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Abstract

Although it is well-known that there are various mixed finite elements

for solving elastic wave equation, in this paper, we will approach the elastic

wave equation with 2D, the simplest mixed finite element method. The su-

periority of the family of elements over the existing elements is its simplicity

and high accuracy. It satisfies the discrete inf-sup condition for the stability

analysis and has convergence property of the consistency error. In this pa-

per, by using this mixed finite element method, we will get the approximated

solution of the elastic wave equation, and also prove that this approximated

solution stably converges to real solution through elliptic projection.

Key words: mixed finite element, elastic wave equation

Student Number: 2013-20232
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Chapter 1

Introduction

In this paper, we analyze a family of mixed finite elements for the elas-

tic wave equation. Developing the mixed formulation involving both velocity

and pressure, not the traditional displacement formulation, we change the

variation form of the elastic wave eqution into the first order system, which

is very familiar to us. This method can be also applied to the more com-

plicated elastic wave equation with a free boundary condition, but for the

simplicity of the implementation and proof, we assumed the dirichlet bound-

ary condition.

The initial condition of the system is determined by the elliptic projection,

which is inherited from the Becache, Joly, Tsogka, [5]. They devolop the

mixed formulation come from the variation formula for solving elliptic prob-

lem. This method shows that the stationary problem associated to the evo-

lution problem gives the mixed approximation.

The mixed finite element they analyze in [5] is Qdiv
k+1−Qk. However, since

the classical analysis does not fit for this mixed finite element(especially coer-

civity condition does not satisfied), they had to develop the new, nonclassical

error estimates.

To overcome this difficulty, we use here the minimal, any-space dimen-

sional, symmetric, nonconforming mixed finite element studied in 2013, by

Jun Hu, Hongying Man, and Shangyou Zhang [4]. The mixed finite element

1



CHAPTER 1. INTRODUCTION

they proposed is the simplest rectangular element with 7 stress and 2 dis-

placement degrees of freedom on each rectangle.

This element was motivated by a simple fact that the derivative on a

normal stress component σii is only in xi direction; while those on σij are

only in xi and xj directions. The minimal finite element space for σii would

be span{1, xi} on each n-dimensional rectangular element; while the minimal

finite element space for σij would be span{1, xi, xj} on each n-dimensional

rectangular element. For the displacement, there is no derivative and the min-

imal finite element space is the constant space, span{1}. In [4], they prove

that this minimal finite element spaces can actually form a family of stable

and convergent methods for the pure displacement problem.

The obstacle they had to overcome was the symmetry constraint on the

stress tensor, i.e., σij = σji. Because of this symmetry property, it is ex-

tremely difficult to construct stable conforming finite elements for the ellip-

tic problem, even for 2D and 3D. So that, related this difficulty, efforts for

developing composite elements or enforcing the symmetry condition weakly

existed. In [4], they overcome this by giving an explicit constructive proof

for the discrete inf-sup condition. So with this proof, we know the existance

and uniquseness of solution of the elliptic problem. Doubtless, the superioriy

of the family of elements over the existing elements is its simplicity and high

accuracy.

In this paper, we are going to describe several aspects of the pure dis-

placement problem and elastic wave equation. In Chaper2, we introduce the

variation formula of the model problem and present some terminologies re-

lated to norms and inner products of these finite element spaces. And also

we shall explain the basic notion of the simplest, two dimensional mixed

finite element spaces we will use and related interpotion operator and its

interpolation estimates, which plays an important role in convergence of co-

sistency error. In Chapter3, the well-posedness of the finite element problem,

i.e., the discrete inf-sup condition, and another elliptic projection operator

is presented. The rest of section is devoted to the error analysis of the pure

2



CHAPTER 1. INTRODUCTION

displacement and the elastic wave eqauiton. Numerical results in 2D, includ-

ing results for the elliptic projcetion, are provided in Chapter4, which show

a convergence of the minimal element herein.

3



Chapter 2

Preliminaries

2.1 The model problem

Let Ω be a bounded rectangle of R2(it is straightforward that results can be

extended to domains which can be covered by rectangles), which is subdi-

vided by a family of rectangular grids Th(with grid size h).

We consider the system of equations governing the motion of a homogeneous,

isotropic, liniearly elastic body consists of the stress equations of motion,

Hooke’s law and the strain-displacement relations :

σij,j + fi = ρüi,

σij = λεkkδij + 2µεij,

εij = 1
2
(ui,j + uj,i).

(2.1.1)

If the strain-displacement relations are subsituted into Hooke’s law and the

expressions for the stresses are subsequently subsituted in the stress-equations

of motion, we obtain the displacement equations of motion

ρüi − {µui,jj + (λ+ µ)uj,ji} = fi, i = 1, 2

4



CHAPTER 2. PRELIMINARIES

Alternatively, we can formulate the two–dimensional elastic wave equations

in vector form:

Find u : [0, T ] 7→ (H1
0 (Ω))2 such that

ρ∂
2u
∂t2

− div(A−1(x)ε(u)) = f , f ∈ C0(0, T ; (L2(Ω))2),

where A−1(x)ε(u) = λ tr(ε(u)) I + 2µε(u)

(2.1.2)

subject to the initial conditions

u(t = 0) = u0 ∈ (H1
0 (Ω))2 ;

∂u

∂t
(t = 0) = u1 ∈ (L2(Ω))2.

The homogeneous Dirichlet condition on ∂Ω has been considered for simplic-

ity only.

Now, to present mixed variational Formula, let

σ = A−1(x)ε(u) and v =
∂u

∂t
.

Subsituting into (2.1.2) yields
ρ∂v
∂t
− divσ = f,

A∂σ
∂t
− ε(v) = 0,

(2.1.3)

with initial conditions

σ(0) = σ0 = A−1(x)ε(u0) ; v(0) = v0 = u1. (2.1.4)

A mixed weak formulation associated to (2.1.3) is given by the following

problem:

5
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Find (σ,v) : [0, T ] 7→ X ×M ≡ H(div,Ω,S)×  L2(Ω,R2) such that

d
dt
a(σ, τ ) + b(v,σ) = 0 ∀τ ∈ X,

d
dt

(v,w)− b(w,σ) = 〈f ,w〉 ∀w ∈M,

(2.1.5)

where 

a(σ, τ ) =

∫
Ω

A(x) σ : τ dx ∀(σ, τ ) ∈ X ×X,

b(w, τ ) =

∫
Ω

w · div τ dx ∀(w, τ ) ∈M ×X,

〈f ,w〉 =

∫
Ω

f ·w dx ∀w ∈M.

(2.1.6)

and 
X = H(div,Ω, S) = {(σij)n×n ∈ H(div,Ω) | σij = σji}

M = L2(Ω,R2) =
{

(u1, u2)T | ui ∈ L2(Ω)
} (2.1.7)

The bilinear form a(·, ·) (resp., b(·, ·)) is continuous on H×H(H = (L2(Ω))2)

(resp., on X×M). The bilinear form a(·, ·) (resp., b(·, ·)) thus defines a linear

continuous operator A : H 7→ H ′ by 〈Aσ, τ 〉H′×H = a(σ, τ ) (resp., B : X 7→
M ′ by 〈Bτ ,w〉M ′×M = b(w, τ )). They satisfy the following properties(see, for

instance, [3]) :

6



CHAPTER 2. PRELIMINARIES

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(i) The continuous inf-sup condition holds :

∃c > 0 / ∀w ∈M,∃τ ∈ X / b(w, τ ) ≥ c‖w‖M‖τ‖X .

(ii) The coercivity of the form a(·, ·) on V ≡ KerB :

∃α > 0 / ∀σ ∈ V, a(σ,σ) ≥ α‖σ‖2
X .

(2.1.8)

Hence the discrete problem associated to (2.1.6) and (2.1.4) is

Find (σh,vh) : [0, T ] 7→ Xh ×Mh such that

d
dt
a(σh, τ h) + b(vh,σh) = 0 ∀τ h ∈ Xh,

d
dt

(vh,wh)− b(wh,σh) = 〈f ,wh〉 ∀wh ∈Mh,

(2.1.9)

subject to the initial condition

σh(0) = σ0,h ; vh(0) = v1,h (2.1.10)

In the following, we consider a pair of finite element spaces to solve (2.1.5).

2.2 A minimal element in 2D

The set of all edges in Th is denoted by Eh, which is divided into two sets,

the set Eh,H of horizontal edge and the set Eh,V of vertical edges. Given any

edge e ∈ Eh, one fixed unit normal vector n with the components (n1, n2) is

assigned. For each K ∈ Th, define the affine invertible transformation

Fk : K̂ 7→ K,(
x̂

ŷ

)
7→
(
x

y

)
=

(
hx,K

2
x̂+ x0,K

hy,K

2
ŷ + y0,K

)
,

7



CHAPTER 2. PRELIMINARIES

with the center (x0,K , y0,K) of K, the horizontal lengh hx,K , and the vertical

length hy,K , and the reference element K̂ = [−1, 1]2.

On each element K ∈ Th, a constant finite element space for the displacement

is defined by

MK = P0(K,R2) =

{(
v1

v2

)
| v1, v2 ∈ P0(K)

}
; (2.2.1)

while the symmetric linear finite element space for the stress is defined by

XK =

{
σ ∈

(
P1,1(K) P1(K)

P1(K) P1,2(K)

)
S

}
, (2.2.2)

where subscript S indicates a symmetric matrix stress, and

P1,1(K) = span{1, x},
P1(K) = span{1, x, y}
P1,2(K) = span{1, y}.

The dimenstion of the space MK is 2, and that of XK is 7. Locally P1(K)

is the space of linear polynomials. Globally, let Wh be the P1-nonconforming

space on Th, which is first introduced in [1] as a nonconforming approxima-

tion space to H1(Ω) on the quadrilateral mesh; To be exact, Wh is the space

of piecewise linear polynomials, which are continuous at all mid -edge points

of triangulation Th. Wh is the finite element space approximating function

σ12.

The global space Xh and Mh are defined by

Xh = {σ =

(
σ11 σ12

σ12 σ22

)
∈ L2(Ω,S) | σ|K ∈ XK for all K ∈ Th, (2.2.3)

σ11 is continuous on all vertical interior edges,

σ22 is continuous on all horizontal interior edges,

σ12 is continuous at all mid-points of interior edges, }

8



CHAPTER 2. PRELIMINARIES

Mh = {v ∈ L2(Ω,R2) | v|K ∈ V (K) for all K ∈ Th}. (2.2.4)

The discrete stress spaceXh is a nonconforming approximation toH(div,Ω,S).

And the discrete divergence operator divh is defined elementwise with respect

to Th.

divhσ|K = div(σ|K) ∀σ ∈ Xh.

Finally, the last part of this section is devoted to the interpolation operator

Πhσ for any σ ∈ H(div,Ω,S) ∩ H2(Ω,S) in order to analyze the approxi-

mation error in Chaper3. Define an interpolation(see [4])

Πhσ =

(
Π11σ11 Π12σ12

Π12σ12 Π22σ22

)
∈ Xh, (2.2.5)

where Π11 and Π22 are standard, satisfying, respectively,∫
e

Π11σ11 ds =

∫
e

σ11 ds for any vertical edge e ∈ Eh,

∫
e

Π22σ22 ds =

∫
e

σ22 ds for any horizontal edge e ∈ Eh.

Π12 is the interpolation operator from space H2(Ω) to nonconforming finite

element space.

Π12σ12(em) =
1

2
(σ12(e1) + σ12(e2)),

where for an edge e ∈ Eh, e1 and e2 are two endpoints of e, and em is the

mid-point of these two endpoints. It is shown by Park and Sheen [1] that

|v − Π12v|m,K ≤ Ch2−m|v|2,K , m = 0, 1 K ∈ Th (2.2.6)

9



CHAPTER 2. PRELIMINARIES

The convergence result of elastic wave equation will follow from below Lemma.

Lemma 2.2.1. ([4], Theorem 4.1) For any σ ∈ H2(Ω,S), it hold that

‖(σ − Πhσ)‖0 ≤ Ch‖σ‖2,

‖divh(σ − Πhσ)‖0 ≤ Ch‖σ‖2.

2.3 The ellptic problem

In order to analyze apporximation of the evolution problem, we need to use

an abstract result for a class of ellptic problems posed in a more general

framework. In this section, the mixed approximation of the elliptic problem

which is in fact the stationary problem associated to the evolution problem

will be presented.

Before presenting the new equation, we need to introduce Hibert space H.

X and M are same as (2.1.7). Then H = L2(Ω,R2) satisfies the following :

X ⊂ H, | · |H ≤ ‖ · ‖X

since

‖σ‖2
X = |σ|2H + |div σ|2M (2.3.1)

Let a(·, ·) and b(·, ·) be two continuous bilinear forms in H ×H and M ×X.
In the same way as in (2.1.6), a(·, ·) defines an operator A in L(H), such

that a(σ, τ ) = (Aσ, τ )H ∀(σ, τ ) ∈ H × H and the bilinear form b(·, ·) de-

fines an operatoer B : X 7→M ′ (and its transpose Bt : M 7→ X ′) such that

〈Bσ,w〉M ′×M =
〈
σ, Btw

〉
X×X′ = b(w,σ) ∀(σ.w) ∈ X ×M.

The kernels of B and Bt are defined as follows :

10
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V ≡ KerB = {σ ∈ X / b(w,σ) = 0 ∀w ∈M}

KerBt = {w ∈M / b(w,σ) = 0 ∀σ ∈ X}

This function spaces X,M,H satisfy the following two inequalities (2.1.8).

Using (2.1.2), we know that

Aσ =
1

2µ
σ − λ

4µ(λ+ µ)
tr(σ) I,

we can easily check that A(x) be a positive difinite symmetric operator sat-

isfying

A(x) ξ · ξ ≥
(

1

2µ
− λ

2µ(λ+ µ)

)
· |ξ|2H , ξ ∈ R4 (2.3.2)

We can also check that operator a(·, ·) and b(·, ·) is bounded.

a(σ,σ) =
1

2µ
(σ,σ)− λ

4µ(λ+ µ)
(tr(σ) I,σ) ≤

(
1

2µ
+

λ

2µ(λ+ µ)

)
|σ|2H ,

(2.3.3)

b(w, τ ) = (w, divτ ) ≤ ‖w‖M ‖divτ‖M ≤ ‖w‖M‖τ‖M . (2.3.4)

In this circumstance, the ellptic problem we consider here is pure displace-

ment problem :
Find u ∈ H1

0 (Ω,R2) such that

−div(A−1(x)ε(u)) = f, f ∈ L2(Ω,R2).

(2.3.5)

As for the time dependent problem, we set

σ = A−1(x)ε(u),

and this gives

−div σ = f.

11
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We are interested in the numerical approximation of the solution (σ,u) to

the following problem :

Find (σ,u) ∈ X ×M such that

a(σ, τ ) + b(u, τ ) = 0 ∀τ ∈ X,

b(w,σ) = −〈f ,w〉 ∀w ∈M.

(2.3.6)

with f ∈M ′ the dual space of M .

Suppose Xh ⊂ X and Mh ⊂M are finite dimensional approximation spaces.

We consider then the apporximate problem

Find (σh,uh) ∈ Xh ×Mh such that

a(σh, τ h) + b(uh, τ h) = 0 ∀τ h ∈ Xh,

b(wh,σh) = −〈f ,wh〉 ∀wh ∈Mh.

(2.3.7)

And finially we set
Vh(f) = {τ h ∈ Xh / b(wh, τ h) = −〈f ,wh〉 ∀wh ∈Mh},

Vh = Vh(0) = Ker Bh = {τ h ∈ Xh / b(wh, τ h) = 0 ∀wh ∈Mh}
(2.3.8)

Under these assumptions and the well-posedness of the problem (2.1.8), we

have the following classical result (see [3]).

Theorem 2.3.1. For all f ∈ Im B, problem (2.3.6) has a unique solution

(σ, u) in X ×M . Moreover, ‖u‖M + ‖σ‖X ≤ C‖f‖M ′

We need to check similar Theorem hold for (2.3.7). For this, inf-sup con-

dition and the coercivity of discrete version should be presented, which will

be continue in Chapter3.

12



Chapter 3

Analysis of the Elastic Wave

Equation

3.1 Problem setting

In this chapter, we construct a system to solve the elastic wave equation

using the mixed finite elements described in Section2.2. We introduce some

notations: BN1 = {σi}N1
i=1, BN2 = {φi}N2

i=1 to denote the bases of Xh and

Mh, respectively, where N1 = dim Xh and N2 = dim Mh. We denote by

[Σ] = (Σ1, · · · ,ΣN1) and [V ] = (V1, · · · ,VN2) the coordinates of σh and

vh with respect to the bases BN1 and BN2 . Based on these bases, Problem

(2.1.9) can be written in the following form:

Find (Σ,V) : [0, T ] 7→ RN1 × RN2 such that

Mσ
dΣ
dt

+ CTV = 0,

ρMv
dV
dt
− CΣ = F,

+ initial conditions

(3.1.1)

13



CHAPTER 3. ANALYSIS OF THE ELASTIC WAVE EQUATION

with 

(i) (Mσ)i,j = (Aσi,σj) 1 ≤ i, j ≤ N1,

(ii) (Mv)i,j = (φi, φj) 1 ≤ i, j ≤ N2,

(iii) (C)i,j = (φi, div σj) 1 ≤ i ≤ N2, 1 ≤ j ≤ N1,

(iv) (F )i,j = (f, φj) 1 ≤ j ≤ N2.

(3.1.2)

CT denotes the transpose of C. To solve this system, we use another new vec-

tor [X] = (Σ1, · · · ,ΣN1 ,V1, · · · ,VN2). Using this vector X, (3.1.1) becomes

a system of ODE problem since matrix Mσ, Mv, C are independant of time :

Find X : [0, T ] 7→ RN1+N2 such that

(
Mσ O

O ρMv

)
Ẋ =

(
O −CT

C O

)
X +

(
O

F

)

+ initial conditions

(3.1.3)

Thus, we can use Euler method or Runge Kutta method to solve this systemf

of ODE. From the properties of our mixed finite element space, Mv is identity

matrix, and invese of matrix Mσ can be obtained by Congugate Gradient

method.

3.2 Analysis of mixed finite element for an

elliptic problem

In this section, we will see that the mixed approximation of the elliptic prob-

lem which is in fact the stationary problem associated to the evloution prob-

lem (2.1.2). Acutually, we gave in section 2.3 an preliminaries to anaylze

ellpctic problem. To develope things in section 2.3, we need to check that

our mixed finite element space satisfies some hypothises :

14
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(H0) ∀f ∈ Im B, Vh(f) 6= ∅.

(H1) Strong discrete uniform inf-sup condition :

• there exists a constant c > 0, independent of h, such that

∀wh ∈Mh, ∃τ h ∈ Xh / b(wh, τ h) ≥ c‖wh‖M‖τ h‖X ,

(H2) ”Weak” coercivity :

• there exists a constant α > 0, independent of h, such that

∀σh ∈ Vh, a(σh,σh) ≥ α‖σh‖2
X .

Remark. For further study, We need to know the hypothesis (H2) is equiva-

lent to
there exists a constant C > 0, independent of h, such that

∀τ h ∈ Xh, sup
wh∈Mh

b(wh, τ h)

‖wh‖M
≥ C‖τ h‖X .

Under these hypotheses we can get the following result :

Theorem 3.2.1. Under the hypothesis (H0)-(H2), problem (2.3.7) admits a

unique solution such that (σh,uh) ∈ Xh×Mh, and the following convergence

result holds : (σh,uh)→ (σ,u) in X ×M. More precisely,

‖σ − σh‖X + ‖u− uh‖M ≤ C

(
inf

τh∈Xh

‖σ − τ h‖X + inf
wh∈Mh

‖u−wh‖M
)

≤ Ch (‖σ‖2 + ‖u‖2)
(3.2.1)

Let us begin by checking hypothesis (H0). Hypothesis (H0) is equivalent

to the following statement :

KerBt
h ∩Mh ⊂ KerBt

15
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Since KerBt
h = KerBt = 0 we can easily check (H0). For (H1), a constructive

proof is adopted.(see [4]) For convenience, suppose that the domain Ω is a

unit square [0, 1]2 which is triagulated evenly into N2 elements, Kij. For any

v ∈Mh, it can be decomposed as a sum,

vh =
N∑
i=1

N∑
j=1

Vijφij(x, y),

where φij(x) is the characteristic function on the element Kij, and Vij =

(V1,ij,V2,ij). we can construct a discrete stress function σh ∈ Xh with

divhσh = vh and ‖σh‖X ≤ C‖vh‖M

The key of this construction is the shear stress σ12 can be taken zero, i.e.,

σ12 ≡ 0; Only by using the degree of normal stress σ11(resp.,σ12) of σh,

we can make any vh in Mh. More precisely, σ11(resp.,σ12) is a continuous

piecewise linear function of the variable x (resp.,y) and a piecewise constant

function of y (resp.,x). Therefore, in the following form :

σ11(x, y) = h
i−1∑
m=1

V1,mj + V1,ij(x− xi−1),

σ22(x, y) = h

j−1∑
k=1

V2,kj + V2,ij(y − yj−1),

for xi−1 ≤ x ≤ xi and yj−1 ≤ y ≤ yj ((xi, yj) is the upper-right corner vertex

of square Kij. ) Thus, define

σh =

(
σ11 O

O σ22

)
∈ Xh

By this construction, σxσ11 = (vh)1 and

bsigyσ22 = (vh)2. This gives

divh = vh.

16
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For the important inequality, an elementary calculation gives,

‖vh‖2
M =

N∑
i,j=1

‖Vijφij‖2
M,Kij

=
N∑

i,j=1

∫
Kij

|Vijφij|2dxdy

=
N∑

i,j=1

((V1,ij)
2 + (V2,ij)

2)h2

By the Schwarz inequality,

‖σ11‖2
0 =

∑N
i,j=1

∫
Kij

(
i−1∑
m=1

V1,mj + V1,ij(x− xi−1)

)2

dxdy

≤
∑N

i,j=1

∫
Kij

(
h2

i−1∑
m=1

V 2
1,mj + V 2

1,ij(x− xi−1)2

)
· i dxdy

since, N = 1/h , x− xi−1 ≤ h and
∫
Kij

= h2,

‖σ11‖2
0 ≤

N∑
i,j=1

(
h2

i∑
m=1

(V1,mj)
2

)
·Nh2 ≤

N∑
j=1

(
h2

N∑
m=1

(V1,mj)
2

)
·N2h2

=
N∑

i,j=1

h2(V1,ij)
2.

Similarly,

‖σ22‖2
0 ≤

N∑
i,j=1

h2(V2,ij)
2

The combination of the aforementioned two identities and two inequalities

yields
‖σh‖2

X = ‖σh‖2
0 + ‖divhσh‖2

0

= ‖σ11‖2
0 + ‖σ22‖2

0 + ‖vh‖2
0 ≤ 2‖vh‖2

0

17
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Hence, for any vh ∈ Vh, hypothesis (H1) holds with C = 1/
√

2

inf
vh∈Vh

sup
σh∈Xh

(divhσh,vh)

‖σh‖X‖vh‖M
≥ inf

vh∈Vh

‖vh‖2
M√

2‖vh‖2
M

=
1√
2
.

this completes the proof.

Now, for checking (H1), from (2.3.8) we immediately know that Vh is a strong

discrete divergence-free space from definition. i.e.,:

Vh = {τ h ∈ Xh / b(wh, τ h) = 0 ∀wh ∈Mh}

= {τ h ∈ Xh / divhτ h = 0 pointwise}.

So that if σh ∈ Vh, ‖σh‖X = |σh|H , and from ellipticity of bilinear form

a(·, ·) in (2.3.2), a(σh,σh) ≥ α‖σh‖2
X holds for all σh in Vh. Now our mixed

finite element satisfied all hypothesis from (H0) to (H2).

Before presenting the proof of Theorem 3.2.1, we need a Lemma below.

Lemma 3.2.2. For σ, the solution of elliptic problem (2.3.6), the following

inequality holds :

inf
τh∈Vh(f)

‖σ − τ h‖X ≤ C inf
τh∈Xh

‖σ − τ h‖X

Proof. suppose that γh ∈ Xh satisfies ‖σ − γh‖X = inf
τh∈Xh

‖σ − τ h‖X . Then,

for given γh ∈ Xh, there exists σh ∈ Xh such that (cf.[3])

b(vh, γh) = b(vh,σ − σh) ∀vh ∈Mh,

which means that γh + σh ∈ Vh(f) and,

inf
τh∈Vh(f)

‖σ − τ h‖X ≤ ‖σ − (γh + σh)‖X ,

From the equivalent form of hypothesis (H1) in Remark 3.2,
‖σh‖X ≤ C sup

wh∈Mh

b(wh,σh)

‖wh‖M
= C sup

wh∈Mh

b(wh,σ − γh)

‖wh‖M

≤ C ‖divh(σ − γh)‖M ≤ C ‖σ − γh‖X
Finally from the triagular inequality, the lemma is proved. 2
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Now we are ready to prove Theorem 3.2.1.

Proof. The hypothesis (H0), and ellpticity (H1), and descrete inf-sup condi-

tion (H2) ensures that the existence and uniqueness of the solution (σh,uh)

in Xh ×Mh.

The second equation of (2.3.7) means that σh ∈ Vh(f). If we also take

τ h ∈ Vh(f), the difference is the in kernel, i.e., σh−τ h ∈ Vh. We will divide

σ − σh into two parts using τ h ∈ Vh(f)

‖σ − σh‖X ≤ ‖σ − τ h‖X + ‖τ h − σh‖X

Then, the second part of right side is effectively bounded. To show this, ob-

serve that

a(σh − τ h,σh − τ h) = a(σh − σ,σh − τ h) + a(σ − τ h,σh − τ h) (3.2.2)

substraction First equation of (2.3.7) from (2.3.6) yields,

a(σ − σh,σh − τ h) + b(u− uh,σh − τ h) = 0 (3.2.3)

and the difference between the second equation of (2.3.7) and (2.3.6) yields,

b(u− uh,σh − τ h) = b(u−wh,σh − τ h) + b(wh − uh,σh − τ h) ∀wh ∈Mh

= b(u−wh,σh − τ h) (∵ σh − τ h ∈ Vh)
(3.2.4)

so that by combining above equations we obtain,

a(σh − τ h,σh − τ h) = b(u−wh,σh − τ h) + a(σ − τ h,σh − τ h) (3.2.5)

By the V-ellipticity of a(·, ·) in hypothesis (H2), (3.2.5) leads to

α‖σh − τ h‖2
X ≤ (‖b‖‖u−wh‖M |σh − τ h|H + ‖a‖|σ − τ h|H |σh − τ h|H)
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At this point, we have a difficulty related to τ h ∈ Vh(f) since we want to

take any τ h ∈ Xh. To solve this problem, we need to recall in Lemma 3.2.2,

the inf-sup condition (H1) implies

inf
τh∈Vh(f)

‖σ − τ h‖X ≤ C inf
τh∈Xh

‖σ − τ h‖X (3.2.6)

And this gives using (2.3.1) ,

‖σh − τ h‖X ≤ C

(
inf

wh∈Mh

‖u−wh‖M + inf
τh∈Xh

‖σ − τ h‖X
)

Finally, it remains to prove estimates for ‖u − uh‖M . Similar to the case of

stress part error estimate, divide u− uh into two parts using wh ∈Mh

‖u− uh‖M ≤ ‖u−wh‖M + ‖wh − uh‖M

Let us subtract the first equation of (2.3.7) from that of (2.3.6). We get

a(σ − σh, τ h) + b(u− uh, τ h) = 0 ∀τ h ∈ Xh. (3.2.7)

so that, for any wh ∈Mh,

b(uh −wh, τ h) = a(σ − σh, τ h) + b(u−wh, τ h) ∀τ h ∈ Xh. (3.2.8)

Using this and the inf-sup condition in Remark 3.2,

‖wh − uh‖M ≤ C sup
τh∈Xh

b(uh −wh, τ h)

‖τ h‖X

≤ C sup
τh∈Xh

a(σ − σh, τ h) + b(u−wh, τ h)

‖τ h‖X

≤ C (‖a‖|σ − σh|H + ‖b‖‖u−wh‖M).
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It follows from triangle inequality,

‖u− uh‖M ≤ C

{
inf

wh∈Mh

‖u−wh‖M + |σ − σh|H
}

If we choose wh = Phu (Ph is the L2 projection into piecewise constant

spaces), from Lemma 2.2.1 and the fact that

‖u− Phu‖M ≤ Ch|u|2,

We obtain the last inequality of the theorem. 2

3.3 Application to the elliptic projection op-

erator

In this section, we present another interpolation of (σ,u) ∈ X×M i.e.,finding

(σ̂h, ûh) ≡ Πh(σ,u) such that
a(σ − σ̂h, τ h) + b(u− ûh, τ h) = 0 ∀τ h ∈ Xh

b(wh,σ − σ̂h) = 0 ∀wh ∈Mh

(3.3.1)

Note that, especially, if

a(σ, τ h) + b(u, τ h) = 0 ∀τ h ∈ Xh

(σ̂h, ûh)is a solution of elliptic problem. From the discussion in Section 3.2,

problem (3.3.1) admits an unique solution (σ̂h, ûh) and error estimate of

Theorem 3.2.1 exactly holds for this interporlation. Then Let us introduce

the notation here,
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‖(σ,u)− Πh(σ,u)‖C = ‖σ − σ̂h‖X + ‖u− ûh‖M

Eh(σ,u) = inf
τh∈Xh

‖σ − τ h‖X + inf
wh∈Mh

‖u−wh‖M

With these notations, we can conclude that

‖(σ,u)− Πh(σ,u)‖C ≤ C Eh(σ,u)

3.4 Analysis of mixed finite element for an

elastic wave equation

Let us come back to the initial elastic wave eqution (2.1.5) (2.1.9). In this

section we will see how we can relate the error estimates to the one ob-

tained for the elliptic problem (2.3.6) (2.3.7). In this part, we use the same

notation and hypothesis as in Section 2.1 and we use new notation here

Cm,r = Cm(0, T ;H) ∩ Cr(0, T ;X). Recall the approximation problem :

Find (σ,v) : [0, T ] 7→ Xh ×Mh such that

d
dt
a(σh, τ h) + b(vh,σh) = 0 ∀τ h ∈ Xh,

d
dt

(vh,wh)− b(wh,σh) = (f,wh) ∀wh ∈Mh,

(3.4.1)

As in Section3.3, finite element dimensional spaces satisfying hypothesis (H0)

tho (H2). From the classical theory of ODE, we have the following result.

Theorem 3.4.1. If f ∈ C0(0, T ;Mh), then problem (3.4.1) has a unique

solution (σh,vh) ∈ C1(0, T ;Xh) ∩ C1(0, T ;Mh).

By application of elliptic projection operator, we get the following results.
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Lemma 3.4.2. Let (σ,v) be the solution of (2.1.5) and assume that (σ,v) ∈
C1,0 × C1(0, T ;M) Then we have the following :

(i) There exists a primitive of v, u ∈ C1(0, T ;M), satisfying

du

dt
= v, a(σ0, τ ) + b(u(0), τ ) = 0 ∀τ ∈ X (3.4.2)

(ii) ∀t ∈ [0, T ], problem (3.4.1) admits an unique solution Πh(σ,u)(t) =

(σ̂h, ûh)(t) ∈ Xh ×Mh and there exists a constant C independent of h such

that

‖(σ,u)− Πh(σ,u)‖C(t) ≤ C Eh(σ,u)(t) (3.4.3)

(iii) In the same way, if (σ,u) ∈ Ck(0, T ;X) × Ck(0, T ;M), k ≥ 1, there

exists a constant C indepedent of h such that

‖(∂kt σ, ∂kt u)− Πh(∂kt σ, ∂
k
t u)‖C(t) ≤ C Eh(∂kt σ, ∂

k
t u)(t) (3.4.4)

Remark. Operators Πh and ∂kt commute, and we set

v̂h = ∂t(ûh) = ( ˆ∂hu)h

Proof. (i)We set f0 = −Bσ0 ∈ Im B. From hypothesis (H0)-(H2), we know

that there is a unique (σ0,u0) ∈ X ×M such that
a(σ0, τ ) + b(u, τ ) = 0 ∀τ ∈ X

b(w,σ) = −(f0,w) ∀w ∈M,

(3.4.5)

which means that, σ0 being fixed, there is a unique u0 ∈ M such that

a(σ0, τ ) + b(u0, τ ) = 0 ∀τ ∈ X. Now we define u as

u(t) = u0 +

∫ t

0

v(s) ds
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It is clear that u ∈ C1(0, T ;M) and is the unique solution.

(ii) Let u ∈ C1(0, T ;M) be the primitive of v; substituting this into the first

equation of model problem gives

d

dt
(a(σ, τ ) + b(u, τ )) = 0

∴ a(σ(t), τ ) + b(u(t), τ )) = a(σ0, τ ) + b(u(0), τ )) = 0

thus (σ,u) ∈ C1(0, T ;X)× C1(0, T ;M) satisfies

a(σ, τ ) + b(u, τ ) = 0 ∀τ ∈ X,

we get the existence and uniqueness of the elliptic problem, for t fixed, and

also the error estimate (3.4.3).

(iii)If (σ,u) is sufficiently regular in time, we can defferentiate with respect

to t and get

a(∂kt σ, τ ) + b(∂kt u, τ ) = 0 ∀τ ∈ X,

Similar to the proof of (i), (ii) above, we get the error estimate (3.4.6). 2

Now we give the main result.

Theorem 3.4.3. Assume (H0)-(H2), let (σ,v) be the solution of the model

problem. and (σh,vh) the solution of the approximation problem (3.4.1) with

the initial conditions

(σ0, h,v0, h) = Πh(σ0,v0).

If (σ,v) ∈ C2(0, T ;X)× C1(0, T ;M), then, ∀t ∈ [0, T ],

|σ − σh|H(t)→ 0; ‖v − vh‖M → 0.
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|σ − σh|H(t) ≤ C

(
Eh(σ,u)(t) +

∫ t

0

Eh(∂2
tσ, ∂tv)(t) ds

)

‖v − vh‖M(t) ≤ C

(
Eh(∂tσ,v)(t) +

∫ t

0

Eh(∂2
tσ, ∂tv)(s) ds

) (3.4.6)

If, in addition, (σ,v) ∈ C3(0, T ;X)×C2(0, T ;M) and (σh,vh) ∈ C2(0, T ;Xh)×
C2(0, T ;Mh)

∀t ∈ [0, T ], ‖σ − σh‖X(t)→ 0;

More precisely,
‖σ − σh‖X(t) ≤ C (Eh(σ,u)(t) + Eh(∂2

tσ, ∂tv)(t)

+

∫ t

0

Eh(∂2
tσ, ∂tv)(s) + Eh(∂3

tσ, ∂
2
t v)(s) ds).

(3.4.7)

Proof. Now here shows that why we defined elliptic operator here. Divide

error into two part :

|σ − σh|H(t) ≤ |σ − σ̂h|H(t) + |σ̂h − σh|H(t)

‖v − vh‖M(t) ≤ ‖v − v̂h‖M(t) + ‖v̂h − vh‖M(t)

(3.4.8)

As we see in the Section 3.3, the first parts of error is bounded by applying

elliptic interpolation error estimate.

‖σ − σ̂h‖X(t) + ‖v − v̂h‖M(t) ≤ C Eh(σ,u)(t); (3.4.9)

For the second parts, we start to observe the followings, substracting (3.4.1)

from original variation formula (2.1.5), (for the simplicity of proof, let ρ = 1)
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d
dt
a(σ − σh, τ h) + b(v − vh, τ h) = 0 ∀τ h ∈ Xh,

d
dt

(v − vh,wh)− b(wh,σ − σh) = 0 ∀wh ∈Mh,

(σ − σh)(0) = σ0 − σ0, h; (v − vh)(0) = v0 − v0, h;

(3.4.10)

Note that since we choose as approximate initial conditions the elliptic pro-

jection of the exact initial condition, so that at t = 0,

(σ̂h − σh)(0) = 0; (v̂h − vh)(0) = 0; (3.4.11)

By (3.4.10), for any (τ h,σh) ∈ Xh ×Mh,
a(∂t(σ̂h − σh), τ h) + b(v̂h − vh, τ h) = −a(∂t(σ − σ̂h, τ h)− b(v − v̂h, τ h)

(∂t(v̂h − vh),wh)− b(wh, σ̂h − σh) = −(∂t(v − v̂h,wh),wh) + b(wh,σ − σ̂h)
(3.4.12)

By differentiating the first equation of (3.3.1), we see that
a(∂t(σ − σ̂h), τ h) + b(v − v̂h, τ h) = 0 ∀τ h ∈ Xh

b(wh,σ − σ̂h) = 0 ∀wh ∈Mh

(3.4.13)

Substituting into (3.4.12) gives, for any (τ h,σh) ∈ Xh ×Mh,
a(∂t(σ̂h − σh), τ h) + b(v̂h − vh, τ h) = 0

(∂t(v̂h − vh),wh)− b(wh, σ̂h − σh) = −(∂t(v − v̂h),wh)

(3.4.14)

Furthermore, by taking τ h = σ̂h − σh and wh = v̂h − vh in (3.4.14) and by

adding the two equations, we get

a(∂t(σ̂h − σh), σ̂h − σh)) + (∂t(v̂h − vh), v̂h − vh) = −(∂t(v − v̂h, v̂h − vh)

(3.4.15)
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Next, set

Eh(t) =
1

2
(a(σ̂h − σh, σ̂h − σh)) + (v̂h − vh, v̂h − vh))(t).

Since for some constant C > 0,

E
1/2
h (t) ≥ C (|σ̂h − σh|2H(t) + ‖v̂h − vh‖2

M(t))1/2.

and

dE
1/2
h

dt
(t) ≤ C‖∂t(v − v̂h)‖M(t)

So that we obtain, from Eh(0) = 0

|σ̂h − σh|H(t) + ‖v̂h − vh‖M(t) ≤ C

∫ t

0

‖∂t(v − v̂h)‖M(t) ds. (3.4.16)

Here we use Lemma 3.4.2 (iii) for k = 2, which requires (σ,v) ∈ C2(0, T ;X)×
C1(0, T ;M). We get

‖∂t(v − v̂h)‖M(t) ≤ C Eh(∂2
tσ, ∂tv)(t); (3.4.17)

Hence, from (3.4.9), (3.4.16) and (3.4.17) , the first inequality of (3.4.6) is

proved.

Now for v, we apply Lemma 3.4.2 (iii) for k = 1 and get

‖v − v̂h‖M(t) ≤ C Eh(∂tσ,v)(t); (3.4.18)

Now, from (3.4.9), (3.4.16) and (3.4.18), the second inequality of (3.4.6) is

proved.
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To obtain the inequality of (3.4.7), we start by recalling that inf-sup condi-

tion is equivalent to Remark 3.2 :
there exists a constant C > 0, independent of h, such that

∀τ h ∈ Xh, sup
wh∈Mh

b(wh, τ h)

‖wh‖M
≥ C‖τ h‖X

Set τ h = σ̂h − σh. Then using above equivalent inequality and the second

equation of (3.4.15) we obtain,

‖σ̂h − σh‖X ≤ C {‖∂t(v − v̂h)‖M + ‖∂t(v̂h − vh)‖M} (3.4.19)

In order to bound ‖∂t(v̂h − vh)‖M , we need C2. Indeed we want to ap-

ply Lemma 3.4.2 (iii) for k=2, and do same things similar to prodedure for

(3.4.16) with vh replaced by ∂tvh, v̂h by ∂tv̂h, and so on. More precisely, we

have

‖∂t(v̂h − vh)‖M(t) ≤ C

∫ t

0

‖∂2
t (v − v̂h)‖M(s) ds (3.4.20)

Finially, combining (3.4.19) and (3.4.20), we get

‖σ̂h − σh‖X ≤ C {‖∂t(v − v̂h)‖M +

∫ t

0

‖∂2
t (v − v̂h)‖M(s) ds} (3.4.21)

The rest of proof need to show the bound of second derivative of v − v̂h.

We thus use estimate Lemma 3.4.2 (iii) for k=3, which requires (σ,v) ∈
C3(0, T ;X)× C2(0, T ;M) and we get (3.4.7). 2
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Numerical Result

4.1 Numerical Result for elliptic problem

The followings are two examples in 2D elliptic problem in Section 2 (2.3.5).

Since the material is isotropic in the sense that

Aσ =
1

2µ

(
σ − λ

2µ+ 2λ
tr(σ) δ

)
where µ and λ are the Lamé constants such that 0 < µ1 < µ < µ2 and

0 < λ <∞.

Let the solution on the unit square [0, 1]2 be

u =

(
ex−yx(1− x)y(1− y)

sin(πx) sin(πy)

)
(4.1.1)

and

u =

(
x2(1− x)2y2(1− y)2

−x2(1− x)2y2(1− y)2

)
(4.1.2)

the parameters µ and λ are chosen as

µ =
1

2
, λ = 1
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|σ − σh|H hn ‖div(σ − σh)‖M hn ‖u− uh‖M hn

1 1.72600 0.0 8.51300 0.0 0.30430 0.0

2 0.82350 1.1 4.56700 0.9 0.15900 0.9

3 0.40450 1.0 2.32500 1.0 0.08020 1.0

4 0.20130 1.0 1.16800 1.0 0.04017 1.0

5 0.10050 1.0 0.05846 1.0 0.02010 1.0

Table 4.1: The error and the order of the convergence, for (4.1.1)

|σ − σh|H hn ‖div(σ − σh)‖M hn ‖u− uh‖M hn

1 0.01758 0.0 0.11290 0.0 0.02264 0.0

2 0.06918 1.3 0.06891 0.7 0.00947 1.3

3 0.00290 1.3 0.03613 0.9 0.00419 1.2

4 0.00136 1.1 0.01829 1.0 0.00201 1.1

5 0.00067 1.0 0.00917 1.0 0.00100 1.0

Table 4.2: The error and the order of the convergence, for (4.1.2)
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Figure 4.1.1: The first component of displacement, for (4.1.1)
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Figure 4.1.2: The first component of displacement, for (4.1.1), N=4,8,16,32
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Figure 4.1.3: The second component of displacement, for (4.1.1)
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Figure 4.1.4: The second component of displacement, for (4.1.1), N=4,8,16,32
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Figure 4.1.5: The first component of displacement, for (4.1.2)
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Figure 4.1.6: The first component of displacement, for (4.1.2), N=4,8,16,32
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Figure 4.1.7: The second component of displacement, for (4.1.2)
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Figure 4.1.8: The second component of displacement, for (4.1.2), N=4,8,16,32
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|σ − σh|H + ‖v − vh‖M hn ‖σ − σh‖X hn

2 0.7825 0.0 0.8021 0.0

3 0.5387E-02 7.2 0.1078 2.9

4 0.2266E-03 1.3 0.5650E-01 0.9

5 0.1065E-02 1.0 0.2860E-01 1.0

6 0.5231E-03 1.0 0.1434E-01 1.0

Table 4.3: The error and the order of the convergence, for (4.2.1)

4.2 Numerical Result for elastic wave equa-

tion

In this Section, we shall present the numerical result for elastic wave equation

(2.1.5). The parameters ρ, µ and λ are chosen as

ρ = 1, µ =
1

2
, λ = 1

and the exact solutions we use here are,

u =

(
100(t2 + 1)(x− 0.25)2(x− 0.75)2(y − 0.25)2(y − 0.75)2

−100(t2 + 1)(x− 0.25)2(x− 0.75)2(y − 0.25)2(y − 0.75)2

)
(4.2.1)

for 0.25 ≤ x ≤ 0.75, 0.25 ≤ y ≤ 0.75, else u = 0,

where 0 ≤ t ≤ 1

u =

(
4 sin(t)x(1− x)y(1− y)

−4 sin(t)x(1− x)y(1− y)

)
(4.2.2)

where 0 ≤ t ≤ 1
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|σ − σh|H + ‖v − vh‖M hn ‖σ − σh‖X hn

2 0.8233 0.0 1.4140 0.0

3 0.1302 2.7 0.5984 1.2

4 0.6520E-01 1.0 0.3003 1.0

5 0.3260E-01 1.0 0.1526 1.0

6 0.1632E-01 1.0 0.7540E-01 1.0

Table 4.4: The error and the order of the convergence, for (4.2.2)
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Figure 4.2.9: The first component of t-derivative of displacement, for (4.2.1)
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Figure 4.2.10: The first component of t-derivative of displacement, for (4.2.1),

N=4,8,16,32
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Figure 4.2.11: The second component of t-derivative of displacement, for

(4.2.1)
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Figure 4.2.12: The second component of t-derivative of displacement, for

(4.2.1), N=4,8,16,32
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Figure 4.2.13: The first component of t-derivative of displacement, for (4.2.2)
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Figure 4.2.14: The first component of t-derivative of displacement, for (4.2.2),

N=4,8,16,32
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Figure 4.2.15: The second component of t-derivative of displacement, for

(4.2.2)
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Figure 4.2.16: The second component of t-derivative of displacement, for

(4.2.2), N=4,8,16,32
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국문초록

탄성편미분방정식을풀기위한혼합유한요소에대한많은연구결과들이

알려져 있지만, 이 논문에서는 가장 간단한 2차원 혼합 유한 요소로 탄성 파동

방정식에 접근한다. 이 혼합 유한 요소는 가장 작은 자유도를 가지면서도, 해

의 유일성과 존재성을 위한 안정 조건을 만족하고 해와의 오차가 안정적으로

감소하는 것으로 알려져 있다. 이 논문에서는, 이 혼합 유한 요소를 이용하여

시간의 변화에 따라 진행하는 탄성 파동 방정식의 근사치를 구하고, 순수 변

위 문제를 통한 탄성 투사가 투사 전의 함수에 근사함을 관찰하여 탄성 파동

방정식 해의 근사치가 안정적으로 해에 수렴함을 보였다.

주요어휘: 혼합 유한 요소, 탄성 파동 방정식

학번: 2013-20232
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