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Abstract

This paper propose the method that is the calculation for price of option
to apply a fully homomorphic encryption.

In chapter 1,we provide a brief introduction about how to apply that in-
formation. In chapter 2, we describe a typical option pricing model which is
the Black-Scholes equation and derive its solution. In chapter 3, we introduce
CRT-based FHE [8] published at Seoul National University, and BGV algo-
rithm [7] that used in the design of HElib.

Finally, In chapter 4, we show that the results of calculated by modifying
c++ code of [8] implementd NTL written by Dr. Lee Hyung-Tae (Nanyang
Technological University). And we discuss to improve ways.

Key words : Black-Scholes Equation, option price, option greeks, fully homo-
morphic encryption
Student number : 2011-23199
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1 Introduction

1.1 Homomorphic encryption

A homomorphic encryption is a form of encryption which allows specific
types of computations to be carried out on ciphertext without decryption. It
generate an encrypted result which, when decrypted, matches the result of
operations performed on the plaintext.

Encrypt using public key

i
plaintext m < ciphertext ¢
I Decrypt using secret key |
Evaluate function ¢ Evaluate function @
l Encrypt using public key l
>
®(m) < ®(c) = P(Enc(m))

Decrypt using secret key

There are some types of homomorphic encryption. Among them, typically,
SWHE and FHE is.

« Somewhat Homomorphic Encryption(SWHE)
: somewhat means it works for some functions

o Fully Homomorphic Encryption(FHE)
: fully means it works for all functions

1.2 Option of Stock

An option is a contract which gives the buyer (the owner) the right, but not
the obligation, to buy or sell an underlying asset at a specified strike price on
or before a specified date.

Call option : the right to buy /  Put option : the right to sell



Arbitrage is defined as any trading strategy requiring no cash input (zero in-
vestment) that has some probability of making profits, without any risk of a
loss. We assume that assets with the same payoffs must have the same prices.
It called as no-arbitrage principle. In short, no free lunch.

1.3 Owur Work

Option price is determinds by stock price S, exercise price K, interest rate
r, expiration date T and volatility o. That is, the call option price C' =
C(S,K,T,o,r) and the put option price P = P(S,K,T,o,r). We assume
that the volatility is a trade secret. How can we calculate opion price without
revealing to a secret information? The answer is a homomorphic encryption.

Company gives the encrypted data to the dealer. Let Enc(co) be an encypted
volatility. Of course, the dealer does not know the volatility. He knows only
an encrypted data. Then he calculates price of option by using Enc(c) for

By the idea of homomorphic encryption, the decryptions of C'(S, K, T, Enc(o),r)
and P(S, K, T, Enc(c),r) are C(S, K,T,o0,r) and P(S, K,T,o,r), respectively.

The dealer gives an option price to the client. The dealer and the client still
does not know the original volatility. They know only the result of computa-
tion for the option price.

' Encrypted data | & Decrypted data &
(volatility) A (option price)
Fhe(p) 44

Corporate Server Client

Calculate the option price using Fnc(p).
Decrypt the result of the calculation.

J’ﬁ.! _CI:I ; 1_-_] i
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2 Option pricing

2.1 Continuous model

Suppose that and amount A is invested for n years at an interest rate of R per
annum. If the rate is compounded once per annum, the terminal value of the
invest rate is

A1+ R)"

If the rate is compounnded m times per annum, the terminal value of the

A(1+3)
m

The limit as the compounding frequency, m, tends to infinity is known as

investment is

continuous compounding. With continuous compounding, it can be shouwn
that an amount A invested for n years at rate R grows to

Aefin

The arbitrage involves locking in a riskless profit by simultaneously entering
into transactions in two or more markets. Actually, any available arbitrage
opportunities disappear very quickly. So we will assume that there are no
arbitrage opportunities.

We now derive an important relationship between European call option and
European put option. We will use the following notation:

o K : Strike price of option

e T : Time to expiration of option

o X, : stock price of time t < T

o (), : the call option price of time t <T
o P, : the put option price of time ¢t < T

e 7 : Continuously compounded risk-free rate of interest for an investment
maturing in time T



Now, consider the following two portfolio :
PortfolioA : one European call option + an amount of cash equal to Ke "
PortfolioB : one European put option + one share

Both are worth max(Xr, K) at expiration of the options. Because the op-
tions are European, they cannot be exercised prior to the expiration date. The
portfolios must therefore have identical values time t.
This means that

C,+Ke™ =P+ X, (1)

This relationship is known as put — call parity. It shows that the value of a Eu-
ropean call with a certain exercise price and exercise date can be deduced from
the value of a European put with the same exercise price and exercise date,
and vice versa. If equation (1) does not hold, there are arbitrage opportunities.

We consider a riskless asset (a money market account or bank account), Xy,
started at time O that grows with the constant continuously compounded risk-
free rate of return r. The value of our money market account at time At is

Xt+At = XtGTAt

For sufficiently small At,

A)(t _ Xt—l—At - Xt
Xy Xy

(Note that e” ~ 1 + x for sufficiently small z)

~r/\t

So, rate r can be seen as a kind of return rate on the more general concept.
However, the return on risk assets such as stocks has a significant random fluc-
tuation. There were many factors to the cause of the fluctuation. The impact
of the sudden news, changes in investor sentiment, etc. Hence, let 1 be mean
return rate. Then

A X,
Xi
We model its time evolution by some diffusion process with Brownian motion

~ (p + noise) At

B;. Let o be deviation of returns, say volatility. We define

noise/\t := o AB;

4
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Then

AX
Xtt ~ ult + o ABy
Finally, we have the diffrential form
dX
7: = pdt + odB, (2)
Or
dXt = MXtdt + UXtdBt (3)

2.2 Ito integral formula

By integration of (2) both sides,
t t
Xt:X0+/ uXs ds+/ oXs dBy
0 0

First integration term f(f uXs ds is defined by the Reimann integral. But, Secon
intergration term fot 0Xs dBy is not a function of bounded varaiation, since B,
is a brownian motion. Furthemore, we can not define a Riemann-Stieltjes in-
tegral for B,.

We consider stochastic differential equation which is generalized form of (3)
dX: = b(t, Xy)dt + o(t, X;)dB,
And we know that for any two variable function f(¢,x),
df (t,z) = fi dt + f, dx

Theorem 2.1. (Ito formula)

Let f(t,x) be a C? function and an upper bounded.
And let X, be a solution of ().

Then

dF(t, X)) = (f + bfs + %UZ Fu) dt + o fs dB,



Theorem 2.2. (Integration by parts formula)
Let bX = b(t,Xt), by = b(t,Y;), ox — J(t, Xt), Oy — U(t,Y;).
And let X, Y, be solutions of

dX, =bx dt + ox dBy;, dY; = by dt + oydBy, respectively

Then

A(X,Y,) = X, dY, + Y, dX, + oxoy dt

2.3 Black-scholes equation

Let a;, b; be amount of stocks and bonds, repectively
We assume that

T T
m/mﬁm<m,m/mﬁm<m
0 0

And suppose that a portfolio of the trading strategy (ay, b;) is self-financing.

i.e changes in value of portfolio is only due to price fluctuations of stocks and

bonds. The self-financing implies that
d((ltXt + btert) = Q¢ dXt + btrert dt

Using integration by parts formula,

d(atXt + btert) = Q¢ dXt + Xt d(lt + 0,0x dt + €rt dbt + bﬁ"ert dt

So, we have
X, day + €™ dby + o,0x dt =0

Let P(t, X;) be the price of option.
By no-arbitrage principle,

CLtXt + bteTt = P(t, Xt)
Differentiate both sides, from () and (),

d(a; Xy + be™) = (auX; + bre™) dt + a;0X; dB;

6



From Ito Fomula,

oP oP 1 0*P oP
dp(t, Xt) = (E + MXta_l‘ + 50-2Xt2W) dt + O'Xt% dBt (5)

Since (4)=(5),

oP oP
ay = %, bt = €77‘t (P — Xt%)

Therefore,

oP 1 ,  ,0%P oP
E—f-aUXt W+T Xt——P :0

Theorem 2.3. (The Black-Scholes Equation)
Let X; = x be price of risk asset at time t. the no-arbitrage price of option
P(t,x) statisfies

(6)

%X (X0 P) =0
P(T,z) = h(x) where 0<t<T, x>0

Remark. The assumptions of the Black — Scholes equation are as follows :

e The stock price follows the process geometric Brownian motion with
and o constant

o The short selling of securities with full use of proceeds is permitted.

e There are no transactions costs or taxes. All securities are perfectly di-
visible.

e There are no dividends during the life of the derivative.
o There are no riskless arbitrage opportunities.
e Security trading is continuous.

e The risk-free rate of interest, r, is constant and the same for all maturi-
ties.



Theorem 2.4. The function

° 1 _(y—2)
U(t,QT) = /_oo \/We ate? (y)dy

solves the heat equation

—o<zr<oo, t>0

Up = gy,
u(0, ) = f(x)
Lemma 2.5. Let =T —t, y=In(%), v==%.
By the change variables, (6) as
ot 1,20% 1 [01%
52502?+(r—502)8—y—ru 7)
v(0,y) = K 'h(KeY) where 0<7<T, y>0
Lemma 2.6. Let w = e~ (W7,
pez

And let o = —3(k—1), B=—30%(k+1)?
By the change variables, (7) as

dw _ 1,20%
or 27 Oy?
w(0,y) = e K h(KeY) where 0<7<T, w>0
Lemma 2.7. Let =T —t, y=In(%), v==%.
By the change variables, (8) as
or 8%y ov
$:%O'2?+<T—%O'2)a—y—rv (9)
v(0,y) = K 'h(KeY) where 0<7<T, y>0

Theorem 2.8. (Black-Scholes formula)
Given pay-off function h(x) = (x — K)* and (x — K)~, respectivly.
The prices of Furopean call option C' and European put option P are

C(t,x) = xN(dy) — Ke """ N(d,)
P(t,z) = —aN(—dy) + Ke " TN (—d,)



where
In(z/K) + (r+ 302)(T — t)

h = T T : (12)
_In(z/K) + (r — 50°)(T —t)

d2 = T I ’ (13)

N(z) = \/%/ e‘édy (14)

Remark. Polynimial approximation
We introduce to a polynomial approximation that gives six-decimal-place accu-
racy for N(z).

= {1 ~ V() lank tagkaoh” + adk + agh’) ifz>0
1— N(-x) Fz <0
where
N(r)= ——e ™, k=o' 7=02316419
V2r 1+ x

ap = 0.319381530, ay = —0.356563782, az = 1.781477937,
ay = —1.821255978, a5 = 1.330274429

Example. The stock price sixz months from the expiration of an option is 42
dollar, the exercise price of the option is 40 dollar, the risk-free interest rate
s 0.1, and the volatility is 0.2.

0 In(42/40) + (0.1 + 30.2%) 5

12 — 0.7693
! 0.2/0.5
In(42/40 0.1 —10.22)&
2:n( /40) + 2 >12:0.6278
0.24/0.5

Ke ™ = 40e7%% = 38.049
N(0.7693) = 0.7791, N (0.6278) = 0.7349
C(t,z) = 42N (0.7693) — 38.049N(0.6278) = 4.76



2.4 Option Greeks

The call option price C' = C(t,x) is actualy fuction of four variables for
S, T, o, r.i.e, C = C(S,T,0,r) where z = S. So, change of the variables
effects on the option price.

From AC (rate of change of C') during time h, using the taylor serise

we have
oC oC oC oC 10%C
dC = — -d — . dl+ — - d —d S S
C=gg do+gp AT+ 5, dot 5o dr+ 550 - (dS)
:Awﬁ—91ﬁ+uww+pwh+%F'M$2
2.4.1 Delta

The delta (A) of an option is defined as the rate of change of the option price
with respect to the price of the underlying asset.

For a call option price C', a put option price P,

oC
A 95 N(dy)
or

If a stock price S is increasing, then C' is incrresing. So, A¢ > 0. But, P is
decreasing. Hence, Ap < 0

2.4.2 Gamma

The gamma (I') of an option on an underlying asset is the rate of change of
the option’s delta with respect to the price of the underlying asset. It is the
second partial derivative of the option with respect to asset price.

2
_4
2

_9C PP N(d) e

r = =
05  05%  oSVT  oSV2rT

I'= % >0, since A is increasing as S increasing. If A is constant, then I' = 0.

10
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2.4.3 Theta

The theta () of an option is the rate of change of the value of the option price
with respect to the passage of time.  is sometimes referred to as the timedecay
of the option. Usually, time is measured in days so that 6 is the change in the
option value when one day passes with all else remaining the same.

2

d
aC oS -e 2
o = ——=————— —rKe T . N(d
“= ar N2rT (d2)
a3
P e 3
Op = oP _ o5:-¢ +rKe ™ N(—dy)

0T o2nT

As the time to maturity decreases with all else remaining the same, the option
tends to become less valuable. So, 6 < 0 usually.

2.4.4 Vega

Up to now, our assumption is the volatility of an option is constant. In practice,
volatility change over time. This means that the value of an option is liable
to change because of movements in volatility. The vega(v) of an option is the
rate of change of the value of the option with respect to the volatility of the
underlying asset.

di
SVT -e =

oC 0P
=~ = =8JT -N'(dy) =
v oo oo ( 1) \ 2
: : ) 9 oC _ opP
By put-call parity, the stock price doesn’t affect the volatility. So, 5= = 5.

And if the volatility is increasing, then a price of call(or put) option is inceasing.
Hence, v > 0.

2.4.5 Rho

The rho(p) of an option is the rate of change of the value of the option with
respect to the interest rate. It measures the sensitivity of the value of an option
to interest rates.

11
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oC
po = y TKe™™ - N(dy)

oP
pp = E = —TKeirT . N(—dg)

If the interest rate is increasing, then a price of call option is incresing and a

price of put option is decreasing. So, pc > 0 and pp < 0.

Example. We use conditions of the previous example. Then

Ac = N(0.7693) = 0.7791
Ap = N(0.7693) — 1 = —0.2208

_ (0.7693)%
e 2
= = 0.0499
0.2 -42+/27(0.5)
(0.2) - 42 . =215
0o = —— 2 /5205 —(0.1) - 40 - e %% . N(0.6278) = —4.5590
(V.
(0.2) - 42 . =252
Op = — - Ner o +(0.1) - 40 - e %% . N(—0.6278) = —0.7541
(Y.
(0.7693)2
4205 e 2 -
Y — J;_ L 88134
m

pc = (0.5) - 40e7"% . N(0.6278) = 13.982
pp = —(0.5) - 407 %% . N(—0.6278) = —5.0425

12



3 Fully homomorphic encryption

Given ciphertexts that encrypt m, ..., m, fully homomorphic encrytion should
allow anyone to ouput a ciphertext that encrypts f(m,...,m) for any effi-
ciently computable function f. And we have no information about my,..., 7
or f(m,...,m) or any related plaintext. That is, the input and ouput, in-
termediate values are always encrypted. We know nothing about the original
data.

3.1 Basic Definitions

In cryptography, encryption is the process of encoding messages or informa-
tion in such a way that only authorized parties can read it. In an encryption
scheme, the message or information (plaintext) is encrypted using an encryp-
tion algorithm, turning it into an unreadable ciphertext.

Let P be plaintext space and C be ciphertexts space. we consider a mapping
Enc:P—=¢C

Enc(Encrypt) is a rule of trasforming a plaintext into a ciphertext using some
key. This is a procedure that takes in inputs and returns a value. Furthemore,
it is randomized fuction. The randomize input determines which of the many
possible ciphertexts a plaintext may be mapped to. And Dec(Decrypt) is rule
of decryption

Dec = Enc™':C — P suchthat Dec(Enc(m))=m VYm € P

The term homomorphic from the algebraic term homomorphism. We say an
encryption shceme is homomorphic with respect to an operation ¢ on P and
some operation % on C, if

Dec(Enc(my JxEnc(msy))=Dec(Enc(my ¢ ms))=my omy Ymy,mg € P

There are a few types of homomorphic encryption shceme. We introduce two
types of schme. Somewhat homomorphic encryption scheme (SWHE)

13



is that perform only a limited number of operations on encrypted data. An-
other one is Fully homomorphic encryption shceme (FHE) that can
perform an unlimited number of both types of operations on encrypted data.

Definition 3.1. (Homomorphic encrypyion scheme)
A homomorphic encryption schme £ consists of four algorithmes :

1. (pk, sk) + KeyGeng()\) : the key generation is a randomized algo-
rithm that takes the security parameter A as input, and outputs a pair
of key (pk,sk). a public key pk defines a plaintext space P and a secret
key sk defines a ciphertext space C.

2. ¢ < Encg(pk, 7) : randomized algrithm takes a public key pk and
plaintext m € P, ouputs a ciphertext ¢ € C.

3. Decg (sk, 1) — = : algorithm takes a secret key sk and tand ouputs
the plaintext .

4. ¥V < FEwaluateg (pk, C, V) : (possible randomized) efficieent algorithm
which takes as input the public key pk, a circuit C' from a permitted set
Cg of circuits, and a tuple of ciphertexts ¥ = < 1q,...,¢; > for the
input wires of C. It outputs a ciphertext 1.

That is, if ¢; < Ence(pk, m;), then ¥ < Fuvaluateg (pk, C', ¥) means
that encyrpt C'(mq,...,m) under pk where C(my, ..., m) is the output of
C on inputs my,. .., m.

Note that correctness of encryption scheme is defined by if (pk, sk) < KeyGeng (\)
and ¢ < Encg (pk, 7 ), then Decg (sk, 1) — 7. But, we need correctness of ho-
momorphic encryption.

Definition 3.2. (Correctness of homomorphic encrypyion)
For any key-pair (pk, sk)output by KeyGeng(A) and any circuit C' € Ck,
T,...m € Pand W =< 1)y,... ¢, >€ C with ¢; < Ence (pk, m;) satisfies that

if ¢ <« BEvaluateg (pk, C, V), then Decg(sk, ) — C(my,...m).

except with negligible probability over the radom coins in Fvaluateg.
Then we say that a homomorphic encryption schme & is correct for circuits
in Cg.

14



Definition 3.3. (Compact homomorphic encrypyion)

A homomorphic encryption scheme £ is compact, if there is a polynomial f
such that for every value of the security parameter A\, £’s decryption algorithm
can be expressed as a circuit Dg of size at most f(\).

If £ is compact and also correct for circuits in Cg, then we say that £ com-
pactly evaluates circuits in Cg.

Note than compactness of homomorphic encrytion is an upper bound of the
length of ciphertexts output by Ewvaluatee. Furthemore, it is an upper bound
on the size of the decrytion D¢ for the scheme £ thas depends only in the
security parameter.

Definition 3.4. (Fully homomorphic encrypyion)
A homomorphic encryption scheme £ is fully homomorphic, if it is compact
evaluates all circuits.

Definition 3.5. (Leveled Fully homomorphic encrypyion)

A family of homomorphic encryption scheme {£@ : d € Z*} is leveled fully
homomorphic, if they all use the same decryption circuit, £% compactly
evaluates all circuits of depth at most d (that use some specified set of gates)
and the computational complexity of £@’s algorithms is polynomial in A, d
and (in the case of Evaluateg) the size of the circuit C.

Now, we introduce two encryption schems that are SWHE and (Leveled) FHE.
We will show only the construction algorithm. For further details or proof will
not be covered here. Refer to [7], [8] for full contents of schems.

15



3.2 CRT-based fully homomorphic encryption over the
integers

This scheme is the content of papers published from Seoul National University
in 2013[8]. An encryption of a message and a decrption are used to the chinese
remainder theorem. And it is a symmetric key encryption shceme that allows
only bounded number of modular addition and multiplications. Hence, is a
somewhat homomorphic encryption scheme. But, it can be extended to a fully
homomorphic encryption through bootstrapping.

3.2.1 Notations

Denoted by a < A as choose an element a from a set A randomly.
Zy = Z(\(F, %] and [z], =  mod p := x modulo p denotes a number in Z,.

For relatively prime integer po, p1, that is ged(p1, p2) = 1, we define

2
CRT(p, po) (21, 22) = Z l’iﬁz‘(ﬁi_l mod p;) mod N
i=1

N
where N = p1ps and p; = —

Di
For n-bit prime p and lo-bit integers (), define distributions

27
D, ,(p) = {choose q < Zﬂ[O, —) and e+ Zﬂ(—Z”, 27}
p

output : pg+ €

D,(p; q) = {choose ey Zﬂ[O,qo) and ey < Zﬂ(—Q", 27}
output : CRT, ,(eq,e1)b

D,(p; Q; q) = {choose ey < Zﬂ[O,qo) and ey Zﬂ(—Z”,Qp )}
output : CRT, (e, e10Q1)

16



3.2.2 The construction

Zg : the message space

A : the security parameter

p : the bit length of the error

n : the bit length of the secret primes

~ : the bit length of a ciphertext

7 : the number of encryptions of zero in public key
lg : the bit length of Q

KeyGen(\, p,n,7,7,lg) : Choose n-bit prime p and ¢ < Z (|0, %) and set
N = pq. Choose lg-bit integers @) with ged(Q, N) = 1.
Output the public-key pk.

pk = (Na Q? X = {xj = CRT(q7p)(€jO7€j1Q>}7 Y= CRT(an)(ez)?ellQ + 1))
where e, ey < Z[)[0,q0) and ejy, €} < Z[(—27,2°) for j € [1,7].

Output the secret-key sk = p.

Enc(pk, m) : For any m € Zg, Output ¢ =my + >, _sx; mod N where
S is a random subset of {1,...,7}. A ciphertext ¢ can be written of the form

c:my—l—Z:cjmodN
jes

= CRT{yyp)(egm, €, Qm) + CRT(CLP)(Z €505 Z ei1@Q)

jes  jes
= CRT{4p)(e0,1Q +m) for someey € Zﬂ[O, q),e1 € Zﬂ(—Z”I, 27"
where p' = max{p+lg,2p + logT}

Dec(sk, ¢) : Output m = (¢ mod p) mod @

Eval(pk,C,c = (c1,...,¢)) : Permitted circuit C with ¢ inputs defined be-
low and a t-tuple of ciphertextes ¢. Output C(cy, ..., ¢) using Add and Mul.

Add(pk, ¢1,¢2) : Output ¢ + ¢ mod N
Mul(pk, c1,cq) : Output ¢; X ¢; mod N
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Note that to decrypt a ciphertext correctly after operations of ciphertext, the
size of eg, e; and () must be sufficiently smaller than p.

3.2.3 Corretness and the multiplicative depth

Let C be an integer circuit(Add, Mul) with ¢ inputs. We define that C is a per-
mitted circuit, if an output of C has absolute value at most 2*"~% whenever
the absolute value of each ¢ input is smaller than 2" +/@) for any a > 1.

Suppoes ¢ < Enc(pk, m) for m € Zg. Then

c = CRI ) (e0,e1Q +m)
= pa + e1Q + m for some a and |e;Q + m| < o' e,
Let C¢ be a permitted circuit, C € C¢ and ¢; < Enc(pk, m;) for j =1,... 1.
Let m' =< C(my,...,m;) and ¢ < FEval(pk,C,cy,...,c).
If f is the polynomial compuetd by C. Then
d mod p= f(er,...,¢) mod p
= f(c; mod p, ..., ¢ mod p) mod P.

Since C € C¢ and |¢; mod P| < 27" +le,

|f(cp mod p,... ¢ rnodp)|<2”’4<%9 by ().

So, d mod p = f(c; mod p, ..., ¢ mod p).
Hence
(¢ mod p) mod @ = f(c¢; mod p, ..., ¢; mod p) mod Q
= f((c; mod p) mod @, ..., (¢; mod p) mod Q) mod @
= f((mq,...,my) mod Q
= m’ mod Q

It follow that the shceme given 3.2.2 is correct for a permitted circuit Ce¢.
Now, we consider a noise of a result by the opreartions. Actually, a noise
of Add(pk, ¢, c2) will incease at mose 1-bit. But, the bit length of a noise of

Mul(pk, c1, c2) may grow larger than 2(p' +lg). So, we will keep an eye on the
multiplicative depth of permiited circuit rather than the additive depth.
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3.3 Fully homomorphic encryption without Bootstrap-
ping (BGV)

Zvika Brakerski, Craig Gentry and Vinod Vaikuntanathan suggest the way of
constructing leveled fully homomorphic encryption schemes|7]. It’s based on
the general learing with error(GLWE) problems.

Definition 3.6. (GLWE)

For security parameter A, let n = n(\) be an integer dimension, let f(x) =
2%+ 1 where d = d(\) is a power of 2, let ¢ = g(\) > 2 be a prime integer, let
R = Z[z]/(f(z)) and R, = R/qR, and let x = x(\) be a distribution over R.
The GLWE,, ¢4, problem is to distinguish the following two distributions :
In the first distribution, one samples (a;, b;) uniformly from Ry,

In the second distribution, one first draws s <— R} uniformly and then sam-
ples (a;,b;) € R by sampling a; < R} uniformly, e; < x, and setting
b; = {(a;, s) + e;

The GLWE,, ¢4, assumption is that the GLWE,, ;,, problem is infeasible.

Remark. The GLWE assumption implies that the distribution {(a;, (a;, s) +
te;)} is computational indistinguishable from uniform for any t relatiely prime
to q. This fact will be convenint for encryption.

3.3.1 Notations

We use a ring R, here either R = Z or R = Z[x]/(z? + 1).

For v € R", v[i] refers to the i-th coefficient of v. And (u,v) = > u[i] - v[i]
for u,v € R".

If R is a polynomial ring, then ||r|| for » € R is the Euclidean norm of r’s
coefficeint vector. v(R) = {||a - b||/||al|||0] : a,b € R}.

For an integer ¢, R, = R/qR. And [a], = a mod ¢ into range (—q/2,q/2).

For a real number z, [z] the rounding of z up, that is the unique integers in
the [z,z 4+ 1). |z] the rounding of z down, the unique integer in (z — 1, z].
Note that [z] =1+ |z].
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3.3.2 Construction (with no homomorphic opertaions)

Let A be the security parameter.

And let ¢ = g(\) be an odd modulus, x = x(A) a noise distribution. R = R(\).
Assume that the plaintext space is Ry = R/2R, though larger plaintext space
are certainly possible.

E.Setup(1*,1#,0)

Use the bit b € {0,1} to determine whether we are setting parameters.
Choose a p-bit modulus ¢ and choose the other parameters d = d(\, u, b), n =
n(A, 1, b), N=1[(2n+1)log q],x = x(\, i, b) aprropriately to ensure that the
scheme is based on a GLWE instance that acheieves 2* security against known
attacks.

Let R = Z[z]/(x% 4+ 1) and let params = (q,d,n, N, x).

E.SecretKeyGen(params)
Draw § < x™. Set sk =s <« (1, 3[1], ..., 8[n]) € R,/

E.PublicKeyGen(params, sk)

Takes as input a secret key sk = s = (1, §) with 3[0]=1 and § € R,""!
and the params. Generate matrix A < RqN *™ uniformly and a vector e <
and set b < A§ + 2e. Set A to be the (n + 1)-column matrix consisting of b
followed by the n columns of —A. (Observe : A-s = 2e).

Set the public key pk = A.

E.Enc(params, pk, m)
To encrypt a message m € Ry, set m « (m,0,...,0) € R,"*".
Sample r < R," and output the ciphertext ¢ + m +A'r € Rq”“.

E.Dec(params, sk, c)  Output : m <+ [{c, s)], mod 2.
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Exampe for algorithm

Let n=1,¢g=3and N = [3-log3]| = 4.

N

1
5+ x*, the secret key sk =s = ( )
§

Generate a matrix A = (a;) + R:*! uniformly.
a vector e = (¢;) + x* fori=1,2,3,4

Set b= (b;) = (a;- s+ 2¢;) + A-§+2e

Set a martix A = (b | —A) = ((_lzj> where a;1 = bz and Qo =
The public key pk = A.

Encrypt :
m € Ry, set m = (m,0) € R% and sample r < Rj.

Ouput ciphertext ¢ < m + ATr € R?

m + g §:1<CL1’§+2€¢) T
C = 4
- E :i:1 ;T

Decrypt :
(c, s) =m+2 Zle e;r;

Output m <« [{c, s)]5 mod 2
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3.3.3 Key Switching

Brakerski and Vaikuntanathan’s Key switching produres may used to reduce
the dimension of the ciphertext that transform a ciphertext c¢;(decryptable
under secret key s;) to a different ciphertext co(encrypts the same message of
1, decryptable under secret key ss).

pk,— PublicKeyGen (sk;)

Enc (pky, m) — ¢

SwitchKeyGen (sk;, sk,)

SwitchKey (Tsk1—> sk, c)

5c2<—Enc(pk,m)§

pky— PublicKeyGen (sk,)

BitDecomp(r € R}, q) : decomposes xinto its bit representaion.

llog o]
:U:Z 27 -u; Vu; € Ry
=0
Output  (ug, U1, .., Ulog q]) € R;'ﬂog d
Powerof2(z € R!,q) : Output (z, 2-z,..., 254 z) € RyMoe d]

So, if ¢ and s are vectors of equal length,
then we have (¢, s) mod ¢ = (BitDecomp(c, q), Powerof2(s, q)).

Key switching consist of two procedures :

Stepl. SwitchKeyGen(s; € R}', s, € R}?)

1. Run A < E.PublicKeyGen(sqg, N) for N = n, - [log ¢]
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2. Set B +— A + Powerof2(s1) (Add Powersof2(s;) € R to A’s first column
Ouput 75,5, = B

Step2. SwitchKey (7, s,, 1) : Output ¢, = BitDecomp(c1)” - B € R}?

Note that the matrxi A consists of encryption of 0 unsder the key s,.
And the marix B consists of encryptions of pieces of s; under the key ss.

By Key Switching procedure, we have

(€9, 59) = 2(BitDecomp(cy), e2) + (c1,51) mod q.

3.3.4 Modulus Switching

We will call [{c, s)], the noise associated to ciphertext ¢ under key s.

The modulus switching technique can to manage the noise in FHE.

The evaluator who does not know the secret key, can reduce the magnitude of
the noise without knowing the secret key. In brief, it can transform a ciphertext
¢ modulo ¢ into a a diffrent ciphertext modulo p while preserving correctness.
Furthemore, if p << ¢, then ||[(c, s)],|| < ||[{c, $)]4l|-

(c,s) mod @) mod T

|

Modulus Switching

¢’ <Scdle (¢, q, p, 1)

«c',s) mod p) mod 7

||

Modulus Switching is the follwing steps :

Let L be a depth of a circiut for evaluate.
1. Start a lage modulus ¢ and the noise of size n << qr.

2. After first multplication, the noise grows to size n?.
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3. Modulus switching to qr_, & q1/7. the noise reduced to n*/n ~ 1.
4. After next multiplication, noise again grows to n2.

5. Switch to g2 =~ qr_1/n to reduce the noise to 7.

6. Setting ¢;_1 ~ q;/n.

7. Untill the last modulus just barely satisfies ¢g > 7.

Definition 3.7. (Scale)

For integer vector x and integer m < p < g,

X < Scale(x, q, p, r) is defined as the R-vector closest to (p/q) -z such that
Z = mod 7.

Definition 3.8. (If-norm)
The If-norm is defined as  I¥(s) := 3, ||s[i]|| for s € R™

Lemma 3.1. Let d be the degree of the ring.

And let r < p < q be positive integer satisfying ¢ =p =1 mod r.
Suppose that c € R™ , ¢ + Secale(c, q, p, r) and

(e $)all < a/2 = (a/p) - (r/2) - Vd-~(R) - 1fi(s) for any s € R™.

Then we have
[, 5)]p = [{c, )]y mod r and

11, )]l < (p/a) - e, ll + (r/2) - Vd - A(R) - 1f{(s)

Corollary 3.2. Let p and q be tow odd moduli. Suppose c is an ecryption of
bit m under key s for modulus q. i.e, m = [(c, s)|] mod 7.

Suppose that s is a farily short key and the noise of [(c, s)| has small magnitude
- precisely, assume that ||[(c,s)],|| < ¢/2 — (¢/p) - (r/2) - Vd - y(R) - 1F(s).
Thenc < Scale(c, q, p, r) is an encryption of bit m under key s for modulus
p. i.e, m = [(¢, s)], mod r

1@ )l < (/) - ll{e, )ll + (r/2) - Vd - 4 (R) - [{(s)
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3.3.5 (Leveled) FHE base on GLWE without Bootstrapping

We will use a parameter L indicating the number of levels of arithmetic circuit
that we want our scheme to be capable of evaluating. And a parameter d
indicating the degree of the polynomials to be evaluated.

BGV Key Switching

leveled

_algorithm  Modulus Switching © _ Fully HE

FHE.Setup(1*, 1, b)

Take as input the security parameter, a number of level L, and a bit
be {0,1}. Let p = p(A, L,b) = 6(logh + logL). For j = L (input level of
circuit) to be 0 (output level), run params; + E.Setup(1*, 1UFV% b) to ob-
tain a ladder of decresing moduli from ¢ ((L + 1) - & bit) down to qo (p bits).
For j = L —1 to 0, replace the value of d; in params; with d = d;, and the dis-
tribution x; with x = x. (That is, the ring demension and noise distribution
do not depend on the circuit level, but the vector dimension n; still might.)

FHE.KeyGen({parmas;})

For 7 = L down to 0, do the following :

1. Run s; < E.SecretKeyGen(params;)
and A; < E.PublicKeyGen(params;, s;).

nj+l
2. Set 5, + 5, ®s; € R(gj 2 ) That is 5; is a tensoring of s; with itself
whose coefficients are each the product fo two cefficients fo s; in R, .

3. Set §; < BitDecomp($;, ¢;).

4. Run 75,,, s, + SwitchKeyGen(s;, s;_1). Omit this step when j = L.

FHE.Enc(params, pk, m) : Take a message in Ry. Run E.Enc(Ar, m).
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FHE.Dec(params, sk, c)

Suppose the ciphertext in under key s;. Run E.Dec(s;, ¢). The ciphertext
could be augmented with an index indicationg which level it belong to.

FHE.Add(params, c;, )

Take two ciphertexts encrypted under the same s;. If they are not initially,
use FHE.Refresh (blow) to make it so. Set c3 < ¢1 + c2 modq;. Interpret c3
as a ciphertext under §; (8;’s coefficients include all of s;’s since §; = s; ® s;
and s;’s first coefficient is 1)

output : ¢y < FHE.Refresh(cs, 75,5, 5 @5, ¢j-1)

FHE.Mult(params, ¢y, ¢3)

Take two ciphertext encrypted under the same s;. If they are not inially,
same as FHE.Add. First, multiply : the new ciphertext, under the secret key

N o . . . . . . long
8; = 55 ® s, is the coefficient vector c3 of the linear equation L") (r ® ).

output : ¢y < FHE.Refresh(cs, 75,s,_,, 45, ¢j-1)

FHE.Refresh(c, 75,55, ., ¢;, ¢j-1)

Take a ciphertext encrypted under §;, the auxiliary information 7, ,
to facilitate key switching, and the current and next moduli ¢; and g;—1. Do
the following :

1. Expand : Set ¢; < Powersof2(c, g¢;).

2. Switch Moduli : Set ¢, < Scale(c1, gj, ¢j—1, 2), a ciphertext under the
key 5; for modulus ¢;_;.

3. Switch Keys : Output c3 < SwitchKey (75,5, ,, ¢2, ¢j—1), a ciphertext
under the key s;_; for modulus g;_;.
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4 Computations using NTL

NTL is a C++ library for doing number theory. NTL supports arbitrary length
integer and arbitrary precision floating point arithmetic, finite fields, vectors,
matrices, polynomials, lattice basis reduction and basic linear algebra. It is
written and maintained by Victor Shoup[10].

4.1 Computation method

We use the algorithm which is CRT-based homomorphic encryption over the
intergers. From Theorem 2.8, C(t,x) is function over R. For using the algo-
rithm, we consider Integeration for float type number. If x € R is not integer,
then 10*z is integer for some k.

Integeration :
(i) z € Qis not integer = x = (zg, 1) = (10¥xq, 10%7)
(ii) z € Q is integer = z = (xg, 1) = (z, 1)

We define operations : For x = (z¢, =1), y = (Yo, v1),

r+ymod N = (xoy; + 190 mod N, x1y; mod N)

z/ymod N =

(

x-ymod N = (zoyo mod N, z1y; mod N)
(xoyr mod N, z1y0 mod N)
(

k-xmod N = (kozo mod N, kix; mod N) fork::%e(@
1

In this sense, we consider that ¢; < Enc(pk, m;) = Enc(m;) for i = 0,1 where
m = (mg, my) € Z x Z and ¢ = (¢g, ¢1). Then we have

Enc(m) +y mod N = (yico + yor1 mod N, yic; mod N)
Enc(m) -y mod N = (coyo mod N, c¢1y; mod N)

At (12) and (13), d; and dy are major parst of our computation. Suppose that
the volutality o is a secret data. That is, we will use Enc(pk, o) instead of o.
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Then

dy =dy(z, K,r, Enc(o),T, \/T)

:[ln(% + (r+ %Enc(a) - Enc(o)) - T)x / [Enc(o) - VT]y mod N

dy =dy(z, K,r, Enc(o), T, \/T)

=lin( + (r - %Enc(a)  Enc(0)) - Tly / [Ene(e) - VT]y mod N

Now, Let’s think about the function N(z). The polynomial approximation in
remark has number of large bit. Then the decrypt may not work, because of
our scheme is still somewhat homomorphic encrytion sheme. So, we suggest
adopting the Taylor series for e*.

Assume z > 0.

1 # v2
N(z)= — e 2d
() = o= /_Oo y
1 /0 )2
= — e
V2T )0

1 R
~5d +—_/ e Td
Y o ), Y

L [ (D8

=05 + —/ AAy

2’3 Z5 27 2’9
-+ -2+

=09+ 6 40 336 @ 3456

1
V2w
Note that for 0 < x < 1, we measure the error of

2 (—1)F R N T
g 2 = —= ]_ _— _ —_— e .
flw)=e Z; gl " 5 T8 T8 3u

k=
By the taylor theorem,
22 1
le”7 — 1| <max{|f'(t)] : t € [0,2]} - |z| < —= - |z| =~ 0.6065 - |z|
Ve
_a? 1 2 " |2 |l“2
7 — (1= 3] < max{|f" ()] -t € 0]} o < -

|
21 2
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4.2 Performance

We compute example in chapter 2.

’ Companents of call option (no encrypted original data)

d1 d2 N(d1> N(dg) call price
0.7693 0.6278 0.7791 0.7349 4.7599
’ Greeks of call option (no encrypted original data)
AC r 90 14 pPc
0.7791 0.0499 -4.5590 8.8134 13.9820
For z > 0, we use N(z) ~ § + \/LQ? Jise, %y%dy
m _1\k,2k+1
Nanl(2) 1= § + 2= S0, Sty and use No(dy), No(da).
’ Results of computations using encrypted volatility
decimal point dy dsy N(dy) N(dy) call price
1072 0.7200 0.5800 0.7808 0.7262 5.1689
1073 0.7606 0.6194 0.8027 0.7465 5.3098
1074 0.7687 0.6273 0.8066 0.7502 5.3329
Errors of call option’s results
decimal point d; do N(dy) N(ds) call price
1072 0.0493 0.0478 0.0017 0.0087 0.4090
1073 0.0087 0.0064 0.0236 0.0116 0.5499
1074 0.0006 0.0005 0.0275 0.0153 0.5730
2
Define Ey = Zgzo %m%. We use E; that computing for e
Results of computations using encrypted volatility
decimal point YAV r Oc v pc
1072 0.7808 0.0572 -4.7785 9.8579 13.8123
1073 0.8027 0.0494 -4.5824 8.4182 14.2018
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Errors of greek’s results

decimal point JANG, r Oc v pc
1072 0.0017 0.0073 0.2195 1.0445 0.1697
1073 0.0236 0.0005 0.0234 0.3952 0.2198
e Performance Time (second)
(i) decimal point : 1072
| | Cal | Ac | T Oc v pc
1st 29.9997 | 30.1160 | 48.2636 | 51.1944 | 40.7832 | 36.2859
2nd | 29.8878 | 30.8673 | 48.1047 | 51.0545 | 40.7643 | 36.3551
3rd | 29.9369 | 30.8317 | 48.1274 | 51.0873 | 40.7764 | 36.3360
(ii) decimal point : 1073
| | Call Ag r Oc v pc
1st 29.9645 | 30.8960 | 48.2613 | 51.2568 | 40.4680 | 36.5233
2nd | 29.8907 | 30.8747 | 48.3308 | 51.1356 | 40.6355 | 36.4254
3rd | 29.9223 | 30.9309 | 48.2908 | 51.4494 | 40.4987 | 36.4463

//Copyright 2014. Hyung Tae Lee, Min Woo Kwon.

#include<iostream>
#include <math.h>
#include <stdio.h>
#include <NTL/ZZ.h>
#include <NTL/RR.h>
#include <NTL/vector.h>
#include <time.h>
#include <vector>
#include <fstream>

NTL_CLIENT
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#define pi 4.0%atan(1.0)
#define u64 unsigned long
#define u32 unsigned int
#define ul6 unsigned short
#define u8 unsigned char
#define NumComp 2
#define NumTest 1
#define NumPrime 2
#define lambda 20
#define rho 40

#define eta 512

#define gamma,__eta 40958
#define gamma 2097152
#define log Q 64

77 Mod_Inv(ZZ b, ZZ p);

void Encrypt(ZZ* X, ZZ* Y, ZZ(*2)[2], ZZ* W, ZZ a, ZZ b);
void Decrypt(ZZ* x, ZZ* y, ZZ 7, 77 w);

void integeration(double x, int n, ZZ* output);

void abbreviate(ZZ numerator, ZZ denominator, ZZ* output);
void abbreviate3(ZZ* A, ZZ* B, ZZ* C, ZZ* outputl, ZZ* output2, ZZ* output3);
void add(ZZ* x, ZZ* y, ZZ N, Z7Z* output);

void subtract(ZZ* x, ZZ* y, ZZ N, ZZ* output);

void mult(ZZ* x, ZZ* y, ZZ N, ZZ* output);

void division(ZZ* x, ZZ* y, ZZ N, ZZ* output);

void reciprocal(ZZ*x, ZZ*output);

void e(ZZ* x, ZZ N, ZZ* output);

void NN(ZZ* x, ZZ N,int f, ZZ* output);

77 ¥FindGCD(ZZ x, Z7 y);

727 FindLCM(ZZ x, ZZ y);

using namespace std;

int main(void) {

double TimeTemp; TimeTemp = GetTime();

int i, j; int f = 3; double S = 42; double K = 40;

double r = 0.1; double T = 0.5; double v = 0.2;

77 *prime; prime = new ZZ[NumPrime]; ZZ *cofactor; cofactor = new ZZ[NumPrime];

77 *inverse; inverse = new ZZ[NumPrimel; ZZ *CRT__prod; CRT__prod = new ZZ[NumPrime];
Z7 *sum; sum = new ZZ[NumPrime|; ZZ intermediate[NumComp][NumPrime];

77 *decryption; decryption = new ZZ[NumComp]; ZZ ciphertext[NumComp];

27 encV[NumComp|; ZZ *V; V = new ZZ[NumComp]; ZZ N;

77 Q = power2_7ZZ(log_Q); ZZ two_rho; int flag = 0; N = to_ ZZ("17);
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//KeyGeneration

do{ do{ do{

prime[0] = RandomBits_ ZZ(eta);

} while (NumBits(prime[0]) != eta);

for (i = 0; i<gamma,_ eta; i++){

prime[0] = (prime[0] « eta); prime[0] += RandomBits_ ZZ(eta);
} RandomPrime(prime[1], eta, 30);

} while (GCD(prime[0], prime[1]) != 1);

N = prime[0] * prime[1];

} while (NumBits(N) != gamma);

for (j = 0; j<NumPrime; j++) {

cofactor[j] = N / primelj]; inverse[j] = Mod_ Inv(cofactor[j], primel[j]);
CRT_ prod[j] = MulMod(cofactorj], inverse[j], N);}

two_ rho = power2_ ZZ(rho); int numbits_ p0 = NumBits(prime[0]);
for (i = 0; i<NumComp; i++){

do{ intermediateli][0] = RandomBits_ ZZ(numbits_p0 + 1);

} while ((intermediate[i][0] == 0) || (intermediate[i][0]>2 * prime[0]));
intermediateli][0] -= prime[0];

do{ intermediateli][1] = RandomBits ZZ(rho + 1);

} while (intermediate[i][1] == 0);

intermediateli][1] -= two_rho; }

//Encryption
integeration(v, f, V); Encrypt(V, encV, intermediate, CRT _prod, Q, N);

//computation of d1,d2, N1, N2

double temp; temp = log(S / K) / sqrt(T); ZZ A[2]; integeration(temp, f, A);
temp = r¥*sqrt(T); ZZ B[2]; integeration(temp, f, B);

temp = sqrt(T) / 2; ZZ C[2]; integeration(temp, f, C);

abbreviate3(A, B, C, A, B, C); ZZ d1[2]; ZZ d2[2]; ZZ N1[2]; ZZ N2[2];

d1[0] = ((A[0] + BJ[0]) * encV][1] * encV][1] 4+ C[0] * encV[0] * encV[0]) % N;
d1[1] = (A[1] * encV[0] * encV[1]) % N;

d2[0] = ((A[0] + BJ[0]) * encV][1] * encV][1] - C[0] * encV[0] * encV[0]) % N;
d2[1] = (A[1] * encV[0] * encV[1]) % N;

NN(d1, N, f, N1); NN(d2, N, f, N2);
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//computation of call option

77 c1[2]; integeration(S, f, c1); abbreviate(c1[0], c1[1], c1);

mult(cl, N1, N, c1); double ¢_ 2 = K*exp(-(r*T)); cout « "c2 =7 « c_2 « end];
Z7Z c2[2); integeration(c_ 2, f, ¢2); abbreviate(c2[0], ¢2[1], ¢2);

mult(c2, N2, N, ¢2); ZZ call; call = ¢l - ¢2;

//Decrption
Decrypt(call, decryption, prime[1], Q);
cout « "call price = 7 « to_ RR(decryption[0]) / to_ RR(decryption[1]) « endl;

double result_ time; result_ time = GetTime()-TimeTemp;

return 0;

}

void integeration(double x, int n, ZZ* output) {
long temp[2]; temp[0] = (long)(x*pow(10, n)); temp[1l] = (long)pow(10, n);
output[0] = to_ZZ(temp[0]); output[1] = to_ZZ(temp[1]); }

void abbreviate(ZZ numerator, ZZ denominator, ZZ* output) {
ZZ min; if (numerator > denominator) min = denominator;
else min = numerator;

for (ZZ i = min; i > 0; i-) {

if ((denominator%i == 0) && (numerator%i == 0)) {
output|[0] = (numerator / i); output[l] = (denominator / i);
break; } } }

void add(ZZ* x, ZZ* y, ZZ N, ZZ* output) {
output[0] = ((x[0] * y[1])+ (x[1] * y[0]))%N; output[1] = (x[1] * y[1]) % N; }

void subtract(ZZ* x, ZZ* y, ZZ N, ZZ* output) {
output[0] = ((x[0] * y[1]) - (x[1] * y[0])) % N; output[1] = (x[1] * y[1]) % N; }

void mult(ZZ* x, ZZ* y, ZZ N, ZZ* output) {
output(o] = (x[0] * y[0]) % N; output(1] = (x[1] * y[1]) % N; }
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void division(ZZ* x, ZZ* y, ZZ N, ZZ* output) {
output[0] = (x[0] * y[1]) % N; output[1] = (x[1] * y[0]) % N; }

void reciprocal(ZZ*x, ZZ*output) { output[0] = x[1]; output[l] = x[0]; }

void e(ZZ* x, ZZ N, ZZ* output) {

77 one[2]; one[0] = to_ZZ(1); one[l] = to_Z7Z(1);

77 half[2]; half[0] = to_ZZ(1); half[l] = to_ZZ(2);

77 temp|2]; mult(x, x, N, temp); mult(half, temp, N, temp);

subtract(one, temp, N, temp); output[0] = temp[0]; output[1l] = temp[1]; }

void NN(ZZ*x, ZZ N, int f, ZZ* output) {

77 half[2]; half[0] = to_ZZ(1); half[l] = to_ZZ(2);

double a = 1 / (sqrt(2 * pi)); ZZ A[2]; integeration(a, f, A);
mult(A, x, N, output); add(half, output, N, output); }

Z7 Mod_1Inv(ZZ b, ZZ p) {

77 a, q,r, t0,t1,t2; t0 = 0; t1 = 1;a =p; g =a / b; r = a%b;
t2 = t0 - t1*q; while (r != 0){
a=Db;b=r;q=a/b;r=a%b;

£0 = t1; t1 = £2; t2 = 0 - t1*q; }

if (t1<0) t1 += p; return t1; }

void Encrypt(ZZ* X, ZZ* Y, ZZ(*Z)[2], ZZ* W, ZZ a, ZZ b) {

77 enc__intermediate[NumComp][NumPrime];

for (int i = 0; i < NumComp; i++) {

enc__intermediateli][0] = Z[i][0]; enc__intermediate[i][1] = Z[i][1];

enc_ intermediateli][1] = enc_ intermediate[i][1] * a + X][i];

for (int j = 0; j<NumPrime; j++) {

Y[i] += MulMod((enc__intermediate[i][j] % b), W[j], b); Y[i] %= b; }
it (Y] >(b / 2){ Y -= b; } } }

void Decrypt(ZZ* x, ZZ* y, Z7 z, 7Z w) {

for (int i = 0; i<NumComp; i++) {
yli] = (x[i]) % z; if (y[i]>(z / 2)){ y[i] -= 2 }
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ylil = yli] % w; } }

void abbreviate3(ZZ* A, ZZ* B, ZZ* C, ZZ* outputl, ZZ* output2, ZZ* output3) {

ZZ ml, m2, m3, gl, g; m1 = FindGCD(A[0], A[1]);

m2 = FindGCD(BI[0], B[1]); m3 = FindGCD(CI0], C[1]);

gl = FindGCD(m1, m2); g = FindGCD(m3, gl);

output1[0] = A[0] / g; outputl[l] = A[1] / g; output2[0] = B[0] / g; output2[1] = B[1] / g;
output3[0] = C[0] / g; output3[1] = C[1] / g; }

77 FindGCD(ZZ x, ZZ y) {

77 min; Z7 z; if (x >=y) min = y; else min = x;

for (ZZ i = min; i > 0; i-) {

if (x%i == 0) && (y%i == 0)) { z = i; break; } else z = 1; } return z; }

27 FindLCM(ZZ x, ZZ y) { ZZ g = FindGCD(x, y); return g*(x / g)*(y / g); }

4.3 Discussion

Decimal point changes from 1072 to 1073, then error of d;,ds, I, 8., v decreas-
ing. But, error of N(d;), N(dz), A¢, p. incresing, since a limitation of Ny(x).
So, there are so many assignments accumulated that we need to work on.

« How to computation about N,,(z) = % + \/%7 2 ko %
form=1,2,---7
k
And EN = Zszo (;Clk) ka for N = 2’ 37 e 7

« For any k, can we handle decimal point 107%?
i.e, How do we deal with large bit integers?
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