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Abstract

First, we introduce the notion of multiplier ideal sheaves which measure sin-
gularities of plurisubharmonic functions. And then we look into Hormander’s
estimates which enable to prove coherence of multiplier ideal sheaves. Sec-
ondly, we introduce the analogue of multiplier ideal sheaves namely, adjoint
ideal sheaves and suggest analytic approaches to proof of coherence of adjoint
ideal sheaves.
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Chapter O

Introduction

Given an Q-divisor D on smooth complex manifold, the multiplier ideal sheaf
associated to D is defined by u.Ox: (Kx/ —p*Kx —[u* D)), where pp : X' — X
is a log resolution of D. If >~ a;D; be a Q-divisor and if g; be a local defining
function of D;, respectively, then we can define a plurisubharmonic (PSH)
function pp := > a;log |gi-

On the other hand, given a PSH function ¢ on a complex manifold, the
multiplier dieal sheaf associated to ¢ is defined by germs of holomorphic
functions f € Ox, such that |fle™® € L2 (Leb). Thus for one divisor, we
have two multiplier ideal sheaves which are Z(D) and Z(¢p). In the first
part of this paper, we study the theorem which states these two sheaves are
the same, and then using Hormander estimates, we prove that for any PSH
function ¢, Z(¢) is coherent.

Guenancia defines an analytic analogue, adjoint ideal sheaves Adjy(p)
attached to a PSH function ¢ with respect to a hypersurface H. In the
second part of this paper, we intoduce the definition of adjoint ideal sheaves,
and give analytic approach to proof of coherence of adjoint ideal sheaves.
More percisely, in order to prove cohrence of ajoint ideal sheaves, using the
same argument for multiplier ideal sheaves, we need a version of Hérmander
estimates for a weight of the form e¥~%. And then we define another sheaves
Adj% (@) depending on a real number o > 1, but for a PSH function ¢p
associated to a divisor D, Adj%(pp) is the same as Adjg(¢p).



Chapter 1

Multiplier ideal sheaves

1.1 Algebraic and Analytic Definition

We will introduce the concept of multiplier ideal sheaves. In the following
definition, a Q-divisor means simply a finite formal linear combination of
divisors with rational number coefficients. The following definitions are cited
from [7].

Definition 1.1.1. Let D = ) D, be a divisor. Then D is said to have simple
normal crossings if each D; is smooth, and if for any point z € X, we may
choose local holomorphic coordinates (z1,--- , z,) in a neighborhood U of x
such that DNU = {z; - -+ z;, = 0} for some k < n. A Q-divisor ) _ a; D;is said
to have simple normal crossing support if > D; has simple normal crossing.

In order to define multiplier ideal sheaves, we need to know log resolutions.

Definition 1.1.2. Let D =) a;D; be a Q-divisor on an irreducible variety
X. A log resolution of the pair (X, D) is a projective birational mapping

p: X' — X,

with X’ non-singular, such that the divisor p* D+except(u) has simple normal
crossing support, where except(u) denotes the sum of exceptional divisors of

L.

Our focus is the case when X is smooth.
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Definition 1.1.3. Let D be an effective Q-divisor on a smooth complex
variety X, and fix a log resolution i : X’ — X of D. Then the algebraic
multiplier ideal sheaf

(D) = Z(X,D) C Ox

associated to D is defined to be
(D) = wOx: (Kx/x — [u*D]).

where Kx//x = Kx» — p*Kx is the relative canonical divisor and [p* D] is
the integral part of u*D.

Remark 1.1.4. Since ,U*OX’(KX’) = Ox<Kx), ,U,*OX/(KX//X) = Ox. Thus,
for an effective integral divisor NV, u.Ox/ (Kx//x — N) C Ox is naturally an
ideal sheaf of Ox.

Thus Z(D) C Ox is indeed a sheaf of ideals. For more detail, see [7].

Let us introduce multiplier ideal sheaves in the analytic approach. At this
point, multiplier ideal sheaves are attached to a plurisubharmonic function
which is
Definition 1.1.5. A function ¢ : Q@ — R U {—o0} defined on an open set
2 C C" is said to be Plurisubharmonic (abbreviated by PSH) if

a)  is upper semicontinuous;

b) for all a € Q, |¢] < d(a,CQ),

1 2m 0
< — E)do.
o) <5 [ plases
On a complex manifold X, if ¢ : X — RU{—o0} is a PSH function on every
coordinate, we say that ¢ is PSH on X.

Remark 1.1.6. If ¢ : X — R is C? function, then f is PSH if and only if
i00f is a semi-positive (1,1)-form. (see [2] p.40)

Definition 1.1.7. Let X be a complex manifold and let ¢ be a PSH function
on X. Then the analytic multiplier ideal sheaf Z(yp) associated to ¢ is the
sheaf of germs of holomorphic functions f € Oy, such that |f|?e2% is
integrable with respect to the Lebesgue measure in some local coordinates
near .
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We shall define the notion of an equivalence singularities.

Example 1.1.8. Let g be a holomorphic function on C and let ¢, = % log |g|?

and let ¢y = % log |g|?, for some positive number a; and ay. Since log |z|? is
PSH (i.e. subharmonic), ¢1 and @9 are PSH. If a; > as,

e gl

e22 gl
is locally bounded above. In that case, we can say that ¢, is more singular

than ¢,.

Definition 1.1.9. A PSH function ¢ is said to have analytic singularities if
© can be written locally as

Q@
o= log(|fil* + -+ [/nl*) + v,
where « is a positive number, each f; is holomorphic and v is locally bounded.

Definition 1.1.10. Let ¢1, s be PSH functions having analytic singular-

ities. Then ¢; and ¢, are said to have equivalence singularities, written by
—2¢1 —2¢p2
e e

©1 ~ o, if s and = are locally bounded.

Remark 1.1.11. Let ¢1, ps be PSH functions such that ¢; ~ ¢s. Then local
integrablities of e 2#* and e 2#2 are equivalent. So we get Z(p1) = Z(p2).
So we can think that multiplier ideal sheaves measure singularities of PSH
functions.

Remark 1.1.12. Let > a;D; be a Q-divisor with simple normal crossing sup-
port on a complex manifold X of dimension n and let g; be a local defining
function of D;, respectively. Let pp = > a;log|gi|. Z(¢p) is the sheaf of
|fI°
IT; lg:[*

grable on U. By the definition of the simple normal crossing, each g; can be

|/ Vil

1 K3
for some ¢ < n. Since f is analytic, f is locally representable by a power

b

series. By Parseval’s identity, the integrability of ———— is equivalent to

Ik T}

TP Here, we have a lemma.

holomorphic functions f on an open set U C X such that is inte-

written by a coordinate function. In other words,

one of all monomials of
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1
Lemma 1.1.13. The function W is integrable near 0 if and only if t < 1
z

Proof of lemma[1.1.13. Using the polar coordinates (p, 6),

1 €1 € 27
[ = [ =] 5

which is integrable if and only if ¢ < 1. [

| |2m

By the lemma, the integrability of near 0 is equivalent to a;—m < 1

or m > [a;]. Thus, |f—|22
[1 i[>

is divisible by [ |z|!*!. Therefore, f € Z(¢p) if and only if f is divisible by
[T1g:/!%! . In conclusion,

ERE

is local integrable at the origin if and only if f

Proposition 1.1.14. In the case when D has simple normal crossing support,

I(pp) = O(= Y _[a]Dy).

Notation. In the above example, we construct PSH function the ¢p asso-
ciated to D. For arbitrary effective Q-divisor D, we can do this work. We
denote this PSH function by ¢p from now on.

In general, we have the following theorem.

Theorem 1.1.15 ([2]).
For a complex manifold X of dimension n and Q-divisor D = a;D;,

Z(¢p) = Z(D).

Proof. Let S and S’ be sets such that p: X'\ S — X \ S is biholomorphic,
where 1 : X’ — X is the log resolution. Let us compute O(Kx) ® Z(¢p).
If fis an element of O(Kx) ® Z(pp) on an open set U, it can be written
by n-form f such that (i)**f A fe=2?» € L? (U). By Hartogs theorem, if f
is defined on U \ S, then f will be extended to U. Thus we think that f is
defined on U \ S. On the complement of S, u is biholomorphic, so we can

apply the change of variables. Therefore,

[arangere= [ @yt age o,
U

O (%))

5
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Thus, p*f € D(w(U), O(Kx/) ® Z(¢p o pt)) Therefore, O(Kx) @ Z(¢p) =
1 O(Kx) @ Z(pp o ). Then, by the projection formula,

Z(pp) = O(=Kx) ® p.O(Kx1) ® Z(pp o 1)
= 1t (O(Kxr — " Kx) @ Z(pp o ). (*)

Recall that ¢p is locally > a;log |gi|, for a local defining function g¢; of D;.
Then ppopu = > a;log|g; o u| and each g; o v is a local defining function of
w*D;. By the proposition with the fact ©* D has simple normal crossing
support, Z(wp o) = O(=[u* D). By[] Z(¢p) = p. (Ox:(Kx1yx = [u* D)) =
Z(D). O

1.2 Hormander Estimates

In the next section, we are going to prove coherence of multiplier ideal
sheaves. In order to do this, we need Hormander estimates for singular
weights. We first introduce some notations and definitions.

Notation.

Let (X,w) be a complex n-dimensional Hermitian manifold. A smooth (Her-
mitian) metric of a holomorphic line bundle L associated with a holomorphic
function ¢ is a norm defined by

|2 = [0(n)]>e "), z € Q,n € E,,

where 6 : Fg >~ Q x C is a local trivialization on a open set 2 C M and ¢
is a smooth real valued function. With a local trivialization 6 : Fo ~ Q x C,
for any section s : X — L, 6 o s is a holomorphic function. That is, any
section s can be given by a collection of scalar functions (s, ). Then the norm
associated with ¢ of a section s is defined by [s|?, = [sq|?e™*#. Likewise, we
define the norm of a L-valued (p, q)-forms by |s|?, , = [sa|2e ™

C>°(X, L). denotes the set of all global sections of F with smooth coefficients.
L?(X, L) denotes the set of all global sections s of F satisfying

1s]|? = / |s(x)|2dVi(z) < +oo.
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Cro(X, L) denotes C°(M, APTy, @ E).
L? (X, L) denotes set of L-valued (p, g)-forms such that

) ::/|s<x)|gmde(x) < +o0.
Defining an inner product
((s,1)) = / (5,1)wpdV, Vs,t € L2 (X, L)
make L2 (X, L) Hilbert space.

D, (X, L) denotes the set of compactly supported (p, ¢)-forms in C35 (X, L).

The following inequality is essential for the proof of Hormander estimates
theorem.

1.2.1 (Bochner-Kodaira-NakanoInequality). [0
Let (X,w) be a Kdhler manifold and L be a holomorphic line bundle with a
smooth metric p. Assume that i00p > ew. Then, for all s € D, ,(X, L),

152+ 075 = eq [ 15 v

For s € L(p )(X L), we can compute Js as a distribution. The mapping
0: L, (X, L) = L
operator

(p 4+1) (X, L) between two Hilbert spaces are non-bounded

Definition 1.2.2. Let T' : Hy — H, is a operator between two Hilbert
spaces. Then T is said to be closed densely defined if Dom(T) is dense in H;
and if Graph(T) is closed a subspace of Hy x Hs.

Proposition 1.2.3. If T' : Hy — Hs is a closed desely defined operator
between two Hilbert spaces, then we can define the adjoint operator T™ :
Hy — Hy and it is also closed desely defined operator.

Proof. Let Dom(T*) be the set of all x € Hy such that z — (Tz,y) is
continuous linear functional on Dom(T'). After extending this functional to
H, = Dom(T) via Hahn-Banach theorem, then by Riesz Representation
theorem, we can find a z € H; such that for all z € Dom(T),

(Tz,y) = (z,2).
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So we define T*y by such z. Let F': Hy x Hy — Hy x H; be a mapping given
by

Fz,y) = (y, —x).
Then for (y,x) € Hy X Hy, (y,x) L F(Graph(T)) means that for all z € Hy,

<(y7 $), (TZ, _Z)>172 =0

(Tz,y)e = (z,2)1.

Since z — (z,x); is continuous, y € Dom(T*) and T*y = x. Therefore,
F(Graph(T)*) = Graph(T™). (*)

So Graph(T*) is closed. For the proof of the desity of Dom/(T*), assume y €
Dom(T*)*. Then for all z € Dom(T*), (y, z) = 0. Then ((y,0), (2, T%2))12 =
0. In other words, (y,0) L Graph(T*). By (*) and closedness of T', Graph(T™*)*
F(Graph(T)) = F(Graph(T)). Therefore, y = T0 = 0, that is, Dom(T*)*+ =
0. Thus Dom/(T*) is dense.

O

Let Dom(9) = {s € L2,(X,L) : 8s € L2,,,(X,L)}. Then Dom(9)
contains Dy, 4(X, L) which is dense in L2 (X, L). And suppose (s,) converges
to s in L2 (X,L) and if (Js,) converges to t in L2 (X, L), then (9s,)
converges to ds with respect to weak-topology, so ds = dt which means
Graph(0) is closed. Thus the operator O : L2 (X, L) — L3 (X, L) is closed
densely defined. Therefore, by the above proposition, we get the densely
defined operator 9 .

When we prove Hérmander estimates, the following analysis lemma make

it easier.

Lemma 1.2.4. LetT : Hi — Hs be a closed densely defined operator between
two Hilbert spaces. Suppose that for some o € Hs, there exist a constant
C > 0 such that for all B € Dom(T™*),

(o, B)I* < CIT*B)1*. (*)
Then there exist uw € Hy such that

Tu =«
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and
Jul* < C

Proof. Consider the functional
F:Image(T*) 3T — (B, ).

This functional is clearly linear. By (*), if T*8 = 0, then (8,a) = 0, hence
the functional is well-defined. Again by (*), the functional is continuous. By
Hahn-Banach theorem and the Riesz Representation theorem, this functional
can be extended to a linear functional on H; and there exist u € H; such
that
F(v) = (v,u)
and
lul* < C
On Image(T*),
<T*ﬂ’u> = <67a>'

Since Dom/(T') is dense, Tu = a. O

From now on, we will prove Bochner-Kodaira-Nakano inequality on bigger
space than D, ,(X, L).

Definition 1.2.5. Let X be a complex manifold with a Kahler metric w.

e A function x : X — [0,00) is said to be ezhaustion if for all ¢ € R,
{z € X|x(2) < ¢} is relative compact in X.

e A C? function ¢ : X — R U {—o0} is said to be strictly plurisubhar-
monic if i00¢ > 0.

e (X,w) is said to be complete if there is a smooth exhaustion function
X : X — [0,00) such that |dy|, is bounded.

Lemma 1.2.6. Let (X,w) be a complete Kdihler manifold of complex dimen-
sionn and let L be a holomorphic line bundle. For all s € Dom/(d)NDom(d*),
there is a sequence (s,,) C D, 4(X, L) such that

I$m = sll,
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105, — s
and

0% 5, — 05|
tend to 0.
Proof. Let 1 be a partition of unity on a neighborhood of Supp(s) with a
small support. Then s = ) 1);s, so it is enough to approximate each 1);s.
Thus we may assume that Supp(s) is contained in a coordinate neighborhood,
where L is trivial. Let x be a smooth exhaustion function with |dx| < C and
let f(t) be a smooth function whose values 1 for ¢ < 0, 0 for ¢ > 1 and
|df| < 2. For all m € N, let x,,(z) = f(C7'27™"1x(2)), then |dx,,| < 27™.
Let s,, = xms. Clearly, s,, — s. Also,

55m = Xmés + 3Xm A S.

But,
[08m — Xm0s| = [Oxm A 8| < [Ixml]s] < 277 |s|.

By Lebesgue dominated convergence theorem,
105, — XmOs|| — 0 or ||0s,, — 0s| — 0.
Furthermore,
(0" (Xims) = Xm 05, )] = |{s, Xm0t — I(xmt))| = (5, =Oxm A )| < |s][t[27™.

Thus,
|0 (XmS) — xmO™s| < |s]27™.

As above, this implies ||0*s,, — 0*s|| — 0. Since s,, has compact support,
we may assume that s has a compact support. Therefore, let s € Dom/(9) N
Dom(9*) with compact support which is contained in a neighborhood where
L is trivial. Let p be a smooth function with compact support such that the

integral is equal to 1 and let
pn(z) = m* p(mz).

Let s, = pm * s be the convolution. Then (s,,) is smooth and converges
to s in L. Since 0 commute with convolutions, (Js,,) converges to ds. The

10
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remaining part is complicated because 0* is not a order 1 operator with
constant. Let us compute 9*. Let s € Dom(9) and let t € D, (X, L). Locally,
we can write

S = Z SinZi A dEJ
/[:Mj
and

t= Ztlykdzl VAN dEk

ik

, where [i| = p,|j| = ¢+ 1,[k] = q. Now
Ot = Ot; 1) 0%, dZm N d2z; N dZy, = (=1)P0; 1) 0Z,, dz; N\ dZp, N dZy.
Then
/ S0 $)isFipe AV = (075, 1))
ik
= ((s,0t))
—1)p/Zsi7j8ti7k/8§m6_2¢dV
ij
- )p / Z Z 6_2¢SZ’J’ 8Z17k/62mdv
P! /ZZ@ ©557)/02m i dV.

Therefore,

D*s = (—1)Pt! Z Z e*?0(e™2?s, ;) /0zmdz; A dz.

We conclude that

Proposition 1.2.7. 0* operator is of the form

Z(@s)/@zm +as, s € Dom(0*),

m

where a is smooth.

11

F, -
R |



CHAPTER 1. MULTIPLIER IDEAL SHEAVES

we cite the following lemma which complete the proof from [2].

Lemma 1.2.8. Let Pf = > a;.0f /0xi+bf be a differential operator of order
1 on an open set Q C R™, with coefficients a, € C1(Q), b € C°(Q). Then for
any v € L*(R*) with compact support in Q, we have

lim | P+ p) = (Pv) * p12 = 0,
[]

Proposition 1.2.9. If (X, w) is complete, then by the lemmal1.2.6, Bochner-
Kodaira-Nakano inequality holds, for all s € Dom(d) N Dom(9*).

The following theorem due to [5].

1.2.10 (Hérmander Estimates).

Let (X,w) be a complete Kdhler manifold of complex dimension n and let L
be a holomorphic line bundle with a smooth metric p. Suppose that i©(L) =
i00¢ > ew. Then for all f € L%’q(X, L) satisfying Of = 0, there emists
g€ L?, (X,L) such that g = f and

n,qg—1
1
2 2
1o av <= [1re v

Proof. By the proposition [1.2.9] we have for all s € Dom/(9) N Dom(d*),
107s]1* > eqlls|I*.

Thus, for all s € Dom/(d) N Dom(d*),

(NP < AP Nl < ||f\|2$||5*8||2-

By the Lemma [1.2.4| with C' = Hf”2, there is a g € L? (X, L) such that

€q n,q—1

lgll* < C.

The proof is complete. O

Definition 1.2.11. Let X be a complex manifold. X is said to be Stein if
there is a smooth strictly PSH exhaustion ¢ : X — [0, +00).

12
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Property 1.2.12. If X s a Stein manifold, then X has a complete Kahler
metric.

Proof. Let 1) be a smooth exhaustion such that i900 > 0 and let w = i0de¥.
Then this form is Kéhler. Take y = e¥/2. Then

Ox N Oy = i(i(?w A Onp)e?

and

_ _ _ 1 _
w = i00e¥ = (i0Y A O + i00))e? > Z(W’ A Onp)e?.
Thus [9x|2 < 1. In other words, |dx|., is bounded, so is |dx|,- O

Remark 1.2.13. In the above proof, we can know easily the followings. If w
is complete, then cw is also complete for some constant ¢ > 0. Furthermore,
if w,w’ are Kéhler metrics and if w is complete, then w + w’ is complete.

1.2.14 (Hérmander Estimates on Stein manifolds).

Let (X,w) be a Kdhler manifold of complex dimension n and let L be a
holomorphic line bundle with a smooth metric v. Suppose that X is a Stein
manifold and iO(L) = i00p > ew. Then for all f € L2 (X, L) satisfying
df =0, there exists g € L? (X, L) such that g = f and

n,g—1

1
2 2
/|g|w,godv < 5/|f’w,g@dv

Proof. By the assumption, we have a smooth exhaustion 1) such that {99y >
0. Also, in the proof of W' = i00e¥ is complete metric. Then for all
¢ > 0, the Kéhler metric w, = w + cw’ is complete. Let L. be a holomorphic
line bundle L endowed with the metric ¢, = ¢ + ece? so that i90p, > €ew,.
We denote | - |. by the norm with respect to w., ..

Lemma 1.2.15. Let w,~ be two Kdhler forms on X such that w < . For

every (n,q)-form f,
F2AV, < |2V,

Proof. Let x € X be a point. On the coordinate (z1, ..., z,) near x,

w=1 Z de/\dzj

1<i<n

13
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and
y=i Y vdz Adz,

1<j<n

where v; < -- -1, are eigenvalues of v with respect to w. So ,/y;dz;’s are
orthonormal for . By the assumption, v; > 1. For every f =Y frdzny AdZk

and |K| = q,
2= (e y) et

where v = [[;cx 7;- Furthermore,
AVy = y1 - ypdV,.
Therefore,
|f12dV,, < |f2dVe.
0
Now |f[3, < +o0o. By the Lemma, |f|2_,dV,. < |f|2 4dV,. But e7*% <
e 2%, thus |f|> < +oo. Applying [1.2.14] to (X, E.,w,) gives a solution g, to
dg. = f with
eqllgells < IFIIE < IIFIP

Therefore, the family (g.e?) is bounded in L?, so we get a weakly convergent

subsequence (g.;) in L7

.- The weak limit g is a solution what we need. [

A singular Hermitian metric ¢ on L is a Hermitian metric on L except
that ¢ is not necessarily smooth, but PSH.

1.2.16 (Hérmander Estimates for singular weights).

Let Q be a Stein domain in C", let @ be a PSH function defined on Q) and let
w be a Kdihler form on Q. Suppose that i00p > ew. Then for all (n,q)-form
f such that

/|f\2 24V < 400, Df =0,

there exists a (n,q — 1)-form g such that Og = f and

1
/ e av < / e 2eav.
Q Q

14

SR
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Proof. Using the standard regularization ¢, = @*p,, we can get a decreasing
sequence of smooth PSH functions ¢, = ¢ * p, defined on 2, such that ¢,
converges to ¢. Apply [1.2.10] to smooth metric ¢,, we then get g, such that
dg, = f and,

1 1
ey < / e eav < / e v
Q. Q

Q2

Since ¢, is decreasing to ¢, the family (g,e¥*) is bounded, so there is a
subsequence converging weakly in L? . Therefore the weak limit g satisfies

1
/ ol 2y < / fReeav.
Q Q

Since 0 is continuous in distribution sense,

Og=f on (.

1.3 Coherence of Multiplier Ideal Sheaves

In this section, we will prove that multiplier ideal sheaves are coherent. Fol-
lowing definitions and properties are cited from [2].

Definition 1.3.1. Let <7 be a sheaf of rings on a topological space X and let
< be a o/-module. Then . is said to be locally finitely generated if for every
point o € X, one can find a neighborhood € and sections F1, - - - , F, € .#(Q)
such that for every € (2, the stalk .7, is generated by germs Fy ,,--- , Fi,
as a «Z,-module.

Definition 1.3.2. Let Ox be a sheaf of rings on a topological space X and
let S be a sheaf of modules over Ox. S is said to be coherent if:

a) S is locally finitely generated;

b) for any open subset U of X, any n € N and any morphism F : O%|y —
S|vof Ox-modules, the kernel of F' is locally finitely generated.

15



CHAPTER 1. MULTIPLIER IDEAL SHEAVES

1.3.3 (Strong Noetherian Property).

Let .# be a coherent analytic sheaf on a complex manifold M and let % C
F5 C -+ be an increasing sequence of coherent subsheaves of .%. Then the
sequence (%) is stationary on every compact subset of M.

1.3.4 (Krull lemma).
Let F' be a finitely generated R-module and let & be a submodule. Then

CL) ﬂkzomkF: {0},
b) mkzo(E + mkF) =F.

Lemma 1.3.5 ([3]).
Let ¢ be a PSH function on a domain 2 C C" and x € Q). If

lim inf ﬂ

>n+s
==z log|z — z

for some integer s > 0, then

Z(p)e C M,

where m$"! is the mazimal ideal of Oq..

Proposition 1.3.6 ([8, 3]).
Let © be a open set in a Kdahler manifold (X,w). For any PSH function ¢
on §, the multiplier ideal sheaf Z(p) is coherent over Q.

Proof. Since coherence is a local property, we may assume that €2 is a bounded
Stein domain in C". Thus Since Oy is coherent, by the strong noetherian
property, the family of sheaves generated by finite subsets of H?(£2, ) :=
{f € 0Q) : |,|flPe?dV < +o00} has a maximal element on every com-
pact subset of . Thus H?(), ¢) generates a coherent ideal sheaf 7. Clearly,
J CI(p).

Let us prove Z(p) C J. By Krull lemma, it suffices to show that for all
x €,

Z(¢)e C To + L) Ny,

for all integer k > 0, where m is the maximal ideal at z. Let h € Z(¢), such
that h is holomorphic on a neighborhood U and let V' C U be a neighborhood

16



CHAPTER 1. MULTIPLIER IDEAL SHEAVES

of x. Let x be a cutoff function such that Supp(x) C U and x|y = 1. we
choose V sufficiently small so that [0x| < 1 Let f = d(xh). Let L be a trivial
line bundle equipped with the singular metric

pi(z) = o(2) + (n + k) log|z — x| + |2|*.

On VUUS, f=0. Also, on VeNU, |z — x| 2t e=21" is bounded.
Therefore,

/ |f|Pe 2 dV < 0/ |f|Pe™2¢dV < C/ |h|2e”22dV < +oo.
Q U U
The second inequality follows because |[i00f| = |hdx| < |f].

Since
000> |zi*) =i dz A dz,
100y, > ZZ dz; \ dz;.

Apply theorem [1.2.16|to (2,7 dz; A dZ;, L), we then get a solution g such
that dg, = f = Oxh and

| lavfe e ol 200y < ¢ [ fguftertole ol 20ty
Q Q

< CC”/ |fIPe”22dV < +o0.
0

Therefore, g, € L*(Q, ) , so Gy := xh — g, € L*(Q,¢). Since dG} = 0,
G}, is holomorphic and then G, € J. Furthermore, by the lemma [1.3.5]
he — Gre = gy € (), N WA thus h, € T, + Z(¢). N mk+L The proof is
done. O]
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Chapter 2

Adjoint Ideal Sheaves

2.1 Algebraic and Analytic Definition

Definition 2.1.1. Let H be a smooth hypersurface in a complex manifold X
and let D be a Q-divisor on X such that H is not contained in Supp(D). We
fix a log resolution 1 : X’ — X of D such that ;*D + p*H + Kx//x + Exc(p)
has SNC support. The adjoint ideal sheaf Adjgy(D) of D with respect to H
is defined by

Adju (D) = p1.O0x(Kx/x — [ D] — w*H + H'),
where H' is the strict transformation of H.

Definition 2.1.2. Let ¢ be a PSH function on a complex manifold X and
let H be a smooth hypersurface. Then Adj%(p) is defined by the sheaf of
germs u € Ox, such that |u|?e~2? is integrable with respect to |h|T1g2|h|Leb,
where h is a local equation for H and Leb is the Lebesgue measure.

Unlike the multiplier case, in general, Adj% () is not the same the alge-
braic one.

Definition 2.1.3 ([4]).
The analytic adjoint ideal sheaf Adjy(¢) attached to a PSH function ¢ with
respect to a hypersurface H defined by

Adju(e) == Adig (1 + €)¢).

e>0

18



CHAPTER 2. ADJOINT IDEAL SHEAVES

Theorem 2.1.4 ([4]).

Let H be a smooth hypersurface in a smooth complex variety X and let D
be a Q-divisor on X such that H is not contained in Supp(D). Let ¢p be a
corresponding PSH function to D. Then

Naturally, we have the following question.

Q. Are adjoint ideal sheaves coherent?

H. guenancia proves the coherence of Adjy(¢) using the method, namely
fundamental adjuction exact sequence, under the additional hypothesis that
e¥ is locally Hélder continuous.

Definition 2.1.5. A function f : C" — C is said to be Holder continuous if
there are nonnegative constants C' and « such that for all z,y € C,

|f(z) = f(y)] < Cloz —y|*.

We then can define Holder continuity of a function on a complex manifold
X through coordinate charts.

Theorem 2.1.6 ([4]). Let X be a complex manifold, let H be a smooth
hypersurface and let ¢ be a PSH function on X, p|g # —o0, such that e¥ is
locally Hélder continuous. Then Adjg(p) is a coherent ideal sheaf on X.

2.2 Modified L? Estimates

In order to prove coherence of adjoint ideal sheaves using the same method
for multiplier ideal sheaves, we need a version of Hérmander estimates for a
weight of the form e=%*%, where ¢ and 1 are PSH functions. In this section,
we introduce the Blocki’s L? estimates.

Let € be a Stein open set in C" and let f = 3. f;dz be a (0, 1)-form on .
If ¢ is smooth and strictly PSH, then 100y determines a Hermitian metric.
Then

s, = > & F i e (*)

19



CHAPTER 2. ADJOINT IDEAL SHEAVES

, where (/%) is the inverse transposed of (0%¢/0z;0%}).

For a PSH function ¢ not strictly, (%) does not make sense. However, if ¢

is strictly PSH, we have; For all h € Lj®

\f|§a§¢ < h if and only if if A f < h-i00.

(2),

loc

Therefore for a PSH function o, we take any h € L2 () satisfying if A f <

h-100¢ as |f|2;

h € L2 () such that

and

- Thus, the inequality 1 f125

if Af < h-i00p

Theorem 2.2.1 ([I]).
Assume that Q is a pseudoconvexr domain in C" and take o € L7 . (o)
with 0o = 0. Let o, be PSH function in Q such that ]8w|
10y oy < 0 <1 on Supp(a). Then there exists f € LlOC(Q) solvmg of = a
and such that

/Q (L= 0L, P PDAS ey

h <C.

/ |0‘|zaaw

o < C means that there is a

<1mQ and

Proof. Let f be the minimal solution to 5f = o in the L*(Q, e™¥) norm so
that f is perpendicular to Ker(9). Then for all holomorphic function u,

Ve PV = u=0
/1 IE

which means that g := fe¥ is perpendicular to Ker(9d) in the L*(Q,e %~%)
norm. Thus, ¢ is the minimal solution to dg = § in the norm L?(Q,e~¢7¥),

where [ =

IR
Q

<

<

[l
/‘5‘186 (o+)€ VAN

/ o+ fOULy5,e"

20
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CHAPTER 2. ADJOINT IDEAL SHEAVES

The last inequality follows since 100w < i09(p + ). Now, consider (0,1)-
froms P and (). For any t > 0,

i(P+Q)A(P+Q)
=1+t iPAP+ (1+1)iQAQ —t Y (P —tQ)A(P—1tQ)
<A+t iPAP+(1+1)iQAQ.

Thus,

iBAB<e[(1+t iaAa+ (1+1)|f7i00 A0y
< e[+t allay, + (L1005,

Therefore,
/ -+ 180 [p,e~d
(14t /|a|88¢ VTPAN 4 (14 1) /|f| |0 %55,€" 7 dX.
By the assumption,
(1+) [ P10 e
SO0 [ PO [ o
Supp(a) Q\Supp(a)
< 5(1+t)/ |nyew¢dA+/ |FI2109]755,€" “dA.
Supp(a) Q\Supp(a)
Combine above three inequalities, then
(l—l—t_l)/ |a|?agwew_“"d/\.
Q
> [ 0Bl Pe N (=) [ e e
Q\Supp(c) Supp(a)
> (1= 6+ 1)) [ (1= 1005 " ar

The last inequality follows since 1 —d(t + 1) < 1 and since 1 — [00[2; p S
Take t = §~'/2 — 1, then proof is done. O
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CHAPTER 2. ADJOINT IDEAL SHEAVES

But this is not enough to show the coherence of adjooint ideal sheaves for
any PSH function ¢. Because our definition does not hold the assumption
|Ov|? 5y < 1. Indeed, for a smooth hypersurface H, we choose local coordi-
nates such that H = (z = 0), locally. To apply the Berndsson’s inequality,
Y = —log(log? |z|). Then

106 NG =i dznd

|2[?log” |2|
and
00 ' L dzZ N d
) = ————dz ANdz
|2]2log? | 2]
Therefore,

10 A O < 4i00.

Thus, |5@ZJ!?B§ p > 1, s0 our ¢ does not satisfy the hypothesis.
Finally, we define analytic sheaves eased a condition.

Definition 2.2.2. Let ¢ be a PSH function on a complex manifold X and let
H be a smooth hypersurface. Then Adj;“(¢) is defined by the sheaf of germs
“logma Leb,
where h is a local equation for H and Leb is the Lebesgue measure. Then
Adj$%(¢) is defined by

u € Ox, such that |u[?¢™2¢ is integrable with respect to T

Adjs (p UAd] 1+e )

>0
Theorem 2.2.3. Let H be a smooth hypersurface in a smooth complex va-
riety X and let D be a Q-divisor on X such that H is not contained in
Supp(D). Let ¢ = @p be a corresponding PSH function to D. Then if
2>a>1,
Adjy (p) = Adju (D).

Proof. Let x € X. We may assume that x is 0 in our chart. We fix a log
resolution p : X’ — X with exceptional divisors F, ..., E,, and FE,,; such

22



CHAPTER 2. ADJOINT IDEAL SHEAVES

that p* D+ p*H + Exzc(p) has SNC support. For convenience, let H = E,, ;1.
We use the following notation;

[,I,*D = Z CL]‘E]‘
j=1

pwH=H+) bE;
j=1
m—+1
KX’ = ,LL*KX —+ chEj'
j=1
Take a local generator z,,41 of H. Let f € Ox, defined on a sufficiently

small neighborhood U of 0. Then, using the change of variables,
o219 o pfte2xver

2 av = 2 a

v |Tmi1]*(— 10g [@1] v |Tmi1 0 pl*(—log [Tm1 o pl)

[ Jul*dV",

where U’ = p~}(U). Using the same argument for multiplier ideal sheaves,
we only check the case when f is a monomial. Thus we may assume that
fou=]] zjj. Then the right hand side is

m+1 2(cptde—(14-€)ag)
k=1 EA

vr Lz TTizy 2l (= log(Jzm | TTizy [2]))

m+1 €
:/ sy for 27 v’

r (= log(lzma | TTezy [2sl™))®

where we set @01 = 0,001 = 1 and A(€) = ¢ + dp — b — (1 + €)ay.

av’

Changing to polar coordinates gives the integral is

H;”_"'ll w2k (O)+1
| :

—log(wpp1 [T wiF))e

dwy -+ - w41,

where V is a neighborhood of 0 in R7""!. We may assume that V C B(0,r),
for some r < 1. Using the usual criterion which determines integrability near
0 of 2°(—logx)®, the integrability implies that 2Az(¢) + 1 > —1. For the

23



CHAPTER 2. ADJOINT IDEAL SHEAVES

converse, if 2A\,(€) +1 > —1,

/ k=1 pooy br dwy - - - AWy, 41
v (= log(Wpg1 [Tje; wir))™

—L T, w1

< / mtl 2 k= 7 dwy -+ - dwy,4q
(— log(wm+1 Hk L Wi))e

g C/ T 1w2>\k( )+1

B (—log(ITie lwk )

dwy - - - dw,,
< + o0,

where V" is a neighborhood of 0 in R?. Therefore the convergence is equiv-
alent to 2A\g(e) +1 > —1, that is, Ax(€) > —1. It is equivalent to

dp > —cpby + [(1 + e)ak] = —(Ck — b — [ak]),

for sufficiently small ¢ > 0. Therefore the integrability is equivalent to f €
wOx (Kxiyx — [pw*D] — p*H + H'). The proof is done. O
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