ccreative

 commons

 commons}
$\begin{array}{lllllllllll}\text { C } & \mathrm{O} & \mathrm{M} & \mathrm{M} & \mathrm{O} & \mathrm{N} & \mathrm{S} & \mathrm{D} & \mathrm{E} & \mathrm{E} & \mathrm{D}\end{array}$

저작자표시-비영리-변경금지 2.0 대한민국
이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

- 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건 을 명확하게 나타내어야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 숩게 요약한 것입니다.

$$
\text { Disclaimer } \square
$$

c)Collection

이학석사 학위논문

Properties of obstacle problem and free boundary problem (장애물문제와 자유경계문제의 특성들)

2014년 8월

서울대학교 대학원 수 리 과 학 부 박 진 완

Properties of obstacle problem and free boundary problem

(장애물문제와 자유경계문제의 특성들)
지도교수 이 기 암

이 논문을 이학석사 학위논문으로 제출함

2014년 8월

서울대학교 대학원
수 리 과 학 부
박 진 완

박진완의 이학석사 학위논문을 인준함

2014년 8월
위 원
장인
부 위 원 장 인
위
원
인

Properties of obstacle problem and free boundary problem

by
Jin-Wan park

A DISSERTATION

Submitted to the faculty of the Graduate School
in partial fulfillment of the requirements
for the degree Master of Science
in the Department of Mathematics
Seoul National University
August, 2014

Abstract

This paper is a paper which is written based on the contents of [1] and introduction of obstacle problem for nonlinear second-order parabolic operator. In chapter 1, we introduce classical obstacle problem and we deal with existence, uniqueness and $C^{1,1}$ regularity of solution of the problem. In chapter 2, we show $C^{1,1}$ regularity of solution of Obstacle-type problem. In chapter 3, we prove some elementary properties of free boundary. In chapter 4, We reference [2] to show the continuity of solution of obstacle problem for nonlinear second-order parabolic operator.

Key words : Obstacle, Obstacle problem, classical obstacle problem, Obstacle-type problem, free boundary, $C^{1,1}$ regularity, nonlinear second order parabolic operator.
Student number : 2012-23021

Contents

1 The classical obstacle problem 1
1.1 The obstacle problems 1
1.2 Existense and uniqueness of the solution of the obstacle problems 4
$1.3 W^{2, p}$ regularity of the solution of the classical obstacle problem 6
1.4 $C^{1,1}$ regularity of the solution of the classical obstacle problem 8
2 Optimal regularity of solutions of obstacle problems 10
2.1 Model problems A, B, C and $O T_{1}-O T_{2}$ 10
2.2 ACF monotonicity formula and generalizations 11
2.3 Optimal regularity in $\mathrm{OT}_{1}-\mathrm{OT}_{2}$ 16
3 Preliminary analysis of the free boundary 20
3.1 Nondegeneracy 20
3.2 Lebesgue and Hausdoff measures of the free boundary 22
3.3 Classes of solutions, rescalings, and blowups 26
4 Obstacle problem for nonlinear second-order parabolic operator 29
4.1 Viscosity solution of parabolic equations 29
4.2 The existence and the continuity theory 30

1 The classical obstacle problem

1.1 The obstacle problems

It is well-known fact that the solution of the boundary value problem

$$
\Delta u=0 \text { in } D, \quad u=g \text { on } \partial D,
$$

can be found as the minimizer of the functional

$$
J_{0}(u)=\int_{D}|\nabla u|^{2} d x,
$$

for all u such that $u=g$ on ∂D. It is the Dirichlet principle and the functional is the Dirichlet functional. More generally, for a bounded open set D in $\mathbb{R}^{n}, g \in W^{1,2}(D)$ and $f \in L^{\infty}(D)$, the minimizer of

$$
J(u)=\int_{D}\left(|\nabla u|^{2}+2 f u\right) d x
$$

over the set

$$
K_{g}=\left\{u \in W^{1,2}(D): u-g \in W_{0}^{1,2}(D)\right\}
$$

solves the equation

$$
-\Delta u+f=0 \text { in } D, u=g \text { on } \partial D
$$

in the sense of distributions, i.e.

$$
\int_{D}(\nabla u \nabla \eta+f \eta) d x=0
$$

for all $\eta \in C_{c}^{\infty}(D)$.
Now, let a function $\psi \in C^{2}(D)$, obstacle, satisfying $\psi \leq g$ on $\partial D,(\psi-g)_{+} \in W_{0}^{1,2}(D)$ be given. Consider the minimizing problem of the functional $J(\cdot)$, over the set

$$
K_{g, \psi}=\left\{u \in W^{1,2}(D): u-g \in W_{0}^{1,2}(D), u \geq \psi \text { a.e. in } D\right\}
$$

The set

$$
\Lambda=\{u=\psi\},
$$

is the coincisence set and $\Omega=D \backslash \Lambda$. The boundary

$$
\Gamma=\partial \Lambda \cap D=\partial \Omega \cap D
$$

is the free boundary, since it is unknown before. In this rest of the section we will show that the minimizer u of $J(\cdot)$ satisfy

$$
\begin{equation*}
\Delta u=f \text { in } \Omega, \quad \Delta u=\Delta \psi \text { a.e on } \Lambda . \tag{1}
\end{equation*}
$$

It is the classical obstacle problem.

Theorem 1.1. Let D be a bounded open subset in $\mathbb{R}^{n}, g \in W^{1,2}(D)$ and $f \in L^{\infty}(D), \psi \in$ $C^{2}(D), \psi \leq g$ on $\partial D,(\psi-g)_{+} \in W_{0}^{1,2}(D), J(u)=\int_{D}\left(|\nabla u|^{2}+2 f u\right) d x$ over the set $K_{g, \psi}=\{u \in$ $W^{1,2}(D): u-g \in W_{0}^{1,2}(D), u \geq \psi$ a.e. in $\left.D\right\}$. Let

$$
J_{1}(v)=\int_{D}\left(|\nabla v|^{2}+2 f_{1} v\right) d x
$$

be a functional over the set

$$
K_{g_{1}, 0}=\left\{u \in W^{1,2}(D): u-g_{1} \in W_{0}^{1,2}(D), u \geq 0 \text { a.e. in } D\right\},
$$

where $f_{1}=f-\Delta \psi, g_{1}=g-\psi$. Then u is the minimizer of J if and only if v is the minimizer of J_{1} where $v=u-\psi$.

Proof. For $u \in K_{g, \psi}, v=u-\psi \in K_{g_{1}, 0}$, and for $v \in K_{g_{1}, 0}, v+\psi \in K_{g, \psi}$.

$$
\begin{aligned}
J_{1}(v) & =\int_{D}|\nabla u-\nabla \psi|^{2}+2(f-\Delta \psi)(u-\psi) d x \\
& =\int_{D}|\nabla u|^{2}-2 \nabla u \cdot \nabla \psi+|\nabla \psi|^{2}+2(f u-f \psi-u \Delta \psi+(\Delta \psi) \psi) d x \\
& =J(u)+\int_{D}-2 \nabla u \cdot \nabla \psi-2 u \Delta \psi+|\nabla \psi|^{2}-2 f \psi+2(\Delta \psi) \psi d x \\
& =J(u)-2 \int_{D}(\nabla u-\nabla g) \cdot \nabla \psi+(u-g) \Delta \psi d x+C \\
& =J(u)+C,
\end{aligned}
$$

where constant $C=\int_{D}-2 \nabla g \cdot \nabla \psi-2 g \Delta \psi+|\nabla \psi|^{2}-2 f \psi+2(\nabla \psi) \psi d x . u-g=0$ on ∂D. The last equation holds, by the integration by part.

If we show

$$
\Delta v=f_{1} \text { a.e. in }\{v>0\}, \quad \Delta v=0 \text { a.e on }\{v=0\},
$$

(1) is obtained, consequently. We have reduced the problem to the case of zero obstacle. Thus we cover the case of zero obstacle, only, in the rest of this section.

Theorem 1.2. Let D be a bounded open subset in $\mathbb{R}^{n}, g \in W^{1,2}(D)$ and $f \in L^{\infty}(D), 0 \leq$ g on $\partial D,(-g)_{+} \in W_{0}^{1,2}(D)$ Let $\tilde{J}(u)=\int_{D}\left(|\nabla u|^{2}+2 f u_{+}\right) d x$ over the set $K_{g}=\left\{u \in W^{1,2}(D)\right.$: $\left.u-g \in W_{0}^{1,2}(D)\right\}$. Then u is the minimizer of J over $K_{g, 0}$ if and only if u is the minimizer of \tilde{J} over K_{g}.

Proof. For $u \in K_{g}, u_{+} \in K_{g, 0}$, and we know that

$$
\nabla u_{+}= \begin{cases}\nabla u & \text { a.e. on }\{u>0\} \\ 0 & \text { a.e. on }\{u \leq 0\} .\end{cases}
$$

Thus we have

$$
\tilde{J}\left(u_{+}\right)=\int_{D}\left(\left|\nabla u_{+}\right|^{2}+2 f u_{+}\right) d x \leq \int_{D}\left(|\nabla u|^{2}+2 f u_{+}\right) d x=\tilde{J}(u) .
$$

On the other hand,

$$
\tilde{J}\left(u_{+}\right)=\tilde{J}(u) \Leftrightarrow \int_{D}|\nabla u| d x=\int_{D}\left|\nabla u_{+}\right| d x \Leftrightarrow \nabla u_{-}=0 \text { a.e in } D .
$$

Thus u_{-}is locally constant and since $u_{-} \in W_{0}^{1,2}(D)$, we have $u_{-}=0$. Therefore

$$
\tilde{J}\left(u_{+}\right)=\tilde{J}(u) \text { for any } u \in K_{g} \text { if and only if } u=u_{+} .
$$

Then if $u \in K_{g}$ is the minimizer of $\tilde{J}(\cdot)$, then $\tilde{J}(u) \leq \tilde{J}\left(u_{+}\right)$. Thus $\tilde{J}(u)=\tilde{J}\left(u_{+}\right)$. By the uniqueness of the minimizer $u=u_{+}$. Hence $u \in K_{g, 0}$. That means $\tilde{J}(\cdot)$ has it minimum on $K_{g, 0}$. Since $\tilde{J}(\cdot)=J(\cdot)$ on $K_{g, 0}$, the sets of minimizers of $J(\cdot)$ and $\tilde{J}(\cdot)$ are coincide.

Theorem 1.3. Let D be a bounded open subset in $\mathbb{R}^{n}, g \in W^{1,2}(D)$ and $f \in L^{\infty}(D), 0 \leq$ g on $\partial D,(-g)_{+} \in W_{0}^{1,2}(D)$. Let $0<\epsilon<1, \chi_{\epsilon}(s)$ be a C^{∞} function on \mathbb{R} such that

$$
\chi_{\epsilon}(s)=0 \quad \text { for } s \leq-\epsilon, \quad \chi_{\epsilon}(s)=1 \quad \text { for } s \geq \epsilon, \quad \chi_{\epsilon}^{\prime} \geq 0 .
$$

Let

$$
\Phi_{\epsilon}(s)=\int_{-\infty}^{s} \chi_{\epsilon}(t) d t, \quad J_{\epsilon}(u)=\int_{D}\left(|\nabla u|^{2}+2 f(x) \Phi_{\epsilon}(u(x))\right) d x
$$

over K_{g} and u_{ϵ} is the minimizer of J_{ϵ}. Then

$$
\int_{D}\left(\nabla u_{\epsilon} \nabla \eta+f_{\chi}\left(u_{\epsilon}\right) \eta\right) d x=0
$$

for $\eta \in W_{0}^{1,2}(D)$.
Proof. Let $\eta \in W_{0}^{1,2}(\Omega)$ and $t \in \mathbb{R}$. Then $u_{\epsilon}+t \eta \in K_{g}$. Set $h(t)=J_{\epsilon}\left(u_{\epsilon}+t \eta\right)$. Since u_{ϵ} is the minimizer and $u_{\epsilon}+t \eta \in K_{g, 0}, h(t) \geq h(0)=J\left(u_{\epsilon}\right)$. Thus $h^{\prime}(0)=0$.

$$
\begin{aligned}
h(t)= & J_{\epsilon}\left(u_{\epsilon}+t \eta\right)=\int_{D}\left|\nabla\left(u_{\epsilon}+t \eta\right)\right|^{2}+2 f(x) \Phi_{\epsilon}\left(u_{\epsilon}(x)+t \eta(x)\right) d x \\
& =\int_{D}\left|\nabla u_{\epsilon}\right|^{2} d x+2 t \int_{D} \nabla u_{\epsilon} \cdot \nabla \eta+t^{2} \int_{D}|\nabla \eta|^{2} d x+\int_{D} 2 f \Phi_{\epsilon}\left(u_{\epsilon}+t \eta\right) d x
\end{aligned}
$$

Therefore

$$
\begin{aligned}
h^{\prime}(t) & =2 \int_{D} \nabla u_{\epsilon} \cdot \nabla \eta d x+2 t \int_{D}|\nabla \eta|^{2} d x+2 \int_{D} f \Phi_{\epsilon}\left(u_{\epsilon}+t \eta\right)^{\prime} d x \\
& =2 \int_{D} \nabla u_{\epsilon} \cdot \nabla \eta d x+2 t \int_{D}|\nabla \eta|^{2} d x+2 \int_{D} f \chi_{\epsilon}\left(u_{\epsilon}(x)+t \eta(x)\right) \eta(x) d x .
\end{aligned}
$$

Therefore

$$
h^{\prime}(0)=2 \int_{D} \nabla u_{\epsilon} \cdot \nabla \eta d x+2 \int_{D} f \chi_{\epsilon}\left(u_{\epsilon}\right) \eta d x=0 .
$$

1.2 Existense and uniqueness of the solution of the obstacle problems

Lemma 1.4. Let \mathcal{A} be a subset of a reflexive Banach space X. Let a functional $J(\cdot)$ over \mathcal{A}. If
(a) \mathcal{A} is weakly closed in X,
(b) There exists $u_{0} \in \mathcal{A}$ such that $J\left(u_{0}\right)<+\infty$,
(c) $J(u)>-C_{0}>-\infty$ for all $u \in \mathcal{A}$,
(d) $J(\cdot)$ is coercive, i.e. $J\left(u_{k}\right) \rightarrow+\infty$, provided $\left\|u_{k}\right\|_{X} \rightarrow \infty$,
(e) $J(\cdot)$ is weakly lower semi-continuous on \mathcal{A}, i.e. if $u_{k} \rightharpoonup u($ weakly $)$, then $J(u) \leq \underline{\lim }_{k \rightarrow \infty} J\left(u_{k}\right)$, then there exists minmizer $u \in \mathcal{A}$,i.e. $J(u)=\inf _{v \in \mathcal{F}} J(v)$.

Proof. Set $J_{*}=\inf _{v \in \mathcal{A}} J(v)$. By (b), (c), $-C_{0} \leq J_{*} \leq J\left(u_{0}\right)<+\infty$. Then there exists $u_{k} \in \mathcal{A}$ such that $J\left(u_{k}\right) \searrow J_{*}$ and hence there exists $N \in \mathbb{N}$ such that $J\left(u_{k}\right)<J_{*}+1$ for $k \geq N$. By coercivity there exists $M>0$ such that $\left\|u_{k}\right\|_{X}<M$, for all $k \geq N$. By the weak-compactness of X, there exists $u \in X$ such that $u_{k} \rightharpoonup u$ (up to subsequence). Since \mathcal{A} is weakly closed, $u \in \mathcal{A}$ and from the weakly lower semi-contiuity of $J(\cdot), J(u) \leq \underline{\lim }_{k \rightarrow \infty} J\left(u_{k}\right)=J_{*}$. Therefore $J(u)=J_{*}$, and u is a minimizer.
Theorem 1.5. Let D be a bounded open subset in $\mathbb{R}^{n}, g \in W^{1,2}(D)$ and $f \in L^{\infty}(D), 0 \leq$ g on $\partial D,(-g)_{+} \in W_{0}^{1,2}(D)$. Let $J(u)=\int_{D}\left(|\nabla u|^{2}+2 f u\right) d x$ be a functional over the set $K_{g, 0}=\{u \in$ $W^{1,2}(D): u-g \in W_{0}^{1,2}(D), u \geq 0$ a.e. in $\left.D\right\}$. Then $J(\cdot)$ has a unique minimizer in $K_{g, 0} \subset W^{1,2}(D)$.
Proof. (a) Let $u_{k} \rightharpoonup u$ in $W^{1,2}(D), u_{k} \in K_{g, 0}$. Since $W^{1,2}(D) \hookrightarrow L^{2}(D)$, we know that $u_{k} \rightarrow u$ in $L^{2}(D)$. Thus $u_{k} \rightarrow u$ a.e in D, up to subsequence. Hence $u \geq 0$ a.e. in D. Since $W_{0}^{1,2}(D)$ is weakly closed, $u-g \in W_{0}^{1,2}(D)$. Thus $u \in K_{g, 0}$.
(b) Since $g \geq 0$ on $\partial D, g_{+}=g$ on ∂D. Thus $g_{+}-g \in W_{0}^{1,2}$. Therefore $g_{+} \in K_{g, 0}$, and we have

$$
J\left(g_{+}\right)=\int_{D}\left|\nabla g_{+}\right|^{2}+2 f g_{+} d x \leq\|\nabla g\|_{L^{2}(D)}^{2}+2\|f\|_{L^{2}(D)}\|g\|_{L^{2}(D)}<+\infty
$$

since $f \in L^{\infty}(D), g \in W^{1,2}(D)$.
(c) Let $u \in K_{g, 0}$, then $u-g \in W_{0}^{1,2}(D)$.

$$
\begin{aligned}
J(u) & =\int_{D}|\nabla u|^{2}+2 f u d x \\
& \geq\|\nabla u\|_{L^{2}(D)}^{2}-2\|f\|_{L^{2}(D)}\|u\|_{L^{2}(D)} \\
& \geq\|\nabla u\|_{L^{2}(D)}^{2}-2\|f\|_{L^{2}(D)}\left(\|u-g\|_{L^{2}(D)}+\|g\|_{L^{2}(D)}\right) \\
& \geq\|\nabla u\|_{L^{2}(D)}^{2}-2\|f\|_{L^{2}(D)}\left(C\|\nabla(u-g)\|_{L^{2}(D)}+\|g\|_{L^{2}(D)}\right) \\
& =\|\nabla u\|_{L^{2}(D)}^{2}-2 C\|f\|_{L^{2}(D)}\|\nabla(u-g)\|_{L^{2}(D)}+-2\|f\|_{L^{2}(D)}\|g\|_{L^{2}(D)} \\
& \geq\|\nabla u\|_{L^{2}(D)}^{2}-\frac{1}{4}\|\nabla(u-g)\|_{L^{2}(D)}^{2}-C^{\prime}\|f\|_{L^{2}(D)}^{2}-2\|f\|_{L^{2}(D)}\|g\|_{L^{2}(D)} \\
& \geq\|\nabla u\|_{L^{2}(D)}^{2}-\frac{1}{4}\left(\|\nabla u\|_{L^{2}(D)}+\|\nabla g\|_{L^{2}(D)}\right)^{2}-C^{\prime}\|f\|_{L^{2}(D)}^{2}-2\|f\|_{L^{2}(D)}\|g\|_{L^{2}(D)} \\
& \geq \frac{1}{2}\|\nabla u\|_{L^{2}(D)}^{2}-\frac{1}{2}\|\nabla g\|_{L^{2}(D)}^{2}-C^{\prime}\|f\|_{L^{2}(D)}^{2}-2\|f\|_{L^{2}(D)}\|g\|_{L^{2}(D)} \\
& \geq-\frac{1}{2}\|\nabla g\|_{L^{2}(D)}^{2}-C^{\prime}\|f\|_{L^{2}(D)}^{2}-2\|f\|_{L^{2}(D)}\|g\|_{L^{2}(D)}=-\tilde{C},
\end{aligned}
$$

by Poincaré's inequality, Young's inequality, and $(a+b)^{2} \leq 2\left(a^{2}+b^{2}\right)$, where $a, b \in \mathbb{R}$.
(d) Since

$$
J\left(u_{k}\right) \geq \frac{1}{2}\left\|\nabla u_{k}\right\|_{L^{2}(D)}^{2}-\frac{1}{2}\|\nabla g\|_{L^{2}(D)}^{2}-C^{\prime}\|f\|_{L^{2}(D)}^{2}-2\|f\|_{L^{2}(D)}\|g\|_{L^{2}(D)},
$$

$J\left(u_{k}\right) \rightarrow \infty$ as $\left\|\nabla u_{k}\right\|_{L^{2}(D)} \rightarrow \infty$.

$$
\begin{aligned}
\left\|u_{k}\right\|_{L^{2}} & \leq\left\|u_{k}-g\right\|_{L^{2}}+\|g\|_{L^{2}} \leq C\left\|\nabla\left(u_{k}-g\right)\right\|_{L^{2}}+\|g\|_{L^{2}} \\
& \leq C\left\|\nabla u_{k}\right\|_{L^{2}}+C\|\nabla g\|_{L^{2}}+\|g\|_{L^{2}} .
\end{aligned}
$$

Thus $J\left(u_{k}\right) \rightarrow \infty$ as $\left\|u_{k}\right\|_{L^{2}(D)} \rightarrow \infty$. If $\left\|u_{k}\right\|_{w^{1,2}(D)} \rightarrow \infty$, then $\left\|u_{k}\right\|_{L^{2}(D)} \rightarrow \infty$ or $\left\|\nabla u_{k}\right\|_{L^{2}(D)} \rightarrow \infty$. Therefore the coercivity condition for $J(\cdot)$ holds.
(e) Let $u_{k} \in K_{g, 0}$ such that $u_{k} \rightharpoonup u$ in $W^{1,2}(D)$ as $k \rightarrow \infty$. Since $W^{1,2}(D) \hookrightarrow L^{2}(D)$,

$$
\nabla u_{k}-\nabla u \text { in } L^{2}(D), \quad u_{k} \rightarrow u \text { in } L^{2}(D),
$$

as $k \rightarrow \infty$, up to subsequence. $\nabla u_{k} \rightharpoonup \nabla u$ in $L^{2}(D)$ gives

$$
\int_{D}|\nabla u|^{2} d x \leq \lim _{k \rightarrow \infty} \int_{D}\left|\nabla u_{k}\right|^{2} d x .
$$

Since

$$
\left|\int_{D} f u_{k}-f u d x\right| \leq\|f\|_{L^{2}(D)}\left\|u_{k}-u\right\|_{L^{2}(D)} \text { as } k \rightarrow \infty,
$$

we have

$$
\lim _{k \rightarrow \infty} \int_{D} f u_{k} d x=\int_{D} f u d x
$$

Thus $J(\cdot)$ is weakly lower semi-continuous.
To show the uniqueness, we assume $u, \hat{u} \in K_{g, 0}$ are two minimizers of the problem such that $u \neq \hat{u}$. Then $v=(u+\hat{u}) / 2 \in K_{g, 0}$, by the convexity of $K_{g, 0}$.

$$
\begin{aligned}
J(v) & =\int_{D}\left|\frac{\nabla(u+\hat{u})}{2}\right|^{2}+2 f\left(\frac{u+\hat{u}}{2}\right) d x \\
& =\int_{D} \frac{1}{4}\left(|\nabla u|^{2}+2 \nabla u \cdot \nabla \hat{u}+|\nabla \hat{u}|^{2}\right)+f(u+\hat{u}) d x \\
& =\int_{D} \frac{1}{4}\left(2|\nabla u|^{2}+2|\nabla \hat{u}|^{2}-|\nabla u-\nabla \hat{u}|^{2}\right)+f(u+\hat{u}) d x \\
& <\frac{J(u)+J(\hat{u})}{2} .
\end{aligned}
$$

The last inequality holds, since $u \neq \hat{u}$. therefore it is a contradiction and we have the uniqueness of the minimizer.

Theorem 1.6. Let D be a bounded open subset in $\mathbb{R}^{n}, g \in W^{1,2}(D)$ and $f \in L^{\infty}(D), 0 \leq$ g on $\partial D,(-g)_{+} \in W_{0}^{1,2}(D)$. Let $J_{\epsilon}(u)=\int_{D}\left(|\nabla u|^{2}+2 f \Phi_{\epsilon}(u)\right) d x$ be a functional over K_{g}. Then $J_{\epsilon}(\cdot)$ has a unique minimizer in $K_{g} \subset W^{1,2}$.

Proof. (a) Clear
(b) With out loss of generality, we may assume that $\Phi_{\epsilon}(u(x))=\int_{-\infty}^{s} \chi_{\epsilon}(t) d t \leq u(x)_{+}$. Thus $J_{\epsilon}(g) \leq\|\nabla g\|_{L^{2}(D)}^{2}+2\|f\|_{L^{2}(D)}\|g\|_{L^{2}(D)}<+\infty$
(c), (d) Since $\Phi_{\epsilon}(u(x)) \leq u(x)$, we also obtain

$$
J_{\epsilon}(u) \geq\|\nabla u\|_{L^{2}(D)}^{2}-2\|f\|_{L^{2}(D)}\|u\|_{L^{2}(D)} .
$$

As the same manner in the proof of Theorem 1.5, we have $(c),(d)$.
(e) Let $u_{k} \in K_{g}$ such that $u_{k} \rightarrow u$ in $W^{1,2}(D)$ as $k \rightarrow \infty$. Then we have $\int_{D}|\nabla u|^{2} d x \leq$ $\underline{\lim }_{k \rightarrow \infty} \int_{D}\left|\nabla u_{k}\right|^{2} d x$.

$$
\begin{aligned}
\left|\int_{D} f \Phi_{\epsilon}\left(u_{k}\right)-f \Phi_{\epsilon}(u) d x\right| & \leq \int_{D}|f(x)| \chi_{\epsilon}\left(t_{x}\right) \| u_{k}(x)-u(x) \mid d x \text { for } t_{x} \text { between } u_{k}(x), u(x) \\
& \leq\|f\|_{L^{2}(D)}\left\|u_{k}-u\right\|_{L^{2}(D)} \rightarrow 0 \text { as } k \rightarrow \infty .
\end{aligned}
$$

Thus $J_{\epsilon}(\cdot)$ is weakly lower semicontinuous.
the convexity of K_{g} give the uniqueness of the minimizer.

1.3 $W^{2, p}$ regularity of the solution of the classical obstacle problem

Lemma 1.7. (Calderón-zygmund estimates) Let $u \in L^{1}(D), f \in L^{p}(D), 1<p<\infty$, and $\Delta u=f$ in D in the sense of distributions. Then $u \in W_{l o c}^{2, p}(D)$ and

$$
\|u\|_{W^{2}, p(K)} \leq C\left(\|u\|_{L^{1}(D)}+\|f\|_{L^{p}(D)}\right),
$$

for any $K \Subset D$ with $C=C(p, n, K, D)$.
Theorem 1.8. Let D be a bounded open subset in $\mathbb{R}^{n}, g \in W^{1,2}(D)$ and $f \in L^{\infty}(D), 0 \leq$ g on $\partial D,(-g)_{+} \in W_{0}^{1,2}(D)$. Let $J_{\epsilon}(u)=\int_{D}\left(|\nabla u|^{2}+2 f \Phi_{\epsilon}(u)\right) d x$ be a functional over K_{g}. Let u_{ϵ} be the minimizer of J_{ϵ} over K_{g}. Then the family $\left\{u_{\epsilon}\right\}$ is unformly bounded in $W^{1,2}(D)$ and in $W^{2, p}(K)$ for any $K \Subset D, 1<p<\infty$ where $0<\epsilon<1$

Proof. By Theorem 1.3, we know that

$$
\int_{D}\left(\nabla u_{\epsilon} \nabla \eta+f \chi_{\epsilon}\left(u_{\epsilon}\right) \eta\right) d x=0,
$$

for $\eta \in W_{0}^{1,2}(D)$. Take $\eta=u_{\epsilon}-g$.

$$
\begin{aligned}
0 & =\int_{D} \nabla u_{\epsilon} \nabla\left(u_{\epsilon}-g\right)+f \chi_{\epsilon}\left(u_{\epsilon}\right)\left(u_{\epsilon}-g\right) d x \\
& =\int_{D} \nabla\left(u_{\epsilon}-g\right) \cdot \nabla\left(u_{\epsilon}-g\right)+\nabla g \cdot \nabla\left(u_{\epsilon}-g\right)+f \chi_{\epsilon}\left(u_{\epsilon}\right)\left(u_{\epsilon}-g\right) d x \\
& \geq\left\|\nabla\left(u_{\epsilon}-g\right)\right\|_{L^{2}(D)}^{2}-\|\nabla g\|_{L^{2}(D)}\left\|\nabla\left(u_{\epsilon}-g\right)\right\|_{L^{2}(D)}-\|f\|_{L^{2}(D)}\left\|u_{\epsilon}-g\right\|_{L^{2}(D)} \\
& \geq\left\|\nabla\left(u_{\epsilon}-g\right)\right\|_{L^{2}(D)}^{2}-\left(\|\nabla g\|_{L^{2}(D)}+C\|f\|_{L^{2}(D)}\right)\left\|\nabla\left(u_{\epsilon}-g\right)\right\|_{L^{2}(D)} \\
& \geq \frac{1}{2}\left\|\nabla\left(u_{\epsilon}-g\right)\right\|_{L^{2}(D)}^{2}-C^{\prime}\left(\|\nabla g\|_{L^{2}(D)}+C\|f\|_{L^{2}(D)}\right),
\end{aligned}
$$

by Poincaré's inequality and Young's inequality. Then

$$
\left\|\nabla\left(u_{\epsilon}-g\right)\right\|_{L^{2}(D)}^{2} \leq C(f, g) .
$$

Applying Calderón-zygmund estimates and Poincaré's inequality,

$$
\begin{aligned}
\left\|u_{\epsilon}\right\|_{W^{2}, p(K)} & \leq C(p, n, K, D)\left(\left\|u_{\epsilon}\right\|_{L^{1}(D)}+\left\|f \chi_{\epsilon}\left(u_{\epsilon}\right)\right\|_{L^{p}(D)}\right) \\
& \leq C(p, n, K, D, f, g),
\end{aligned}
$$

for any $K \Subset D, 1<p<\infty$.
Theorem 1.9. Let D be a bounded open subset in $\mathbb{R}^{n}, g \in W^{1,2}(D)$ and $f \in L^{\infty}(D), 0 \leq$ g on $\partial D,(-g)_{+} \in W_{0}^{1,2}(D)$. Let u be the minimizer for the functional $J(u)=\int_{D}\left(|\nabla u|^{2}+2 f u\right) d x$ over the set $K_{g, 0}=\left\{u \in W^{1,2}(D): u-g \in W_{0}^{1,2}(D), u \geq 0\right.$ a.e. in $\left.D\right\}$, then $u \in W_{\text {loc }}^{2, p}(D)$ for any $1<p<\infty$.

Proof. Since u_{ϵ} is unformly bounded for $0<\epsilon<1$ in $W^{1,2}(D)$, then there exists $u \in W^{1,2}(D)$, such that $u_{\epsilon} \rightharpoonup u$ in $W^{1,2}(D)$ and since $W^{1,2}(D) \hookrightarrow L^{2}(D)$,

$$
\nabla u_{\epsilon}-\nabla u \text { in } L^{2}(D), \quad u_{\epsilon} \rightarrow u \text { in } L^{2}(D),
$$

as $\epsilon=\epsilon_{k} \rightarrow 0$. Since $W_{0}^{1,2}(D)$ is weakly closed, $u_{\epsilon}-g \in W_{0}^{1,2}(D)$, then $u-g \in W_{0}^{1,2}(D)$, i.e. $u \in K_{g}$.

By Theorem 1.8, we know that $u_{\epsilon} \in W_{l o c}^{2, p}(D)$ and

$$
\left\|u_{\epsilon}\right\|_{W^{2, p}(K)} \leq C(p, n, K, D, f, g),
$$

for any $K \Subset D, 1<p<\infty$. Thus $u_{\epsilon} \rightharpoonup u$ in $W_{l o c}^{2, p}(D)$, as $\epsilon \rightarrow 0$ for any $1<p<\infty$. Hence $u \in W_{l o c}^{2, p}(D)$ for any $1<p<\infty$.

$$
\begin{aligned}
\left|\int_{D} f \Phi_{\epsilon}\left(u_{\epsilon}\right)-f u_{+} d x\right| & \leq\left|\int_{D} f \Phi_{\epsilon}\left(u_{\epsilon}\right)-f \Phi_{\epsilon}(u) d x+\int_{D} f \Phi_{\epsilon}(u)-f u_{+} d x\right| \\
& \leq\|f\|_{L^{2}(D)}\left\|u_{\epsilon}-u\right\|_{L^{2}(D)}+\|f\|_{L^{2}(D)}\left\|\Phi_{\epsilon}(u)-u_{+}\right\|_{L^{2}(D)} \\
& \leq\|f\|_{L^{2}(D)}\left(\left\|u_{\epsilon}-u\right\|_{L^{2}(D)}+4 \epsilon^{2}|D|\right) \rightarrow 0 \text { as } \epsilon \rightarrow 0,
\end{aligned}
$$

by the same computation in the proof of Theorem 1.6, and we know that $\left\|\Phi_{\epsilon}-u_{+}\right\|_{L^{\infty}(D)} \leq 2 \epsilon$. Thus we have

$$
\int_{D} f u_{+} d x=\lim _{\epsilon \rightarrow 0} \int_{D} f \Phi_{\epsilon}\left(u_{\epsilon}\right) d x .
$$

$\nabla u_{\epsilon} \rightharpoonup \nabla u$ in $L^{2}(D)$ gives

$$
\int_{D}|\nabla u|^{2} d x \leq \underline{\lim }_{\epsilon \rightarrow 0} \int_{D}\left|\nabla u_{\epsilon}\right|^{2} d x .
$$

Therefore

$$
\tilde{J}(u)=\int_{D}|\nabla u|^{2}+f u_{+} d x \leq \varliminf_{\epsilon \rightarrow 0} J_{\epsilon}\left(u_{\epsilon}\right) \leq \varliminf_{\epsilon \rightarrow 0} J_{\epsilon}(v)=\varliminf_{\epsilon \rightarrow 0} \int_{D}|\nabla v|^{2}+f \Phi_{\epsilon}(v) d x=\tilde{J}(v),
$$

for any $v \in K_{g}$. by Theorem 1.2, u is the minimizer of $J(\cdot)$ over $K_{g, 0}$ and $u \in W_{l o c}^{2, p}(D)$, for any $1<p<\infty$.

Theorem 1.10. Let D be a bounded open subset in $\mathbb{R}^{n}, g \in W^{1,2}(D)$ and $f \in L^{\infty}(D), 0 \leq$ g on $\partial D,(-g)_{+} \in W_{0}^{1,2}(D)$. Let u be the minimizer for the functional $J(\cdot)$ over the set $K_{g, 0}$, then $\Delta u=f \chi_{\{u>0\}}$ a.e. in D, equivalently, $\Delta u=f$ a.e in $\Omega=\{u>0\}$ and $\Delta u=0$ a.e. on $\Lambda=\{u=0\}$. Proof. Since $u_{\epsilon} \in W_{l o c}^{2, p}(D), \Delta u_{\epsilon}=f \chi_{\epsilon}\left(u_{\epsilon}\right)$ for a.e. in D. For $p>n$

$$
u_{\epsilon} \rightarrow u \text { in } C_{l o c}^{1, \alpha}(D),
$$

by the Sobolev embedding theorem with $\alpha=1-\frac{n}{p}$. Then $\Delta u=f$ a.e. in $\{u>0\}$, by the locally unform convergence. Since $u \in W_{l o c}^{2, p}(D), \Delta u=0$ a.e on $\{u=0\}$.

$1.4 C^{1,1}$ regularity of the solution of the classical obstacle problem

Theorem 1.11. Let $u, f \in L^{\infty}(D), u \geq 0$

$$
\Delta u=f \chi_{\{u>0\}} \text { in } D .
$$

Choose $x_{0} \in \Gamma(u)=\partial \Omega \cap D$ such that $B_{2 R}\left(x_{0}\right) \subset D$. Then

$$
\sup _{B_{R}\left(x_{0}\right)} u \leq C\|f\|_{L^{\infty}(D)} R^{2}
$$

where $C=C(n)$.
Proof. Let $u=u_{1}+u_{2}$ such that

$$
\left\{\begin{array}{lll}
\Delta u_{1}=\Delta u, & \Delta u_{2}=0 & \text { in } B_{2 R}\left(x_{0}\right), \\
u_{1}=0, & u_{2}=u & \text { on } \partial B_{2 R}\left(x_{0}\right) .
\end{array}\right.
$$

Let $\psi(x)=\left(4 R^{2}-\left|x-x_{0}\right|^{2}\right) / 2 n$, then $\Delta \psi=-1$ in $B_{2 R}\left(x_{0}\right), \psi=0$ on $\partial B_{2 R}\left(x_{0}\right)$. Consider $u_{1}+M \psi$, where $M=\|f\|_{L^{\infty}(D)}$ then

$$
\begin{cases}\Delta\left(u_{1}+M \psi\right) \leq 0 & \text { in } B_{2 R}\left(x_{0}\right), \\ u_{1}+M \psi=0 & \text { on } \partial B_{2 R}\left(x_{0}\right) .\end{cases}
$$

This implies $u_{1}+M \psi \geq 0, u_{1} \geq-M \psi$ in $B_{2 R}\left(x_{0}\right)$. In the similar way, we know that $-M \psi \leq u_{1} \leq$ $M \psi$ in $B_{2 R}\left(x_{0}\right)$. Thus

$$
\begin{equation*}
\left|u_{1}\right| \leq \frac{2 M R^{2}}{n} \text { in } B_{2 R}\left(x_{0}\right) \tag{2}
\end{equation*}
$$

Since $\Delta u_{2}=0$ in $B_{2 R}\left(x_{0}\right), u_{2}=u \geq 0$ on $\partial B_{2 R}\left(x_{0}\right), u_{2} \geq 0$ in $B_{2 R}\left(x_{0}\right)$. since $u\left(x_{0}\right)=u_{1}\left(x_{0}\right)+$ $u_{2}\left(x_{0}\right)=0, u_{2}\left(x_{0}\right)=-u_{1}\left(x_{0}\right) \leq 2 M R^{2} / n$. By the Harnack inequality,

$$
\begin{equation*}
u_{2}(x) \leq C u_{2}\left(x_{0}\right) \leq C M R^{2}, \text { for any } x \in B_{R}\left(x_{0}\right), \tag{3}
\end{equation*}
$$

where $C=C(n)$. Using (2), (3) we have the inequality.
Lemma 1.12. Let $\Delta v=f$ in $B_{2 R}\left(x_{0}\right) \Subset D$ and f has a $C^{1,1}$-regular potential, i.e. $f=\Delta \phi$ in D, where $\phi \in C^{1,1}(D)$. Then

$$
\left\|D^{2} v\right\|_{L^{\infty}\left(B_{R}\left(x_{0}\right)\right)} \leq C(n)\left(\frac{\|v\|_{L^{\infty}\left(B_{2 R}\left(x_{0}\right)\right)}}{R^{2}}+\left\|D^{2} \phi\right\|_{L^{\infty}\left(B_{2 R}\left(x_{0}\right)\right)}\right) .
$$

Proof. We may assume that $\phi\left(x_{0}\right)=\left|\nabla \phi\left(x_{0}\right)\right|=0$. Let $w=v-\phi$. By using the mollification, we have

$$
\left\|D^{2} w\right\|_{L^{\infty}\left(B_{R}\left(x_{0}\right)\right)} \leq \frac{C(n)}{R^{2}}\|w\|_{L^{\infty}\left(B_{2 R}\left(x_{0}\right)\right)}
$$

and

$$
\left\|D^{2} v\right\|_{L^{\infty}\left(B_{R}\left(x_{0}\right)\right)} \leq C(n)\left(\frac{\|\nu\|_{L^{\infty}\left(B_{2 R}\left(x_{0}\right)\right)}+\|\phi\|_{L^{\infty}\left(B_{2 R}\left(x_{0}\right)\right)}}{R^{2}}+\left\|D^{2} \phi\right\|_{\left.L^{\infty}\left(B_{2 R}\left(x_{0}\right)\right)\right)}\right) .
$$

By the Taylor expansion,

$$
\phi\left(x_{0}+h\right)=\frac{1}{2} \sum_{i, j} h_{i} h_{j} \frac{\partial^{2} \phi}{\partial x_{i} x_{j}}\left(\theta h_{1}, \ldots, \theta h_{n}\right) \leq R^{2} C(n)\left\|D^{2} \phi\right\|_{L^{\infty}\left(B_{2 R}\left(x_{0}\right)\right)},
$$

where $|h|<2 R, 0<\theta<1$. Thus we obtain

$$
\|\phi\|_{L^{\infty}\left(B_{2 R}\left(x_{0}\right)\right)} \leq R^{2} C(n) \mid D^{2} \phi \|_{L^{\infty}\left(B_{2 R}\left(x_{0}\right)\right)}
$$

and the desired inequrity.
Theorem 1.13. Let $u \in L^{\infty}(D), u \geq 0, \Delta u=f \chi_{\{u>0\}}$ in D for $f \in L^{\infty}(D)$ such that $f=\Delta \phi$ in D, where $\phi \in C^{1,1}(D)$. Then $u \in C_{\text {loc }}^{1,1}(D)$ and

$$
\|u\|_{C^{1,1}(K)} \leq C\left(\|u\|_{L^{\infty}(D)}+\left\|D^{2} \phi\right\|_{L^{\infty}(D)}\right),
$$

for $K \Subset D$, where $C=C(n, \operatorname{dist}(K, \partial D))$.
Proof. Let $K \Subset D$. We know that $u \in W_{l o c}^{2, p}(D)$ for any $1<p<\infty$ and $D^{2} u=0$ a.e on $\Omega^{c}(u)$. Thus it suffice to show that $\left\|D^{2}(u)\right\|_{L^{\infty}(\Omega(u) \cap K)}<+\infty$. Let $x_{0} \in \Omega(u) \cap K, d=\operatorname{dist}\left(x_{0}, \Omega^{c}(u)\right)$, $\delta=\operatorname{dist}(K . \partial D)$.

Case 1) $d<\delta / 5$. Let $y_{0} \in \partial B_{d}\left(x_{0}\right) \cap \partial \Omega$, then $B_{4 d}\left(y_{0}\right) \subset B_{5 d}\left(x_{0}\right) \Subset D$. By Theorem 1.11 we obtain

$$
\|u\|_{L^{\infty}\left(B_{2 d}\left(y_{0}\right)\right)} \leq C(n)\|f\|_{L^{\infty}(D)} d^{2} .
$$

We know that $B_{d}\left(x_{0}\right) \subset B_{2 d}\left(y_{0}\right)$ and $\Delta u=f$ in $B_{d}\left(x_{0}\right)$. By Lemma 1.12, and $\|f\|_{L^{\infty}(D)} \leq$ $\left\|D^{2} \phi\right\|_{L^{\infty}(D)}$,

$$
\begin{aligned}
\left\|D^{2} u\right\|_{L^{\infty}\left(B_{d / 2}\left(x_{0}\right)\right)} & \leq C(n)\left(\frac{\|u\|_{L^{\infty}\left(B_{d}\left(x_{0}\right)\right)}}{d^{2}}+\left\|D^{2} \phi\right\|_{L^{\infty}\left(B_{d}\left(x_{0}\right)\right)}\right) \\
& \leq C(n)\left(\frac{\|u\|_{L^{\infty}\left(B_{2 d}\left(y_{0}\right)\right)}}{d^{2}}+\left\|D^{2} \phi\right\|_{L^{\infty}\left(B_{d}\left(x_{0}\right)\right)}\right) \\
& \leq C(n)\left(\|f\|_{L^{\infty}(D)}+\left\|D^{2} \phi\right\|_{L^{\infty}(D)}\right) \leq C(n)\left(\left\|D^{2} \phi\right\|_{L^{\infty}(D)}\right) .
\end{aligned}
$$

Case 2) $d \geq \delta / 5$. In this case, the interior derivative estimate for u in $B_{\delta / 5}\left(x_{0}\right)$ gives

$$
\left\|D^{2} u\right\|_{L^{\infty}\left(B_{\delta / 10}\left(x_{0}\right)\right)} \leq C(n)\left(\frac{\|u\|_{L^{\infty}(D)}}{\delta^{2}}+\left\|D^{2} \phi\right\|_{L^{\infty}(D)}\right) .
$$

Combining cases above, we obtain

$$
\|u\|_{C^{1,1}(K)} \leq C(n)\left(\frac{\|u\|_{L^{\infty}(D)}}{\delta^{2}}+\left\|D^{2} \phi\right\|_{L^{\infty}(D)}\right)
$$

2 Optimal regularity of solutions of obstacle problems

2.1 Model problems A, B, C and $O T_{1}-O T_{2}$

Definition 2.1. (Problem A, No-sign obstacle problem)
Let D be a open set in \mathbb{R}^{n}. Let a problem finding a function u in D such that

$$
\Delta u=\chi_{\Omega(u)} \text { in } D, \text { where } \Omega(u)=D \backslash\{u=|\nabla u|=0\}
$$

be a Problem A. The free boundary in this case is $\Gamma(u)=\partial \Omega(u) \cap D$.
Definition 2.2. (Problem B, superconductivity problem)
Let D be a open set in \mathbb{R}^{n}. Let a problem finding a function u in D such that

$$
\Delta u=\chi_{\Omega(u)} \text { in } D, \text { where } \Omega(u)=\{|\nabla u|>0\}
$$

be a Problem B. The free boundary in this case is $\Gamma(u)=\partial \Omega(u) \cap D$.
Definition 2.3. (Problem C, Two-phase membrane problem)
Let D be a open set in \mathbb{R}^{n}. Let a problem finding a function u in D such that

$$
\Delta u=\lambda_{+} \chi_{\Omega_{+}(u)}-\lambda_{-} \chi_{\Omega_{-}(u)} \text { in } D, \text { where } \Omega_{ \pm}(u)=\left\{u_{ \pm}>0\right\}
$$

be a Problem C, where $\lambda_{ \pm}>0$. In this case $\Omega(u)=\Omega_{+}(u) \cup \Omega_{-}(u)$ and the free boundary is $\Gamma(u)=\partial \Omega(u) \cap D=\Gamma_{+}(u) \cup \Gamma_{-}(u)$ where $\Gamma_{ \pm}(u)=\partial \Omega_{ \pm}(u) \cap D$.

Definition 2.4. (Obstacle-type problems, $O T_{1}-O T_{2}$)
Let D be a open set in \mathbb{R}^{n}. Let a problem finding $u \in L_{\text {loc }}^{\infty}(D)$ satisfies $\left(O T_{1}\right)$,

$$
\Delta u=f(x, u) \chi_{G(u)} \text { in } D, \quad|\nabla u|=0 \text { on } D \backslash G(u),
$$

where $G(u) \subset D$ is open and $f: D \times \mathbb{R} \rightarrow \mathbb{R}$ satisfies $\left(O T_{2}\right)$,

$$
\begin{cases}|f(x, t)-f(y, t)| \leq M_{1}|x-y|, & x, y \in D, t \in \mathbb{R} \\ f(x, s)-f(x, t) \geq-M_{2}(s-t), & x \in D, \text { such that } \in R, s \geq t\end{cases}
$$

for $M_{1}, M_{2} \geq 0$, be a Problem $O T_{1}-O T_{2}$. The free boudary is $\partial G(u) \cap D$ and/or the set of discontinous points of $f(x, u)$. It depends on the problem.

In the case of Problems $A, B, G=\Omega(u), f(x, t)=1$, and in the case of Problem $C, G=$ $D, f(x, t)=\lambda_{+} \chi_{\Omega_{+}(t)}-\lambda_{-} \chi_{\Omega_{-}(t)}$, so the condition $|\nabla u|=0$ on $D \backslash G$ is eliminated. For any cases, we can assign 0 for M_{1} and M_{2} and then Problems A, B, C fit into Problem $O T_{1}-O T_{2}$.

2.2 ACF monotonicity formula and generalizations

Theorem 2.1. Let u be a harmonic function in B_{1} and

$$
J(r, u)=\frac{1}{r^{2}} \int_{B_{r}} \frac{|\nabla u|^{2}}{|x|^{n-2}} d x, \quad 0<r<1,
$$

then $r \mapsto J(r, u)$ is monotone nondecreasing and $|\nabla u(0)| \leq C(n)\|u\|_{L^{2}\left(B_{1}\right)}$.
Proof. u can be represented as a locally unformly convergent series $u(x)=\sum_{k=0}^{\infty} f_{k}(x)$, where $f_{k}(x)$ are homogeneous harmonic polynimial of degree $k, f_{k}(t x)=t^{k} f(x)$, and f_{k}, f_{l} are orthogonal, when $k \neq l$. Then

$$
\begin{aligned}
J(r, u) & =\frac{1}{r^{2}} \int_{0}^{r} \int_{\partial B_{1}}|\nabla u(\rho \theta)|^{2} \rho d \theta d \rho \\
& =\frac{1}{r^{2}} \int_{0}^{r} \int_{\partial B_{1}} \rho \sum_{k=1}^{\infty}\left|\nabla f_{k}(\rho \theta)\right|^{2} d \theta d \rho \\
& =\frac{1}{r^{2}} \int_{0}^{r} \int_{\partial B_{1}} \sum_{k=1}^{\infty} \rho^{2 k-1}\left|\nabla f_{k}(\theta)\right|^{2} d \theta d \rho \\
& =\sum_{k=1}^{\infty} a_{k} r^{2(k-1)},
\end{aligned}
$$

where $a_{k}=(1 / 2 k) \int_{\partial B_{1}}\left|\nabla f_{k}(\theta)\right|^{2} d \theta \geq 0$. Thus $r \mapsto J(r, u)$ is monotone nondecreasing. Let $r \rightarrow 0+$, then $J(0+, u) \leq J(1 / 2, u)$. since u is C^{1} near the orgin, for given $\epsilon>0$, there exists $r>0$ such that $|x|<r$ implies $\|\left.\nabla u(x)\right|^{2}-|\nabla u(0)|^{2} \mid \leq \epsilon$. Let $c(n)=\left(1 / r^{2}\right) \int_{0}^{r} \int_{\partial B_{1}} \rho d \theta d \rho$, then

$$
\begin{aligned}
& \left.|J(r, u)-c(n)| \nabla u(0)\right|^{2} \mid \\
& \left.=\left.\left|\frac{1}{r^{2}} \int_{0}^{r} \int_{\partial B_{1}}\right| \nabla u(\rho \theta)\right|^{2} \rho d \theta d \rho-\frac{1}{r^{2}} \int_{0}^{r} \int_{\partial B_{1}}|\nabla u(0)|^{2} \rho d \theta d \rho \right\rvert\, \\
& \left.\leq \frac{1}{r^{2}} \int_{0}^{r} \int_{\partial B_{1}}^{r}|\nabla u(x)|^{2}-|\nabla u(0)|^{2} \right\rvert\, \rho d \theta d \rho \\
& \leq \frac{1}{r^{2}} \int_{0}^{r} \int_{\partial B_{1}} \epsilon \rho d \theta d \rho=|\nabla u(0)|^{2} \epsilon
\end{aligned}
$$

Therefore $J(0+, u)=c(n)|\nabla u(0)|^{2}$, for $c(n)>0$. Hence

$$
c(n)|\nabla u(0)|^{2} \leq J\left(\frac{1}{2}, u\right) .
$$

We will prove $J(1 / 2, u) \leq C_{n}\|u\|_{L^{2}\left(B_{1}\right)}^{2}$. Let V be a smooth extention of $|x|^{2-n}$ from $B_{1 / 2}$ to B_{1} such that $V(x) \geq 0$ and $V=0$ near ∂B_{1}. This implies $\nabla V=0$ on ∂B_{1}, and let $\tilde{V}=\min \left(V,\left(1 / \delta^{n-2}\right)\right.$, for a small $\delta>0$. Since $\Delta u=0, \Delta\left((1 / 2) u^{2}\right)=u \Delta u+|\nabla u|^{2}=|\nabla u|^{2}$.

$$
\begin{align*}
\int_{B_{1 / 2} \backslash B_{\delta}} \frac{|\nabla u|^{2}}{|x|^{n-2}} d x & \leq \int_{B_{1}}\left(\Delta \frac{u^{2}}{2}\right) \tilde{V} d x=-\int_{B_{1}} \nabla \frac{u^{2}}{2} \cdot \nabla \tilde{V} d x \\
& =-\int_{B_{1} \backslash B_{\delta}} \nabla \frac{u^{2}}{2} \cdot \nabla V d x \\
& =-\int_{\partial\left(B_{1} \backslash B_{\delta}\right)} \frac{u^{2}}{2}(\nabla V \cdot v) d \sigma_{x}+\int_{B_{1} \backslash B_{\delta}} \frac{u^{2}}{2} \Delta V d x \tag{4}\\
& =-\int_{\partial B_{\delta}} \frac{u^{2}}{2}(\nabla V \cdot-x) d \sigma_{x}+\int_{B_{1} \backslash B_{1 / 2}} \frac{u^{2}}{2} \Delta V d x \\
& =-\int_{\partial B_{\delta}} \frac{(n-2) u^{2}}{2 \delta^{n-2}} d \sigma_{x}+\int_{B_{1} \backslash B_{1 / 2}} \frac{u^{2}}{2} \Delta V d x \\
& \leq \int_{B_{1 \backslash B_{1 / 2}}} \frac{u^{2}}{2} \Delta V d x .
\end{align*}
$$

letting $\delta \rightarrow 0$, we have $J(1 / 2, u) \leq C(n)\|u\|_{L^{2}\left(B_{1}\right)}^{2}$ Thus we have the desired inequality.
Theorem 2.2. (Alt-Caffarelli-Friedman (ACF) monotonicity formula) Let $u_{ \pm}$be a pair of continuous functions such that

$$
u_{ \pm} \geq 0, \quad \Delta u_{ \pm} \geq 0, \quad u_{+} \cdot u_{-}=0 \text { in } B_{1},
$$

then

$$
r \mapsto \Phi(r)=\Phi\left(r, u_{+}, u_{-}\right)=J\left(r, u_{+}\right) J\left(r, u_{-}\right)=\frac{1}{r^{4}} \int_{B_{r}} \frac{\left|\nabla u_{+}\right|^{2}}{|x|^{n-2}} d x \int_{B_{r}} \frac{\left|\nabla u_{-}\right|^{2}}{|x|^{n-2}} d x
$$

is nondecreasing for $0<r<1$.
Example. (Friedland-Hayman inequalty) Let $C=\left\{r \theta: r>0, \theta \in \Sigma_{0}\right\}$, whrere $\Sigma_{0} \subset \partial B_{1}$. Let h be a homogeneous harmonic function in C such that $h(r \theta)=r^{\alpha} f(\theta), \alpha>0$, and $h(x)=0$ for $x \in \partial C$.

$$
\begin{aligned}
\Delta h & =\partial_{r r} h+\frac{n-1}{r} \partial_{r} h+\frac{1}{r^{2}} \Delta_{\theta} h \\
& =r^{\alpha-2}\left[(\alpha(\alpha-1)+(n-1) \alpha) f(\theta)+\Delta_{\theta} f(\theta)\right],
\end{aligned}
$$

where Δ_{θ} is the spherical Laplacian. Therefore h is harmonic in C if and only if $-\Delta_{\theta} f(\theta)=\lambda f(\theta)$ in Σ_{0} where $\lambda=\alpha(n-2+\alpha)$. If $h>0$ in Σ_{0}, then λ will be the principal eigenvalue, and we denote $\alpha=\alpha\left(\Sigma_{0}\right)$ and call it the characteristic harmonic function. Let $\Sigma_{ \pm}$be open subsets on $B_{1}, \lambda_{ \pm}$be the principal eigenvalues of $\Sigma_{ \pm}$and $f_{ \pm}$be the corresponding eigenfunctions, $u_{ \pm}$be homogeneous harmonic functions, such that

$$
u_{ \pm}=r^{\alpha_{ \pm}} f_{ \pm}(\theta), \text { in } C_{ \pm}=\left\{r \theta: r>0, \theta \in \Sigma_{ \pm}\right\},
$$

where $\alpha_{ \pm}=\alpha\left(\Sigma_{ \pm}\right)>0$ are the characteristic constant of $\Sigma_{ \pm}$. Then $u_{ \pm}$is harmonic in $C_{ \pm}$. we extend $u_{ \pm}$to \mathbb{R} by zero in the complements of $C_{ \pm}$, repectively. Then $\Delta u_{ \pm} \geq 0$. (see Lemma
(2.11). Thus $u_{ \pm}$satisfies the assumptions of the ACF formula. Let the pair (u, f, α, C) be either $\left(u_{+}, f_{+}, \alpha_{+}, \mathcal{C}_{+}\right)$or $\left(u_{-}, f_{-}, \alpha_{-}, \mathcal{C}_{-}\right)$.

$$
\begin{aligned}
J(r, u) & =\frac{1}{r^{2}} \int_{0}^{r} \int_{\partial B_{1} \cap \mathcal{C}}|\nabla u(\rho \theta)|^{2} \rho d \theta d \rho=\frac{1}{r^{2}} \int_{0}^{r} \int_{\partial B_{1} \cap \mathcal{C}} \rho^{2 \alpha-1}|\nabla u(\theta)|^{2} d \theta d \rho \\
& =\frac{1}{r^{2}} \int_{0}^{r} \rho^{2 \alpha-1} d \rho \cdot \int_{\partial B_{1} \cap C}|\nabla f(\theta)|^{2} d \theta=\frac{1}{2 \alpha} C(n, f) r^{2(\alpha-1)} .
\end{aligned}
$$

Thus

$$
\Phi\left(r, u_{+}, u_{-}\right)=J\left(r, u_{+}\right) J\left(r, u_{-}\right)=\frac{C\left(n, f_{ \pm}\right)}{4 \alpha_{+} \alpha_{-}} r^{2\left(\alpha_{+}+\alpha_{-}-2\right)}, \text { with } \frac{C\left(n, f_{ \pm}\right)}{4 \alpha_{+} \alpha_{-}}>0
$$

In this case, the ACF monotonicity formula is equivalent to $\alpha_{+}+\alpha_{-}-2 \geq 0$.
Lemma 2.3. Let $v \in C(D)$ be a nonnegative subharmonic function in an open set D of \mathbb{R}^{n}, then $v \in W_{l o c}^{1,2}(D)$.

Proof. Let v_{ϵ} be mollifications of v, such that $v_{\epsilon} \leq 0, \Delta v_{\epsilon} \geq 0$. Let $K \Subset D, \delta=\operatorname{dist}(K, \partial D)$ and let $\psi \in C_{c}^{\infty}(D)$, such that $\psi=1$ on $K,|\nabla \psi| \leq 2 / \delta$ on $D, \operatorname{supp} \psi \Subset D$. Let $\phi=v_{\epsilon} \psi^{2}$, then we have

$$
\int_{D} \nabla v_{\epsilon} \cdot \nabla \phi d x=\int_{D} \psi^{2}\left|\nabla v_{\epsilon}\right|^{2}+2 v_{\epsilon} \psi \nabla v_{\epsilon} \cdot \nabla \psi d x \leq 0
$$

Consequently,

$$
\int_{D} \psi^{2}\left|\nabla v_{\epsilon}\right|^{2} d x \leq-2 \int_{D} v_{\epsilon} \psi \nabla v_{\epsilon} \cdot \nabla \psi d x \leq\left. 2 \int_{D} v_{\epsilon} \psi\left|\nabla v_{\epsilon}\right| \nabla \psi\left|d x \leq \int_{D} \frac{1}{2} \psi^{2}\right| \nabla v_{\epsilon}\right|^{2}+2 v_{\epsilon}^{2}|\nabla \psi|^{2} d x .
$$

Therefore

$$
\int_{D} \psi^{2}\left|\nabla v_{\epsilon}\right|^{2} d x \leq 4 \int_{D} v_{\epsilon}^{2}|\nabla \psi|^{2} d x
$$

Letting $\epsilon \rightarrow 0+$ gives

$$
\int_{K}|\nabla v|^{2} d x \leq \frac{4^{2}}{\delta^{2}} \int_{\text {supp }} v^{2} d x<+\infty
$$

by the properties of ψ. Thus the proof is complete.
Example. (Reduction of ACF monotonicity formula to Friedland-Hayman inequality) Let $u_{\lambda}(x)=$ $(1 / \lambda) u(\lambda x)$, then

$$
J\left(r / \lambda, u_{\lambda}\right)=J(r, u), \quad \Phi\left(r, u_{+}, u_{-}\right)=\Phi\left(r / \lambda, u_{+\lambda}, u_{-\lambda}\right)
$$

Let u be either u_{+}or u_{-}in B_{1}, fix $r<1$, then $u_{r}(x)=(1 / r) u(r x)$ for $x \in B_{1 / r},(1 / r)>1$. Since

$$
\frac{\Phi\left(1+h, u_{+r}, u_{-r}\right)-\Phi\left(1, u_{+r}, u_{-r}\right)}{h}=r \frac{\Phi\left(r(1+h), u_{+}, u_{-}\right)-\Phi\left(r, u_{+}, u_{-}\right)}{r h},
$$

we have $\Phi^{\prime}\left(1, u_{+r}, u_{-r}\right)=r \Phi^{\prime}\left(r, u_{+}, u_{-}\right)$. Therefore it suffice to show that $\Phi^{\prime}(1) \geq 0$ for any pair of function that satisfies the condition of ACF formula for $B_{R}, R>1$.
Let u be either u_{+}or u_{-}in B_{R}. Let

$$
I(r, u)=\int_{B_{r}} \frac{|\nabla u|^{2}}{|x|^{n-2}} d x .
$$

i.e. $I(r, u)=r^{2} J(r, u)$. Then $\Phi\left(r, u_{+}, u_{-}\right)=\frac{1}{r^{4}} I\left(r, u_{+}\right) I\left(r, u_{-}\right)$.

$$
\Phi^{\prime}\left(r, u_{+}, u_{-}\right)=\frac{1}{r^{4}} I^{\prime}\left(r, u_{+}\right) I\left(r, u_{-}\right)+\frac{1}{r^{4}} I\left(r, u_{+}\right) I^{\prime}\left(r, u_{-}\right)-\frac{4}{r^{5}} I\left(r, u_{+}\right) I\left(r, u_{-}\right),
$$

then

$$
\Phi^{\prime}\left(1, u_{+}, u_{-}\right)=I^{\prime}\left(1, u_{+}\right) I\left(1, u_{-}\right)+I\left(1, u_{+}\right) I^{\prime}\left(1, u_{-}\right)-4 I\left(1, u_{+}\right) I\left(1, u_{-}\right) .
$$

Thus we need to show that

$$
\frac{I^{\prime}\left(1, u_{+}\right)}{I\left(1, u_{+}\right)}+\frac{I^{\prime}\left(1, u_{-}\right)}{I\left(1, u_{-}\right)} \geq 4 .
$$

Let u_{ϵ} be a mollification of u, such that $\Delta u_{\epsilon} \geq 0, u_{\epsilon} \geq 0$.

$$
\begin{aligned}
\int_{B_{1} \backslash B_{\rho}} \frac{\Delta\left(u_{\epsilon}^{2} / 2\right)}{|x|^{n-2}} d x & =\int_{\partial\left(B_{1} \backslash B_{\rho}\right)}\left(\nabla \frac{u_{\epsilon}^{2}}{2} \cdot v\right) \frac{1}{|x|^{n-2}}-\left(\nabla \frac{1}{|x|^{n-2}} \cdot v\right) \frac{u_{\epsilon}^{2}}{2} d \sigma_{x} \\
& =\int_{\partial\left(B_{1} \backslash B_{\rho}\right)}\left(u_{\epsilon} \nabla u_{\epsilon} \cdot v\right) \frac{1}{|x|^{n-2}}+\frac{n-2}{2} \frac{u_{\epsilon}^{2}}{r^{n}}(x \cdot v) d \sigma_{x} \\
& =\int_{\partial B_{1}} u_{\epsilon} \partial_{r} u_{\epsilon}+\frac{n-2}{2} u_{\epsilon}^{2} d \theta-\int_{\partial B_{\rho}}\left(u_{\epsilon} \partial_{r} u_{\epsilon}+\frac{n-2}{2} u_{\epsilon}^{2}\right) \frac{1}{\rho^{n-2}} d \sigma_{x} \\
& =\int_{\partial B_{1}} u_{\epsilon} \partial_{r} u_{\epsilon}+\frac{n-2}{2} u_{\epsilon}^{2} d \theta-\int_{\partial B_{\rho}}\left(u_{\epsilon} \partial_{r} u_{\epsilon}+\frac{n-2}{2} u_{\epsilon}^{2}\right) \rho d \theta
\end{aligned}
$$

Letting $\rho \rightarrow 0$, we have

$$
\int_{B_{1}} \frac{\Delta\left(u_{\epsilon}^{2} / 2\right)}{|x|^{n-2}} d x=\int_{\partial B_{1}} u_{\epsilon} \partial_{r} u_{\epsilon}+\frac{n-2}{2} u_{\epsilon}^{2} d \theta .
$$

And using $\left|\nabla u_{\epsilon}\right|^{2} \leq \Delta\left(u_{\epsilon}^{2} / 2\right)$, we obtain

$$
I\left(1, u_{\epsilon}\right)=\int_{B_{1}} \frac{\left|\nabla u_{\epsilon}\right|^{2}}{|x|^{n-2}} d x \leq \int_{B_{1}} \frac{\Delta\left(u_{\epsilon}^{2} / 2\right)}{|x|^{n-2}} d x=\int_{\partial B_{1}} u_{\epsilon} \partial_{r} u_{\epsilon}+\frac{n-2}{2} u_{\epsilon}^{2} d \theta .
$$

Letting $\epsilon \rightarrow 0+, I(1, u) \leq \int_{\Sigma}\left(u \partial_{r} u+(n-2 / 2) u^{2}\right) d \theta$, where $\Sigma=\{u>0\} \cap \partial B_{1}$, and we know that $I^{\prime}(1, u)=\int_{\Sigma}|\nabla u|^{2} d \theta$. Hence

$$
\frac{I^{\prime}(1, u)}{I(1, u)} \geq \frac{\int_{\Sigma}\left(\partial_{r} u\right)^{2}+\left|\nabla_{\theta} u\right|^{2} d \theta}{\int_{\Sigma} u \partial_{r} u+\frac{n-2}{2} u^{2} d \theta} .
$$

For the pricipal eigenvalue $\lambda=\lambda(\Sigma)$ of the spherical Laplacian Δ_{θ} in Σ,

$$
\frac{\int_{\Sigma}\left|\nabla_{\theta} u\right|^{2}}{\int_{\Sigma} u^{2}} \geq \lambda
$$

By the Young's inequality $\int_{\Sigma} u \partial_{r} u \leq \frac{1}{2}\left[\alpha \int_{\Sigma} u^{2}+\frac{1}{\alpha} \int_{\Sigma}\left(\partial_{r} u\right)^{2}\right]$, for $\alpha>0$. Hence

$$
\frac{I^{\prime}(1, u)}{I(1, u)} \geq 2 \frac{\int_{\Sigma}\left(\partial_{r} u\right)^{2}+\lambda u^{2}}{(1 / \alpha) \int_{\Sigma}\left(\partial_{r} u\right)^{2}+(\alpha+n-2) \int_{\Sigma} u^{2}} .
$$

Let's choose α such that $1 / \alpha=\alpha+n-2 / \lambda$, i.e. $\alpha=\alpha(\Sigma)$ is the characteristic constant of Σ. Then

$$
\frac{I^{\prime}(1, u)}{I(1, u)} \geq 2 \alpha
$$

consequently,

$$
\frac{I^{\prime}\left(1, u_{+}\right)}{I\left(1, u_{+}\right)}+\frac{I^{\prime}\left(1, u_{-}\right)}{I\left(1, u_{-}\right)}-4 \geq 2\left(\alpha_{+}+\alpha_{-}-2\right)
$$

where $\Sigma_{ \pm}=\left\{u_{ \pm}>0\right\} \cap \partial B_{1}$ and $\alpha_{ \pm}=\alpha\left(\Sigma_{ \pm}\right)$. By the Friedland-Hayman inequality $\alpha_{+}+\alpha_{-}-2 \geq 0$, we have the desired inequality.

Theorem 2.4. (ACF estimate) Let $u_{ \pm}$be a pair of continuous functions such that

$$
u_{ \pm} \geq 0, \quad \Delta u_{ \pm} \geq 0, \quad u_{+} \cdot u_{-}=0 \text { in } B_{1}
$$

then $\Phi\left(r, u_{+}, u_{-}\right) \leq C(n)\left\|u_{+}\right\|_{L^{2}\left(B_{1}\right)}^{2}\left\|u_{-}\right\|_{L^{2}\left(B_{1}\right)}^{2}$, for $0<r \leq 1 / 2$.
Proof. Since $\Delta u_{ \pm} \geq 0,\left|\nabla u_{ \pm}\right|^{2} \leq \Delta\left(u^{2} / 2\right), J(1 / 2, u) \leq C(n)\|u\|_{L^{2}\left(B_{1}\right)}^{2}$, by the same argument at (4) in Theorem 2.1. Since $\Phi(r)$ is nondecreasing,

$$
\Phi\left(r, u_{+}, u_{-}\right) \leq C(n)\left\|u_{+}\right\|_{L^{2}\left(B_{1}\right)}^{2}\left\|u_{-}\right\|_{L^{2}\left(B_{1}\right)}^{2}, \text { for } 0<r \leq 1 / 2 .
$$

Theorem 2.5. (Case of equality in ACF monotonicity formula) Let $u_{ \pm}$be as in above theorem and suppose that $\Phi\left(r_{1}\right)=\Phi\left(r_{2}\right)$ for some $0<r_{1}<r_{2}<1$. Then either of the following holds:
(a) $u_{+}=0$ in $B_{r_{2}}$ or $u_{-}=0$ in $B_{r_{2}}$,
(b) There exists unit vector e and constants $k_{ \pm}>0$ such that

$$
u_{+}(x)=k_{+}(x \cdot e)_{+}, \quad u_{-}(x)=k_{-}(x \cdot e)_{-} \text {in } B_{r_{2}} .
$$

Theorem 2.6. (Caffarelli-Jerison-Kenig (CJK) estimate) Let $u_{ \pm}$be a pair of continuous functions in B_{1} such that

$$
u_{ \pm} \geq 0, \quad \Delta u_{ \pm} \geq-1, \quad u_{+} \cdot u_{-}=0 \text { in } B_{1}
$$

then

$$
\Phi\left(r, u_{+}, u_{-}\right) \leq C(n)\left(1+J\left(1, u_{+}\right)+J\left(1, u_{-}\right)\right)^{2}, \quad 0<r<1 .
$$

Theorem 2.7. (scaled version) Let $u_{ \pm}$be a pair of continuous functions in B_{R} such that

$$
u_{ \pm} \geq 0, \quad \Delta u_{ \pm} \geq-L, \quad u_{+} \cdot u_{-}=0 \text { in } B_{R}
$$

then

$$
\Phi\left(r, u_{+}, u_{-}\right) \leq C(n)\left(R^{2} L^{2}+J\left(R, u_{+}\right)+J\left(R, u_{-}\right)\right)^{2}, \quad 0<r<R .
$$

Theorem 2.8. Let $u_{ \pm}$be a pair of continuous functions in B_{1} such that

$$
u_{ \pm} \geq 0, \quad \Delta u_{ \pm} \geq-1, \quad u_{+} \cdot u_{-}=0 \text { in } B_{1},
$$

then

$$
\Phi\left(r, u_{+}, u_{-}\right) \leq C(n)\left(1+\left\|u_{+}\right\|_{L^{2}\left(B_{1}\right)}^{2}+\left\|u_{-}\right\|_{L^{2}\left(B_{1}\right)}^{2}\right)^{2}, \text { for } 0<r \leq 1 / 2 .
$$

Proof. Since $u_{ \pm}$are nonnegative and $\Delta u_{ \pm} \geq-1$ in $B_{1},\left|\nabla u_{ \pm}\right|^{2} \leq \Delta\left(u_{ \pm}^{2} / 2\right)+u_{ \pm}$. Using this inequality, we have $J\left(1 / 2, u_{ \pm}\right) \leq C(n)\left(1+\left\|u_{ \pm}\right\|_{L^{2}\left(B_{1}\right)}^{2}\right)$, by the same argument at (4) in Theorem 2.1 .

Consider $u_{ \pm}$as function in $B_{1 / 2}$ then

$$
\Phi\left(r, u_{+}, u_{-}\right) \leq C(n)\left(1 / 4+J\left(1 / 2, u_{+}\right)+J\left(1 / 2, u_{-}\right)\right)^{2}, \quad 0<r<1 / 2
$$

by the scaled CJK estimate. For $r=1 / 2, \Phi\left(1 / 2, u_{+}, u_{-}\right)=J\left(1 / 2, u_{+}\right) J\left(1 / 2, u_{-}\right) \leq(1 / 4+$ $\left.J\left(1 / 2, u_{+}\right)+J\left(1 / 2, u_{-}\right)\right)^{2}$.

Theorem 2.9. (scaled version) Let $u_{ \pm}$be a pair of continuous functions in B_{R} such that

$$
u_{ \pm} \geq 0, \quad \Delta u_{ \pm} \geq-L, \quad u_{+} \cdot u_{-}=0 \text { in } B_{R},
$$

then

$$
\Phi\left(r, u_{+}, u_{-}\right) \leq C(n)\left(R^{2} L^{2}+\frac{\left\|u_{+}\right\|_{L^{2}\left(B_{R}\right)}^{2}+\left\|u_{-}\right\|_{L^{2}\left(B_{R}\right)}^{2}}{R^{n+2}}\right)^{2}, \text { for } 0<r \leq R / 2 .
$$

Theorem 2.10. Let $u_{ \pm}$be a pair of continuous functions in B_{1} such that

$$
u_{ \pm} \geq 0, \quad \Delta u_{ \pm} \geq-1, \quad u_{+} \cdot u_{-}=0 \text { in } B_{1}
$$

and assume that $u_{ \pm}(x) \leq C_{0}|x|^{\epsilon}$ in B_{1} for some $\epsilon>0$. Then for $0<r_{1} \leq r_{2}<1$, we have

$$
\Phi\left(r_{1}\right) \leq\left(1+r_{2}^{\epsilon}\right) \Phi\left(r_{2}\right)+C_{1} r_{2}^{2 \epsilon},
$$

where $C_{1}=C_{1}\left(C_{0}, n, \epsilon\right)$. In particular, the limit $\Phi\left(0_{+}\right)$exists.

2.3 Optimal regularity in $O T_{1}-O T_{2}$

Lemma 2.11. Let $u \in W_{\text {loc }}^{1,2}(D) \cap C(D)$ such that $u \geq 0$ in open set $D \in \mathbb{R}^{n}$. If $\Delta u \geq-a$ in the sense of distribution on $\{u>0\}$ for some $a \geq 0$, then $\Delta u \geq-a$ in D.

Proof. Let $\psi_{\epsilon} \in C^{\infty}(\mathbb{R})$ such that $0 \leq \psi_{\epsilon} \leq 1, \psi_{\epsilon}^{\prime} \geq 0, \psi_{\epsilon}(t)=0$ for $t \leq \epsilon / 2, \psi_{\epsilon}(t)=1$ for $t \geq \epsilon$. Let $\phi \in C_{c}^{\infty}(D), \phi \geq 0$ and $\eta=\psi_{\epsilon}(u) \phi$, then $\eta \geq 0, \eta \in W_{0}^{1,2}(E)$, where $E=\{u>0\}$. Thus

$$
\int_{E} \nabla u \cdot \nabla \eta d x \leq a \int_{E} \eta .
$$

Note that

$$
\begin{aligned}
\int_{E} \psi_{\epsilon}(u) \nabla u \cdot \nabla \phi d x & \leq \int_{E} \psi_{\epsilon}(u) \nabla u \cdot \nabla \phi+\psi_{\epsilon}^{\prime}(u) \phi|\nabla u|^{2} d x=\int_{E} \nabla u \cdot \nabla\left(\psi_{\epsilon}(u) \phi\right) d x \\
& \leq a \int_{E} \psi_{\epsilon}(u) \phi d x \leq a \int_{E} \phi d x .
\end{aligned}
$$

Letting $\epsilon \rightarrow 0+$ gives

$$
\int_{D} \nabla u \cdot \nabla \phi d x \leq a \int_{D} \phi d x,
$$

since on $\{u=0\}, \nabla u=0$ a.e. We have $\Delta u \geq-a$ in the sense of distribution in D.
Lemma 2.12. Let $u \in C^{1}(D)$ satisfy $O T_{1}-O T_{2}$, e be a unit vector, and D is bounded then

$$
\Delta\left(\partial_{e} u\right)_{ \pm} \geq-L \text { in } D,
$$

where $L=M_{1}+M_{2}\|\nabla u\|_{L^{\infty}(D)}$.
Proof. Fix e and let $v=\partial_{e} u, E=\{v>0\}$. Since $|\nabla u|=0$ on $D \backslash G(u), E \subset G$. We will show that $\Delta v \geq-L$ in the sense of distributions in E. Let $\eta \in C_{c}^{\infty}(D), \eta \geq 0$ such that $\operatorname{supp}(\eta(x)) \subset\{v>\delta\}$ for $\delta>0$. Then $\operatorname{supp}(\eta(x-h e)) \subset\{v>0\} \subset G$, for sufficiently small $h>0$. For brevity, we will use η to denote either $\eta(x)$ or $\eta(x-h e)$. Then

$$
-\int_{D} \nabla u \cdot \nabla \eta d x=\int_{D} f_{\chi_{G}} \eta d x=\int_{D} f \eta d x,
$$

since $\Delta u=f(x, u) \chi_{G}$ in D and $\operatorname{supp}(\eta) \subset G$. Thus we obtain

$$
-\int_{D} \nabla v_{h} \cdot \nabla \eta(x) d x=\frac{1}{h} \int_{D}[f(x+h e, u(x+h e))-f(x, u(x))] \eta(x) d x,
$$

where $v_{h}(x)=\frac{u(x+h e)-u(x)}{h}$. we know that $u(x+h e)>u(x)$ on $\operatorname{supp}(\eta) \subset\{v>\delta\}$ and by $O T_{2}$,

$$
\begin{cases}|f(x, t)-f(y, t)| \leq M_{1}|x-y|, & x, y \in D, t \in \mathbb{R}, \\ f(x, s)-f(x, t) \geq-M_{2}(s-t), & x \in D, \text { suchthat } \in R, s \geq t,\end{cases}
$$

we obtain

$$
\begin{aligned}
f(x+h e, u(x+h e))-f(x, u(x)) & =f(x+h e, u(x+h e))-f(x+h e, u(x)) \\
& +f(x+h e, u(x))-f(x, u(x)) \\
& \geq-M_{2}(u(x+h e)-u(x))-M_{1} h .
\end{aligned}
$$

Thus

$$
-\int_{D} \nabla v_{h} \cdot \nabla \eta d x \geq-\int_{D}\left(M_{2} v_{h}+M_{1}\right) \eta d x .
$$

Letting $h \rightarrow 0$ and then $\delta \rightarrow 0$ we have

$$
-\int_{D} \nabla v \cdot \nabla \eta d x \geq-\int_{D}\left(M_{1}+M_{2} v\right) \eta d x \geq-L \int_{D} \eta d x
$$

for $\eta \in C_{c}^{\infty}(D), \eta \geq 0$ with $\operatorname{supp}(\eta) \Subset\{v>0\}$. This gives $\Delta v_{+} \geq-L$ in the sense of distribution on $\left\{v_{+}>0\right\}$. Apply Lemma 2.11, we have $\Delta v_{+}=\Delta\left(\partial_{e} u\right)^{+} \geq-L$ in D. Since $\partial_{e} u=-\partial_{-e} u$, then $\left(\partial_{e} u\right)_{-}=\left(\partial_{-e} u\right)_{+}$. Thus we have the same inequality for $\left(\partial_{e} u\right)_{-}$.

Theorem 2.13. Let $u \in L^{\infty}(D)$ satisfy $O T_{1}-O T_{2}$, then $u \in C_{\text {loc }}^{1,1}(D)$ and

$$
\|u\|_{C^{1,1}(K)} \leq C M\left(1+\|u\|_{L^{\infty}}(D)+\|f\|_{L^{\infty}}(D)\right),
$$

for $K \Subset D, C=C(n, \operatorname{dist}(K, \partial D)), M=\max \left\{1, M_{1}, M_{2}\right\}$.
Proof. By the Calderón-Zygmund estimates, $u \in W_{l o c}^{2, p}(D)$ with $p>n$. Thus u is twice differentiable at Lebesque point of $D^{2} u$. Therefore u is twice differntiable a.e. By the Sobolev embedding $W_{l o c}^{2, p} \hookrightarrow C_{l o c}^{1, \alpha}, u \in C_{l o c}^{1, \alpha}(D)$. Define

$$
v(x)=\partial_{e} u(x),
$$

where

$$
e= \begin{cases}\text { arbitrary } & \text { if } \nabla u\left(x_{0}\right)=0 \\ e \perp \nabla u\left(x_{0}\right) & \text { if } \nabla u\left(x_{0}\right) \neq 0 .\end{cases}
$$

With out loss of generality, we assume $x_{0}=0$. we will show that there is a uniform estimate for $\partial_{x_{j}} u(0)=\partial_{x_{j}} v(0)$, for $1 \leq j \leq n$. We may assume $v(0)=0, v$ is diferentiable at 0 , then we have

$$
v(x)=\zeta \cdot x+o(|x|), \quad \zeta=\nabla v(0) .
$$

If $\zeta=0$, we have $\partial_{x_{j}} v(0)=0$ for $1 \leq j \leq n$. Thus we have done.
If $\zeta \neq 0$, let the cone $C=\{x \in \mathbb{R}: \zeta \cdot x \geq|\zeta \zeta| \mid / 2\}$, then for sufficiently small $r>0$,

$$
C \cap B_{r} \subset\{v>0\}, \quad-C \cap B_{r} \subset\{v<0\} .
$$

Let $v_{r}(x)=v(r x) / r, x \in B_{1}$ and let $v(x)=\zeta \cdot x+h(x)$ where $\lim _{|x| \rightarrow 0}(h(x) /|x|)=0$, then

$$
v_{r}(x)=\frac{v(r x)}{r}=\zeta \cdot x+\frac{h(r x)}{r} \rightarrow \zeta \cdot x \text { as } r \rightarrow 0,
$$

i.e. $v_{r}(x) \rightarrow v_{0}(x):=\zeta \cdot x$ uniformly as $r \rightarrow 0$ in B_{1}.

$$
\int_{B_{1}}\left|\nabla v_{r}(x)-\zeta\right|^{p} d x=\frac{1}{r^{n}} \int_{B_{r}}|\nabla v(x)-\nabla v(0)|^{p} d x \rightarrow 0, \text { as } r \rightarrow 0,
$$

since $x_{0}=0$ is a Lebesgue point for ∇v. i.e. we have $\left\|\nabla v_{r}-\zeta\right\|_{L^{p}\left(B_{1}\right)}=\left\|\nabla v_{r}-\nabla v_{0}\right\|_{L^{p}\left(B_{1}\right)} \rightarrow 0$, as $r \rightarrow 0$ with $p>n$. We may assume that $p \geq 2(n-1)$. Then

$$
\left\|\left|\nabla v_{r}-\nabla v_{0}\right|^{2} /|x|^{n-2}\right\|_{L^{1}\left(B_{1}\right)} \leq\left\|\nabla v_{r}-\nabla v_{0}\right\|_{L^{2(n-1)\left(B_{1}\right)}}^{1 /(n-1)}\left\|1 /|x|^{n-1}\right\|_{L^{1}\left(B_{1}\right)}^{(n-2) /(n-1)} \rightarrow 0, \text { as } r \rightarrow 0 .
$$

Therefore we obtain

$$
\lim _{r \rightarrow 0} \int_{B_{1}} \frac{\left|\nabla v_{r}\right|^{2}}{|x|^{n-2}} d x=\int_{B_{1}} \frac{\left|\nabla v_{0}\right|^{2}}{|x|^{n-2}} d x
$$

and the same equality holds for $C \cap B_{1}$ and $-C \cap B_{1}$. Thus we have

$$
\begin{aligned}
C(n)^{2}|\zeta|^{4} & =\int_{C \cap B_{1}} \frac{\left|\nabla v_{0}(x)\right|^{2}}{|x|^{n-2}} d x \int_{-C \cap B_{1}} \frac{\left|\nabla v_{0}(x)\right|^{2}}{|x|^{n-2}} d x \\
& =\lim _{r \rightarrow 0} \int_{C \cap B_{1}} \frac{\left|\nabla v_{r}(x)\right|^{2}}{\mid x x^{n-2}} d x \int_{-C \cap B_{1}} \frac{\left|\nabla v_{r}(x)\right|^{2}}{|x|^{n-2}} d x \\
& =\lim _{r \rightarrow 0} \frac{1}{r^{4}} \int_{C \cap B_{r}} \frac{|\nabla v(x)|^{2}}{|x|^{n-2}} d x \int_{-C \cap B_{r}} \frac{|\nabla v(x)|^{2}}{|x|^{n-2}} d x \\
& \leq{\underset{r i m}{r \rightarrow 0}}^{\left(r, v_{+}, v_{-}\right),}
\end{aligned}
$$

where $C(n)=\left|C \cap B_{1}\right| \cdot\left|-C \cap B_{1}\right|>0$.
Let $\delta=(1 / 2) \operatorname{dist}(K, \partial D)$ and $K_{\delta}=\{x: \operatorname{dist}(x, K)<\delta\}$. By Lemma 2.12, $\Delta v_{ \pm} \geq-L_{\delta}$ in K_{δ}, where $L_{\delta}=M\left(1+\|\nabla u\|_{L^{\infty}\left(K_{\delta}\right)}\right)$ and $M=\max \left\{1, M_{1}, M_{2}\right\}$. Apply T.h 2.9, we have

$$
\begin{aligned}
C(n)^{2}|\zeta|^{4} & \leq \underset{r \rightarrow 0}{\lim } \Phi\left(r, v_{+}, v_{-}\right) \leq C(n)\left(L_{\delta}^{2} \delta^{2}+\frac{\left\|v_{+}\right\|_{L^{2}\left(B_{\delta}\right)}^{2}+\left\|v_{-}\right\|_{L^{2}\left(B_{\delta}\right)}^{2}}{\delta^{n+2}}\right)^{2} \\
& \leq C(n)\left(L_{\delta}^{2} \delta^{2}+\frac{\|\nabla u\|_{L^{\infty}\left(K_{\delta}\right)}^{2}}{\delta^{n+2}}\right)^{2} \leq C(n, \delta) L_{\delta}^{4} .
\end{aligned}
$$

Thus we have $|\zeta| \leq C(n, \delta) L_{\delta}$.
By the Calderón-Zygmund estimates and the Sobolev embedding $W_{l o c}^{2, p} \hookrightarrow C_{l o c}^{1, \alpha}$, we have $\|\nabla u\|_{L^{\infty}\left(K_{\delta}\right)} \leq\|u\|_{C^{1, \alpha}\left(K_{\delta}\right)} \leq\|u\|_{W^{2},\left(_{(}\right)} \leq C(n)\left(\|u\|_{L^{\infty}(D)}+\|f\|_{L^{\infty}(D)}\right)$. Hence we have

$$
L_{\delta}=M\left(1+\|\nabla u\|_{L^{\infty}\left(K_{\delta}\right)}\right) \leq C(n . \delta) N,
$$

where $N=M\left(1+\|u\|_{L^{\infty}(D)}+\|f\|_{L^{\infty}(D)}\right)$. Since $\zeta=\nabla_{e} u\left(x_{0}\right)$,

$$
\begin{equation*}
\left|\nabla \partial_{e} u\left(x_{0}\right)\right| \leq C(n, \delta) N . \tag{5}
\end{equation*}
$$

since

$$
e= \begin{cases}\text { arbitrary } & \text { if } \nabla u\left(x_{0}\right)=0 \\ e \perp \nabla u\left(x_{0}\right) & \text { if } \nabla u\left(x_{0}\right) \neq 0,\end{cases}
$$

(5) gives the desered estimate on $\left|D^{2} u\right|$ where $\nabla u\left(x_{0}\right)=0$. If $\nabla u\left(x_{0}\right) \neq 0$ and e_{n} be a unit vector such that $e \| \nabla u\left(x_{0}\right)$, then choose the coordinate system which contains e_{n}. Apply (5) for $e=e_{1}, \ldots, e_{n-1}$, we have

$$
\left|\partial_{x_{i} x_{j}} u\left(x_{0}\right)\right| \leq C(n, \delta) N, i \in\{1, \ldots, n-1\}, j \in\{1, \ldots, n\} .
$$

Since $\Delta u\left(x_{0}\right)=f\left(x_{0}, u\left(x_{0}\right)\right) \chi_{G\left(u\left(x_{0}\right)\right)}=f\left(x_{0}, u\left(x_{0}\right)\right)$,

$$
\begin{aligned}
\left|\partial_{x_{n} x_{n}} u\left(x_{0}\right)\right| & \leq\left|\Delta u\left(x_{0}\right)\right|+\left|\partial_{x_{1} x_{1}} u\left(x_{0}\right)\right|+\ldots+\left|\partial_{x_{n-1} x_{n-1}} u\left(x_{0}\right)\right| \\
& \leq\|f\|_{L^{\infty}(D)}+C(n, \delta) N \leq C(n, \delta) N .
\end{aligned}
$$

and the proof is complete.

3 Preliminary analysis of the free boundary

3.1 Nondegeneracy

Lemma 3.1. Let $\Delta u=1$ in the ball B_{R}. Then

$$
\begin{equation*}
\sup _{\partial B_{r}} u \geq u(0)+\frac{r^{2}}{2 n}, \quad 0<r<R \tag{6}
\end{equation*}
$$

Proof. Let $w(x)=u(x)-|x|^{2} / 2 n, x \in B_{R}$ then $\Delta w=0$. By the maximum principle $w(0) \leq$ $\sup _{\partial B_{r}} w=\left(\sup _{\partial B_{r}} u\right)-r^{2} / 2 n$. Thus we have the inequality.

Lemma 3.2. (Nondegeneracy: Problem A). Let u be a soultion of Problem A in D. If $B_{r}\left(x_{0}\right) \Subset$ D, then

$$
\sup _{\partial B_{r}\left(x_{0}\right)} u \geq u\left(x_{0}\right)+\frac{r^{2}}{8 n}, \text { for } x_{0} \in \overline{\Omega(u)} .
$$

Proof. Note that

$$
\begin{equation*}
\sup _{B_{r}\left(x_{0}\right)} u=\sup _{\partial B_{r}\left(x_{0}\right)} u \tag{7}
\end{equation*}
$$

since $\Delta u \geq 0$ and the maximum principle.
Let $x_{0} \in \Omega(u)$ and $u\left(x_{0}\right)>0$,

$$
w(x)=u(x)-u\left(x_{0}\right)-\frac{\left|x-x_{0}\right|^{2}}{2 n}
$$

Then $\Delta w=0$ in $B_{r}\left(x_{0}\right) \cap \Omega(u)$. By the maximum principle and $w\left(x_{0}\right)=0$,

$$
\sup _{\partial\left(B_{r}\left(x_{0}\right) \cap \Omega\right)} w \geq 0
$$

Since $u=0$ on $\partial \Omega(u) \subset \Omega(u)^{c}$, we know that $w(x)=-u\left(x_{0}\right)-\left|x-x_{0}\right|^{2} / 2 n<0$ on $\partial \Omega(u)$. Thus we have

$$
\sup _{\partial B_{r}\left(x_{0}\right) \cap \Omega(u)} w \geq 0, \text { that means } \sup _{\partial B_{r}\left(x_{0}\right) \cap \Omega(u)} u \geq u\left(x_{0}\right)+\frac{r^{2}}{2 n}>0 .
$$

Therefore $\sup _{\partial B_{r}\left(x_{0}\right)} u=\sup _{\partial B_{r}\left(x_{0}\right) \cap \Omega(u)} u \geq u\left(x_{0}\right)+r^{2} / 2 n$. we have the desired inequality in this case.

Let $x_{0} \in \Omega(u)$ and $u\left(x_{0}\right) \leq 0$. If there exists $x_{1} \in B_{r / 2}\left(x_{0}\right)$ such that $u\left(x_{1}\right)>0$, then

$$
\sup _{B_{r}\left(x_{0}\right)} u \geq \sup _{B_{r} / 2\left(x_{1}\right)} u \geq u\left(x_{1}\right)+\frac{(r / 2)^{2}}{2 n} \geq u\left(x_{0}\right)+\frac{r^{2}}{8 n}
$$

by the above case, and we have the inequality. Let $u \leq 0$ in $B_{r / 2}\left(x_{0}\right)$. By the strong maximum principle for subharmonic function $u, u \equiv 0$ in $B_{r / 2}\left(x_{0}\right)$ or $u<0$ in $B_{r / 2}\left(x_{0}\right)$. Since $x_{0} \in \Omega(u)$, $u<0$ in $B_{r / 2}\left(x_{0}\right)$. Then $B_{r / 2}\left(x_{0}\right) \subset \Omega(u)$. This implies $\Delta u=1$ in $B_{r / 2}\left(x_{0}\right)$. By Lemma 3.1,

$$
\sup _{B_{r}\left(x_{0}\right)} u \geq \sup _{B_{r} / 2\left(x_{0}\right)} u \geq u\left(x_{0}\right)+\frac{r^{2}}{8 n}
$$

Let $x_{0} \in \overline{\Omega(u)},\left\{x_{i}\right\} \subset \Omega(u)$ such that $x_{i} \rightarrow x_{0}$ as $i \rightarrow \infty$. Passing to the limit in the inequality for x_{i} gives the desired inequality.

Lemma 3.3. (Nondegeneracy: Problem B). Let u be a solution of Problem B in D. If $B_{r}\left(x_{0}\right) \Subset$ D, then

$$
\sup _{\partial B_{r}\left(x_{0}\right)} u \geq u\left(x_{0}\right)+\frac{r^{2}}{2 n}, \text { for } x_{0} \in \overline{\Omega(u)} .
$$

Proof. It is enough to show the inequality for $x_{0} \in \Omega(u)=\{|\nabla u|>0\}$, by the continuity of u. Let $w(x)=u(x)-u\left(x_{0}\right)-\left|x-x_{0}\right|^{2} / 2 n$. We will show that

$$
\sup _{B_{r}\left(x_{0}\right)} w=\sup _{\partial B_{r}\left(x_{0}\right)} w
$$

Suppose there exists $y \in B_{r}\left(x_{0}\right)$ such that $y=\sup _{B_{r}\left(x_{0}\right)} w$, then $|\nabla w(y)|=0$. It is equivalent to $|\nabla u(y)|=\left|y-x_{0}\right| / n$. Since $\left|\nabla u\left(x_{0}\right)\right|>0, y \neq x_{0}$. Thus $|\nabla u(y)|>0$, therefore $y \in \Omega(u)$. Since $\Delta w=0$ in $\Omega(u)$, the strong maximum principle for w implies w is constant in some neighborhood of y. Hence the set of maxima is relatively open and closed in $B_{r}\left(x_{0}\right)$. Thus w is constant in $B_{r}\left(x_{0}\right)$. Therefore we have

$$
\sup _{B_{r}\left(x_{0}\right)} w=\sup _{\partial B_{r}\left(x_{0}\right)} w
$$

and this implies

$$
0=w\left(x_{0}\right) \leq \sup _{\partial B_{r}\left(x_{0}\right)} w=\sup _{\partial B_{r}\left(x_{0}\right)} u-\frac{r^{2}}{2 n}-u\left(x_{0}\right) .
$$

Lemma 3.4. (Nondegeneracy: Problem C). Let u is a solution of Problem C in D. If $B_{r}\left(x_{0}\right) \Subset D$, then

$$
\begin{aligned}
\sup _{\partial B_{r}\left(x_{0}\right)} u & \geq u\left(x_{0}\right)+\lambda_{+} \frac{r^{2}}{2 n}, \text { for } x_{0} \in \overline{\Omega_{+}(u)}, \\
\inf _{\partial B_{r}\left(x_{0}\right)} u & \leq u\left(x_{0}\right)-\lambda_{-} \frac{r^{2}}{2 n}, \text { for } x_{0} \in \overline{\Omega_{-}(u)} .
\end{aligned}
$$

Proof. The inequalities are obtained using

$$
w(x)=u(x)-u\left(x_{0}\right) \mp \lambda_{ \pm} \frac{\left|x-x_{0}\right|^{2}}{2 n}
$$

and the similar argument in first part of Lemma 3. . we will prove the infimum case, only. Let $x_{0} \in \Omega_{-}(u)$, i.e. $u\left(x_{0}\right)<0$. Let

$$
w(x)=u(x)-u\left(x_{0}\right)+\lambda_{-} \frac{\left|x-x_{0}\right|^{2}}{2 n} .
$$

Then $\Delta w=0$ in $B_{r}\left(x_{0}\right) \cap \Omega_{-}(u)$. By the maximum principle and $w\left(x_{0}\right)=0$,

$$
\inf _{\partial\left(B_{r}\left(x_{0}\right) \cap \Omega\right)} w \leq 0 .
$$

We know that $w(x)=-u\left(x_{0}\right)+\lambda_{-}\left|x-x_{0}\right|^{2} / 2 n>0$ on $\partial \Omega_{-}(u)$. Thus we have

$$
\inf _{\partial B_{r}\left(x_{0}\right) \cap \Omega_{-}(u)} w \leq 0 \text {, that means } \inf _{\partial B_{r}\left(x_{0}\right) \cap \Omega_{-}(u)} u \leq u\left(x_{0}\right)-\lambda_{-} \frac{r^{2}}{2 n}<0 .
$$

Since $u \geq 0$ in $\Omega_{-}(u), \inf _{\partial B_{r}\left(x_{0}\right) \cap \Omega_{-}(u)} u=\inf _{\partial B_{r}\left(x_{0}\right)} u$, we have the inequality.

Corollary 3.5. Under the conditions of either Lemmas 3.2, 3.3, or 3.4 the following inequality holds:

$$
\sup _{B_{r}\left(x_{0}\right)}|\nabla u| \geq C r,
$$

for $C>0, C=C(n)$ in Problems A, B and $C=C\left(n, \lambda_{ \pm}\right)$in Problem C.
Proof.

3.2 Lebesgue and Hausdoff measures of the free boundary

Definition 3.1. A measurable set $E \subset \mathbb{R}^{n}$ is porous with porosity constant $0<\delta<1$ if every ball $B=B_{r}(x)$ contains a smaller ball $B^{\prime}=B_{\delta r(y)}$ such that

$$
B_{\delta r(y)} \subset B_{r}(x) \backslash E .
$$

E is locally porous in an open set D if $E \cap K$ is porous (with possibly different porosity constants) for $K \Subset D$.

Proposition 3.6. If $E \subset \mathbb{R}^{n}$ is porous then $|E|=0$. If E is locally porous in D, then $|E \cap D|=0$.
Proof. Let E be a porous subset in \mathbb{R}. We know that

$$
\chi_{E}(x)=\lim _{r \rightarrow 0} \frac{\int_{B_{r}(x)} \chi_{E}(y) d y}{\left|B_{r}(x)\right|}=\lim _{r \rightarrow 0} \frac{\left|B_{r}(x) \cap E\right|}{\left|B_{r}(x)\right|} \text { a.e. in } \mathbb{R} .
$$

That means the metric densty, $\lim _{r \rightarrow 0}\left|B_{r}(x) \cap E\right| /\left|B_{r}(x)\right|=1$ a.e. on E. On the other hand, for $x_{0} \in E,\left|B_{r}\left(x_{0}\right)\right|=\left|B_{r}\left(x_{0}\right) \cap E\right|+\left|B_{r}\left(x_{0}\right) \cap E^{c}\right|, r^{n} \geq\left|B_{r}\left(x_{0}\right) \cap E\right|+\delta^{n} r^{n}$. Thus

$$
\varlimsup_{r \rightarrow 0} \frac{\left|E \cap B_{r}\left(x_{0}\right)\right|}{\left|B_{r}\right|} \leq 1-\delta^{n}<1 .
$$

Hece $|E|=0$.
Let E be a locally porous subset in D, Then we have $|E \cap K|=0$, for any $K \Subset D$. Since E is a coutable union of compact subset of $E,|E \cap D|=0$.

Lemma 3.7. Let E be a bounded measurable set in \mathbb{R}. If for every ball $B=B_{r}(x)$ centered at $x \in E$ there exists a ball $B^{\prime}=B_{\delta r}(y)$ such that $B^{\prime} \subset B \backslash E$, then E is $C(n) \delta$ porous.

Lemma 3.8. Let u be a solution of Problem A or B in an open set $D \subset \mathbb{R}^{n}$. Then $\Gamma(u)$ is locally porous in D. Let u be a solution of Problem C, then $\Gamma^{0}(u)=\Gamma(u) \cap\{|\nabla u|=0\}$ is locally porous.

Proof. Case 1) Problem A, B.
Let $K \Subset D, x_{0} \in \Gamma(u)$ and $B_{r}\left(x_{0}\right) \subset K$, then by Corollary 3.5 , there exists $y \in \overline{B_{r / 2}\left(x_{0}\right)}$ such that $|\nabla u(y)| \geq(C / 2) r$. Thus we have

$$
\inf _{B_{\delta} r(y)}|\nabla u| \geq\left(\frac{C}{2}-M \delta\right) r \geq \frac{C}{4} r
$$

where $\delta=C / 4 M, M=\left\|D^{2} u\right\|_{L^{\infty}(K)}<\infty$. Thus

$$
B_{\hat{\delta} r}(y) \subset B_{r}\left(x_{0}\right) \cap \Omega(u) \subset B_{r} \backslash \Gamma,
$$

where $\hat{\delta}=\min \{\delta, 1 / 2\}$. By Lemma 3.7, $\Gamma(u)$ is locally porous.
Case2) Problem C.
Note that $\Omega(u)=\Omega_{ \pm}(u)$. Let $K \Subset D, x_{0} \in \Gamma(u)^{0}$ and $B_{r}\left(x_{0}\right) \subset K$. Let $y \in \overline{B_{r / 2}\left(x_{0}\right)}$ such that $\inf _{B_{\delta} r(y)}|\nabla u| \geq \frac{C}{4} r$, as in case 1. If we show that $B_{\hat{\delta} r}(y) \subset \Omega(u) \cup \Gamma^{*}(u)$, where $\hat{\delta}=\min \{\delta, 1 / 2\}$, then

$$
B_{\hat{\delta} r}(y) \subset B_{r}\left(x_{0}\right) \cap\left[\Omega(u) \cup \Gamma^{*}(u)\right] \subset B_{r}\left(x_{0}\right) \backslash \Gamma^{0}(u),
$$

and we have the local porosity of Γ^{0}. Suppose $B_{\hat{\delta} r}(y) \nsubseteq \Omega(u) \cup \Gamma^{*}(u)$, then there exists $z \in B_{\hat{\delta} r}(y)$ such that $z \in\left[\Omega(u) \cup \Gamma^{*}(u)\right]^{c}$. Since $z \in B_{\hat{\delta} r}(y), z \in\left(\Gamma^{0}(u)\right)^{c}$. Thus $z \in[\Omega(u) \cup \Gamma(u)]^{c}=\left[\overline{\Omega(u) \cap D]^{c}}\right.$. We may assume that $z \in D$. Thus $z \in \overline{\Omega(u)}^{c} \cap D$. Since $\overline{\Omega(u)}^{c} \cap D$ is open subset of $\{u=0\}$, we have $\nabla u(z)=0$. It is a contradiction.

Corollary 3.9. Let u be a solution of Problem A, B or C in D. Then $\Gamma(u)$ has a Lebesgue measure zero.

Proof. In case of Problems A, B, It is a consequnce of Proposition 3.6 and Lemma 3.8. In case of Problem C, we know $\left|\Gamma^{0}\right|=0$. Since $\Gamma^{*}(u)$ is locally a $C^{1, \alpha}$ surface, $\left|\Gamma^{*}\right|=0$.

Lemm 3.10. Let u be a solution of Problem A, B, or C in D and $x_{0} \in \Gamma(u)$. Then

$$
\frac{\left|B_{r}\left(x_{0}\right) \cap \Omega(u)\right|}{\left|B_{r}\right|} \geq \beta
$$

if $B_{r}\left(x_{0}\right) \subset D$, where $\beta=\beta\left(\left\|D^{2} u\right\|_{L^{\infty}}, n\right)$ in case of A, B and $\beta=\beta\left(\left\|D^{2} u\right\|_{L^{\infty}}, n, \lambda_{ \pm}\right)$in case of C.
Proof. In case of A, B, by the porosity and the argument in proof of Lemma 3.6, we have

$$
\frac{\left|B_{r}\left(x_{0}\right) \cap \Omega(u)\right|}{\left|B_{r}\right|} \geq \frac{(r \hat{\delta})^{n}}{r^{n}}=\hat{\delta}^{n},
$$

and $\hat{\delta}$ depends only on $\left\|D^{2} u\right\|_{L^{\infty}}$ and n. In case of C,

$$
\frac{\left|B_{r}\left(x_{0}\right) \cap \Omega(u)\right|}{\left|B_{r}\right|} \geq \frac{\left|B_{r}\left(x_{0}\right) \cap\left[\Omega(u) \cup \Gamma^{*}(u)\right]\right|}{\left|B_{r}\right|} \geq \hat{\delta}^{n},
$$

since $\left|\Gamma^{*}(u)\right|=0$. and this case $\hat{\delta}=\hat{\delta}\left(\left\|D^{2} u\right\|_{L^{\infty}}, n, \lambda_{ \pm}\right)$.
Lemma 3.11. If u is a $C^{1,1}$ solution of Problem A, B or C in a bounded open set $D \subset \mathbb{R}^{n}$, then $\Gamma(u)$ is a set of finite (n-1)-dimensional Hausdorff measure locally in D.

Proof. Let

$$
v_{i}=\partial_{x_{i}} u, \quad i \in\{1, \ldots, n\}, \quad E_{\epsilon}=\{|\nabla u|<\epsilon\} \cap \Omega(u) .
$$

Since

$$
(\Delta u)^{2}=\left(\sum_{i=1}^{n} u_{i i}\right)^{2} \leq C(n) \sum_{i=1}^{n} u_{i i}^{2} \leq C(n) \sum_{i, j=1}^{n} u_{i, j}^{2}=C(n) \sum_{i=1}^{n}\left|\nabla v_{i}\right|^{2},
$$

we have

$$
C_{0} \leq(\Delta u)^{2} \leq C(n) \sum_{i=1}^{n}\left|\nabla v_{i}\right|^{2} \text { in } \Omega,
$$

where $C_{0}=1$ in the case of Problems A, B and $C_{0}=\min \left\{\lambda_{+}^{2}, \lambda_{-}^{2}\right\}$ in the case of Problem C. Let $K \Subset D$, then

$$
\begin{equation*}
C_{0}\left|K \cap E_{\epsilon}\right| \leq C(n) \int_{K \cap E_{\epsilon}} \sum_{i=1}^{n}\left|\nabla v_{i}\right|^{2} d x \leq C(n) \sum_{i=1}^{n} \int_{K \cap \|\left|v_{i}\right|<\epsilon \mid \cap \Omega(u)}\left|\nabla v_{i}\right|^{2} d x . \tag{8}
\end{equation*}
$$

In Lemma 2.12, we can take $M_{1}=M_{2}=0$ for solutions of Problems A, B and C. Hence we have

$$
\int_{D} \nabla v_{i \pm} \cdot \nabla \eta d x \leq 0, \text { for } i \in\{1, \ldots, n\}
$$

for $\eta \in W_{0}^{1,2}(D), \eta \geq 0$. since Let $\phi \in C_{c}^{\infty}(D), \phi=1$ on K and

$$
\psi_{\epsilon}(t):= \begin{cases}0, & t \leq 0 \\ \epsilon^{-1} t, & 0 \leq t \leq \epsilon \\ 1 & t \geq 0\end{cases}
$$

then $\eta:=\psi_{\epsilon}\left(v_{i \pm}\right) \phi$ is in $W_{0}^{1,2}(D)$. Thus we have

$$
\begin{aligned}
\int_{D} \nabla v_{i \pm} \cdot \nabla\left(\psi_{\epsilon}\left(v_{i \pm}\right) \phi\right) d x & =\int_{\left\{0<v_{i \pm}<\epsilon\right\}} \epsilon^{-1} \phi\left|\nabla v_{i \pm}\right|^{2} d x+\int_{D} \psi_{\epsilon}\left(v_{i \pm}\right) \nabla v_{i \pm} \cdot \nabla \phi d x \\
& \leq 0
\end{aligned}
$$

Therefore

$$
\epsilon^{-1} \int_{K \cap\left\{0<v_{i \pm}<\epsilon \cap \cap \Omega(u)\right.}\left|\nabla v_{i \pm}\right|^{2} d x \leq-\int_{D} \psi_{\epsilon}\left(v_{i \pm}\right) \nabla v_{i \pm} \cdot \nabla \phi d x \leq \int_{D}\left|\nabla v_{i \pm}\right||\nabla \phi| d x .
$$

Hence we have

$$
\begin{equation*}
\epsilon^{-1} \int_{K \cap\left\{0 \leq\left|v_{i}\right|<\epsilon \mid \cap \Omega(u)\right.}\left|\nabla v_{i}\right|^{2} d x \leq \int_{D}\left|\nabla v_{i}\right||\nabla \phi| d x \leq C(n) M \int_{D}|\nabla \phi| d x \tag{9}
\end{equation*}
$$

where $M=\left\|D^{2} u\right\|_{L^{\infty}(D)}$. Combining (8), (9) gives

$$
\begin{equation*}
C_{0}\left|K \cap E_{\epsilon}\right| \leq C \epsilon M, \tag{10}
\end{equation*}
$$

where $C=C(n, K, D)$, since ϕ depends on K, D.
By the Besicovich covering lemma, $\Gamma \cap K$ has a covering $\left\{B^{i}\right\}_{i \in I}$ which is finite family of closed balls of radius ϵ centered on $\Gamma \cap K$ the number of overlaped balls no more than $N(n)$, and it does not depend on ϵ. Take ϵ by $B^{i} \subset K^{\prime}$ where K^{\prime} is a compact set such that $K \Subset \operatorname{Int}\left(K^{\prime}\right) \Subset D$.

Case 1) Problems A and B.

We know that $|\nabla u|<M \epsilon$ in each B^{i} and it implies that $B^{i} \cap \Omega \subset E_{M \epsilon}$. By Lemma 3.10, and (10), we have

$$
\sum_{i \in I}\left|B^{i}\right| \leq \frac{1}{\beta} \sum_{i \in I}\left|B^{i} \cap \Omega\right| \leq \frac{1}{\beta} \sum_{i \in I}\left|B^{i} \cap E_{M \epsilon}\right| \leq \frac{N}{\beta}\left|K^{\prime} \cap E_{M \epsilon}\right| \leq \frac{C N M^{2} \epsilon}{C_{0} \beta}
$$

Therefore we obtain

$$
\sum_{i \in I} \operatorname{diam}\left(B^{i}\right)^{n-1} \leq C\left(n, M, K^{\prime}, D\right)
$$

and letting $\epsilon \rightarrow 0$ gives

$$
H^{n-1}(\Gamma(u) \cap K) \leq C\left(n, M, K^{\prime}, D\right)
$$

Case 2) Ploblem C.
The estimation for $\Gamma^{0}(u)$ is obtained by the same proof as above. Thus it suffice to obtain the estimation for $H^{n-1}\left(\Gamma^{*}(u)\right)$.
Let $v=\partial_{e} u, \eta \in W_{0}^{1,2}(D)$, and $\eta=0$ a.e. on $\Gamma^{0}(u)$, then

$$
\begin{align*}
\int_{D} \nabla v \cdot \nabla \eta & =\int_{D} \Delta u \partial_{e} \eta=\int_{D}\left(\lambda+\chi\{u>0\}-\lambda_{-} \chi_{\{u<0\}}\right) \partial_{e} \eta=\lambda_{+} \int_{\{u>0\}} \partial_{e} \eta-\lambda_{-} \int_{\{u<0\}} \partial_{e} \eta \\
& =\lambda_{+} \int_{\partial\{u>0\} \cap \Gamma^{*}(u)}(e \cdot(-\omega)) \eta d H^{n-1}-\lambda_{-} \int_{\partial\{u<0\} \cap \Gamma^{*}(u)}(e \cdot \omega) \eta d H^{n-1} \\
& =\left(-\lambda_{+}-\lambda_{-}\right) \int_{\Gamma^{*}(u)}(e \cdot \omega) \eta d H^{n-1}, \tag{11}
\end{align*}
$$

where $\omega=(\nabla u(x)) /(|\nabla u(x)|)$. Take $\eta=\psi_{\epsilon}(v) \phi$ where $\psi_{\epsilon}(v), \phi$ are defined above, then $\eta \in$ $W_{0}^{1,2}(D)$ and $\eta=0$ on $\Gamma^{0}(u)$. Since $\psi_{\epsilon} \neq 0$ implies $v=\partial_{e} u>0, e \cdot \omega>0$ and by using (11), we have

$$
\begin{aligned}
& \epsilon^{-1} \int_{K \cap\{0<|v|<\epsilon\}}|\nabla v|^{2} d x+\left(\lambda_{+}+\lambda_{-}\right) \int_{\Gamma^{*}(u) \cap K}(e \cdot v) \psi_{\epsilon}(v) d H^{n-1} \\
& \leq \epsilon^{-1} \int_{\{0<|v|<\epsilon\}} \phi|\nabla v|^{2} d x+\left(\lambda_{+}+\lambda_{-}\right) \int_{\Gamma^{*}(u)}(e \cdot v) \psi_{\epsilon}(v) \phi d H^{n-1} \\
& \leq \int_{\{0<|v|<\epsilon\}} \epsilon^{-1} \phi|\nabla v|^{2} d x-\int_{D} \nabla v \cdot \nabla\left(\psi_{\epsilon}(v) \phi\right) d x \\
& =\int_{D} \psi_{\epsilon}(v) \nabla v \cdot \nabla \phi d x \leq C(n) M \int_{D}|\nabla \phi| d x .
\end{aligned}
$$

Therefore we have

$$
\left(\lambda_{+}+\lambda_{-}\right) \int_{\Gamma^{*}(u) \cap K}(e \cdot v) \psi_{\epsilon}(v) d H^{n-1} \leq C M .
$$

Letting $\epsilon \rightarrow 0$ gives

$$
\left(\lambda_{+}+\lambda_{-}\right) \int_{\Gamma^{*}(u) \cap K}(e \cdot v)_{+} d H^{n-1} \leq C M,
$$

for any normal vector e. For fixed $x \in \Gamma^{*}(u) \cap K$, there exists $e \in\left\{ \pm e_{1}, \ldots, \pm e_{n}\right\}$ such that $e \cdot v \geq 1 / \sqrt{n}$. This gives

$$
H^{n-1}\left(\Gamma^{*}(u) \cap K\right) \leq \frac{C M}{\lambda_{+}+\lambda_{-}} .
$$

3.3 Classes of solutions, rescalings, and blowups

Definition 3.2. (Local solutions). Let $P_{R}\left(x_{0}, M\right)$ be the class of $C^{1,1}$ solutions u of Problems A, B, or C in $B_{R}\left(x^{0}\right)$ such that

$$
\left\|D^{2} u\right\|_{L^{\infty}\left(B_{R}\left(x_{0}\right)\right)} \leq M,
$$

where $x_{0} \in \Gamma(u)$ in Problems A, B and $x_{0} \in \Gamma^{0}(u)$ in Problem C for given $R, M>0$.
Definition 3.3. (Global solutions). Let $P_{\infty}\left(x_{0}, M\right)$ be the class of $C^{1,1}$ solutions u of Problems A, B, or C in \mathbb{R}^{n} such that

$$
\left\|D^{2} u\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \leq M,
$$

where $x_{0} \in \Gamma(u)$ in Problems A, B and $x_{0} \in \Gamma^{0}(u)$ in Problem C for given $M>0$.
We Denote $P_{R}(M), P_{\infty}(M)$ by $P_{R}(0, M), P_{\infty}(0, M)$, respectively.
Let $u \in P_{R}\left(x_{0}, M\right)$ and $\lambda>0$ and the rescaling of u at x_{0}

$$
u_{\lambda}(x)=u_{x_{0}, \lambda}(x):=\frac{u\left(x_{0}+\lambda x\right)-u\left(x_{0}\right)}{\lambda^{2}}, x \in B_{R / \lambda},
$$

then by simple computatuion we know that $u_{\lambda} \in P_{R / \lambda}(M)$.
For $u \in P_{R}(M)$ for any $\lambda>0$ the rescaling u_{λ} satisfy $\left|D^{2} u_{\lambda}(x)\right| \leq M$ in $B_{R / \lambda}$. Hence we obtain

$$
\left|\nabla u_{\lambda}(x)\right| \leq M|x|, \quad\left|u_{\lambda}(x)\right| \leq \frac{1}{2} M|x|^{x}, \quad \text { for } x \in B_{R / \lambda} .
$$

Therefore there exists a sequence $\lambda=\lambda_{j} \rightarrow 0$ such that

$$
u_{\lambda} \rightarrow u_{0} \text { in } C_{l o c}^{1, \alpha}\left(\mathbb{R}^{n}\right) \text { for any } 0<\alpha<1,
$$

where $u_{0} \in C_{\text {loc }}^{1,1}\left(\mathbb{R}^{n}\right)$.
Proposition 3.12. (Limit of solutions). Let $\left\{u_{j}\right\}_{j=1}^{\infty}$ be a sequence of solutions of Problems A, B or C in an open set D, such that

$$
u_{j} \rightarrow u_{0} \text { in } C_{l o c}^{1, \alpha}(D),
$$

for some $0<\alpha<1$. Then we have the followings:
(a) For $x_{0} \in D$, we have the implications

$$
u_{0}\left(x_{0}\right)>0 \Rightarrow u_{j}>0 \quad u_{0}\left(x_{0}\right)>0 \Rightarrow u_{j}>0 \quad\left|\nabla u_{0}\left(x_{0}\right)\right|>0 \Rightarrow\left|\nabla u_{j}\right|>0
$$

on $B_{\delta}\left(x_{0}\right), j \geq j_{0}$, for some $\delta>0$ and suficiently large j_{0}.
(b) For $B_{\delta}\left(x_{0}\right) \subset D$, we have

$$
\left|\nabla u_{0}\right|=0 \text { on } B_{\delta}\left(x_{0}\right) \Rightarrow\left|\nabla u_{j}\right|=0 \text { on } B_{\delta / 2}\left(x_{0}\right),
$$

$j \geq j_{0}$, for sufficiently large j_{0}.
(c) u_{0} is a solution of the same Problem A, B or C, as $u_{j}, j=1,2, \ldots$.
(d) For some $j_{k} \rightarrow \infty$, and $x_{j_{k}} \rightarrow x_{0} \in D, x_{j_{k}} \in \Gamma\left(u_{j_{k}}\right)$ implies $x_{0} \in \Gamma\left(u_{0}\right)$.
(e) $u_{j} \rightarrow u_{0}$ in $W_{\text {loc }}^{2, p}(D)$ for any $1<p<\infty$.

Proof. (a) $u_{j} \rightarrow u_{0}$ in $C_{\text {loc }}^{1, \alpha}(D)$ implies the implications.
(b) Suppose it is not, then there exists $j_{k} \rightarrow \infty, y_{k} \in B_{\delta / 2}\left(x_{0}\right)$ such that $\left|\nabla u_{j_{k}}\left(y_{k}\right)\right|>0$ and $\left|\nabla u_{0}\right|=0$ in $B_{\delta}\left(x_{0}\right)$. By Corollary 3., at y_{k} and $B_{\delta / 4}\left(y_{k}\right) \subset B_{(3 \delta / 4)}\left(x_{0}\right)$, we have

$$
\sup _{B_{3 \delta / 4}\left(x_{0}\right)}\left|\nabla u_{j_{k}}\right| \geq C \delta .
$$

By the $C^{1, \alpha}$ convergence, passing to the limit gives

$$
\sup _{B_{3 \delta / 4}\left(x_{0}\right)}\left|\nabla u_{0}\right| \geq C \delta .
$$

This is a contradiction to the fact that $\left|\nabla u_{0}\right|=0$ on $B_{\delta}\left(x_{0}\right)$.
(c) With out loss of generality, we may assume that $\left\{u_{j}\right\}$ is uniformly bounded in $W^{2, p}(K), 1<$ $p \leq \infty$ for any $K \Subset D$ and hence $u_{0} \in W_{l o c}^{2, p}(D)$. therefore it is enought to show that the equation for u_{0} is satisfied a.e. in D.

Case 1) Problems A, B.
Since $\nabla u_{0}=0$ on $\Omega^{c}\left(u_{0}\right), \Delta u_{0}=0$ a.e. on $\Omega^{c}\left(u_{0}\right)$. Let $x_{0} \in \Omega\left(u_{0}\right)$, then by (a) we have that $B_{\delta}\left(x_{0}\right) \subset \Omega\left(u_{j}\right)$ for some $\delta>0$ and $j \geq j_{0}$. Therefore

$$
\Delta u_{j}=1 \text { in } B_{\delta}\left(x_{0}\right), \quad j \geq j_{0},
$$

and this implies

$$
\Delta u_{0}=1 \text { in } \Omega\left(u_{0}\right) .
$$

Thus we obtain

$$
\nabla u_{0}=\chi_{\Omega\left(u_{0}\right)} \quad \text { a.e. in } D .
$$

Case 2) Problem C.

Since $\left|\Gamma^{*}\left(u_{0}\right)\right|=0$, the same argument give the desired equation.
(d) Let $x_{j_{k}} \in \Gamma\left(u_{j_{k}}\right) \subset \Omega^{c}\left(u_{j_{k}}\right)$, then we obtain $x_{0} \in \Omega^{c}\left(u_{0}\right)$, by (a). Therefore If we assume $x_{0} \notin \Gamma\left(u_{0}\right)$, then there exists a ball $B_{\delta}\left(x_{0}\right) \subset \Omega^{c}\left(u_{0}\right)$. For any Problems A, B, or C, in this ball, $\left|\nabla u_{0}\right|=0$. Thus we have $B_{\delta / 2}\left(x_{j_{k}}\right) \subset \Omega^{c}\left(u_{j_{k}}\right)$, by (b), and this is a contradiction to the fact that $x_{j_{k}} \in \Gamma\left(u_{j_{k}}\right)$.
(e) Since $D^{2} u_{j}$ are uniformly bounded on any $K \Subset D$, It suffice to show that

$$
D^{2} u_{j} \rightarrow D^{2} u_{0} \text { a.e. in } D,
$$

to prove (e). Fix a point x_{0} in $\Omega\left(u_{0}\right)$. For some $\delta>0, j_{0}$, we have

$$
\Delta u_{j}=1 \text { in } B_{\delta}\left(x_{0}\right), \quad j \geq j_{0}, \quad \Delta u_{0}=1 \text { in } B_{\delta}\left(x_{0}\right) .
$$

Thus these functions are in $C^{\infty}\left(B_{\delta}\left(x_{0}\right)\right)$ and we have the pointwise convergence for x_{0}. Let $x_{0} \in \operatorname{Int}\left(\Omega\left(u_{0}\right)^{c}\right)$. By (b), we know that there exists $\delta>0, j_{0}$ such that

$$
\left|\nabla u_{0}\right|=0 \text { on } B_{\delta}\left(x_{0}\right) \text { on, } \quad\left|\nabla u_{j}\right|=0 \text { on } B_{\delta / 2}\left(x_{0}\right), \quad j \geq j_{0}
$$

It also give the regularity and we have the convergence of second derivative at x_{0}. Since the free boundary has a Lebesque measure zero, we have a.e. second dervative convergence.

4 Obstacle problem for nonlinear second-order parabolic operator

4.1 Viscosity solution of parabolic equations

We deal with the space \mathbb{R}^{n+1}, denote the points in \mathbb{R}^{n+1} by (x, t) where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is the n -dimentional space variable and t is the time variable.
The parabolic distance from $P_{1}=\left(x_{1}, t_{1}\right)$ to $P_{2}=\left(x_{2}, t_{2}\right)$ is defined by

$$
d\left(P_{1}, P_{2}\right)= \begin{cases}\left(\left|x_{1}-x_{2}\right|^{2}+\left|t_{1}-t_{2}\right|\right)^{1 / 2} & t_{1} \leq t_{2} \\ \infty & t_{1}>t_{2}\end{cases}
$$

For a point $\left(x_{0}, t_{0}\right) \in \mathbb{R}^{n+1}$, the ϵ-neighborhood of $\left(x_{0}, t_{0}\right)$ is the set

$$
\left\{(x, t): d\left((x, t),\left(x_{0}, t_{0}\right)\right)<\epsilon\right\} .
$$

This ϵ-neighborhoods give a topology in \mathbb{R}^{n} and we call it the parabolic topology.
Let Ω be a domain in \mathbb{R}^{n+1}, i.e. a open set in the parabolic topology. The boundary of a domain Ω under the parabolic topology is called the parabolic boundary and denoted by $\partial_{p} \Omega$. Let $Q_{r}:=\{|x|<r\} \times\left(-r^{2}, 0\right], Q_{r}(x, t):=Q_{r}+(x, t)$. these are typical open set in the parabolic topology.

Definition 4.1. $F(M, P, v, x, t)$ is uniformly elliptic if there are $\lambda, \Lambda>0$ such that

$$
\lambda|N| \leq F(M+N, P, v, x, t)-F(M, P, v, x, t) \leq \Lambda|N|
$$

holds for arbitrary postive definite matrix N.
Lemma 4.1. the following are equivalent:

1. F is uniformly elliptic.
2. $F(M+N) \leq F(M)+\Lambda\left|N^{+}\right|-\lambda\left|N^{-}\right|$, for any M, N.

Definition 4.2. a function u has interior minimum in a neighborhood Ω, if we have

$$
\min _{\Omega} u<\min _{\partial_{p} \Omega} u .
$$

Definition 4.3. We say u is a supersolution of $u_{t}-F\left(D^{2} u(x), D u(x), u(x), x, t\right)=0$ if

$$
u_{t}-F\left(D^{2} \psi, D \psi, \psi, x_{0}, t\right) \geq 0
$$

whenever ψ is C^{2} and $u \leq \psi$ for some neighborhood of $\left(x_{0}, t_{0}\right)$, and $u\left(x_{0}, t_{0}\right)=\psi\left(x_{0}, t_{0}\right)$.
The notions of subsolutions and solutions are then obvious.

4.2 The existence and the continuity theory

Definition 4.4. Let $u \in \operatorname{LSC}(\bar{\Omega} \times[0 . T))$ be a supersolution of the following obstacle ploblem on $\bar{\Omega} \times[0 . T)$ if

$$
\begin{cases}(E) \quad u_{t}-F\left(D^{2} u, x\right) \geq 0, & \text { in } \Omega \times(0, T)=Q_{T}, \tag{12}\\ (O) \quad u(x, t) \geq \phi(x, t) & \text { in } \Omega \times(0, T), \\ (B C) \quad u(x, t) \geq 0 & \text { for } x \in \partial \Omega \text { and } 0 \leq t \leq T, \\ (I C) \quad u(x, 0) \geq g(x) & \text { for } x \in \bar{\Omega},\end{cases}
$$

where $\Omega \subset \mathbb{R}^{n}$ is open and $T>0, g \in C(\bar{\Omega})$ and $\phi \in C^{2}\left(Q_{T}\right)$ are given and $F(M, x)$ in (E) is a uniformly ellipic operator and $F(0, x)=0$.

The notions of subsolutions and solutions are then obvious. Let $\Omega(u)=\{(x, t) \mid u(x, t)>$ $\phi(x, t)\}, \Lambda(u)=\{(x, t) \mid u(x, t)=\phi(x, t)\}, \Gamma(u)=\partial \overline{\Omega(u)} \cap \partial \Lambda(u) \cap Q_{T}, \Omega_{t}(u)=\{x \mid(x, t) \in$ $\Omega(u)\}, \Lambda_{t}(u)=\{x \mid(x, t) \in \Lambda(u)\}$, and $\Gamma_{t}(u)=\{x \mid(x, t) \in \Gamma(u)\}$.

Theorem 4.2. There exists a lower semicontinuous viscosity supersoltion u which satiesfies (12) and u satisfies $u_{t}-F\left(D^{2} u, x\right)=0$ in $\Omega(u)$.

Theorem 4.3. (Weak Harnack Inequality) Let u be a non-negative and $u_{t}-F\left(D^{2} u, x\right) \geq 0$ in $Q_{2 r}$. Then

$$
\left(f_{Q^{-}} u^{p}\right)^{1 / p} \leq C\left(\inf _{Q^{+}} u\right)
$$

where $Q^{+}=Q_{r}$ and $Q^{-}=Q_{r}+\left(0,-2 r^{2}\right)$.
Theorem 4.4. (Harnack Inequality) Let u be a non-negative and $u_{t}-F\left(D^{2} u, x\right)=0$ in $Q_{2 r}$. Then

$$
\sup _{Q^{-}} u \leq C\left(\inf _{Q^{+}} u\right),
$$

where $Q^{+}=Q_{r}$ and $Q^{-}=Q_{r}+\left(0,-2 r^{2}\right)$.
Definition 4.5. We say u satisfy the subquadratic free boundary condition at $\left(x_{0}, t_{0}\right) \in \Gamma(u)$ if for given $M>0$,

$$
\begin{aligned}
& \Gamma_{t}(u) \cap\left\{x \mid M\left(x_{0}-x\right)^{2}<t_{0}-t\right\} \neq \emptyset, \text { where } t<t_{0} \text { and } \\
& \Gamma_{t}(u) \cap\left\{x \mid(5 / 4) M\left(x_{0}-x\right)^{2}<t-t_{0}\right\} \neq \emptyset, \text { where } t>t_{0} .
\end{aligned}
$$

The constant $5 / 4$ is just a technical number to prove the following theorem.
Lemma 4.5. Let u be as in Theorem 4.2. $Q_{r}(y, s) \subset Q_{T}$. If the condition satisfied by u in $Q_{r}(y, s)$ uniformly with constant $M>0, u$ is continuous on $Q_{r / 2}(y, s)$.

Proof. The only possible problem is on $\Gamma(u) \cap Q_{r / 2}(y, s)$. Assume u is discontinuous at some point (x_{0}, t_{0}) on $\Gamma(u) \cap Q_{r / 2}(y, s)$. There exists a sequence (x_{k}, t_{k}) in $\Omega(u)$ converging to $\left(x_{0}, t_{0}\right)$ such that $u\left(x_{k}, t_{k}\right)$ converges to μ (possibly ∞) with $\mu>\liminf _{x \rightarrow x_{0}, t \rightarrow t_{0}^{-}} u+\delta \geq u\left(x_{0}, t_{0}\right)+\delta$, for sufficently small $\delta>0$. Without loss of generality, we may assume $\liminf _{x \rightarrow x_{0}, t \rightarrow t_{0}^{-}} u \geq$ $u\left(x_{0}, t_{0}\right)=0$.

1. $M=16 / 5$ and $(27 / 40)\left(x_{0}-x_{k}\right)^{2} \geq t_{0}-t_{k}$. and $Q_{2 r_{k}}\left(x_{k}, t_{k}^{\prime}\right) \subset \Omega(u)$ where $r_{k}=\left|x_{0}-x_{k}\right| / 4$, $t_{k}^{\prime}=t_{k}+2 r_{k}^{2}$.
Let $\hat{x}_{k}=x_{0}+(3 / 2) r\left(x_{k}-x_{0}\right) /\left|x_{k}-x_{0}\right|$ and $\hat{t}=t_{0}-(4 / 5) r_{k}^{2}$. Since u is upersemicontinuous and $u\left(x_{0}, t_{0}\right)=0$, for any $\delta>0$, there is a neighborhood of $\left(x_{0}, t_{0}\right)$, with $u(x, t) \geq-\delta$. The neighborhood is as large as it contains $Q_{2 r_{k}}\left(x_{k}, t_{k}^{\prime}\right)$ and $Q_{4 r_{k}}\left(\hat{x}_{k}, \hat{t}_{k}\right)$ for large k. For (x, t) in our neighborhood, $u(x, t)+\delta \geq 0$ and $u\left(x_{k}, t_{k}\right)+\delta \geq \mu>0$ for large k. By the Harnack inequality, $u(x, t)+\delta \geq C \mu$ in $Q_{r_{k}}\left(x_{k}, t_{k}^{\prime}\right)$.
Choose small $\delta>0$ such that $u(x, t) \geq C \mu-\delta \geq(C / 2) \mu$ in $Q_{r_{k}}\left(x_{k}, t_{k}^{\prime}\right)$. Let $\left(y_{k}, s_{k}\right) \in \Gamma(u) \cap$ $Q_{2 r_{k}}\left(\hat{x}_{k}, \hat{t}_{k}\right)$. Now by the weak Harnack inequality,

$$
\begin{aligned}
u\left(y_{k}, s_{k}\right)+\delta & \geq C\left[f_{Q_{2 r_{k}\left(\hat{x}_{k}, t_{k}^{\prime}\right)}}(u+\delta)^{p}\right]^{1 / p} \\
& \geq C\left[f_{Q_{2_{k}\left(\hat{x}_{k}, r_{k}^{\prime}\right) \cap Q_{r}\left(x_{k}, t_{k}^{\prime}\right)}}(u+\delta)^{p}\right]^{1 / p} \\
& \geq C \mu+C \delta .
\end{aligned}
$$

Since δ is arbitrary, $u\left(y_{k}, s_{k}\right) \geq C \mu>0$. Since $\left(y_{k}, s_{k}\right)$ converge to $\left(x_{0}, t_{0}\right)$, we have a contradiction.
$2 . M=16 / 5$ and $(27 / 40)\left(x_{0}-x_{k}\right)^{2} \geq t_{0}-t_{k}$.
Choose r_{k} as large as possible such that $Q_{2 r_{k}}\left(x_{k}, t_{k}^{\prime}\right)$ is in $\Omega(u)$. We may assume that $r_{k}<$ $\left|x_{0}-x_{k}\right| / 4$, since the other case is 1 . The same argume in 1 and the subquadratic free boundary condition for future time implies a contradiction.
3. $M=16 / 5$ and $N\left(x_{0}-x_{k}\right)^{2} \geq t_{0}-t_{k}$ for $N<(27 / 40)$ and $4 . M$ is arbitrary and $N\left(x_{0}-x_{k}\right)^{2} \geq$ $t_{0}-t_{k}$ for some $N>0$.
Some general version of weak Harnack and Harnack inequarity for another open set may operate the machiney.
4. M is arbitrary.

Corollary 4.6. (a generalization of Evans theorem) Let u be as in Theorem 4.2 If for any $Q_{r}(y, s) \subset Q_{T}$, u satisfies the subquadratic free boundary condition with unform constant $M=$ $M\left(Q_{r}(y, s)\right)>0$, then u is continuous in $(0, T) \times \Omega$.

References

[1] Petrosyan, Arshak. Regularity of free boundaries in obstacle-type problems. Vol. 136. American Mathematical Soc., 2012.
[2] Lee, Ki-ahm. "Obstacle problem for nonlinear 2nd-order elliptic operator." preprint (1997).
[3] Evans. Partial differential equations. Vol. 19. American Mathematical Soc., 2012.
[4] Wang, Lihe. "On the regularity theory of fully nonlinear parabolic equations: I." Communications on pure and applied mathematics 45.1 (1992): 27-76.

국문초록

이 논문은 [1]의 내용을 요악하고 비선형 2차 포물 연산자의 장애물문제를 소개한 논 문이다. 1장에서는 전형장애물문제(classical obstacle problem)를 소개하고 이 문제의 해 의 존재성과 유일성 $C^{1,1}$ 정칙성을 다루었다. 2 장에서는 장애물-종류문제(Obstacle-type problem)의 해의 $C^{1,1}$ 정칙성을 보였다. 3 장에서는 자유경계의 기본적인 성질들에 대하여 증명하였다. 4 장에서는 비선형 2 차 포물 연산자의 장애물문제를 소개하고 해의 연속성 을 보이기 위해 [2]의 방법을 참고하였다.

주요 어휘 : 장애물, 장애물문제, 전형장애물문제(classical obstacle problem), 장애물-종 류문제(Obstacle-type problem), 자유경계, $C^{1,1}$ 정칙성, 비선형 2차 포물 연산자.
학번: 2012-23021

