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Abstract

For a (positive definite integral) binary form f(z,y) = az? + bry + cy?,
the set of integers n such that f(z,y) = n has an integer solution is defined
by Q(f). In 1938, Delone proved that two inequivalent binary forms f and
g satisfy Q(f) = Q(g) if and only if (f,g) ~ (2? + zy + y?, 2 + 3y?).
Recently, Oh found a simple criterion on binary forms f and g satisfying
Q(f)NpZ = Q(g)NpZ, for any prime p. In this thesis, we find all binary forms
f and g such that Q(f)NpZ = Q(g)NpZ for any prime less than or equal to 13

by using Oh’s criterion, where Dy =5 (mod 8), 4Dy = D, and <%> =1.
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Chapter 1

Introduction

For fixed a, b, c € Z, the homogeneous quadratic polynomial
f(z,y) = ax® + bay + ¢y

is called a binary quadratic form and is denoted by [a, b, c]. For an integer
n, if there are integers a,b such that f(a,b) = n, then we say that n is
represented by f. Let Q(f) be the set of all integers that are represented
by f. It has a long and rich history on deciding the set Q(f) since Fermat’s
theorem on the representation by a sum of two squares. If the class number
(the number of equivalence classes in the genus) of a form f is one, then the
set Q(f) is determined by its local structure. So in this case, it is quite easy
to determine the set Q(f). However if the class number of f is bigger than
1, there is no simple method on deciding the set Q(f) as far as the author
knows.

In 1938, Delone proved in [4] that for two positive definite primitive inte-
gral binary forms f and g, Q(f) = Q(g) if and only if f is equivalent to g or,
as an exceptional case, the pair (f, g) is equivalent to (2?+zy+v?, 2>+ 3y?).
This result means that the set of integers that are represented by a positive
definite binary quadratic form decides the form itself except the sole case.
This result was generalized to indefinite case in [5]. As a natural general-
ization of this result, one may consider the set of an arithmetic progression
instead of the set of integers that are represented by a form. Recently, Oh
gave a simple criterion in [6] on finding all pairs of reduced forms (f, g) such

that Q(f) NpZ = Q(g) N pZ for any prime p.



CHAPTER 1. INTRODUCTION

In this thesis, we just focus on finding all pairs of reduced forms (f,g) ~
([a,b,al, [4a,2b,a]) such that Q(f) N pZ = Q(g) N pZ for any prime p less

Dy

than or equal 13, where Dy = 5 (mod 8), 4Dy = D,, <p =1, and p? is

1-Dy

1
there are only finitely many pairs (f, ¢) satisfying the above property for any
prime p.

represented by [4, 2, ] To do this, we will use Oh’s criterion. In fact

In Chapter 2, we introduce basic terminologies and theories of binary
quadratic forms. We define the class number h(f) of a binary form f and
provide a simple method on finding all binary forms with discriminant given
in advance.

In Chapter 3, we establish the existence of a group law on the proper
equivalence classes of primitive forms of the given discriminant D and de-
velop its main properties. The group law is called composition, which was
introduced by Gauss. We also introduce ambiguous classes and ambiguous
forms. It is well known that if D is an odd integer less than —4, then the
number of ambiguous classes with discriminant D is 2*(?)=! where A(D) is
the number of odd prime factors of D. This fact plays an important role on
computing the number of pairs (f, g) that we want to find in this thesis.

In Chapter 4, we compute all reduced forms (f, g) satisfying all assump-
tions given above for any prime p less than or equal 13. The results will be
summarized in Tables (4.1) to (4.5).

Any unexplained notations and terminologies on binary quadratic forms
can be found on [1] and [2].



Chapter 2

Basic theory of Binary
Quadratic Form

In this chapter, we introduce some notations and terminologies on binary
quadratic forms.

Definition 2.0.1. For fixed a, b, c € Z, the homogeneous quadratic polyno-
mial
f(z,y) = ax® + by + cy?

is called a binary quadratic form and is denoted by [a, b, ¢]. The integer
Dy = b? — 4dac
is called the discriminant of the form.

We note that Dy = 0 or 1 (mod 4). For the binary quadratic form
b
f(z,y) = ax® + bry + cy?, let M; be the symmetric matrix (% z> From

2
the definition, we have Dy = —4-det(My). If Dy is a perfct square, then f is

factorized into a product of two linear forms with integer coefficients. From
now on, we always assume that Dy is not a perfect square.

Definition 2.0.2. For a binary quadratic form f(z,y) = az? + bzy + cy?,

(1) if Dy < 0 and a > 0, then 4af(x,y) = (2ax+by)*—Dy? and so f(x,y) >
0 for any (z,y) € Z*. Furthermore f(x,y) = 0 if and only if x = y = 0.
The binary form f is called positive definite if it satisfies this condition.

3



CHAPTER 2. BASIC THEORY OF BINARY QUADRATIC FORM

(2) If Dy < 0 and a < 0, then 4af(z,y) = (2ax+by)*—Dsy* and so f(z,y)
< 0 for any (z,y) € Z* The binary form f is called negative definite
if it satisfies this condition.

(3) If Dy > 0, then f is called indefinite. Note that if f is indefinite, then
the values f(x,y) could be both positive and negative according to the
integers x, y.

Definition 2.0.3. For two binary quadratic forms f and g, if there is a
matrix T = (Z such that My = T*- M, - T, then we say that f is
equivalent to g, and is denoted by f ~ ¢. In particular, we say that f is
proper equivalent to g if det(T) = 1, and f is improper equivalent to g if
det(T) = —1.

Assume that a binary form f is equivalent to g. Clearly Dy = D,.
Furthermore f is positive definite if and only if ¢ is positive definite. For a
binary form f, the set of binary forms equivalent to f is called the class of f.

Theorem 2.0.4. In every class € of forms, there is always a form |a,b, c] €
% which satisfies the condition

b < la] <]

Proof. See [1]. O

Theorem 2.0.5. The number of classes with discriminant D is finite.

Proof. See [1]. O

Theorem 2.0.6. The number of classes of positive definite forms with dis-
criminant D s equal to the number of the set of integers a,b, ¢ satisfying

— <
B — dac = D, { a<b<a<c or

0<b<a=c. (1)

Proof. See [1]. O
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From now on, we always assume that a binary quadratic form is positive
definite and integral.

Definition 2.0.7. A binary quadratic form f(z,y) = az® + bxy + cy? satis-
fying the condition (1) of Theorem 2.0.6 is called a reduced form.

Definition 2.0.8. For a binary quadratic form f(z,y) = az? + bxy + cy?,
we say that the form f is primitive if (a,b,¢) = 1, and is imprimitive if
(a,b,c) > 1.

b
Let (a,b,¢) = g > 1. Clearly [a, -, C] is a primitive form with dis-
9 9 9

criminant —. Also if a form f is equivalent to a primitive form g, then f

is also primitive. From now on, we deote by h(D) the number of classes of
primitive forms with discriminant D. Then the number of classes of forms

with discriminant D is equal to 3 o p oo P (;)
Definition 2.0.9. For an integer n and a binary quadratic form f(x,y),
if there are integers a and b such that f(a,b) = n, then we say that n
is represented by f(x,y). The set of integer solutions (x,y) which satisfy
f(x,y) = n is denoted by R(n, f), that is, R(n, f) = {(z,y) € Z* | f(z,y) =
n}. If (a,b) € R(n, f) and ged(a,b) = 1, then we say that (a,b) is a proper
solution.

Definition 2.0.10. For a binary quadratic form f(x,y) = ax® + bxy + cy?,
the set of integer that are represented by f is denoted by Q(f).

Lemma 2.0.11. For binary quadratic forms f and g, if they are in the same
class, then Q(f) = Q(g).

Proof. If n is represented by f, then there is an integer solution (a,b) € Z?
such that f(a,b) = n. From the assumption that f ~ g, there is a matrix
T = (Z Z such that detT = £1 and f(a,b) = g(ra + sb,ta + ub). Since
g(ra + sb, ta +ub) = f(a,b) = n and ra + sb,ta + ub € Z. Hence n is

represented by ¢g. This implies that Q(f) C Q(g). The converse is trivial. [



Chapter 3

Composition of binary
quadratic forms

3.1 Composition law of binary forms

In this section, we establish the existence of a group law on the proper
equivalence classes of primitive forms of the given discriminant D and develop
its main properties. This group law is traditionally called composition.

Lemma 3.1.1. For a primitive form f = [a,b,c|, f represents an integer
prime to M, for any integer M.

Proof. See [2]. O

Lemma 3.1.2. For two equivalent primitive forms f = [a1,b,¢1] and g =
las, b, co], if there is an integer | such that 1 | c1, U | co and ged(ay,as,l) =1,
then [lay, b, 17 c;] ~ [lag, b, 17 ey].

Proof. See [2]. O

Definition 3.1.3. For two primitive forms f; = [a1, b1, ¢1] and fo = [ag, bs, ¢o]
with discriminant D, we say that they are concordant if

(1) aras #0;



CHAPTER 3. COMPOSITION OF BINARY QUADRATIC FORMS

(3) the form f3 = [ajaz, b, *| with discriminant D is integral.

The form f5 is also primitive and we call the form f5 is the composition
of fi and f;. When a; and ay are coprime, the condition (3) follows auto-
matically from (1) and (2). Note that the * in (3) is determined by ajas, b
and D. From now on, we will use this character if it is determined by the
other coefficients and the discriminant.

Lemma 3.1.4. For two classes €, and %5 of primitive forms with dis-
criminant D # 0, there are concordant forms fi = [ai,b,%] € € and
fa = [az2,b,%] € € such that

gced(ay, ag) = ged(ay, M) = ged(ag, M) =1 for any given integer M.

Proof. See [2]. O

Lemma 3.1.5. For two classes €, and %5 of primitive forms with discrim-
mant D # 0, there is a class € such that the composition of fi € €1 and
fa € €5 always lies in €.

Proof. See [2]. O

Theorem 3.1.6. For two primitive classes €1 and %5 with discriminant D,
we write

C = 616,

where € is the class given by Lemma 3.1.5. This rule of composition gives
the structure of a finite abelian group to the set of primitive classes of dis-
criminant D. Further, the inverse €1 of the class € is the class containing
the forms which are improperly equivalent to one of forms in €.

Proof. See [2]. O

Definition 3.1.7. The finite abelian group in theorem 3.1.6 is called Gp.
The order of this group Gp is denoted by h(D), which is the class number
called of a primitive form with discriminant D.

7



CHAPTER 3. COMPOSITION OF BINARY QUADRATIC FORMS

One may easily show that the identity class & of Gp is the class containing

otherwise.

the form 22 — ZyQ if D is even, 2% + zy +

Example 3.1.8. For D; = —96, one may easily compute by using Theorem
2.0.6 that h(—96) = 4.
Let G_g6 = {&, €1, 6>, €3}. Then the four reduced primitive forms con-
tained in each class are

fo=1[1,0,24] € &, fi =1[3,0,8] € €, fo=1[5,2,5] € 6o, f3=[4,4,7] € Gs.
Then we have
fi-fi=103,0,8-[3,0,8] ~ [3,0,8] - [8,0,3] ~[24,0,1] ~ [1,0,24] = fo,
for fo=1[5,2,5]-[5,2,5] ~ [5,2,5] - [1,2,25] ~ [5,2,1] ~ [1,0,24] = fo,

faofs = [4,4,7)[4,4,7] ~ [4,52,175]-[7,52,100] ~ [28,52,25] ~ [1,0,24] = fo.

This computation implies that the group G_gg is isomorphic to the direct
product of two copies of Z/27Z, i.e, G_gs = 727 & 7./ 27.

3.2 Ambiguous forms and classes

Definition 3.2.9. The classes € such that €2 = & or €' = € are called
ambiguous classes, where & is the identity class. They are the classes which
are improperly equivalent to themselves by Theorem 3.1.6.

It is well known that an improper automorph S of a form f, if exists,
satisfies
S* =1

Hence there exists a primitive vector b such that

Sbh = —b,

i



CHAPTER 3. COMPOSITION OF BINARY QUADRATIC FORMS

and this can be extended to a basis a, b € Z* with det(a,b) = 1. Furthermore
there is an integer w such that

Sa = a + wb.

First if we replace the basis {a, b} by {a+ub, b}, then w is replaced by w—2u
for any integer u. Hence we may suppose that

w=0or1l
without loss of generality. Thus f is equivalent to one of the two types
fa=1a,0,¢], Dy, = —4ac;

9o = la,a,c], D,, = a® — 4ac.

We shall consider these as ambiguous forms of the first and second kind,
respectively.

Lemma 3.2.10. Every ambiguous class contains at least one ambiguous
form.

Proof. See [2]. O

Lemma 3.2.11. Let D be a negative integer such that D = 1(mod /) and let
A(D) be the number of distinct odd prime divisors of D. Then the number of
positive definite ambiguous forms having discriminant D is 2XP)

Proof. See [2]. O

Definition 3.2.12. For a binary quadratic form f(x,y) = ax® + bxy + cy?,
we define
O(f) = {T € GLQ(Z) ’ Mf =Tt. Mf . T},

O+(f) = {TG SLQ(Z) | My =T - My T},

where M/ is the symmetric matrix corresponding to f. The group O(f) is
called the automorphism group(or isometry group) of the form f and O*(f)
is called the proper automorphism group of the form f.

___;rx_-! k '\-.‘I.“: i



CHAPTER 3. COMPOSITION OF BINARY QUADRATIC FORMS

Lemma 3.2.13. For a positive definite binary quadratic form f(x,y) with
discriminant D,

(1) if D = =3, then |O*(f)| = 6;
(2) if D = —4, then |O*(f)] = 4
(3) if D < —4, then |O*(f)] = 2 and O*(f) = {1},
Proof. See [1]. O

Theorem 3.2.14. If D is an odd integer less than —4, then the number of
ambiguous classes with discriminant D is 2\P)=1,

Proof. For a proper automorphism group O™, it is well known that the num-
The

theorem follows directly from Lemmas 3.2.11 and 3.2.13. O]

ber of ambiguous forms in a given ambiguous class is )OJF /(OF)?].

We will use this theorem to compute the number of pairs that we want
to find in the next chapter.

10



Chapter 4

Representations of multiples of
a prime

4.1 Representions of binary forms

For any integral binary quadratic form f and a prime p, we may consider
f as a binary form defined over the p-adic integer ring Z,. In that case, we
will use the notation f,.

Let f and g be positive definite binary forms and let p be an odd prime.
Assume that

Q(f)NpZ = Q(g) N pZ. (4.1.1)

Then one may easily show that f, ~ g, for any prime g # p,2. Further-

more f, ~ [0,1,0] if and only if g, ~ [0,1,0]. If f, % [0, 1,0], then one may
easily show that

M(f) = Mp(g)or (Ap(f), Al9)) = (11, 1,1, [1,0,3]),

where )\, is the Watson transformation (for the definition, see [6]).
From now on, we assume that

fp > g, ~[0,1,0]. (4.1.2)
Note that this condition is equivalent to
()-(2)
p p

11



CHAPTER 4. REPRESENTATIONS OF MULTIPLES OF A PRIME

When f; ~ g, such pairs satisfying (4.1.1) are classified in [6] and [7] for
small primes. Now we assume that fs 22 go. In this case, one may easily
show that

(f2792) = ([17 17 1]7 [17 07 3])

Without loss of generality, we assume that
fo~[1,1,1] and g9 ~[1,0,3]. (4.1.3)

This condition is equivalent to Dy = 5 (mod 8) and D, = 20 (mod 32).
Under this condition, Oh proved in [6] that:

Theorem 4.1.1. (Oh) Under the assumptions that
fp>~9,~100,1,0], fo~][1,1,1] and g¢»~][1,0,3],

Q(f) NpZ = Q(g) NPZ if and only if there are odd integers a,b such that
1- Df]

f ~la,b,a],g ~ [4a,20,a] and p* is represented by {4,2, 1

Proof. See [6]. O

From the above theorem if one wants to find the pairs satisfying (4.1.1)
one has to check whether or not the following equation

1-D
p2:4x2+2xy+ 7 fy2

has an integral solution. Since 4p* = (4z + y)? — Dyy?, it follows that

0<—D;<4p*—1. (4.1.4)
Therefore the number of such pairs is finite for any prime p.
Theorem 4.1.2. Let \(D) be the number of odd prime divisors of D for

D =5 (mod 8). For any prime p such that (%) =1, the number of pairs

(f,9) such that Q(f)NpZ = Q(g)NpZ and Dy = D, D, = 4D is 0 or 2XD)~1
up to equivalence.

12



CHAPTER 4. REPRESENTATIONS OF MULTIPLES OF A PRIME
. g . 1-D
Proof. Assume that such pair exists. Then p? is represented by |4, 2, — |

Since every ambiguous form with discriminant D is of the form [a,b,a] for
some a,b € Z*, the number of such pairs (f,g) is 2\”)~! up to equivalence
by Theorem 3.2.14. O

In the subsequent sections, we will frequently use the following equiva-
lences of binary forms:

(1) [a,a,b] ~ [b,a — 2b,b]. If we let M; = < _11 (1) ) , then

a b e_yp
2 - 2
()

(2) [a,b,c] ~ [a,2at + b, at* + bt + c]. If we let My = < Lt ) , then

det My =1 and M} (

vl Q

0 1
Mo — a at+%
T \at+t at?+bttc )

(3) [a,b,c] ~ [c,—b,a]. If we let My = ( 01 ) , then

o N

det My =1 and M} (

[N]SR

det M3 =1 and M. (

oo Q
o o
N~
=
|
N
| o
SIS
s |
SIS
~_

4.2 The case when p =3

In this section, we find all pairs (f, g) of reduced forms satisfying

() Q(f) N3Z = Q(g) N 3%;

D
(i) Dy =5 (mod 8), 4Dy = D, and (3f> =1;

1-D
(iii) 3% is represented by [4, 2, 1 ! ]

13



CHAPTER 4. REPRESENTATIONS OF MULTIPLES OF A PRIME

By the condition (4.1.4) below Theorem 4.1.1, the discriminant of f has to

satisfy —35 < Dy < 0. Furthermore since D satisfies the condition (ii), Dy =

—11 or — 35. Also 3% has to be represented by [4, 2, # , SO we confirm

that there is an integer solution (z,y) such that 4-3? = (4z +y)* — Dyy? for
each Dy.

(1)

Dy = —11.

Since (1, 1) is an integer solution of the equation 36 = (4z + y)? + 1192,
p?(=9) is represented by [4, 2, 3]. Note that [1, 1, 3] is the unique reduced
form with discriminant —11. By Theorem 4.1.1, We have f = [1,1,3] ~
[3,—5,3] and g = [12, —10, 3] ~ [3,10, 12] ~ [3, —2,4]. Hence the pair of
reduced forms satisfying the condition from (i) to (iii) given above for
p=3is

(fa g) = ([17 L, 3]7 [37 -2, 4])

Dy = —35.

Since (0, 1) is an integer solution of the equation 36 = (4z + y)? + 3532,
p*(=9) is represented by [4, 2, 9]. Note that there are exactly two reduced
ambiguous froms with discriminant —35. By Theorem 4.1.1, We have
F=1[1,1,9] ~ [9,-17,9], ¢ = [36,—34,9] ~ [9,34,36] ~ [9,~2,4] ~
[4,2,9] and f = [3,1,3], g = [12,2,3] ~ [3,—2,12]. Hence all pairs of
reduced forms satisfying the condition from (i) to (iii) given above for
p =3 are

(f.9) ~([1,1,9],[4,2,9]) or ([3,1,3],[3, -2, 12]).

The following table provides all reduced forms (f, g) for p = 3.

| Dy | (f. 9) |
-11 | [1,1,3], [3,—2,4]
35 1,1,9], [4,2,9]
13,1,3], [3,—2,12]
Table 4.1 p=3
14



CHAPTER 4. REPRESENTATIONS OF MULTIPLES OF A PRIME

4.3 The case when p=>5

In this section, we find all pairs (f, g) of reduced forms satisfying

(i) Q(f)N5Z = Q(g) N 5Z;

D
(i) Dy =5 (mod 8), 4D; = D, and <5f> _ 1

4

1-D
(iii) 5? is represented by [4, 2, f] .

By the condition (4.1.4) below Theorem 4.1.1, the discriminant of f has to

satisfy —99 < D; < 0. Furthermore since Dy satisfies the condition (ii), Dy =

-1

1,—19, =51, —59, =91, —99. Also 52 has to be represented by [4, 2,

1-Dj
4 Y

so we confirm that there is an integer solution (z,y) such that 4 - 5% =
(4 +y)? — Dyy? for each Dy.

(1)

Dy = —11.

Since (—1,3) is an integer solution of the equation 100 = (4z + y)? +
11y?%, p*(= 25) is represented by [4,2,3]. Note that [1,1, 3] is the unique
reduced form with discriminant —11. By Theorem 4.1.1, We have f =
[1,1,3] ~ [3,-5,3] and g = [12,—-10,3] ~ [3,10,12] ~ [3,—2,4]. Hence
the pair of reduced forms satisfying the condition from (i) to (iii) given
above for p =5 is

(f, g) = ([17 173]7 [37 _274])'
Dy = —19.

Since (2,1) is an integer solution of the equation 100 = (4z +y)? + 19¢?,
p?(= 25) is represented by [4,2,5]. Note that [1,1,5] is the unique re-
duced form with discriminant —19. By Theorem 4.1.1, We have f =
[1,1,5] ~ [5,—9,5] and g = [20,—18,5] ~ [5,18,20] ~ [5,—2,4] ~
[4,2,5]. Hence the pair of reduced forms satisfying the condition from
(i) to (iil) given above for p =5 is

(f,9) =~ ([1,1,5], [4,2,5]).

15



CHAPTER 4. REPRESENTATIONS OF MULTIPLES OF A PRIME

(3) Dy = —51.

Since (—2,1) is an integer solution of the equation 100 = (4z+y)?+51y?,
p?(= 25) is represented by [4,2,13]. Note that there are exactly two
reduced ambiguous froms with discriminant —51. Hence all pairs of
reduced forms satisfying the condition from (i) to (iii) given above for
p=>5 are

(f,9) ~ ([1,1,13],[4,2,13]) or ([3,3,5], [5,4, 11]).

Dy = —91.

Since (—1,1) is an integer solution of the equation 100 = (4z+y)?+91y?,
p?(= 25) is represented by [4,2,23]. Note that there are exactly two
reduced ambiguous froms with discriminant —91. Hence all pairs of
reduced forms satisfying the condition from (i) to (iii) given above for
p=>5 are

(f,9) ~ ([1,1,23],[4,2,23]) or ([5,3,5],[5,4,19]).

Dy = —99.

Since (0, 1) is an integer solution of the equation 100 = (4z + y)* + 99y?,
p?(= 25) is represented by [4,2,25]. Note that there are exactly two
reduced ambiguous froms with discriminant —99. Hence all pairs of
reduced forms satisfying the condition from (i) to (iii) given above for
p=>5 are

(f,9) ~ ([1,1,25],[4,2,25]) or ([5,1,5],[5, —2, 20]).

The following table provides all reduced forms (f, g) for p = 5.

| Dy | (f, 9) | Dy | (f, 9) |
11 ] [1,1,3], [3,-2,4] 01 [1,1,23], [4,2,23]
19 [1,1,5], [4,2,5] | [5,3,5], [5,4,19]
51 [1,1,13], [4,2,13] 99 [1,1,25], [4,2,25]
) [3,3,5], [5,4,11] | [5,1,5], [5,—2,20]
Table 4.2 p=15
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4.4 The case when p=7

In this section, we find all pairs (f, g) of reduced forms satisfying

() QUf)NTZ = Q(g) N TZ;

D
(ii) Dy =5 (mod 8), 4D; = D, and (f> _ 1

7

1-D
(iii) 72 is represented by [4, 2, ! ] i

4

By the condition (4.1.4) below Theorem 4.1.1, the discriminant of f has

to satisfy —195 < Dy < 0. Furthermore since Dy satisfies the condition (ii),

Dy

= —19, 27,59, —75, —83, —115, —131, —139, —171,

4

— 187, —195. Also 7% has to be represented by [4,2, I_Df}, so we confirm

that there is an integer solution (z,y) such that 472 = (4z +y)* — Dyy? for
each Dy.

(1)

Dy = —19.

Since (—2, 3) is an integer solution of the equation 196 = (4x +y)*+19y?,
p?(= 49) is represented by [4,2,5]. Note that [1,1,5] is the unique re-
duced form with discriminant —19. By Theorem 4.1.1, We have f =
[1,1,5] ~ [5,—9,5 and ¢ = [20,—18,5] ~ [5,18,20] ~ [5,—2,4] ~
[4,2,5]. Hence the pair of reduced forms satisfying the condition from
(i) to (iii) given above for p =7 is

(f;9)] = ([1,1,5], 4, 2,5]).

Dy = —21.

Since (3,1) is an integer solution of the equation 196 = (4z + y)* +
27y2, p*(= 49) is represented by [4, 2, 7]. Note that [1,1,7] is the unique
reduced form with discriminant —27. By Theorem 4.1.1, We have f =
[1,1,7] ~ [7,—13,7) and g = [28,—26,7] ~ [7,26,28] ~ [7,—2,4] ~
[4,2,7]. Hence the pair of reduced forms satisfying the condition from
(i) to (iii) given above for p =7 is

(f:9) ~ ([1,1,7],[4,2,7)).

17
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(3)

Dy = —75.

Since (3, —1) is an integer solution of the equation 196 = (4x +y)*+75y?,
p?(= 49) is represented by [4,2,19]. Note that there are exactly two
reduced ambiguous froms with discriminant —75. By Theorem 4.1.1,
We have f = [1,1,19] ~ [19, —37,19], g = [76, —74, 19] ~ [19, 74, 76] ~
[19,-2,4] ~ [4,2,19] and f = [3,3,7] ~ [7,—11,7), g = [28,-22,7] ~
[7,22,28] ~ [7,—6,12]. Hence all pairs of reduced forms satisfying the
condition from (i) to (iii) given above for p = 7 are

(f.9) ~([1,1,19],[4,2,19]) or ([3,3,7],[7, —6,12]).

Dy = —115.

Since (2,1) is an integer solution of the equation 196 = (4x +y)*+ 1152,
p*(= 49) is represented by [4,2,30]. Note that there are exactly two re-
duced ambiguous froms with discriminant —115. By Theorem 4.1.1, We
have f = [1,1,29] ~ [20, —57,29], g = [116, —114, 29] ~ [29, 114, 116] ~
29, -2,4] ~ [4,2,20] and f = [5,5,7] ~ [7,—9,7], g = [28,—18,7] ~
[7,18,28] ~ [7,4,17]. Hence all pairs of reduced forms satisfying the
condition from (i) to (iii) given above for p = 7 are

(f.9) ~([1,1,29],[4,2,29]) or ([5,5,7],[7,4,17]).

D; = —171.

Since (1,1) is an integer solution of the equation 196 = (4x +y)*+171y?,
p?(= 49) is represented by [4,2,43]. Note that there are exactly two re-
duced ambiguous froms with discriminant —171. By Theorem 4.1.1, We
have f = [1,1,43] ~ [43, —85,43], g = [172, —170,43] ~ [43,170,172] ~
43, —2,4] ~ [4,2,43] and f = [7,5,7], g = [28,10,7] ~ [7,—10,28] ~
[7,4,25]. Hence all pairs of reduced forms satisfying the condition from
(i) to (iii) given above for p = 7 are

(f,9) ~ ([1,1,43],[4,2,43]) or ([7,5,7],[7,4,25]).

Dy = —187.

Since (1, —1) is an integer solution of the equation 196 = (4x+y)*+187y?,
p?(= 49) is represented by [4,2,47]. Note that there are exactly two re-
duced ambiguous froms with discriminant —187. By Theorem 4.1.1, We

18
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have f = [1,1,47] ~ [47,-93,47], g = [188, —186,47] ~ [47, 186, 188] ~
[47,—2,4] ~ [4,2,47]) and f = [7,3,7], g = [28,6,7] ~ [7,—6,28]. Hence
all pairs of reduced forms satisfying the condition from (i) to (iii) given
above for p = 7 are

(f.9) ~ ([1,1,47],[4,2,47]) or ([7,3,7],[7, —6, 28]).

(7) Dy = —195.

Since (0, 1) is an integer solution of the equation 196 = (4x +y)*+ 195y2,
p?(= 49) is represented by [4,2,49]. Note that there are exactly four re-
duced ambiguous froms with discriminant —195. By Theorem 4.1.1, We
have f = [1,1,49] ~ [49, ~97,49], g = [196, —194,49] ~ [49, 194, 196] ~
49, —2,4] ~ [4,2,49] and f = [7,1,7], g = [28,2,7] ~ [7,—2,28]. We
also have f = [3,3,17) ~ [17, —31,17], g = [68, —62,17] ~ [17, 62, 68] ~

[17,—6,12] ~ [12,6,17] and f = [5,5, 11] ~ [11,—17,11], g = [44, —34, 11]

~ [11,34,44] ~ [11,—10,20]. Hence all pairs of reduced forms satisfying
the condition from (i) to (iii) given above for p = 7 are

(f,9) ~ ([1,1,49],[4,2,49)) or ([7,1,7],[7, —2,28]) or
~ ([3,3,17],[12,6,17)) or ([5,5,11],[11, —10, 20]).

Note that there is no integer solution (z,%) such that 196 = (4z + y)? —
Dyi? for Dy = —59, —83, —131, —139.

The following table provides all reduced forms (f, g) for p = 7.

| Dy | (f, 9) | Dy | (f, 9) |
19 | [LL5, 4205 |-171] 1,57, [7.4, 25
27 | [L17), (427 | o | [1,1,47), [4,2,47
e [[L119], [4,2,19) [7.3,7], [7,—6,28]
3.3,7, [7,—6,12] [1,1,49], [4,2,49]
1,1,29, [4,2,29] 7,57, [7,-2,28
S s A | Y Bs e, (126,17
171 | [1,1,43], [4,2,43] 5,5,11], [11, 10, 20]
Table 4.3 p=17
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4.5 The case when p=11 or p =13

Similarly we can find all pairs (f, g) of reduced forms satisfy the conditions
given above for p = 11 or 13. Therefore we just arrange the pairs (f,g) as
table for each p in order to avoid repeated process.

The following table provides all pairs (f,g) of reduced forms satisfying
(4.1.1) for p = 11.

| Dy | f 9) | Dy | (f, 9)
[1,1,9], [4,2,9] [1,1,101], [4,2,101]
35 3,1,3], [3,-2,12] -403 [11,9,11], [11,4,37]
43 | [1,1,11], [4,2,11] [1,1,109], [4,2,109]
sy L L13], [4,213] 435 | [3:3,37], [12,6,37
[3,3,5], [5,4,11] [5,5,23], [20, 10, 23]
o3 | [L1,31], [4,2,31] [11,7,11], [11,8,41]
[3,3,11], [11,—6,12] | o [[L,1,115], [4 2 115]
[1,1,49], [4,2,49] [11,5,11], [11,—10,44]
[7,1,7], [7,—2,28] [1,1,119], [4,2,119]
195 [3,3,17], [12 6,17] 47 [11,3,11], [11,—6,44]
[5,5,11], [11,—10,20] [1,1,121], [4,2,121]
[1,1,65], [4,2 65] [11,1,11], [11, —2,44]
259 [7,7,11], [11,8,25] 483 [3,3,41], [12,6,41]
[1,1,79], [4,2,79] [7,7,19], [19, —14,28]
315 | 125,17, [17,-10,20]
[7,7,13], [13 12, 27
[9,9,11], [11,4, 29}

Table 4.4 p=11
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The following table provides all pairs (f,g) of reduced forms satisfying
(4.1.1) for p = 13.

| Dy | (f, 9) | Dy | (f, 9) |
27 [1,1,7], [4,2,7] [1,1,139], [4,2,139]
-35 [17 179]7 [47279] -555 [373747]7 [12 6 47}
[3,1,3], [3,—-2,12] [5,5,29], [20,10,29]
-43 [1,1,11], [4,2,11] [13,11,13], [13443}
=1 [1[,1713}, {4,2,13} [1[,1,149%, {4,2,149}]
3,3,5], [5.4,11 5,5,31], [20,10,31
- [1[,1,19}, %4,2,19]] -595 [[7,7,23}, {2 14}28]
3,3,7], [7,-6,12 13,9,13], [13,8,47
g7 | L1370 [4,2,37] [1,1,157], [4,2,157]
[3,3,13], [12,6,13] o | [3:3,53], [12,6,53]
g5 | [L1,59], [4,2,59] [13,7,13], [13,12,51]
%5,5,13], [13, 10, 20] [11,11,17], [17,12,39]
1,1,79], [4,2,79] [1,1,163], [4,2,163]
315 | [0:5,17], [17,-10,201| ., [ [3.3,55], [12655}
[7,7,13], [13,12,27] [13,5,13], [13,-10,52]
[9,9,11], [I1,4,29] [7,7,25], [25,—14,28]
[1,1,97], [4,2,97] [1,1,167], [4,2,167]
387 [9,9,13], [13,8,31] 667 [13,3,13], [13,—6,52]
] [1,1,113], [4,2,113] [1,1,169], [4, 2169}
BUmT s, 1345 |00 131,13, [13,—2,57]

Table 4.5 p =13

21



Bibliography

[1] L. K. Hua, Introduction to number theory, Springer-Verlag, 1982.
[2] J. W. S. Cassels, Rational quadratic forms, Academic Press, 1987.

[3] D. A. Cox, Primes of the form x?+ny? : Fermat, class field theory, and
complex multiplication, Wiley, 1997.

[4] B. N. Delone, Geometry of positive quadratic forms addendum, Uspehi
Mat. Nauk 4(1938).

[5] Delang Li, Indefinite binary forms representing the same number, Math.
Proc. Camb. Phil. Soc. 92(1982), 29-33.

[6] B. K. Oh, Positive binary forms representing the same arithmetic pro-
gressions, Preprint.

[7] N. R. Lim, Binary quadratic forms representing same multiples of a
prime, Master Thesis SNU(2014).

22



IEzE

Fol AHE o] ol A f(x,y) = az® + bry + cy? o o BAH= 4
9] HaE Q(f) 2 oA} 1938 Delone2 F3 o] ofd T o]z} 4] f, g7}
Qf) =Qlg)& WEF BaFRXA| (f,9) ~ (2* +ay+y°,2° +3y*) A&
= : = &4 pol sk, Q(f) NpZ = Q(g) NpZ-& =3}
gt ARG AAstATt. o] =Rl A= Ohd]
Fpoll tisted Q(f) NpZ = Q(g)NpZ, Dy =5
(mod 8), 4Dy = D,, (%) = 1& WEahe (f,9) 8 BF ol

ke
rel

Z0019]: 20| Hl4:, o] o2 A]
S 2007-20287



	1. Introduction 
	2. Basic theory of Binary Quadratic Form 
	3. Composition of binary quadratic forms 
	3.1 Composition law of binary forms 
	3.2 Ambiguous forms and classes 

	4. Representations of multiples of a prime 
	4.1 Representions of binary forms 
	4.2 The case when p3 
	4.3 The case when p5 
	4.4 The case when p7 
	4.5 The case when p=11 or p13 

	Abstract (in Korean) 


<startpage>8
1. Introduction  1
2. Basic theory of Binary Quadratic Form  3
3. Composition of binary quadratic forms  6
 3.1 Composition law of binary forms  6
 3.2 Ambiguous forms and classes  8
4. Representations of multiples of a prime  11
 4.1 Representions of binary forms  11
 4.2 The case when p3  13
 4.3 The case when p5  15
 4.4 The case when p7  17
 4.5 The case when p=11 or p13  20
Abstract (in Korean)  23
</body>

