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Abstract

This paper is a paper which is written based on the contents of [1] and introduction of obsta-
cle problem for nonlinear second-order parabolic operator. In chapter 1, we introduce classical
obstacle problem and we deal with existence, uniqueness and C!! regularity of solution of the
problem. In chapter 2, we show C!! regularity of solution of Obstacle-type problem. In chap-
ter 3, we prove some elementary properties of free boundary. In chapter 4, We reference [2]
to show the continuity of solution of obstacle problem for nonlinear second-order parabolic
operator.
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1 The classical obstacle problem

1.1 The obstacle problems
It is well-known fact that the solution of the boundary value problem
Au=0inD, u=gonaD,

can be found as the minimizer of the functional
Jolu) = f VuPdx.
D

for all u such that u = g on dD. It is the Dirichlet principle and the functional is the Dirichlet
functional. More generally, for a bounded open set D in R”, g € W'*(D) and f € L*(D), the
minimizer of

J(u) = f (IVul* + 2fu)dx
D

over the set
K, ={ue WD) :u-geW,*(D))

solves the equation
—Au+ f=0in D, u = gondD,

in the sense of distributions, i.e.
f(Van + fpdx = 0,
D

forall n € C2(D).
Now, let a function € C*(D), obstacle, satisfying ¢ < g on dD, () — g), € W&’Z(D) be
given. Consider the minimizing problem of the functional J(-), over the set

Koy ={ue WD) :u-geW,*(D),u>yae.in D}

The set

is the coincisence set and QQ = D \ A. The boundary
F'=0AND=0QNnD

is the free boundary, since it is unknown before. In this rest of the section we will show that the
minimizer u of J(-) satisfy

Au=finQ, Au= Ay a.eonA. (1)

It is the classical obstacle problem.



Theorem 1.1. Let D be a bounded open subset in R",g € W"*(D) and f € L*(D),¢ €
CX(D),y < gondD, (Y — g), € Wé’z(D), Jw) = fD(IVLtI2 + 2fu)dx over the set K,, = {u €
W'A(D) : u—g € Wy*(D),u > Y a.e. in D}. Let

Ji(v) = f (Vv + 2 fiv)dx
D
be a functional over the set

K

wo=1lue WD) :u-g € Wy*(D),u>0a.e. in D),

where fi = f — Ay, g1 = g — . Then u is the minimizer of J if and only if v is the minimizer of
J1 wherev = u— .

Proof. Foru € K, ,v=u—y € K, o, and forv € K, o, v+ € K,
50 = [ [9u= V0 +27 = 80—
= fD \Vul> = 2Vu - Vi + [Vy* + 2(fu — fif — ul + (A)p)dx
= J(u) + fD —2Vu - Vi — 2uly + [VY? = 2y + 2(Ag)pdx

:J(u)—2f(Vu—Vg)-Vw+(u—g)Awdx+C
D

=Ju)+C,
where constant C = [ —2Vg - Vi — 2gAy + VY[ — 2 + 2(Vy)ydx. u — g = 0 on D. The
last equation holds, by the integration by part. O
If we show

Av = fiae.in{v >0}, Av=0a.eon{v=0}

(1) is obtained, consequently. We have reduced the problem to the case of zero obstacle. Thus
we cover the case of zero obstacle, only, in the rest of this section.

Theorem 1.2. Let D be a bounded open subset in R",g € W'*(D) and f € L¥(D),0 <
gondD,(-g). € W,*(D). Let J(u) = fD(IVLtI2 + 2fu,)dx over the set K, = {u € W'4(D) :
u—ge WS’Z(D)}. Then u is the minimizer of J over K, if and only if u is the minimizer of J
over K,.

Proof. Foru € K,,u, € K, o, and we know that

Vi = Vu ae.on{u> 0}
710 a.e.on {u < 0}.

Thus we have
Ju,) = f (Vi + 2fu,)dx < f (\Vul® + 2 fu,)dx = J(u).
D D
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On the other hand,

Juy) =Jw) o f |Vuldx = fle,ldx < Vu_=0a.einD.

D D
Thus u_ is locally constant and since u_ € Wé’z(D), we have u_ = 0. Therefore
J(uy) = J(u) for any u € K, if and only if u = u,.

Thenif u € K, is the minimizer of J(), then J(u) < J(u,). Thus J(u) = J(u,). By the uniqueness
of the minimizer u = u,. Hence u € K, . That means J(-) has it minimum on K, . Since
J(-) = J(-) on K, p, the sets of minimizers of J(-) and J(-) are coincide. O

Theorem 1.3. Let D be a bounded open subset in R",g € W'*(D) and f € L¥(D),0 <
gondD,(-g), € W3’2(D). Let 0 < € < 1, x(s) be a C* function on R such that

X(s)=0 fors<-e xd{s)=1 fors>e, x.20.
Let

D(s) = f S xedt,  J(u) = f (Vul® + 2 f () Dc(u(x)))dx
- D

(o8]

over K, and u. is the minimizer of Jc. Then
f (VueVn + fxe(uamdx = 0,
D

forn € WA(D).

Proof. Letn € W,*(Q) and ¢ € R. Then u, + tn € K,. Set h(t) = J(u + ). Since u, is the
minimizer and u, + tn € K, , h(t) > h(0) = J(u,). Thus 4’'(0) = 0.

h(t) =J (e + i) = f Ve + m)P + 2/ (0D () + m(0)dx
D

= f \Vul*dx + 2t f Vu.-Vn+1 f \VnlPdx + f 21D (u + tn)dx
D D D D

Therefore
W) =2 f Vu, - Vndx + 2t f \VnlPdx + 2 f fO(ue + 1) dx
D D D
=2 f Vu, - Vndx + 2tf |V77|2dx +2 f Fxe(ue(x) + tn(x))n(x)dx.
D D D

Therefore
no0)y=2 f Vu, - Vndx + 2 f fxe(uandx = 0.
D D



1.2 Existense and uniqueness of the solution of the obstacle problems

Lemma 1.4. Let A be a subset of a reflexive Banach space X. Let a functional J(-) over A. If
(a) Aisweakly closed in X,

(b)  There exists uy € A such that J(uy) < +oo,

(c) Ju)>—-Cy>—ooforallueA,

(d) J() is coercive, i.e.J(uy) — +00, provided ||lu||x — oo,

(e) J()is weakly lower semi-continuous on A, i.e. if up — u(weakly), then J(u) < lim, | J(u),
then there exists minmizer u € A ,i.e. J(u) = inf 7 J(v).

that J(u;) \, J. and hence there exists N € N such that J(u;) < J, + 1 for k > N. By coercivity
there exists M > 0 such that |ju|[x < M, for all k > N. By the weak-compactness of X, there
exists # € X such that uy — u (up to subsequence). Since A is weakly closed, u € A and from
the weakly lower semi-contiuity of J(-), J(u) < lim, |  J(u;) = J.. Therefore J(u) = J., and u

Proof. Set J, = inf,c4 J(v). By (b),(c), —Cy < J. < J(up) < +0c0. Then there exists u; € A such

1S a minimizer. O

Theorem 1.5. Let D be a bounded open subset in R",g € W'*(D) and f € L¥(D),0 <
gondD,(-g), € Wé’z(D). Let J(u) = fD(|Vu|2 +2 fu)dx be a functional over the set K, = {u €
W'2(D) : u—g € Wy*(D),u > 0 a.e. in D}. Then J(-) has a unique minimizer in K, ¢ W'2(D).

Proof. (a) Let uy — uin W"*(D),u; € K,. Since W'*(D) — L*(D), we know that u; — u
in L>(D). Thus u; — u a.e in D, up to subsequence. Hence u > 0 a.e. in D. Since WJ’Z(D) 18
weakly closed, u — g € Wé’z(D). Thus u € K, .

(b) Since g >0ondD,g, =gondD. Thus g, —g € Wé’z. Therefore g, € K,, and we have

J(gs) = fIVg+|2 +2fgidx < ||Vg||i2(D) + 2l fll2yllglzpy < +o0,
D

since f € L*(D), g € W'(D).
(c) Letu € Ky, then u — g € W, (D).

J(u) = f \Vul? + 2 fudx
D

2
> ||VM||L2(D) - 2||f||L2(D)||u||L2(D)
2
2 ||VM||L2(D) = 2/ f 2yl = gllz2 oy + lIgllz2))
2
2 |[Vullyz ) = 220y (CNV (e = D2y + lIgllz2)
2
= IVulllz py = 2CI N2y IV = D2y + =20 f Nl 2 181l 22y
(D)

1 ,
> ||VM||22(D) - ZHV(M - 8)||iz(D) -C ||f||iz(D) =20l fll2yllgllz2 oy
1 ,
> ||VM||22(D) - Z(”VMHLZ(D) +1IVgll2my)* = C ||f||iz(D) =2l f 2oy lIgllz2 )
> 1||VM||2 - l||V 12, = C' 1, = 20Nz llgll
=5 12y ~ 31V 8l 12(D) 2118112 )

1 / >
> =5 IV8l ) = 'l ) = 2 Mz liglizn) = =C,



by Poincaré’s inequality, Young’s inequality, and (a + b)* < 2(a* + b*), where a, b € R.
(d) Since

2 2
J(u) > ||Vuk||L2(D) ||Vg||L2(D)—C'||f||L2(D)—2||f||Lz<D)||g||Lz<D>,

J(ug) — o0 as ||Vull2py — 0.

lluillzz < Nl = gllz2 + llgllze < ClIV (i = @)ll2 + MIgllr2
< ClIVuglizz + ClIVgllzz + ligllz2-

Thus J(uk) — 00 as ||uk||L2(D) — 00, If ||ukllwl.2(D) — 09, then ||uk||L2(D) — 00 Or ||Vuk||L2(D) — 00,
Therefore the coercivity condition for J(-) holds.
(e) Let uy € K, such that uy — u in W'*(D) as k — oo. Since W'*(D) — L*(D),

Vi, — Vuin L*(D), u; — uin L*(D),

as k — oo, up to subsequence. Vi, — Vu in L*(D) gives
|Vu| dx < lim IVukl dx.
k—oco

Since

< llzzoyllex — ullz2py as k — oo,

f;fuk — fudx

limffukdx:ffudx.
k= Jp D

Thus J(-) is weakly lower semi-continuous.
To show the uniqueness, we assume u, it € K, are two minimizers of the problem such that
u# . Thenv = (u +i1)/2 € K, , by the convexity of K

J(V):f 2f(u+u)

1
= f Z(qulz +2Vu - Va+ Vi) + f(u + in)dx
D

we have

V(u+ )
2

1

= f Z(ZIVulz + 2IVal? — |Vu — VaP) + f(u + )dx
D

- M

The last inequality holds, since u # i. therefore it is a contradiction and we have the uniqueness
of the minimizer. O

Theorem 1.6. Let D be a bounded open subset in R",g € W'*(D) and f € L¥(D),0 <
gondD,(-g), € WS’Z(D). Let J.(u) = fD(qul2 + 2f®(u))dx be a functional over K,. Then
Je(+) has a unique minimizer in K, C wh2,



Proof. (a) Clear

(b) With out loss of generality, we may assume that ® (u(x)) = f_ Soo Xe(Hdt < u(x),. Thus
Je(g) < IIVgIIiz(D) + 2l lIgllzpy < +00

(¢), (d) Since O (u(x)) < u(x), we also obtain

2
Je(u) 2 \Vullp ) = 2l fllzzoyllullz2co).-

As the same manner in the proof of Theorem[I.5] we have (c), (d).
(e) Let uy € K, such that uy — u in W'*(D) as k — oco. Then we have fD|Vu|2dx <
li_mk—wo \fD |Vuk|2d’x'

f JO(u) = f@(u)dx| < f |f QO e(@)llui(x) — u(x)ldx for 1, between ux(x), u(x)
D D

< ”f”LZ(D)”Mk - M”LZ(D) — 0ask — oo.

Thus J.(-) is weakly lower semicontinuous.
the convexity of K, give the uniqueness of the minimizer. O

1.3 W?? regularity of the solution of the classical obstacle problem

Lemma 1.7. (Calderén-zygmund estimates) Let u € L'(D), f € LP(D),1 < p < o0, and Au = f
in D in the sense of distributions. Then u € Wi’f (D) and

leellw2rcky < Cllull L1y + 1 f112ep))s
forany K € D with C = C(p,n, K, D).

Theorem 1.8. Let D be a bounded open subset in R",g € W'*(D) and f € L¥(D),0 <
gondD,(-g), € WS’Z(D). Let J.(u) = fD(|Vu|2 + 2f®.(u))dx be a functional over K,. Let
ue be the minimizer of J. over K,. Then the family {uc} is unformly bounded in WY2(D) and in
W?P(K) for any K € D,1 < p < co where 0 < € < 1

Proof. By Theorem |1.3| we know that
j; (VueVn + fxe(uemdx = 0,
forn e WS’Z(D). Taken = uc — g.
0= fD VueVue — g) + fxe(ud)(ue — g)dx

= fDV(ue_g)'V(ue_g)+Vg'V(ué_g)+f/\/f(ué)(ué_g)dx

> |IV(ue — g)”iz D) IVellzpllV (e — Oz = Ifllzipylle — &llzzm)
(D)

> |[V(ue — g)”iz o — Vel + Cllifllzo)lIV(ue — ©ll2p)
(D)

1 ,
= §||V(Me - g)||iz(D) -C (||V8||L2(D) + C||f||L2(D)),



by Poincaré’s inequality and Young’s inequality. Then

V(e = 9l p, < C(f.9).
Applying Calderén-zygmund estimates and Poincaré’s inequality,
luellwzr ) < C(p, n, K, DY(|luellrr oy + 1 fxemellero))
<C(p,n,K,D, f.8),
forany K€ D, 1 < p < oo. O

Theorem 1.9. Let D be a bounded open subset in R",g € W'*(D) and f € L¥(D),0 <
gondD,(—-g); € WS’Z(D). Let u be the minimizer for the functional J(u) = fD(IVul2 + 2fu)dx
over the set Kyo = {u € W'(D) : u— g € Wy*(D),u > 0 a.e. in D}, then u € Wfo’f(D)for any
1 <p<oo.

Proof. Since u, is unformly bounded for 0 < € < 1 in W!(D), then there exists u € W'2(D),
such that u, — u in W'?(D) and since W'?(D) — L*(D),

Vu, — Vuin L*(D), u. — uin L*(D),

as € = ¢ — 0. Since Wé’Z(D) is weakly closed, u. — g € WS’Z(D), thenu — g € WS’Z(D), i.e.
uek,.
By Theorem we know that u, € Wi;f (D) and

lluellw2rxy < C(p,n, K, D, f, 8),

forany K € D, 1 < p < co. Thus u, — uinWi’f(D), as € — 0 forany 1 < p < oo. Hence
MEWfo’f(D)foranyl<p<00.

<

ffq)e(ue) - f”+dx ffq)e(ue) - fq)e(u)dx + ffq)e(u) - fu+dx
D D D

< ||f||L2(D)||us - M||L2(D) + ||f||L2(D)||CDe(M) - M+||L2(D)
2
< fll2py(lue = ull2py +4€7ID]) — 0 as e — 0,

by the same computation in the proof of Theorem @], and we know that ||®, — u, ||~ < 2e.

Thus we have
ffqudx:limff(De(uE)dx.
D e—0 D

f |Vul*dx < lim | |Vu/*dx.
D

e—>0JD

Vu, — Vu in L*(D) gives

Therefore

J(u) = f \Vul® + fu,dx < lim J.(u.) < lim J.(v) = lim f IVV? + fD.(v)dx = J(v),
D D

e—0 e—0 e—0

for any v € K,. by Theorem , u is the minimizer of J(-) over K, and u € Wi’f (D), for any
I <p<oo. |



Theorem 1.10. Let D be a bounded open subset in R",g € W'*(D) and f € L*(D),0 <
gonoD,(-g), € Wé’z(D). Let u be the minimizer for the functional J(-) over the set K, then
Au = fxuso a.e. in D, equivalently, Au = f a.ein Q = {u > 0} and Au = 0 a.e. on A = {u = O}

Proof. Since u, € W>"(D), Au. = fy(u.) for a.e. in D. For p > n

loc
u. — uin CH(D)
€ loc ’

by the Sobolev embedding theorem with @ = 1 — % Then Au = f a.e. in {u > 0}, by the locally

unform convergence. Since u € leof (D), Au =0 a.e on {u = 0}. O

1.4 C"! regularity of the solution of the classical obstacle problem
Theorem 1.11. Let u, f € L*(D),u > 0

Au = fxusoy in D.
Choose xy € I'(u) = 0Q2 N D such that Bogr(xo) C D. Then

2
sup u < C||fllz=mR",
Br(xo)

where C = C(n).
Proof. Let u = u; + u, such that

Au1 = Au, AI/lz =0 iIn BZR(.XO),
u = O, U =u on aBZR()C()).

Let Y(x) = (4R?> —|x— x0[*)/2n, then Ay = —1 in Bag(xy), ¥ = 0 on dByg(xy). Consider u; + My,
where M = || fl|~p) then

A(uy + My) <0 in Bog(xo),
u + Mlﬂ =0 on (9BZR(X()).
1=

This implies u; + My > 0, u
My in Byg(xg). Thus

—My in Bygr(xp). In the similar way, we know that —-My < u; <

2
| <

in BZR()C()). (2)

Since Alxtz =0in BgR(X()), Up = u 2 0O on 8BZR(x0), Uy > 0 in BzR(X()). since M(XQ) = l/ll(X()) +
ur(x9) = 0, ur(xp) = —u;(x9) < 2MR?/n. By the Harnack inequality,

ur(x) < Cur(xo) < CMR?, for any x € Bg(xo), 3)
where C = C(n). Using (2),(3) we have the inequality. |

Lemma 1.12. Let Av = f in Byr(xy) € D and f has a C"'—regular potential, i.e. f = A¢ in D,
where ¢ € C'(D). Then

) VIl 2 (Bar(xo)) 2
1DVl ey < CONT" " + DBl o)



Proof. We may assume that ¢(xp) = |Vé(xp)| = 0. Let w = v — ¢. By using the mollification,
we have
C(n)

2
D" Wl By < Fllwlle(BzR(xo))’

and

5 VIl Borixo)y + 1@l 2(Bor(xo)) 5
1DVl gy < Clm)(———"25 2 1Dl By

By the Taylor expansion,

B0 +h) = 5 Z iy L O, ) < ECOID B
XiXj

where |h] < 2R,0 < 6 < 1. Thus we obtain

2 2
Pl 2o (Brr (o)) < RZC @)D Pl|1o(Bog(x0))

and the desired inequrity. O

Theorem 1.13. Let u € L*(D),u > 0, Au = fxusoy in D for f € L*(D) such that f = A¢ in D,
where ¢ € C*\(D). Then u € C;;}(D) and

lulleri iy < Clullzom) + 1D*Blle(),
for K € D, where C = C(n,dist(K, dD)).

Proof. Let K € D. We know that u € leo’f(D) forany 1 < p < oo and D*u = 0 a.e on Q°(u).

Thus it suffice to show that ||D2(u)||Loo(Q(u)nK) < +o00. Let xg € Q) N K, d = dist(xy, Q°(n)),
0 = dist(K.0D).

Case 1) d < 6/5. Let yy € 0B4(xp) N 0Q, then Byy(yyg) C Bsy(xg) € D. By Theorem we
obtain

2
2l Bru(ve)) < C@| fllreyd”.

We know that B;(xyg) C Byy(yo) and Au = f in By(xp). By Lemma and |fllL=p) <
ID?¢ll=(p).»

2 Il Bcx0) >
\D M||L°°(Bd/2(x0)) < C(n)(T +[D ¢||L°°(Bd(xo)))

lluel|
< CoO(—222 + DGl a0
< CO)If =y + ID?*@ll=p)) < COYUID* |-

Case 2) d > 6/5. In this case, the interior derivative estimate for u in Bs/s(xp) gives

el 2o ()
”D2 ||L°°(Bb/10(x0)) < C(n )(— ||D2¢||L°°(D))'

Combining cases above, we obtain

lllersgr < Cln) (”””;;‘ 2+ IIDZ¢||LW(D))-




2 Optimal regularity of solutions of obstacle problems

2.1 Model problems A, B, C and OT; — OT,

Definition 2.1. (Problem A, No-sign obstacle problem)
Let D be a open set in R”. Let a problem finding a function « in D such that

Au = you) in D, where Q(u) = D \ {u = |Vu| = 0}
be a Problem A. The free boundary in this case is I'(u) = 0Q(u) N D.

Definition 2.2. (Problem B, superconductivity problem)
Let D be a open set in R”. Let a problem finding a function « in D such that

Au = yqu 1In D, where Q(u) = {[Vu| > 0}
be a Problem B. The free boundary in this case is I'(«) = dQ(u) N D.

Definition 2.3. (Problem C, Two-phase membrane problem)
Let D be a open set in R". Let a problem finding a function u« in D such that

Au = /1+XQ+(M) - /l_)(gi(u) in D, where Qi(u) = {l/li > O}

be a Problem C, where 4. > 0. In this case Q(u) = Q,(u) U Q_(u) and the free boundary is
I'u) = 0Q(u) N D =T, (u) UT'_(u) where I'.(1) = 0Q..(u) N D.

Definition 2.4. (Obstacle-type problems, OT| — OT5,)
Let D be a open set in R". Let a problem finding u € L, (D) satisfies (OT}),

Au = f(x,u)xcuwin D, |[Vu|=0o0nD\ G(u),
where G(u) C Disopen and f : D X R — R satisfies (OT5),

|f(x7t)_f(y,t)|§M1|x_)7|, xayeD’teR7
f(x,8) = f(x,t) > —M,(s —t), x€ D, suchthat e R, s >t

for M, M, > 0, be a Problem OT; — OT,. The free boudary is 0G(u) N Dand/or the set of
discontinous points of f(x, u). It depends on the problem.

In the case of Problems A, B, G = Q(u), f(x,t) = 1, and in the case of Problem C, G =
D, f(x,1) = Aixa,w — A-Xa_u), so the condition [Vu| = 0 on D\ G is eliminated. For any cases,
we can assign 0 for M; and M, and then Problems A, B, C fit into Problem OT, — OT5,.

10



2.2 ACF monotonicity formula and generalizations
Theorem 2.1. Let u be a harmonic function in B, and

1 [ [VuP
Jru) = = ll lulzdx, 0<r<l,
r B, x|

then r — J(r, u) is monotone nondecreasing and |Vu(0)| < C(n)|[ull;2g,)-

Proof. u can be represented as a locally unformly convergent series u(x) = Y2, fi(x), where
fi(x) are homogeneous harmonic polynimial of degree k, fi(tx) = t*f(x), and ft, f; are orthog-
onal, when k£ # [. Then

1 r
100 = f f Vi(pO) P pdédp
0 0By

1 (7 =
== f f p ) IV flpd)dodp
~Jo JoB 1o

1 (7 -

=5 f f 27 IV AO)F dodp
r=Jo Jo i

_ Z ar D,
k=1

where a;, = (1/2k) J(:)Bl IVf«(@]*dd > 0. Thus r — J(r,u) is monotone nondecreasing. Let
r — 0+, then J(0+,u) < J(1/2,u). since u is C! near the orgin, for given € > 0, there exists
r > 0 such that |x| < r implies |[Vu(x)]> — |Vu(0)| < €. Let c(n) = (1/r%) for faB] pdbdp, then

[0 = cmIVuO)P|

1 " 1 r
== f f IVu(p6)pdbdp - — f f |Vu(0)|2pd0dp'
r=Jo Jop, r* Jo Jos,

1 T
<5 f f Va0 - 1Vu(O) |pdédp
r=Jo Jap
1 T
<= f f epdfdp = |Vu(0)|e
= Jo Jos
Therefore J(0+, u) = c(n)|Vu(0)|?, for c(n) > 0. Hence
1
c(m|Vu(O) < J(5w).

We will prove J(1/2,u) < C,,Ilulliz(Bl). Let V be a smooth extention of x>~ from By, to B such
that V(x) > 0 and V = 0 near 0B,. This implies VV = 0 on 0B, and let V = min(V, (1/6"2),

for a small 6 > 0. Since Au = 0, A((1/2)u?) = uAu + |Vul* = |Vul>.
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V 2 2 B 2 B
f '“&uéf@iWw:ifﬂbvwx
B12\Bs |x|n_ B 2 B 2
:—f“ vl . VVdx
B1\Bs 2

u? u?

= —f —(VV-v)dO'x+f —AVdx @)
H(BI\B{;) 2 BI\B(S 2
2

I/l2 u
=— —(VV - —x)do, + —AVdx
0Bs 2 Bi\Bi 2 2

] 2 2
= - udax + f u—Ade
OB;s 20m2 Bi\B1)2

I/t2
< f —AVdx.
Bi\B12 2

letting 6 — 0, we have J(1/2,u) < C (n)||u||i2 B1) Thus we have the desired inequality. O

Theorem 2.2. (Alt- Caffarelli-Friedman (ACF) monotonicity formula) Let u. be a pair of con-
tinuous functions such that

uy >0, Auy, >0, wu,-u_=0inbB,

then 2 2
1 \Y Vu_

I’I—)(D(i’):(l)(i’,bh’u—):J(”a”+)-](r’“—): | u+|2 | ulz

r* Jp, |- B X"

dx

is nondecreasing for 0 <r < 1.

Example. (Friedland-Hayman inequalty) Let C = {r@ : r > 0,6 € Xy}, whrere £, C dB,. Let
h be a homogeneous harmonic function in C such that A(r6) = r® f(0), @ > 0, and h(x) = O for
x € 0C.

~1, 1
B b,h+ —<NAh
r

Ah = 0,,h +

= r"*[(ala - 1) + (n = Da)f(O) + Agf(O)],

where Ay is the spherical Laplacian. Therefore 4 is harmonic in C if and only if —Ayf(6) = A1f(0)
in £y where A = a(n — 2 + @). If h > 0 in X, then A will be the principal eigenvalue, and we
denote @ = a(Z) and call it the characteristic harmonic function. Let 2. be open subsets on
By, A. be the principal eigenvalues of X, and f. be the corresponding eigenfunctions, u. be
homogeneous harmonic functions, such that

u, =r=f.(0), inCy.={rf:r>0,0 € X},

where o, = a(X,) > 0 are the characteristic constant of X,. Then u, is harmonic in C,. we
extend u. to R by zero in the complements of C., repectively. Then Au, > 0. (see Lemma

12



(2.11)). Thus u. satisfies the assumptions of the ACF formula. Let the pair (u, f, @, C) be either
(u+a f+’ a,, C+) or (u—’ f—a a_, C—)

1 1 (7
sow=5 [ oot = [ [ o iwueRdsdp
r=Jo Jopinc r=Jo Josinc

1 1
=3 f p*~dp - f IVf(@)Pd6 = —C(n, )Hr*".
r=Jo dBINC 2a
Thus

C(n, fi)rz(mﬂh_z), with C(n, fi) > 0.

O(ryuy,u) = J(ryu)J(r,u-) =
da,a_ da,a_

In this case, the ACF monotonicity formula is equivalent to a; + a_- —2 > 0.

Lemma 2.3. Let v € C(D) be a nonnegative subharmonic function in an open set D of R", then
v e Wo(D).

loc

Proof. Let v, be mollifications of v, such that v, < 0,Av, > 0. Let K € D, ¢ = dist(K,dD) and
let € C(D), such that = 1 on K, |V¢| < 2/5 on D, supp ¥ € D. Let ¢ = vy?, then we have

f Vv - Vodx = f WV + 2vp Vv, - Vipdx < 0.
D D

Consequently,

1
f W VvPdx < =2 f v Vve - Vigdx < 2 f Ve[ Vvl Vildx < f El/IZIVvE|2+2vz|V1ﬂ|2dx.
D D D D

Therefore

f Wi\VvPdx < 4 f VIV dx.
D D

42
f IVvPdx < — Vidx < +oo,
K g suppy

Letting € — 0+ gives

by the properties of . Thus the proof is complete. O

Example. (Reduction of ACF monotonicity formula to Friedland-Hayman inequality) Let u,(x) =
(1/)u(Ax), then

J(r/Ad,uy) = J(r,u), O u,u)=0r/A,u,,uy).

Let u be either u, or u_in By, fix r < 1, then u,(x) = (1/r)u(rx) for x € By, (1/r) > 1. Since

(D(l + h9 Uy, u—}’) - (D(l’ Uyp, u—r) q)(r(l + h)’ u,, I/l_) - (D(ra U, u—)
=r
h rh ’

13



we have ®'(1,u,,,u_,) = r®'(r,u,,u_). Therefore it suffice to show that ®’(1) > O for any pair
of function that satisfies the condition of ACF formula for Bz, R > 1.
Let u be either u, or u_ in Bg. Let

|Vuf?
: |x|n—2

I(r,u) =

1
ie. I(r,u) = r*J(r,u). Then ®(r,u,,u_) = Fl(r, u)I(r,u_).

O (s, ) = %m, u () + %m, u)I (1) — f—51<r, w1 1),

then
(D,(la Uy, M_) = I,(la M+)I(1, I/t_) + I(lv M+)I,(1, M_) - 41(1’ M+)I(1, M_).
Thus we need to show that
I'(Muy) I'(1ul)
+ >
I uy)  I(1,u)
Let u, be a mollification of u, such that Au, > 0,u, > 0.

A(u?/2) f u? 1 1 u?
< —dx = V="-v) - (Vv “V)=do,
Ll \B, |x|"=2 aB\B) 2 |x|"=2 |x|"=2 2

1 —2u?
= f (uVue V)= + z E(x v)do,
A(B1\B,) |x|"= 2.

-2
= u0,u, + 2d9 f (uo,u, +
j;Bl 2 2
= f u0,u, + 2d9 f (Ul ue + u )pd@
0B,

A2 -2
f (i /2 )dx = f U0 ue + n—uid@.
g X" 9B, 2

And using [Vu|* < A(u?/2), we obtain

Vu,? AW?/2
I(1,u,) = %dx < f (”e/z )dx = f u0,u, +
g, IxI"™ g, |xI"™” OB,

Letting € — 0+, I(1,u) < fz(uaru + (n — 2/2)u?)d6, where = = {u > 0} N B, and we know
that I(1,u) = [ |Vul*d6. Hence

I L@ru)? + |V9u|2d0
11, u) Lutir”

1
/ﬁ

-2
uz) do,

Letting p — 0, we have

-2
utdo.

2
u2d9
For the pricipal eigenvalue A = A(X) of the spherical Laplacian Agin X,
Voul?
L " P
fu
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1 1
. . . 2 2
By the Young’s inequality fz uo,u < E[a fz u-+ o fz(a,u) ], for @ > 0. Hence

I, L@ + Au?
ILw) ~ (/) [Ouw*+(@+n=2) [[u®

Let’s choose a such that 1/a = a +n — 2/A4, i.e. @« = a(X) is the characteristic constant of X.

Then a1
(1,u) > 2a,
I(1,u)

consequently,
r(u) I'(u)

+
I(Tuy)  I(1,u)
where X, = {u, > 0}NdB; and a. = a(X.). By the Friedland-Hayman inequality a,+a_—-2 > 0,
we have the desired inequality.

-4 > 2, +a_--2),

Theorem 2.4. (ACF estimate) Let u. be a pair of continuous functions such that
u, >0, Au.>0, wu,-u_=0inB,

then (D(r, M+, M—) S C(n)||u+||%2(B|)||M_||22(B1)’f0rO <r S 1/2'

Proof. Since Auy > 0, |Vu.> < A@w?/2),J(1/2,u) < C(n)llulliz(Bl), by the same argument at (4)
in Theorem [2.1] Since ®(r) is nondecreasing,

O 4, 102) < COu I I FOX O < 7 < 1/2.

O

Theorem 2.5. (Case of equality in ACF monotonicity formula) Let u. be as in above theorem
and suppose that ®(ry) = ©(r,) for some 0 < r; < ry < 1. Then either of the following holds:

(a) u, =0in B,, oru_=0inB,,

(b) There exists unit vector e and constants k. > 0 such that

u(x) =ki(x-e), u(x)=k(x-e)inB,.

Theorem 2.6. (Caffarelli-Jerison-Kenig (CJK) estimate) Let u,. be a pair of continuous func-
tions in By such that
uy >0, Auy,>-1, u,-u_=0inB,,

then
O, up,u) < C)A +J(Luy) +J(L,u))?, 0<r<l.

15



Theorem 2.7. (scaled version) Let u. be a pair of continuous functions in Bg such that

uy, >0, Auy,>-L, u,-u_=0inByg,

then
O, uy,u_) < C(n)(RPL* + J(R,uy) + J(R,u_))?, 0<r<R.

Theorem 2.8. Let u. be a pair of continuous functions in By such that

uy >0, Auy,>-1, wu,-u_=0inB,,

then

®(r’ I/l+,l/i_) < C(l’l)(l + ||u+||i2(31) + ”u—”IZJZ(Bl))z’ foro <rs 1/2

Proof. Since u, are nonnegative and Au. > —1 in By, |Vu.|*> < A®@?/2) + u.. Using this
inequality, we have J(1/2,u.) < C(n)(1 + ||u;_,||i2 ( Bl)), by the same argument at (#)) in Theorem
211

Consider u, as function in B, then
O, uyp,u) < C)(1/4 + J(1/2,u) + J(1/2,u))?, 0<r<1/2,

by the scaled CJK estimate. For r = 1/2,®(1/2,u,,u_) = J(1/2,u)J(1/2,u_) < (1/4 +
J(/2,u) + J(1/2,u2))>. O

Theorem 2.9. (scaled version) Let u. be a pair of continuous functions in Bg such that

u, >0, Au,>-L, u,-u_=0inByg,

then
2

||u+||L2(BR)
Rn+2

2

+ ||u_||L2(BR)

2
D(r,uy,u_) < C(n)(Rsz + ) , for0 <r<RJ/2.

Theorem 2.10. Let u. be a pair of continuous functions in B such that
u, >0, Au,>-1, wu,-u_=0inB,
and assume that u.(x) < Colx|® in By for some € > 0. Then for 0 < r; < r, <1, we have

O(ry) < (1 +15)D(r) + C 155,

where Cy = C(Cy, n, €). In particular, the limit ®(0,) exists.

2.3 Optimal regularity in OT, — OT),

Lemma 2.11. Let u € W'2(D) N C(D) such that u > 0 in open set D € R". If Au > —a in the

loc
sense of distribution on {u > 0} for some a > 0, then Au > —a in D.
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Proof. Lety. € C*(R)suchthat 0 < ¢y < 1,y > 0,¢(t) = 0fort < €/2,y(t) = 1 fort > €.

Let ¢ € C2(D),¢ > 0 and 17 = Y (u)@, then n > 0, € W,*(E), where E = {u > 0}. Thus

waVndeafn.
E E

fwe(u)Vu -Vodx < f ()Vu -V + w;(u)gbIVuIde = fVu -V (u)p)dx
E E

E
Saf%(u)qﬁdxﬁaf(pdx.
E E

fVu-Vqﬁdeafqbdx,
D D

since on {# = 0}, Vu = 0 a.e. We have Au > —a in the sense of distribution in D. O

Note that

Letting € — 0+ gives

Lemma 2.12. Let u € C'(D) satisfy OT, — OT», e be a unit vector, and D is bounded then

A@,u), > —Lin D,
where L = M, + M,||Vul| ).

Proof. Fix eandletv = d,u, E = {v > 0}. Since [Vu| = 0 on D\ G(u), E C G. We will show that
Av > —Lin the sense of distributions in E. Let n € C°(D),n > 0 such that supp(n(x)) C {v > 6}
for 6 > 0. Then supp(n(x — he)) C {v > 0} C G, for sufficiently small 4 > 0. For brevity, we
will use 7 to denote either n(x) or n(x — he). Then

—fVu-Vndx:ff)(Gndx:ffndx,
D D D

since Au = f(x,u)yc in D and supp(n) C G. Thus we obtain

- f Vv, - Vn(x)dx = % f[f(x + he, u(x + he)) — f(x, u(x))n(x)dx,
D D

he) —
where v, (x) = ulx + he) u(x). we know that u(x + he) > u(x) on supp(n) C {v > ¢} and by

h
OT,,

lfC,0) = f, 0l < Mylx—yl, x,yeD,teR,
f(x,8)— f(x,t) > —My(s —t), x € D,suchthat € R,s > t,

we obtain

f(x+ he,u(x + he)) — f(x,u(x)) = f(x + he, u(x + he)) — f(x + he, u(x))

+ f(x + he, u(x)) — f(x, u(x))
> —Mo(u(x + he) — u(x)) — M, h.
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Thus
- f Vv, - Vndx > — f (Mavy, + M) ndx.
D D

Letting & — 0 and then 6 — 0 we have

—va-Vndx > —f(Ml + Mv)ndx > —Lfndx,
D D D

forn € C(D),n > 0 with supp(n) € {v > 0}. This gives Av, > —L in the sense of distribution

on {v, > 0}. Apply Lemma2.11} we have Av, = A(d.u)* > —L in D. Since d,u = —0_.u, then
(0.u)- = (0_.u),. Thus we have the same inequality for (0,u)-. O

Theorem 2.13. Let u € L*(D) satisfy OT; — OT,, then u € C, (D) and
llullerixy < CM(L + Jlull=(D) + [If1lz=(D)),
for K € D,C = C(n,dist(K,dD)), M = max{1, My, M,}.

Proof. By the Calderon-Zygmund estimates, u € leo’f (D) with p > n. Thus u is twice dif-
ferentiable at Lebesque point of D?*u. Therefore u is twice differntiable a.e. By the Sobolev
embedding W.” — C}%, u € C"(D). Define

loc
v(x) = dou(x),

where
_ | arbitrary  if Vu(xo) =0
| e L Vu(xo) if Vu(xo) # 0.

With out loss of generality, we assume xy, = 0. we will show that there is a uniform estimate for
0x,.u(0) = 9,,v(0), for 1 < j < n. We may assume v(0) = 0, v is diferentiable at 0, then we have

v(ix) =C-x+o(x]), <= Vv).

If £ = 0, we have d,,v(0) = 0 for 1 < j < n. Thus we have done.
If £ # 0, let the cone C = {x € R : - x > |{||x]/2}, then for sufficiently small r > 0,

CnB,.c{v>0}, -CnB,c{v<0l}.

Let v.(x) = v(rx)/r,x € By and let v(x) = { - x + h(x) where lim,_o(h(x)/|x]) = O, then

v(rx) Crext h(rx)

v(x) = —{-xasr—0,

r

1.e. v,(x) = vo(x) := ¢ - x uniformly as » — O in B;.
1
f Vv, (x) = {IPdx = — f [Vv(x) — Vv(0)[Pdx — 0, asr — 0,
By rm Js,

since xo = 0 is a Lebesgue point for Vv. i.e. we have |[Vv, — {1,y = VvV, = Vvollrs,) — 0, as
r — 0 with p > n. We may assume that p > 2(n — 1). Then

(n=2)/(n-1)

2 -2 1/(n-1) -1
[1Vv, = Vvol /x|y < M99 = Fvoll e (117

(B — L20=D(By)

— 0, asr — 0.
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Therefore we obtain ) )
Vv, \Y
tim [ g = f vl o,
B "~

=0 Jp, Ix*?

and the same equality holds for C N B; and —C N B;. Thus we have

\Y 2 \Y 2
C(I’l)2|§|4 — f | VO]E'_xz)l dxf | V()’f;x2)| dx
cng, 1Al —cng, 1A

Vv, (x)? Vv, (x)?
:limf | V(iC2)| dxf %dx
=0 Jens, |x[ —-CNB; | x|

2 2
1 IVv@F . f IVv@F .
-CNB,

=0 1* Jonp, X" |x|"—2

S li_mq)(ra Vi, V_),
r—0
where C(n) = |CNBy|-|-CnN By >0.
Let 6 = (1/2)dist(K,0D) and K5 = {x : dist(x,K) < ¢6}. By Lemma , Av, > —Ls in Kj,

where Ls = M(1 + ||Vull~;)) and M = max{1, M;, M,}. Apply T.h[2.9], we have

2 2
V4l + 0122 )z

C(n)2|§|4 < lim @(r, vy, v-) < C(n)(L(ZS(SZ + o2

r—0

2
IVl \2

< co(Lie* + — 5" < cm oL,

Thus we have |{| < C(n, 9)Ls.
By the Calderon-Zygmund estimates and the Sobolev embedding W2 < C4 we have

loc loc?

IVullzo sy < letllcreiyy < Nullwriyy < C@)(lullz=my + I fllz=m))- Hence we have
Ls = M(1 + ||Vul|~k;) < C(n.0)N,
where N = M(1 + ||lullz=p) + || fllz=p))- Since £ = V. u(xo),
[V, u(xy)| < C(n,o)N. (5)

since
_ | arbitrary  if Vu(xo) =0
| e L Vu(xo) if Vu(xo) # 0,

(5) gives the desered estimate on |D?u| where Vu(xo) = 0. If Vu(xy) # 0 and e, be a unit
vector such that e || Vu(xy), then choose the coordinate system which contains e,. Apply (3) for
e=ey,..,e,_1, We have

|0y, u(x0)| < C(n,0)N,i € {1,...,n—1}, je€{l,..,n}.
Since Au(xg) = f(x0, U(X0) WX Guixo) = S (X0, u(x0)),

10, x, u(x0)| < |Au(xo)| + 0y, u(x0)| + ... + 0y, u(x0)|
< fllz=py + C(n,6)N < C(n,5)N.

and the proof is complete. m|

19



3 Preliminary analysis of the free boundary

3.1 Nondegeneracy

Lemma 3.1. Let Au = 1 in the ball Bg. Then

2
supu > u(0) + —, 0<r<R. ©6)
0B, 2n

Proof. Let w(x) = u(x) — |x[*/2n,x € By then Aw = 0. By the maximum principle w(0) <
supyp W = (sup,g u) — r*/2n. Thus we have the inequality. m|

Lemma 3.2. (Nondegeneracy: Problem A). Let u be a soultion of Problem A in D. If B,(xy) €

D, then
2

r —_—
sup u > u(xg) + —, for xo € Qu).
0B, (x0) 8n

Proof. Note that

sup u = sup u, (7)
B(x0) 0B (x0)

since Au > 0 and the maximum principle.
Let xy € Q(u) and u(xy) > 0,
|x = xol?
2n
Then Aw = 0 in B,(xp) N Q(u). By the maximum principle and w(xy) = 0,

w(x) = u(x) — u(xp) —

sup w=>0.
A(B(x0)NQ)
Since u = 0 on 9Q(u) € Q(u), we know that w(x) = —u(xy) — |x — x0|*/2n < 0 on dQ(u). Thus

we have )

-
sup w >0, thatmeans sup u > u(xp) + — > 0.
9B, (x0)N Q) 9B, (x0)N Q) 2n

Therefore supyp (.., % = SUPyp (xpnaw ¥ = U(Xo) + r?/2n. we have the desired inequality in this
case.
Let xo € Q(u) and u(xp) < 0. If there exists x; € B,2(xo) such that u(x;) > 0, then

2 2
12 s u) + =,
8n

sup u > sup u > u(xy) +
B, (x0) B, /2(x1)
by the above case, and we have the inequality. Let # < 0 in B,2(xp). By the strong maximum
principle for subharmonic function u,u = 0 in B,/»(xp) or u < 0 in B, /»(xp). Since xy € Q(u),
u < 0in B,5(xo). Then B,/5(xo) C Q(u). This implies Au = 1 in B,/>(xo). By Lemma[3.1],
2
sup u > sup u > u(xp) + —.
Bixo)  Bi/2(x) 8n
Let xo € Q(u), {x;} € Q(u) such that x; — xg as i — . Passing to the limit in the inequality
for x; gives the desired inequality. O
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Lemma 3.3. (Nondegeneracy: Problem B). Let u be a solution of Problem B in D. If B,(xy) €

D, then
2

sup u > u(xp) + r—, for xg € W
0B, (x0) 2n

Proof. 1t is enough to show the inequality for x, € Q(u) = {|Vu| > 0}, by the continuity of u.
Let w(x) = u(x) — u(xo) — |x — xo|*>/2n. We will show that

sup w = sup w.

B, (x0) 0B,(x0)
Suppose there exists y € B.(xo) such that y = supg ., w, then [Vw(y)| = 0. It is equivalent
to |Vu(y)| = |y — xol/n. Since [Vu(xg)| > 0, y # xo. Thus [Vu(y)| > 0, therefore y € Q(u).
Since Aw = 0 in Q(u), the strong maximum principle for w implies w is constant in some
neighborhood of y. Hence the set of maxima is relatively open and closed in B,(xj). Thus w is
constant in B,(xy). Therefore we have

sup w = sup w.
B:(x0) 0B, (x9)
and this implies
2
;
0=w(xg) < sup w= sup u— — — u(xp).
B,(x0) B,(x0) n
O

Lemma 3.4. (Nondegeneracy: Problem C). Let u is a solution of Problem C in D. If B,(xy) € D,

then
2

r —_—
sup u > u(xp) + A, —, for xo € Q,(u),
9B,(x0) 2n

2
inf u < u(xg) — /l_r—, for xg € Q_(u).

9B;(x0) 2n
Proof. The inequalities are obtained using
lx = xol?
2n

and the similar argument in first part of Lemma 3. . we will prove the infimum case, only. Let
X0 € Q_(u), i.e. u(xy) < 0. Let

w(x) = u(x) — u(xo) ¥ A

|x — xol?
2n
Then Aw = 0 in B,(x9) N Q_(u). By the maximum principle and w(xy) = 0,

w(x) = u(x) — u(xg) + A

mf w<O0.
(B (x0)NQ)

We know that w(x) = —u(xy) + A_|x — xo[>/2n > 0 on 0Q_(u). Thus we have

2
. . r
inf  w <0, that means inf  u<u(x)—A-— <0.
OB, (x0)NQ- (1) 0B, (x0)NQ- (1) 2n

Since u > 0 in Q_(u), infsp,(xy)n0_w) U = infyp v, 4, we have the inequality. m]
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Corollary 3.5. Under the conditions of either Lemmas[3.2],[3.3|, or[3.4} the following inequality
holds:
sup |Vu| > Cr,

By(xo)

for C > 0,C = C(n) in Problems A, B and C = C(n, A.) in Problem C.

Proof. O

3.2 Lebesgue and Hausdoff measures of the free boundary

Definition 3.1. A measurable set E C R” is porous with porosity constant 0 < ¢ < 1 if every
ball B = B,(x) contains a smaller ball B’ = B, such that

Bsry) € B(x) \ E.

E is locally porous in an open set D if E N K is porous ( with possibly different porosity
constants) for K € D.

Proposition 3.6. If E C R" is porous then |E| = 0. If E is locally porous in D, then |E N D| = 0.

Proof. Let E be a porous subset in R. We know that

S XEDY B.(x) NE
Ye(x) = lim fB”— ~lim BAONEL iR

= l1im
0 |B,»(X)| r—=0 |Br(x)|

That means the metric densty, lim,_, |B,(x) N E|/|B,(x)| = 1 a.e. on E. On the other hand, for
Xo € E, |B,(XO)| = |Br()€0) N El + |B,(X0) N Ecl, r' > |Br(X0) N El + 6"r". Thus

o |E N Br(xo)l

| <1-¢0"<1.
0 |B,]
Hece |E| = 0.
Let E be a locally porous subset in D, Then we have |E N K| = 0, for any K € D. Since E is
a coutable union of compact subset of E, |E N D| = 0. O

Lemma 3.7. Let E be a bounded measurable set in R. If for every ball B = B,(x) centered at
x € E there exists a ball B" = Bs,(y) such that B" C B\ E, then E is C(n)d porous.

Lemma 3.8. Let u be a solution of Problem A or B in an open set D C R". Then I'(u) is locally
porous in D. Let u be a solution of Problem C, then T°(u) = T'(u) N {|Vu| = 0} is locally porous.

Proof. Case 1) Problem A, B.
Let K € D, xy € I'(u) and B,(xy) C K, then by Corollary there exists y € B,»(xp) such that
|Vu(y)| > (C/2)r. Thus we have

C C
inf |V 2(——M6) >,
B?)(y)' u 2 d 4r
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where § = C/4M, M = ||D*ul|;= ) < oo. Thus
Bér(.)/) - Br(xO) N Q(u) - Br \ F,

where & = min{s, 1/2)}. By Lemma , I'(u) 1s locally porous.
Case2) Problem C.
Note that Q(u) = Q.(u). Let K € D,xy € I'w)? and B.(xy) c K. Lety € B,/»(x0) such that
infg.) [Vul > %r, as in case 1. If we show that Bj,.(y) € Q(u) U I'*(u), where 5 = min{6,1/2)},
then
B;,(y) C B,(x0) N [Q(u) UT*(w)] € B,(x0) \ T(u),

and we have the local porosity of I'’. Suppose Bj,(y) € Q(u) UT™(u), then there exists z € Bj,(y)
such that z € [Q(u)Ul™*(u)]¢. Since z € B;,(y), z € (I°(w))°. Thus z € [Qu)UT'(u)]¢ = [Q(u)NDI .
We may assume that z € D. Thus z € Q(u)c N D. Since Q(u)c N D is open subset of {u = 0}, we
have Vu(z) = 0. It is a contradiction. O

Corollary 3.9. Let u be a solution of Problem A,B or C in D. Then I'(u) has a Lebesgue
measure zero.

Proof. In case of Problems A, B, It is a consequnce of Proposition [3.6|and Lemma 3.8 In case
of Problem C, we know |[I'°| = 0. Since I'*(u) is locally a C'® surface, [I*| = 0. O

Lemma 3.10. Let u be a solution of Problem A, B, or C in D and xy € I'(u). Then

1B,(x0) 0 QG|
Bl

if B,(xo) C D, where B = B(||D*ul|;~, n) in case of A, B and B = 5(||D?ul|;~, n, A.) in case of C.
Proof. In case of A, B, by the porosity and the argument in proof of Lemma (3.6, we have

1B, (x0) N Q)| _ (r6)"

> =",
|B:| "

and & depends only on ||D?u||;~ and n. In case of C,

|B,(x0) N Q(u)] S |B,(x0) N [Q(u) U T ()] .
|B, | - |B, | -
since [[*(u)| = 0. and this case 6 = 8(||D%ul|z~, n, 1.). 0

Lemma 3.11. Ifu is a C"! solution of Problem A, B or C in a bounded open set D C R", then
I'(u) is a set of finite (n-1)-dimensional Hausdorff measure locally in D.

Proof. Let
vi=0u, i€fl,...n}, E.={Vul<e}nNQu).

Since

(A = O wi)? < Cm) Yk < Con) Yty = Cw) Y- Vil
i=1 i=1 i=1

i,j=1
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we have .
Co < (Au? < C(m) Y W in Q,
i=1
where Cy = 1 in the case of Problems A, B and C = min{/li, A2} in the case of Problem C. Let
K € D, then

n

ColKNE]< C(n)f Z IVv;[2dx < C(n) Zf IVv;|2dx. ()
i=1 Y KN

KNE: 9 |vil<e}NQ(u)

In Lemma 2.12| we can take M; = M, = 0 for solutions of Problems A, B and C. Hence we
have

vaii -Vndx <0, forie{l,..,n},
D

forn € Wé’z(D), n > 0. since Let ¢ € C°(D),¢ = 1 on K and

0, t<0
Yt) =4 €'t, 0<t<e
1 t>0,

then 1 := Y (vis)@ is in WS’Z(D). Thus we have

f Wis - V(W e(vie)p)dx = f € ' BIVviPdx + f YeWir) Vv - Vodx
D {0<v;r <€} D

<0.

Therefore

e f |Vviel"dx < — f Ye(viz)Vvis - Védx < f [Vvie|[Vldx.
KN{O<v;iL<e}NQ(u) D D

Hence we have

= f Vv |Pdx < f IVvi|IVpldx < C(n)M
Kn{0<|v;|<e}nQ(u) D

where M = ||D?ul|1~p). Combining (8), (9 gives

IVldx, 9)

S

ColKNE| <CeM, (10)

where C = C(n, K, D), since ¢ depends on K, D.

By the Besicovich covering lemma, I' N K has a covering {B'};; which is finite family of closed

balls of radius € centered on I' N K the number of overlaped balls no more than N(n), and it

does not depend on €. Take € by B' C K’ where K’ is a compact set such that K € Int(K’) € D.
Case 1) Problems A and B.
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We know that |Vu| < Me in each B’ and it implies that B' N Q C Ej,.. By Lemma ,and
(T0), we have

| , 1 : N CNM?
DUBTI< 2 D BN <2 > 1B N Eyd < ZIK' 0 Eyl < €
icl B icl B icl B CoB

Therefore we obtain

Z diam(B)"™" < C(n, M, K’, D)
i€l

and letting € — 0 gives
H"'\Tw)NnK) < Cn,M,K',D).

Case 2) Ploblem C.
The estimation for I'’(x) is obtained by the same proof as above. Thus it suffice to obtain the
estimation for H"~'(I"*(u)).
Let v = du,n7 € Wy*(D), and 7 = 0 a.e. on T°(u), then

f VvV = f Aud.n = f (DX us0) — AX(u<0)0ell = Ay f Oen — A f d.n
D D D {u>0} {u<0}

=, f (e (—w)ndH"™" — A_ f (e - wyndH"™!
Nu>0}NT* () Nu<0}NI™ (u)

= (-4 - 1) (e~ wndH"™", (11)
I ()

where w = (Vu(x))/(|Vu(x)|). Take n = ¥.(v)¢ where ¥ .(v), ¢ are defined above, then n €
WOI’Z(D) and n = 0 on I'°(). Since ¢, # 0 implies v = d,u > 0, e - w > 0 and by using (T1), we
have

! f IVvPPdx + (A, + A) (e - VY .(v)dH"™
Kn{0<|v|<e}

*WnK

<e! f GIVvPdx + (A +A2) | (e vipe(v)gpdH"!
{0<|v|<€}

I (u)

< f e 'g|VvPPdx - f Vv - V(i (v)p)dx
{O<|v|<e} D

:fwe(v)Vv-V(pdxsC(n)Mf|V¢|dX-
D D

Therefore we have

(A + 1) (e - VY (VdH"™ < CM.
T*w)nK
Letting € — 0 gives
Ay + A) (e-v),dH" ' < CM,
I (uw)NK
for any normal vector e. For fixed x € I'"(u) N K, there exists e € {+xey, ..., xe,} such that

e -v > 1/+/n. This gives
CM

H'T*w) N K) < .
(I (u) )‘A++/l_
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3.3 Classes of solutions, rescalings, and blowups

Definition 3.2. (Local solutions). Let Pg(xy, M) be the class of C!! solutions u of Problems
A, B, or C in Bg(x°) such that
||D2u||L°°(BR(x0)) < Ma

where xq € I'(«) in Problems A, B and x, € I'’(u) in Problem C for given R, M > 0.

Definition 3.3. (Global solutions). Let P.(xo, M) be the class of C"! solutions u of Problems
A, B, or C in R" such that
1D ullpo@ny < M,

where xq € I'(«) in Problems A, B and x, € I'’(u) in Problem C for given M > 0.

We Denote Pr(M), Po.(M) by Pr(0, M), P.,(0, M), respectively.
Let u € Pg(x9, M) and A > 0 and the rescaling of u at xj

u(xy + Ax) — u(xp)
2

uA(x) = Uy a(x) = , X € Bgy,

then by simple computatuion we know that u,; € Pg/(M).
For u € Pg(M) for any A > 0 the rescaling u, satisfy |[D*u,;(x)| < M in Bg/,. Hence we obtain

[V (o) < Mlx|, |uy(x)| < %Mlxlx, for x € Bg,.
Therefore there exists a sequence A4 = A4; — 0 such that
Uy — upin C;(;S(R”) forany0 < a <1,
where uy € Cp;L(R™).

Proposition 3.12. (Limit of solutions). Let {u A be a sequence of solutions of Problems A, B
or C in an open set D, such that

. 1,
uj — ug in C; (D),

for some 0 < a < 1. Then we have the followings:
(a) For xy € D, we have the implications
up(xo) >0=>u; >0 up(xo) >0=u; >0 [Vuy(xo) >0 = [|Vu;| >0

on Bs(xy), j > Jjo, for some 6 > 0 and suficiently large j.

(b) For Bs(xy) C D, we have
[Vuo| = 0 on Bs(xo) = |Vu;| = 0 on Bs;2(xo),

J = Jjo, for sufficiently large j.

(¢c) ug is a solution of the same Problem A, B or C, as uj, j = 1,2,....
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(d) For some ji, — oo, and xj — xo € D, x;j, € I'(u;,) implies xy € I'(up).
(e) uj — ugpin leo’f(D)forany 1 <p<oo.

Proof. (a) u; — up in C}O’Z(D) implies the implications.
(b) Suppose it is not, then there exists jz — o0,y € Bs/(xp) such that [Vu; (yo)| > 0 and
|VL£0| =0in Bé(xo). By Corollary 3. , at Vi and B5/4(yk) C B(3§/4)(X0), we have

sup |Vu;| > Cé.

Bssja(xo)

By the C'* convergence, passing to the limit gives

sup |Vuy| > Co.
B35/4(x0)

This is a contradiction to the fact that |Vuy| = 0 on Bs(xg).

(c) With out loss of generality, we may assume that {u;} is uniformly bounded in W*7(K), 1 <
p < oo forany K € D and hence u € leof (D). therefore it is enought to show that the equation
for uyg is satisfied a.e. in D.

Case 1) Problems A, B.
Since Vuy = 0 on Quy), Auy = 0 a.e. on Q(up). Let xo € Q(uy), then by (a) we have that
Bs(xo) C Q(u;) for some 6 > 0 and j > jy. Therefore

Auj; = 11in Bs(xo), j = jo,

and this implies
Aug = 1 in Q(uy).

Thus we obtain
Vl/l() = X Q(up) a.e.in D.

Case 2) Problem C.
Since |I*(up)| = 0, the same argument give the desired equation.

(d) Let xj, € I'(u;,) € Q°u;,), then we obtain xo € Q°(ug), by (a). Therefore If we assume
xo ¢ I'(up), then there exists a ball Bs(xy) € Q°(up). For any Problems A, B, or C, in this ball,
|Vuo| = 0. Thus we have Bsj»(xj,) C Q°(u;,), by (b), and this is a contradiction to the fact that
X, € I'(uy,).

(e) Since D*u; are uniformly bounded on any K € D, It suffice to show that

Dzuj - D2u0 a.e.in D,
to prove (e). Fix a point x( in Q(u). For some ¢ > 0, jj, we have

Auj =1in B(s(xO), ] 2 jOa Al/l() =1lin B(S(XO)-
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Thus these functions are in C*(Bs(xp)) and we have the pointwise convergence for x,. Let
X0 € Int(Q(up)°). By (b), we know that there exists 6 > 0, jy such that

[Vuo| = 0 on Bs(xp) on,  |[Vu;| = 0 on Bso(xp), j= jo

It also give the regularity and we have the convergence of second derivative at xy. Since the free
boundary has a Lebesque measure zero, we have a.e. second dervative convergence. O

28



4 Obstacle problem for nonlinear second-order parabolic op-
erator

4.1 Viscosity solution of parabolic equations

We deal with the space R""!, denote the points in R™! by (x, f) where x = (x1, X3, ..., x,,) is the
n-dimentional space variable and ¢ is the time variable.
The parabolic distance from Py = (x1,1,) to P, = (x3, 1) is defined by

— P+t - 62 t < b,
d(P1,P2)={ (Ix1 = x2|” + 161 = 12]) 1 <h
O

t > b,
For a point (x, )) € R"*!, the e-neighborhood of (xy, ty) is the set

{(X, t) : d((-x’ t)’ (X(), tO)) < E}-

This e-neighborhoods give a topology in R"” and we call it the parabolic topology.

Let Q be a domain in R**!, i.e. a open set in the parabolic topology. The boundary of a domain
Q under the parabolic topology is called the parabolic boundary and denoted by 9,Q. Let
0, = {lx| < r} x (=r%,0], Q.(x,t) := O, + (x,1). these are typical open set in the parabolic
topology.

Definition 4.1. F(M, P, v, x, t) is uniformly elliptic if there are 4, A > 0 such that
AN| < F(M + N,P,v,x,t) — F(M, P,v, x,t) < A|N|
holds for arbitrary postive definite matrix N.
Lemma 4.1. the following are equivalent:
1. F is uniformly elliptic.
2. FIM + N) < F(M) + AIN*| = A|N~|, for any M, N.
Definition 4.2. a function u has interior minimum in a neighborhood Q, if we have

min u < min u.
Q 8,0

Definition 4.3. We say u is a supersolution of u, — F(D*u(x), Du(x), u(x), x, t) = 0 if
u, — F(D*y, DY, r, xo,1) > 0
whenever ¢ is C? and u < y for some neighborhood of (xg, #y), and u(xo, fy) = Y(xo, to).

The notions of subsolutions and solutions are then obvious.
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4.2 The existence and the continuity theory

Definition 4.4. Let u € LSC (ﬁ X [0.T)) be a supersolution of the following obstacle ploblem
on Q x [0.T) if

(E) u,— F(D*u,x) >0, inQx(0,7T)=0r,

(O) u(x,t) > ¢(x,1) in Qx(0,7), 12
(BC) u(x,t)=0 forxedQand0 <t <T, (12)
(IC)  u(x,0) > g(x) for x € Q,

where Q C R"isopenand T > 0, g € C(ﬁ) and ¢ € C*(Qr) are given and F(M, x) in (E) is a
uniformly ellipic operator and F(0, x) = 0.

The notions of subsolutions and solutions are thg)bvious. Let Q) = {(x,0) | u(x,t) >
¢(x, 0, Aw) = {(x,0) [u(x,1) = ¢(x,0)}, () = dQu) N IAw) N Or, Q(u) = {x[(x,1) €
Q)}, Au) ={x|(x,1) € Aw)}, and I'(u) = {x | (x, 1) € T(w)}.

Theorem 4.2. There exists a lower semicontinuous viscosity supersoltion u which satiesfies
(12) and u satisfies u, — F(D?u, x) = 0 in Q(u).

Theorem 4.3. (Weak Harnack Inequality) Let u be a non-negative and u, — F(D*u,x) > 0 in

O>,. Then
1/p
(J[ u”) < C(infu),
_ ot

where Q* = Q, and Q™ = Q, + (0, =2r?).

Theorem 4.4. (Harnack Inequality) Let u be a non-negative and u, — F(D*u,x) = 0 in Q,,.
Then

supu < C(inf u) ,
0 or
where Q" = Q, and Q™ = Q, + (0, =2r%).

Definition 4.5. We say u satisfy the subquadratic free boundary condition at (xy, ty) € I'(u) if
for given M > 0,

T:(u) N {x | M(xp — x)* < to — t} # 0, where ¢ < £, and
L) N {x | (5/4)M(xo — x)* < t —to} # 0, where t > t.
The constant 5/4 is just a technical number to prove the following theorem.

Lemma 4.5. Let u be as in Theoremd.2] Q,(y, s) C Qr. If the condition satisfied by u in Q,(y, s)
uniformly with constant M > 0, u is continuous on Q,»(y, ).
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Proof. The only possible problem is on I'(u) N Q,/2(y, ). Assume u is discontinuous at some
point (xg, o) on I'(u) N Q,/2(y, s). There exists a sequence (X, #x) in Q(u) converging to (xo, t)
such that u(xy, #;) converges to u (possibly co) with 4 > lim infx_w),t_)t(; u+0o > u(xg,ty + 0,
for sufficently small 6 > 0. Without loss of generality, we may assume liminf,_,y ., u >
u(xp, tp) = 0.

1. M = 16/5 and (27/40)(xy — x;)*> > ty — t;. and 0o, (xy, 1) C Q(u) where ry = |xo — x|/4,
f, =t +2r;.
Let £ = xo + 3/2)r(x; — x0)/|xx — xol and = 1, — (4/5)r,f. Since u is upersemicontinuous
and u(xg,ty)) = 0, for any 6 > 0, there is a neighborhood of (xy, #p), with u(x,#) > —¢6. The
neighborhood is as large as it contains Qs (xt, ;) and Quy, (%, fy) for large k. For (x,) in our
neighborhood, u(x, ) + 6 > 0 and u(x, #;) + 6 > u > 0 for large k. By the Harnack inequality,
u(x,t) +6 2 Cuin Q,, (x, 1).
Choose small 6 > 0 such that u(x,?) > Cu -6 > (C/2)u in Q,, (x, ). Let (y, si) € T'(w) N
02, (&, ). Now by the weak Harnack inequality,

JC (u +0)*
Q2 (Buty)

JC (u +0)*
Q2 RN O (X1

> Cu+ Co.

l/p
u(yr, sg) +6 2 C

1/p
>C

Since ¢ is arbitrary, u(yy, sy) > Cu > 0. Since (y, sx) converge to (xo, fy), we have a contradic-
tion.

2.M =16/5 and (27/40)(xy — x3)*> > to — 1.
Choose r; as large as possible such that Qs (xi,7) 18 in Q(u). We may assume that r; <
|xo — xx|/4, since the other case is 1. The same argume in 1 and the subquadratic free boundary
condition for future time implies a contradiction.

3.M = 16/5 and N(xo—x;)* > ty—t; for N < (27/40) and 4.M is arbitrary and N(xy — x;)* >
to — 1, for some N > 0.
Some general version of weak Harnack and Harnack inequarity for another open set may oper-
ate the machiney.

4.M is arbitrary.
O

Corollary 4.6. (a generalization of Evans theorem) Let u be as in Theorem If for any

0.(y, s) C Qr, u satisfies the subquadratic free boundary condition with unform constant M =
M(Q,(y, s)) > 0, then u is continuous in (0, T) X Q.
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