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Abstract

In this paper, we derive a high order algorithm for the 1D and 2D

Schrödinger equation with Numerov method and Crank-Nicolson Scheme.

In this procedure, we find discrete transparent boundary conditions for each

dimensional case. Finally, we simulate this condition on a bounded interval

in 1D and a bounded rectangle in 2D.

Key words: Schrödinger Equation, Transprent Boundary Condition, Nu-

merov Method
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Chapter 1

Introduction

The time-independent Schrödinger equation is

i∂tu = −∆u+ V (x)u, x ∈ Rn, t > 0 (1.0.1)

lim
|x|→∞

u(x, t) = 0, (1.0.2)

u(x, 0) = u0(x), (1.0.3)

where V is a given real potential. We can assume that the initial function

has compact support, i.e. supp(u0) ⊂ B(r), where B(r) is a ball with center

at origin and radius r > 0. And we can assume that the potental function V

is constant on Rn \B(r) [1].

The Schrödinger equation is one of the basis equations in quantum me-

chanics and it appears in a number of areas of physical. Plenty of methods

have been developed for the solution of the one dimentional time-independent

Schrodinger equation. A well known class of the methods for the solution of

the Schrödinger equation are Numerov type [8]. It is defined on the un-

bounded region Ω = {(x, t) ∈ Rn × R+}. To restrict the computational

domain, one usually imposes a boundary condition of the Dirichlet or Neu-

mann type. For a constant exterior pontential Vext in 1D, we can factorize

into left and right traveling waves :

0 = ∂2xu+ i(∂tu+ iVextu) (1.0.4)

= (∂x + e−iπ/4 +
√
∂t + iVext)(∂x − e−iπ/4 +

√
∂t + iVext)u (1.0.5)

1



CHAPTER 1. INTRODUCTION

Since the potential V is a constant function in the unbounded region, the

potential may be eliminated by setting ψ(x, t) = eiV(t)u(x, t) with V(t) =∫ t

0

V (s)ds = Vextt [2]. From (1.0.5), as a Dirichlet-Neumann map we can

obtain

∂nψ(x, t) + e−iπ/4D
1/2
t ψ(x, t) = 0, (1.0.6)

i.e. ∂nu(x, t) + e−i(π/4+Vextt)D
1/2
t eiVexttu(x, t) = 0 (1.0.7)

where n is a the outwardly directed unit normal vector to the comutational

bounded domain and D
1/2
t is the fractional derivatives with D

1/2
t f(x, t) =

1√
π
∂t

∫ t

0

f(x, s)√
t− s

ds [7].

A simple calculation shows that (1.0.7) is equivalent to the impedance

boundary condition [1]

u(x, t) = −eiπ/4I1/2t u(x, t) = −e
iπ/4

√
π

∫ t

0

∂nu(x, s)e−iVext(t−s)√
t− s

ds, (1.0.8)

where I
1/2
t f(x, t) =

1√
π

∫ t

0

f(x, s)√
t− s

ds is the fractional integral [7], in the form

of a Neumann-Dirichlet map.

However, when the wave u pass trough fictive boundary, some unphysical

reflections occurs. Then, one can compute on a larger computational domain

which can be difficult to handle numerically and need expensive computing

cost. A usual adopted solution consists in imposing a more suitable boundary

condition on the fictive boundary which does not affect the solution in the

interior domain by not generating any undesirable parasitic reflected waves

[3].

These boundary conditions are not contained in the original problem for-

mulation. They should be obtained by a transformation of the given asymp-

totic conditions at infinity onto the artificial boundary as (1.0.2) [4]. Such

a transfer must provide an approximation of the solution on the unbounded

domain by the solution calculated in a finite domain with an artificial bound-

ary. Such boundary conditions are called absorbing boundary conditions if

they yield a well-posed initial boundary value problem, where some energy

functional is absorbed at the boundary. If this computed solution coincides

2



CHAPTER 1. INTRODUCTION

on computation region with the exact solution of the whole-space problem,

one refers to these boundary conditions as transparent boundary conditions

[1].

In this article, we induce the high order transparent boundary condition

with Numerov method on 1D and 2D in §2 and §3, respectively. And in §4,

we show implementation for each dimension and analysis.

3



Chapter 2

Transparent Boundary

Condition

2.1 Numerov Method

The Numerov method is used to solve diffential equation of the form

d2u

dx2
= f(x, u). (2.1.1)

The Taylor expansion of u at x = x0 + h and x = x0 − h is

u(x0+h) = u(x0)+hu
′(x0)+

h

2!
u′′(x0)+

h2

3!
u(3)(x0)+

h4

4!
u(4)(x0)+

h5

5!
u(5)(x0)+O(h6),

u(x0−h) = u(x0)−hu′(x0)+
h

2!
u′′(x0)−

h2

3!
u(3)(x0)+

h4

4!
u(4)(x0)−

h5

5!
u(5)(x0)+O(h6).

We replace those expression by un−1 = u(x0 − h), un = u(x0) and un+1 =

u(x0 + h). The sum of those two equations gives

un+1 + un−1 = 2un + h2u′′n +
h4

12
u(4)n +O(h6).

4



CHAPTER 2. TRANSPARENT BOUNDARY CONDITION

Since u′′n = fn and u(4)n =
d2

dx2
fn =

fn+1 − 2fn + fn−1
h2

+ O(h2), we can get

following scheme :

un+1 + un−1 = 2un + h2fn +
h4

12

fn+1 − 2fn + fn−1
h2

+O(h6),

i.e. un+1 = 2un − un−1 + h2
fn+1 + 10fn + fn−1

12
+O(h6). (2.1.2)

(2.1.2) is called the Numerov method for nonlinear equations of fourth order.

It is implicit, but can be made explicit if the equation is linear.

2.2 Transparent Boundary Condition in One

Dimension

The original transparent boundary condition formulation for the Schrödinger

equation dates to 1982, but recently has the proper discretization of the

results been given [9]. With discrete transparent boundary conditions, there

is no need to artificially impose restrictions on space and time.

At (1.0.1), we define the Hamiltonian operator H = − ∂2

∂x2
+ V (x) and

the system propagator exp(−iHt). Then (1.0.1) is written as following with

initial wave function ψ(x, t0):

ψ(x, t+ ∆) = exp(−iH∆)ψ(x, t). (2.2.1)

exp(−iH∆) is approximated with the Cayley form,

exp(i−H∆) =
1− iH∆/2

1− iH∆/2
+O(∆2). (2.2.2)

Combining (2.2.1) and (2.2.2), we can obtain the Crank-Nicholson approxi-

mation to the evolution problem,[
1 + i

H∆

2

]
ψ(x, t+ ∆) ≈

[
1− iH∆

2

]
ψ(x, t). (2.2.3)

We rewrite (2.2.3) with new function y(x, t) ≡ ψ(x, t+∆)+ψ(x, t) and using

the definition of H,

∂2y

∂x2
−
[
V (x)− i 2

∆

]
y(x, t) = i

4

∆
ψ(x, t). (2.2.4)

5



CHAPTER 2. TRANSPARENT BOUNDARY CONDITION

2.2.1 Numerov Approximation

Equation (2.2.4) has of the form y′′(x) = g(x)y(x) + f(x, t) with g(x) =

V (x)− 2i

∆
and f(x, t) = 4i

ψ(x, t)

∆
. We usually use the central-space scheme to

approximate the second derivative. We abbreviate ynj = y(x0+j∆x, t0+n∆t)

gj = g(x0 + j∆x), and similarly for the others. Now, we use the numerov

method to obtain high order scheme. From Sec. 2.1 procedure,

ynj+1 − 2ynj + ynj−1 = h2
(
gjy

n
j + fnj

)
+
h2

12

(
gj+1y

n
j+1 + fnj+1 − 2gjy

n
j − 2fnj + gj−1y

n
j−1 + fnj−1

)
,

i.e. wnj+1 + wnj−1 =

[
2 + h2

gj
dj

]
wnj + h2

fnj
dj
, (2.2.5)

where dj ≡ 1− h2 gj
12

and wnj ≡ djy
n
j − h2

fnj
12

. In terms of the new functions,

the result takes the very simple form.

Since equation (2.2.5) has recursion relation for the wnj , the numerical

solution is obtained if we have initial value wn0 and wn0 . We want to reduce

the three-term recursions relation (2.2.5) to the two-term recursions of the

form wnj+1 = ejw
n
j + qnj . From (2.2.5), we obtain

ej +
1

ej−1
= 2 + h2

gj
dj

(2.2.6)

qnj =
qnj−1
ej−1

+ h2
fnj
dj
. (2.2.7)

Equation (2.2.6) and (2.2.7) generate ej and gnj for j = 1, · · · , J − 1 from

the initial e0 and qn0 . We can assume vanishing wnj at the boundary, i.e.

wn0 = wnJ = 0. The two-for-one replacement means that one of these data

points may be chosen arbitrarily, while the other is dictated by the boundary

conditions. The trick is to recognize that for rigid walls (wnj = 0), we can

let e0 → ∞, thus permitting both ej and qnj to be found immediately from

(2.2.6) and (2.2.7), assuming only that qn0 is finite. We can note that the ej
only depend on the position variable, i.e. ej be computed just once at the

6



CHAPTER 2. TRANSPARENT BOUNDARY CONDITION

start of the process. On the other hand, qnj has the position and time variable,

must be computed at each time step. Starting with wnJ = 0, we use relation

wnj−1 =
wnj − qnj−1
ej−1

to calculate wJ−1, wJ−2, · · · , wn1 .

In any case, the rigid-wall boundary conditions unacceptable limitations

in scattering problems or other sitiations where the wave function is not

inherently confined. With discrete transparent boundary conditions, these

limitations can be overcome [9].

2.2.2 Transparent Boundary Conditions

We now derive the discrete transparent boundary conditions using the Nu-

merov approximation with the Crank-Nicholson evolution problem. Com-

puted interval must support the initial wave function, which is required to

vanish in the exterior. Our derivation start with equation (2.2.5). (2.2.5) will

be solved exactly in the exterior regions to obtain the proper connections at

j = 0 and j = J .

Several transforms are used solving partial differential equation to reduce

computed variable. (2.2.5) has two difference relation in both the space and

time indices. To remove time index, we consider the Z-transform defined by

ψ̃i(z) =
∞∑
n=0

ψnj z
−n.

This is the discrete analogue of the Laplace transform defined by

f̃(s) =

∫ ∞
0

f(t)e−stdt,

for the complex number s. Z-transform can be applied to the solution of

linear difference equations in order to reduce the solutions of such equations

into those of algebraic equations in the complex plain.

Assume that the exterior region is force-free, i.e. V ≡ 0, so that gj and

dj become constants, denoted by g and d. By Z-transform, (2.2.5) becomes[
d(z + 1)− i h

2

3∆

] [
ψ̃j+1(z) + ψ̃j−1(z)

]
= 2a

[
d(z + 1)− i h

2

3∆

]
ψ̃j(z)+i

4h

d∆
ψ̃j(z)

7



CHAPTER 2. TRANSPARENT BOUNDARY CONDITION

or,

ψ̃j+1(z) + ψ̃j−1(z) = 2aψ̃j(z) + i
2λ

d2
1

z + c
ψ̃j(z), (2.2.8)

where constants a = 1 +
h2g

2d
, λ =

2h2

∆
and c = 1 − 2λ

6d
. We try a previous

method of solution, that is, introduce auxiliary functions ej(z) and qj(z) such

that

ψ̃j+1(z) = ej(z)ψ̃j(z) + qj(z). (2.2.9)

Combining (2.2.8) and (2.2.9), we see that

ej(z) +
1

ej−1(z)
= 2a+ i

2λ

d2
1

z + c
(2.2.10)

qj(z) =
qj−1(z)

ej−1(z)
. (2.2.11)

Since (2.2.10) has no j on the right hand side, the recoursion relation for

ej(z) is satisfied by a uniform ej(z) = e(z). (2.2.10) reduces to a quadratic

equation for e(z),

e2(z)−
(

2a+ i
2λ

d2
1

z + c

)
e(z) + 1 = 0. (2.2.12)

Two roots e±(z) satisfy e+(z)e−(z) = 1. On the left of the computed region,

j = 0,−1, · · · , we choose the root |e(z)| > 1. From (2.2.11),

qj(z) =
qj−1(z)

e(z)
=
qj−2(z)

e2(z)
= · · · ==

qj−N(z)

eN(z)
→ 0.

Similarly, on the right of the computed region, we take the root |e(z)| < 1.

Then,

qj(z) = e(z)qj+1(z) = e2(z)qj+2(z) = · · · = eN(z)qj+N(z)→ 0.

In this way, problem in both exterior region is reduced to

ψ̃j+1(z) = ej(z)ψ̃j(z), (2.2.13)

8



CHAPTER 2. TRANSPARENT BOUNDARY CONDITION

with proper e(z). Using (2.2.13), we obtain ψ̃j for the exterior region. But,

inverse Z-transform requires enormous computational cost. Fortunately, we

need to compute only the boundary conditions, i.e. at j = 0, J .

From equation (2.2.12), the roots e±(z) is written an following explicit

form :

e±(z) =
az + a′c± z

√
a2 − 1

√
1− 2µx+ x2

z + c

with µ =
1− |a|2

|1− a2|
, x =

e−iφ

z
, φ = arg

(
a2 − 1

c

)
. Since inverse Z-transform

requires a representation of invese power of z, we need to recalculate square

root terms. Note that
1√

1− 2µx+ x2
= Pn(µ)xn, where Pn(µ) is an nth

degree Legendre polynomial. With a tedious computing, we find√
1− 2µx+ x2 = −

∞∑
n=0

lnz
−n,

ln =
e−inφ

2n− 1
(Pn(µ)− Pn−2(µ)) , l0 = −1, and l1 = µe−iφ.

With this result, equation (2.2.13) at j = 0 becomes

(z + c)ψ̃1(z) =

(
az + a′c∓ z

√
a2 − 1

∞∑
n=0

lnz
−n

)
ψ̃0(z).

Through inverse Z-transform, we obtain the transparent boundary condition

on the left

ψn+1
1 + cψn1 = (a±

√
a2 − 1)ψn+1

0 + a′cψn0 ∓
√
a2 − 1

n∑
k=1

ln−k+1ψ
k
0

or,

wn1 = (a±
√
a2 − 1)wn0 +

(
a′ − a∓

√
a2 − 1

)
d′ψn0 ∓ d

√
a2 − 1

n∑
k=1

ln−k+1ψ
k
0 .

(2.2.14)

Similarly, we obtain the transparent boundary condition on the right

ψn+1
J−1 + cψnJ−1 = (a∓

√
a2 − 1)ψn+1

J + a′cψnJ ±
√
a2 − 1

n∑
k=1

ln−k+1ψ
k
J

9



CHAPTER 2. TRANSPARENT BOUNDARY CONDITION

or,

wnJ−1 = (a∓
√
a2 − 1)wnJ +

(
a′ − a±

√
a2 − 1

)
d′ψnJ ±d

√
a2 − 1

n∑
k=1

ln−k+1ψ
k
J .

(2.2.15)

In §2.2.1, we make the two-term recursions of the form wnj+1 = ejw
n
j + qnj .

Compared with equation (2.2.14), we find the following :

wn1 = e0w
n
0 + qn0 (2.2.16)

e0 = a0 ±
√
a20 − 1, (2.2.17)

qn0 = d′0(a
′
0 − e0)ψn0 + d0(a0 − e0)

∞∑
k=1

ln−k+1ψ
k
0 , (2.2.18)

where d0 = 1− h
2g0
12

and a0 = 1+
h2g0
12d0

. The sign in (2.2.17) is decided by the

requirement that |e0| > 1. Notice that to compute qn0 , we need, in addition

to the current value of ψ, all earlier values ψk0 which occur in the convolution

on the right side of equation (2.2.18) [9]. Since initial value e0 and q0 is given

by equation (2.2.17) and (2.2.18), we can find the remaining ej and qj using

(2.2.6) and (2.2.7).

Like this procedure, we can write boundary condition on the right as :

wnJ−1 = αJw
n
J + βnJ (2.2.19)

αJ = aJ ±
√
a2J − 1, (2.2.20)

βnJ = d′J(a′J − αJ)ψnJ + dJ(aJ − αJ)
∞∑
k=1

ln−k+1ψ
k
J . (2.2.21)

Also, the sign in (2.2.20) is selected by |αJ | > 1. Since we have relation

wnJ = eJ−1w
n
J−1 + qnJ−1, we find the intial value for wnJ ,

wJ =
qnJ−1 + βnJ eJ−1

1− αJeJ−1
. (2.2.22)

And then, using wnj−1 =
wnj − qnn−1
ej−1

, we generate wJ−1, wJ−2, · · · , wn0 in

10



CHAPTER 2. TRANSPARENT BOUNDARY CONDITION

inverse sequence. Our purpose is computing wave function ψnj which is re-

covered from wnj :

ψn+1
j = −ψnj + i

h2

3∆dj
ψnj +

wnj
dj
. (2.2.23)

2.3 Transparent Boundary Condition in Two

dimension

The original form of the Schrödinger equation is

i~
∂

∂t
ψ(x, t) = − ~

2m
∆ψ(x, t) + V (x, t)ψ(x, t), x ∈ Rn,

wherem ≈ 0.568544×10−11eV/C2 is the particle’s mass and ~ ≈ 1.054571726×
10−34Js is the Planck constant which describes the relationship between en-

ergy and frequency. However, these are extremely small used in computing

science. Through the change of variable, we can set m and ~ any constant,

e.g. m =
1

2
and ~ = 1 in (1.0.1). In this section, we start with putting m = 1

and ~ = 1, i.e.

i∂tψ(x, y, t) = −1

2
∆ψ(x, y, t) + V (x, y, t)ψ(x, y, t), (x, y) ∈ R2. (2.3.1)

2.3.1 Numerov Approximation

As previous §2.2, Numerov method will be used with a Crank-Nicolson

scheme in time, which yields an unconditionally stable scheme [11]. We know

the standard finite difference operators :

D+
t ψ

n
j,k =

ψn+1
j,k − ψnj,k

∆t
,

D2
xψ

n
j,k =

ψnj+1,k − 2ψnj,k + ψnj−1,k
∆2

,

D2
yψ

n
j,k =

ψnj,k+1 − 2ψnj,k + ψnj,k−1
∆2

.

11



CHAPTER 2. TRANSPARENT BOUNDARY CONDITION

And we abbreviate

ψ
n+ 1

2
j,k =

1

2

(
ψn+1
j,k + ψnj,k

)
,

V
n+ 1

2
j,k = V

(
xj, yk, tn+ 1

2

)
.

With the discretization in time and the Crank-Nicolson scheme, (2.3.1)

becomes

∆ψn+
1
2 = 2V n+ 1

2 (x, y)ψn+
1
2 (x, y)− 2iD+

t ψ
n(x, y). (2.3.2)

Using nine-point scheme, we derive second order difference operator

D2 = D2
x +D2

y +
∆x2 + ∆y2

12
D2
xD

2
y.

With the identity operator I, we generalize the 1D case in §2.2.1 :

D2ψ
n+ 1

2
j,k =

(
I +

∆x2

12
D2
x +

∆y2

12
D2
y

)[
2V

n+ 1
2

j,k ψ
n+ 1

2
j,k − 2iD+

t ψ
n
j,k

]
. (2.3.3)

Consider the Schrödinger equation

i∂tψ(x, y, t) = −1

2
∆ψ(x, y, t) + V (x, y, t)ψ(x, y, t), (x, y) ∈ R2,(2.3.4)

ψ(x, y, 0) = ψ0(x, y) (2.3.5)

ψ(x, 0, t) = ψ(x, Y, t) = 0. (2.3.6)

on the infinite stripe Ω = R × (0, Y ). We will compute on bounded region

(0, X) × (0, Y ) ⊃ supp (ψ0(x, y)). We assume the potential V (x, y, t) is con-

stant on each of the two exterior region. The discretization of (2.2.4) with

(2.2.3) is

(1− αnj+1,k)ψ
n+1
j+1,k + (1− αnj−1,k)ψn+1

j−1,k + (D − αnj,k+1)ψ
n+1
j,k+1 + (1− αnj,k−1)ψn+1

j,k−1

+βnj,kψ
n+1
j,k + C

(
ψn+1
j+1,k+1 + ψn+1

j+1,k−1 + ψn+1
j−1,k+1 + ψn+1

j−1,k−1
)

= (2W − 1 + αnj+1,k)ψ
n
j+1,k + (2W − 1 + αnj−1,k)ψ

n
j−1,k

+(2W −D + αnj,k+1)ψ
n
j,k+1 + (2W −D + αnj,k−1)ψ

n
j,k−1 + (16W − βnj,k)ψnj,k

−C
(
ψnj+1,k+1 + ψnj+1,k−1 + ψnj−1,k+1 + ψnj−1,k−1

)
12



CHAPTER 2. TRANSPARENT BOUNDARY CONDITION

(2.3.7)

with the abbreviations

D =
∆x2

∆y2
, C =

∆x2 + ∆y2

12∆y2
, W =

i∆x2

12∆t
,

αnj,k = 2C −W +
∆x2

6
V
n+ 1

2
j,k , βnj,k = −2− 2D − 8αnj,k + 20C.

2.3.2 Transparent Boundary Condition

Transparent boundary condition is derived on the exterior region and matched

at boundary with the interior computed region. Define the discrete sine-

transform in y-direction on ΩC

ψ̂n+1
j+1,m =

2

K

K−1∑
k=1

ψnj,k sin

(
πkm

K

)
, m = 1, 2, · · · , K − 1

for j ≤ 0and j ≥ J . By sine-tranform, Relation (2.3.7) becomes

γmψ̂
n+1
j+1,m + ρmψ̂

n+1
j,m + γmψ̂

n+1
j−1,m

= (2W − γm) ψ̂nj+1,m + (κm − ρm) ψ̂nj,m + (2W − γm) ψ̂nj−1,m (2.3.8)

with the abbreviations

γm = 1 + 2C
(

cos
(πm
K

)
− 1
)

+W − ∆x2

6
V,

κm = 4
(

cos
(πm
K

)
+ 4
)
W,

ρm = −2− 2D + 4C + 8W − 4∆x2

3
V

+

(
2D − 4C + 2W − ∆x2

3

)
cos
(πm
K

)
.

Since the potential V is a constant function on ΩC , it doesn’t need any

indices. Relation (2.3.8) is worthy of notice. For each m = 1, · · · , K − 1, it

seems like 1-dimensional 3-points scheme. Therefore we can guess obtaining

transparent boundary conditions as §2.2.

13



CHAPTER 2. TRANSPARENT BOUNDARY CONDITION

(2.3.8) has a different times data, and we are using Z-transform

Ψj,m(z) =
∞∑
n=0

ψ̂nj,mz
−n.

We assume the initial function ψ0
j,k = 0 at j ≤ 1 and j ≥ J − 1 for all k. The

Z-transform of (2.3.8) is

Ψj+1,m(z) +

[
ρm(z + 1)− κm
γm(z + 1)− 2W

]
Ψj,m(z) + Ψj−1,m(z) = 0 (2.3.9)

for j ≥ J , m = 1, · · · , K − 1. (2.3.9) is a second order recurrence relation, or

a second order finite difference equation. Its characteristic equation has two

solutions ν
(1)
m (z), ν

(2)
m (z) with ν

(1)
m (z) · ν(2)m (z) = 1. Explicitly,

ν±m(z) =
−ρm(z + 1) + κm ±

√
ζmz2 − 2ξmz + θm

2γm(z − ηm)
.

with

ηJ,m = (ρJ,m)2 − 4(γJ,m)2,

θJ,m = (κm − ρJ,m)2 − 4(γJ,mηJ,m)2

ξJ,m = −(ρJ,m)2 − 4(gammaJ,m)2ηJ,m + ρJ,mκm.

For each m = 1, · · · , K − 1, we choose the solution such that |νm(z)| < 1.

The corresponding, decaying solution Ψj,m(z) = (νm(z))j, j ≥ J of (2.3.9)

then yeilds the Z-transformed transparent boundary conditions at j = J :

ΨJ,m(z) = νm(z)Ψj−1,m(z).

for m = 1, · · · , K−1. Similarly, we can get a condition at j = 0. For j = 0, J

and m = 1, · · · , K − 1, νm(z) becomes

Z−1(νj,m(z))(n) = l
(n)
j,m

= − ρj,m
2γj,m

ηnj,m +
κm − ρj,m

2γj,m

(
ηn−1j,m −

δ0n
ηj,m

)
+

√
θj,m

2γj,m
λ1−nj,m

[
Pn(µj,m)− Pn−1(µj,k)

ηj,mλj,m

]
+

√
θj,m

2γj,m
λ1−nj,m

τj,m
ζj,mηj,m

n−1∑
k=0

(λj,mηj,m)n−kPk(µj,m)

14



CHAPTER 2. TRANSPARENT BOUNDARY CONDITION

(2.3.10)

with the Legendre polynomials Pn, the Kronecker symbol δ0n, λj,m =

√
ζj,m√
θj,m

,

νj,m =
ξj,m√

θj,m
√
ζj,m

, and τj,m =
θj,m
ηj,m

+ ζj,mηj,m − 2ξj,m by the inverse Z-

transform.

By this results, the sine-transformed discrete transparent boundary con-

ditions at j = 0 and j = J for the discretization scheme (2.3.7) is given as

following :

ψ̂n1,m − l
(0)
0,mψ̂

n
0,m =

n−1∑
k=1

l
(n−k)
0,m ψ̂k0,m (2.3.11)

ψ̂nJ−1,m − l
(0)
J,mψ̂

n
J,m =

n−1∑
k=1

l
(n−k)
J,m ψ̂kJ,m. (2.3.12)

Since (2.3.10) and (2.3.11) are local in the y-Fourier space, this is the

efficient way to implement them.

The convolution coefficients l
(n)
0,m are asymptotically an oscillatory se-

quence. Moreover, this behavior deviates from the O(t−
3
2 )-decay of the con-

tinuous convolution kernel in (1.0.6). Hence, it may lead to numerical can-

cellations in the calculation of the convolution sums (2.3.11), (2.3.12) [10].

It is related with classical result on the asymptotic property of the Legendre

polynomials [6]:

Pn(cos θ) =

√
2

√
π
√

sin θ

cos

((
n+

1

2

)
θ − π

4

)
√
n

+O(n−
3
2 ), 0 < θ < π.

As an alternative, we derive coefficients that decay like O(t−
3
2 ). For the left

DTBCs, we add equation (2.3.11) for n and n − 1 with the corresponding

weighting factors 1 and −η1,m, and so is (2.3.12) j = J [10]. Therefore DTBC

15



CHAPTER 2. TRANSPARENT BOUNDARY CONDITION

is given the following

ψ̂n1,m − s
(0)
0,mψ̂

n
0,m =

n−1∑
k=1

s
(n−k)
0,m ψ̂k0,m + η1,mψ̂

n−1
1,m (2.3.13)

ψ̂nJ−1,m − s
(0)
J,mψ̂

n
J,m =

n−1∑
k=1

s
(n−k)
J,m ψ̂kJ,m + ηJ,mψ̂

n−1
J,m . (2.3.14)

for n ≥ 1 with the summed coefficients

s
(n)
j,m =

{
l
(n)
j,m − ηj,ml

(n−1)
j,m , n ≥ 1

l
(0)
j,m, n = 0

for m = 1, · · · , K − 1, j = 0 and j = J . For n ≥ 2,

s
(n)
j,m =

√
θj,m

2γj,m
λ1−nj,m

[
Pn(µj,m) + Pn−2(µj,m)− 1

ηj,mλj,m
Pn−1(µj,m)

−ηj,mλj,mPn−1(µj,m) +
τj,mλj,m
ζj,m

Pn−1(µj,m)

]
.

Since the recurrence relation for the Legendre polynomials

nPn(µj,m) = (2n− 1)µj,mPn−1(µj,m)− (n− 1)Pn−2(µj,m),

for n ≥ 2 then follows

s
(n)
j,m = −

√
θj,m

2γj,m
λ1−nj,m

Pn(µj,m)− Pn−2(µj,m)

2n− 1
. (2.3.15)

(2.3.13) and (2.3.14) are non-local in time. It is necessary to compute a

convolution of size n in the n-th step. It occurs a quadratic growing numerical

cost. In [6] and [10], the authors derived an approximation of the convolution

coefficients by a sum of exponentials. If one want to reduce computation cost,

it is a good alternative plan.

16



Chapter 3

Implementation

3.1 1D Schrödinger Equation

Most simple case of a quantum wave function is the free Gaussian wave

packet. Define wave function as

ψ(x) =
1

(2πσ2)−1/4
exp

(
−(x− x0)2

2σ2

)
where σ = 0.125 and x0 = 0.5. The computation domain is a unit interval

[0, 1] with ∆x =
1

1600
, ∆t = 10−3. Fig 3.1 shows the |ψ(x, t)| at time t =

0, 10∆t, 20∆t, and 30∆t. As our guess, there is no reflection at the both

boundary and wave spreads uniformly.

Second case is a free particle with nonzero velocity. Let’s define wave

function as follow :

ψ(x) =
1

(2πσ2)−1/4
exp(ikx) exp

(
−(x− x0)2

2σ2

)
with k = 50, σ = 0.125 and x0 = 0.2.. Fig 3.2 shows the results with

∆x =
1

1600
, ∆t = 2 · 10−3 at time t = 0, 10∆t, 20∆t, and 30∆t. This

17



CHAPTER 3. IMPLEMENTATION

Figure 3.1: Free particle with k = 0(no velocity), σ = 0.125, x0 = 0.5,

∆x =
1

1600
, ∆t = 10−3 at time t = 0, 10∆t, 20∆t, and 30∆t.

particle travels to the right and spreads uniformly. And there is no reflection

on the right boundary.

Figure 3.2: Free particle with velocity k = 50, σ = 0.125, x0 = 0.5, ∆x =
1

1600
, ∆t = 10−3 at time t = 0, 10∆t, 20∆t, and 30∆t.

18



CHAPTER 3. IMPLEMENTATION

Third case contains the nonzero potential function. The potential is given

as V (x) = 2 · 103 on [0.8, 0.82]. Initial wave function is given as second

case. As expected, no reflection at both boundary. We can observe quantum

tunneling, a particle tunnels through a barrier that it classically could not

surmount. Tunnelling is often explained using the Heisenberg uncertainty

principle and the wave–particle duality of matter. Pure quantum mechanical

concepts are central to the phenomenon, so quantum tunnelling is one of the

novel implications of quantum mechanics.

Figure 3.3: Barrier

3.2 2D Schrödinger Equation

The first example is a Gaussian wave in 2D

ψ(x, y) = exp(ik1x+ ik2y) exp

(
−(x− 0.5)2 + (y − 1)2

2σ2

)

with k1 = −50, k2 = 0, σ = 0.125, ∆x =
1

25
, ∆y =

1

25
, ∆t = 2 · 10−4 at

t = 0, 30∆t, 60∆t, and 90∆t. On a zero potential function, we know exact

solution. In order to avoid non-physical reflection on y-direction, we set rect-

angle computation domain, which has a longer edge on y-direction. Fig 3.4

19



CHAPTER 3. IMPLEMENTATION

show this results. There is some unwilled reflection. I think it was occurred

by inaccurate convolution coefficient, which should be updated in the future.

So it is points to be duly considered at analysis results.

Next example is

ψ(x, y) = exp(ik1x+ ik2y) exp

(
−(x− 0.5)2 + (y − 1.5)2

2σ2

)

with k1 = −50, k2 = −50, σ = 0.125, ∆x =
1

25
, ∆y =

1

25
, ∆t = 2 ·

10−4 at t = 0, 30∆t, 60∆t, and 90∆t. This particle passes through y-axis

with non-orthogonal incidence. Many boundary conditions cannot treat non-

orthogonal incidence and cause non-physical wave figures. Our method show

relatively reasonable results, although Fig 3.5 has some reflection by he same

reason as Fig 3.4. This example indicates the angular independence of our

transparent boundary conditions.

Figure 3.4: Orthogonal incidence free particle with velocity k1 = −50, k2 = 0,

σ = 0.125, ∆x =
1

25
, ∆y =

1

25
, ∆t = 2 · 10−4 at t = 0, 30∆t, 60∆t, and

90∆t..

20



CHAPTER 3. IMPLEMENTATION

Figure 3.5: Non-orthogonal incidence free particle with velocity k1 = −50,

k2 = −50, σ = 0.125, ∆x =
1

25
, ∆y =

1

25
, ∆t = 2·10−4 at t = 0, 30∆t, 60∆t,

and 90∆t

21



Chapter 4

Conclusion

We have looked around discrete transparent boundary conditions us-

ing Numerov method in 1D and 2D. Numerov extension induces high order

scheme with cheap computing cost. The method had been made in MAT-

LAB. Contained results show that it was effective numerical methods. It will

contribute quantum wave simulation on a bound domain.

A reader may presume that we still do not treat whole rectangle boundary

on 2 dimensional case, i.e., only one directional. In 1993, F. Collino derived

corner conditions for wave equation on rectangle domain [5]. However, for

the Schrödinger equation, no results are reported on this topic so far. It will

be our next study.
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국문초록

이 논문에서 우리는 누메로프 방법과 크랭크-니콜슨 방법을 이용해서 1차

원과 2차원에 슈뢰딩거 방정식의 고차 알고리즘을 유도한다. 이런 과정에서

수치적 투과 경계 조건을 각 차원별로 유도한다. 마지막으로 1차원에서 유계

구간과 2차원에서 유계 직사각형 영역에서 이 조건을 실험한다.

주요어휘: 슈뢰딩거 방정식, 투과경계조건, 누메로프 방법

학번: 2012-20241
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