

저 시-비 리-동 조건 경허락 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

l 차적 저 물 성할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 허락조건
 확하게 나타내어야 합니다.

l 저 터 허가를 러한 조건들 적 지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 적 할 수 없습니다.

동 조건 경허락. 하가 저 물 개 , 형 또는 가공했 경
에는, 저 물과 동 한 허락조건하에서만 포할 수 습니다.

http://creativecommons.org/licenses/by-nc-sa/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-sa/2.0/kr/

이학석사 학위논문

Application of Homomorphic Encryption
in Black-Scholes Equation

(블랙숄츠 방정식에서 동형암호이론의 적용)

2014년 7월

서울대학교 대학원

수 리 과 학 부

권 민 우

Application of Homomorphic Encryption
in Black-Scholes Equation

(블랙숄츠 방정식에서 동형암호이론의 적용)

지도교수 이 기 암

이 논문을 이학석사 학위논문으로 제출함

2014년 7월

서울대학교 대학원

수 리 과 학 부

권 민 우

권민우의 이학석사 학위논문을 인준함

2014년 7월

위 원 장 천 정 희 인

부 위 원 장 이 기 암 인

위 원 김 판 기 인

Application of Homomorphic Encryption
in Black-Scholes Equation

by

Min-Woo Kwon

A DISSERTATION

Submitted to the faculty of the Graduate School
in partial fulfillment of the requirements

for the degree Master of Science
in the Department of Mathematics

Seoul National University
August, 2014

Abstract

This paper propose the method that is the calculation for price of option
to apply a fully homomorphic encryption.

In chapter 1,we provide a brief introduction about how to apply that in-
formation. In chapter 2, we describe a typical option pricing model which is
the Black-Scholes equation and derive its solution. In chapter 3, we introduce
CRT-based FHE [8] published at Seoul National University, and BGV algo-
rithm [7] that used in the design of HElib.

Finally, In chapter 4, we show that the results of calculated by modifying
c++ code of [8] implementd NTL written by Dr. Lee Hyung-Tae (Nanyang
Technological University). And we discuss to improve ways.

Key words : Black-Scholes Equation, option price, option greeks, fully homo-
morphic encryption
Student number : 2011-23199

i

Contents
1 Introduction 1

1.1 Homomorphic encryption . 1
1.2 Option of Stock . 1
1.3 Our Work . 2

2 Option pricing 3
2.1 Continuous model . 3
2.2 Ito integral formula . 5
2.3 Black-scholes equation . 6
2.4 Option Greeks . 10

2.4.1 Delta . 10
2.4.2 Gamma . 10
2.4.3 Theta . 11
2.4.4 Vega . 11
2.4.5 Rho . 11

3 Fully homomorphic encryption 13
3.1 Basic Definitions . 13
3.2 CRT-based fully homomorphic encryption over the integers . . 16

3.2.1 Notations . 16
3.2.2 The construction . 17
3.2.3 Corretness and the multiplicative depth 18

3.3 Fully homomorphic encryption without Bootstrapping (BGV) 19
3.3.1 Notations . 19
3.3.2 Construction (with no homomorphic opertaions) . . . 20
3.3.3 Key Switching . 22
3.3.4 Modulus Switching . 23
3.3.5 (Leveled) FHE base on GLWE without Bootstrapping 25

4 Computations using NTL 27
4.1 Computation method . 27
4.2 Performance . 29
4.3 Discussion . 35

ii

1 Introduction

1.1 Homomorphic encryption
A homomorphic encryption is a form of encryption which allows specific
types of computations to be carried out on ciphertext without decryption. It
generate an encrypted result which, when decrypted, matches the result of
operations performed on the plaintext.

There are some types of homomorphic encryption. Among them, typically,
SWHE and FHE is.

• Somewhat Homomorphic Encryption(SWHE)
: somewhat means it works for some functions

• Fully Homomorphic Encryption(FHE)
: fully means it works for all functions

1.2 Option of Stock
An option is a contract which gives the buyer (the owner) the right, but not
the obligation, to buy or sell an underlying asset at a specified strike price on
or before a specified date.

Call option : the right to buy / Put option : the right to sell

1

Arbitrage is defined as any trading strategy requiring no cash input (zero in-
vestment) that has some probability of making profits, without any risk of a
loss. We assume that assets with the same payoffs must have the same prices.
It called as no-arbitrage principle. In short, no free lunch.

1.3 Our Work
Option price is determinds by stock price S, exercise price K, interest rate
r, expiration date T and volatility σ. That is, the call option price C =

C(S,K, T, σ, r) and the put option price P = P (S,K, T, σ, r). We assume
that the volatility is a trade secret. How can we calculate opion price without
revealing to a secret information? The answer is a homomorphic encryption.

Company gives the encrypted data to the dealer. Let Enc(σ) be an encypted
volatility. Of course, the dealer does not know the volatility. He knows only
an encrypted data. Then he calculates price of option by using Enc(σ) for
By the idea of homomorphic encryption, the decryptions of C(S,K, T,Enc(σ), r)
and P (S,K, T,Enc(σ), r) are C(S,K, T, σ, r) and P (S,K, T, σ, r), respectively.

The dealer gives an option price to the client. The dealer and the client still
does not know the original volatility. They know only the result of computa-
tion for the option price.

2

2 Option pricing

2.1 Continuous model
Suppose that and amount A is invested for n years at an interest rate of R per
annum. If the rate is compounded once per annum, the terminal value of the
invest rate is

A(1 +R)n

If the rate is compounnded m times per annum, the terminal value of the
investment is

A

(
1 +

R

m

)mn

The limit as the compounding frequency, m, tends to infinity is known as
continuous compounding. With continuous compounding, it can be shouwn
that an amount A invested for n years at rate R grows to

AeRn

The arbitrage involves locking in a riskless profit by simultaneously entering
into transactions in two or more markets. Actually, any available arbitrage
opportunities disappear very quickly. So we will assume that there are no
arbitrage opportunities.

We now derive an important relationship between European call option and
European put option. We will use the following notation:

• K : Strike price of option

• T : Time to expiration of option

• Xt : stock price of time t ≤ T

• Ct : the call option price of time t ≤ T

• Pt : the put option price of time t ≤ T

• r : Continuously compounded risk-free rate of interest for an investment
maturing in time T

3

Now, consider the following two portfolio :

PortfolioA : one European call option + an amount of cash equal to Ke−rT

PortfolioB : one European put option + one share

Both are worth max(XT , K) at expiration of the options. Because the op-
tions are European, they cannot be exercised prior to the expiration date. The
portfolios must therefore have identical values time t.
This means that

Ct +Ke−rT = Pt +X0 (1)

This relationship is known as put−call parity. It shows that the value of a Eu-
ropean call with a certain exercise price and exercise date can be deduced from
the value of a European put with the same exercise price and exercise date,
and vice versa. If equation (1) does not hold, there are arbitrage opportunities.

We consider a riskless asset (a money market account or bank account), Xt,
started at time 0 that grows with the constant continuously compounded risk-
free rate of return r. The value of our money market account at time △t is

Xt+△t = Xte
r△t

For sufficiently small △t,

△Xt

Xt

=
Xt+△t −Xt

Xt

≈ r△t

(Note that ex ≈ 1 + x for sufficiently small x)

So, rate r can be seen as a kind of return rate on the more general concept.
However, the return on risk assets such as stocks has a significant random fluc-
tuation. There were many factors to the cause of the fluctuation. The impact
of the sudden news, changes in investor sentiment, etc. Hence, let µ be mean
return rate. Then

△Xt

Xt

≈ (µ+ noise)△t

We model its time evolution by some diffusion process with Brownian motion
Bt. Let σ be deviation of returns, say volatility. We define

noise△t := σ△Bt

4

Then
△Xt

Xt

≈ µ△t+ σ△Bt

Finally, we have the diffrential form

dXt

Xt

= µdt+ σdBt (2)

Or
dXt = µXtdt+ σXtdBt (3)

2.2 Ito integral formula
By integration of (2) both sides,

Xt = X0 +

∫ t

0

µXs ds+

∫ t

0

σXs dBs

First integration term
∫ t

0
µXs ds is defined by the Reimann integral. But, Secon

intergration term
∫ t

0
σXs dBs is not a function of bounded varaiation, since Bs

is a brownian motion. Furthemore, we can not define a Riemann-Stieltjes in-
tegral for Bs.

We consider stochastic differential equation which is generalized form of (3)

dXt = b(t,Xt)dt+ σ(t,Xt)dBt

And we know that for any two variable function f(t, x),

df(t, x) = ft dt+ fx dx

Theorem 2.1. (Ito formula)
Let f(t, x) be a C2 function and an upper bounded.
And let Xt be a solution of ().
Then

df(t,Xt) = (ft + bfx +
1

2
σ2fxx) dt+ σfx dBt

5

Theorem 2.2. (Integration by parts formula)
Let bX = b(t,Xt), bY = b(t, Yt), σX = σ(t,Xt), σY = σ(t, Yt).

And let Xt, Yt be solutions of

dXt = bX dt+ σX dBt, dYt = bY dt+ σY dBt, respectively

Then

d(XtYt) = Xt dYt + Yt dXt + σXσY dt

2.3 Black-scholes equation
Let at, bt be amount of stocks and bonds, repectively
We assume that

E[

∫ T

0

|at|2 dt] <∞, E[

∫ T

0

|bt|2 dt] <∞

And suppose that a portfolio of the trading strategy (at, bt) is self-financing.
i.e changes in value of portfolio is only due to price fluctuations of stocks and
bonds. The self-financing implies that

d(atXt + bte
rt) = at dXt + btre

rt dt

Using integration by parts formula,

d(atXt + bte
rt) = at dXt +Xt dat + σaσX dt+ ert dbt + btre

rt dt

So, we have

Xt dat + ert dbt + σaσX dt = 0

Let P (t,Xt) be the price of option.
By no-arbitrage principle,

atXt + bte
rt = P (t,Xt)

Differentiate both sides, from () and (),

d(atXt + bte
rt) = (atµXt + btre

rt) dt+ atσXt dBt (4)

6

From Ito Fomula,

dP (t,Xt) =

(
∂P

∂t
+ µXt

∂P

∂x
+

1

2
σ2Xt

2∂
2P

∂x2

)
dt+ σXt

∂P

∂x
dBt (5)

Since (4)=(5),

at =
∂P

∂x
, bt = e−rt

(
P −Xt

∂P

∂x

)
Therefore,

∂P

∂t
+

1

2
σ2Xt

2∂
2P

∂x2
+ r

(
Xt
∂P

∂x
− P

)
= 0

Theorem 2.3. (The Black-Scholes Equation)
Let Xt = x be price of risk asset at time t. the no-arbitrage price of option
P (t, x) statisfies{

∂P
∂t

+ 1
2
σ2Xt

2 ∂2P
∂x2 + r

(
Xt

∂P
∂x
− P

)
= 0

P (T, x) = h(x) where 0 < t < T, x > 0
(6)

Remark. The assumptions of the Black − Scholes equation are as follows :

• The stock price follows the process geometric Brownian motion with µ

and σ constant

• The short selling of securities with full use of proceeds is permitted.

• There are no transactions costs or taxes. All securities are perfectly di-
visible.

• There are no dividends during the life of the derivative.

• There are no riskless arbitrage opportunities.

• Security trading is continuous.

• The risk-free rate of interest, r, is constant and the same for all maturi-
ties.

7

Theorem 2.4. The function

u(t, x) =

∫ ∞

−∞

1√
4πtc2

e−
(y−x)2

4tc2 f(y)dy

solves the heat equation

ut = c2uxx, −∞ < x <∞, t > 0

u(0, x) = f(x)

Lemma 2.5. Let τ = T − t, y = ln(x
K
), ν = P

K
.

By the change variables, (6) as{
∂τ
∂ν

= 1
2
σ2 ∂2ν

∂y2
+
(
r − 1

2
σ2
)

∂ν
∂y
− rν

ν(0, y) = K−1h(Key) where 0 < τ < T, y > 0
(7)

Lemma 2.6. Let ω = e−(αy+βτ)ν.
And let α = −1

2
(k − 1), β = −1

8
σ2(k + 1)2, k = 2r

σ2 .
By the change variables, (7) as{

∂ω
∂τ

= 1
2
σ2 ∂2ω

∂y2

ω(0, y) = e−αyK−1h(Key) where 0 < τ < T, ω > 0
(8)

Lemma 2.7. Let τ = T − t, y = ln(x
K
), ν = P

K
.

By the change variables, (8) as{
∂τ
∂ν

= 1
2
σ2 ∂2ν

∂y2
+
(
r − 1

2
σ2
)

∂ν
∂y
− rν

ν(0, y) = K−1h(Key) where 0 < τ < T, y > 0
(9)

Theorem 2.8. (Black-Scholes formula)
Given pay-off function h(x) = (x−K)+ and (x−K)−, respectivly.
The prices of European call option C and European put option P are

C(t, x) = xN(d1)−Ke−r(T−t)N(d2) (10)
P (t, x) = −xN(−d1) +Ke−r(T−t)N(−d2) (11)

8

where

d1 =
ln(x/K) + (r + 1

2
σ2)(T − t)

σ
√
T − t

, (12)

d2 =
ln(x/K) + (r − 1

2
σ2)(T − t)

σ
√
T − t

, (13)

N(z) =
1√
2π

∫ z

−∞
e−

y2

2 dy (14)

Remark. Polynimial approximation
We introduce to a polynomial approximation that gives six-decimal-place accu-
racy for N(x).

N(x) =

{
1−N ′(x)(a1k + a2k

2a3k
3 + a4k

4 + a5k
5) if x ≥ 0

1−N(−x) if x < 0

where

N ′(x) =
1√
2π
e−

x2

2 , k =
1

1 + γx
, γ = 0.2316419

a1 = 0.319381530, a2 = −0.356563782, a3 = 1.781477937,

a4 = −1.821255978, a5 = 1.330274429

Example. The stock price six months from the expiration of an option is 42

dollar, the exercise price of the option is 40 dollar, the risk-free interest rate
is 0.1, and the volatility is 0.2.

d1 =
ln(42/40) + (0.1 + 1

2
0.22) 6

12

0.2
√
0.5

= 0.7693

d2 =
ln(42/40) + (0.1− 1

2
0.22) 6

12

0.2
√
0.5

= 0.6278

Ke−rT = 40e−0.05 = 38.049

N(0.7693) = 0.7791, N(0.6278) = 0.7349

C(t, x) = 42N(0.7693)− 38.049N(0.6278) = 4.76

9

2.4 Option Greeks
The call option price C = C(t, x) is actualy fuction of four variables for
S, T, σ, r. i.e, C = C(S, T, σ, r) where x = S. So, change of the variables
effects on the option price.
From △C (rate of change of C) during time h, using the taylor serise
we have

dC =
∂C

∂S
· dS +

∂C

∂T
· dT +

∂C

∂σ
· dσ +

∂C

∂r
· dr + 1

2

∂2C

∂S2
· (dS)2

= △ · dS − θ · dT + ν · dσ + ρ · dr + 1

2
Γ · (dS)2

2.4.1 Delta

The delta (△) of an option is defined as the rate of change of the option price
with respect to the price of the underlying asset.

For a call option price C, a put option price P ,

△C =
∂C

∂S
= N(d1)

△P =
∂P

∂S
= −N(−d1) = N(d1)− 1

If a stock price S is increasing, then C is incrresing. So, △C > 0. But, P is
decreasing. Hence, △P < 0

2.4.2 Gamma

The gamma (Γ) of an option on an underlying asset is the rate of change of
the option’s delta with respect to the price of the underlying asset. It is the
second partial derivative of the option with respect to asset price.

Γ =
∂2C

∂S2
=
∂2P

∂S2
=
N ′(d1)

σS
√
T

=
e−

d21
2

σS
√
2πT

Γ = ∂△
∂S

>0, since △ is increasing as S increasing. If △ is constant, then Γ = 0.

10

2.4.3 Theta

The theta (θ) of an option is the rate of change of the value of the option price
with respect to the passage of time. θ is sometimes referred to as the timedecay
of the option. Usually, time is measured in days so that θ is the change in the
option value when one day passes with all else remaining the same.

θC = −∂C
∂T

= −σS · e
− d21

2

2
√
2πT

− rKe−rT ·N(d2)

θP = −∂P
∂T

= −σS · e
− d21

2

2
√
2πT

+ rKe−rT ·N(−d2)

As the time to maturity decreases with all else remaining the same, the option
tends to become less valuable. So, θC < 0 usually.

2.4.4 Vega

Up to now, our assumption is the volatility of an option is constant. In practice,
volatility change over time. This means that the value of an option is liable
to change because of movements in volatility. The vega(ν) of an option is the
rate of change of the value of the option with respect to the volatility of the
underlying asset.

ν =
∂C

∂σ
=
∂P

∂σ
= S
√
T ·N ′(d1) =

S
√
T · e−

d21
2

√
2π

By put-call parity, the stock price doesn’t affect the volatility. So, ∂C
∂σ

= ∂P
∂σ

.
And if the volatility is increasing, then a price of call(or put) option is inceasing.
Hence, ν > 0.

2.4.5 Rho

The rho(ρ) of an option is the rate of change of the value of the option with
respect to the interest rate. It measures the sensitivity of the value of an option
to interest rates.

11

ρC =
∂C

∂r
= TKe−rT ·N(d2)

ρP =
∂P

∂r
= −TKe−rT ·N(−d2)

If the interest rate is increasing, then a price of call option is incresing and a
price of put option is decreasing. So, ρC > 0 and ρP < 0.

Example. We use conditions of the previous example. Then

△C = N(0.7693) = 0.7791

△P = N(0.7693)− 1 = −0.2208

Γ =
e−

(0.7693)2

2

0.2 · 42
√
2π(0.5)

= 0.0499

θC = −(0.2) · 42 · e−
(0.7693)2

2

2
√

2π(0.5)
− (0.1) · 40 · e−0.05 ·N(0.6278) = −4.5590

θP = −(0.2) · 42 · e−
(0.7693)2

2

2
√
2π(0.5)

+ (0.1) · 40 · e−0.05 ·N(−0.6278) = −0.7541

ν =
42
√
0.5 · e−

(0.7693)2

2

√
2π

= 8.8134

ρC = (0.5) · 40e−0.05 ·N(0.6278) = 13.982

ρP = −(0.5) · 40e−0.05 ·N(−0.6278) = −5.0425

12

3 Fully homomorphic encryption
Given ciphertexts that encrypt π1, . . . , πt, fully homomorphic encrytion should
allow anyone to ouput a ciphertext that encrypts f(π1, . . . , πt) for any effi-
ciently computable function f . And we have no information about π1, . . . , πt
or f(π1, . . . , πt) or any related plaintext. That is, the input and ouput, in-
termediate values are always encrypted. We know nothing about the original
data.

3.1 Basic Definitions
In cryptography, encryption is the process of encoding messages or informa-
tion in such a way that only authorized parties can read it. In an encryption
scheme, the message or information (plaintext) is encrypted using an encryp-
tion algorithm, turning it into an unreadable ciphertext.

Let P be plaintext space and C be ciphertexts space. we consider a mapping

Enc : P → C

Enc(Encrypt) is a rule of trasforming a plaintext into a ciphertext using some
key. This is a procedure that takes in inputs and returns a value. Furthemore,
it is randomized fuction. The randomize input determines which of the many
possible ciphertexts a plaintext may be mapped to. And Dec(Decrypt) is rule
of decryption

Dec = Enc−1 : C → P such that Dec(Enc(m)) = m ∀m ∈ P

The term homomorphic from the algebraic term homomorphism. We say an
encryption shceme is homomorphic with respect to an operation ⋄ on P and
some operation ∗ on C, if

Dec(Enc(m1)∗Enc(m2))=Dec(Enc(m1 ⋄m2))=m1 ⋄m2 ∀m1,m2 ∈ P

There are a few types of homomorphic encryption shceme. We introduce two
types of schme. Somewhat homomorphic encryption scheme (SWHE)

13

is that perform only a limited number of operations on encrypted data. An-
other one is Fully homomorphic encryption shceme (FHE) that can
perform an unlimited number of both types of operations on encrypted data.

Definition 3.1. (Homomorphic encrypyion scheme)
A homomorphic encryption schme E consists of four algorithmes :

1. (pk, sk) ← KeyGenE(λ) : the key generation is a randomized algo-
rithm that takes the security parameter λ as input, and outputs a pair
of key (pk,sk). a public key pk defines a plaintext space P and a secret
key sk defines a ciphertext space C.

2. ψ ← EncE(pk, π) : randomized algrithm takes a public key pk and
plaintext π ∈ P , ouputs a ciphertext ψ ∈ C.

3. DecE(sk, ψ) → π : algorithm takes a secret key sk and ψand ouputs
the plaintext π.

4. Ψ ← EvaluateE(pk, C, Ψ) : (possible randomized) efficieent algorithm
which takes as input the public key pk, a circuit C from a permitted set
CE of circuits, and a tuple of ciphertexts Ψ = < ψ1, . . . , ψt > for the
input wires of C. It outputs a ciphertext ψ.
That is, if ψi ← EncE(pk, πi), then Ψ ← EvaluateE(pk, C, Ψ) means
that encyrpt C(π1, . . . , πt) under pk where C(π1, . . . , πt) is the output of
C on inputs π1, . . . , πt.

Note that correctness of encryption scheme is defined by if (pk, sk)← KeyGenE(λ)
and ψ ← EncE(pk, π), then DecE(sk, ψ) → π. But, we need correctness of ho-
momorphic encryption.

Definition 3.2. (Correctness of homomorphic encrypyion)
For any key-pair (pk, sk) output by KeyGenE(λ) and any circuit C ∈ CE ,
π1, . . . πt ∈ P and Ψ =< ψ1, . . . , ψt >∈ C with ψi ← EncE(pk, πi) satisfies that

if ψ ← EvaluateE(pk, C, Ψ), then DecE(sk, ψ) → C(π1, . . . πt).

except with negligible probability over the radom coins in EvaluateE .
Then we say that a homomorphic encryption schme E is correct for circuits
in CE .

14

Definition 3.3. (Compact homomorphic encrypyion)
A homomorphic encryption scheme E is compact, if there is a polynomial f
such that for every value of the security parameter λ, E ’s decryption algorithm
can be expressed as a circuit DE of size at most f (λ).
If E is compact and also correct for circuits in CE , then we say that E com-
pactly evaluates circuits in CE .

Note than compactness of homomorphic encrytion is an upper bound of the
length of ciphertexts output by EvaluateE . Furthemore, it is an upper bound
on the size of the decrytion DE for the scheme E thas depends only in the
security parameter.

Definition 3.4. (Fully homomorphic encrypyion)
A homomorphic encryption scheme E is fully homomorphic, if it is compact
evaluates all circuits.

Definition 3.5. (Leveled Fully homomorphic encrypyion)
A family of homomorphic encryption scheme {E (d) : d ∈ Z+} is leveled fully
homomorphic, if they all use the same decryption circuit, E (d) compactly
evaluates all circuits of depth at most d (that use some specified set of gates)
and the computational complexity of E (d)’s algorithms is polynomial in λ, d
and (in the case of EvaluateE) the size of the circuit C.

Now, we introduce two encryption schems that are SWHE and (Leveled) FHE.
We will show only the construction algorithm. For further details or proof will
not be covered here. Refer to [7], [8] for full contents of schems.

15

3.2 CRT-based fully homomorphic encryption over the
integers

This scheme is the content of papers published from Seoul National University
in 2013[8]. An encryption of a message and a decrption are used to the chinese
remainder theorem. And it is a symmetric key encryption shceme that allows
only bounded number of modular addition and multiplications. Hence, is a
somewhat homomorphic encryption scheme. But, it can be extended to a fully
homomorphic encryption through bootstrapping.

3.2.1 Notations

Denoted by a ← A as choose an element a from a set A randomly.
Zp := Z

∩
(−p

2
, p
2
] and [x]p = x mod p := x modulo p denotes a number in Zp.

For relatively prime integer p0, p1, that is gcd(p1, p2) = 1, we define

CRT(p1,p2)(x1, x2) :=
2∑

i=1

xip̂i(p̂i
−1 mod pi) mod N

where N = p1p2 and p̂i =
N

pi

For η-bit prime p and lQ-bit integers Q, define distributions

Dγ,ρ(p) = {choose q ← Z
∩

[0,
2γ

p
) and e← Z

∩
(−2ρ, 2ρ)}

output : pq + e

Dρ(p; q) = {choose e0 ← Z
∩

[0, q0) and e1 ← Z
∩

(−2ρ, 2ρ)}

output : CRTq,p(e0, e1)b

Dρ(p;Q; q) = {choose e0 ← Z
∩

[0, q0) and e1 ← Z
∩

(−2ρ, 2ρ)}

output : CRTq,p(e0, e1Q1)

16

3.2.2 The construction

ZQ : the message space
λ : the security parameter
ρ : the bit length of the error
η : the bit length of the secret primes
γ : the bit length of a ciphertext
τ : the number of encryptions of zero in public key
lQ : the bit length of Q

KeyGen(λ, ρ, η, γ, τ, lQ) : Choose η-bit prime p and q ← Z
∩
[0, 2

γ

p
) and set

N = pq. Choose lQ-bit integers Q with gcd(Q, N) = 1.
Output the public-key pk.

pk = (N, Q, X = {xj = CRT(q,p)(ej0, ej1Q)}, y = CRT(q,p)(e
′
0, e

′
1Q+ 1))

where ej0, e′0 ← Z
∩
[0, q0) and ej1, e

′
1 ← Z

∩
(−2ρ, 2ρ) for j ∈ [1, τ].

Output the secret-key sk = p.

Enc(pk, m) : For any m ∈ ZQ, Output c = my +
∑

j∈S xj mod N where
S is a random subset of {1, . . . , τ}. A ciphertext c can be written of the form

c = my +
∑
j∈S

xj mod N

= CRT(q,p)(e
′
0m, e

′
1Qm) + CRT(q,p)(

∑
j∈S

ej0,
∑
j∈S

ej1Q)

= CRT(q,p)(e0, e1Q+m) for somee0 ∈ Z
∩

[0, q), e1 ∈ Z
∩

(−2ρ′ , 2ρ′)

where ρ′ = max{ρ+ lQ, 2ρ+ logτ}

Dec(sk, c) : Output m = (c mod p) mod Q

Eval(pk, C, c = (c1, . . . , ct)) : Permitted circuit C with t inputs defined be-
low and a t-tuple of ciphertextes c. Output C(c1, . . . , ct) using Add and Mul.

Add(pk, c1, c2) : Output c1 + c2 mod N
Mul(pk, c1, c2) : Output c1 × c2 mod N

17

Note that to decrypt a ciphertext correctly after operations of ciphertext, the
size of e0, e1 and Q must be sufficiently smaller than p.

3.2.3 Corretness and the multiplicative depth

Let C be an integer circuit(Add, Mul) with t inputs. We define that C is a per-
mitted circuit, if an output of C has absolute value at most 2α(η−4) whenever
the absolute value of each t input is smaller than 2α(ρ

′+lQ) for any α ≥ 1.

Suppoes c← Enc(pk,m) for m ∈ ZQ. Then

c = CRT(q,p)(e0, e1Q+m)

= pa+ e1Q+m for some a and |e1Q+m| < 2ρ
′+lQ .

Let CE be a permitted circuit, C ∈ CE and cj ← Enc(pk,mj) for j = 1, . . . , t.
Let m′ =← C(m1, . . . ,mt) and c′ ← Eval(pk, C, c1, . . . , ct).
If f is the polynomial compuetd by C. Then

c′ mod p = f(c1, . . . , ct) mod p
= f(c1 mod p, . . . , ct mod p) mod P.

Since C ∈ CE and |cj mod P | < 2ρ
′+lQ ,

|f(c1 mod p, . . . , ct mod p)| < 2η−4 <
p

8
by ().

So, c′ mod p = f(c1 mod p, . . . , ct mod p).
Hence

(c′ mod p) mod Q = f(c1 mod p, . . . , ct mod p) mod Q
= f((c1 mod p) mod Q, . . . , (ct mod p) mod Q) mod Q
= f((m1, . . . ,mt) mod Q
= m′ mod Q

It follow that the shceme given 3.2.2 is correct for a permitted circuit CE .

Now, we consider a noise of a result by the opreartions. Actually, a noise
of Add(pk, c1, c2) will incease at mose 1-bit. But, the bit length of a noise of
Mul(pk, c1, c2) may grow larger than 2(ρ′ + lQ). So, we will keep an eye on the
multiplicative depth of permiited circuit rather than the additive depth.

18

3.3 Fully homomorphic encryption without Bootstrap-
ping (BGV)

Zvika Brakerski, Craig Gentry and Vinod Vaikuntanathan suggest the way of
constructing leveled fully homomorphic encryption schemes[7]. It’s based on
the general learing with error(GLWE) problems.

Definition 3.6. (GLWE)
For security parameter λ, let n = n(λ) be an integer dimension, let f(x) =

xd +1 where d = d(λ) is a power of 2, let q = q(λ) ≥ 2 be a prime integer, let
R = Z[x]/(f(x)) and Rq = R/qR, and let χ = χ(λ) be a distribution over R.
The GLWEn,f,g,χ problem is to distinguish the following two distributions :
In the first distribution, one samples (ai, bi) uniformly from Rn+1

q .
In the second distribution, one first draws s ← Rn

q uniformly and then sam-
ples (ai, bi) ∈ Rn+1

q by sampling ai ← Rn
q uniformly, ei ← χ, and setting

bi = ⟨ai, s⟩+ ei
The GLWEn,f,g,χ assumption is that the GLWEn,f,g,χ problem is infeasible.

Remark. The GLWE assumption implies that the distribution {(ai, ⟨ai, s⟩ +
tei)} is computational indistinguishable from uniform for any t relatiely prime
to q. This fact will be convenint for encryption.

3.3.1 Notations

We use a ring R, here either R = Z or R = Z[x]/(xd + 1).
For v ∈ Rn, v[i] refers to the i-th coefficient of v. And ⟨u, v⟩ =

∑n
i=1 u[i] · v[i]

for u, v ∈ Rn.
If R is a polynomial ring, then ∥r∥ for r ∈ R is the Euclidean norm of r’s
coefficeint vector. γ(R) = {∥a · b∥/∥a∥∥b∥ : a, b ∈ R}.

For an integer q, Rq = R/qR. And [a]q = a mod q into range (−q/2, q/2).
For a real number z, ⌈z⌉ the rounding of z up, that is the unique integers in
the [z, z + 1). ⌊z⌋ the rounding of z down, the unique integer in (z − 1, z].
Note that ⌈z⌉ = 1 + ⌊z⌋.

19

3.3.2 Construction (with no homomorphic opertaions)

Let λ be the security parameter.
And let q = q(λ) be an odd modulus, χ = χ(λ) a noise distribution. R = R(λ).
Assume that the plaintext space is R2 = R/2R, though larger plaintext space
are certainly possible.

E.Setup(1λ, 1µ, b)
Use the bit b ∈ {0, 1} to determine whether we are setting parameters.

Choose a µ-bit modulus q and choose the other parameters d = d(λ, µ, b), n =

n(λ, µ, b), N = ⌈(2n+1) log q⌉, χ = χ(λ, µ, b) aprropriately to ensure that the
scheme is based on a GLWE instance that acheieves 2λ security against known
attacks.

Let R = Z[x]/(xd + 1) and let params = (q, d, n,N, χ).

E.SecretKeyGen(params)
Draw ŝ ← χn. Set sk = s ← (1, ŝ[1], . . . , ŝ[n]) ∈ Rq

n+1.

E.PublicKeyGen(params, sk)
Takes as input a secret key sk = s = (1, ŝ) with ŝ[0]=1 and ŝ ∈ Rq

n+1

and the params. Generate matrix Â← Rq
N×n uniformly and a vector e← χN

and set b ← Âŝ + 2e. Set A to be the (n+ 1)-column matrix consisting of b
followed by the n columns of −Â. (Observe : A·s = 2e).

Set the public key pk = A.

E.Enc(params, pk, m)
To encrypt a message m ∈ R2, set m ← (m,0,. . . ,0) ∈ Rq

n+1.
Sample r ← R2

N and output the ciphertext c ← m +ATr ∈ Rq
n+1.

E.Dec(params, sk, c) Output : m ← [⟨c, s⟩]q mod 2.

20

Exampe for algorithm

Let n = 1, q = 3 and N = ⌈3 · log3⌉ = 4.

ŝ← χ1, the secret key sk = s =

(
1

ŝ

)
Generate a matrix Â = (ai) ← R4×1

5 uniformly.
a vector e = (ei) ← χ4 for i = 1, 2, 3, 4

Set b = (bi) = (ai · s+ 2ei) ← Â · ŝ+ 2e
Set a martix A = (b | −Â) = (āij) where āi1 = bi and āi2 = −ai
The public key pk = A.

Encrypt :

m ∈ R2, set m = (m, 0) ∈ R2
3 and sample r ← R4

2.

Ouput ciphertext c ← m + ATr ∈ R2
3

c =

(
m+

∑4
i=1(aiŝ+ 2ei) · ri
−
∑4

i=1 airi

)

Decrypt :

⟨c, s⟩ = m+ 2
∑4

i=1 eiri

Output m ← [⟨c, s⟩]5 mod 2

21

3.3.3 Key Switching

Brakerski and Vaikuntanathan’s Key switching produres may used to reduce
the dimension of the ciphertext that transform a ciphertext c1(decryptable
under secret key s1) to a different ciphertext c2(encrypts the same message of
c1, decryptable under secret key s2).

BitDecomp(x ∈ Rn
q , q) : decomposes xinto its bit representaion.

x =

⌊log q⌋∑
j=0

2j · uj ∀uj ∈ Rn
2

Output (u0, u1, . . . , u⌊log q⌋) ∈ Rn·⌈log q⌉
2

Powerof2(x ∈ Rn
q , q) : Output (x, 2 · x, . . . , 2⌊log q⌋ · x) ∈ Rn·⌈log q⌉

q

So, if c and s are vectors of equal length,
then we have ⟨c, s⟩ mod q = ⟨BitDecomp(c, q), Powerof2(s, q)⟩.

Key switching consist of two procedures :

Step1. SwitchKeyGen(s1 ∈ Rn1
q , s2 ∈ Rn2

q)

1. Run A ← E.PublicKeyGen(s2, N) for N = n1 · ⌈log q⌉

22

2. Set B ← A + Powerof2(s1) (Add Powersof2(s1) ∈ RN
q to A’s first column

Ouput τs1→s2 = B

Step2. SwitchKey(τs1→s2 , c1) : Output c2 = BitDecomp(c1)T ·B ∈ Rn2
q

Note that the matrxi A consists of encryption of 0 unsder the key s2.
And the marix B consists of encryptions of pieces of s1 under the key s2.

By Key Switching procedure, we have

⟨c2, s2⟩ = 2⟨BitDecomp(c1), e2⟩ + ⟨c1, s1⟩ mod q.

3.3.4 Modulus Switching

We will call [⟨c, s⟩]q the noise associated to ciphertext c under key s.
The modulus switching technique can to manage the noise in FHE.
The evaluator who does not know the secret key, can reduce the magnitude of
the noise without knowing the secret key. In brief, it can transform a ciphertext
c modulo q into a a diffrent ciphertext modulo p while preserving correctness.
Furthemore, if p << q, then ∥[⟨c, s⟩]p∥ < ∥[⟨c, s⟩]q∥.

Modulus Switching is the follwing steps :

Let L be a depth of a circiut for evaluate.

1. Start a lage modulus qL and the noise of size η << qL.

2. After first multplication, the noise grows to size η2.

23

3. Modulus switching to qL−q ≈ qL/η. the noise reduced to η2/η ≈ η.

4. After next multiplication, noise again grows to η2.

5. Switch to qL−2 ≈ qL−1/η to reduce the noise to η.

6. Setting qi−1 ≈ qi/η.

7. Untill the last modulus just barely satisfies q0 > η.

Definition 3.7. (Scale)
For integer vector x and integer m < p < q,
x̂← Scale(x, q, p, r) is defined as the R-vector closest to (p/q) ·x such that
x̂ = x mod r.

Definition 3.8. (lR1 -norm)
The lR1 -norm is defined as lR

1 (s) :=
∑

i ∥s[i]∥ for s ∈ Rn

Lemma 3.1. Let d be the degree of the ring.
And let r < p < q be positive integer satisfying q = p = 1 mod r.
Suppose that c ∈ Rn , ĉ ← Scale(c, q, p, r) and
∥[⟨c, s⟩]q∥ < q/2− (q/p) · (r/2) ·

√
d · γ(R) · lR1 (s) for any s ∈ Rn.

Then we have

[⟨ĉ, s⟩]p = [⟨c, s⟩]q mod r and

∥[⟨ĉ, s⟩]p∥ < (p/q) · ∥[⟨c, s⟩]q∥+ (r/2) ·
√
d · γ(R) · lR1 (s)

Corollary 3.2. Let p and q be tow odd moduli. Suppose c is an ecryption of
bit m under key s for modulus q. i.e, m = [⟨c, s⟩] mod r.
Suppose that s is a farily short key and the noise of [⟨c, s⟩] has small magnitude
- precisely, assume that ∥[⟨c, s⟩]q∥ < q/2− (q/p) · (r/2) ·

√
d · γ(R) · lR1 (s).

Then ĉ← Scale(c, q, p, r) is an encryption of bit m under key s for modulus
p. i.e, m = [⟨ĉ, s⟩]p mod r

∥[⟨ĉ, s⟩]p∥ < (p/q) · ∥[⟨c, s⟩]q∥+ (r/2) ·
√
d · γ(R) · lR1 (s)

24

3.3.5 (Leveled) FHE base on GLWE without Bootstrapping

We will use a parameter L indicating the number of levels of arithmetic circuit
that we want our scheme to be capable of evaluating. And a parameter d
indicating the degree of the polynomials to be evaluated.

FHE.Setup(1λ, 1µ, b)

Take as input the security parameter, a number of level L, and a bit
b∈ {0, 1}. Let µ = µ(λ, L, b) = θ(logλ + logL). For j = L (input level of
circuit) to be 0 (output level), run paramsj ← E.Setup(1λ, 1(j+1)µ, b) to ob-
tain a ladder of decresing moduli from qL((L+ 1) · µ bit) down to q0 (µ bits).
For j = L−1 to 0, replace the value of dj in paramsj with d = dL and the dis-
tribution χj with χ = χL. (That is, the ring demension and noise distribution
do not depend on the circuit level, but the vector dimension nj still might.)

FHE.KeyGen({parmasj})

For j = L down to 0, do the following :

1. Run sj ← E.SecretKeyGen(paramsj)
and Aj ← E.PublicKeyGen(paramsj, sj).

2. Set ŝj ← sj ⊗ sj ∈ R
(nj+1

2)
qj . That is ŝj is a tensoring of sj with itself

whose coefficients are each the product fo two cefficients fo sj in Rqj .

3. Set s̄j ← BitDecomp(ŝj, qj).

4. Run τs̄j+1→sj ← SwitchKeyGen(s̄j, sj−1). Omit this step when j = L.

FHE.Enc(params, pk, m) : Take a message in R2. Run E.Enc(AL, m).

25

FHE.Dec(params, sk, c)

Suppose the ciphertext in under key sj. Run E.Dec(sj, c). The ciphertext
could be augmented with an index indicationg which level it belong to.

FHE.Add(params, c1, c2)

Take two ciphertexts encrypted under the same sj. If they are not initially,
use FHE.Refresh (blow) to make it so. Set c3 ← c1 + c2 modqj. Interpret c3
as a ciphertext under ŝj (ŝj’s coefficients include all of sj’s since ŝj = sj ⊗ sj
and sj’s first coefficient is 1)

output : c4 ← FHE.Refresh(c3, τs̄j→sj−1
, qj, qj−1)

FHE.Mult(params, c1, c2)

Take two ciphertext encrypted under the same sj. If they are not inially,
same as FHE.Add. First, multiply : the new ciphertext, under the secret key
ŝj = sj ⊗ sj, is the coefficient vector c3 of the linear equation Llong

c1,c2
(x⊗ x).

output : c4 ← FHE.Refresh(c3, τs̄j→sj−1
, qj, qj−1)

FHE.Refresh(c, τs̄j→sj−1
, qj, qj−1)

Take a ciphertext encrypted under ŝj, the auxiliary information τs̄j→sj−1

to facilitate key switching, and the current and next moduli qj and qj−1. Do
the following :

1. Expand : Set c1 ← Powersof2(c, qj).

2. Switch Moduli : Set c2 ← Scale(c1, qj, qj−1, 2), a ciphertext under the
key s̄j for modulus qj−1.

3. Switch Keys : Output c3 ← SwitchKey(τs̄j→sj−1
, c2, qj−1), a ciphertext

under the key sj−1 for modulus qj−1.

26

4 Computations using NTL
NTL is a C++ library for doing number theory. NTL supports arbitrary length
integer and arbitrary precision floating point arithmetic, finite fields, vectors,
matrices, polynomials, lattice basis reduction and basic linear algebra. It is
written and maintained by Victor Shoup[10].

4.1 Computation method
We use the algorithm which is CRT-based homomorphic encryption over the
intergers. From Theorem 2.8, C(t, x) is function over R. For using the algo-
rithm, we consider Integeration for float type number. If x ∈ R is not integer,
then 10kx is integer for some k.

Integeration :
(i) x ∈ Q is not integer =⇒ x = (x0, x1) = (10kx0, 10

kx1)

(ii) x ∈ Q is integer =⇒ x = (x0, x1) = (x, 1)

We define operations : For x = (x0, x1), y = (y0, y1),

x+ y mod N = (x0y1 + x1y0 mod N, x1y1 mod N)

x · y mod N = (x0y0 mod N, x1y1 mod N)

x/y mod N = (x0y1 mod N, x1y0 mod N)

k · x mod N = (k0x0 mod N, k1x1 mod N) for k =
k0
k1
∈ Q

In this sense, we consider that ci ← Enc(pk,mi) = Enc(mi) for i = 0, 1 where
m = (m0, m1) ∈ Z× Z and c = (c0, c1). Then we have

Enc(m) + y mod N = (y1c0 + y0x1 mod N, y1c1 mod N)
Enc(m) · y mod N = (c0y0 mod N, c1y1 mod N)

At (12) and (13), d1 and d2 are major parst of our computation. Suppose that
the volutality σ is a secret data. That is, we will use Enc(pk, σ) instead of σ.

27

Then

d1 =d1(x,K, r, Enc(σ), T,
√
T)

=[ln(
x

K
+ (r +

1

2
Enc(σ) · Enc(σ)) · T]N / [Enc(σ) ·

√
T]N mod N

d2 =d2(x,K, r, Enc(σ), T,
√
T)

=[ln(
x

K
+ (r − 1

2
Enc(σ) · Enc(σ)) · T]N / [Enc(σ) ·

√
T]N mod N

Now, Let’s think about the function N(z). The polynomial approximation in
remark has number of large bit. Then the decrypt may not work, because of
our scheme is still somewhat homomorphic encrytion sheme. So, we suggest
adopting the Taylor series for ex.

Assume z > 0.

N(z) =
1√
2π

∫ z

−∞
e−

y2

2 dy

=
1√
2π

∫ 0

−∞
e−

y2

2 dy +
1√
2π

∫ z

0

e−
y2

2 dy

= 0.5 +
1√
2π

∫ z

0

∞∑
k=0

(−1)k

2kk!
y2kdy

= 0.5 +
1√
2π

(z − z3

6
+
z5

40
− z7

336
+

z9

3456
− · · ·)

Note that for 0 < x < 1, we measure the error of

f(x) = e−
x2

2 =
∞∑
k=0

(−1)k

2kk!
x2k = 1− x2

2
+
x4

8
− x6

48
+

x8

384
− · · ·

By the taylor theorem,

|e−
x2

2 − 1| ≤ max{|f ′(t)| : t ∈ [0, x]} · |x| ≤ 1√
e
· |x| ≈ 0.6065 · |x|

|e−
x2

2 − (1− 1

2
x2)| ≤ max{|f ′′(t)| : t ∈ [0, x]} · |x|

2

2!
≤ |x|

2

2

28

4.2 Performance
We compute example in chapter 2.

Companents of call option (no encrypted original data)
d1 d2 N(d1) N(d2) call price

0.7693 0.6278 0.7791 0.7349 4.7599

Greeks of call option (no encrypted original data)
△C Γ θC ν ρC

0.7791 0.0499 -4.5590 8.8134 13.9820

For z > 0, we use N(z) ≈ 1
2
+ 1√

2π

∫ z

0

∑∞
k=0

(−1)k

2kk!
y2kdy

Nm(z) :=
1
2
+ 1√

2π

∑m
k=0

(−1)ky2k+1

2kk!(2k+1)
and use N0(d1), N0(d2).

Results of computations using encrypted volatility
decimal point d1 d2 N(d1) N(d2) call price

10−2 0.7200 0.5800 0.7808 0.7262 5.1689
10−3 0.7606 0.6194 0.8027 0.7465 5.3098
10−4 0.7687 0.6273 0.8066 0.7502 5.3329

Errors of call option’s results
decimal point d1 d2 N(d1) N(d2) call price

10−2 0.0493 0.0478 0.0017 0.0087 0.4090
10−3 0.0087 0.0064 0.0236 0.0116 0.5499
10−4 0.0006 0.0005 0.0275 0.0153 0.5730

Define EN =
∑N

k=0
(−1)k

2kk!
x2k. We use E1 that computing for e−

d1
2

2 .

Results of computations using encrypted volatility
decimal point △C Γ θC ν ρC

10−2 0.7808 0.0572 -4.7785 9.8579 13.8123
10−3 0.8027 0.0494 -4.5824 8.4182 14.2018

29

Errors of greek’s results
decimal point △C Γ θC ν ρC

10−2 0.0017 0.0073 0.2195 1.0445 0.1697
10−3 0.0236 0.0005 0.0234 0.3952 0.2198

• Performance Time (second)

(i) decimal point : 10−2

Call △C Γ θC ν ρC

1st 29.9997 30.1160 48.2636 51.1944 40.7832 36.2859
2nd 29.8878 30.8673 48.1047 51.0545 40.7643 36.3551
3rd 29.9369 30.8317 48.1274 51.0873 40.7764 36.3360

(ii) decimal point : 10−3

Call △C Γ θC ν ρC

1st 29.9645 30.8960 48.2613 51.2568 40.4680 36.5233
2nd 29.8907 30.8747 48.3308 51.1356 40.6355 36.4254
3rd 29.9223 30.9309 48.2908 51.4494 40.4987 36.4463

//Copyright 2014. Hyung Tae Lee, Min Woo Kwon.

#include<iostream>
#include <math.h>
#include <stdio.h>
#include <NTL/ZZ.h>
#include <NTL/RR.h>
#include <NTL/vector.h>
#include <time.h>
#include <vector>
#include <fstream>

NTL_CLIENT

30

#define pi 4.0*atan(1.0)
#define u64 unsigned long
#define u32 unsigned int
#define u16 unsigned short
#define u8 unsigned char
#define NumComp 2
#define NumTest 1
#define NumPrime 2
#define lambda 20
#define rho 40
#define eta 512
#define gamma_eta 40958
#define gamma 2097152
#define log_Q 64

ZZ Mod_Inv(ZZ b, ZZ p);
void Encrypt(ZZ* X, ZZ* Y, ZZ(*Z)[2], ZZ* W, ZZ a, ZZ b);
void Decrypt(ZZ* x, ZZ* y, ZZ z, ZZ w);
void integeration(double x, int n, ZZ* output);
void abbreviate(ZZ numerator, ZZ denominator, ZZ* output);
void abbreviate3(ZZ* A, ZZ* B, ZZ* C, ZZ* output1, ZZ* output2, ZZ* output3);
void add(ZZ* x, ZZ* y, ZZ N, ZZ* output);
void subtract(ZZ* x, ZZ* y, ZZ N, ZZ* output);
void mult(ZZ* x, ZZ* y, ZZ N, ZZ* output);
void division(ZZ* x, ZZ* y, ZZ N, ZZ* output);
void reciprocal(ZZ*x, ZZ*output);
void e(ZZ* x, ZZ N, ZZ* output);
void NN(ZZ* x, ZZ N,int f, ZZ* output);
ZZ FindGCD(ZZ x, ZZ y);
ZZ FindLCM(ZZ x, ZZ y);
using namespace std;

int main(void) {
double TimeTemp; TimeTemp = GetTime();
int i, j; int f = 3; double S = 42; double K = 40;
double r = 0.1; double T = 0.5; double v = 0.2;
ZZ *prime; prime = new ZZ[NumPrime]; ZZ *cofactor; cofactor = new ZZ[NumPrime];
ZZ *inverse; inverse = new ZZ[NumPrime]; ZZ *CRT_prod; CRT_prod = new ZZ[NumPrime];
ZZ *sum; sum = new ZZ[NumPrime]; ZZ intermediate[NumComp][NumPrime];
ZZ *decryption; decryption = new ZZ[NumComp]; ZZ ciphertext[NumComp];
ZZ encV[NumComp]; ZZ *V; V = new ZZ[NumComp]; ZZ N;
ZZ Q = power2_ZZ(log_Q); ZZ two_rho; int flag = 0; N = to_ZZ(”1”);

31

//KeyGeneration
do{ do{ do{
prime[0] = RandomBits_ZZ(eta);
} while (NumBits(prime[0]) != eta);
for (i = 0; i<gamma_eta; i++){
prime[0] = (prime[0] « eta); prime[0] += RandomBits_ZZ(eta);
} RandomPrime(prime[1], eta, 30);
} while (GCD(prime[0], prime[1]) != 1);
N = prime[0] * prime[1];
} while (NumBits(N) != gamma);

for (j = 0; j<NumPrime; j++) {
cofactor[j] = N / prime[j]; inverse[j] = Mod_Inv(cofactor[j], prime[j]);
CRT_prod[j] = MulMod(cofactor[j], inverse[j], N);}
two_rho = power2_ZZ(rho); int numbits_p0 = NumBits(prime[0]);
for (i = 0; i<NumComp; i++){
do{ intermediate[i][0] = RandomBits_ZZ(numbits_p0 + 1);
} while ((intermediate[i][0] == 0) || (intermediate[i][0]>2 * prime[0]));
intermediate[i][0] -= prime[0];
do{ intermediate[i][1] = RandomBits_ZZ(rho + 1);
} while (intermediate[i][1] == 0);
intermediate[i][1] -= two_rho; }

//Encryption
integeration(v, f, V); Encrypt(V, encV, intermediate, CRT_prod, Q, N);

//computation of d1,d2, N1, N2
double temp; temp = log(S / K) / sqrt(T); ZZ A[2]; integeration(temp, f, A);
temp = r*sqrt(T); ZZ B[2]; integeration(temp, f, B);
temp = sqrt(T) / 2; ZZ C[2]; integeration(temp, f, C);
abbreviate3(A, B, C, A, B, C); ZZ d1[2]; ZZ d2[2]; ZZ N1[2]; ZZ N2[2];
d1[0] = ((A[0] + B[0]) * encV[1] * encV[1] + C[0] * encV[0] * encV[0]) % N;
d1[1] = (A[1] * encV[0] * encV[1]) % N;
d2[0] = ((A[0] + B[0]) * encV[1] * encV[1] - C[0] * encV[0] * encV[0]) % N;
d2[1] = (A[1] * encV[0] * encV[1]) % N;
NN(d1, N, f, N1); NN(d2, N, f, N2);

32

//computation of call option
ZZ c1[2]; integeration(S, f, c1); abbreviate(c1[0], c1[1], c1);
mult(c1, N1, N, c1); double c_2 = K*exp(-(r*T)); cout « ”c2 = ” « c_2 « endl;
ZZ c2[2]; integeration(c_2, f, c2); abbreviate(c2[0], c2[1], c2);
mult(c2, N2, N, c2); ZZ call; call = c1 - c2;

//Decrption
Decrypt(call, decryption, prime[1], Q);
cout « ”call price = ” « to_RR(decryption[0]) / to_RR(decryption[1]) « endl;

double result_time; result_time = GetTime()-TimeTemp;
return 0;
}

void integeration(double x, int n, ZZ* output) {
long temp[2]; temp[0] = (long)(x*pow(10, n)); temp[1] = (long)pow(10, n);
output[0] = to_ZZ(temp[0]); output[1] = to_ZZ(temp[1]); }

void abbreviate(ZZ numerator, ZZ denominator, ZZ* output) {
ZZ min; if (numerator > denominator) min = denominator;
else min = numerator;
for (ZZ i = min; i > 0; i–) {
if ((denominator%i == 0) && (numerator%i == 0)) {
output[0] = (numerator / i); output[1] = (denominator / i);
break; } } }

void add(ZZ* x, ZZ* y, ZZ N, ZZ* output) {
output[0] = ((x[0] * y[1])+ (x[1] * y[0]))%N; output[1] = (x[1] * y[1]) % N; }

void subtract(ZZ* x, ZZ* y, ZZ N, ZZ* output) {
output[0] = ((x[0] * y[1]) - (x[1] * y[0])) % N; output[1] = (x[1] * y[1]) % N; }

void mult(ZZ* x, ZZ* y, ZZ N, ZZ* output) {
output[0] = (x[0] * y[0]) % N; output[1] = (x[1] * y[1]) % N; }

33

void division(ZZ* x, ZZ* y, ZZ N, ZZ* output) {
output[0] = (x[0] * y[1]) % N; output[1] = (x[1] * y[0]) % N; }

void reciprocal(ZZ*x, ZZ*output) { output[0] = x[1]; output[1] = x[0]; }

void e(ZZ* x, ZZ N, ZZ* output) {
ZZ one[2]; one[0] = to_ZZ(1); one[1] = to_ZZ(1);
ZZ half[2]; half[0] = to_ZZ(1); half[1] = to_ZZ(2);
ZZ temp[2]; mult(x, x, N, temp); mult(half, temp, N, temp);
subtract(one, temp, N, temp); output[0] = temp[0]; output[1] = temp[1]; }

void NN(ZZ*x, ZZ N, int f, ZZ* output) {
ZZ half[2]; half[0] = to_ZZ(1); half[1] = to_ZZ(2);
double a = 1 / (sqrt(2 * pi)); ZZ A[2]; integeration(a, f, A);
mult(A, x, N, output); add(half, output, N, output); }

ZZ Mod_Inv(ZZ b, ZZ p) {
ZZ a, q, r, t0, t1, t2; t0 = 0; t1 = 1; a = p; q = a / b; r = a%b;
t2 = t0 - t1*q; while (r != 0){
a = b; b = r; q = a / b; r = a%b;
t0 = t1; t1 = t2; t2 = t0 - t1*q; }
if (t1<0) t1 += p; return t1; }

void Encrypt(ZZ* X, ZZ* Y, ZZ(*Z)[2], ZZ* W, ZZ a, ZZ b) {
ZZ enc_intermediate[NumComp][NumPrime];
for (int i = 0; i < NumComp; i++) {
enc_intermediate[i][0] = Z[i][0]; enc_intermediate[i][1] = Z[i][1];
enc_intermediate[i][1] = enc_intermediate[i][1] * a + X[i];
for (int j = 0; j<NumPrime; j++) {
Y[i] += MulMod((enc_intermediate[i][j] % b), W[j], b); Y[i] %= b; }
if (Y[i] >(b / 2)){ Y[i] -= b; } } }

void Decrypt(ZZ* x, ZZ* y, ZZ z, ZZ w) {
for (int i = 0; i<NumComp; i++) {
y[i] = (x[i]) % z; if (y[i]>(z / 2)){ y[i] -= z; }

34

y[i] = y[i] % w; } }

void abbreviate3(ZZ* A, ZZ* B, ZZ* C, ZZ* output1, ZZ* output2, ZZ* output3) {
ZZ m1, m2, m3, g1, g; m1 = FindGCD(A[0], A[1]);
m2 = FindGCD(B[0], B[1]); m3 = FindGCD(C[0], C[1]);
g1 = FindGCD(m1, m2); g = FindGCD(m3, g1);
output1[0] = A[0] / g; output1[1] = A[1] / g; output2[0] = B[0] / g; output2[1] = B[1] / g;
output3[0] = C[0] / g; output3[1] = C[1] / g; }

ZZ FindGCD(ZZ x, ZZ y) {
ZZ min; ZZ z; if (x >= y) min = y; else min = x;
for (ZZ i = min; i > 0; i–) {
if ((x%i == 0) && (y%i == 0)) { z = i; break; } else z = 1; } return z; }

ZZ FindLCM(ZZ x, ZZ y) { ZZ g = FindGCD(x, y); return g*(x / g)*(y / g); }

4.3 Discussion
Decimal point changes from 10−2 to 10−3, then error of d1, d2,Γ, θc, ν decreas-
ing. But, error of N(d1), N(d2),△C , ρc incresing, since a limitation of N0(x).
So, there are so many assignments accumulated that we need to work on.

• How to computation about Nm(z) =
1
2
+ 1√

2π

∑m
k=0

(−1)ky2k+1

2kk!(2k+1)

for m = 1, 2, · · · ?
And EN =

∑N
k=0

(−1)k

2kk!
x2k for N = 2, 3, · · · ?

• For any k, can we handle decimal point 10−k?
i.e, How do we deal with large bit integers?

35

References
[1] Jung-Hun Kim. Financial Mathematics. Kyo Woo Sa, 2007.

[2] J.Hull. Options, Futures and Other derivative securitues. Fifth edition,
2002.

[3] Jae-Ho Jo, Jong-Won Park, Kyu-Sung Jo. Futures · Options · Swaps.
Dasanbooks, 2009.

[4] Lawrence C. Evans. Partial Differential Equations. American Mathematical
Society, 1998.

[5] Craig Gentry. Fully Homomorphic Encryption Using Ideal Lattices. In
STOC, pages 169-178, 2009.

[6] Craig Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis, Stan-
ford University, 2009. crypto.stanford.edu/craig.

[7] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. Fully homomorphic en-
cryption without bootstrapping. In Innovations in Theoretical Computer
Science (ITCS’12), 2012. Available at http://eprint.iacr.org/2011/277.

[8] Jin-su Kim , Moon-Sung Lee, Aaram Yun and Jung-Hee Cheon. CRT-based
Fully homomorphic Encryption over the integers. SNU, 2013. Available at
http://eprint.iacr.org/2013/057.pdf

[9] M. v. Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomor-
phic encryption over the integers. In EUROCRYPT, pages 24-43, 2010.
Full version in http://eprint.iacr.org/2009/616.pdf.

[10] NTL: A Library for doing Number Theory. http://www.shoup.net/ntl/

[11] HElib : A Library of implements Hoomorphic Encryption.
https://github.com/shaih/HElib

36

국문초록

이 논문은 옵션의 가격계산을 완전동형암호화에 적용하여 계산하는 방식을
제안한 것이다.

1장에서는 간단한 소개와 적용방식에 대한 내용이다. 2장은 대표적인 옵션
가격결정모형인블랙숄츠방정식과그해를유도한다. 3장은서울대학교에서
발표된 CRT-based FHE[8]와 HElib의 디자인에 사용된 BGV알고리즘 [7]에
대해 소개한다.
마지막으로 4장은 [8]을 NTL[10]을 이용하여 c++로 구현한 이형태 박사

(Nanyang Technological University)의 프로그래밍 코드를 변형하여 계산된
결과와 개선 방안에 대해 논의한다.

주요 어휘 : 블랙숄츠 방정식, 옵션 가격, 옵션 그릭, 풀리호모몰픽, 완전동형
암호화
학번: 2011-23199

	1 Introduction
	1.1 Homomorphic encryption
	1.2 Option of Stock
	1.3 Our Work

	2 Option pricing
	2.1 Continuous model
	2.2 Ito integral formula
	2.3 Black-scholes equation
	2.4 Option Greeks
	2.4.1 Delta
	2.4.2 Gamma
	2.4.3 Theta
	2.4.4 Vega
	2.4.5 Rho

	3 Fully homomorphic encryption
	3.1 Basic Definitions
	3.2 CRT-based fully homomorphic encryption over the integers
	3.2.1 Notations
	3.2.2 The construction
	3.2.3 Corretness and the multiplicative depth

	3.3 Fully homomorphic encryption without Bootstrapping (BGV)
	3.3.1 Notations
	3.3.2 Construction (with no homomorphic opertaions)
	3.3.3 Key Switching
	3.3.4 Modulus Switching
	3.3.5 (Leveled) FHE base on GLWE without Bootstrapping

	4 Computations using NTL
	4.1 Computation method
	4.2 Performance
	4.3 Discussion

<startpage>7
1 Introduction 1
 1.1 Homomorphic encryption 1
 1.2 Option of Stock 1
 1.3 Our Work 2
2 Option pricing 3
 2.1 Continuous model 3
 2.2 Ito integral formula 5
 2.3 Black-scholes equation 6
 2.4 Option Greeks 10
 2.4.1 Delta 10
 2.4.2 Gamma 10
 2.4.3 Theta 11
 2.4.4 Vega 11
 2.4.5 Rho 11
3 Fully homomorphic encryption 13
 3.1 Basic Definitions 13
 3.2 CRT-based fully homomorphic encryption over the integers 16
 3.2.1 Notations 16
 3.2.2 The construction 17
 3.2.3 Corretness and the multiplicative depth 18
 3.3 Fully homomorphic encryption without Bootstrapping (BGV) 19
 3.3.1 Notations 19
 3.3.2 Construction (with no homomorphic opertaions) 20
 3.3.3 Key Switching 22
 3.3.4 Modulus Switching 23
 3.3.5 (Leveled) FHE base on GLWE without Bootstrapping 25
4 Computations using NTL 27
 4.1 Computation method 27
 4.2 Performance 29
 4.3 Discussion 35
</body>

