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Abstract

Although it is well-known that there are various mixed finite elements
for solving elastic wave equation, in this paper, we will approach the elastic
wave equation with 2D, the simplest mixed finite element method. The su-
periority of the family of elements over the existing elements is its simplicity
and high accuracy. It satisfies the discrete inf-sup condition for the stability
analysis and has convergence property of the consistency error. In this pa-
per, by using this mixed finite element method, we will get the approximated
solution of the elastic wave equation, and also prove that this approximated
solution stably converges to real solution through elliptic projection.

Key words: mixed finite element, elastic wave equation
Student Number: 2013-20232
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Chapter 1

Introduction

In this paper, we analyze a family of mixed finite elements for the elas-

tic wave equation. Developing the mixed formulation involving both velocity
and pressure, not the traditional displacement formulation, we change the
variation form of the elastic wave eqution into the first order system, which
is very familiar to us. This method can be also applied to the more com-
plicated elastic wave equation with a free boundary condition, but for the
simplicity of the implementation and proof, we assumed the dirichlet bound-
ary condition.
The initial condition of the system is determined by the elliptic projection,
which is inherited from the Becache, Joly, Tsogka, [5]. They devolop the
mixed formulation come from the variation formula for solving elliptic prob-
lem. This method shows that the stationary problem associated to the evo-
lution problem gives the mixed approximation.

The mixed finite element they analyze in [5] is Qﬁ’l — Q. However, since
the classical analysis does not fit for this mixed finite element(especially coer-
civity condition does not satisfied), they had to develop the new, nonclassical
error estimates.

To overcome this difficulty, we use here the minimal, any-space dimen-
sional, symmetric, nonconforming mixed finite element studied in 2013, by
Jun Hu, Hongying Man, and Shangyou Zhang [4]. The mixed finite element
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they proposed is the simplest rectangular element with 7 stress and 2 dis-
placement degrees of freedom on each rectangle.

This element was motivated by a simple fact that the derivative on a
normal stress component o;; is only in x; direction; while those on o;; are
only in z; and z; directions. The minimal finite element space for o;; would
be span{1, x;} on each n-dimensional rectangular element; while the minimal
finite element space for o;; would be span{l,z;,z;} on each n-dimensional
rectangular element. For the displacement, there is no derivative and the min-
imal finite element space is the constant space, span{1}. In [4], they prove
that this minimal finite element spaces can actually form a family of stable
and convergent methods for the pure displacement problem.

The obstacle they had to overcome was the symmetry constraint on the
stress tensor, i.e., 0;; = 0j;. Because of this symmetry property, it is ex-
tremely difficult to construct stable conforming finite elements for the ellip-
tic problem, even for 2D and 3D. So that, related this difficulty, efforts for
developing composite elements or enforcing the symmetry condition weakly
existed. In [4], they overcome this by giving an explicit constructive proof
for the discrete inf-sup condition. So with this proof, we know the existance
and uniquseness of solution of the elliptic problem. Doubtless, the superioriy
of the family of elements over the existing elements is its simplicity and high
accuracy.

In this paper, we are going to describe several aspects of the pure dis-
placement problem and elastic wave equation. In Chaper2, we introduce the
variation formula of the model problem and present some terminologies re-
lated to norms and inner products of these finite element spaces. And also
we shall explain the basic notion of the simplest, two dimensional mixed
finite element spaces we will use and related interpotion operator and its
interpolation estimates, which plays an important role in convergence of co-
sistency error. In Chapter3, the well-posedness of the finite element problem,
i.e., the discrete inf-sup condition, and another elliptic projection operator
is presented. The rest of section is devoted to the error analysis of the pure



CHAPTER 1. INTRODUCTION

displacement and the elastic wave eqauiton. Numerical results in 2D, includ-
ing results for the elliptic projcetion, are provided in Chapter4, which show
a convergence of the minimal element herein.



Chapter 2

Preliminaries

2.1 The model problem

Let 2 be a bounded rectangle of R?(it is straightforward that results can be
extended to domains which can be covered by rectangles), which is subdi-
vided by a family of rectangular grids 7y, (with grid size h).

We consider the system of equations governing the motion of a homogeneous,
isotropic, liniearly elastic body consists of the stress equations of motion,
Hooke’s law and the strain-displacement relations :

0354 + fz = pul7

€ij = 5 (i + uj).

If the strain-displacement relations are subsituted into Hooke’s law and the
expressions for the stresses are subsequently subsituted in the stress-equations
of motion, we obtain the displacement equations of motion

pii; — {pu g5 + (AN + puszy = fi, i=1,2

4
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Alternatively, we can formulate the two—dimensional elastic wave equations

in vector form:

( Find u : [0,7] — (H}(Q))? such that

p%Q—t'; _ div(A~'(2)e(u)) = £, £ e CO0,T;(L2(Q))2),

| where A~ (z)e(u) = X tr(e(u)) T+ 2ue(u)

subject to the initial conditions

ou

u(t =0) =ug € (Hy(Q))*; E(

t=0)=uy € (L2(Q)).

(2.1.2)

The homogeneous Dirichlet condition on 02 has been considered for simplic-

ity only.
Now, to present mixed variational Formula, let

o=A"(z)e(u) and v = ((;—;1
Subsituting into (2.1.2) yields
p%—‘t’ — dive = f,

A% — €(v) =0,

with initial conditions

a(0) =09 =A"(2)e(ug) ; v(0) = vo = u;.

(2.1.3)

(2.1.4)

A mixed weak formulation associated to (2.1.3) is given by the following

problem:
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\ dt
(2.1.5)
where
a(o,T) :/ Alx)o:Tdr V(o,7)e X x X,
Q
b(w, )= / w-divrdr V(w,7)eM x X, (2.1.6)
Q
<f,w>:/f-wda: Yw e M.
\ Q
and
X = H(le, Q, S) = {(Uij)nxn S H(le, Q) | Oij = Uji}
(2.1.7)

M = L*(Q,R?) = {(u1,u2)" | w; € L*(Q)}

The bilinear form a(-, ) (resp., b(+,-)) is continuous on H x H(H = (L*(Q2))?)
(resp., on X X M). The bilinear form a(-, -) (resp., b(-, -)) thus defines a linear
continuous operator A : H — H' by (Ao, 7).y = alo,T) (resp., B: X —
M by (BT, W),y = b(w, T)). They satisfy the following properties(see, for
instance, [3]) :
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(1) The continuous inf-sup condition holds :

de>0/Vwe M,3r € X / b(w,T) > c||w|m| 7] x-
(2.1.8)
(77) The coercivity of the form a(-,-) on V = KerB :

Ja >0 /Vo € V,a(o,0) > alo|%.
Hence the discrete problem associated to (2.1.6) and (2.1.4) is

( Find (o, vp) - [0,T] — X, x M, such that

U

%a(a'h, 'Th) + b(Vh, O'h) =0 Y1), € Xh; (219)

IS

{ E(V}“W}J — b(Wh,O'h) = <f, Wh> Ywy, € My,
subject to the initial condition

0'h<0) =00,h ; Vh(O) = Vinhn (2110)

In the following, we consider a pair of finite element spaces to solve (2.1.5).

2.2 A minimal element in 2D

The set of all edges in 7, is denoted by &,, which is divided into two sets,
the set &, g of horizontal edge and the set &,y of vertical edges. Given any
edge e € &, one fixed unit normal vector n with the components (nl,n2) is
assigned. For each K € T, define the affine invertible transformation

E, K~ K,

A~ hz,K’\
()= ()= ()
(0 y 5=Y + Yo,k
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with the center (z¢ i, yo i) of K, the horizontal lengh h, i, and the vertical
length A, x, and the reference element K = [—1,1]2.

On each element K € 7Ty, a constant finite element space for the displacement
is defined by

(%1

V2

My = Py(K,R?) = {( ) | v1, 09 € PO(K)} : (2.2.1)

while the symmetric linear finite element space for the stress is defined by

B P (K) Pi(K)
Xk = {0 € ( PUK)  Pro(K) )S}, (2.2.2)

where subscript S indicates a symmetric matrix stress, and

P, 1(K) = span{l,z},
Pi(K) = span{l, z, y}
P15(K) = span{l,y}.

The dimenstion of the space Mk is 2, and that of Xy is 7. Locally P;(K)
is the space of linear polynomials. Globally, let W, be the P;-nonconforming
space on Tj, which is first introduced in [1] as a nonconforming approxima-
tion space to H'(€) on the quadrilateral mesh; To be exact, Wy, is the space
of piecewise linear polynomials, which are continuous at all mid -edge points
of triangulation 7. W, is the finite element space approximating function

012.

The global space X} and M), are defined by

X, ={o= ( o o1 ) € L*(Q,S) | o|lx € Xk for all K € T,  (2.2.3)
012 022
011 is continuous on all vertical interior edges,
099 is continuous on all horizontal interior edges,
012 is continuous at all mid-points of interior edges, }
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My, = {v € L*(Q,R?) | v|x € V(K) for all K € T} (2.2.4)

The discrete stress space X}, is a nonconforming approximation to H(div, €2, S).
And the discrete divergence operator divy, is defined elementwise with respect

to Tp.
divp,o|x = div(o|x) Vo € X,.

Finally, the last part of this section is devoted to the interpolation operator
[0 for any o € H(div,Q,S) N H?(,S) in order to analyze the approxi-
mation error in Chaper3. Define an interpolation(see [4])

0 — ( 1011 Iig01e ) € X, (2.2.5)

ITi9012 1Ix2092

where II1; and Il are standard, satisfying, respectively,

/HHO'H ds = /011 ds for any vertical edge e € &,

e

/ 159099 ds = / 099 ds for any horizontal edge e € &j,.

e

I1;5 is the interpolation operator from space H?*(§2) to nonconforming finite
element space.

Mis012(em) = %(012(61) + 012(e2)),

where for an edge e € &, e; and e, are two endpoints of e, and e, is the
mid-point of these two endpoints. It is shown by Park and Sheen [1] that

v —ToV|mxg < CR* "v]ox, m=01 KEeT, (2.2.6)
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The convergence result of elastic wave equation will follow from below Lemma.

Lemma 2.2.1. ([4], Theorem 4.1) For any o € H*(,S), it hold that

[(o = TIho)|lo < Chllo ||z,
|| divy, (o — o) |lo < Chl|o]|o-

2.3 The ellptic problem

In order to analyze apporximation of the evolution problem, we need to use
an abstract result for a class of ellptic problems posed in a more general
framework. In this section, the mixed approximation of the elliptic problem
which is in fact the stationary problem associated to the evolution problem
will be presented.

Before presenting the new equation, we need to introduce Hibert space H.
X and M are same as (2.1.7). Then H = L*(Q,R?) satisfies the following :

XcH, [[a<|-lx

since

lolx = lelf + |div o3, (2.3.1)

Let a(-,-) and b(+,-) be two continuous bilinear forms in H x H and M x X.
In the same way as in (2.1.6), a(-,-) defines an operator A in L£(H), such
that a(o,7) = (Ao, 7)g V(o,7) € H x H and the bilinear form b(-,-) de-
fines an operatoer B : X +— M’ (and its transpose B' : M +— X') such that

(Bo, W)y = (0. Bw) ., =blw,o) VY(o.w)eXxM.

The kernels of B and B! are defined as follows :

10
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V=KerB={oce€X /bw,0)=0Vw e M}

KerB'={w e M / b(w,o) =0Vo € X}

This function spaces X, M, H satisfy the following two inequalities (2.1.8).
Using (2.1.2), we know that
1 A

Ao =—0c— — tr(o) 1,
2p Ap(A+ p) (@)

we can easily check that A(z) be a positive difinite symmetric operator sat-

isfying

1 A 9
Alx)€-€> (ﬂ — m) . |§|H, e R* (2.3.2)

We can also check that operator a(-,-) and b(-,-) is bounded.

1 1 A ,
alo, o) = Z(UJ) - m(tf(U) I,o) < (@ + m) lo |5,
(2.3.3)
b(w, ) = (w,divr) < [[wl[y [[divr s < [[Wllarll7 s (2.3.4)

In this circumstance, the ellptic problem we consider here is pure displace-

ment problem :

Find u € H} (22, R?) such that
(2.3.5)
v @)ew) = f, fe QR

As for the time dependent problem, we set

o= A" (z)e(u),

and this gives
—dive = f.

11
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We are interested in the numerical approximation of the solution (o, u) to
the following problem :

( Find (o,u) € X x M such that

a(o, )+ b(u,7) =0 VT e X, (2.3.6)

| b(w,0) = —(f,w) Vw e M.

with f € M’ the dual space of M.
Suppose X C X and M, C M are finite dimensional approximation spaces.
We consider then the apporximate problem

( Find (o, uy) € Xp, x Mj, such that

CL<0'h, ’Th) + b(uh, Th) =0 V’Th € Xh, (237)

b(Wh,O'h) = — <f,Wh> VYwy, € My,

\

And finially we set

Vh(f) = {Th & Xh / b(Wh,’Th) = — <f, Wh> VWh € Mh},

Vh = Vh(O) = Ker Bh = {Th - Xh / b(Wh,Th) = OVW}L € Mh}
(2.3.8)

Under these assumptions and the well-posedness of the problem (2.1.8), we
have the following classical result (see [3]).

Theorem 2.3.1. For all f € Im B, problem (2.3.6) has a unique solution
(o,u) in X x M. Moreover, ||u|ly + ||o]lx < C||f|lam

We need to check similar Theorem hold for (2.3.7). For this, inf-sup con-
dition and the coercivity of discrete version should be presented, which will
be continue in Chapter3.

12



Chapter 3

Analysis of the Elastic Wave
Equation

3.1 Problem setting

In this chapter, we construct a system to solve the elastic wave equation
using the mixed finite elements described in Section2.2. We introduce some
notations: By, = {o:},, By, = {¢:}}2 to denote the bases of X}, and
My, respectively, where N; = dim X, and Ny = dim Mj. We denote by
X] = (2, ,%pN,) and [V] = (Vq, -+, Vy,) the coordinates of o, and
v, with respect to the bases By, and By,. Based on these bases, Problem
(2.1.9) can be written in the following form:

( Find (X,V) : [0,7] — RM x R such that

dX TN _
MGW_FC V =0,

(3.1.1)
oMLY — s =F,
[+ initial conditions

13
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with

([ (i) (My)ij = (Aoy,o;) 1<i,j<Ny,

(i)  (My)ij = (0i, 95) 1 <1,5 <Ny,
(3.1.2)
(ZZZ) (C)i,j = (¢l,le CTJ‘) 1< < NQ, 1 S] < N17

( () (Fij = (f,¢5) 1<j< N,

C7T denotes the transpose of C. To solve this system, we use another new vec-
tor [X] = (34, -+, 3N, V1, -+, Vp,). Using this vector X, (3.1.1) becomes
a system of ODE problem since matrix M,, M,, C' are independant of time :

([ Find X : [0,7] — RM+¥2 guch that
M, O . O -CT O
7 X = X 3.1.3
(o o )¥=(0 75 )x+(¥) (3.1.3)
.+ initial conditions

Thus, we can use Euler method or Runge Kutta method to solve this systemf

of ODE. From the properties of our mixed finite element space, M, is identity

matrix, and invese of matrix M, can be obtained by Congugate Gradient
method.

3.2 Analysis of mixed finite element for an

elliptic problem

In this section, we will see that the mixed approximation of the elliptic prob-

lem which is in fact the stationary problem associated to the evloution prob-

lem (2.1.2). Acutually, we gave in section 2.3 an preliminaries to anaylze

ellpctic problem. To develope things in section 2.3, we need to check that

our mixed finite element space satisfies some hypothises :

14



CHAPTER 3. ANALYSIS OF THE ELASTIC WAVE EQUATION

(HO) Vf € Im B, V,.(f) # @.
(H1) Strong discrete uniform inf-sup condition :

e there exists a constant ¢ > 0, independent of A, such that
VYwy, € Mh, dr, € X, / b(Wh,’Th) > CHWhHM”’Th”X,

(H2) ”Weak” coercivity :

e there exists a constant o > 0, independent of h, such that
\V/O'h € th a("ha O'h) Z Oé||0'h||%(

Remark. For further study, We need to know the hypothesis (H2) is equiva-
lent to

there exists a constant C > 0, independent of h, such that

b(Wm Th)

V1, € Xp,, sup > Cl|7nl x-

wprEMp, HWhHM

Under these hypotheses we can get the following result :

Theorem 3.2.1. Under the hypothesis (H0)-(H2), problem (2.3.7) admits a
unique solution such that (o, uy) € X, X My, and the following convergence
result holds : (o, uy) — (o,u) in X x M. More precisely,

lo—onllx +||lu—uy||py <C < inf ||o—7u||x + inf [[u— WhHM)
TheXn wpEMp,

< Ch(lloflz + [ull)
(3.2.1)

Let us begin by checking hypothesis (H0). Hypothesis (HO) is equivalent
to the following statement :

KerB} N M, C KerB"

15
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Since Ker B}, = KerB* = 0 we can easily check (H0). For (H1), a constructive
proof is adopted.(see [4]) For convenience, suppose that the domain € is a
unit square [0, 1]> which is triagulated evenly into N? elements, K;;. For any
v € My, it can be decomposed as a sum,

N N
V=) Vidul(a.y),

i=1 j=1

where ¢;;(z) is the characteristic function on the element Kj;;, and V;; =
(V14j, Va,j). we can construct a discrete stress function o, € X with

div,on, = vy, and ||o||x < C|valla

The key of this construction is the shear stress o15 can be taken zero, i.e.,
o012 = 0; Only by using the degree of normal stress o(resp.,012) of oy,
we can make any vy in Mj. More precisely, o1;(resp.,012) is a continuous
piecewise linear function of the variable x (resp.,y) and a piecewise constant
function of y (resp.,z). Therefore, in the following form :

i—1

on(z,y) =h > Vim + Vig(z — i),

m=1
j—1

on(x,y) = hz Vorj + Vaii(y — yj-1),

k=1

for z;01 <x < x; and y;_1 <y <y; ((z;,y;) is the upper-right corner vertex
of square K;;. ) Thus, define

011 O
= X,
Th (O 0'22) < h

By this construction, o,01; = (vp); and
bsig,o22 = (Vvy)2. This gives
dth = V.

16
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For the important inequality, an elementary calculation gives,

N N
Wil = S IVibilis, = S0 / Vi [ dedy
ij=1 ij=1"Kij

= Z((Vl,z'j)z + (Vau3))h?

By the Schwarz inequality;,

i—1 2
lonllp =37 (Z Vimi + Vij(x — l“z'—l)) dxdy

i m=1

i—1
< Yt . <h2 D Vi + Vile — xi—1)2> -1 dady

m=1

since, N =1/h , x — z;_1 < h and fKij = n?,

N i N N
HUUHg < Z (h2 Z(Vl,mj)2> 'Nh2 < Z (h2 Z(Vlﬂnj)2> 'N2h2
ij=1 m=1 j=1 m=1
N
=Y W (Vig)
ij=1

Similarly,

N
loaalls < D b7 (Vays)®
ij=1
The combination of the aforementioned two identities and two inequalities
yields
lonllk = llonllg + l[divieslls

= lloulls + llo2l§ + [Ivalls < 2[valls

17
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Hence, for any v, € V, hypothesis (H1) holds with C' = 1/v/2
di 2 1

inf  sup —( Vrh, V) > in —”VhHM = —.

eV e, [onllxlvallar = veeve V2[val3, V2

this completes the proof.
Now, for checking (H1), from (2.3.8) we immediately know that V, is a strong
discrete divergence-free space from definition. i.e.,:

Vi ={7mn € X / b(wy, T,) = 0 Vwy, € My}

= {7, € X}, / divy7, = 0 pointwise}.

So that if o, € Vy, |low]lx = |ow|m, and from ellipticity of bilinear form
a(-,+) in (2.3.2), a(on, or) > allon||% holds for all o), in V. Now our mixed
finite element satisfied all hypothesis from (HO) to (H2).

Before presenting the proof of Theorem 3.2.1, we need a Lemma below.

Lemma 3.2.2. For o, the solution of elliptic problem (2.3.6), the following
inequality holds :

inf |lo—7ullx <C inf |lo—74|x
ThEVR(S) Th€Xh
Proof. suppose that v, € X, satisfies || — | x = inﬁ( |l — 74||x. Then,
ThEXR

for given 7, € Xj,, there exists o, € X}, such that (cf.[3])
b(Vh,’}/h) = b(Vh, g — O'h) VVh S Mh,
which means that vy, + o, € V,(f) and,

inf(f)||0'—7'h||x <llo = (m+on)lx,

ThEV

From the equivalent form of hypothesis (H1) in Remark 3.2,

b b _
lon|x <C sup M:C sup b(Wn, & = n)
wrEM} HWhHM wrEM) HWhHM

< C||divp(e —)|lm < C |lo —ymllx

Finally from the triagular inequality, the lemma is proved. O
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Now we are ready to prove Theorem 3.2.1.

Proof. The hypothesis (H0), and ellpticity (H1), and descrete inf-sup condi-
tion (H2) ensures that the existence and uniqueness of the solution (o, uy)
in X; x M.

The second equation of (2.3.7) means that o, € V,(f). If we also take
T € Vi (f), the difference is the in kernel, i.e., o, — 7, € V). We will divide
o — oy, into two parts using 7, € V(f)

o —oullx < |lo—Tullx +|7h — onllx

Then, the second part of right side is effectively bounded. To show this, ob-
serve that

alop —Thon—Th) =aloy, —o,0, —Th) +aloc —Th, 0 — Th) (3.2.2)

substraction First equation of (2.3.7) from (2.3.6) yields,

aloc —op, o —Th) +b(u—uy, 0, —714) =0 (3.2.3)

and the difference between the second equation of (2.3.7) and (2.3.6) yields,

b(u—uy, 0, — 1) =bu—wp, 0, — 1) + bWy, —up, 0 — 75) Vwy € M,

=bu—wp, o, —Th) (op—TH € Vy)
(3.2.4)

so that by combining above equations we obtain,
a(lop —Th,on —Th) =b(u—wp, 0 — Th) +aloc — Th,0n —Th)  (3.2.5)
By the V-ellipticity of a(-,-) in hypothesis (H2), (3.2.5) leads to

allon — mullx < (Jbllllw = wallalow — Talu + lalllo — Thlulon — Thla)
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At this point, we have a difficulty related to 7, € V,(f) since we want to
take any 75, € X},. To solve this problem, we need to recall in Lemma 3.2.2,
the inf-sup condition (H1) implies

inf HO‘ - ThHX S C inf HO‘ - Th“X (326)
ThEV() The€Xn

And this gives using (2.3.1) ,
lon — Tnllx gC( inf ||lu—wy|p+ inf HO’—ThHX)
wpEMp, TheEX)

Finally, it remains to prove estimates for ||u — u||5s. Similar to the case of
stress part error estimate, divide u — u;, into two parts using w;, € M,

lw = wnflar < [l = wallar + [[wn — wnl|ar

Let us subtract the first equation of (2.3.7) from that of (2.3.6). We get

a(oc —op,Th) +b(u—u,, 1) =0 V71, € X, (3.2.7)

so that, for any wy, € My,

b(uh — Wy, Th) = CL(O’ — O'h,‘l'h) + b(ll — Wy, Th) V1, € Xy. (328)

Using this and the inf-sup condition in Remark 3.2,

b(up, — Wy, Th)

[Wr, —upllar < C sup
ThEXh HThHX

<C sup a(lo —op, ) + b(u— wy, T3)
T rheXs |7nllx

< C (lallle = onlu + [[bll[w = wallar)-
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It follows from triangle inequality,
la =l <C { inf ||lu—wy|y+|o— ah|H}
WhEMh

If we choose w;, = P,u (P, is the L? projection into piecewise constant
spaces), from Lemma 2.2.1 and the fact that

|lu — Pyul|p < Chluls,

We obtain the last inequality of the theorem. O

3.3 Application to the elliptic projection op-
erator

In this section, we present another interpolation of (o, u) € X x M i.e.,finding
(o', up) =11, (o,u) such that

aloc —op, ) +b(u—u,, 1) =0 V1, € X,
(3.3.1)
b(Wh,U—éh):O Ywy, € My,

Note that, especially, if

a(e, ) +b(u,7,) =0 V1, € X,

(d'h, uy)is a solution of elliptic problem. From the discussion in Section 3.2,
problem (3.3.1) admits an unique solution (o', u)) and error estimate of
Theorem 3.2.1 exactly holds for this interporlation. Then Let us introduce
the notation here,
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(e, u) = Tx(o,u)llo = [lo = aallx + [u—us[x

Enlo,u) = inf ||o—7||x + inf [Ju—wy|y
ThEXR wrEMp

With these notations, we can conclude that

l(o,u) = Tlx(o,u)lloc < C Exlo, )

3.4 Analysis of mixed finite element for an

elastic wave equation

Let us come back to the initial elastic wave eqution (2.1.5) (2.1.9). In this
section we will see how we can relate the error estimates to the one ob-
tained for the elliptic problem (2.3.6) (2.3.7). In this part, we use the same
notation and hypothesis as in Section 2.1 and we use new notation here
cmr =C™(0,T; H)NnC™(0,T; X). Recall the approximation problem :

(

Find (o,v) : [0,T] — X}, x M} such that

%a(ah, Th) +b(vp, o) =0 V1, € Xp, (3.4.1)

%(Vh,wh) —b(wy, o) = (f, wp) Vwy, € My,

\

As in Section3.3, finite element dimensional spaces satisfying hypothesis (HO)
tho (H2). From the classical theory of ODE, we have the following result.

Theorem 3.4.1. If f € C°(0,T; My,), then problem (3.4.1) has a unique
solution (o, vy) € CH0,T; X;,) N CH0,T; My,).

By application of elliptic projection operator, we get the following results.
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Lemma 3.4.2. Let (o, V) be the solution of (2.1.5) and assume that (o, v) €
CH x CY(0,T; M) Then we have the following :
(1) There exists a primitive of v, u € C*(0,T; M), satisfying

du_

2=V aloe, ) +b(u(0), 1) =0 ¥reX (3.4.2)

(i) Vt € [0,T], problem (3.4.1) admits an unique solution Il,(o,u)(t) =
(Gh,up)(t) € X X My, and there exists a constant C independent of h such
that

(o, 0) — (o, u)||o(t) < C Ex(o,u)(t) (3.4.3)

(iii) In the same way, if (o,u) € C*0,T;X) x C*(0,T; M),k > 1, there
exists a constant C' indepedent of h such that

(0o, 0yw) — Tn(0f o, Oy w) e (t) < C &x(0fa, Ofu)(t) (3.4.4)

Remark. Operators 11, and 9F commute, and we set

Vi = 0,(udy) = (dpu)p

Proof. (i)We set fy = —Bo € Im B. From hypothesis (H0)-(H2), we know
that there is a unique (o, ug) € X x M such that

a(oo, ) +b(u,7) =0 Vre X
(3.4.5)
b(w,o) =—(fo,w) VweM,

which means that, o being fixed, there is a unique ug € M such that
a(og, )+ b(ug, 7) =0 V7 € X. Now we define u as

u(t) =up+ /Otv(s) ds
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It is clear that u € C'(0,T; M) and is the unique solution.

(ii) Let u € C'(0,T; M) be the primitive of v; substituting this into the first

equation of model problem gives

d
E(a(a, T)+bu,1))=0

~a(o(t), )+ b(u(t), 7)) = aleo, ) + b(u(0),7)) =0

thus (o,u) € CY(0,T; X) x CY(0,T; M) satisfies

a(o,7)+b(u,7) =0 VrelX,

we get the existence and uniqueness of the elliptic problem, for ¢ fixed, and

also the error estimate (3.4.3).

(iii)If (o, u) is sufficiently regular in time, we can defferentiate with respect

to t and get

a(Ofo,T) +b(0fu,T) =0 V1€ X,

Similar to the proof of (i), (ii) above, we get the error estimate (3.4.6). O

Now we give the main result.

Theorem 3.4.3. Assume (H0)-(H2), let (o, V) be the solution of the model
problem. and (o, vy) the solution of the approzimation problem (3.4.1) with

the initial conditions

(0-07 h‘7 Vo, h‘) = Hh(a-()u VO)'

If (o,v) € C*0,T; X) x CY(0,T; M), then, Vt € [0,T],

lo —op|lu(t) —0; [[v—vp||m—0.
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o —ou|g(t) <C (Eh(a,u)(t) +/0 En(0Fa, 0,v) (1) ds)
(3.4.6)

v = vlu(0) < ¢ (8@ + 6,000, 0)(s) i)

If, in addition, (o,v) € C3(0,T; X)xC?(0,T; M) and (o, vy) € C*(0,T; X},) x
C2<07T7 Mh)

vVt e [0,T], |lo — onllx(t) — 0;

More precisely,

lo — oullx(t) < C (Enlow)(t) + EnDPa, Ov)(1)
. (3.4.7)
T /0 E4(020, Ov)(5) + E(Dar, OPV)(s) d).

Proof. Now here shows that why we defined elliptic operator here. Divide
error into two part :

o —on|u(t) <o —aulut) +|oh — onlu(t)
(3.4.8)
[V = vallar(t) < IV = Villar () + [V — valla (f)

As we see in the Section 3.3, the first parts of error is bounded by applying
elliptic interpolation error estimate.

lo = anllx(t) + IV = Vil (t) < C Enlo,u)(t); (3.4.9)

For the second parts, we start to observe the followings, substracting (3.4.1)
from original variation formula (2.1.5), (for the simplicity of proof, let p = 1)
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( %a(a — o, Th) +0(v—vy, 1) =0 V1, € Xy,
%(V —Vp, W) — b(wy, o0 —0op) =0 Ywy, € My, (3.4.10)
(0 —0o,)(0) =09 — 00, h; (v —vp)(0) = vy — vy, h;

\
Note that since we choose as approximate initial conditions the elliptic pro-
jection of the exact initial condition, so that at ¢ = 0,

(&h — O'h)(O) = 0; (V:h — Vh)<0> = O; (3411)
By (3.4.10), for any (7p,04) € Xp X My,
a(@t(ofh — O'h),Th> + b(VAh — Vp, Th) = —a(@t(a — dh, Th) — b(V — \fh,Th)
(8,5(\?}1 — Vh), Wh) — b(Wh, 0¢h — O'h) = —(at(v — VAh, Wh), Wh) + b(Wh, g — 0%)
(3.4.12)
By differentiating the first equation of (3.3.1), we see that
a(@t(a—dh),‘rh) +b(V —\;h,Th) =0 Vr,e X,
(3.4.13)
b(Wh,O'—Och) =0 Vw, M,
Substituting into (3.4.12) gives, for any (7,,05) € X, X My,
a(Oy(an — o), Th) +b(Vy, — vy, T) =0
(3.4.14)

(at(\;h — Vh>,Wh) — b(Wh, dh — O'h) = —(8t(V — ‘;h>7wh)

Furthermore, by taking 7, = o), — o, and w;, = v, — vy, in (3.4.14) and by

adding the two equations, we get

a(Oy(ay — o), 0, — o)) + (0(Vi — Vi), Vi — Vi) = —(0:(V — Vi, Vi, — Vi)
(3.4.15)
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Next, set

Eh(t) = %(a(cfh - Uh,dh - O'h)) + (‘;h — Vh,VAh — Vh))(t)

Since for some constant C' > 0,

EY2(t) > C (|6 — o4 (8) + Vi — val[2,(2)) 2.

and

dE,"
dt

() < Cllo(v = i)l (t)
So that we obtain, from Ej(0) =0
t
|dh - 0'h|H(t) + ||VAh - Vh”M(t) S C/ H@t(v - VAh)HM(t) ds. (3416)
0

Here we use Lemma 3.4.2 (iii) for £ = 2, which requires (o, v) € C*(0,T; X) x
CY0,T; M). We get

10,(v — Vi) ||ar(t) < C (020, 0,v)(L); (3.4.17)

Hence, from (3.4.9), (3.4.16) and (3.4.17) , the first inequality of (3.4.6) is
proved.
Now for v, we apply Lemma 3.4.2 (iii) for £ = 1 and get

IV = Villu(t) < C En(do, v)(1); (3.4.18)

Now, from (3.4.9), (3.4.16) and (3.4.18), the second inequality of (3.4.6) is
proved.
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To obtain the inequality of (3.4.7), we start by recalling that inf-sup condi-
tion is equivalent to Remark 3.2 :

there exists a constant C > 0, independent of h, such that

b(Wh, Th)

V7, € X5, sup > Oll7allx

wieM;, ||Wallar

Set 7, = o, — op. Then using above equivalent inequality and the second
equation of (3.4.15) we obtain,

lon = onllx < C{N0(v = Vi)l + 10:(Vh = va)l[ar} (3.4.19)

In order to bound ||0;(Vy — v)|lar, we need C?. Indeed we want to ap-
ply Lemma 3.4.2 (iii) for k=2, and do same things similar to prodedure for
(3.4.16) with vy, replaced by 0,vy, vy, by 0;v}, and so on. More precisely, we
have

¢
101 (Vi = Vi) llar(t) < C/ 107 (v = Vi)llar(s) ds (3.4.20)
0
Finially, combining (3.4.19) and (3.4.20), we get
¢
lo°n = onllx < C L0V = Va)llm + / 10; (v = Vi)llar(s) ds}  (3.4.21)
0

The rest of proof need to show the bound of second derivative of v — vy,.
We thus use estimate Lemma 3.4.2 (iii) for k=3, which requires (o,v) €
C3(0,T; X) x C*(0,T; M) and we get (3.4.7). O
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Numerical Result

4.1 Numerical Result for elliptic problem

The followings are two examples in 2D elliptic problem in Section 2 (2.3.5).
Since the material is isotropic in the sense that

1 A
Ao=—|(0o—
o 2 (a it 2)\tr(0) 5)

where p and A are the Lamé constants such that 0 < puy < p < po and
0 <A <oo.
Let the solution on the unit square [0, 1]? be

e < e V(1 - z)y(1 - y) ) (4.1.1)

sin(mx) sin(7y)

and
. ( (1= 2)*y*(1 —y)?
—2*(1 —2)*y*(1 —y)

) ) (4.1.2)

the parameters p and A\ are chosen as
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|0'—0'h|H h™ HdiV(O’—G’h)”M h™ Hll—lthM h™
1| 1.72600 0.0 8.51300 0.0 | 0.30430 0.0
2 || 0.82350 1.1 4.56700 0.9 | 0.15900 0.9
3 1| 0.40450 1.0 2.32500 1.0 | 0.08020 1.0
411 0.20130 1.0 1.16800 1.0 | 0.04017 1.0
5 || 0.10050 1.0 0.05846 1.0 | 0.02010 1.0

Table 4.1: The error and the order of the convergence, for (4.1.1)

o — 0wy | B" | ||div(e —op)|x | 2" | lu—uplls | A"
11 0.01758 0.0 0.11290 0.0 0.02264 0.0
2 || 0.06918 1.3 0.06891 0.7 | 0.00947 1.3
3 || 0.00290 1.3 0.03613 0.9 0.00419 1.2
4 1/ 0.00136 1.1 0.01829 1.0 0.00201 1.1
5 || 0.00067 1.0 0.00917 1.0 | 0.00100 1.0

Table 4.2: The error and the order of the convergence, for (4.1.2)
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Figure 4.1.1: The first component of displacement, for (4.1.1)
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Figure 4.1.5: The first component of displacement, for (4.1.2)
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o —oulg +lv—villu | A" | [l —onllx | A"
2 0.7825 0.0 0.8021 0.0
3 0.5387E-02 7.2 0.1078 2.9
4 0.2266E-03 1.3 0.5650E-01 | 0.9
5 0.1065E-02 1.0 0.2860E-01 | 1.0
6 0.5231E-03 1.0 0.1434E-01 | 1.0

Table 4.3: The error and the order of the convergence, for (4.2.1)

4.2 Numerical Result for elastic wave equa-
tion

In this Section, we shall present the numerical result for elastic wave equation
(2.1.5). The parameters p, i and X are chosen as

and the exact solutions we use here are,
_( 100(¢* + 1)(x — 0.25)*(z — 0.75)*(y — 0.25)*(y — 0.75)* (4.2.1)
U —100(22 4+ 1)(z — 0.25)%(x — 0.75)%(y — 0.25)%(y — 0.75)? o
for 0.25 < 2 <0.75, 0.25 <y <0.75, else u =0,

where 0 <t <1

[ 4sin(t)z(1 —2)y(1 —y)
“e ( —4sin(t)x(1 — x)y(1 —y) ) (4.2.2)
where 0 <t <1

39



CHAPTER 4. NUMERICAL RESULT

o —onla + v =vala | b | [lo —onllx | A"
2 0.8233 0.0 | 1.4140 0.0
3 0.1302 2.7 0.5984 1.2
4 0.6520E-01 1.0 | 0.3003 1.0
5 0.3260E-01 1.0 | 0.1526 1.0
6 0.1632E-01 1.0 | 0.7540E-01 | 1.0

Table 4.4: The error and the order of the convergence, for (4.2.2)
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(c) N=16 (d) N=32

Figure 4.2.10: The first component of t-derivative of displacement, for (4.2.1),
N=4,8,16,32
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Figure 4.2.11: The second component of t-derivative

(4.2.1)
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(c) N=16 (d) N=32

Figure 4.2.12: The second component of t-derivative of displacement, for
(4.2.1), N=48,16,32
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Figure 4.2.13: The first component of t-derivative of displacement, for (4.2.2)
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Figure 4.2.14: The first component of t-derivative of displacement, for (4.2.2),

N=4,8,16,32
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Figure 4.2.16: The second component of t-derivative of displacement, for
(4.2.2), N=4,8,16,32
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