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Abstract

It is well-known that there are various ways of representing geodesics

on a surface M of constant negative curvature. There are two different meth-

ods on the bottom line: one is geometric coding and the other is arithmetic

coding. The former is the so-called Morse method which is coding a geodesic

by the cutting sequence as it passes a fixed set of curves on M . The lat-

ter, Artin method, is the construction using concatenating two sequences,

obtained by using a suitable boundary expansion, of two endpoints of a lift

of the geodesic (a geodesic in the unit disc D). In this thesis, we investigate

the more mysterious Artin method for specific examples of surfaces and show

that we obtain a sofic system by using Artin method.

Key words: geodesic coding, symbolic dynamics

Student Number: 2011-20262
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Chapter 1

Introduction

In 1898, Hadamard [10] proposed to use symbolic dynamics techniques in

order to study the geodesic flow on a surface S of constant negative curva-

ture. He constructed a surface of constant negative curvature whose geodesic

can be represented by a sequence through certain “coding procedure”.

This idea was inherited to Morse, Artin, Koebe, Nielsen, and Hedlund

in the 1920’s and 1930’s. Morse and Artin developed the theory of coding

geodesics independently around the same time.

Morse adopted the method known as the cutting sequence method. He

associated a bi-infinite sequence to each geodesic on any open surface of vari-

able negative curvature in 1921 ([16], [17]). He observed that each side of a

given fundamental domain R is naturally associated with a unique generator

of the fundamental group Γ. After labelling the same generator on the im-

ages of each side under the Γ-action, each geodesic γ determines a sequence

of generators which label the successive sides of the images of the fundamen-

tal domain R cut by γ. This assignment is called the Morse coding and the

sequence is called the cutting sequence of γ.

The Morse coding is canonical in the sense that the cutting sequence of

a geodesic is uniquely determined once a tessellation is chosen. However, the

sequence set obtained by this method may have a complicated structure be-
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CHAPTER 1. INTRODUCTION

cause if the fundamental region has a vertex in the disc, any geodesic passing

through a vertex of its tessellation has multiple coding sequences. In order to

establish a one-to-one correspondence between geodesics and sequences with

certain well-defined admissibility rules, one should take a small deformation

of any geodesic which approaches to a vertex of the net N too closely. Here,

the net N means the images of all sides of the fundamental domain under Γ.

In this thesis, we shall concentrate on generic geodesics, that is, geodesics

not passing to any vertex of the net including vertices on S1 too closely.

Another approach, by Artin, is the method which codes the endpoints

at infinity of some suitable lift of a given geodesic to H ([1]). Lifts of any

geodesic on S are also geodesics in the upper half plane H and have two

endpoints on R ∪ {∞}. Artin made a symbolic representation of a geodesic

by juxtaposing the continued fraction expansions of its endpoints.

This idea was not entirely new. A similar method was found by Nielsen

previously. For a surface whose fundamental domain R is a symmetric 4g-

sided polygon, he noticed that points on the unit circle S1 can be expressed

as a one-sided infinite sequence whose letters are elements of the fundamental

group Γ as in the case of the continued fraction expansion of a real number

([19]). Hedlund used this idea to represent a geodesic by juxtaposing the

Nielsen expansions of its endpoints and proved the ergodicity of the geodesic

flow on D/Γ using the fact that conjugate geodesics have shift equivalent

sequences and vice versa ([12]).

Now, in this spirit, the so-called Artin coding of a given geodesic γ is

defined by simply concatenating two one-sided infinite sequences correspond-

ing to two endpoints of γ using a suitable boundary map. The Artin coding

is called arithmetic coding since this method is of arithmetic nature. This

method gives different sequences for a fixed geodesic depending on the choice

of the boundary map even with the same tessellation of the plane.

For a given Fuchsian group or a given surface, we want to know how to

2



CHAPTER 1. INTRODUCTION

relate two sets obtained by the Morse method and the Artin method. In the

case of a torus with punctures (Section 4.1), a geodesic has the same sequence

both in the Morse coding and in the Artin coding. Moreover, the shift space

can be defined by a single rule, namely, any sequence does not contain a word

of the form gg−1 as its finite block where g is a generator of the fundamental

group. This is a 1-step Markov chain.

It is known that the set of Morse coding sequences for geodesics not pass-

ing too closely to a vertex of the tessellation is a topological Markov chain

if and only if the fundamental domain R does not have any vertex in D, or

equivalently, all vertices of R lie on the boundary S1. In this case, we will say

that R is a Dirichlet region consisting of an ideal polygon.

The case of a surface with genus two has some difficulty because its fun-

damental domain has interior vertices, in other words, it has vertices in the

disc D. We may choose a boundary map having a nice property, called the

Markov property, with Markov partition on the boundary (see the details in

Section 3.2). The set consisting of sequences defined by this map has a special

property, namely, it is a subshift of finite type. We will see that this process

show that the set of all sequences obtained by Artin coding of S1 except for

countable points is a sofic system.

In this paper, we are going to summarize several aspects about the main

two methods describing geodesics on a surface of constant negative curvature.

In Chapter 2, we introduce the notion of the shift spaces. The sets obtained

by the various coding methods are examples of shift spaces. we shall introduce

some terminologies and theorems related to the geometry of the surface in

Section 2.1 and explain the basic notion of symbolic dynamics in Section

2.2. The geometric coding and the arithmetic coding will be introduced in

Section 3.1 and Section 3.2, respectively. We will then give some descriptions

of Artin method on specific examples, namely, a punctured torus and a close

surface of genus two in Section 4.1 and 4.2.
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Chapter 2

Preliminaries

Throughout this paper, we write H for the upper half plane, D for the

open unit disc (the Poincaré disc) in the complex plane equipped with the

hyperbolic metric. The boundary of the open unit disc is denoted by ∂D,

often by S1. Let N, Z, R and C denote the set of natural numbers, integers,

real numbers, and complex numbers, respectively.

We use both the unit disc model and the upper half plane model of the

hyperbolic geometry without distinction. Define a map ∆ : Ĉ → Ĉ to be

∆(z) =
z − i
z + i

. Then this map and the inverse ∆−1 : w 7→ ∆−1(w) = i
1 + w

1− w
are Möbius transformations (and hence conformal maps). The map ∆ sends

the real axis and the point at infinity to the unit circle and leaves the upper

half plane invariant. Through this map, we have analogous facts in the unit

disc model as in the upper half plane model.

2.1 Fuchsian groups and Dirichlet regions

Let Ĉ denote the extended complex plane, namely, the union of the com-

plex plane and the point at infinity, C ∪ {∞}. The Möbius group of all

orientation-preserving Möbius transformations of Ĉ onto itself is isomorphic

to the projective general linear group PGL(2,C) over C (that is, the quotient
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CHAPTER 2. PRELIMINARIES

group GL(2,C)/{
(
λ 0

0 λ

)
: λ 6= 0}) since all matrices of the form λA (λ 6= 0)

give the same Möbius transformation as A ([2] §4).

The projective special linear group PSL(2,R) over R acts on the up-

per half plane H by Möbius transformations: to each matrix

(
a b

c d

)
with

a, b, c, d ∈ R, ad − bc = 1, we assign the Möbius transformation g(z) =
az + b

cz + d
(z ∈ H). Notice that PSL(2,R) contains all transformations of the

form z 7→ az + b

cz + d
with ad− bc > 0.

The circle {z ∈ D : |cz + d| = 1} is called the isometric circle of g ∈ Γ,

where g(z) = (az+b)/(cz+d) since |g′(z)| > 1 inside this circle and |g′(z)| < 1

outside.

Let Isom(H) denote the group of all transformations of the upper half

plane H onto itself preserving the hyperbolic distance in H, namely, isome-

tries ofH and Isom+(H) be the subgroup of Isom(H) consisting of all orientation-

preserving isometries of H.

Theorem 2.1.1. ([14], Theorem 4.1) The group Isom(H) is generated by

the Möbius transformations from PSL(2,R) together with the transformation

z 7→ −z̄. The group PSL(2,R) is a subgroup of Isom(H) of index two.

This theorem gives the characterization of all the isometries of the upper

half plane H. We will refer to transformations of the forms
az + b

cz + d
(ad− bc =

1) as orientation-preserving and to transformations of the form
az̄ + b

cz̄ + d
(ad−

bc = −1) as orientation-reversing isometries. Thus the group PSL(2,R) con-

sists exactly of all orientation-preserving isometries in the upper half plane,

Isom+(H) ([14] pp.8-9, 11). The action of the group PSL(2,R) extends from

H to its Euclidean boundary R ∪ {∞}.
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CHAPTER 2. PRELIMINARIES

The group GL(2,C) is a topological group with respect to the metric

induced from R4; for A =

(
a b

c d

)
, the norm ‖A‖ is given explicitly by

‖A‖ = (|a|2 + |b|2 + |c|2 + |d|2)
1/2

.

A subgroup G of GL(2,C) is said to be discrete if the subspace topology

on G is the discrete topology, that is, G is a discrete set in the topological

space Isom(H). The following are equivalent conditions of the discreteness of

a subgroup G of GL(2,C):

1. For X,A1, A2, . . . ∈ G, if An converges to X, then An = X for all

sufficiently large n. Note that X may not be in G but in GL(2,C).

2. For An ∈ G, if An converges to the identity matrix I, then An = I for

almost all n.

3. In case of SL(2,C), for each positive k, the set {A ∈ G : ‖A‖ ≤ k} is

finite, that is, G cannot have any limit points (this criterion shows that

a discrete subgroup G of SL(2,C) is countable).

Any discrete subgroup of Isom(H) contains a special subgroup which con-

sists of orientation-preserving isometries. We are concerned with a discrete

subgroup of orientation-preserving isometries in the upper half plane.

Definition 2.1.2. A Fuchsian group is a discrete group consisting of orientation-

preserving isometries in the upper half plane H, or equivalently, is a discrete

subgroup of PSL(2,R).

The set of all orientation-preserving transformations in any discrete sub-

group of Isom(H) is a Fuchsian group. Therefore, the study of Fuchsican

groups is of importance when we study discrete subgroups of Isom(H). In

general, discrete subgroups of isometries satisfy a slightly weaker discontinu-

ity condition.
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CHAPTER 2. PRELIMINARIES

Definition 2.1.3. Let X be a locally compact metric space, and let G be

a group of isometries of X. We say that G acts properly discontinuously on

X if the G-orbit of any point x ∈ X is locally finite, in other words, for any

compact subset K ⊂ X, {gx ∈ K : g ∈ G} is a finite set.

This definition is equivalent to the fact that each orbit has no accumula-

tion point in X and the order of the stabilizer of each point is finite. In fact,

the discreteness of all orbits implies the discreteness of the group.

Theorem 2.1.4. ([14], Theorem 8.6) Let Γ be a subgroup of PSL(2,R).

Then Γ is a Fuchsian group if and only if Γ acts properly discontinuously on

H.

Corollary 2.1.5. ([14], Corollary 8.7) Let Γ be a subgroup of PSL(2,R).

Then Γ acts properly discontinuously on H if and only if for all z ∈ H, the

Γ-orbit Γz of z is a discrete subset of H.

Therefore, if z ∈ H and {gn} is a sequence of distinct elements in a

Fuchsian group Γ such that {gn(z)} has a limit point α ∈ Ĉ, then α ∈
R∪{∞}. For any Fuchsian group Γ, the limit set Λ(Γ) lies in R∪{∞}; or, in

the unit disc model, Λ(Γ) ⊂ S1. In the upper half plane model, the centers of

all isometric circles belong to the real axis R. Let CΓ be the set of the centers

of the isometric circles of all elements in Γ. It is known that the limit set

Λ(Γ) is equal to the set of all limit points of CΓ. We shall classify Fuchsian

groups in the unit disc model as follows([13]):

(a) Fuchsian groups is said to be of the first kind if every point of the unit

circle is a limit point.

(b) Fuchsian groups is said to be of the second kind if its limit points are

nowhere dense on the unit circle, namely, an empty set, a set containing

one or two points, or a perfect (and therefore infinite) nowhere dense

set.

Suppose that Γ is a group of isometries acting properly discontinuously

on D. There is a geometric realization for the set of representatives of orbits,

7



CHAPTER 2. PRELIMINARIES

called a fundamental domain, which is a subset of D containing exactly one

point from each of these orbits. The following is a precise definition:

Definition 2.1.6. A closed regoin F of D is defined to be a fundamental

domain (or fundamental region) for Γ if it satisfies the following :

(i)
⋃
g∈Γ

g(F ) = D,

(ii) F̊ ∩ ˚g(F ) = Ø for all g ∈ Γ− {id}.

A closed region means a closure of a non-empty open set F̊ , called the interior

of F . The set ∂F = F\F̊ is called the boundary of F . The collection {g(F ) :

g ∈ Γ} is called the tessellation or tiling of D.

Suppose now that Γ is a Fuchsian group acting discontinuously on D.

Fundamental regions of Fuchsian groups are our main concern. Any Fuch-

sian group possesses a nice fundamental region. Therefore, we are going to

consider only the following special kind of fundamental domains in this arti-

cle:

Definition 2.1.7. Let Γ be an arbitrary Fuchsian group and let p ∈ D be not

fixed by any element of Γ − {id}. Let Dp(Γ) = {z ∈ D : ρ(z, p) ≤ ρ(z, g(p))

for all g ∈ Γ} where ρ is the hyperbolic metric in D. Then we call this set

Dp(Γ) the Dirichlet region for Γ centered at p. Equivalently, for each fixed

g ∈ PSL(2,R), if we define the hyperbolic half-plane Hp = {z : ρ(z, p) ≤
ρ(z, g(p))}, then Dirichlet region for Γ centered at p is the intersection of

such hyperbolic half-planes

Dp(Γ) =
⋂

g∈Γ,g 6=id

Hp(g),

and thus it is a hyperbolically convex region.

The set obtained from this definition is indeed a connected and convex

fundamental region.

8



CHAPTER 2. PRELIMINARIES

Theorem 2.1.8. ([14], Theorem 10.3) If p is not fixed by any element of

Γ− {id}, then Dp(Γ) is a connected fundamental region for Γ.

The tessellation {g(F ) : g ∈ Γ} of D by a Dirichlet region F is referred

to as a Dirichlet tessellation and all its images under Γ are called faces.

The intersection between two bordering faces is said to be an edge, and a

vertex is the point of intersection of three or more bordering faces. We will

sometimes call the collection of all edges in the tessellation the net. This

Dirichlet tessellation has nice local properties, namely, local finiteness.

Proposition 2.1.9. ([14], Proposition 11.3) The vertices of a Dirichlet re-

gion F are isolated, in other words, every vertex of F has a neighborhood

containing no other vertices of F .

Corollary 2.1.10. ([14], Corollary 11.4) A compact Dirichlet region has a

finite number of vertices.

The following theorem suggests a geometric interpretation of the Γ-action

in the fundamental domain:

Theorem 2.1.11. ([14], Theorem 11.8) For some fixed Dirichlet region F ,

let {gi} be the subset of Γ consisting of those elements which pair the sides

of F . Then {gi} is a set of generators for Γ.

Theorem 2.1.12. ([14], Theorem 11.7 Let F be a Dirichlet region for Γ. Let

θ1, θ2, · · · , θt be the internal angles at all congruent vertices of F . Let m be

the order of the stabilizer in Γ of one of these vertices. Then θ1+θ2+· · ·+θt =

2π/m.

Remark. Therefore, if a vertex is not a fixed point, then we have m = 1 and

θ1 + θ2 + · · · + θt = 2π. The following is known: as F is locally finite, there

are only finitely many vertices in a congruent cycle. As the stabilizers of two

points in a congruent set are conjugate subgroups of Γ, they have the same

order.

9
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We shall deal with Fuchsian group of finite covolume and hence the fol-

lowing theorem is worth recording.

Theorem 2.1.13 (Seigel’s Theorem). ([14], Theorem 13.1) If the Fuchsian

group Γ is such that µ(Γ\H) < ∞, then Γ is geometrically finite, in other

words, any Dirichlet region F = Dp(Γ) has finitely many sides.

There are three types of elements in PSL(2,R) = {z 7→ g(z) =
az + b

cz + d
:

ad − bc = 1} distinguished by the the absolute value of its trace Tr(g) =

|a + d|. The transformation g is called elliptic if Tr(g) < 2; parabolic if

Tr(g) = 2; hyperbolic if Tr(g) > 2. By solving the equation z =
az + b

cz + d
, we

see that a hyperbolic transformation has two fixed points in R ∪ {∞} (one

repulsive and one attractive), a parabolic transformation has one fixed point

in R ∪ {∞} and an elliptic transformation has a pair of complex conjugate

fixed points, and hence, one fixed point in H ([13] §2.1).

Definition 2.1.14. A Fuchsian group is said to be cocompact if the quotient

space Γ\H is compact, where H is the hyperbolic upper half plane {z ∈ C :

im(z) > 0}.

The theorem and corollary below explain the relationship between the

compactness of the quotient space and the property of a Fuchsian group Γ:

Theorem 2.1.15. ([14], Theorem 14.2) If a Fuchsian group Γ is cocompact,

that is, Γ has a compact Dirichlet region, then Γ contains no parabolic ele-

ments.

Since the compactness of a Dirichlet region for a Fuchsian group Γ is

equivalent to the cocompactness of Γ ([14], Corollary 14.4), we have the

following corollary:

Corollary 2.1.16. ([14], Corollary 14.8) A Fuchsian group Γ is cocompact

if and only if µ(Γ\H) <∞ and Γ has no parabolic elements.

10



CHAPTER 2. PRELIMINARIES

2.2 Subshifts of finite type and Sofic systems

By a discrete-time dynamical system, we mean a pair (X, f) of a non-empty

set X and a map f : X → X. From now on, we shall introduce the notion

of shift spaces, which are well-known examples of discrete-time dynamical

systems.

For any natural number m > 1, we call a set Am = {1, 2, . . . ,m} an alpha-

bet and its elements symbols. we refer a word as a finite sequence consisting

of symbols.

Let (X, f) and (Y, g) be discrete-time dynamical systems. If there exists

a surjective map π : Y → X such that π ◦ g = f ◦ π, then we say (X, f) is a

factor of (Y, g) and (Y, g) is an extension of (X, f). In this case, the map π is

called a semiconjugacy. The map π is also called a factor map or a projection.

Y
g
- Y

X

π
? f

- X

π
?

Moreover, if the map π is invertible, π is called a conjugacy. In this case, X

and Y are said to be conjugate.

Let Σm (= AZ
m) be the space of all two-sided infinite sequences of sym-

bols in Am, and Σ+
m (= AN

m) be the space of all one-sided infinite sequences of

symbols in Am. Define the left shift map σ on Σm or Σ+
m so that σ(x)i = xi+1

for all i. The pair (Σm, σ) is the full two-sided shift ; (Σ+
m, σ) the full one-sided

shift. These are typical examples of symbolic dynamical systems.

From now on, we are concerned with two-sided shift in the remaining

section.

The set Σm is a topological space (often called the Cantor space) with respect

to the distance d defined by d(x, y) = 2−n with n = min{|k| | xk 6= yk, k ∈ Z}
for x, y ∈ Σm.

We are interested in a subset which can be a dynamical system with the

11
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left shift map. We say that a bi-infinite word z ∈ Σm avoids a set of words

X ⊂ Σm if z does not contain any word in X (we will call each word in X a

forbidden word). A symbolic dynamical system S of Σm is defined by such a

subset X.

Proposition 2.2.1. ([15], Proposition 1.5.1) A subset S of Σm is a symbolic

dynamical system if and only if it is closed for the topology and invariant

under the left shift map.

This proposition gives the following definition:

Definition 2.2.2. A subshift is a closed subset X ⊂ Σm, which remains

invariant under the shift map σ and its inverse σ−1.

Let Xi ⊂ Σm(i = 1, 2) be two subshifts. By a code from X1 to X2, we

mean a continuous map from X1 to X2 commuting with the shift map σ,

that is, c : X1 → X2 such that c ◦ σ = σ ◦ c. Note that a surjective code is a

factor map.

There are two things that can describe a natural class of subshifts: ad-

jacency matrices and their associated directed graphs. An adjacency matrix

is an m × m matrix whose entries are zero or one. To given an adjacency

matrix A = (aij), we associate a directed graph ΛA having m vertices and

the number aij of edges from vertex i to vertex j for all i, j. Conversely, a

finite directed graph Λ with n vertices and no multiple edges determines an

n× n adjacency matrix.

Assume that we have an m ×m adjacency matrix A = (aij). A word or

an infinite sequence x in the alphabet Am is said to be allowed (accessible

in some other text) provided that axixi+1
> 0 for every i, that is, if there

exists an edge from xi to xi+1 in the associated directed graph ΛA for each i,

where xi is the index of the vertex visited at time i. Therefore, we consider

an allowed word or sequence as a walk along directed edges in the graph ΛA.

A word or an infinite sequence is forbidden if it is not allowed.

12
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For a given adjacency matrix A, let ΣA ⊂ Σm be the set of all allowed

two-sided sequences as explained in the above. Then ΣA is a closed shift-

invariant subset, namely, a subshift. In this case, the pair (ΣA, σ) is called

the two-sided vertex shift determined by A.

Definition 2.2.3. A subshift X ⊂ Σm is called a subshift of finite type (SFT)

if there is a finite collection of finite forbidden words which can determine X,

that is, there are finitely many words such that X consists of precisely the

sequences in Σm that do not contain any of these words. X is called a k-step

SFT if the length of any forbidden word is at most k+1. In particular, when

k = 1, X is called a topological Markov chain.

A vertex shift is an example of a subshift of finite type, more precisely, a

topological Markov chain. Moreover, we have the converse:

Proposition 2.2.4. ([8], Proposition 3.2.1) Every subshift of finite type is

isomorphic to a vertex shift.

Proof. Let X be a k-step SFT. We want to find an adjacency matrix A

and hence a conjugacy c from X to some vertex shift Σv
A, the set of all

allowed sequences defined by A. Let Wk(X) be the set of all words of length

k appearing in X, and let n be the cardinality of Wk(X). Construct a graph

Λ as follows:

(1) The vertex set V (Λ) consists of elements of Wk(X).

(2) The elements of edge set E(Λ) are defined as follows: there is a di-

rected edge from a vertex x1x2 · · · xk to a vertex x′1x
′
2 · · ·x′k if the words

x1x2 · · · xkx′k = x1x
′
1x
′
2 · · ·x′k belong to the set of all words in X of

length k + 1, Wk+1(X).

Then, this edge condition gives an n × n adjacency matrix A, and hence

determines a vertex shift Σv
A. Clearly, Σv

A is a subset of X. If we define the

map c : X → Σv
A by c(x)i = xixi+1 · · ·xi+k−1 ∈ Wk(X), c is an invertible

surjective map, a conjugacy from X to Σv
A.

More generally, if we consider an n× n matrix with nonnegative integer

entries, we can construct a finite directed graph with multiple directed edges

13
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between some pairs of vertices. To be precise, for an n× n adjacency matrix

B with each entry nonnegative integer, there is a directed graph Λ with n

vertices and with Bij labelled edges from the vertex i to the vertex j. Let

Σe
B be the set of all infinite directed paths in Λ. Then Σe

B is closed and shift-

invariant and is called the edge shift determined by B. Note that any edge

shift is isomorphic to a vertex shift in that we can construct a new graph by

taking an edge of the original as a vertex. Hence it is also a subshift of finite

type by the above proposition.

Corollary 2.2.5. ([8], Corollary 3.2.2) Every subshift of finite type is iso-

morphic to an edge shift.

We sometimes seek the weaker notion than subshifts of finite type; a

generalization of subshifts of finite type, called sofic shift.

Definition 2.2.6. A subshift X ∈ Σm is called sofic if it is a factor of a

subshift of finite type, that is, there is an adjacency matrix A and a surjective

code c : Σe
A → X such that c ◦ σ = σ ◦ c. Here, Σe

A means the edge shift

determined by A.

Let Λ be a finite directed labelled graph, that is, the edges of Λ are labelled

by a symbol of a fixed alphabet set. Note that, in this case, the graph Λ has

the same label on some different edges, in other words, we allow that different

edges of Λ have the same label (this is the only difference with an edge shift).

The subset XΛ ⊂ Σm consisting of all infinite directed paths in Λ is closed

and shift invariant. If a subshift (X, σ) is isomorphic to (XΛ, σ) for some

directed labelled graph Λ, then we say that Λ is a presentation of X or Λ

presents X. Now we are ready to introduce the most important proposition

in this section:

Proposition 2.2.7. ([8], Proposition 3.7.1) A subshift X ⊂ Σm is sofic if

and only if it admits a presentation by a finite directed labelled graph.

Remark. ([6]) There is “almost” the same notion as a sofic system in the

coding theory. A constrained system or constraint system is the set X of

14
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all words (finite sequences) obtained from reading the labels of edge paths

in a labelled directed graph Λ. In this case, we say that Λ represents X. A

constrained system is equivalent to a regular language in automata theory

which is recognized by an automaton, namely, the states of which are all

accepting. A constrained system is called a sofic system in symbolic dynamics

except that a sofic system usually refers to the bi-infinite symbol sequences

generated by a labelled directed graph. A constrained system should not

be confused with any particular labelled graph because a given constrained

system can be presented by many different labelled directed graphs.

15



Chapter 3

Symbolic Coding of Geodesics

Recall that a discrete group of linear fractional transformations of the

form z 7→ (az + b)/(cz + d) with ad− bc = 1 is a Fuchsian group and when

there are points of the unit circle S1 with dense orbits, that is, its limit set

is the whole unit circle, Γ is said to be of the first kind. Let Γ be a finitely

generated Fuchsian group of the first kind acting in the unit disc D. The

corresponding surface S = D/Γ is a Riemann surface of constant negative

curvature of finite area.

Recall that the circle {z ∈ D : |cz + d| = 1} is called the isometric circle

of g ∈ Γ, where g(z) = (az + b)/(cz + d) since |g′(z)| > 1 inside this circle

and |g′(z)| < 1 outside. Such isometric circles are always circles orthogonal

to S1 = ∂D.

Throughout this article, we deal with the only case that the fundamental

region R has even corners. This means that the net N = Γ(∂R) consists of

complete geodesics in D. Series ([5]) redefined this notion as follows:

Definition 3.0.8. we will say that R satisfies property (∗) if, for each side s

of R,

(i) C(s) is the isometric circle of gs,

(ii) C(s) lies completely in the net N ,
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CHAPTER 3. SYMBOLIC CODING OF GEODESICS

where C(s) is the circle containing s orthogonal to S1 and the other side of

R is identified with s by an element gs ∈ Γ.

According to the paper [5], we can construct a fundamental domain for

Γ which satisfies property (∗) whenever the quotient space D/Γ has positive

area. Therefore, from now on we shall suppose that R satisfy the property (∗)
and moreover that R is not a triangle and dose not have elliptic vertices of

order 2.

In this setting, we also assume that the origin O is not fixed by any el-

ement of Γ− {id}. Then Γ has a fundamental region R (in fact, a Dirichlet

region) R in D which can be chosen to be a polygon consisting of a finite

number of circular arcs and containing the origin O of D inside (Theorem

2.1.8 and Theorem 2.1.13). A Dirichlet region R of Γ is a geodesically con-

vex polygon. Note that geodesic convexity of R means that the geodesic arc

joining any two points in R lies in R. Therefore, each extension of a side of R

in the Poincaré disc D is a circle orthogonal to the boundary S1 of the disc,

namely, R consists of a finite number of geodesic segments.

By property (∗), R has an even number of sides, say {s1, s2, . . . , s2n}.
Moreover, each side si of R is identified with another side sj by the isometry

gi ∈ Γ. Then the set {g1, g2, . . . , g2n} is the symmetric set of generators for

Γ and its inverses, denoted by ΓR (Theorem 2.1.11).

Obviously, geodesics on S are the projections of circular arcs in D orthog-

onal to S1. Note that S is compact if and only if R has no cusps, vertices

lying on S1 (Theorem 2.1.15 and Corollary 2.1.16).

We shall describe the Morse method and the Artin method of coding

geodesics on the torus with n punctures and the closed surface with genus

two.

17
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Figure 3.1: The Morse coding method

3.1 Geometric coding

Let G denote the set of all oriented geodesics in D, R = {γ ∈ G :

γ ∩ R 6= Ø}, and let Σ be the set of all reduced bi-infinite sequences in

ΓR. Here, reduced means that a generator g ∈ ΓR dose not follow or precede

its inverse g−1.

For a given surface S, after choosing a suitable fundamental domain R,

we label each side s of R on the inside by the element g of ΓR if the side

s is identified with g(s) in R. This is equivalent to labelling the side s on

the outside by the element g−1, and from now on we call the latter exterior

labelling. Similarly, label all images of side s under Γ with the same generator

g on the inside to obtain a labelling of the net N = Γ(∂R), the images of

sides of R. With this convention, if gR and hR are adjacent along a side s,

then the side of s which is interior to hR is labelled g−1h, and that which is

interior to gR is labelled h−1g.

To an oriented geodesic γ ∈ R, we associate a sequence by recording the

labellings of the edges of the net N crossed by γ one by one in the direc-

tion of its orientation. This process is called the Morse coding method. More

precisely, define the Morse coding sequence x = x(n) of γ as follows: when

the geodesic γ leaves the fundamental domain R through a side s, x(1) = e1
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Figure 3.2: An edge path in Definition 3.1.1

is the exterior label of the side s. Similarly, x(2) = e2 is given the exterior

label of the side of e1R intersecting with γ. x(0) = e0 is the interior label of

the side of R where γ is entering into R through the side and x(−1) = e−1

is the interior label of the side of e−1
0 R crossed by γ, so on (see Figure 3.1).

The sequence for x is · · · e−1eoe1e2 · · · , ei ∈ ΓR. This process provides us a

bi-infinite sequence consisting of elements of ΓR corresponding to a geodesic.

We call it the cutting sequence or geometric Morse code of the given geodesic.

Clearly, this sequence is always reduced since the geodesic does not go back-

tracking and the occurrence of consecutive letters ee−1 for some e ∈ ΓR in the

sequence implies that the geodesic cut the side (corresponding the generator

e) twice in a row coming from opposite direction ([21]).

As mentioned, we have that O ∈ R and that O is not a fixed point of

any element of Γ − {id}. Let N∗ be the dual net to N obtained by joining

a geodesic segment from gO to hO whenever g−1h ∈ ΓR. Note that the dual

net N∗ may be regarded as the Cayley graph given by Γ since O is not a

fixed point of any element of Γ.

Definition 3.1.1. Any path in N∗ will be called an edge path (see Figure

3.2). We may associate such a path with the polygonal path which consists

of the adjacent regions: with initial region gR (g ∈ R), for any word w =

e1 · · · ek(ei ∈ ΓR), we obtain the associated polygonal path being connected
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Figure 3.3: Deformation to the left around the vertex

by the regions gR, e1gR, . . . , e1 · · · ekgR. In this case, the corresponding edge

path consisting of the geodesic segments joining gO, e1gO, . . . , e1 · · · ekgO and

the cutting sequence of this path is e1 · · · ek. In particular, a path defined by

a geodesic arc in this way is called a geodesic edge path and the corresponding

cutting sequence is called a geodesic word([4]).

This Morse method is natural and well-understood, however, it has a dis-

advantage that we have at least two different sequences corresponding to a

geodesic when that geodesic meets a vertex of the net N .

In this article, for a given geodesic meeting a vertex, we replace it by one

passing the left side of the vertex instead of the vertex, that is, we deform it

to the left around the vertex. Imagine that we walk along the geodesic and

detour to the left of the vertex (see Figure 3.3). This phenomenon happens

when the fundamental region has an interior vertex, that is, a vertex in D.

If v is a vertex of the net N , we find a cutting sequence corresponding to

a relation in Γ from a small circle around v. By assumption, the sequence has

even length and hence this sequence is represented by e1 · · · e2n(v) for ei ∈ ΓR.

By a cycle, we mean any finite sequence of generators whose letters occur in

the order of one of these relations: we call such a sequence with length n(v)

a half cycle, and any cycle with greater length a long cycle.
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Figure 3.4: Consecutive cycles

Suppose that v1, . . . , vp are some successive vertices of the net N on some

geodesic l in N . If α is a curve running almost parallel to and close to l

on one side possibly cutting l before v1 and after vp (see Figure 3.4: in this

case, two geodesics meet at a point v). The cutting sequence of α consists of

cycles at v1, . . . , vp and the length of the cycle at each intermediary vertex

vi (1 < i < p) is n(vi)− 1. We call such cycles consecutive, and the sequence

of consecutive cycles we call a chain. By a polygonal chain in N (or N∗),

we mean a sequence of polygons in N (or N∗) each meeting the next in a

common edge.

Definition 3.1.2. A chain is said to be long if it consists of cycles of lengths

n(v1), n(v2)−1, . . . , n(vp−1)−1, n(vp), where v1, v2, · · · , vp are the vertices of

the net N dual to the corresponding polygonal chain. In other words, a long

chain is a chain with half cycles at the both ends.

The main theorem (Theorem 3.1.8) needs some restriction on the funda-

mental region R. In our situation, we consider the only “good” cases that
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S is a surface having no branch point and hence it satisfies the both of the

below conditions.

Hypothesis. ([4], Hypothesis 2.1) Let R be a fundamental region for a group

Γ.

(i) If R has three sides, then not all vertices of R lie in Int D.

(ii) If R has four sides, and if all vertices of R lie in Int D, then at least

three geodesics in the net N cross at each vertex of R.

Remark. These hypotheses are necessary conditions so that our fundamental

domain R has no branch point, that is, Γ has no elliptic elements. If R is

a triangle, then any vertex in Int D will be a branch point. Therefore, we

expect the good situation where at least one vertex lies on ∂D. If R has four

sides with all vertices in Int D, and if there is a vertex where exactly two

geodesics meet, the angle between the geodesics is equal to π/2 and all the

interior angles are exactly equal to π/2; this means the fundamental domain

is a rectangle which has the Euclidean plane as its universal cover, in other

words, it is not covered by the hyperbolic disc D. To exclude this case, we

put the condition (ii).

Lemma 3.1.3. ([5], Lemma 2.2) A geodesic lying in the net N cuts a geodesic

edge path in N∗ at most once.

Proof. Let E(γ) be a geodesic edge path in N∗ connecting g1O, g2O, . . . , gkO.

Suppose that a geodesic C in the net N intersects E(γ) between g1O and g2O

and again between gk−1O and gkO. Since C is in the net N , the images of ∂R

under Γ, C contains the geodesic segments of g1R ∩ g2R and gk−1R ∩ gkR.

This means that γ crosses from g1R into g2R and from gk−1R into gkR, and

hence the geodesics γ and C meet at two points, which is a contradiction.

Lemma 3.1.4. ([5], Lemma 2.2) Let s and s′ be nonadjacent sides of R.

Then the geodesics which extend s and s′ do not intersect.
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Proof. Let C(s), C(s′) be the geodesics in the disc D containing the side s,

s′, respectively. Assume that C(s) and C(s′) intersect at a point P so that

it leads to be a contradiction. Let s1, . . . , sk be the sides of the fundamental

region R between s and s′ connecting in the order s, s1, . . . , sk, s
′. Then k ≥ 1

since s and s′ be nonadjacent sides of R.

Let A be the intersection point (the vertex of R) between s and s1, B

the intersection point (the vertex of R) between s′ and sk, and let γ be the

geodesic segment between A and B. Since R is geodesically convex, γ lies in

R, in other words, s1, . . . , sk lie in the triangle 4ABP . Since C(sk) meets

with γ at the point B, C(sk) must cross C(s), otherwise C(sk) intersects with

γ once more or C(sk) should be the geodesic C(s′). Let Pk be the intersection

point of C(s) and C(sk). Then C(s) and C(sk) intersect at Pk and there are

(k − 1) sides s1, . . . , sk−1 between s and sk. Inductively arguing as above, it

reduces to the case k = 1 and hence we may assume that s and s′ connect

through the only one side s1.

Consider g1R, the image of R adjacent to the side s1, that is, the exterior

label of s is g. Let t, t′ be the sides of g1R which pass the point A, B,

respectively. Then t and t′ must intersect at a point Q within the triangle

4ABP because g1R is not a triangle(this means Q is not equal to P ) and

tand t′ meets with C(s) or C(s′) at most once. Therefore, one can find a copy

of R within the triangle 4ABP . Similarly, after continuing this argument we

obtain an infinite set {g1R, g2R, . . .} of (almost) disjoint copies of R contained

in 4ABP . This contradicts to the fact that 4ABP has finite area.

To each cycle or chain is associated a complementary cycle or chain. By

a complementary cycle or chain, we mean the opposite boundary of the cor-

responding polygonal chain, and it also represents the same element of Γ.

Clearly, the complement of a long cycle or chain is a path of strictly shorter

length.

Lemma 3.1.5. ([4], Lemma 2.5) The vertex angle along any path E which is

either geodesic or which contains no long cycles are at most π+. If the angle

at v is π+ then we may replace the cycle at v by its complementary cycle and

obtain another path of the same length.
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Lemma 3.1.6. ([4], Lemma 2.6) Let E be an edge path which is either

geodesic or which contains no long chains. Then the occurrence of a sequence

of vertex angles π+, π, . . . , π, π+ along E is impossible.

If E is an edge path in N∗, we denote the corresponding polygonal chain

in N∗ by P (E).

Lemma 3.1.7. ([4], Lemma 2.7 or [21], Lemma 5.6) Let E1 and E2 be edge

paths containing no long chains and with coincident initial and final points.

Then there are no copies gR of R lying strictly inside the region bounded by

the polygonal chains P (E1), P (E2) defined by E1 and E2.

We say that an edge path is shortest provided that the corresponding

word is a shortest possible representation of the element in Γ defined by the

word. By the above proposition, the regions formed by two shortest polyg-

onal paths with the same initial and final endpoints (possibly at infinity)

should either coincide or be adjacent. Here, a shortest polygonal path means

that the corresponding cutting sequence of the polygonal path is shortest.

The paths differ only by taking complementary cycles round vertices of their

common boundary. When two polygonal paths have common initial and final

regions, the two paths have the same length (Lemma 3.1.5).

We state the main theorem in this section that explains which sequence

can be a cutting sequence of a geodesic:

Theorem 3.1.8. ([21], Theorem 3.1) Suppose that R is not a triangle and

that R has even corners. Assume that R satisfies the conditions of Hypothe-

sis(ii). Then,

(i) an edge path is shortest if and only if it is reduced and contains no long

cycles or long chains, and

(ii) the cutting sequences of geodesic arcs are shortest.
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Figure 3.5: An example: labels on a surface with genus 2

3.2 Arithmetic coding

We can describe a real number as an infinite sequence using continued frac-

tion expansion. Artin(1965) obtained a representation of geodesics in the

Poincaré upper half plane H as bi-infinite sequences of positive integers by

juxtaposing the continued fraction expansions of their endpoints. Arithmetic

coding is the method which represents a geodesic as a bi-infinite sequence

by concatenating two sequences of its end points analogous to the continued

fraction expansion.

We find a one-sided sequence for a point on ∂D using a particular map,

called a boundary map or a boundary expansion. First, we shall set some la-

bels on the fundamental region R before introducing the map.

Assume that the sides s1, s2, . . . , s2n of the fundamental domain R sur-
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round R in the counterclockwise order so that the region is on the left when

we trace the boundary of R. The vertex vi is the intersection of si−1 and

si (with s0 = s2n). Let Pi, Qi+1 be the end points on S1 of the complete

geodesic C(si) containing the side si, so that the order of points along C(si)

is Pi, vi, vi+1, Qi+1 (see Figure 3.5).

For each i, let gi be the label of si on the inside and A(si) the arc [PiQi]

on ∂D. The given Fuchsian group Γ is of the first kind, and hence
⋃
g∈ΓR

A(g)

= ∂D = S1.

Define a map fΓ : ∂D → ∂D by f |[PiPi+1)(ξ) = gi(ξ). Here we assume that

P2n+1 = P1 so that fΓ can be defined on [P2nP1).

To be more specific, according to the same paper [5], this map f = fΓ

satisfies the following properties:

Definition 3.2.1. (Markov Property)

(a) Except for a finite number of pairs of x, y ∈ S1: x = gy, x, y ∈ S1,

g ∈ Γ if and only if there exist nonnegative numbers n,m ≥ 0 such tat

fn(x) = fm(y).

(b) f is Markov in the following sense: there is a finite or countable partition

on S1 into intervals {Ii}∞i=1 such that

(Mi) f is strictly monotonic on each Īi and extends to a C2-function f̄i
on Īi,

(Mii) f(Ik) ∩ Ij 6= ∅ ⇒ f(Ik) ⊇ Ij, for any j, k,

(Miii) (transitivity condition)
∞⋃
r=0

f r(Ik) ⊇ Ij for any j, k,

(Miv) (finiteness condition) If Īi = [ai, bi] then {f̄i(ai), f̄i(bi)}∞r=0 is finite.

Moreover, the partition {Ii}∞i=1 is finite if and only if if D/Γ is compact,

or equivalently, if R has no cusps.
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(c) (expansion condition)

(Ei) If there are no cusps, then there exists a positive number N such

that inf
x∈S1
|(fN)′(x)| > λ > 1,

(Eii) A cusp of R is a periodic point for f with derivative one. There

is a subset K ⊂ S1, consisting of a union of intervals Ii, so that if

fK(x) = fn(x)(x), n(x) = min{n > 0 : fn(x) ∈ K}, x ∈ K, is the

first return map induced on K, then there is a number N such

that inf
x∈S1
|(fNK )′(x)| > λ > 1.

With this Markov map f , by f -expansion of ξ ∈ S1, we mean the one-

sided infinite sequence ξf = i0i1i2 · · · obtained by iterating the map f where

fn(x) ∈ Īin , n = 0, 1, 2, · · · . Then, by the condition (Mii), the word iris
appears if and only if f(Īr) ⊇ Īs and hence the set Σf of all sequences

ξf = i0i1i2 · · · for any ξ ∈ S1 is a subshift of finite type. More precisely, Σf

is a 1-step subshift of finite type, or called a Markov chain since the forbid-

den word is of length at most 2, the partition {Īi} is called a Markov partition.

The following theorem in the paper [5] guarantees the existence of such

a Markov map under certain conditions:

Theorem 3.2.2. ([5], Theorem 2.1) Let Γ be a finitely generated Fuchsian

group of the first kind, with a fundamental region R satisfying the property

(∗). Then there is a Markov map fΓ : S1 → S1 which is orbit equivalent to Γ

on S1. Moreover,

(1) if R has no parabolic cusps, the Markov partition is finite and fΓ sat-

isfies properties (Miii), (Miv), (Ei), (Eii) of Definition 3.2.1.

(2) If R has parabolic cusps, the Markov partition is countable. There is

a subset K ⊆ S1, consisting of a finite union of sets in the partitions,

minus the countable set of points which eventually map onto one of the

cusps, such that the first return map induced by fΓ on K has properties

(Miii), (Miv), (Ei), and (Eii).
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Consider the set of all endpoints of intervals forming Markov partition.

Then this Markov map leaves such partitioning points invariant:

Lemma 3.2.3. ([5], Lemma 2.3) There is a finite or countable set W ⊂ S1

with f(W ) ⊆ W which partitions S1 into intervals; W is finite if and only if

R has no parabolic vertices.

In order to compare with the geometric coding, we shall replace the par-

tition {Īi} by {[PiPi+1) =
〈
g−1
i

〉
}, and then now we may represent a se-

quence consisting of the generators ΓR of Γ. For ξ ∈ S1, ξfΓ
= gi1gi2 . . . if

fΓ
n(ξ) ∈ 〈gin〉, n ∈ N. This is called the Artin method or Artin-type coding.

In this situation, however, the rules deciding which sequences are“valid”

are no longer of finite type.

Definition 3.2.4. A finite sequence e1e2 · · · en(∈ ΓnR) is said to be admissible

if
n⋂
r=1

f−r([e−1
r ]) 6= ∅.

Let Σ+ be the set of all admissible sequences consisting of elements of ΓR,

that is, Σ+ = {e1e2 · · · ∈ ΓN
R : ekek+1 · · · ek+l is admissible for any k, n ∈ N}.

Then this subgroup Σ+ ⊂
∞∏
i=0

ΓR has the special property:

Theorem 3.2.5. ([21], Lemma 4.1) The subshift Σ+ is a sofic system. More

precisely, there is an alphabet B, and a finite-to-one map β : B → ΓR, and a

subshift of finite type ΣB ⊂
∞∏
i=0

B, so that the induced map β̄ : ΣB → Σ+ is

surjective and injective except at a countable set of points where it is two-to-

one.

There is a criterion whether a given sequence is a member of the set Σ+:

Theorem 3.2.6. ([21], Theorem 4.2) A word (finite sequence) occurs in Σ+

if and only if it is shortest and contains no counterclockwise half-cycles.
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Corollary 3.2.7. An infinite sequence occurs in Σ+ if and only if it is short-

est not containing counterclockwise half-cycles and not ending in an infinite

chain of counterclockwise cycles.

To be specific, we are going to go after the paper [20].

With proceeding along one side to the vertex, we obtain a cycle of con-

gruent vertices and corresponding generators in two directions. First, if you

started at a vertex vi with the side si, you would obtain a cycle of con-

gruent vertices vi = w1, w2, · · · , wp and the corresponding generators gi =

h1, h2, · · · , hp. More specific process is the following: let vi be a vertex of

R and si an adjacent side. Initiate w1 = vi, t1 = si, and h1 = gi where gi
is the label of si on inside of R. Then w2 = h1(w1) is another vertex and

t2 = h1(t1) is an adjacent side. Let t′2 be the other side of R adjacent to

t2. Let w3 = h2(w2), t3 = h2(t′2) where h2 is an element of Γ such that t′2
is identified with another side of R by h2. We will return to vi in a finite

number of steps, after continuing this process, (wp, t
′
p) = (w1, t1), hp · · ·h1

fixes w1 = vi at last. Schematically, we have a part of tessellation around the

vertex vi shown as Figure 3.6.

There are no vertices of R congruent to vi other than those just found,

whence w1, w2, · · · , wp constitute a cycle.

Definition 3.2.8. ([9], Sec.26 ) A complete set of congruent vertices of a

fundamental region is called an ordinary cycle.

We say the anticlockwise sequence h−1
1 h−1

2 · · ·h−1
p is in left-hand (L) cyclic

order. Similarly, if you started at a vertex vi+1 with the side si, you would

obtain a cycle vi+1 = z1, z2, · · · , zq and generators gi = j1, j2, · · · , jq. The

clockwise sequence j−1
1 j−1

2 · · · j−1
q is said to be in right-hand (R) cyclic order.

To connect a vertex cycle with a relation, we are going to introduce two

theorems without showing proofs:

Theorem 3.2.9. ([9], Theorem 14) The sum of the angles at the vertices of

an ordinary cycle is 2π/k, where k is an integer. If k > 1, each vertex of the

cycle is a fixed point of an elliptic transformation of period k.
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Figure 3.6: An example of a vertex cycle in left-hand

Theorem 3.2.10. ([9], Theorem 15) Each ordinary cycle determines a re-

lation of the form (hphp−1 · · ·h2h1)k = 1 satisfied by the transformations

connecting congruent sides of R.

By the above theorems, there are integers µ, ν such that (h−1
1 h−1

2 · · ·h−1
p )

µ
=

(j−1
1 j−1

2 · · · j−1
q )

ν
= 1. If vi ∈ D, hp · · ·h1 is elliptic and has order µ ∈ N, oth-

erwise (i.e., vi ∈ S1) it is parabolic. For all elliptic vertices vi, the relations

(hphp−1 · · ·h1)µ = (h−1
1 h−1

2 · · ·h−1
p )

µ
form a complete set of relations for Γ.

Under our circumstance, Γ satisfies property (∗) (Definition 3.0.8) and

hence the numbers pµ, qν of sides of the net N meeting at vi, vi+1 are even

numbers; pµ = 2l, qν = 2k.

Definition 3.2.11. We call L cycles of lengths l − 1, l, l + 1, D-, H-, S- L

cycles respectively and similarly, for R cycles of lengths k− 1, k, k+ 1. Here,

D means deficient, half for H and superfluous for S. By a full cycle, we mean

a cycle of length 2l or 2k.

Clearly, a full cycle is equal to the identity in Γ.
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Definition 3.2.12. ([20]) If h = gi, we write h+ = gi+1 and h− = gi−1. If

B = b1 · · · br, B1 = b1 · · · br+1, C = c1 · · · cs are L [respectively, R] cycles with

c−1
1 = (b−1

r+1)
+

[respectively, c−1
1 = (b−1

r+1)
−

], we say B and C are adjacent

or consecutive L [respectively, R] cycles. A sequence B1, B2, . . . , Br of con-

secutive L cycles, where B1, Br are H-cycles and B2, . . . , Br−1 are D-cycles,

will be called an L H-chain; such a sequence with B1 an L D-cycle is an L

D-chain, often denoted by DD · · ·DH.

Proposition 3.2.13. ([20], Proposition 1.1) A sequence e1 · · · ep ∈ (ΓR)p is

admissible if and only if

(1) gg−1, g ∈ ΓR, dose not occur,

(2) No R H-cycles occur,

(3) No L S-cycles occur,

(4) No L H-chains occur.

Consider a map π : Σ+ → S1 defined by π(e1e2 · · · ) =
∞⋂
r=1

f−r([e−1
r ]).

Then the image π(e1e2 · · · ) has exactly one point due to the finite intersec-

tion property and the expansion condition of f . However, the map π is not

one-to-one: for x ∈ S1 with fn(s) ∈ {P1, P2, . . . , P2n} for some n ≥ 0, x has

two representation because Pi can be written either as infinite sequence of

consecutive R D-cycles (DD · · · ), or as an infinite sequence of consecutive L

cycles (HDD · · · ).

Also, for x ∈ Σ+, if x does not end in an infinite string of R D-cycles,

(π ◦σ)(x) = (f ◦π)(x) where σ denotes the shift map. Therefore, it is conve-

nient to take the representation of x as a sequence terminating with L cycles

whenever x ∈ S1 has two symbolic expressions in Σ+. Actually, this is why

we adopt the definition of f with the arc intervals {[PiPi+1)} rather than

{(PiPi+1]}.
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To associate a two-sided infinite sequence with a geodesic, we juxta-

pose two f -expansions (one-sided infinite sequences) of the end points of

the geodesic. However, we cannot be sure that the new sequence is still ad-

missible. Define a new map f̄ : ∂D → ∂D by f̄ |(Qi−1Qi] = gi using the another

partition {(Qi−1Qi]}2n
i=1 instead of {[Pi−1Pi)}2n

i=1 . Clearly, this map f̄ has the

same property (Definition 3.2.1) as the map f and the admissibility rules are

still the same in Proposition 3.2.13 by interchanging ‘R’ and ‘L’. Then we

now check the admissibility of the sequence using the map f̄ :

Lemma 3.2.14. ([20], Lemma 2.1) The sequence e1e2 · · · is admissible for

f if and only if the inverse sequence · · · e−1
2 e−1

1 is admissible for f̄ .

Imagine that a directed geodesic γ has two end points ξ, η on the bound-

ary ∂D and γ goes from η to ξ. In this case we call ξ the positive endpoint,

η the negative endpoint of γ. If e1e2 · · · is the f -expansion of ξ and f1f2 · · ·
is the f̄ -expansion of η, the arithmetic coding sequence γ(ξ, η) = η−1 ∗ ξ will

be defined as · · · f−1
2 f−1

1 e1e2 · · · whenever · · · f−1
2 f−1

1 e1e2 · · · is admissible.

Let Σ be the set of bi-infinite admissible sequences with left shift map σ.

There are some propositions which explain the action of Γ on the space Σ as

a symbolic dynamical system. First, two are something about the Γ-action

on Σ+:

Proposition 3.2.15. ([20], Proposition 2.2) Let x = e1e2 · · · ∈ Σ+, g ∈ ΓR.

Then

(1) either g(x) = ge1e2 · · · whenever ge1e2 · · · ∈ Σ+,

(2) or g(x) = e2e3 · · · if g = e−1
1 .

Proposition 3.2.16. ([20], Proposition 2.3 ) Suppose x ∈ S1, and g ∈ Γ.

Let x = e1e2 · · · , g(x) = f1f2 · · · be the f -expansions of x, g(x). Then there

are s, t > 0 such that ge1e2 · · · es = f1f2 · · · ft in Γ and es+i = ft+1, i > 0
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Figure 3.7: Conjugate geodesics in Proposition 3.2.17

The following proposition says that the map f is orbit equivalent to Γ

on S1. To put it concretely, except for a finite number of pairs of points, if

(x, y) ∈ S1 × S1 with x = gy for some g ∈ Γ then there are nonnegative

integers n,m such that fn(x) = fm(y), and vice versa. Such a pair (x, y) is a

set of endpoints of an admissible geodesic. Therefore the admissible geodesics

are conjugate under the action of Γ if and only if the corresponding sequences

are shift equivalent:

Proposition 3.2.17. ([20], Proposition 2.4) Let (P,Q), (R, S) ∈ S1 × S1 be

such that Q−1 ∗ P,R−1 ∗ S ∈ Σ. Then there exists an element g ∈ Γ with

gP = R, gQ = S if and only if there is a number n so that σn(Q−1 ∗ P ) =

R−1 ∗ S.

Recall R = {γ ∈ G : γ ∩ R 6= Ø}, and Σ denotes the set of all bi-infinite

reduced sequences in ΓR. Define A = {γ = γ(ξ, η) ∈ Σ : η−1 ∗ ξ ∈ Σ, where

ξ, η are the positive and negative endpoints of γ}.

Lemma 3.2.18. ([21], Lemma 5.1) If γ ∈ R and η−1 ∗ξ is not shortest, then

γ is a side of the net N .
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Lemma 3.2.19. ([21], Lemma 5.2) Suppose that γ ∈ R4A and that η−1∗ξ is

shortest. Then η−1
0 ∗ξ0 lies in a cycle or a chain and γ passes near v = v(ξ, η).

We say that a sequence contains a pseudo half cycle when the sequence

begins or ends in an infinite chain of cycles of lengths n(v1), n(v2), · · · at

vertices v1, v2, · · · . Edge paths of geodesics passing a vertex too nearby always

contain half cycles. More specifically, the following is known:

Lemma 3.2.20. ([21], Lemma 5.3) Suppose γ passes near v. Then:

(i) if γ ∈ R and cuts off v on R, then E(γ) contains a chain beginning or

ending in a half cycle or pseudo half cycle and including the cycle at v.

(ii) if η−1 ∗ ξ is shortest and v = v(ξ, η), then E(η−1 ∗ ξ) has the same

property as in (i).

We write down the proposition in order to relate the two sets A with R:

Proposition 3.2.21. ([21], Proposition 5.6) Suppose η−1
0 ∗ ξ0 lies in a cycle

or chain and that γ passes near v(ξ, η). Then

(i) η−1 ∗ ξ ∈ A ⇒ (γ goes clockwise around v ⇔ γ ∈ R),

(ii) η−1 ∗ ξ 6∈ A ⇒ (γ goes counterclockwise around v ⇔ γ ∈ R)
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Artin Method for Some

Examples of Surfaces

Recall R = {γ ∈ G : γ ∩ R 6= Ø}, and Σ denotes the set of all bi-infinite

reduced sequences in ΓR. Define A = {γ = γ(ξ, η) ∈ Σ : η−1 ∗ ξ ∈ Σ, where

ξ, η are the positive and negative endpoints of γ}.

Theorem 4.0.22. ([21], Theorems I and II) There is a bijection T : A → R
such that Tσ = τT . A is partioned into a finite number of pieces with geodesic

boundaries such that on each piece, T is some fixed element of Γ, and TA∩R
= id.

4.1 Torus with punctures

These are the simplest examples demonstrating the Morse coding because

there is no interior vertex of a fundamental domain R and hence there is

no ambiguity when we choose generators of sides cut by geodesic. Moreover,

the set Σ of all reduced sequences are realized as Morse coding sequences of

elements of ΓR of geodesics of S for a properly chosen fundamental domain.

The fundamental group of a torus Mn with n punctures is a free group

with n + 1 generators. If we consider each puncture as an ideal vertex, we

may choose its fundamental domain R as an ideal polygon on a Poincaré disc
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Figure 4.1: Torus with one puncture

Figure 4.2: Torus with two punctures

Figure 4.3: Torus with three punctures
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Figure 4.4: Torus with four punctures

(this means R has all its vertices on ∂D = S1), which projects to Mn.

In this case the relevant shift space is the space of all bi-infinite reduced

sequences whose letters are its generators. We shall mention that the geo-

metric coding sequence of a geodesic except those having an endpoint as a

cusp is the same as the sequence obtained by the boundary expansion coding.

Theorem 4.1.1. If we can choose an ideal polygon as a fundamental domain,

R = A and σ = τ .

Moreover, the set of all admissible sequences in this case is a subshift

of finite type. In particular, it is a topological Markov chain since the re-

duced word is the only admissibility rule and hence the forbidden words are

of length 2.

The figures explain how to construct a fundamental domain in each case

(see Figure 4.1-4.4).

4.2 A closed surface with genus two

We look into the arithmetic coding of a closed surface S with genus two.

Let Γ be the fundamental group π1(S) of the surface S. Then Γ is a

finitely generated Fuchsian group of the first kind acting on the unit disc
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Figure 4.5: A fundamental region of a surface with genus 2
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D. Choose an octagon R in D as its Dirichlet region as the previous setting

as Section 3.1 and 3.2. Then Γ is generated by side pairing maps by Theo-

rem 2.1.11, say {g1, g2, . . . , g8}. Since the sides s1 and s3 are identified by g1

and g3, one element is the inverses of the other g1 = (g3)−1. we will write

a = g1 = (g3)−1. Similarly, b = g4 = (g3)−1.

The boundary map f : ∂D → ∂D is defined by f |[PiPi+1)(ξ) = gi(ξ), and

let Σ+ be the set of all admissible sequences consisting of elements of ΓR.

Then Σ+ = {e1e2 · · · ∈ ΓN
R : ekek+1 · · · ek+l is admissible for any k, n ∈ N}

= {ξfΓ
= gi1gi2 . . . : ξ ∈ S1, fΓ

n(ξ) ∈ 〈gin〉 for each n ∈ N} according to

Section 3.2.

Let A be the alphabet (the set of all symbols) of Σ+, then A consists of

the elements of ΓR.

Let us state Theorem 3.2.5 again and prove it.

Theorem. ([21], Theorem 4.1) The subshift Σ+ is a sofic system. More pre-

cisely, there is an alphabet B, and a finite-to-one map β : B → A, and a

subshift of finite type ΣB ⊂
∞∏
i=0

B, so that the induced map β̄ : ΣB → Σ+ is

surjective and injective except at a countable set of points where it is two-to-

one.

Series proved the above theorem using a Markov map and a Markov par-

tition ([21], Lemma 4.1). We are going to follow two of her papers first and

then give another proof of Theorem 3.2.5.

Proof by Series. Theorem 3.2.2 assures us that there exists a Markov map

in our situation because all conditions are satisfied.

We will choose another alphabet B and another admissibility rule so that

the new system ΣB is a subshift of finite type. As mentioned in Section 3.2,
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it happens when the admissible sequences are defined with Markov partition.

Put another label Wi on {Pi, Qi}8
i=1 in the counterclockwise order: W1 =

P1, W2 = Q8, W3 = P2, and so on (see Figure 4.5). Define the arc intervals

I = {Ii = [WiWi+1)}16
i=1 with W17 = W1. Let the f -expansion of a point ξ on

the boundary of the disc S1 be the one-sided infinite sequence ξf = i0i1i2 · · ·
obtained by iterating f where fn(x) ∈ Īin , n = 0, 1, 2, · · · . Here, the map f

is defined by f(x) = gk(x) where x ∈ Ii ⊂ [PkPk+1) for some k.

Recall that the word iris appears if and only if f(Īr) ⊇ Īs and hence the

set ΣB of all sequences ξf = i0i1i2 · · · for any ξ ∈ S1 is a subshift of finite

type. The alphabet B of ΣB is the set {1, 2, · · · , 16}.

Let us check this map f defined on the partition {Ii = [WiWi+1)}16
i=1 has

the Markov property (Definition 3.2.1).

(a) By Proposition 3.2.16, the map f is orbit-equivalent to Γ on the unit

circle S1.

(b) (i) f is equal to a fixed element of ΓR on each Ii.

(ii) Since each element of Γ is an isometry (and hence a continuous

map), f sends an arc interval to an arc interval. By Lemma 3.2.3,

f(Ik) is a union of adjacent arc intervals in I. Therefore, if f(Ik)∩
Ij 6= ∅, then f(Ik) ⊇ Ij for any j, k.

Therefore, the set ΣB is a topological Markov chain, namely, a one-step sub-

shift of finite type.

If we set a map β : B → A by 2i − 1, 2i 7→ g−1
i for each i = 1, 2, . . . , 8,

then β is a two-to-one continuous map because both intervals [I2i−1I2i) and

[I2iI2i+1) are properly contained in
〈
g−1
i

〉
= [PiPi+1). Hence the set Σ+ is a

factor of the set ΣB, and show that Σ+ is a sofic system.

We are now going to construct a finite directed labelled graph to suggest

another proof of the above theorem using the Automata theory.
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(v4, s3) (v3, s2) (v2, s1) (v5, v4) (v8, s7) (v7, s6) (v6, s5) (v1, v8)

(v1, s1)

a
-

(v4, s4)
?

.......
b
-

(v3, s3)
?

....... a
−1
-

(v2, s2)
?

....... b
−1
-

(v5, s5)
?

.......
c
-

(v8, s8)
?

....... d
-

(v7, s7)
?

....... c
−1
-

(v6, s6)
?

....... d
−1
-

(v1, s1)
?

.......

Diagram 4.1: Vertex cycle in the left-hand cyclic order

Another proof by constructing a finite directed graph. First, we want to know

relation sequences in the fundamental domain of the surface with genus 2

using vertex cycles. This is the process to find congruent vertices of R as

explained in the Section 3.2.

Let v1 be a vertex of R and s1 an adjacent side; then the vertex and the

side are identified with v4 = g1(v1), s3 = g1(s1) by g1 = a. Take the other side

of R adjacent to v4, s4. The generator of the side s4 on inside is g4 = b . After

we identify the pair (v4, s4) by g4, we arrive at (v3, s2). Then, by taking the

other side, we pass to the pair (v3, s3) (see Figure 4.5). Repeat this process.

One can observe the whole process in Diagram 4.1.

The generators in left-hand(L) cyclic order a−1, b−1, a, b, c−1, d−1, c, d form

a relation: the counterclockwise sequence satisfies a−1b−1abc−1d−1cd= 1. Sim-

ilarly, we obtain the generators in right-hand(R) cyclic order a−1, b, a, d−1,

c−1, d, c, b−1 by starting with the pair (v2, s1): the clockwise sequence satisfies

a−1bad−1c−1dcb−1 = 1 (>).

Under this circumstance, we investigate forbidden words using Proposi-

tion 3.2.13:

Proposition. ([20], Proposition 1.1) A sequence e1 · · · ep ∈ (ΓR)p is admis-

sible if and only if

(1) gg−1, g ∈ ΓR, dose not occur,

(2) No R H-cycles occur,

(3) No L S-cycles occur,
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gg−1 R H-cycle L S-cycle L H-cycle L D-cycle

a aa−1 ad−1c−1d abc−1d−1c abc−1d−1 abc−1

b bb−1 bcd−1c−1 bc−1d−1cd bc−1d−1c bc−1d−1

a−1 a−1a a−1bad−1 a−1b−1abc−1 a−1b−1ab a−1b−1a

b−1 b−1b b−1a−1ba b−1abc−1d−1 b−1abc−1 b−1ab

c cc−1 cb−1a−1b cda−1b−1a cda−1b−1 cda−1

d dd−1 dcb−1a−1 da−1b−1ab da−1b−1a da−1b−1

c−1 c−1c c−1dcb−1 c−1d−1cda−1 c−1d−1cd c−1d−1c

d−1 d−1d d−1c−1dc d−1cda−1b−1 d−1cda−1 d−1cd

Table 4.1: forbidden words

(4) No L H-chains (of the form HDD· · ·DH) occur.

Then the set Σ+ consists of all reduced one-sided sequences not contain-

ing R H-cycles, L S-cycles, and L H-chains. Now that it is possible for L

H-chains of length (3n + 8) to exist for any positive integer n, the system

Σ+ can not have a finite list of forbidden words. Using the relation sequences

(>), we obtain the table of forbidden words (the left three columns in Table

3.1).

The set Σ+ has forbidden words of length at most 5 but it may have

an infinite D-cycle chain not bounded by some L Half cycles. Therefore, we

should be careful when we deal with L D-cycles. Hence, we first construct a

directed graph which gives sequences in Σ+ containing no L D-cycle. After

then, we add L H-cycles and L D-cycles without making any L H-chain.

We set the temporary admissibility rule in this case as follows:

(R1) gg−1, g ∈ ΓR, dose not occur,

(R2) No R H-cycles occur,

(R3) No L S-cycles occur,

(H4) No L H-cycles occur,
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(D5) No L D-cycles occur.

Note that the condition (D5) implies the two conditions (R3), (H4). Thus,

if we want to consider the whole rules (R1), (R2), (R3), (H4), and (D5), we

need to check the only three rules (R1), (R2), (D5).

Let W4(Σ+) be the set of all words (called factors) of length 4 appearing

in some sequence of Σ+ (that is, it is not containing any forbidden words:

words of the form gg−1 and R H-cycles). We divide this set W4(Σ+) into

three subsets WF (Σ+), WH(Σ+), WD(Σ+) which are pairwise disjoint.

1. Fisrt, we obtain WF (Σ+) from W4(Σ+) excluding all words containing

any L D-cycle. Note that WF (Σ+) has no words containing any L D-

cycle or L H-cycle, in other words, WF (Σ+) is the set containing all

words of length 4 satisfying the conditions (R1), (R2), (D5).

2. The second set WH(Σ+) is obtained from W4(Σ+) - WF (Σ+) choosing

all words containing any L H-cycle. WH(Σ+) consists of exactly 8 L

H-cycles.

3. Then the set WD(Σ+) consists of all remaining elements in W4(Σ+),

namely, WD(Σ+) = W4(Σ+) −WF (Σ+) −WH(Σ+). This set WD(Σ+)

consists of words of W4(Σ+) containing an L D-cycle not an L H-cycle

and hence there are 96 elements in WD(Σ+).

Clearly, W4(Σ+) = WF (Σ+) tWH(Σ+) tWD(Σ+).

Then we now construct a directed graph ΛF as follows: each element in

WF (Σ+) is a vertex of ΛF , and there is a directed edge from x1x2x3x4 to

x′1x
′
2x
′
3x
′
4 provided that the concatenated word x1x2x3x4x

′
4 = x1x

′
1x
′
2x
′
3x
′
4 is

an allowed word in Σ+, in other words, it is not an L S-cycle. We will call

this rule the edge rule from now on. In this graph ΛF , we cannot obtain a

sequence containing any of L D-cycles and hence L H-cycles.

Now, we construct two directed graphs ΛD and ΛH upon the above ad-

missibility rules.
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Figure 4.6: The schema of the finite directed graph Λ

ΛD: The vertex set V (ΛD) of the graph ΛD is equal to the set WD(Σ+), and

the edge set E(ΛD) is obtained by the edge rule.

ΛH : The vertex set V (ΛH) of the graph ΛH is equal to the set WH(Σ+), and

the edge set E(ΛH) is obtained by the edge rule. No two L H-cycles

satisfy the above rule, the edge set E(ΛH) is an empty set.

Finally, we are going to connect the finite directed labelled graphs ΛH

and ΛD to ΛF and denote the whole graph by Λ. Then a sequence containing

any of L D-cycles, L H-cycles can be expressed by a directed path in the

graph Λ. In order not to produce any L H-chain through this graph Λ, we

should regulate the “bridging” between three graphs Λ, ΛH and ΛD.

A sequence in Σ+ may be the form · · ·DH · · ·HD · · · even though a L

H-chain is not allowed. We use a copy Λ′D of the graph ΛD to make one-sided

paths between ΛH and ΛD: the allowed path goes from ΛD to ΛH and ΛH

to Λ′D. Put a directed edge from each vertex of ΛD to a vertex of ΛH and a

directed edge from each vertex of ΛH to a vertex of Λ′D complying with the

edge rule.
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Figure 4.7: The directed edges between ΛF , ΛH and ΛD
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Then each vertex of ΛF connects with all vertices of three graphs ΛD, ΛH

and Λ′D, respectively, of course satisfying the edge rule. Figure 4.6 shows the

“bridging” between three graphs Λ, ΛH and ΛD (Λ′D) schematically. Note

that since there are no words containing an L D-cycle in the graph ΛF , there

is no edge between ΛF and ΛH by the edge rule. To be specific, we give a

simple view of directed edges between ΛD and ΛH (see Figure 4.7: here, an

asterisk means a letter which does not make the word an L H-cycle in each

case. For example, in the case ∗abc−1, ∗ can be a letter among six symbols

b, a−1, b−1, c, c−1, d−1. Note that all edges are multiple).

This merged graph Λ does not produce any sequence containing L H-chain

(HDD · · ·DH) because we obtain an L D-cycle or an L H-cycle only when

we go through ΛD (and ΛH). All elements of the whole factor set W4(Σ+) are

included in Λ and we can travel any path sequence in Σ+ through the edges

in Λ defined by the rule (R1), (R2), (R3).

Each of the above graphs ΛF , ΛD, ΛH , Λ′D is defined by a finite set of

forbidden words, and hence all of them give a vertex shift. Clearly, all vertex

shifts defined by the graphs are shift invariant, and hence the vertex shift of

the merged graph Λ is also vertex shift; we can walk along directed edges of

the graph Λ visiting a vertex infinitely many times. That means each vertex

in Λ has at least one incoming edge and at least one outgoing edge.

Now if, after we put the last letter of each vertex in the graph Λ on

the outgoing edges from the vertex, we delete the labels of all vertices in Λ,

then we will obtain a directed graph with labelled edges. In other words, we

establish the edge shift (a finite directed graph with labelled edges) equal to

Σ+ from this finite directed graph Λ with multiple edges by interchanging

the vertex set V (Λ) and the edge set E(Λ). Then Λ is a presentation of Σ+

and hence Σ+ is sofic by Proposition 2.2.7.

Remark. The directed graph Λ can give an infinite string of consecutive L

cycles of the form HDD · · · . This sequence corresponds with a point among

P1, P2, · · · , P8. The point x ∈ S1 has two representations in Σ+ whenever
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fk(x) ∈ {P1, P2, · · · , P8} for some k ≥ 0 since Pi can be written either as an

infinite sequence of consecutive R D-cycles, or an infinite string of consecutive

L cycles of the form HDD · · · .
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국문초록

일정한 음곡률을 가지는 곡면에서의 측지선들을 다양한 방식으로 표현할

수있다는것이알려져있다.그중에서도본질적으로다른두가지방법이있는

데,하나는곡면이가지고있는기하적인성질을이용하는것이고,다른하나는

실수를연분수의항들을이용하여수열로나타낼수있는것을응용한것이다.

전자는Morse코딩이라고불리는데곡면에특정한곡선들의집합을정해두고,

방향을 가지고 있는 측지선이 이 곡선들과 만날때마다 곡선에 정의된 라벨을

순서대로 기록하여 수열을 만드는 방식이다. 후자는 Artin 코딩이라고 한다.

이는 주어진 측지선의 올림의 두 끝점에 대해 푸앵카레 디스크의 경계에서

정의된 함수를 이용하여 수열을 얻고, 이 두 수열을 방향에 맞게 붙여서 해당

측지선에 대응시킨다. 특히, 이 논문에서 구체적으로 종수가 2인 닫힌 곡면의

경우에 Artin 코딩으로 얻어지는 이동공간이 유한 방향 그래프로 표현됨을

보임으로써 Sofic system임을 증명하였다.

주요어휘: 측지선 코딩, 기호 동역학

학번: 2011-20262
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