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Abstract

For a (positive definite integral) binary form f(x, y) = ax2 + bxy + cy2,
the set of integers n such that f(x, y) = n has an integer solution is defined
by Q(f). In 1938, Delone proved that two inequivalent binary forms f and
g satisfy Q(f) = Q(g) if and only if (f, g) ' (x2 + xy + y2, x2 + 3y2).
Recently, Oh found a simple criterion on binary forms f and g satisfying
Q(f)\pZ = Q(g)\pZ, for any prime p. In this thesis, we find all binary forms
f and g such that Q(f)\pZ = Q(g)\pZ for any prime less than or equal to 13

by using Oh’s criterion, where Df ⌘ 5 (mod 8), 4Df = Dg and
⇣

Df

p

⌘
= 1.
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Chapter 1

Introduction

For fixed a, b, c 2 Z, the homogeneous quadratic polynomial

f(x, y) = ax2 + bxy + cy2

is called a binary quadratic form and is denoted by [a, b, c]. For an integer
n, if there are integers a, b such that f(a, b) = n, then we say that n is
represented by f . Let Q(f) be the set of all integers that are represented
by f . It has a long and rich history on deciding the set Q(f) since Fermat’s
theorem on the representation by a sum of two squares. If the class number
(the number of equivalence classes in the genus) of a form f is one, then the
set Q(f) is determined by its local structure. So in this case, it is quite easy
to determine the set Q(f). However if the class number of f is bigger than
1, there is no simple method on deciding the set Q(f) as far as the author
knows.

In 1938, Delone proved in [4] that for two positive definite primitive inte-
gral binary forms f and g, Q(f) = Q(g) if and only if f is equivalent to g or,
as an exceptional case, the pair (f, g) is equivalent to (x2+xy+y2, x2+3y2).
This result means that the set of integers that are represented by a positive
definite binary quadratic form decides the form itself except the sole case.
This result was generalized to indefinite case in [5]. As a natural general-
ization of this result, one may consider the set of an arithmetic progression
instead of the set of integers that are represented by a form. Recently, Oh
gave a simple criterion in [6] on finding all pairs of reduced forms (f, g) such
that Q(f) \ pZ = Q(g) \ pZ for any prime p.
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CHAPTER 1. INTRODUCTION

In this thesis, we just focus on finding all pairs of reduced forms (f, g) '
([a, b, a], [4a, 2b, a]) such that Q(f) \ pZ = Q(g) \ pZ for any prime p less

than or equal 13, where Df ⌘ 5 (mod 8), 4Df = Dg,

✓
Df

p

◆
= 1, and p2 is

represented by
h
4, 2, 1�Df

4

i
. To do this, we will use Oh’s criterion. In fact

there are only finitely many pairs (f, g) satisfying the above property for any
prime p.

In Chapter 2, we introduce basic terminologies and theories of binary
quadratic forms. We define the class number h(f) of a binary form f and
provide a simple method on finding all binary forms with discriminant given
in advance.

In Chapter 3, we establish the existence of a group law on the proper
equivalence classes of primitive forms of the given discriminant D and de-
velop its main properties. The group law is called composition, which was
introduced by Gauss. We also introduce ambiguous classes and ambiguous
forms. It is well known that if D is an odd integer less than �4, then the
number of ambiguous classes with discriminant D is 2�(D)�1, where �(D) is
the number of odd prime factors of D. This fact plays an important role on
computing the number of pairs (f, g) that we want to find in this thesis.

In Chapter 4, we compute all reduced forms (f, g) satisfying all assump-
tions given above for any prime p less than or equal 13. The results will be
summarized in Tables (4.1) to (4.5).

Any unexplained notations and terminologies on binary quadratic forms
can be found on [1] and [2].
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Chapter 2

Basic theory of Binary
Quadratic Form

In this chapter, we introduce some notations and terminologies on binary
quadratic forms.

Definition 2.0.1. For fixed a, b, c 2 Z, the homogeneous quadratic polyno-
mial

f(x, y) = ax2 + bxy + cy2

is called a binary quadratic form and is denoted by [a, b, c]. The integer

Df = b2 � 4ac

is called the discriminant of the form.

We note that Df ⌘ 0 or 1 (mod 4). For the binary quadratic form

f(x, y) = ax2 + bxy + cy2, let Mf be the symmetric matrix

✓
a b

2
b
2 c

◆
. From

the definition, we have Df = �4 ·det(Mf ). If Df is a perfct square, then f is
factorized into a product of two linear forms with integer coe�cients. From
now on, we always assume that Df is not a perfect square.

Definition 2.0.2. For a binary quadratic form f(x, y) = ax2 + bxy + cy2,

(1) ifDf < 0 and a > 0, then 4af(x, y) = (2ax+by)2�Dfy
2 and so f(x, y) �

0 for any (x, y) 2 Z2. Furthermore f(x, y) = 0 if and only if x = y = 0.
The binary form f is called positive definite if it satisfies this condition.

3



CHAPTER 2. BASIC THEORY OF BINARY QUADRATIC FORM

(2) IfDf < 0 and a < 0, then 4af(x, y) = (2ax+by)2�Dfy
2 and so f(x, y)

 0 for any (x, y) 2 Z2. The binary form f is called negative definite
if it satisfies this condition.

(3) If Df > 0, then f is called indefinite. Note that if f is indefinite, then
the values f(x, y) could be both positive and negative according to the
integers x, y.

Definition 2.0.3. For two binary quadratic forms f and g, if there is a

matrix T =

✓
r s
t u

◆
such that Mf = T t · Mg · T , then we say that f is

equivalent to g, and is denoted by f ⇠ g. In particular, we say that f is
proper equivalent to g if det(T ) = 1, and f is improper equivalent to g if
det(T ) = �1.

Assume that a binary form f is equivalent to g. Clearly Df = Dg.
Furthermore f is positive definite if and only if g is positive definite. For a
binary form f , the set of binary forms equivalent to f is called the class of f .

Theorem 2.0.4. In every class C of forms, there is always a form [a, b, c] 2
C which satisfies the condition

|b|  |a|  |c| .

Proof. See [1].

Theorem 2.0.5. The number of classes with discriminant D is finite.

Proof. See [1].

Theorem 2.0.6. The number of classes of positive definite forms with dis-
criminant D is equal to the number of the set of integers a, b, c satisfying

b2 � 4ac = D,

⇢
� a < b  a < c or
0  b  a = c.

· · · (1)

Proof. See [1].
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CHAPTER 2. BASIC THEORY OF BINARY QUADRATIC FORM

From now on, we always assume that a binary quadratic form is positive
definite and integral.

Definition 2.0.7. A binary quadratic form f(x, y) = ax2 + bxy + cy2 satis-
fying the condition (1) of Theorem 2.0.6 is called a reduced form.

Definition 2.0.8. For a binary quadratic form f(x, y) = ax2 + bxy + cy2,
we say that the form f is primitive if (a, b, c) = 1, and is imprimitive if
(a, b, c) > 1.

Let (a, b, c) = g > 1. Clearly


a

g
,
b

g
,
c

g

�
is a primitive form with dis-

criminant
D

g2
. Also if a form f is equivalent to a primitive form g, then f

is also primitive. From now on, we deote by h(D) the number of classes of
primitive forms with discriminant D. Then the number of classes of forms

with discriminant D is equal to
P

g2|D,g>0 h

✓
D

g2

◆
.

Definition 2.0.9. For an integer n and a binary quadratic form f(x, y),
if there are integers a and b such that f(a, b) = n, then we say that n
is represented by f(x, y). The set of integer solutions (x, y) which satisfy
f(x, y) = n is denoted by R(n, f), that is, R(n, f) = {(x, y) 2 Z2 | f(x, y) =
n}. If (a, b) 2 R(n, f) and gcd(a, b) = 1, then we say that (a, b) is a proper
solution.

Definition 2.0.10. For a binary quadratic form f(x, y) = ax2 + bxy + cy2,
the set of integer that are represented by f is denoted by Q(f).

Lemma 2.0.11. For binary quadratic forms f and g, if they are in the same
class, then Q(f) = Q(g).

Proof. If n is represented by f , then there is an integer solution (a, b) 2 Z2

such that f(a, b) = n. From the assumption that f ⇠ g, there is a matrix

T =

✓
r s
t u

◆
such that detT = ±1 and f(a, b) = g(ra + sb, ta + ub). Since

g(ra + sb, ta + ub) = f(a, b) = n and ra + sb, ta + ub 2 Z. Hence n is
represented by g. This implies that Q(f) ⇢ Q(g). The converse is trivial.
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Chapter 3

Composition of binary
quadratic forms

3.1 Composition law of binary forms

In this section, we establish the existence of a group law on the proper
equivalence classes of primitive forms of the given discriminant D and develop
its main properties. This group law is traditionally called composition.

Lemma 3.1.1. For a primitive form f = [a, b, c], f represents an integer
prime to M , for any integer M .

Proof. See [2].

Lemma 3.1.2. For two equivalent primitive forms f = [a1, b, c1] and g =
[a2, b, c2], if there is an integer l such that l | c1, l | c2 and gcd(a1, a2, l) = 1,
then [la1, b, l�1c1] ⇠ [la2, b, l�1c2].

Proof. See [2].

Definition 3.1.3. For two primitive forms f1 = [a1, b1, c1] and f2 = [a2, b2, c2]
with discriminant D, we say that they are concordant if

(1) a1a2 6= 0;

6



CHAPTER 3. COMPOSITION OF BINARY QUADRATIC FORMS

(2) b1 = b2 = b;

(3) the form f3 = [a1a2, b, ⇤] with discriminant D is integral.

The form f3 is also primitive and we call the form f3 is the composition
of f1 and f2. When a1 and a2 are coprime, the condition (3) follows auto-
matically from (1) and (2). Note that the ⇤ in (3) is determined by a1a2, b
and D. From now on, we will use this character if it is determined by the
other coe�cients and the discriminant.

Lemma 3.1.4. For two classes C1 and C2 of primitive forms with dis-
criminant D 6= 0, there are concordant forms f1 = [a1, b, ⇤] 2 C and
f2 = [a2, b, ⇤] 2 C such that

gcd(a1, a2) = gcd(a1,M) = gcd(a2,M) = 1 for any given integer M.

Proof. See [2].

Lemma 3.1.5. For two classes C1 and C2 of primitive forms with discrim-
inant D 6= 0, there is a class C such that the composition of f1 2 C1 and
f2 2 C2 always lies in C .

Proof. See [2].

Theorem 3.1.6. For two primitive classes C1 and C2 with discriminant D,
we write

C = C1C2,

where C is the class given by Lemma 3.1.5. This rule of composition gives
the structure of a finite abelian group to the set of primitive classes of dis-
criminant D. Further, the inverse C �1 of the class C is the class containing
the forms which are improperly equivalent to one of forms in C .

Proof. See [2].

Definition 3.1.7. The finite abelian group in theorem 3.1.6 is called GD.
The order of this group GD is denoted by h(D), which is the class number
called of a primitive form with discriminant D.

7



CHAPTER 3. COMPOSITION OF BINARY QUADRATIC FORMS

One may easily show that the identity class E ofGD is the class containing

the form x2 � D

4
y2 if D is even, x2 + xy +

1�D

4
otherwise.

Example 3.1.8. For Df = �96, one may easily compute by using Theorem
2.0.6 that h(�96) = 4.
Let G�96 = {E , C1, C2, C3}. Then the four reduced primitive forms con-
tained in each class are

f0 = [1, 0, 24] 2 E , f1 = [3, 0, 8] 2 C1, f2 = [5, 2, 5] 2 C2, f3 = [4, 4, 7] 2 C3.

Then we have

f1 · f1 = [3, 0, 8] · [3, 0, 8] ⇠ [3, 0, 8] · [8, 0, 3] ⇠ [24, 0, 1] ⇠ [1, 0, 24] = f0,

f2 · f2 = [5, 2, 5] · [5, 2, 5] ⇠ [5, 2, 5] · [1, 2, 25] ⇠ [5, 2, 1] ⇠ [1, 0, 24] = f0,

f3·f3 = [4, 4, 7]·[4, 4, 7] ⇠ [4, 52, 175]·[7, 52, 100] ⇠ [28, 52, 25] ⇠ [1, 0, 24] = f0.

This computation implies that the group G�96 is isomorphic to the direct
product of two copies of Z/2Z, i.e, G�96

⇠= Z/2Z� Z/2Z.

3.2 Ambiguous forms and classes

Definition 3.2.9. The classes C such that C 2 = E or C �1 = C are called
ambiguous classes, where E is the identity class. They are the classes which
are improperly equivalent to themselves by Theorem 3.1.6.

It is well known that an improper automorph S of a form f , if exists,
satisfies

S2 = I.

Hence there exists a primitive vector b such that

Sb = �b,

8



CHAPTER 3. COMPOSITION OF BINARY QUADRATIC FORMS

and this can be extended to a basis a, b 2 Z2 with det(a, b) = 1. Furthermore
there is an integer w such that

Sa = a+ wb.

First if we replace the basis {a, b} by {a+ub, b}, then w is replaced by w�2u
for any integer u. Hence we may suppose that

w = 0 or 1

without loss of generality. Thus f is equivalent to one of the two types

fa = [a, 0, c], Dfa = �4ac;

ga = [a, a, c], Dga = a2 � 4ac.

We shall consider these as ambiguous forms of the first and second kind,
respectively.

Lemma 3.2.10. Every ambiguous class contains at least one ambiguous
form.

Proof. See [2].

Lemma 3.2.11. Let D be a negative integer such that D ⌘ 1(mod 4) and let
�(D) be the number of distinct odd prime divisors of D. Then the number of
positive definite ambiguous forms having discriminant D is 2�(D).

Proof. See [2].

Definition 3.2.12. For a binary quadratic form f(x, y) = ax2 + bxy + cy2,
we define

O(f) = {T 2 GL2(Z) | Mf = T t ·Mf · T},

O+(f) = {T 2 SL2(Z) | Mf = T t ·Mf · T},

where Mf is the symmetric matrix corresponding to f . The group O(f) is
called the automorphism group(or isometry group) of the form f and O+(f)
is called the proper automorphism group of the form f .

9



CHAPTER 3. COMPOSITION OF BINARY QUADRATIC FORMS

Lemma 3.2.13. For a positive definite binary quadratic form f(x, y) with
discriminant D,

(1) if D = �3, then |O+(f)| = 6;

(2) if D = �4, then |O+(f)| = 4;

(3) if D < �4, then |O+(f)| = 2 and O+(f) = {±I2}.

Proof. See [1].

Theorem 3.2.14. If D is an odd integer less than �4, then the number of
ambiguous classes with discriminant D is 2�(D)�1.

Proof. For a proper automorphism group O+, it is well known that the num-

ber of ambiguous forms in a given ambiguous class is
���O+/ (O+)2

���. The

theorem follows directly from Lemmas 3.2.11 and 3.2.13.

We will use this theorem to compute the number of pairs that we want
to find in the next chapter.

10



Chapter 4

Representations of multiples of
a prime

4.1 Representions of binary forms

For any integral binary quadratic form f and a prime p, we may consider
f as a binary form defined over the p-adic integer ring Zp. In that case, we
will use the notation fp.

Let f and g be positive definite binary forms and let p be an odd prime.
Assume that

Q(f) \ pZ = Q(g) \ pZ. (4.1.1)

Then one may easily show that fq ' gq for any prime q 6= p, 2. Further-
more fp ' [0, 1, 0] if and only if gp ' [0, 1, 0]. If fp 6' [0, 1, 0], then one may
easily show that

�p(f) ' �p(g) or (�p(f),�p(g)) ' ([1, 1, 1], [1, 0, 3]),

where �p is the Watson transformation (for the definition, see [6]).
From now on, we assume that

fp ' gp ' [0, 1, 0]. (4.1.2)

Note that this condition is equivalent to
✓
Df

p

◆
=

✓
Dg

p

◆
= 1.

11



CHAPTER 4. REPRESENTATIONS OF MULTIPLES OF A PRIME

When f2 ' g2, such pairs satisfying (4.1.1) are classified in [6] and [7] for
small primes. Now we assume that f2 6' g2. In this case, one may easily
show that

(f2, g2) ' ([1, 1, 1], [1, 0, 3]).

Without loss of generality, we assume that

f2 ' [1, 1, 1] and g2 ' [1, 0, 3]. (4.1.3)

This condition is equivalent to Df ⌘ 5 (mod 8) and Dg ⌘ 20 (mod 32).
Under this condition, Oh proved in [6] that:

Theorem 4.1.1. (Oh) Under the assumptions that

fp ' gp ' [0, 1, 0], f2 ' [1, 1, 1] and g2 ' [1, 0, 3],

Q(f) \ pZ = Q(g) \ pZ if and only if there are odd integers a, b such that

f ⇠ [a, b, a], g ⇠ [4a, 2b, a] and p2 is represented by


4, 2,

1�Df

4

�
.

Proof. See [6].

From the above theorem if one wants to find the pairs satisfying (4.1.1)
one has to check whether or not the following equation

p2 = 4x2 + 2xy +
1�Df

4
y2

has an integral solution. Since 4p2 = (4x+ y)2 �Dfy
2, it follows that

0  �Df  4p2 � 1. (4.1.4)

Therefore the number of such pairs is finite for any prime p.

Theorem 4.1.2. Let �(D) be the number of odd prime divisors of D for

D ⌘ 5 (mod 8). For any prime p such that
⇣

D
p

⌘
= 1, the number of pairs

(f, g) such that Q(f)\pZ = Q(g)\pZ and Df = D, Dg = 4D is 0 or 2�(D)�1

up to equivalence.

12



CHAPTER 4. REPRESENTATIONS OF MULTIPLES OF A PRIME

Proof. Assume that such pair exists. Then p2 is represented by


4, 2,

1�D

4

�
.

Since every ambiguous form with discriminant D is of the form [a, b, a] for
some a, b 2 Z+, the number of such pairs (f, g) is 2�(D)�1 up to equivalence
by Theorem 3.2.14.

In the subsequent sections, we will frequently use the following equiva-
lences of binary forms:

(1) [a, a, b] ⇠ [b, a� 2b, b]. If we let M1 =

✓
1 0
�1 1

◆
, then

detM1 = 1 and M t
1

✓
a a

2
a
2 b

◆
M1 =

✓
b a

2 � b
a
2 � b b

◆
.

(2) [a, b, c] ⇠ [a, 2at+ b, at2 + bt+ c]. If we let M2 =

✓
1 t
0 1

◆
, then

detM2 = 1 and M t
2

✓
a b

2
b
2 c

◆
M2 =

✓
a at+ b

2
at+ b

2 at2 + bt+ c

◆
.

(3) [a, b, c] ⇠ [c,�b, a]. If we let M3 =

✓
0 1
�1 0

◆
, then

detM3 = 1 and M t
3

✓
a b

2
b
2 c

◆
M3 =

✓
c � b

2
� b

2 a

◆
.

4.2 The case when p = 3

In this section, we find all pairs (f, g) of reduced forms satisfying

(i) Q(f) \ 3Z = Q(g) \ 3Z;

(ii) Df ⌘ 5 (mod 8), 4Df = Dg and

✓
Df

3

◆
= 1;

(iii) 32 is represented by


4, 2,

1�Df

4

�
.

13



CHAPTER 4. REPRESENTATIONS OF MULTIPLES OF A PRIME

By the condition (4.1.4) below Theorem 4.1.1, the discriminant of f has to
satisfy �35  Df  0. Furthermore sinceDf satisfies the condition (ii), Df =

�11 or � 35. Also 32 has to be represented by
h
4, 2, 1�Df

4

i
, so we confirm

that there is an integer solution (x, y) such that 4 · 32 = (4x+ y)2 �Dfy
2 for

each Df .

(1) Df = �11.

Since (1, 1) is an integer solution of the equation 36 = (4x+ y)2 + 11y2,
p2(= 9) is represented by [4, 2, 3]. Note that [1, 1, 3] is the unique reduced
form with discriminant �11. By Theorem 4.1.1, We have f = [1, 1, 3] ⇠
[3,�5, 3] and g = [12,�10, 3] ⇠ [3, 10, 12] ⇠ [3,�2, 4]. Hence the pair of
reduced forms satisfying the condition from (i) to (iii) given above for
p = 3 is

(f, g) ' ([1, 1, 3], [3,�2, 4]).

(2) Df = �35.

Since (0, 1) is an integer solution of the equation 36 = (4x+ y)2 + 35y2,
p2(= 9) is represented by [4, 2, 9]. Note that there are exactly two reduced
ambiguous froms with discriminant �35. By Theorem 4.1.1, We have
f = [1, 1, 9] ⇠ [9,�17, 9], g = [36,�34, 9] ⇠ [9, 34, 36] ⇠ [9,�2, 4] ⇠
[4, 2, 9] and f = [3, 1, 3], g = [12, 2, 3] ⇠ [3,�2, 12]. Hence all pairs of
reduced forms satisfying the condition from (i) to (iii) given above for
p = 3 are

(f, g) ' ([1, 1, 9], [4, 2, 9]) or ([3, 1, 3], [3,�2, 12]).

The following table provides all reduced forms (f, g) for p = 3.

Df (f, g)

-11 [1, 1, 3], [3,�2, 4]

-35
[1, 1, 9], [4, 2, 9]
[3, 1, 3], [3,�2, 12]

Table 4.1 p = 3
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4.3 The case when p = 5

In this section, we find all pairs (f, g) of reduced forms satisfying

(i) Q(f) \ 5Z = Q(g) \ 5Z;

(ii) Df ⌘ 5 (mod 8), 4Df = Dg and

✓
Df

5

◆
= 1;

(iii) 52 is represented by


4, 2,

1�Df

4

�
.

By the condition (4.1.4) below Theorem 4.1.1, the discriminant of f has to
satisfy �99  Df  0. Furthermore sinceDf satisfies the condition (ii), Df =

�11,�19,�51,�59,�91,�99. Also 52 has to be represented by
h
4, 2, 1�Df

4

i
,

so we confirm that there is an integer solution (x, y) such that 4 · 52 =
(4x+ y)2 �Dfy

2 for each Df .

(1) Df = �11.

Since (�1, 3) is an integer solution of the equation 100 = (4x + y)2 +
11y2, p2(= 25) is represented by [4, 2, 3]. Note that [1, 1, 3] is the unique
reduced form with discriminant �11. By Theorem 4.1.1, We have f =
[1, 1, 3] ⇠ [3,�5, 3] and g = [12,�10, 3] ⇠ [3, 10, 12] ⇠ [3,�2, 4]. Hence
the pair of reduced forms satisfying the condition from (i) to (iii) given
above for p = 5 is

(f, g) ' ([1, 1, 3], [3,�2, 4]).

(2) Df = �19.

Since (2, 1) is an integer solution of the equation 100 = (4x+ y)2 +19y2,
p2(= 25) is represented by [4, 2, 5]. Note that [1, 1, 5] is the unique re-
duced form with discriminant �19. By Theorem 4.1.1, We have f =
[1, 1, 5] ⇠ [5,�9, 5] and g = [20,�18, 5] ⇠ [5, 18, 20] ⇠ [5,�2, 4] ⇠
[4, 2, 5]. Hence the pair of reduced forms satisfying the condition from
(i) to (iii) given above for p = 5 is

(f, g) ' ([1, 1, 5], [4, 2, 5]).

15
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(3) Df = �51.

Since (�2, 1) is an integer solution of the equation 100 = (4x+y)2+51y2,
p2(= 25) is represented by [4, 2, 13]. Note that there are exactly two
reduced ambiguous froms with discriminant �51. Hence all pairs of
reduced forms satisfying the condition from (i) to (iii) given above for
p = 5 are

(f, g) ' ([1, 1, 13], [4, 2, 13]) or ([3, 3, 5], [5, 4, 11]).

(4) Df = �91.

Since (�1, 1) is an integer solution of the equation 100 = (4x+y)2+91y2,
p2(= 25) is represented by [4, 2, 23]. Note that there are exactly two
reduced ambiguous froms with discriminant �91. Hence all pairs of
reduced forms satisfying the condition from (i) to (iii) given above for
p = 5 are

(f, g) ' ([1, 1, 23], [4, 2, 23]) or ([5, 3, 5], [5, 4, 19]).

(5) Df = �99.

Since (0, 1) is an integer solution of the equation 100 = (4x+ y)2 +99y2,
p2(= 25) is represented by [4, 2, 25]. Note that there are exactly two
reduced ambiguous froms with discriminant �99. Hence all pairs of
reduced forms satisfying the condition from (i) to (iii) given above for
p = 5 are

(f, g) ' ([1, 1, 25], [4, 2, 25]) or ([5, 1, 5], [5,�2, 20]).

The following table provides all reduced forms (f, g) for p = 5.

Df (f, g) Df (f, g)

-11 [1, 1, 3], [3,�2, 4]
-91

[1, 1, 23], [4, 2, 23]
-19 [1, 1, 5], [4, 2, 5] [5, 3, 5], [5, 4, 19]

-51
[1, 1, 13], [4, 2, 13]

-99
[1, 1, 25], [4, 2, 25]

[3, 3, 5], [5, 4, 11] [5, 1, 5], [5,�2, 20]

Table 4.2 p = 5
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4.4 The case when p = 7

In this section, we find all pairs (f, g) of reduced forms satisfying

(i) Q(f) \ 7Z = Q(g) \ 7Z;

(ii) Df ⌘ 5 (mod 8), 4Df = Dg and

✓
Df

7

◆
= 1;

(iii) 72 is represented by


4, 2,

1�Df

4

�
.

By the condition (4.1.4) below Theorem 4.1.1, the discriminant of f has
to satisfy �195  Df  0. Furthermore since Df satisfies the condition (ii),
Df = �19,�27,�59,�75,�83,�115,�131,�139,�171,

� 187,�195. Also 72 has to be represented by
h
4, 2, 1�Df

4

i
, so we confirm

that there is an integer solution (x, y) such that 4 · 72 = (4x+ y)2 �Dfy
2 for

each Df .

(1) Df = �19.

Since (�2, 3) is an integer solution of the equation 196 = (4x+y)2+19y2,
p2(= 49) is represented by [4, 2, 5]. Note that [1, 1, 5] is the unique re-
duced form with discriminant �19. By Theorem 4.1.1, We have f =
[1, 1, 5] ⇠ [5,�9, 5] and g = [20,�18, 5] ⇠ [5, 18, 20] ⇠ [5,�2, 4] ⇠
[4, 2, 5]. Hence the pair of reduced forms satisfying the condition from
(i) to (iii) given above for p = 7 is

(f, g)] ' ([1, 1, 5], [4, 2, 5]).

(2) Df = �27.

Since (3, 1) is an integer solution of the equation 196 = (4x + y)2 +
27y2, p2(= 49) is represented by [4, 2, 7]. Note that [1, 1, 7] is the unique
reduced form with discriminant �27. By Theorem 4.1.1, We have f =
[1, 1, 7] ⇠ [7,�13, 7] and g = [28,�26, 7] ⇠ [7, 26, 28] ⇠ [7,�2, 4] ⇠
[4, 2, 7]. Hence the pair of reduced forms satisfying the condition from
(i) to (iii) given above for p = 7 is

(f, g) ' ([1, 1, 7], [4, 2, 7]).

17
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(3) Df = �75.

Since (3,�1) is an integer solution of the equation 196 = (4x+y)2+75y2,
p2(= 49) is represented by [4, 2, 19]. Note that there are exactly two
reduced ambiguous froms with discriminant �75. By Theorem 4.1.1,
We have f = [1, 1, 19] ⇠ [19,�37, 19], g = [76,�74, 19] ⇠ [19, 74, 76] ⇠
[19,�2, 4] ⇠ [4, 2, 19] and f = [3, 3, 7] ⇠ [7,�11, 7], g = [28,�22, 7] ⇠
[7, 22, 28] ⇠ [7,�6, 12]. Hence all pairs of reduced forms satisfying the
condition from (i) to (iii) given above for p = 7 are

(f, g) ' ([1, 1, 19], [4, 2, 19]) or ([3, 3, 7], [7,�6, 12]).

(4) Df = �115.

Since (2, 1) is an integer solution of the equation 196 = (4x+y)2+115y2,
p2(= 49) is represented by [4, 2, 30]. Note that there are exactly two re-
duced ambiguous froms with discriminant �115. By Theorem 4.1.1, We
have f = [1, 1, 29] ⇠ [29,�57, 29], g = [116,�114, 29] ⇠ [29, 114, 116] ⇠
[29,�2, 4] ⇠ [4, 2, 29] and f = [5, 5, 7] ⇠ [7,�9, 7], g = [28,�18, 7] ⇠
[7, 18, 28] ⇠ [7, 4, 17]. Hence all pairs of reduced forms satisfying the
condition from (i) to (iii) given above for p = 7 are

(f, g) ' ([1, 1, 29], [4, 2, 29]) or ([5, 5, 7], [7, 4, 17]).

(5) Df = �171.

Since (1, 1) is an integer solution of the equation 196 = (4x+y)2+171y2,
p2(= 49) is represented by [4, 2, 43]. Note that there are exactly two re-
duced ambiguous froms with discriminant �171. By Theorem 4.1.1, We
have f = [1, 1, 43] ⇠ [43,�85, 43], g = [172,�170, 43] ⇠ [43, 170, 172] ⇠
[43,�2, 4] ⇠ [4, 2, 43] and f = [7, 5, 7], g = [28, 10, 7] ⇠ [7,�10, 28] ⇠
[7, 4, 25]. Hence all pairs of reduced forms satisfying the condition from
(i) to (iii) given above for p = 7 are

(f, g) ' ([1, 1, 43], [4, 2, 43]) or ([7, 5, 7], [7, 4, 25]).

(6) Df = �187.

Since (1,�1) is an integer solution of the equation 196 = (4x+y)2+187y2,
p2(= 49) is represented by [4, 2, 47]. Note that there are exactly two re-
duced ambiguous froms with discriminant �187. By Theorem 4.1.1, We

18
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have f = [1, 1, 47] ⇠ [47,�93, 47], g = [188,�186, 47] ⇠ [47, 186, 188] ⇠
[47,�2, 4] ⇠ [4, 2, 47] and f = [7, 3, 7], g = [28, 6, 7] ⇠ [7,�6, 28]. Hence
all pairs of reduced forms satisfying the condition from (i) to (iii) given
above for p = 7 are

(f, g) ' ([1, 1, 47], [4, 2, 47]) or ([7, 3, 7], [7,�6, 28]).

(7) Df = �195.

Since (0, 1) is an integer solution of the equation 196 = (4x+y)2+195y2,
p2(= 49) is represented by [4, 2, 49]. Note that there are exactly four re-
duced ambiguous froms with discriminant �195. By Theorem 4.1.1, We
have f = [1, 1, 49] ⇠ [49,�97, 49], g = [196,�194, 49] ⇠ [49, 194, 196] ⇠
[49,�2, 4] ⇠ [4, 2, 49] and f = [7, 1, 7], g = [28, 2, 7] ⇠ [7,�2, 28]. We
also have f = [3, 3, 17] ⇠ [17,�31, 17], g = [68,�62, 17] ⇠ [17, 62, 68] ⇠
[17,�6, 12] ⇠ [12, 6, 17] and f = [5, 5, 11] ⇠ [11,�17, 11], g = [44,�34, 11]
⇠ [11, 34, 44] ⇠ [11,�10, 20]. Hence all pairs of reduced forms satisfying
the condition from (i) to (iii) given above for p = 7 are

(f, g) ' ([1, 1, 49], [4, 2, 49]) or ([7, 1, 7], [7,�2, 28]) or

' ([3, 3, 17], [12, 6, 17]) or ([5, 5, 11], [11,�10, 20]).

Note that there is no integer solution (x, y) such that 196 = (4x+ y)2 �
Dfy

2 for Df = �59,�83,�131,�139.

The following table provides all reduced forms (f, g) for p = 7.

Df (f, g) Df (f, g)

-19 [1, 1, 5], [4, 2, 5] -171 [7, 5, 7], [7, 4, 25]
-27 [1, 1, 7], [4, 2, 7]

-187
[1, 1, 47], [4, 2, 47]

-75
[1, 1, 19], [4, 2, 19] [7, 3, 7], [7,�6, 28]
[3, 3, 7], [7,�6, 12]

-195

[1, 1, 49], [4, 2, 49]

-115
[1, 1, 29], [4, 2, 29] [7, 1, 7], [7,�2, 28]
[5, 5, 7], [7, 4, 17] [3, 3, 17], [12, 6, 17]

-171 [1, 1, 43], [4, 2, 43] [5, 5, 11], [11,�10, 20]

Table 4.3 p = 7
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4.5 The case when p = 11 or p = 13

Similarly we can find all pairs (f, g) of reduced forms satisfy the conditions
given above for p = 11 or 13. Therefore we just arrange the pairs (f, g) as
table for each p in order to avoid repeated process.

The following table provides all pairs (f, g) of reduced forms satisfying
(4.1.1) for p = 11.

Df (f, g) Df (f, g)

-35
[1, 1, 9], [4, 2, 9]

-403
[1, 1, 101], [4, 2, 101]

[3, 1, 3], [3,�2, 12] [11, 9, 11], [11, 4, 37]
-43 [1, 1, 11], [4, 2, 11]

-435

[1, 1, 109], [4, 2, 109]

-51
[1, 1, 13], [4, 2, 13] [3, 3, 37], [12, 6, 37]
[3, 3, 5], [5, 4, 11] [5, 5, 23], [20, 10, 23]

-123
[1, 1, 31], [4, 2, 31] [11, 7, 11], [11, 8, 41]
[3, 3, 11], [11,�6, 12]

-459
[1, 1, 115], [4, 2, 115]

-195

[1, 1, 49], [4, 2, 49] [11, 5, 11], [11,�10, 44]
[7, 1, 7], [7,�2, 28]

-475
[1, 1, 119], [4, 2, 119]

[3, 3, 17], [12, 6, 17] [11, 3, 11], [11,�6, 44]
[5, 5, 11], [11,�10, 20]

-483

[1, 1, 121], [4, 2, 121]

-259
[1, 1, 65], [4, 2, 65] [11, 1, 11], [11,�2, 44]
[7, 7, 11], [11, 8, 25] [3, 3, 41], [12, 6, 41]

-315

[1, 1, 79], [4, 2, 79] [7, 7, 19], [19,�14, 28]
[5, 5, 17], [17,�10, 20]
[7, 7, 13], [13, 12, 27]
[9, 9, 11], [11, 4, 29]

Table 4.4 p = 11
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The following table provides all pairs (f, g) of reduced forms satisfying
(4.1.1) for p = 13.

Df (f, g) Df (f, g)

-27 [1, 1, 7], [4, 2, 7]

-555

[1, 1, 139], [4, 2, 139]

-35
[1, 1, 9], [4, 2, 9] [3, 3, 47], [12, 6, 47]
[3, 1, 3], [3,�2, 12] [5, 5, 29], [20, 10, 29]

-43 [1, 1, 11], [4, 2, 11] [13, 11, 13], [13, 4, 43]

-51
[1, 1, 13], [4, 2, 13]

-595

[1, 1, 149], [4, 2, 149]
[3, 3, 5], [5, 4, 11] [5, 5, 31], [20, 10, 31]

-75
[1, 1, 19], [4, 2, 19] [7, 7, 23], [23,�14, 28]
[3, 3, 7], [7,�6, 12] [13, 9, 13], [13, 8, 47]

-147
[1, 1, 37], [4, 2, 37]

-627

[1, 1, 157], [4, 2, 157]
[3, 3, 13], [12, 6, 13] [3, 3, 53], [12, 6, 53]

-235
[1, 1, 59], [4, 2, 59] [13, 7, 13], [13, 12, 51]
[5, 5, 13], [13,�10, 20] [11, 11, 17], [17, 12, 39]

-315

[1, 1, 79], [4, 2, 79]

-651

[1, 1, 163], [4, 2, 163]
[5, 5, 17], [17,�10, 20] [3, 3, 55], [12, 6, 55]
[7, 7, 13], [13, 12, 27] [13, 5, 13], [13,�10, 52]
[9, 9, 11], [11, 4, 29] [7, 7, 25], [25,�14, 28]

-387
[1, 1, 97], [4, 2, 97]

-667
[1, 1, 167], [4, 2, 167]

[9, 9, 13], [13, 8, 31] [13, 3, 13], [13,�6, 52]

-451
[1, 1, 113], [4, 2, 113]

-675
[1, 1, 169], [4, 2, 169]

[11, 11, 13], [13, 4, 35] [13, 1, 13], [13,�2, 52]

Table 4.5 p = 13
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