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Abstract

This paper is a paper which is written based on the contents of [1] and introduction of obsta-
cle problem for nonlinear second-order parabolic operator. In chapter 1, we introduce classical
obstacle problem and we deal with existence, uniqueness and C1,1 regularity of solution of the
problem. In chapter 2, we show C1,1 regularity of solution of Obstacle-type problem. In chap-
ter 3, we prove some elementary properties of free boundary. In chapter 4, We reference [2]
to show the continuity of solution of obstacle problem for nonlinear second-order parabolic
operator.
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1 The classical obstacle problem

1.1 The obstacle problems

It is well-known fact that the solution of the boundary value problem

∆u = 0 in D, u = g on ∂D,

can be found as the minimizer of the functional

J0(u) =

∫
D
|∇u|2dx,

for all u such that u = g on ∂D. It is the Dirichlet principle and the functional is the Dirichlet
functional. More generally, for a bounded open set D in Rn, g ∈ W1,2(D) and f ∈ L∞(D), the
minimizer of

J(u) =

∫
D

(|∇u|2 + 2 f u)dx

over the set
Kg = {u ∈ W1,2(D) : u − g ∈ W1,2

0 (D)}

solves the equation
−∆u + f = 0 in D, u = g on ∂D,

in the sense of distributions, i.e. ∫
D

(∇u∇η + fη)dx = 0,

for all η ∈ C∞c (D).
Now, let a function ψ ∈ C2(D), obstacle, satisfying ψ ≤ g on ∂D, (ψ − g)+ ∈ W1,2

0 (D) be
given. Consider the minimizing problem of the functional J(·), over the set

Kg,ψ = {u ∈ W1,2(D) : u − g ∈ W1,2
0 (D), u ≥ ψ a.e. in D}

The set
Λ = {u = ψ},

is the coincisence set and Ω = D \ Λ. The boundary

Γ = ∂Λ ∩ D = ∂Ω ∩ D

is the free boundary, since it is unknown before. In this rest of the section we will show that the
minimizer u of J(·) satisfy

∆u = f in Ω, ∆u = ∆ψ a.e on Λ. (1)

It is the classical obstacle problem.
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Theorem 1.1. Let D be a bounded open subset in Rn, g ∈ W1,2(D) and f ∈ L∞(D), ψ ∈
C2(D), ψ ≤ g on ∂D, (ψ − g)+ ∈ W1,2

0 (D), J(u) =
∫

D
(|∇u|2 + 2 f u)dx over the set Kg,ψ = {u ∈

W1,2(D) : u − g ∈ W1,2
0 (D), u ≥ ψ a.e. in D}. Let

J1(v) =

∫
D

(|∇v|2 + 2 f1v)dx

be a functional over the set

Kg1,0 = {u ∈ W1,2(D) : u − g1 ∈ W1,2
0 (D), u ≥ 0 a.e. in D},

where f1 = f − ∆ψ, g1 = g − ψ. Then u is the minimizer of J if and only if v is the minimizer of
J1 where v = u − ψ.

Proof. For u ∈ Kg,ψ, v = u − ψ ∈ Kg1,0, and for v ∈ Kg1,0, v + ψ ∈ Kg,ψ.

J1(v) =

∫
D
|∇u − ∇ψ|2 + 2( f − ∆ψ)(u − ψ)dx

=

∫
D
|∇u|2 − 2∇u · ∇ψ + |∇ψ|2 + 2( f u − fψ − u∆ψ + (∆ψ)ψ)dx

= J(u) +

∫
D
−2∇u · ∇ψ − 2u∆ψ + |∇ψ|2 − 2 fψ + 2(∆ψ)ψdx

= J(u) − 2
∫

D
(∇u − ∇g) · ∇ψ + (u − g)∆ψdx + C

= J(u) + C,

where constant C =
∫

D
−2∇g · ∇ψ − 2g∆ψ + |∇ψ|2 − 2 fψ + 2(∇ψ)ψdx. u − g = 0 on ∂D. The

last equation holds, by the integration by part. �

If we show
∆v = f1 a.e. in {v > 0}, ∆v = 0 a.e on {v = 0},

(1) is obtained, consequently. We have reduced the problem to the case of zero obstacle. Thus
we cover the case of zero obstacle, only, in the rest of this section.

Theorem 1.2. Let D be a bounded open subset in Rn, g ∈ W1,2(D) and f ∈ L∞(D), 0 ≤
g on ∂D, (−g)+ ∈ W1,2

0 (D). Let J̃(u) =
∫

D
(|∇u|2 + 2 f u+)dx over the set Kg = {u ∈ W1,2(D) :

u − g ∈ W1,2
0 (D)}. Then u is the minimizer of J over Kg,0 if and only if u is the minimizer of J̃

over Kg.

Proof. For u ∈ Kg, u+ ∈ Kg,0, and we know that

∇u+ =

{
∇u a.e. on {u > 0}
0 a.e. on {u ≤ 0}.

Thus we have

J̃(u+) =

∫
D

(|∇u+|
2 + 2 f u+)dx ≤

∫
D

(|∇u|2 + 2 f u+)dx = J̃(u).
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On the other hand,

J̃(u+) = J̃(u)⇔
∫

D
|∇u|dx =

∫
D
|∇u+|dx⇔ ∇u− = 0 a.e in D.

Thus u− is locally constant and since u− ∈ W1,2
0 (D), we have u− = 0. Therefore

J̃(u+) = J̃(u) for any u ∈ Kg if and only if u = u+.

Then if u ∈ Kg is the minimizer of J̃(·), then J̃(u) ≤ J̃(u+). Thus J̃(u) = J̃(u+).By the uniqueness
of the minimizer u = u+. Hence u ∈ Kg,0. That means J̃(·) has it minimum on Kg,0. Since
J̃(·) = J(·) on Kg,0, the sets of minimizers of J(·) and J̃(·) are coincide. �

Theorem 1.3. Let D be a bounded open subset in Rn, g ∈ W1,2(D) and f ∈ L∞(D), 0 ≤
g on ∂D, (−g)+ ∈ W1,2

0 (D). Let 0 < ε < 1, χε(s) be a C∞ function on R such that

χε(s) = 0 for s ≤ −ε, χε(s) = 1 for s ≥ ε, χ′ε ≥ 0.

Let

Φε(s) =

∫ s

−∞

χε(t)dt, Jε(u) =

∫
D

(|∇u|2 + 2 f (x)Φε(u(x)))dx

over Kg and uε is the minimizer of Jε . Then∫
D

(∇uε∇η + fχε(uε)η)dx = 0,

for η ∈ W1,2
0 (D).

Proof. Let η ∈ W1,2
0 (Ω) and t ∈ R. Then uε + tη ∈ Kg. Set h(t) = Jε(uε + tη). Since uε is the

minimizer and uε + tη ∈ Kg,0, h(t) ≥ h(0) = J(uε). Thus h′(0) = 0.

h(t) =Jε(uε + tη) =

∫
D
|∇(uε + tη)|2 + 2 f (x)Φε(uε(x) + tη(x))dx

=

∫
D
|∇uε |2dx + 2t

∫
D
∇uε · ∇η + t2

∫
D
|∇η|2dx +

∫
D

2 f Φε(uε + tη)dx

Therefore

h′(t) = 2
∫

D
∇uε · ∇ηdx + 2t

∫
D
|∇η|2dx + 2

∫
D

f Φε(uε + tη)′dx

= 2
∫

D
∇uε · ∇ηdx + 2t

∫
D
|∇η|2dx + 2

∫
D

fχε(uε(x) + tη(x))η(x)dx.

Therefore
h′(0) = 2

∫
D
∇uε · ∇ηdx + 2

∫
D

fχε(uε)ηdx = 0.

�
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1.2 Existense and uniqueness of the solution of the obstacle problems

Lemma 1.4. LetA be a subset of a reflexive Banach space X. Let a functional J(·) overA. If
(a) A is weakly closed in X,
(b) There exists u0 ∈ A such that J(u0) < +∞,

(c) J(u) > −C0 > −∞ for all u ∈ A,
(d) J(·) is coercive, i.e.J(uk)→ +∞, provided ‖uk‖X → ∞,

(e) J(·) is weakly lower semi-continuous onA, i.e. if uk ⇀ u(weakly), then J(u) ≤ limk→∞ J(uk),
then there exists minmizer u ∈ A ,i.e. J(u) = infv∈A J(v).

Proof. Set J∗ = infv∈A J(v). By (b), (c),−C0 ≤ J∗ ≤ J(u0) < +∞. Then there exists uk ∈ A such
that J(uk)↘ J∗ and hence there exists N ∈ N such that J(uk) < J∗ + 1 for k ≥ N. By coercivity
there exists M > 0 such that ‖uk‖X < M, for all k ≥ N. By the weak-compactness of X, there
exists u ∈ X such that uk ⇀ u (up to subsequence). SinceA is weakly closed, u ∈ A and from
the weakly lower semi-contiuity of J(·), J(u) ≤ limk→∞ J(uk) = J∗. Therefore J(u) = J∗, and u
is a minimizer. �

Theorem 1.5. Let D be a bounded open subset in Rn, g ∈ W1,2(D) and f ∈ L∞(D), 0 ≤
g on ∂D, (−g)+ ∈ W1,2

0 (D). Let J(u) =
∫

D
(|∇u|2 + 2 f u)dx be a functional over the set Kg,0 = {u ∈

W1,2(D) : u−g ∈ W1,2
0 (D), u ≥ 0 a.e. in D}. Then J(·) has a unique minimizer in Kg,0 ⊂ W1,2(D).

Proof. (a) Let uk ⇀ u in W1,2(D), uk ∈ Kg,0. Since W1,2(D) ↪→ L2(D), we know that uk → u
in L2(D). Thus uk → u a.e in D, up to subsequence. Hence u ≥ 0 a.e. in D. Since W1,2

0 (D) is
weakly closed, u − g ∈ W1,2

0 (D). Thus u ∈ Kg,0.

(b) Since g ≥ 0 on ∂D, g+ = g on ∂D. Thus g+ − g ∈ W1,2
0 . Therefore g+ ∈ Kg,0, and we have

J(g+) =

∫
D
|∇g+|

2 + 2 f g+dx ≤ ‖∇g‖2L2(D) + 2‖ f ‖L2(D)‖g‖L2(D) < +∞,

since f ∈ L∞(D), g ∈ W1,2(D).
(c) Let u ∈ Kg,0, then u − g ∈ W1,2

0 (D).

J(u) =

∫
D
|∇u|2 + 2 f udx

≥ ‖∇u‖2L2(D) − 2‖ f ‖L2(D)‖u‖L2(D)

≥ ‖∇u‖2L2(D) − 2‖ f ‖L2(D)(‖u − g‖L2(D) + ‖g‖L2(D))

≥ ‖∇u‖2L2(D) − 2‖ f ‖L2(D)(C‖∇(u − g)‖L2(D) + ‖g‖L2(D))

= ‖∇u‖2L2(D) − 2C‖ f ‖L2(D)‖∇(u − g)‖L2(D) + −2‖ f ‖L2(D)‖g‖L2(D)

≥ ‖∇u‖2L2(D) −
1
4
‖∇(u − g)‖2L2(D) −C′‖ f ‖2L2(D) − 2‖ f ‖L2(D)‖g‖L2(D)

≥ ‖∇u‖2L2(D) −
1
4

(‖∇u‖L2(D) + ‖∇g‖L2(D))2 −C′‖ f ‖2L2(D) − 2‖ f ‖L2(D)‖g‖L2(D)

≥
1
2
‖∇u‖2L2(D) −

1
2
‖∇g‖2L2(D) −C′‖ f ‖2L2(D) − 2‖ f ‖L2(D)‖g‖L2(D)

≥ −
1
2
‖∇g‖2L2(D) −C′‖ f ‖2L2(D) − 2‖ f ‖L2(D)‖g‖L2(D) = −C̃,
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by Poincaré’s inequality, Young’s inequality, and (a + b)2 ≤ 2(a2 + b2), where a, b ∈ R.
(d) Since

J(uk) ≥
1
2
‖∇uk‖

2
L2(D) −

1
2
‖∇g‖2L2(D) −C′‖ f ‖2L2(D) − 2‖ f ‖L2(D)‖g‖L2(D),

J(uk)→ ∞ as ‖∇uk‖L2(D) → ∞.

‖uk‖L2 ≤ ‖uk − g‖L2 + ‖g‖L2 ≤ C‖∇(uk − g)‖L2 + ‖g‖L2

≤ C‖∇uk‖L2 + C‖∇g‖L2 + ‖g‖L2 .

Thus J(uk) → ∞ as ‖uk‖L2(D) → ∞. If ‖uk‖w1,2(D) → ∞, then ‖uk‖L2(D) → ∞ or ‖∇uk‖L2(D) → ∞.

Therefore the coercivity condition for J(·) holds.
(e) Let uk ∈ Kg,0 such that uk ⇀ u in W1,2(D) as k → ∞. Since W1,2(D) ↪→ L2(D),

∇uk ⇀ ∇u in L2(D), uk → u in L2(D),

as k → ∞, up to subsequence. ∇uk ⇀ ∇u in L2(D) gives∫
D
|∇u|2dx ≤ lim

k→∞

∫
D
|∇uk|

2dx.

Since ∣∣∣∣∣∫
D

f uk − f udx
∣∣∣∣∣ ≤ ‖ f ‖L2(D)‖uk − u‖L2(D) as k → ∞,

we have
lim
k→∞

∫
D

f ukdx =

∫
D

f udx.

Thus J(·) is weakly lower semi-continuous.
To show the uniqueness, we assume u, û ∈ Kg,0 are two minimizers of the problem such that

u , û. Then v = (u + û)/2 ∈ Kg,0, by the convexity of Kg,0.

J(v) =

∫
D

∣∣∣∣∣∇(u + û)
2

∣∣∣∣∣2 + 2 f
(
u + û

2

)
dx

=

∫
D

1
4

(|∇u|2 + 2∇u · ∇û + |∇û|2) + f (u + û)dx

=

∫
D

1
4

(2|∇u|2 + 2|∇û|2 − |∇u − ∇û|2) + f (u + û)dx

<
J(u) + J(û)

2
.

The last inequality holds, since u , û. therefore it is a contradiction and we have the uniqueness
of the minimizer. �

Theorem 1.6. Let D be a bounded open subset in Rn, g ∈ W1,2(D) and f ∈ L∞(D), 0 ≤
g on ∂D, (−g)+ ∈ W1,2

0 (D). Let Jε(u) =
∫

D
(|∇u|2 + 2 f Φε(u))dx be a functional over Kg. Then

Jε(·) has a unique minimizer in Kg ⊂ W1,2.

5



Proof. (a) Clear
(b) With out loss of generality, we may assume that Φε(u(x)) =

∫ s

−∞
χε(t)dt ≤ u(x)+. Thus

Jε(g) ≤ ‖∇g‖2L2(D) + 2‖ f ‖L2(D)‖g‖L2(D) < +∞

(c), (d) Since Φε(u(x)) ≤ u(x), we also obtain

Jε(u) ≥ ‖∇u‖2L2(D) − 2‖ f ‖L2(D)‖u‖L2(D).

As the same manner in the proof of Theorem 1.5, we have (c), (d).
(e) Let uk ∈ Kg such that uk ⇀ u in W1,2(D) as k → ∞. Then we have

∫
D
|∇u|2dx ≤

limk→∞

∫
D
|∇uk|

2dx.∣∣∣∣∣∫
D

f Φε(uk) − f Φε(u)dx
∣∣∣∣∣ ≤ ∫

D
| f (x)|χε(tx)||uk(x) − u(x)|dx for tx between uk(x), u(x)

≤ ‖ f ‖L2(D)‖uk − u‖L2(D) → 0 as k → ∞.

Thus Jε(·) is weakly lower semicontinuous.
the convexity of Kg give the uniqueness of the minimizer. �

1.3 W2,p regularity of the solution of the classical obstacle problem

Lemma 1.7. (Calderón-zygmund estimates) Let u ∈ L1(D), f ∈ Lp(D), 1 < p < ∞, and ∆u = f
in D in the sense of distributions. Then u ∈ W2,p

loc (D) and

‖u‖W2,p(K) ≤ C(‖u‖L1(D) + ‖ f ‖Lp(D)),

for any K b D with C = C(p, n,K,D).

Theorem 1.8. Let D be a bounded open subset in Rn, g ∈ W1,2(D) and f ∈ L∞(D), 0 ≤
g on ∂D, (−g)+ ∈ W1,2

0 (D). Let Jε(u) =
∫

D
(|∇u|2 + 2 f Φε(u))dx be a functional over Kg. Let

uε be the minimizer of Jε over Kg. Then the family {uε} is unformly bounded in W1,2(D) and in
W2,p(K) for any K b D, 1 < p < ∞ where 0 < ε < 1

Proof. By Theorem 1.3, we know that∫
D

(∇uε∇η + fχε(uε)η)dx = 0,

for η ∈ W1,2
0 (D). Take η = uε − g.

0 =

∫
D
∇uε∇(uε − g) + fχε(uε)(uε − g)dx

=

∫
D
∇(uε − g) · ∇(uε − g) + ∇g · ∇(uε − g) + fχε(uε)(uε − g)dx

≥ ‖∇(uε − g)‖2L2(D) − ‖∇g‖L2(D)‖∇(uε − g)‖L2(D) − ‖ f ‖L2(D)‖uε − g‖L2(D)

≥ ‖∇(uε − g)‖2L2(D) − (‖∇g‖L2(D) + C‖ f ‖L2(D))‖∇(uε − g)‖L2(D)

≥
1
2
‖∇(uε − g)‖2L2(D) −C′(‖∇g‖L2(D) + C‖ f ‖L2(D)),
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by Poincaré’s inequality and Young’s inequality. Then

‖∇(uε − g)‖2L2(D) ≤ C( f , g).

Applying Calderón-zygmund estimates and Poincaré’s inequality,

‖uε‖W2,p(K) ≤ C(p, n,K,D)(‖uε‖L1(D) + ‖ fχε(uε)‖Lp(D))

≤ C(p, n,K,D, f , g),

for any K b D, 1 < p < ∞. �

Theorem 1.9. Let D be a bounded open subset in Rn, g ∈ W1,2(D) and f ∈ L∞(D), 0 ≤
g on ∂D, (−g)+ ∈ W1,2

0 (D). Let u be the minimizer for the functional J(u) =
∫

D
(|∇u|2 + 2 f u)dx

over the set Kg,0 = {u ∈ W1,2(D) : u − g ∈ W1,2
0 (D), u ≥ 0 a.e. in D}, then u ∈ W2,p

loc (D) for any
1 < p < ∞.

Proof. Since uε is unformly bounded for 0 < ε < 1 in W1,2(D), then there exists u ∈ W1,2(D),
such that uε ⇀ u in W1,2(D) and since W1,2(D) ↪→ L2(D),

∇uε ⇀ ∇u in L2(D), uε → u in L2(D),

as ε = εk → 0. Since W1,2
0 (D) is weakly closed, uε − g ∈ W1,2

0 (D), then u − g ∈ W1,2
0 (D), i.e.

u ∈ Kg.

By Theorem 1.8, we know that uε ∈ W2,p
loc (D) and

‖uε‖W2,p(K) ≤ C(p, n,K,D, f , g),

for any K b D, 1 < p < ∞. Thus uε ⇀ u in W2,p
loc (D), as ε → 0 for any 1 < p < ∞. Hence

u ∈ W2,p
loc (D) for any 1 < p < ∞.

∣∣∣∣∣∫
D

f Φε(uε) − f u+dx
∣∣∣∣∣ ≤ ∣∣∣∣∣∫

D
f Φε(uε) − f Φε(u)dx +

∫
D

f Φε(u) − f u+dx
∣∣∣∣∣

≤ ‖ f ‖L2(D)‖uε − u‖L2(D) + ‖ f ‖L2(D)‖Φε(u) − u+‖L2(D)

≤ ‖ f ‖L2(D)(‖uε − u‖L2(D) + 4ε2|D|)→ 0 as ε → 0,

by the same computation in the proof of Theorem 1.6, and we know that ‖Φε − u+‖L∞(D) ≤ 2ε.
Thus we have ∫

D
f u+dx = lim

ε→0

∫
D

f Φε(uε)dx.

∇uε ⇀ ∇u in L2(D) gives ∫
D
|∇u|2dx ≤ lim

ε→0

∫
D
|∇uε |2dx.

Therefore

J̃(u) =

∫
D
|∇u|2 + f u+dx ≤ lim

ε→0
Jε(uε) ≤ lim

ε→0
Jε(v) = lim

ε→0

∫
D
|∇v|2 + f Φε(v)dx = J̃(v),

for any v ∈ Kg. by Theorem 1.2, u is the minimizer of J(·) over Kg,0 and u ∈ W2,p
loc (D), for any

1 < p < ∞. �
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Theorem 1.10. Let D be a bounded open subset in Rn, g ∈ W1,2(D) and f ∈ L∞(D), 0 ≤
g on ∂D, (−g)+ ∈ W1,2

0 (D). Let u be the minimizer for the functional J(·) over the set Kg,0, then
∆u = fχ{u>0} a.e. in D, equivalently, ∆u = f a.e in Ω = {u > 0} and ∆u = 0 a.e. on Λ = {u = 0}.

Proof. Since uε ∈ W2,p
loc (D),∆uε = fχε(uε) for a.e. in D. For p > n

uε → u in C1,α
loc (D),

by the Sobolev embedding theorem with α = 1 − n
p . Then ∆u = f a.e. in {u > 0}, by the locally

unform convergence. Since u ∈ W2,p
loc (D), ∆u = 0 a.e on {u = 0}. �

1.4 C1,1 regularity of the solution of the classical obstacle problem

Theorem 1.11. Let u, f ∈ L∞(D), u ≥ 0

∆u = fχ{u>0} in D.

Choose x0 ∈ Γ(u) = ∂Ω ∩ D such that B2R(x0) ⊂ D. Then

sup
BR(x0)

u ≤ C‖ f ‖L∞(D)R2,

where C = C(n).

Proof. Let u = u1 + u2 such that{
∆u1 = ∆u, ∆u2 = 0 in B2R(x0),
u1 = 0, u2 = u on ∂B2R(x0).

Let ψ(x) = (4R2−|x− x0|
2)/2n, then ∆ψ = −1 in B2R(x0), ψ = 0 on ∂B2R(x0). Consider u1 + Mψ,

where M = ‖ f ‖L∞(D) then {
∆(u1 + Mψ) ≤ 0 in B2R(x0),
u1 + Mψ = 0 on ∂B2R(x0).

This implies u1 + Mψ ≥ 0, u1 ≥ −Mψ in B2R(x0). In the similar way, we know that −Mψ ≤ u1 ≤

Mψ in B2R(x0). Thus

|u1| ≤
2MR2

n
in B2R(x0). (2)

Since ∆u2 = 0 in B2R(x0), u2 = u ≥ 0 on ∂B2R(x0), u2 ≥ 0 in B2R(x0). since u(x0) = u1(x0) +

u2(x0) = 0, u2(x0) = −u1(x0) ≤ 2MR2/n. By the Harnack inequality,

u2(x) ≤ Cu2(x0) ≤ CMR2, for any x ∈ BR(x0), (3)

where C = C(n). Using (2),(3) we have the inequality. �

Lemma 1.12. Let ∆v = f in B2R(x0) b D and f has a C1,1−regular potential, i.e. f = ∆φ in D,
where φ ∈ C1,1(D). Then

‖D2v‖L∞(BR(x0)) ≤ C(n)
(‖v‖L∞(B2R(x0))

R2 + ‖D2φ‖L∞(B2R(x0))

)
.
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Proof. We may assume that φ(x0) = |∇φ(x0)| = 0. Let w = v − φ. By using the mollification,
we have

‖D2w‖L∞(BR(x0)) ≤
C(n)
R2 ‖w‖L∞(B2R(x0)),

and
‖D2v‖L∞(BR(x0)) ≤ C(n)

(‖v‖L∞(B2R(x0)) + ‖φ‖L∞(B2R(x0))

R2 + ‖D2φ‖L∞(B2R(x0))

)
.

By the Taylor expansion,

φ(x0 + h) =
1
2

∑
i, j

hih j
∂2φ

∂xix j
(θh1, ..., θhn) ≤ R2C(n)‖D2φ‖L∞(B2R(x0)),

where |h| < 2R, 0 < θ < 1. Thus we obtain

‖φ‖L∞(B2R(x0)) ≤ R2C(n)|D2φ‖L∞(B2R(x0))

and the desired inequrity. �

Theorem 1.13. Let u ∈ L∞(D), u ≥ 0,∆u = fχ{u>0} in D for f ∈ L∞(D) such that f = ∆φ in D,
where φ ∈ C1,1(D). Then u ∈ C1,1

loc(D) and

‖u‖C1,1(K) ≤ C(‖u‖L∞(D) + ‖D2φ‖L∞(D)),

for K b D, where C = C(n, dist(K, ∂D)).

Proof. Let K b D. We know that u ∈ W2,p
loc (D) for any 1 < p < ∞ and D2u = 0 a.e on Ωc(u).

Thus it suffice to show that ‖D2(u)‖L∞(Ω(u)∩K) < +∞. Let x0 ∈ Ω(u) ∩ K, d = dist(x0,Ω
c(u)),

δ = dist(K.∂D).
Case 1) d < δ/5. Let y0 ∈ ∂Bd(x0) ∩ ∂Ω, then B4d(y0) ⊂ B5d(x0) b D. By Theorem 1.11 we

obtain
‖u‖L∞(B2d(y0)) ≤ C(n)‖ f ‖L∞(D)d2.

We know that Bd(x0) ⊂ B2d(y0) and ∆u = f in Bd(x0). By Lemma 1.12, and ‖ f ‖L∞(D) ≤

‖D2φ‖L∞(D),

‖D2u‖L∞(Bd/2(x0)) ≤ C(n)
(‖u‖L∞(Bd(x0))

d2 + ‖D2φ‖L∞(Bd(x0))

)
≤ C(n)

(‖u‖L∞(B2d(y0))

d2 + ‖D2φ‖L∞(Bd(x0))

)
≤ C(n)(‖ f ‖L∞(D) + ‖D2φ‖L∞(D)) ≤ C(n)(‖D2φ‖L∞(D)).

Case 2) d ≥ δ/5. In this case, the interior derivative estimate for u in Bδ/5(x0) gives∥∥∥D2u
∥∥∥

L∞(Bδ/10(x0))
≤ C(n)

(
‖u‖L∞(D)

δ2 +
∥∥∥D2φ

∥∥∥
L∞(D)

)
.

Combining cases above, we obtain

‖u‖C1,1(K) ≤ C(n)
(
‖u‖L∞(D)

δ2 +
∥∥∥D2φ

∥∥∥
L∞(D)

)
.

�
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2 Optimal regularity of solutions of obstacle problems

2.1 Model problems A, B,C and OT1 − OT2

Definition 2.1. (Problem A, No-sign obstacle problem)
Let D be a open set in Rn. Let a problem finding a function u in D such that

∆u = χΩ(u) in D, where Ω(u) = D \ {u = |∇u| = 0}

be a Problem A. The free boundary in this case is Γ(u) = ∂Ω(u) ∩ D.

Definition 2.2. (Problem B, superconductivity problem)
Let D be a open set in Rn. Let a problem finding a function u in D such that

∆u = χΩ(u) in D, where Ω(u) = {|∇u| > 0}

be a Problem B. The free boundary in this case is Γ(u) = ∂Ω(u) ∩ D.

Definition 2.3. (Problem C, Two-phase membrane problem)
Let D be a open set in Rn. Let a problem finding a function u in D such that

∆u = λ+χΩ+(u) − λ−χΩ−(u) in D, where Ω±(u) = {u± > 0}

be a Problem C, where λ± > 0. In this case Ω(u) = Ω+(u) ∪ Ω−(u) and the free boundary is
Γ(u) = ∂Ω(u) ∩ D = Γ+(u) ∪ Γ−(u) where Γ±(u) = ∂Ω±(u) ∩ D.

Definition 2.4. (Obstacle-type problems, OT1 − OT2)
Let D be a open set in Rn. Let a problem finding u ∈ L∞loc(D) satisfies (OT1),

∆u = f (x, u)χG(u) in D, |∇u| = 0 on D \G(u),

where G(u) ⊂ D is open and f : D × R→ R satisfies (OT2),| f (x, t) − f (y, t)| ≤ M1|x − y|, x, y ∈ D, t ∈ R,

f (x, s) − f (x, t) ≥ −M2(s − t), x ∈ D, such that ∈ R, s ≥ t

for M1,M2 ≥ 0, be a Problem OT1 − OT2. The free boudary is ∂G(u) ∩ Dand/or the set of
discontinous points of f (x, u). It depends on the problem.

In the case of Problems A, B, G = Ω(u), f (x, t) = 1, and in the case of Problem C, G =

D, f (x, t) = λ+χΩ+(t) − λ−χΩ−(t), so the condition |∇u| = 0 on D \G is eliminated. For any cases,
we can assign 0 for M1 and M2 and then Problems A, B,C fit into Problem OT1 − OT2.
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2.2 ACF monotonicity formula and generalizations

Theorem 2.1. Let u be a harmonic function in B1 and

J(r, u) =
1
r2

∫
Br

|∇u|2

|x|n−2 dx, 0 < r < 1,

then r 7→ J(r, u) is monotone nondecreasing and |∇u(0)| ≤ C(n)‖u‖L2(B1).

Proof. u can be represented as a locally unformly convergent series u(x) =
∑∞

k=0 fk(x), where
fk(x) are homogeneous harmonic polynimial of degree k, fk(tx) = tk f (x), and fk, fl are orthog-
onal, when k , l. Then

J(r, u) =
1
r2

∫ r

0

∫
∂B1

|∇u(ρθ)|2ρdθdρ

=
1
r2

∫ r

0

∫
∂B1

ρ

∞∑
k=1

|∇ fk(ρθ)|2dθdρ

=
1
r2

∫ r

0

∫
∂B1

∞∑
k=1

ρ2k−1|∇ fk(θ)|2dθdρ

=

∞∑
k=1

akr2(k−1),

where ak = (1/2k)
∫
∂B1
|∇ fk(θ)|2dθ ≥ 0. Thus r 7→ J(r, u) is monotone nondecreasing. Let

r → 0+, then J(0+, u) ≤ J(1/2, u). since u is C1 near the orgin, for given ε > 0, there exists
r > 0 such that |x| < r implies ||∇u(x)|2 − |∇u(0)|2| ≤ ε. Let c(n) = (1/r2)

∫ r

0

∫
∂B1

ρdθdρ, then∣∣∣∣J(r, u) − c(n)|∇u(0)|2
∣∣∣∣

=
∣∣∣∣ 1
r2

∫ r

0

∫
∂B1

|∇u(ρθ)|2ρdθdρ −
1
r2

∫ r

0

∫
∂B1

|∇u(0)|2ρdθdρ
∣∣∣∣

≤
1
r2

∫ r

0

∫
∂B1

∣∣∣∣|∇u(x)|2 − |∇u(0)|2
∣∣∣∣ρdθdρ

≤
1
r2

∫ r

0

∫
∂B1

ερdθdρ = |∇u(0)|2ε

Therefore J(0+, u) = c(n)|∇u(0)|2, for c(n) > 0. Hence

c(n)|∇u(0)|2 ≤ J(
1
2
, u).

We will prove J(1/2, u) ≤ Cn‖u‖2L2(B1). Let V be a smooth extention of |x|2−n from B1/2 to B1 such
that V(x) ≥ 0 and V = 0 near ∂B1. This implies ∇V = 0 on ∂B1, and let Ṽ = min(V, (1/δn−2),
for a small δ > 0. Since ∆u = 0, ∆((1/2)u2) = u∆u + |∇u|2 = |∇u|2.
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∫
B1/2\Bδ

|∇u|2

|x|n−2 dx ≤
∫

B1

(
∆

u2

2

)
Ṽdx = −

∫
B1

∇
u2

2
· ∇Ṽdx

= −

∫
B1\Bδ
∇

u2

2
· ∇Vdx

= −

∫
∂(B1\Bδ)

u2

2
(∇V · ν)dσx +

∫
B1\Bδ

u2

2
∆Vdx (4)

= −

∫
∂Bδ

u2

2
(∇V · −x)dσx +

∫
B1\B1/2

u2

2
∆Vdx

= −

∫
∂Bδ

(n − 2)u2

2δn−2 dσx +

∫
B1\B1/2

u2

2
∆Vdx

≤

∫
B1\B1/2

u2

2
∆Vdx.

letting δ→ 0, we have J(1/2, u) ≤ C(n)‖u‖2L2(B1) Thus we have the desired inequality. �

Theorem 2.2. (Alt- Caffarelli-Friedman (ACF) monotonicity formula) Let u± be a pair of con-
tinuous functions such that

u± ≥ 0, ∆u± ≥ 0, u+ · u− = 0 in B1,

then

r 7→ Φ(r) = Φ(r, u+, u−) = J(r, u+)J(r, u−) =
1
r4

∫
Br

|∇u+|
2

|x|n−2 dx
∫

Br

|∇u−|2

|x|n−2 dx

is nondecreasing for 0 < r < 1.

Example. (Friedland-Hayman inequalty) Let C = {rθ : r > 0, θ ∈ Σ0}, whrere Σ0 ⊂ ∂B1. Let
h be a homogeneous harmonic function in C such that h(rθ) = rα f (θ), α > 0, and h(x) = 0 for
x ∈ ∂C.

∆h = ∂rrh +
n − 1

r
∂rh +

1
r2 ∆θh

= rα−2[(α(α − 1) + (n − 1)α) f (θ) + ∆θ f (θ)],

where ∆θ is the spherical Laplacian. Therefore h is harmonic in C if and only if −∆θ f (θ) = λ f (θ)
in Σ0 where λ = α(n − 2 + α). If h > 0 in Σ0, then λ will be the principal eigenvalue, and we
denote α = α(Σ0) and call it the characteristic harmonic function. Let Σ± be open subsets on
B1, λ± be the principal eigenvalues of Σ± and f± be the corresponding eigenfunctions, u± be
homogeneous harmonic functions, such that

u± = rα± f±(θ), in C± = {rθ : r > 0, θ ∈ Σ±},

where α± = α(Σ±) > 0 are the characteristic constant of Σ±. Then u± is harmonic in C±. we
extend u± to R by zero in the complements of C±, repectively. Then ∆u± ≥ 0. (see Lemma
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(2.11)). Thus u± satisfies the assumptions of the ACF formula. Let the pair (u, f , α,C) be either
(u+, f+, α+,C+) or (u−, f−, α−,C−).

J(r, u) =
1
r2

∫ r

0

∫
∂B1∩C

|∇u(ρθ)|2ρdθdρ =
1
r2

∫ r

0

∫
∂B1∩C

ρ2α−1|∇u(θ)|2dθdρ

=
1
r2

∫ r

0
ρ2α−1dρ ·

∫
∂B1∩C

|∇ f (θ)|2dθ =
1

2α
C(n, f )r2(α−1).

Thus

Φ(r, u+, u−) = J(r, u+)J(r, u−) =
C(n, f±)
4α+α−

r2(α++α−−2), with
C(n, f±)
4α+α−

> 0.

In this case, the ACF monotonicity formula is equivalent to α+ + α− − 2 ≥ 0.

Lemma 2.3. Let v ∈ C(D) be a nonnegative subharmonic function in an open set D of Rn, then
v ∈ W1,2

loc (D).

Proof. Let vε be mollifications of v, such that vε ≤ 0,∆vε ≥ 0. Let K b D, δ = dist(K, ∂D) and
let ψ ∈ C∞c (D), such that ψ = 1 on K, |∇ψ| ≤ 2/δ on D, suppψ b D. Let φ = vεψ2, then we have∫

D
∇vε · ∇φdx =

∫
D
ψ2|∇vε |2 + 2vεψ∇vε · ∇ψdx ≤ 0.

Consequently,∫
D
ψ2|∇vε |2dx ≤ −2

∫
D

vεψ∇vε · ∇ψdx ≤ 2
∫

D
vεψ|∇vε ||∇ψ|dx ≤

∫
D

1
2
ψ2|∇vε |2 + 2v2

ε |∇ψ|
2dx.

Therefore ∫
D
ψ2|∇vε |2dx ≤ 4

∫
D

v2
ε |∇ψ|

2dx.

Letting ε → 0+ gives ∫
K
|∇v|2dx ≤

42

δ2

∫
suppψ

v2dx < +∞,

by the properties of ψ. Thus the proof is complete. �

Example. (Reduction of ACF monotonicity formula to Friedland-Hayman inequality) Let uλ(x) =

(1/λ)u(λx), then

J(r/λ, uλ) = J(r, u), Φ(r, u+, u−) = Φ(r/λ, u+λ, u−λ).

Let u be either u+ or u− in B1, fix r < 1, then ur(x) = (1/r)u(rx) for x ∈ B1/r, (1/r) > 1. Since

Φ(1 + h, u+r, u−r) − Φ(1, u+r, u−r)
h

= r
Φ(r(1 + h), u+, u−) − Φ(r, u+, u−)

rh
,
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we have Φ′(1, u+r, u−r) = rΦ′(r, u+, u−). Therefore it suffice to show that Φ′(1) ≥ 0 for any pair
of function that satisfies the condition of ACF formula for BR,R > 1.
Let u be either u+ or u− in BR. Let

I(r, u) =

∫
Br

|∇u|2

|x|n−2 dx.

i.e. I(r, u) = r2J(r, u). Then Φ(r, u+, u−) =
1
r4 I(r, u+)I(r, u−).

Φ′(r, u+, u−) =
1
r4 I′(r, u+)I(r, u−) +

1
r4 I(r, u+)I′(r, u−) −

4
r5 I(r, u+)I(r, u−),

then
Φ′(1, u+, u−) = I′(1, u+)I(1, u−) + I(1, u+)I′(1, u−) − 4I(1, u+)I(1, u−).

Thus we need to show that
I′(1, u+)
I(1, u+)

+
I′(1, u−)
I(1, u−)

≥ 4.

Let uε be a mollification of u, such that ∆uε ≥ 0, uε ≥ 0.∫
B1\Bρ

∆(u2
ε/2)
|x|n−2 dx =

∫
∂(B1\Bρ)

(∇
u2
ε

2
· ν)

1
|x|n−2 − (∇

1
|x|n−2 · ν)

u2
ε

2
dσx

=

∫
∂(B1\Bρ)

(uε∇uε · ν)
1
|x|n−2 +

n − 2
2

u2
ε

rn (x · ν)dσx

=

∫
∂B1

uε∂ruε +
n − 2

2
u2
εdθ −

∫
∂Bρ

(uε∂ruε +
n − 2

2
u2
ε )

1
ρn−2 dσx

=

∫
∂B1

uε∂ruε +
n − 2

2
u2
εdθ −

∫
∂Bρ

(uε∂ruε +
n − 2

2
u2
ε )ρdθ

Letting ρ→ 0, we have ∫
B1

∆(u2
ε/2)
|x|n−2 dx =

∫
∂B1

uε∂ruε +
n − 2

2
u2
εdθ.

And using |∇uε |2 ≤ ∆(u2
ε/2), we obtain

I(1, uε) =

∫
B1

|∇uε |2

|x|n−2 dx ≤
∫

B1

∆(u2
ε/2)
|x|n−2 dx =

∫
∂B1

uε∂ruε +
n − 2

2
u2
εdθ.

Letting ε → 0+, I(1, u) ≤
∫

Σ
(u∂ru + (n − 2/2)u2)dθ, where Σ = {u > 0} ∩ ∂B1, and we know

that I′(1, u) =
∫

Σ
|∇u|2dθ. Hence

I′(1, u)
I(1, u)

≥

∫
Σ
(∂ru)2 + |∇θu|2dθ∫

Σ
u∂ru +

n − 2
2

u2dθ
.

For the pricipal eigenvalue λ = λ(Σ) of the spherical Laplacian ∆θ in Σ,∫
Σ
|∇θu|2∫
Σ

u2
≥ λ.
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By the Young’s inequality
∫

Σ
u∂ru ≤

1
2

[
α
∫

Σ
u2 +

1
α

∫
Σ
(∂ru)2

]
, for α > 0. Hence

I′(1, u)
I(1, u)

≥ 2

∫
Σ
(∂ru)2 + λu2

(1/α)
∫

Σ
(∂ru)2 + (α + n − 2)

∫
Σ

u2
.

Let’s choose α such that 1/α = α + n − 2/λ, i.e. α = α(Σ) is the characteristic constant of Σ.
Then

I′(1, u)
I(1, u)

≥ 2α,

consequently,
I′(1, u+)
I(1, u+)

+
I′(1, u−)
I(1, u−)

− 4 ≥ 2(α+ + α− − 2),

where Σ± = {u± > 0}∩∂B1 and α± = α(Σ±).By the Friedland-Hayman inequality α++α−−2 ≥ 0,
we have the desired inequality.

Theorem 2.4. (ACF estimate) Let u± be a pair of continuous functions such that

u± ≥ 0, ∆u± ≥ 0, u+ · u− = 0 in B1,

then Φ(r, u+, u−) ≤ C(n)‖u+‖
2
L2(B1)‖u−‖

2
L2(B1), for 0 < r ≤ 1/2.

Proof. Since ∆u± ≥ 0, |∇u±|2 ≤ ∆(u2/2),J(1/2, u) ≤ C(n)‖u‖2L2(B1), by the same argument at (4)
in Theorem 2.1. Since Φ(r) is nondecreasing,

Φ(r, u+, u−) ≤ C(n)‖u+‖
2
L2(B1)‖u−‖

2
L2(B1), for 0 < r ≤ 1/2.

�

Theorem 2.5. (Case of equality in ACF monotonicity formula) Let u± be as in above theorem
and suppose that Φ(r1) = Φ(r2) for some 0 < r1 < r2 < 1. Then either of the following holds:

(a) u+ = 0 in Br2 or u− = 0 in Br2 ,

(b) There exists unit vector e and constants k± > 0 such that

u+(x) = k+(x · e)+, u−(x) = k−(x · e)− in Br2 .

Theorem 2.6. (Caffarelli-Jerison-Kenig (CJK) estimate) Let u± be a pair of continuous func-
tions in B1 such that

u± ≥ 0, ∆u± ≥ −1, u+ · u− = 0 in B1,

then
Φ(r, u+, u−) ≤ C(n)(1 + J(1, u+) + J(1, u−))2, 0 < r < 1.
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Theorem 2.7. (scaled version) Let u± be a pair of continuous functions in BR such that

u± ≥ 0, ∆u± ≥ −L, u+ · u− = 0 in BR,

then
Φ(r, u+, u−) ≤ C(n)(R2L2 + J(R, u+) + J(R, u−))2, 0 < r < R.

Theorem 2.8. Let u± be a pair of continuous functions in B1 such that

u± ≥ 0, ∆u± ≥ −1, u+ · u− = 0 in B1,

then
Φ(r, u+, u−) ≤ C(n)(1 + ‖u+‖

2
L2(B1) + ‖u−‖2L2(B1))

2, for 0 < r ≤ 1/2.

Proof. Since u± are nonnegative and ∆u± ≥ −1 in B1, |∇u±|2 ≤ ∆(u2
±/2) + u±. Using this

inequality, we have J(1/2, u±) ≤ C(n)(1 + ‖u±‖2L2(B1)), by the same argument at (4) in Theorem
2.1.

Consider u± as function in B1/2 then

Φ(r, u+, u−) ≤ C(n)(1/4 + J(1/2, u+) + J(1/2, u−))2, 0 < r < 1/2,

by the scaled CJK estimate. For r = 1/2,Φ(1/2, u+, u−) = J(1/2, u+)J(1/2, u−) ≤ (1/4 +

J(1/2, u+) + J(1/2, u−))2. �

Theorem 2.9. (scaled version) Let u± be a pair of continuous functions in BR such that

u± ≥ 0, ∆u± ≥ −L, u+ · u− = 0 in BR,

then

Φ(r, u+, u−) ≤ C(n)
(
R2L2 +

‖u+‖
2
L2(BR) + ‖u−‖2L2(BR)

Rn+2

)2

, for 0 < r ≤ R/2.

Theorem 2.10. Let u± be a pair of continuous functions in B1 such that

u± ≥ 0, ∆u± ≥ −1, u+ · u− = 0 in B1,

and assume that u±(x) ≤ C0|x|ε in B1 for some ε > 0. Then for 0 < r1 ≤ r2 < 1, we have

Φ(r1) ≤ (1 + rε2)Φ(r2) + C1r2ε
2 ,

where C1 = C1(C0, n, ε). In particular, the limit Φ(0+) exists.

2.3 Optimal regularity in OT1 − OT2

Lemma 2.11. Let u ∈ W1,2
loc (D) ∩ C(D) such that u ≥ 0 in open set D ∈ Rn. If ∆u ≥ −a in the

sense of distribution on {u > 0} for some a ≥ 0, then ∆u ≥ −a in D.
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Proof. Let ψε ∈ C∞(R) such that 0 ≤ ψε ≤ 1, ψ′ε ≥ 0, ψε(t) = 0 for t ≤ ε/2, ψε(t) = 1 for t ≥ ε.
Let φ ∈ C∞c (D), φ ≥ 0 and η = ψε(u)φ, then η ≥ 0, η ∈ W1,2

0 (E), where E = {u > 0}. Thus∫
E
∇u · ∇ηdx ≤ a

∫
E
η.

Note that∫
E
ψε(u)∇u · ∇φdx ≤

∫
E
ψε(u)∇u · ∇φ + ψ′ε(u)φ|∇u|2dx =

∫
E
∇u · ∇(ψε(u)φ)dx

≤ a
∫

E
ψε(u)φdx ≤ a

∫
E
φdx.

Letting ε → 0+ gives ∫
D
∇u · ∇φdx ≤ a

∫
D
φdx,

since on {u = 0}, ∇u = 0 a.e. We have ∆u ≥ −a in the sense of distribution in D. �

Lemma 2.12. Let u ∈ C1(D) satisfy OT1 − OT2, e be a unit vector, and D is bounded then

∆(∂eu)± ≥ −L in D,

where L = M1 + M2‖∇u‖L∞(D).

Proof. Fix e and let v = ∂eu, E = {v > 0}. Since |∇u| = 0 on D\G(u), E ⊂ G. We will show that
∆v ≥ −L in the sense of distributions in E. Let η ∈ C∞c (D), η ≥ 0 such that supp(η(x)) ⊂ {v > δ}
for δ > 0. Then supp(η(x − he)) ⊂ {v > 0} ⊂ G, for sufficiently small h > 0. For brevity, we
will use η to denote either η(x) or η(x − he). Then

−

∫
D
∇u · ∇ηdx =

∫
D

fχGηdx =

∫
D

fηdx,

since ∆u = f (x, u)χG in D and supp(η) ⊂ G. Thus we obtain

−

∫
D
∇vh · ∇η(x)dx =

1
h

∫
D

[ f (x + he, u(x + he)) − f (x, u(x))]η(x)dx,

where vh(x) =
u(x + he) − u(x)

h
. we know that u(x + he) > u(x) on supp(η) ⊂ {v > δ} and by

OT2, | f (x, t) − f (y, t)| ≤ M1|x − y|, x, y ∈ D, t ∈ R,

f (x, s) − f (x, t) ≥ −M2(s − t), x ∈ D, suchthat ∈ R, s ≥ t,

we obtain

f (x + he, u(x + he)) − f (x, u(x)) = f (x + he, u(x + he)) − f (x + he, u(x))

+ f (x + he, u(x)) − f (x, u(x))

≥ −M2(u(x + he) − u(x)) − M1h.
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Thus
−

∫
D
∇vh · ∇ηdx ≥ −

∫
D

(M2vh + M1) ηdx.

Letting h→ 0 and then δ→ 0 we have

−

∫
D
∇v · ∇ηdx ≥ −

∫
D

(M1 + M2v)ηdx ≥ −L
∫

D
ηdx,

for η ∈ C∞c (D), η ≥ 0 with supp(η) b {v > 0}. This gives ∆v+ ≥ −L in the sense of distribution
on {v+ > 0}. Apply Lemma 2.11, we have ∆v+ = ∆(∂eu)+ ≥ −L in D. Since ∂eu = −∂−eu, then
(∂eu)− = (∂−eu)+. Thus we have the same inequality for (∂eu)−. �

Theorem 2.13. Let u ∈ L∞(D) satisfy OT1 − OT2, then u ∈ C1,1
loc(D) and

‖u‖C1,1(K) ≤ CM(1 + ‖u‖L∞(D) + ‖ f ‖L∞(D)),

for K b D,C = C(n, dist(K, ∂D)),M = max{1,M1,M2}.

Proof. By the Calderón-Zygmund estimates, u ∈ W2,p
loc (D) with p > n. Thus u is twice dif-

ferentiable at Lebesque point of D2u. Therefore u is twice differntiable a.e. By the Sobolev
embedding W2,p

loc ↪→ C1,α
loc , u ∈ C1,α

loc (D). Define

v(x) = ∂eu(x),

where

e =

{
arbitrary if ∇u(x0) = 0
e ⊥ ∇u(x0) if ∇u(x0) , 0.

With out loss of generality, we assume x0 = 0. we will show that there is a uniform estimate for
∂x jeu(0) = ∂x jv(0), for 1 ≤ j ≤ n. We may assume v(0) = 0, v is diferentiable at 0, then we have

v(x) = ζ · x + o(|x|), ζ = ∇v(0).

If ζ = 0, we have ∂x jv(0) = 0 for 1 ≤ j ≤ n. Thus we have done.
If ζ , 0, let the cone C = {x ∈ R : ζ · x ≥ |ζ ||x|/2}, then for sufficiently small r > 0,

C ∩ Br ⊂ {v > 0}, −C ∩ Br ⊂ {v < 0}.

Let vr(x) = v(rx)/r, x ∈ B1 and let v(x) = ζ · x + h(x) where lim|x|→0(h(x)/|x|) = 0, then

vr(x) =
v(rx)

r
= ζ · x +

h(rx)
r
→ ζ · x as r → 0,

i.e. vr(x)→ v0(x) := ζ · x uniformly as r → 0 in B1.∫
B1

|∇vr(x) − ζ |pdx =
1
rn

∫
Br

|∇v(x) − ∇v(0)|pdx→ 0, as r → 0,

since x0 = 0 is a Lebesgue point for ∇v. i.e. we have ‖∇vr − ζ‖Lp(B1) = ‖∇vr −∇v0‖Lp(B1) → 0, as
r → 0 with p > n. We may assume that p ≥ 2(n − 1). Then∥∥∥|∇vr − ∇v0|

2/|x|n−2
∥∥∥

L1(B1)
≤ ‖∇vr − ∇v0‖

1/(n−1)
L2(n−1)(B1)

∥∥∥1/|x|n−1
∥∥∥(n−2)/(n−1)

L1(B1)
→ 0, as r → 0.
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Therefore we obtain

lim
r→0

∫
B1

|∇vr|
2

|x|n−2 dx =

∫
B1

|∇v0|
2

|x|n−2 dx,

and the same equality holds for C ∩ B1 and −C ∩ B1. Thus we have

C(n)2|ζ |4 =

∫
C∩B1

|∇v0(x)|2

|x|n−2 dx
∫
−C∩B1

|∇v0(x)|2

|x|n−2 dx

= lim
r→0

∫
C∩B1

|∇vr(x)|2

|x|n−2 dx
∫
−C∩B1

|∇vr(x)|2

|x|n−2 dx

= lim
r→0

1
r4

∫
C∩Br

|∇v(x)|2

|x|n−2 dx
∫
−C∩Br

|∇v(x)|2

|x|n−2 dx

≤ lim
r→0

Φ(r, v+, v−),

where C(n) = |C ∩ B1| · | − C ∩ B1| > 0.
Let δ = (1/2)dist(K, ∂D) and Kδ = {x : dist(x,K) < δ}. By Lemma 2.12 , ∆v± ≥ −Lδ in Kδ,
where Lδ = M(1 + ‖∇u‖L∞(Kδ)) and M = max{1,M1,M2}. Apply T.h 2.9 , we have

C(n)2|ζ |4 ≤ lim
r→0

Φ(r, v+, v−) ≤ C(n)
(
L2
δδ

2 +
‖v+‖

2
L2(Bδ)

+ ‖v−‖2L2(Bδ)

δn+2

)2

≤ C(n)
(
L2
δδ

2 +
‖∇u‖2L∞(Kδ)

δn+2

)2

≤ C(n, δ)L4
δ.

Thus we have |ζ | ≤ C(n, δ)Lδ.
By the Calderón-Zygmund estimates and the Sobolev embedding W2,p

loc ↪→ C1,α
loc , we have

‖∇u‖L∞(Kδ) ≤ ‖u‖C1,α(Kδ) ≤ ‖u‖W2,p(Kδ) ≤ C(n)(‖u‖L∞(D) + ‖ f ‖L∞(D)). Hence we have

Lδ = M(1 + ‖∇u‖L∞(Kδ)) ≤ C(n.δ)N,

where N = M(1 + ‖u‖L∞(D) + ‖ f ‖L∞(D)). Since ζ = ∇eu(x0),

|∇∂eu(x0)| ≤ C(n, δ)N. (5)

since

e =

{
arbitrary if ∇u(x0) = 0
e ⊥ ∇u(x0) if ∇u(x0) , 0,

(5) gives the desered estimate on |D2u| where ∇u(x0) = 0. If ∇u(x0) , 0 and en be a unit
vector such that e ‖ ∇u(x0), then choose the coordinate system which contains en. Apply (5) for
e = e1, ..., en−1, we have

|∂xi x ju(x0)| ≤ C(n, δ)N, i ∈ {1, ..., n − 1}, j ∈ {1, ..., n}.

Since ∆u(x0) = f (x0, u(x0))χG(u(x0)) = f (x0, u(x0)),

|∂xn xnu(x0)| ≤ |∆u(x0)| + |∂x1 x1u(x0)| + ... + |∂xn−1 xn−1u(x0)|

≤ ‖ f ‖L∞(D) + C(n, δ)N ≤ C(n, δ)N.

and the proof is complete. �
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3 Preliminary analysis of the free boundary

3.1 Nondegeneracy

Lemma 3.1. Let ∆u = 1 in the ball BR. Then

sup
∂Br

u ≥ u(0) +
r2

2n
, 0 < r < R. (6)

Proof. Let w(x) = u(x) − |x|2/2n, x ∈ BR then ∆w = 0. By the maximum principle w(0) ≤
sup∂Br

w = (sup∂Br
u) − r2/2n. Thus we have the inequality. �

Lemma 3.2. (Nondegeneracy: Problem A). Let u be a soultion of Problem A in D. If Br(x0) b
D, then

sup
∂Br(x0)

u ≥ u(x0) +
r2

8n
, for x0 ∈ Ω(u).

Proof. Note that
sup
Br(x0)

u = sup
∂Br(x0)

u, (7)

since ∆u ≥ 0 and the maximum principle.
Let x0 ∈ Ω(u) and u(x0) > 0,

w(x) = u(x) − u(x0) −
|x − x0|

2

2n
.

Then ∆w = 0 in Br(x0) ∩Ω(u). By the maximum principle and w(x0) = 0,

sup
∂(Br(x0)∩Ω)

w ≥ 0.

Since u = 0 on ∂Ω(u) ⊂ Ω(u)c, we know that w(x) = −u(x0) − |x − x0|
2/2n < 0 on ∂Ω(u). Thus

we have

sup
∂Br(x0)∩Ω(u)

w ≥ 0, that means sup
∂Br(x0)∩Ω(u)

u ≥ u(x0) +
r2

2n
> 0.

Therefore sup∂Br(x0) u = sup∂Br(x0)∩Ω(u) u ≥ u(x0) + r2/2n. we have the desired inequality in this
case.

Let x0 ∈ Ω(u) and u(x0) ≤ 0. If there exists x1 ∈ Br/2(x0) such that u(x1) > 0, then

sup
Br(x0)

u ≥ sup
Br/2(x1)

u ≥ u(x1) +
(r/2)2

2n
≥ u(x0) +

r2

8n
,

by the above case, and we have the inequality. Let u ≤ 0 in Br/2(x0). By the strong maximum
principle for subharmonic function u, u ≡ 0 in Br/2(x0) or u < 0 in Br/2(x0). Since x0 ∈ Ω(u),
u < 0 in Br/2(x0). Then Br/2(x0) ⊂ Ω(u). This implies ∆u = 1 in Br/2(x0). By Lemma 3.1 ,

sup
Br(x0)

u ≥ sup
Br/2(x0)

u ≥ u(x0) +
r2

8n
.

Let x0 ∈ Ω(u), {xi} ⊂ Ω(u) such that xi → x0 as i→ ∞. Passing to the limit in the inequality
for xi gives the desired inequality. �
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Lemma 3.3. (Nondegeneracy: Problem B). Let u be a solution of Problem B in D. If Br(x0) b
D, then

sup
∂Br(x0)

u ≥ u(x0) +
r2

2n
, for x0 ∈ Ω(u).

Proof. It is enough to show the inequality for x0 ∈ Ω(u) = {|∇u| > 0}, by the continuity of u.
Let w(x) = u(x) − u(x0) − |x − x0|

2/2n. We will show that

sup
Br(x0)

w = sup
∂Br(x0)

w.

Suppose there exists y ∈ Br(x0) such that y = supBr(x0) w, then |∇w(y)| = 0. It is equivalent
to |∇u(y)| = |y − x0|/n. Since |∇u(x0)| > 0, y , x0. Thus |∇u(y)| > 0, therefore y ∈ Ω(u).
Since ∆w = 0 in Ω(u), the strong maximum principle for w implies w is constant in some
neighborhood of y. Hence the set of maxima is relatively open and closed in Br(x0). Thus w is
constant in Br(x0). Therefore we have

sup
Br(x0)

w = sup
∂Br(x0)

w.

and this implies

0 = w(x0) ≤ sup
∂Br(x0)

w = sup
∂Br(x0)

u −
r2

2n
− u(x0).

�

Lemma 3.4. (Nondegeneracy: Problem C). Let u is a solution of Problem C in D. If Br(x0) b D,
then

sup
∂Br(x0)

u ≥ u(x0) + λ+

r2

2n
, for x0 ∈ Ω+(u),

inf
∂Br(x0)

u ≤ u(x0) − λ−
r2

2n
, for x0 ∈ Ω−(u).

Proof. The inequalities are obtained using

w(x) = u(x) − u(x0) ∓ λ±
|x − x0|

2

2n
and the similar argument in first part of Lemma 3. . we will prove the infimum case, only. Let
x0 ∈ Ω−(u), i.e. u(x0) < 0. Let

w(x) = u(x) − u(x0) + λ−
|x − x0|

2

2n
.

Then ∆w = 0 in Br(x0) ∩Ω−(u). By the maximum principle and w(x0) = 0,

inf
∂(Br(x0)∩Ω)

w ≤ 0.

We know that w(x) = −u(x0) + λ−|x − x0|
2/2n > 0 on ∂Ω−(u). Thus we have

inf
∂Br(x0)∩Ω−(u)

w ≤ 0, that means inf
∂Br(x0)∩Ω−(u)

u ≤ u(x0) − λ−
r2

2n
< 0.

Since u ≥ 0 in Ω−(u), inf∂Br(x0)∩Ω−(u) u = inf∂Br(x0) u, we have the inequality. �
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Corollary 3.5. Under the conditions of either Lemmas 3.2 , 3.3 , or 3.4. the following inequality
holds:

sup
Br(x0)
|∇u| ≥ Cr,

for C > 0,C = C(n) in Problems A, B and C = C(n, λ±) in Problem C.

Proof. �

3.2 Lebesgue and Hausdoff measures of the free boundary

Definition 3.1. A measurable set E ⊂ Rn is porous with porosity constant 0 < δ < 1 if every
ball B = Br(x) contains a smaller ball B′ = Bδr(y) such that

Bδr(y) ⊂ Br(x) \ E.

E is locally porous in an open set D if E ∩ K is porous ( with possibly different porosity
constants) for K b D.

Proposition 3.6. If E ⊂ Rn is porous then |E| = 0. If E is locally porous in D, then |E ∩D| = 0.

Proof. Let E be a porous subset in R. We know that

χE(x) = lim
r→0

∫
Br(x)

χE(y)dy

|Br(x)|
= lim

r→0

|Br(x) ∩ E|
|Br(x)|

a.e. in R.

That means the metric densty, limr→0 |Br(x) ∩ E|/|Br(x)| = 1 a.e. on E. On the other hand, for
x0 ∈ E, |Br(x0)| = |Br(x0) ∩ E| + |Br(x0) ∩ Ec|, rn ≥ |Br(x0) ∩ E| + δnrn. Thus

lim
r→0

|E ∩ Br(x0)|
|Br|

≤ 1 − δn < 1.

Hece |E| = 0.
Let E be a locally porous subset in D, Then we have |E ∩ K| = 0, for any K b D. Since E is

a coutable union of compact subset of E, |E ∩ D| = 0. �

Lemma 3.7. Let E be a bounded measurable set in R. If for every ball B = Br(x) centered at
x ∈ E there exists a ball B′ = Bδr(y) such that B′ ⊂ B \ E, then E is C(n)δ porous.

Lemma 3.8. Let u be a solution of Problem A or B in an open set D ⊂ Rn. Then Γ(u) is locally
porous in D. Let u be a solution of Problem C, then Γ0(u) = Γ(u)∩ {|∇u| = 0} is locally porous.

Proof. Case 1) Problem A, B.
Let K b D, x0 ∈ Γ(u) and Br(x0) ⊂ K, then by Corollary 3.5, there exists y ∈ Br/2(x0) such that
|∇u(y)| ≥ (C/2)r. Thus we have

inf
Bδr(y)
|∇u| ≥

(C
2
− Mδ

)
r ≥

C
4

r,
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where δ = C/4M,M = ‖D2u‖L∞(K) < ∞. Thus

Bδ̂r(y) ⊂ Br(x0) ∩Ω(u) ⊂ Br \ Γ,

where δ̂ = min{δ, 1/2}. By Lemma 3.7 , Γ(u) is locally porous.
Case2) Problem C.

Note that Ω(u) = Ω±(u). Let K b D, x0 ∈ Γ(u)0 and Br(x0) ⊂ K. Let y ∈ Br/2(x0) such that

infBδr(y) |∇u| ≥
C
4

r, as in case 1. If we show that Bδ̂r(y) ⊂ Ω(u) ∪ Γ∗(u), where δ̂ = min{δ, 1/2},
then

Bδ̂r(y) ⊂ Br(x0) ∩ [Ω(u) ∪ Γ∗(u)] ⊂ Br(x0) \ Γ0(u),

and we have the local porosity of Γ0. Suppose Bδ̂r(y) * Ω(u)∪Γ∗(u), then there exists z ∈ Bδ̂r(y)
such that z ∈ [Ω(u)∪Γ∗(u)]c. Since z ∈ Bδ̂r(y), z ∈ (Γ0(u))c. Thus z ∈ [Ω(u)∪Γ(u)]c = [Ω(u)∩D]c.

We may assume that z ∈ D. Thus z ∈ Ω(u)
c
∩ D. Since Ω(u)

c
∩ D is open subset of {u = 0}, we

have ∇u(z) = 0. It is a contradiction. �

Corollary 3.9. Let u be a solution of Problem A, B or C in D. Then Γ(u) has a Lebesgue
measure zero.

Proof. In case of Problems A, B, It is a consequnce of Proposition 3.6 and Lemma 3.8. In case
of Problem C, we know |Γ0| = 0. Since Γ∗(u) is locally a C1,α surface, |Γ∗| = 0. �

Lemma 3.10. Let u be a solution of Problem A, B, or C in D and x0 ∈ Γ(u). Then

|Br(x0) ∩Ω(u)|
|Br|

≥ β

if Br(x0) ⊂ D, where β = β(‖D2u‖L∞ , n) in case of A, B and β = β(‖D2u‖L∞ , n, λ±) in case of C.

Proof. In case of A, B, by the porosity and the argument in proof of Lemma 3.6 , we have

|Br(x0) ∩Ω(u)|
|Br|

≥
(rδ̂)n

rn = δ̂n,

and δ̂ depends only on ‖D2u‖L∞ and n. In case of C,

|Br(x0) ∩Ω(u)|
|Br|

≥
|Br(x0) ∩ [Ω(u) ∪ Γ∗(u)]|

|Br|
≥ δ̂n,

since |Γ∗(u)| = 0. and this case δ̂ = δ̂(‖D2u‖L∞ , n, λ±). �

Lemma 3.11. If u is a C1,1 solution of Problem A, B or C in a bounded open set D ⊂ Rn, then
Γ(u) is a set of finite (n-1)-dimensional Hausdorff measure locally in D.

Proof. Let
vi = ∂xiu, i ∈ {1, ..., n}, Eε = {|∇u| < ε} ∩Ω(u).

Since

(∆u)2 = (
n∑

i=1

uii)2 ≤ C(n)
n∑

i=1

u2
ii ≤ C(n)

n∑
i, j=1

u2
i, j = C(n)

n∑
i=1

|∇vi|
2,

23



we have

C0 ≤ (∆u)2 ≤ C(n)
n∑

i=1

|∇vi|
2 in Ω,

where C0 = 1 in the case of Problems A, B and C0 = min{λ2
+, λ

2
−} in the case of Problem C. Let

K b D, then

C0|K ∩ Eε | ≤ C(n)
∫

K∩Eε

n∑
i=1

|∇vi|
2dx ≤ C(n)

n∑
i=1

∫
K∩{|vi |<ε}∩Ω(u)

|∇vi|
2dx. (8)

In Lemma 2.12, we can take M1 = M2 = 0 for solutions of Problems A, B and C. Hence we
have ∫

D
∇vi± · ∇ηdx ≤ 0, for i ∈ {1, ..., n},

for η ∈ W1,2
0 (D), η ≥ 0. since Let φ ∈ C∞c (D), φ = 1 on K and

ψε(t) :=


0, t ≤ 0
ε−1t, 0 ≤ t ≤ ε
1 t ≥ 0,

then η := ψε(vi±)φ is in W1,2
0 (D). Thus we have

∫
D
∇vi± · ∇(ψε(vi±)φ)dx =

∫
{0<vi±<ε}

ε−1φ|∇vi±|
2dx +

∫
D
ψε(vi±)∇vi± · ∇φdx

≤ 0.

Therefore

ε−1
∫

K∩{0<vi±<ε}∩Ω(u)
|∇vi±|

2dx ≤ −
∫

D
ψε(vi±)∇vi± · ∇φdx ≤

∫
D
|∇vi±||∇φ|dx.

Hence we have

ε−1
∫

K∩{0<|vi |<ε}∩Ω(u)
|∇vi|

2dx ≤
∫

D
|∇vi||∇φ|dx ≤ C(n)M

∫
D
|∇φ|dx, (9)

where M = ‖D2u‖L∞(D). Combining (8), (9) gives

C0|K ∩ Eε | ≤ CεM, (10)

where C = C(n,K,D), since φ depends on K,D.
By the Besicovich covering lemma, Γ∩K has a covering {Bi}i∈I which is finite family of closed
balls of radius ε centered on Γ ∩ K the number of overlaped balls no more than N(n), and it
does not depend on ε. Take ε by Bi ⊂ K′ where K′ is a compact set such that K b Int(K′) b D.

Case 1) Problems A and B.
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We know that |∇u| < Mε in each Bi and it implies that Bi ∩ Ω ⊂ EMε . By Lemma 3.10 ,and
(10), we have∑

i∈I

|Bi| ≤
1
β

∑
i∈I

|Bi ∩Ω| ≤
1
β

∑
i∈I

|Bi ∩ EMε | ≤
N
β
|K′ ∩ EMε | ≤

CNM2ε

C0β
.

Therefore we obtain ∑
i∈I

diam(Bi)n−1 ≤ C(n,M,K′,D)

and letting ε → 0 gives
Hn−1(Γ(u) ∩ K) ≤ C(n,M,K′,D).

Case 2) Ploblem C.
The estimation for Γ0(u) is obtained by the same proof as above. Thus it suffice to obtain the
estimation for Hn−1(Γ∗(u)).
Let v = ∂eu, η ∈ W1,2

0 (D), and η = 0 a.e. on Γ0(u), then∫
D
∇v · ∇η =

∫
D

∆u∂eη =

∫
D

(λ+χ{u>0} − λ−χ{u<0})∂eη = λ+

∫
{u>0}

∂eη − λ−

∫
{u<0}

∂eη

= λ+

∫
∂{u>0}∩Γ∗(u)

(e · (−ω))ηdHn−1 − λ−

∫
∂{u<0}∩Γ∗(u)

(e · ω)ηdHn−1

= (−λ+ − λ−)
∫

Γ∗(u)
(e · ω)ηdHn−1, (11)

where ω = (∇u(x))/(|∇u(x)|). Take η = ψε(v)φ where ψε(v), φ are defined above, then η ∈

W1,2
0 (D) and η = 0 on Γ0(u). Since ψε , 0 implies v = ∂eu > 0, e · ω > 0 and by using (11), we

have

ε−1
∫

K∩{0<|v|<ε}
|∇v|2dx + (λ+ + λ−)

∫
Γ∗(u)∩K

(e · ν)ψε(v)dHn−1

≤ ε−1
∫
{0<|v|<ε}

φ|∇v|2dx + (λ+ + λ−)
∫

Γ∗(u)
(e · ν)ψε(v)φdHn−1

≤

∫
{0<|v|<ε}

ε−1φ|∇v|2dx −
∫

D
∇v · ∇(ψε(v)φ)dx

=

∫
D
ψε(v)∇v · ∇φdx ≤ C(n)M

∫
D
|∇φ|dx.

Therefore we have
(λ+ + λ−)

∫
Γ∗(u)∩K

(e · ν)ψε(v)dHn−1 ≤ CM.

Letting ε → 0 gives

(λ+ + λ−)
∫

Γ∗(u)∩K
(e · ν)+dHn−1 ≤ CM,

for any normal vector e. For fixed x ∈ Γ∗(u) ∩ K, there exists e ∈ {±e1, ...,±en} such that
e · ν ≥ 1/

√
n. This gives

Hn−1(Γ∗(u) ∩ K) ≤
CM

λ+ + λ−
.

�
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3.3 Classes of solutions, rescalings, and blowups

Definition 3.2. (Local solutions). Let PR(x0,M) be the class of C1,1 solutions u of Problems
A, B, or C in BR(x0) such that

‖D2u‖L∞(BR(x0)) ≤ M,

where x0 ∈ Γ(u) in Problems A, B and x0 ∈ Γ0(u) in Problem C for given R,M > 0.

Definition 3.3. (Global solutions). Let P∞(x0,M) be the class of C1,1 solutions u of Problems
A, B, or C in Rn such that

‖D2u‖L∞(Rn) ≤ M,

where x0 ∈ Γ(u) in Problems A, B and x0 ∈ Γ0(u) in Problem C for given M > 0.

We Denote PR(M), P∞(M) by PR(0,M), P∞(0,M), respectively.
Let u ∈ PR(x0,M) and λ > 0 and the rescaling of u at x0

uλ(x) = ux0,λ(x) :=
u(x0 + λx) − u(x0)

λ2 , x ∈ BR/λ,

then by simple computatuion we know that uλ ∈ PR/λ(M).
For u ∈ PR(M) for any λ > 0 the rescaling uλ satisfy |D2uλ(x)| ≤ M in BR/λ. Hence we obtain

|∇uλ(x)| ≤ M|x|, |uλ(x)| ≤
1
2

M|x|x, for x ∈ BR/λ.

Therefore there exists a sequence λ = λ j → 0 such that

uλ → u0 in C1,α
loc (Rn) for any 0 < α < 1,

where u0 ∈ C1,1
loc(Rn).

Proposition 3.12. (Limit of solutions). Let {u j}
∞
j=1 be a sequence of solutions of Problems A, B

or C in an open set D, such that
u j → u0 in C1,α

loc (D),

for some 0 < α < 1. Then we have the followings:

(a) For x0 ∈ D, we have the implications

u0(x0) > 0⇒ u j > 0 u0(x0) > 0⇒ u j > 0 |∇u0(x0)| > 0⇒ |∇u j| > 0

on Bδ(x0), j ≥ j0, for some δ > 0 and suficiently large j0.

(b) For Bδ(x0) ⊂ D, we have

|∇u0| = 0 on Bδ(x0)⇒ |∇u j| = 0 on Bδ/2(x0),

j ≥ j0, for sufficiently large j0.

(c) u0 is a solution of the same Problem A, B or C, as u j, j = 1, 2, ....
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(d) For some jk → ∞, and x jk → x0 ∈ D, x jk ∈ Γ(u jk) implies x0 ∈ Γ(u0).

(e) u j → u0 in W2,p
loc (D) for any 1 < p < ∞.

Proof. (a) u j → u0 in C1,α
loc (D) implies the implications.

(b) Suppose it is not, then there exists jk → ∞, yk ∈ Bδ/2(x0) such that |∇u jk(yk)| > 0 and
|∇u0| = 0 in Bδ(x0). By Corollary 3. , at yk and Bδ/4(yk) ⊂ B(3δ/4)(x0), we have

sup
B3δ/4(x0)

|∇u jk | ≥ Cδ.

By the C1,α convergence, passing to the limit gives

sup
B3δ/4(x0)

|∇u0| ≥ Cδ.

This is a contradiction to the fact that |∇u0| = 0 on Bδ(x0).
(c) With out loss of generality, we may assume that {u j} is uniformly bounded in W2,p(K), 1 <

p ≤ ∞ for any K b D and hence u0 ∈ W2,p
loc (D). therefore it is enought to show that the equation

for u0 is satisfied a.e. in D.
Case 1) Problems A, B.

Since ∇u0 = 0 on Ωc(u0),∆u0 = 0 a.e. on Ωc(u0). Let x0 ∈ Ω(u0), then by (a) we have that
Bδ(x0) ⊂ Ω(u j) for some δ > 0 and j ≥ j0. Therefore

∆u j = 1 in Bδ(x0), j ≥ j0,

and this implies
∆u0 = 1 in Ω(u0).

Thus we obtain
∇u0 = χΩ(u0) a.e. in D.

Case 2) Problem C.
Since |Γ∗(u0)| = 0, the same argument give the desired equation.

(d) Let x jk ∈ Γ(u jk) ⊂ Ωc(u jk), then we obtain x0 ∈ Ωc(u0), by (a). Therefore If we assume
x0 < Γ(u0), then there exists a ball Bδ(x0) ⊂ Ωc(u0). For any Problems A, B, or C, in this ball,
|∇u0| = 0. Thus we have Bδ/2(x jk) ⊂ Ωc(u jk), by (b), and this is a contradiction to the fact that
x jk ∈ Γ(u jk).

(e) Since D2u j are uniformly bounded on any K b D, It suffice to show that

D2u j → D2u0 a.e. in D,

to prove (e). Fix a point x0 in Ω(u0). For some δ > 0, j0, we have

∆u j = 1 in Bδ(x0), j ≥ j0, ∆u0 = 1 in Bδ(x0).
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Thus these functions are in C∞(Bδ(x0)) and we have the pointwise convergence for x0. Let
x0 ∈ Int(Ω(u0)c). By (b), we know that there exists δ > 0, j0 such that

|∇u0| = 0 on Bδ(x0) on, |∇u j| = 0 on Bδ/2(x0), j ≥ j0

It also give the regularity and we have the convergence of second derivative at x0. Since the free
boundary has a Lebesque measure zero, we have a.e. second dervative convergence. �
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4 Obstacle problem for nonlinear second-order parabolic op-
erator

4.1 Viscosity solution of parabolic equations

We deal with the space Rn+1, denote the points in Rn+1 by (x, t) where x = (x1, x2, ..., xn) is the
n-dimentional space variable and t is the time variable.
The parabolic distance from P1 = (x1, t1) to P2 = (x2, t2) is defined by

d(P1, P2) =

{
(|x1 − x2|

2 + |t1 − t2|)1/2 t1 ≤ t2,

∞ t1 > t2.

For a point (x0, t0) ∈ Rn+1, the ε-neighborhood of (x0, t0) is the set

{(x, t) : d((x, t), (x0, t0)) < ε}.

This ε-neighborhoods give a topology in Rn and we call it the parabolic topology.
Let Ω be a domain in Rn+1, i.e. a open set in the parabolic topology. The boundary of a domain
Ω under the parabolic topology is called the parabolic boundary and denoted by ∂pΩ. Let
Qr := {|x| < r} × (−r2, 0], Qr(x, t) := Qr + (x, t). these are typical open set in the parabolic
topology.

Definition 4.1. F(M, P, v, x, t) is uniformly elliptic if there are λ,Λ > 0 such that

λ|N| ≤ F(M + N, P, v, x, t) − F(M, P, v, x, t) ≤ Λ|N |

holds for arbitrary postive definite matrix N.

Lemma 4.1. the following are equivalent:

1. F is uniformly elliptic.

2. F(M + N) ≤ F(M) + Λ|N+| − λ|N−|, for any M,N.

Definition 4.2. a function u has interior minimum in a neighborhood Ω, if we have

min
Ω

u < min
∂pΩ

u.

Definition 4.3. We say u is a supersolution of ut − F(D2u(x),Du(x), u(x), x, t) = 0 if

ut − F(D2ψ,Dψ, ψ, x0, t) ≥ 0

whenever ψ is C2 and u ≤ ψ for some neighborhood of (x0, t0), and u(x0, t0) = ψ(x0, t0).

The notions of subsolutions and solutions are then obvious.
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4.2 The existence and the continuity theory

Definition 4.4. Let u ∈ LS C(Ω × [0.T )) be a supersolution of the following obstacle ploblem
on Ω × [0.T ) if 

(E) ut − F(D2u, x) ≥ 0, in Ω × (0,T ) = QT ,

(O) u(x, t) ≥ φ(x, t) in Ω × (0,T ),
(BC) u(x, t) ≥ 0 for x ∈ ∂Ω and 0 ≤ t ≤ T,
(IC) u(x, 0) ≥ g(x) for x ∈ Ω,

(12)

where Ω ⊂ Rn is open and T > 0, g ∈ C(Ω) and φ ∈ C2(QT ) are given and F(M, x) in (E) is a
uniformly ellipic operator and F(0, x) = 0.

The notions of subsolutions and solutions are then obvious. Let Ω(u) = {(x, t) | u(x, t) >
φ(x, t)}, Λ(u) = {(x, t) | u(x, t) = φ(x, t)}, Γ(u) = ∂Ω(u) ∩ ∂Λ(u) ∩ QT , Ωt(u) = {x | (x, t) ∈
Ω(u)}, Λt(u) = {x | (x, t) ∈ Λ(u)}, and Γt(u) = {x | (x, t) ∈ Γ(u)}.

Theorem 4.2. There exists a lower semicontinuous viscosity supersoltion u which satiesfies
(12) and u satisfies ut − F(D2u, x) = 0 in Ω(u).

Theorem 4.3. (Weak Harnack Inequality) Let u be a non-negative and ut − F(D2u, x) ≥ 0 in
Q2r. Then (?

Q−
up

)1/p

≤ C
(
inf
Q+

u
)
,

where Q+ = Qr and Q− = Qr + (0,−2r2).

Theorem 4.4. (Harnack Inequality) Let u be a non-negative and ut − F(D2u, x) = 0 in Q2r.
Then

sup
Q−

u ≤ C
(
inf
Q+

u
)
,

where Q+ = Qr and Q− = Qr + (0,−2r2).

Definition 4.5. We say u satisfy the subquadratic free boundary condition at (x0, t0) ∈ Γ(u) if
for given M > 0,

Γt(u) ∩ {x | M(x0 − x)2 < t0 − t} , ∅,where t < t0 and

Γt(u) ∩ {x | (5/4)M(x0 − x)2 < t − t0} , ∅,where t > t0.

The constant 5/4 is just a technical number to prove the following theorem.

Lemma 4.5. Let u be as in Theorem 4.2. Qr(y, s) ⊂ QT . If the condition satisfied by u in Qr(y, s)
uniformly with constant M > 0, u is continuous on Qr/2(y, s).
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Proof. The only possible problem is on Γ(u) ∩ Qr/2(y, s). Assume u is discontinuous at some
point (x0, t0) on Γ(u) ∩ Qr/2(y, s). There exists a sequence (xk, tk) in Ω(u) converging to (x0, t0)
such that u(xk, tk) converges to µ (possibly ∞) with µ > lim infx→x0,t→t−0

u + δ ≥ u(x0, t0) + δ,

for sufficently small δ > 0. Without loss of generality, we may assume lim infx→x0,t→t−0
u ≥

u(x0, t0) = 0.

1. M = 16/5 and (27/40)(x0 − xk)2 ≥ t0 − tk. and Q2rk(xk, t′k) ⊂ Ω(u) where rk = |x0 − xk|/4,
t′k = tk + 2r2

k .
Let x̂k = x0 + (3/2)r(xk − x0)/|xk − x0| and t̂ = t0 − (4/5)r2

k . Since u is upersemicontinuous
and u(x0, t0) = 0, for any δ > 0, there is a neighborhood of (x0, t0), with u(x, t) ≥ −δ. The
neighborhood is as large as it contains Q2rk(xk, t′k) and Q4rk(x̂k, t̂k) for large k. For (x, t) in our
neighborhood, u(x, t) + δ ≥ 0 and u(xk, tk) + δ ≥ µ > 0 for large k. By the Harnack inequality,
u(x, t) + δ ≥ Cµ in Qrk(xk, t′k).
Choose small δ > 0 such that u(x, t) ≥ Cµ − δ ≥ (C/2)µ in Qrk(xk, t′k). Let (yk, sk) ∈ Γ(u) ∩
Q2rk(x̂k, t̂k). Now by the weak Harnack inequality,

u(yk, sk) + δ ≥ C
?

Q2rk (x̂k ,t′k)
(u + δ)p

1/p

≥ C
?

Q2rk (x̂k ,t′k)∩Qr(xk ,t′k)
(u + δ)p

1/p

≥ Cµ + Cδ.

Since δ is arbitrary, u(yk, sk) ≥ Cµ > 0. Since (yk, sk) converge to (x0, t0), we have a contradic-
tion.

2.M = 16/5 and (27/40)(x0 − xk)2 ≥ t0 − tk.

Choose rk as large as possible such that Q2rk(xk, t′k) is in Ω(u). We may assume that rk <

|x0 − xk|/4, since the other case is 1. The same argume in 1 and the subquadratic free boundary
condition for future time implies a contradiction.

3.M = 16/5 and N(x0− xk)2 ≥ t0− tk for N < (27/40) and 4.M is arbitrary and N(x0− xk)2 ≥

t0 − tk for some N > 0.
Some general version of weak Harnack and Harnack inequarity for another open set may oper-
ate the machiney.

4.M is arbitrary.
�

Corollary 4.6. (a generalization of Evans theorem) Let u be as in Theorem 4.2. If for any
Qr(y, s) ⊂ QT , u satisfies the subquadratic free boundary condition with unform constant M =

M(Qr(y, s)) > 0, then u is continuous in (0,T ) ×Ω.
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국문초록

이논문은 [1]의내용을요악하고비선형 2차포물연산자의장애물문제를소개한논
문이다. 1장에서는전형장애물문제(classical obstacle problem)를소개하고이문제의해
의 존재성과 유일성 C1,1 정칙성을 다루었다. 2장에서는 장애물-종류문제(Obstacle-type
problem)의해의C1,1정칙성을보였다. 3장에서는자유경계의기본적인성질들에대하여
증명하였다. 4장에서는비선형 2차포물연산자의장애물문제를소개하고해의연속성
을보이기위해 [2]의방법을참고하였다.

주요 어휘 : 장애물, 장애물문제, 전형장애물문제(classical obstacle problem), 장애물-종
류문제(Obstacle-type problem),자유경계, C1,1정칙성,비선형 2차포물연산자.
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