = igiyiz - - -
obtained by iterating f where f"(x) € I;,,n = 0,1,2,---. Here, the map f
is defined by f(x) = gix(x) where z € I; C [Py Py41) for some k.

Recall that the word i,i, appears if and only if f(I,) D I, and hence the
set Xp of all sequences & = igiyia -+ for any & € S! is a subshift of finite
type. The alphabet B of ¥z is the set {1,2,--- ,16}.

Let us check this map f defined on the partition {I; = [W;W;,1)}:¢, has
the Markov property (Definition 3.2.1).

(a) By Proposition 3.2.16, the map f is orbit-equivalent to I" on the unit
circle St

(b) (i) f is equal to a fixed element of I'g on each I;.

(i) Since each element of I' is an isometry (and hence a continuous
map), f sends an arc interval to an arc interval. By Lemma 3.2.3,
f(Ix) is a union of adjacent arc intervals in I. Therefore, if f(I) N
I; # 0, then f(I;) 2 I; for any j, k.

Therefore, the set Yz is a topological Markov chain, namely, a one-step sub-
shift of finite type.

If we set amap 3: B — Aby 2i —1,2 + g; ' foreach i = 1,2,...,8,
then J is a two-to-one continuous map because both intervals [I5;_115;) and
[I5;15;11) are properly contained in <g;1> = [P,P;;1). Hence the set X is a
factor of the set Yz, and show that X is a sofic system. O]

We are now going to construct a finite directed labelled graph to suggest
another proof of the above theorem using the Automata theory.
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(04,33) (03,82) (U2751) (05,?14) (U&S?) ('U7736) (U6735) (Ul,US)

N A B I BV BV G L BV

AR ANEEY S N A I S VR
(01781) (114,84) (03,83) (U2782) (U5,S5) (U&Ss) (07787) (U6756) (U1,81)

Diagram 4.1: Vertex cycle in the left-hand cyclic order

Another proof by constructing a finite directed graph. First, we want to know
relation sequences in the fundamental domain of the surface with genus 2
using vertex cycles. This is the process to find congruent vertices of R as
explained in the Section 3.2.

Let v; be a vertex of R and s; an adjacent side; then the vertex and the
side are identified with vy = g1(v1), s3 = g1(s1) by g1 = a. Take the other side
of R adjacent to vy, s4. The generator of the side s4 on inside is g4 = b . After
we identify the pair (v4, s4) by g4, we arrive at (vs, s2). Then, by taking the
other side, we pass to the pair (vs, s3) (see Figure 4.5). Repeat this process.
One can observe the whole process in Diagram 4.1.

The generators in left-hand(L) cyclic order a=!, 671 a,b,c7!,d™1, ¢, d form
a relation: the counterclockwise sequence satisfies a='b~tabc 'd~'ed = 1. Sim-
ilarly, we obtain the generators in right-hand(R) cyclic order a™*, b, a, d!,
¢, d, ¢, b~! by starting with the pair (vq, s1): the clockwise sequence satisfies
a tbad e tdeb™! =1 (x).

Under this circumstance, we investigate forbidden words using Proposi-
tion 3.2.13:

Proposition. ([20], Proposition 1.1) A sequence ey ---e, € (I'g)” is admis-
sible if and only if

(1) gg7', g € Tr, dose not occur,
(2) No R H-cycles occur,

(3) No L S-cycles occur,
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g9~ ' | R H-cycle | L S-cycle L H-cycle | L D-cycle
aa™ | ad e 'd | abc 'd e abc td=1 | abe™!

b bb=t | bed et | belded bct'd e | be7ld!
atlata|atbad™t | a b rabe™t | a7 b rab | a7 b la
b1 | v | b ta"tba | b tabc'dt | b tabet | b lab

¢ |lect | eb7 a7ty | eda b ta cda='b7! | cda™t

d | dd=' | deb~ta™t | da”tb~tab da='b"a | da='b7!
ctlcte | etdeb™ | e tdleda | e tded | cld e
dt | dtd|dtetde | dleda b7t | dteda™! | dted

Table 4.1: forbidden words

(4) No L H-chains (of the form HDD--- DH) occur.

Then the set X7 consists of all reduced one-sided sequences not contain-

ing R H-cycles, L S-cycles, and L. H-chains. Now that it is possible for L

H-chains of length (3n + 8) to exist for any positive integer n, the system
YT can not have a finite list of forbidden words. Using the relation sequences
(%), we obtain the table of forbidden words (the left three columns in Table

3.1).

The set T has forbidden words of length at most 5 but it may have
an infinite D-cycle chain not bounded by some L Half cycles. Therefore, we

should be careful when we deal with L D-cycles. Hence, we first construct a

directed graph which gives sequences in ¥ containing no L D-cycle. After

then, we add L H-cycles and L D-cycles without making any L. H-chain.

We set the temporary admissibility rule in this case as follows:

R1) gg~', g € I'g, dose not occur,

(R1)
(R2)
(R3)
(H4)

H4

No R H-cycles occur,
No L S-cycles occur,

No L H-cycles occur,
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(D5) No L D-cycles occur.

Note that the condition (D5) implies the two conditions (R3), (H4). Thus,
if we want to consider the whole rules (R1), (R2), (R3), (H4), and (D5), we
need to check the only three rules (R1), (R2), (D5).

Let W, (XT) be the set of all words (called factors) of length 4 appearing
in some sequence of ¥t (that is, it is not containing any forbidden words:
words of the form gg~' and R H-cycles). We divide this set Wy(X") into
three subsets Wg(X1), Wy (XT), Wp(ET) which are pairwise disjoint.

1. Fisrt, we obtain Wgp(X*1) from W, (X) excluding all words containing
any L D-cycle. Note that Wg(X1) has no words containing any L D-
cycle or L H-cycle, in other words, Wr(X1) is the set containing all
words of length 4 satisfying the conditions (R1), (R2), (D5).

2. The second set Wy (X7) is obtained from Wy(XT) - Wg(XT) choosing
all words containing any L H-cycle. Wy (XT) consists of exactly 8 L
H-cycles.

3. Then the set Wp(XT) consists of all remaining elements in Wy(X1),
namely, Wp(XT) = Wy(E1) — We(XT) — Wy (XT). This set Wp(ET)
consists of words of Wy (XT) containing an L D-cycle not an L H-cycle
and hence there are 96 elements in Wp(X1).

Clearly, Wy(S*) = Wp(SH) U Wi(SH) U Wp(E5).

Then we now construct a directed graph Ap as follows: each element in
Wg(31) is a vertex of Ap, and there is a directed edge from xixows3z4 tO
xyxhaba) provided that the concatenated word xixoxszrsxl = x2)xhaial is
an allowed word in ¥, in other words, it is not an L S-cycle. We will call
this rule the edge rule from now on. In this graph Ap, we cannot obtain a
sequence containing any of L D-cycles and hence L. H-cycles.

Now, we construct two directed graphs Ap and Ay upon the above ad-
missibility rules.
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Ap — Ap — Ay

Figure 4.6: The schema of the finite directed graph A

Ap: The vertex set V(Ap) of the graph Ap is equal to the set Wp(X1), and
the edge set E(Ap) is obtained by the edge rule.

Apg: The vertex set V(Ay) of the graph Ay is equal to the set Wy (X1), and
the edge set E(Ap) is obtained by the edge rule. No two L H-cycles
satisfy the above rule, the edge set F(Ay) is an empty set.

Finally, we are going to connect the finite directed labelled graphs Ay
and Ap to Ar and denote the whole graph by A. Then a sequence containing
any of L D-cycles, L H-cycles can be expressed by a directed path in the
graph A. In order not to produce any L H-chain through this graph A, we
should regulate the “bridging” between three graphs A, Ay and Ap.

A sequence in X' may be the form ---DH---HD--- even though a L
H-chain is not allowed. We use a copy A/, of the graph Ap to make one-sided
paths between Ay and Ap: the allowed path goes from Ap to Ay and Ay
to A’,. Put a directed edge from each vertex of Ap to a vertex of Ay and a
directed edge from each vertex of Ay to a vertex of A}, complying with the
edge rule.
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Ap
/S RN

abetd | k< * | abetd ! > a | be ' |d7 > betdT | k< * | bemtd?
betdt | ke : * | betdt > b [c'd ¢ > ¢ 'd e | ke . *| ¢ 'd e
a”'bta | ke *a b ta >a | b la | b > b lab | * < ; * | b 'ab

b lab | *x [« *| b 'ab >b' ab ¢ abc™t | x| * | abe!

cda™ | ¥ < * | edat c|dat b7t da 'b" | * [« * | da'bt
da *b" | * [« * | da bt > d |la b7 a a b la | ke *[a b ta
cldte | R ¥ e 'd e >c | d e | d > d'ed | k(< *| dl'ed

d7led | * € *| dted >d7| ed |a” > cdat | k< *| cda™?

Ap Ay Ap
Figure 4.7: The directed edges between Ap, Ay and Ap
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Then each vertex of Ar connects with all vertices of three graphs Ap, Ay
and A5, respectively, of course satisfying the edge rule. Figure 4.6 shows the
“bridging” between three graphs A, Ay and Ap (A)) schematically. Note
that since there are no words containing an L. D-cycle in the graph Ag, there
is no edge between Ar and Ay by the edge rule. To be specific, we give a
simple view of directed edges between Ap and Ay (see Figure 4.7: here, an
asterisk means a letter which does not make the word an L. H-cycle in each

1

case. For example, in the case xabc™, % can be a letter among six symbols

b,a”t, b7 ¢, d7t. Note that all edges are multiple).

This merged graph A does not produce any sequence containing L. H-chain
(HDD --- DH) because we obtain an L. D-cycle or an L. H-cycle only when
we go through Ap (and Ay). All elements of the whole factor set Wy (3T) are
included in A and we can travel any path sequence in X * through the edges
in A defined by the rule (R1), (R2), (R3).

Each of the above graphs Ap, Ap, Ay, A, is defined by a finite set of
forbidden words, and hence all of them give a vertex shift. Clearly, all vertex
shifts defined by the graphs are shift invariant, and hence the vertex shift of
the merged graph A is also vertex shift; we can walk along directed edges of
the graph A visiting a vertex infinitely many times. That means each vertex
in A has at least one incoming edge and at least one outgoing edge.

Now if, after we put the last letter of each vertex in the graph A on
the outgoing edges from the vertex, we delete the labels of all vertices in A,
then we will obtain a directed graph with labelled edges. In other words, we
establish the edge shift (a finite directed graph with labelled edges) equal to
Y* from this finite directed graph A with multiple edges by interchanging
the vertex set V' (A) and the edge set E(A). Then A is a presentation of 3*
and hence X% is sofic by Proposition 2.2.7. O

Remark. The directed graph A can give an infinite string of consecutive L

cycles of the form HDD ---. This sequence corresponds with a point among
P, P,,---,P. The point x € S! has two representations in ¥ whenever
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fE(x) € {P, P, -+, B} for some k > 0 since P, can be written either as an
infinite sequence of consecutive R D-cycles, or an infinite string of consecutive
L cycles of the form HDD ---.
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