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Abstract

In this paper, we derive a high order algorithm for the 1D and 2D
Schrodinger equation with Numerov method and Crank-Nicolson Scheme.
In this procedure, we find discrete transparent boundary conditions for each
dimensional case. Finally, we simulate this condition on a bounded interval
in 1D and a bounded rectangle in 2D.

Key words: Schrodinger Equation, Transprent Boundary Condition, Nu-

merov Method
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Chapter 1

Introduction

The time-independent Schrodinger equation is

iOu = —Au+V(x)u, z€R"t>0 (1.0.1)
‘1|im u(z,t) = 0, (1.0.2)
u(z,0) = wo(z), (1.0.3)

where V' is a given real potential. We can assume that the initial function
has compact support, i.e. supp(ug) C B(r), where B(r) is a ball with center
at origin and radius r > 0. And we can assume that the potental function V'
is constant on R™\ B(r) [1].

The Schrodinger equation is one of the basis equations in quantum me-
chanics and it appears in a number of areas of physical. Plenty of methods
have been developed for the solution of the one dimentional time-independent
Schrodinger equation. A well known class of the methods for the solution of
the Schrodinger equation are Numerov type [8]. It is defined on the un-
bounded region Q = {(z,t) € R" x R*}. To restrict the computational
domain, one usually imposes a boundary condition of the Dirichlet or Neu-
mann type. For a constant exterior pontential V., in 1D, we can factorize
into left and right traveling waves :

0 = O%u+i(Ou+iViu) (1.0.4)

= (ax + eii”/ll +\/ 3,5 + Z‘/ezt)(ax — 67“’/4 \+/ (9t -+ ’iVem)u (105)
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Since the potential V' is a constant function in the unbounded region, the

potential may be eliminated by setting ¢(z,t) = e ®u(x,t) with V(t) =
t

/ V(s)ds = Vemt [2]. From (1.0.5), as a Dirichlet-Neumann map we can
0

obtain

(1) + e ™D (3,1) = 0, (1.0.6)

i.e. Ogu(x, t) 4 e 1T/ ATVerrt) DI2iVertty (1 ) = ()

where n is a the outwardly directed unit normal vector to the comutational

bounded domain and D;’* is the fractional derivatives with D;/?f (x,t) =
1 t

_at/ f(x78)d8 [7]

\/7_T 0 \/t — S

A simple calculation shows that (1.0.7) is equivalent to the impedance

boundary condition [1]

6i7r/4 t anu(x’ S)e—ivext(t—s)

VT o Vi—s

u(z,t) = —em/"‘[tl/zu(a:,t) = ds, (1.0.8)

1 t
where ]tl/Qf(z, t) = N / f/(gds is the fractional integral [7], in the form
0 —

of a Neumann-Dirichlet map.

However, when the wave u pass trough fictive boundary, some unphysical
reflections occurs. Then, one can compute on a larger computational domain
which can be difficult to handle numerically and need expensive computing
cost. A usual adopted solution consists in imposing a more suitable boundary
condition on the fictive boundary which does not affect the solution in the
interior domain by not generating any undesirable parasitic reflected waves
3].

These boundary conditions are not contained in the original problem for-
mulation. They should be obtained by a transformation of the given asymp-
totic conditions at infinity onto the artificial boundary as (1.0.2) [4]. Such
a transfer must provide an approximation of the solution on the unbounded
domain by the solution calculated in a finite domain with an artificial bound-
ary. Such boundary conditions are called absorbing boundary conditions if
they yield a well-posed initial boundary value problem, where some energy
functional is absorbed at the boundary. If this computed solution coincides

2



CHAPTER 1. INTRODUCTION

on computation region with the exact solution of the whole-space problem,
one refers to these boundary conditions as transparent boundary conditions
[1].

In this article, we induce the high order transparent boundary condition
with Numerov method on 1D and 2D in §2 and §3, respectively. And in §4,
we show implementation for each dimension and analysis.



Chapter 2

Transparent Boundary
Condition

2.1 Numerov Method

The Numerov method is used to solve diffential equation of the form

#u
dx?

= f(x,u). (2.1.1)

The Taylor expansion of u at © = xg+ h and x = g — h is

: hon e W R )

u(zo+h) = u(xo)+hu (x0)+§u (xo)—f—gu (%)‘FEU (xo)—f—yu (x0)+O(h6),
/ h " s W )

u(zo—h) = u(xe)—hu (xo)+§u (xo)—gu (aso)+zu (aso)—au (20)+O(h6).

We replace those expression by u,—1 = u(zg — h),u, = u(zg) and v,y =
u(xg 4+ h). The sum of those two equations gives

4

h
Uiy + Un_1 = 2uy + W2 + Euﬁf) + O(hY).
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d2 _ fn+1_2fn+fn71

Since u” = f, and vl = — f, = 2

e + O(h?), we can get
x

following scheme :

h_4fn+1 B an + fn—l

12 h?

2fn+1 + 10fn + fn—l
12

(2.1.2) is called the Numerov method for nonlinear equations of fourth order.

Up+1 + Up—1 = 2un + h2fn + + O(hﬁ),

+ O(h®). (2.1.2)

i.e. Unpt+1 = 2un — Up_1 + h
It is implicit, but can be made explicit if the equation is linear.

2.2 Transparent Boundary Condition in One

Dimension

The original transparent boundary condition formulation for the Schrédinger
equation dates to 1982, but recently has the proper discretization of the
results been given [9]. With discrete transparent boundary conditions, there
is no need to artificially impose restrictions on space and timeQ.

At (1.0.1), we define the Hamiltonian operator H = —% + V(z) and
the system propagator exp(—iHt). Then (1.0.1) is written as following with

initial wave function ¢ (x, ty):

(z,t+ A) = exp(—iHA)Y(z,t). (2.2.1)
exp(—iHA) is approximated with the Cayley form,
. 1—iHA)? ,

Combining (2.2.1) and (2.2.2), we can obtain the Crank-Nicholson approxi-
mation to the evolution problem,
HA HA
[1 + zT] Pz, t+ A) ~ [1 - ZT:| b(z,t). (2.2.3)
We rewrite (2.2.3) with new function y(z,t) = ¥ (x,t+A)+1(x, t) and using
the definition of H,
0%y

5 [v(x) - Z%} y(z,t) = i%zﬂ(w,t). (2.2.4)
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2.2.1 Numerov Approximation
Equation (2.2.4) has of the form y"(x) = g(x)y(z) + f(z,t) with g(z) =
Vie)— 2" and f(z,t) = 42‘”(2’ t)

A
approximate the second derivative. We abbreviate y7' = y(xo+ 70, to+nl\y)

g; = g(xo + jA;), and similarly for the others. Now, we use the numerov

. We usually use the central-space scheme to

method to obtain high order scheme. From Sec. 2.1 procedure,

yio =200 +yi = (gl + 17)
2

h n n n n n n
+E (9j+1yj+1 + fj+1 - 2gjyj - ij + gj—1Yj—1 + fj—l) )

I

Le. wl, ) +uwl | = {2 + hQ&} wy + WL
J

7} (2.2.5)

where d; =1 — h29 and wi = djy; — h2=L . In terms of the new functions,
12
the result takes the very simple form.

Since equation (2.2.5) has recursion relation for the w?, the numerical

J
solution is obtained if we have initial value w{ and wj. We want to reduce
the three-term recursions relation (2.2.5) to the two-term recursions of the

form w},; = e;w} + ¢}. From (2.2.5), we obtain

9

1
ei+—— = 2+ h? 2.2.6
J ejfl d] ( )
n q?*1 2f]n
GOt R 2.2.7
q; e T (2.2.7)

Equation (2.2.6) and (2.2.7) generate e; and g7 for j = 1,---,J — 1 from
the initial ey and ¢y. We can assume vanishing w} at the boundary, i.e.
wy = w = 0. The two-for-one replacement means that one of these data
points may be chosen arbitrarily, while the other is dictated by the boundary
conditions. The trick is to recognize that for rigid walls (w} = 0), we can
let eg — oo, thus permitting both e; and ¢ to be found immediately from
(2.2.6) and (2.2.7), assuming only that ¢ is finite. We can note that the e;

only depend on the position variable, i.e. e; be computed just once at the

6
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start of the process. On the other hand, ¢} has the position and time variable,

must be computed at each time step. Starting with w’; = 0, we use relation
w? — g™

1= jcf%l to calculate wy_q1, wy_g, - -+, WY.

-1

In any case, the rigid-wall boundary conditions unacceptable limitations

w

in scattering problems or other sitiations where the wave function is not
inherently confined. With discrete transparent boundary conditions, these
limitations can be overcome [9)].

2.2.2 Transparent Boundary Conditions

We now derive the discrete transparent boundary conditions using the Nu-
merov approximation with the Crank-Nicholson evolution problem. Com-
puted interval must support the initial wave function, which is required to
vanish in the exterior. Our derivation start with equation (2.2.5). (2.2.5) will
be solved exactly in the exterior regions to obtain the proper connections at
j=0and j=J.

Several transforms are used solving partial differential equation to reduce
computed variable. (2.2.5) has two difference relation in both the space and
time indices. To remove time index, we consider the Z-transform defined by

Ui(z) =Y Wi
n=0
This is the discrete analogue of the Laplace transform defined by

Fs) = / " feat,

for the complex number s. Z-transform can be applied to the solution of
linear difference equations in order to reduce the solutions of such equations
into those of algebraic equations in the complex plain.

Assume that the exterior region is force-free, i.e. V' = 0, so that g; and
d; become constants, denoted by g and d. By Z-transform, (2.2.5) becomes

~ 4h ~

e+ 1) = i | [T+ 85m1(2)] =2 [atz 41 = 1] Brigr D)

7
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or,
~ ~ ~ 2N 1 ~
Vj+1(2) +¥j1(2) = 2a05(2) + Zﬁz—jtc%(z)’ (2.2.8)
h? 2h?
where constants a = 1 + 2_dg’ A= N and ¢ = 1 — —. We try a previous

method of solution, that is, introduce auxiliary functions e;(z) and ¢;(2) such
that

Ui (2) = e;(2)05(2) + ¢(2). (2.2.9)
Combining (2.2.8) and (2.2.9), we see that
1 20 1
e;(z) + ) = 2a+ e (2.2.10)
_ 41(3)
q(z) = e 1 () (2.2.11)

Since (2.2.10) has no j on the right hand side, the recoursion relation for
e;(z) is satisfied by a uniform e;(z) = e(z). (2.2.10) reduces to a quadratic
equation for e(z),

> e(z) +1=0. (2.2.12)

Two roots e4(z) satisfy ey (z)e_(z) = 1. On the left of the computed region,
j=0,—1,---, we choose the root |e(z)| > 1. From (2.2.11),
_g-1(2) _ g-2(2) _ 4-n(2)

e T [ H

Similarly, on the right of the computed region, we take the root |e(z)| < 1.
Then,

¢j(2) = e(2)@1(2) = €(2)gju2(2) = - = " (2)gjn(2) = 0.
In this way, problem in both exterior region is reduced to
by (2) = e;(2)05(2), (2.2.13)

8



CHAPTER 2. TRANSPARENT BOUNDARY CONDITION

with proper e(z). Using (2.2.13), we obtain sz for the exterior region. But,
inverse Z-transform requires enormous computational cost. Fortunately, we
need to compute only the boundary conditions, i.e. at j =0, J.

From equation (2.2.12), the roots e (z) is written an following explicit
form :

az +d'c+ 2v/a? —1/1 — 2ux + 22
zZ+c
1 —al? e a?—1
with p = ||,33: , ¢ =arg
|1 — a?| z
requires a representation of invese power of z, we need to recalculate square

1
root terms. Note that = P,(p)z™, where P,(u) is an nth
V1 —2ux + 22
degree Legendre polynomial. With a tedious computing, we find

[e.e]
V1—=2uxr+2%=— Zlnz’”,
n=0

er(z) =

. Since inverse Z-transform

efim;ﬁ .
2n—1 (P”(,u) - Pﬂ—Q(M>>7 lo=—1and [ = /“Le_ldj'

With this result, equation (2.2.13) at j = 0 becomes

(z+c)@51(z):<az+ac$z a? — le >

Through inverse Z-transform, we obtain the transparent boundary condition
on the left

eyl = (a £ Va2 - DYyt +d ey F Va2 — 12 Ly k108
k=1

n —

or,

w} = (a £ Va2 — 1wy + (a’ —aF Va? - 1) d'y F dva? — 1Zlnfk+1w§'
=1

(2.2.14)

Similarly, we obtain the transparent boundary condition on the right

et = (aF Va2 - 1) +d eyt £ Va2 -1 Z In— ki1
k=1
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or,
wh_; = (aFVa® - 1w+ (a’ —a+vVa?— 1> dyytdva® —1 Z Ly g1
k=1
(2.2.15)

In §2.2.1, we make the two-term recursions of the form wf ; = e;w} +gj.
Compared with equation (2.2.14), we find the following :

wy = eowy + qp (2.2.16)
ep = agEty/ad—1, (2.2.17)
g = dylah — eo)ty + do(ao — €0) Y ln—ps1tf;, (2.2.18)
k=1
h? h?
where dg = 1— 130 and ag = 1+ 1220 . The sign in (2.2.17) is decided by the
0

requirement that |eg| > 1. Notice that to compute ¢f, we need, in addition
to the current value of 9, all earlier values 1§ which occur in the convolution
on the right side of equation (2.2.18) [9]. Since initial value ey and ¢q is given
by equation (2.2.17) and (2.2.18), we can find the remaining e; and ¢; using
(2.2.6) and (2.2.7).

Like this procedure, we can write boundary condition on the right as :

wi_y = aywy+ 6] (2.2.19)
ay = ayt4/ai—1, (2.2.20)
By = dj(ay — )y +dsi(ay— o)) gttt (2221)

k=1

Also, the sign in (2.2.20) is selected by |ay| > 1. Since we have relation
wh = ej1w_; + qj_4, we find the intial value for w7,

@+ B

(2.2.22)
l—aye;
Wi —
And then, using w} ;, = ————, we generate wy_1, wWy_z,---, Wy in
€i—1
10

&

| &1

1V
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inverse sequence. Our purpose is computing wave function 7 which is re-

covered from wj” :

2

L (2.2.23)

n+1 n
YT = gy + d,

2.3 Transparent Boundary Condition in Two
dimension

The original form of the Schrodinger equation is
B0 t) =~ (e t) + V(. (e, t), @ € R
tha¥(z,t) = —o x, x, x,t), ,

where m & 0.568544x 10~ eV /C? is the particle’s mass and h ~ 1.054571726 x
10734 Js is the Planck constant which describes the relationship between en-
ergy and frequency. However, these are extremely small used in computing
science. Through the change of variable, we can set m and h any constant,
e.g.m= % and A = 1in (1.0.1). In this section, we start with putting m = 1
and h =1, i.e.

0, ,1) = —3 A, y,0) + V(w5 0w, 1), (2,9) R (23.1)

2.3.1 Numerov Approximation

As previous §2.2, Numerov method will be used with a Crank-Nicolson
scheme in time, which yields an unconditionally stable scheme [11]. We know
the standard finite difference operators :

¢TL+1 - n
DJFI/JT'L _ J,k J,k
t ]7k At ?
n n n
pryn itk T 205 T Uik
mwj,k - Ag )
n n n
D2 n fk+1 T 2¢j,k + 77Z}j,/lc—1
y ik A2 :
11
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And we abbreviate

n—l—% 1 n+1 n
zﬁj,k = 5 (¢j,k + wj,k) )
n+ i
Vj,k 2 V(xj,yk,tmr%).

With the discretization in time and the Crank-Nicolson scheme, (2.3.1)
becomes

AyE = 2V (o )0 R () - 2D (2, y). (2:3.2)
Using nine-point scheme, we derive second order difference operator
D? = D3 + Dj +
With the identity operator I, we generalize the 1D case in §2.2.1 :
12 12 kT3

n—4+i A 2 A 2 n+t ntl .
DX = ([+ . —yD§> [2V CRl = 2D | L (2.3.3)

Consider the Schrédinger equation

0 (z,y,t) = —%A@/}(x, y,t) + V(z,y,)(z,y,t), (x,y) € R*2.3.4)
w(l‘ayao) = 7700(‘(L‘7y) (235)
U(x,0,t) = Yz, Y,t)=0. (2.3.6)

on the infinite stripe Q = R x (0,Y"). We will compute on bounded region
(0,X) x (0,Y) D supp (¢o(x,y)). We assume the potential V(x,y,t) is con-
stant on each of the two exterior region. The discretization of (2.2.4) with
(2.2.3) is

(1— 04?+1,k) ?if,k + (1 - 04?—1,1<;) ;lelk + (D — O‘?,k-i-l)w;l;—&l-l +(1 - 04?,1:—1) ;l;:il

HO U+ C (Wi e + T e )
=W =1+ af )Y, + W = 14af U],
+(2W — D + &Zk+1)w2k+l + (2W - D + Oé?,k—l) Zk—l + (16W - ﬁzk)

-C (¢?+1,k+1 e Tk T @D?—l,k—l)

12

&

| &1

1V
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(2.3.7)

with the abbreviations

D— Ax? B Ax? 4+ Ay? B iAx?
Ay’ S O 12Ay2 T 12AE
Az n+ n n

2.3.2 Transparent Boundary Condition

Transparent boundary condition is derived on the exterior region and matched
at boundary with the interior computed region. Define the discrete sine-
transform in y-direction on ¢

~ 9 &4 Tkm
?ill,m:?ZIkaSin (7)’ m:L 27"', K-1

for j < 0Oand j > J. By sine-tranform, Relation (2.3.7) becomes
le/}]n-:_llm + pmw?;1 + Tm ]n+11m
= 2W — %) V1 + (B — o) VT + W =) 07 (2.3.8)

with the abbreviations
A 2
Vm = 1+26’<Cos <%> —1) +W——xV,

6
Km = 4<COS<WK>+4>W

4N\ 72
pm = —2—2D+4C +8W — =Ly
Ax? ™

Since the potential V is a constant function on Q°, it doesn’t need any
indices. Relation (2.3.8) is worthy of notice. For each m = 1,--- | K — 1, it
seems like 1-dimensional 3-points scheme. Therefore we can guess obtaining
transparent boundary conditions as §2.2.

13
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(2.3.8) has a different times data, and we are using Z-transform
U,m(z) = e
n=0
We assume the initial function wﬁk =0at j<landj>J—1forall k. The
Z-transform of (2.3.8) is

pm(z+1) — Ky,
forj>J m=1,--- K—1.(2.3.9) is a second order recurrence relation, or
a second order finite difference equation. Its characteristic equation has two

solutions VT(,}L)(,Z), 2 (z) with 1/,(7%)(2) : V,(,g)(z) = 1. Explicitly,

k() = —pmn(z+ 1) + B £ /2?2 — 2602 + 0,

Uiym(2) + [ } Tim(2) + Uyoym(z) =0 (2.3.9)

v

2%m (2 = 1m)
with
M = (Prm)* = 4(V1m)*,
Orm = (Km— pim)’ — 4(Vamnim)’
Erm = —(p1m)® — 4(gammam)*nim + Prmbm-
For each m = 1,--- , K — 1, we choose the solution such that |v,(z)| < 1.

The corresponding, decaying solution V;,,,(2) = (v,(2))?, j > J of (2.3.9)
then yeilds the Z-transformed transparent boundary conditions at j = J :

U (2) = v (2) W -1 m(2).

form=1,---, K—1. Similarly, we can get a condition at j = 0. For j =0, J

and m=1,--- | K — 1, v,,(2) becomes
Z ()™ = 1
Pim o Fm = Pim (a1 Op >
29m 2Yim 7 Mj,m
0jm Pr1 (k)
N {P o (fhjm) — —
2’Yj,m Jim J 77j,m>\j7m
V 9j7m 1-n  Tim — n—k
+ A > Nanjam)" ™ Pi1.m)

A Jm s .
2%j,m Cim™Mj;m 0

14
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(2.3.10)

with the Legendre polynomials P,, the Kronecker symbol 62, \;,, = ===,
b 0J7m

éjm ejm .
Vim = ——=——, and Tj,;, = —— + (mNjm — 2§;m by the inverse Z-

transform.
By this results, the sine-transformed discrete transparent boundary con-
ditions at 7 = 0 and j = J for the discretization scheme (2.3.7) is given as

following :
n—1
n n—k)
U = 0 = >l 0, (2.3.11)
k=1
n—1
n T n—k)
V) g — 0 = Y A0 (2.3.12)
k=1

Since (2.3.10) and (2.3.11) are local in the y-Fourier space, this is the
efficient way to implement them.

The convolution coefficients 137,31 are asymptotically an oscillatory se-
quence. Moreover, this behavior deviates from the O(¢~2)-decay of the con-
tinuous convolution kernel in (1.0.6). Hence, it may lead to numerical can-
cellations in the calculation of the convolution sums (2.3.11), (2.3.12) [10].
It is related with classical result on the asymptotic property of the Legendre
polynomials [6]:

™

P,(cosf) = ﬁ\/\/zmcos ((” J:/%) " Z> +0(n7%), 0< 0 <.

As an alternative, we derive coefficients that decay like O(t_%). For the left
DTBCs, we add equation (2.3.11) for n and n — 1 with the corresponding
weighting factors 1 and —7y ,,,, and so is (2.3.12) j = J [10]. Therefore DTBC

15



CHAPTER 2. TRANSPARENT BOUNDARY CONDITION

is given the following

n—1
w?,m - 3(()?7)711/}61,771 = (71 k) ¢0 m + M,m n 1 (2313)
n n—k)
Vy1m — SJm@Z}Jm = Z Sf]m @Z)Jm + 7]Jm@/) . (2.3.14)

for n > 1 with the summed coeflicients

(n) (n—1)
S(n) o ljym - nj,mljym , N Z 1
1) n=

jm T
j’m’

form=1,--- , K—1,j=0and j =J. For n > 2,

s = YA {P n(tjm) + P2 (ttjm) — ———Po-1(ttjm)
27%jm mAjm

TjmNjm
—NjmAjmPa—1(ttjm) + j’g 2 P (H.m)
J,1m

Since the recurrence relation for the Legendre polynomials
npn(/’LjJn) = (2n - 1):uj,mpnfl<,uj,m> - (n - 1)Pn72(,uj,m)7

for n > 2 then follows

o0 — Vi 1m0 Pulitim) = P2 (ttsm) (2.3.15)
Jm 29m I 2n —1

(2.3.13) and (2.3.14) are non-local in time. It is necessary to compute a
convolution of size n in the n-th step. It occurs a quadratic growing numerical
cost. In [6] and [10], the authors derived an approximation of the convolution
coefficients by a sum of exponentials. If one want to reduce computation cost,
it is a good alternative plan.
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Chapter 3

Implementation

3.1 1D Schrodinger Equation

Most simple case of a quantum wave function is the free Gaussian wave
packet. Define wave function as

1 (x — m)?

U(z) = WGXP (—T)

where o = 0.125 and xzg = 0.5. The computation domain is a unit interval
0,1] with Az = ﬁ’ At = 1072, Fig 3.1 shows the [¢(z,t)| at time ¢ =
0, 10At, 20At, and 30At. As our guess, there is no reflection at the both
boundary and wave spreads uniformly.

Second case is a free particle with nonzero velocity. Let’s define wave
function as follow :

W) = m explikz) exp (—%)

with £ = 50, ¢ = 0.125 and zy = 0.2.. Fig 3.2 shows the results with

1
r = 1600’ At = 21072 at time ¢t = 0, 10A¢, 20At, and 30At. This

17



CHAPTER 3. IMPLEMENTATION

Figure 3.1: Free particle with & = O(no velocity), o = 0.125, o = 0.5,

1
Ar = T600° At = 1073 at time t = 0, 10A¢t, 20At, and 30At.

particle travels to the right and spreads uniformly. And there is no reflection

on the right boundary.

Figure 3.2: Free particle with velocity & = 50, ¢ = 0.125, g = 0.5, Az =

1 -3 : —
T At =107 at time £ = 0, 10AL, 20At, and 30AL.

18



CHAPTER 3. IMPLEMENTATION

Third case contains the nonzero potential function. The potential is given
as V(z) = 2-10° on [0.8,0.82]. Initial wave function is given as second
case. As expected, no reflection at both boundary. We can observe quantum
tunneling, a particle tunnels through a barrier that it classically could not
surmount. Tunnelling is often explained using the Heisenberg uncertainty
principle and the wave—particle duality of matter. Pure quantum mechanical
concepts are central to the phenomenon, so quantum tunnelling is one of the
novel implications of quantum mechanics.

Figure 3.3: Barrier

3.2 2D Schrodinger Equation

The first example is a Gaussian wave in 2D

202

1/)(5757 y) = eXp(i/ﬁ[E -+ Zl{?Qy) exp (_ (l‘ — 05)2 + (y - 1)2>

1 1
with ky = =50, ks = 0, 0 = 0.125, Az = %5 Ay = %5 At =2-107* at
t =0, 30At, 60At, and 90At. On a zero potential function, we know exact
solution. In order to avoid non-physical reflection on y-direction, we set rect-

angle computation domain, which has a longer edge on y-direction. Fig 3.4

19



CHAPTER 3. IMPLEMENTATION

show this results. There is some unwilled reflection. I think it was occurred
by inaccurate convolution coefficient, which should be updated in the future.
So it is points to be duly considered at analysis results.

Next example is

(x —05)?+ (y — 1.5)2)

Y(z,y) = exp(ikix + ikay) exp (— 5,2

with k; = =50, ks = =50, ¢ = 0.125, Ax = 2i5, Ay = %, At = 2.
107* at t = 0, 30At, 60At, and 90At. This particle passes through y-axis
with non-orthogonal incidence. Many boundary conditions cannot treat non-
orthogonal incidence and cause non-physical wave figures. Our method show
relatively reasonable results, although Fig 3.5 has some reflection by he same
reason as Fig 3.4. This example indicates the angular independence of our

transparent boundary conditions.

fvc A\\ A
20\

Figure 3.4: Orthogonal incidence free particle with velocity ky = —50, kg = 0,

1 1
o= 0.125, Az = Ay = —, At =2-107% at t = 0, 30At, 60At, and
90AL..

25’ 25
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CHAPTER 3. IMPLEMENTATION

Figure 3.5: Non-orthogonal incidence free particle with velocity k; = —50,
1 1

ko = —50,0 = 0.125, Ax = 25 Ay = %5 At =2-10"*at t = 0, 30At, 60At,

and 90A¢

21



Chapter 4

Conclusion

We have looked around discrete transparent boundary conditions us-
ing Numerov method in 1D and 2D. Numerov extension induces high order
scheme with cheap computing cost. The method had been made in MAT-
LAB. Contained results show that it was effective numerical methods. It will
contribute quantum wave simulation on a bound domain.

A reader may presume that we still do not treat whole rectangle boundary
on 2 dimensional case, i.e., only one directional. In 1993, F. Collino derived
corner conditions for wave equation on rectangle domain [5]. However, for
the Schrodinger equation, no results are reported on this topic so far. It will
be our next study.
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