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Abstract

Explosive percolation transitions
in growing networks

SooMin Oh
Department of Physics and Astronomy
The Graduate School

Seoul National University

Recent extensive studies of the explosive percolation (EP) model revealed
that the EP transition is of second order with extremely small value of the
order parameter exponent 3. This result was obtained from static random
networks, in which the number of nodes in the system remains constant dur-
ing the evolution of the network. However, on-line social networks, where
the giant component among the members grows quickly, can be growing
networks, in which the number of nodes in the system is increased with
time steps. Thus, one needs to study EP transitions occurring in growing
networks. Here we study a general case in which the number of node can-
didates that are selected at each time step is given as m. When m = 2, this
model reduces to an existing model that is the ordinary percolation model
in growing networks, which undergoes an infinite-order transition. When

m > 3, however, we find that the transition becomes second order due to



the suppression effect against the growth of large clusters. Using the rate
equation approach and Monte Carlo simulations, we show that the exponent
B decreases algebraically with increasing m, whereas it decreases exponen-

tially for static networks.

Keywords : Percolation transition, Spanning cluster, Explosive percolation
transition, Discontinuous percolation transition, Achlioptas process, Finite
size scaling theory
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Chapter 1

Introduction

1.1 Percolation

In statistical physics, percolation theory helps to understand the emer-
gence of a giant component as links are occupied with a certain probabil-
ity between each pair of nodes in a system [1, [2] and phase transitions in
non-equilibrium systems. This simple model has been applied to a variety
of real-world phenomena such as the sol-gel transition [3H6], spreading of
epidemic diseases [7/H10l], and the metal-insulator transition [11]. Conven-
tionally, a percolation transition is second-order [1, 2l]; however, interest
in other types of percolation transitions such as first-order [12], infinite-
order [13}/14] or mixed-order [[15] phase transitions has increased recently.
This trend has been triggered by the explosive percolation (EP) model [[16]
under the Achlioptas process in static networks. These Achlioptas processes,
choosing a pair which minimizes the size of the resulting cluster among m
candidate nodes, suppresses the formation of large clusters. It delays the
phase transition point and then the explosive phase transition arises. Many
physicists looked for the possibility that there are discontinuous phase tran-
sition models like k-core percolation models [15} [17519] and invented
study the explosive percolation models. For example, there are cascading

failure model in interdependent networks [20, 21], the spanning cluster-



avoiding(SCA) model [22], synchronization transition model [23]], jamming
transition model [24] and so on.

Now, we recall a percolation model in growing networks, which ex-
hibits an infinite-order phase transition [14]. In this model, at each time
step, a node is added to the system, and then two distinct nodes are chosen
randomly and connected unless they are not connected yet. The model we
consider here is a generalization of the existing model [14]] by applying the
Achlioptas process to it. Instead of choosing two nodes, we choose m dis-
tinct nodes and identify the sizes of the components to which each selected
node belongs. The two nodes that belong to the smallest two components
among those m components are connected. When the two nodes belong to
the same component, they are connected but the size of that component does
not increase.

We investigate critical behaviors as a function of m, and show that the
cluster size distribution changes drastically when the Achlioptas process is
applied. When m = 2, the cluster size distribution follows power law not
only at the transition point p = p, but also below p.; however, when m > 3,
it exhibits critical behavior only at p. and sub-critical behavior for p < p..
The EP dynamic rule leads to the suppression effect against the growth
of large clusters, which results that the cluster size distribution in a large-
cluster region decays exponentially. Thus, the transition is second-order. We
also show that the critical exponent 8 associated with the order parameter
decreases with m algebraically in growing networks; however, it does expo-
nentially in static networks [25, 26]. This fact reflects that the suppression

effect is weaker in growing networks than that in static networks. Moreover,



we obtain the critical exponents and their tendency in both growing and
static models for a general value of m. In fact, the explosive percolations in
static networks were well studied in ref. [26, 27] but we rechecked this in
our static network models. we expect that our studies help the development

of researches in complex networks.

1.2 Percolation in Erdos-Rényi network

1.2.1 Phase transition to percolation

There are many percolation models in lattice, networks, etcetera but in
this paper we focused on the percolation in networks. Networks consists of
lines(edges) and nodes(vertices). In this section we introduce Erd6s-Rényi
(ER) networks model which is classical percolation model in network. ER
networks model introduced in 1959 [29] is one of the percolation models
which undergoes continuous phase transition. This ER model is the growth
network model with randomly selecting two nodes to be linked at each time
¢ and the total number of nodes N is fixed. And there is no giant cluster if
the average degree (k) is less than 1 in the limit N — « [28]]. However,
the giant cluster emerges at (k) = 1 and its size monotonically increases as
(k) increases with the order parameter(the relative size of the giant cluster)

critical exponent 8 = 1.



1.2.2 Finite size scaling ansatz and data collapse : or-

der parameter

Now, we introduce the finite scaling methods using scaling ansatz and
data collapse. For continuous phase transitions, every physical variable X
near the threshold ¢, is scale-free due to the infinite correlation length of
the system at 7. [31} [32]], so it has a power-law form X ~ |r —7.|?, where
a is a critical exponent and ¢ is time which is equivalent to link density.
On a finite system of size N, any physical variable X has the following
scaling ansatz form X = N~%V f[(t —t,)N'/] near the threshold [32, 33],
where the scaling function f(z) is analytic at all finite z and V is equal to

the dimension d times the correlation exponent v. Now, the order parameter

t=0.4990 —+—
t =0.5000 —<—
t =0.5001

S . slope =-0.333

1072 }

-3
103 - ' '
10° 10° 10’

Fig. 1.1: (Color online) Log-log plot of G versus N at different . It is well described
by power law at #. = 0.5000(1), /v = 0.333(1).



Gy (t) is the relative size of the largest cluster in a system with N fixed nodes
at time t. The critical exponent of the Gy(¢) is B and the scaling ansatz is
Gn(t) = N~P/Vg[(t —1.)N'/"], where the scaling function g(z) is analytic at
all finite z.

And we numerically observed the order parameter Gy(¢) are made
when N/ 10* =26,27 28 29 and 2!°. Measures are averaged over more than
10° ensembles. If we use the correct 7., Gy (1) must show the power-law be-
havior N~B/7. We investigate it and find that 7, = 0.5000(1) and B/V =
0.333(1) [see fig. [L.I]l. And using 7. = 0.5000(1) and B/v = 0.333(1),
we try to make the curves for various system size collapse to finite size
scaling form of Gy(t) as shown fig. From this analysis, we found

1/v =0.333(1) and it gives us the order parameter exponent § = 1.00(3).

12.0 N = 640000 —— ' '
N = 1280000 —
10.0 F  N=2560000
N = 5120000
N = 10240000
8.0
>
Q.
= 6.0 t
@)
4.0 t
20 1
0.0 ' ' ' '
-2 -1 0 1 2 3

(t-t )NV

Fig. 1.2: (Color online) Finite-size scaling collapse using Gy(t) = N-BIVf ((r—
1.)N'/V) 1t shows best fit with 1/ = 0.333(1) when /v = 0.333(1).



1.2.3 Finite size scaling ansatz and data collapse : av-

erage cluster size

The average cluster size (s) is obtained from the cluster size distribution
as (s) = > o7 | s?n,(t), where ng(t) is the relative number of cluster of size s
and sx is limited to finite clusters. This value behaves like the susceptibility.
The critical exponent of the (s) is y and the scaling ansatz is (s) = N"/Vh[(r —
1.)N'/V], where the scaling function A(z) is analytic at all finite z. And we
numerically observed the order parameter Gy () are made when N/10* =
27,28 29 and 2'°. Measures are averaged over more than 10° ensembles.
And using #, = 0.5000(1) and 1/Vv = 0.333(1), we try to make the curves

for various system size collapse to finite size scaling form of (s) as shown

0.9 N = 1280000 —— '
0.8 |  N=2560000 —— A ]
N = 5120000 c
0.7 + N=10240000 ' :“ i
0.6 r 1
2 05! -
5 04 | |
0.3 ¢ .
0.2 ]
0.1+ i
O | | |
-10 -5 0 5 10

(t-t )NV

Fig. 1.3: (Color online) Finite-size scaling collapse using (s) = NY/Vh[(t —t.)N'/"|
It shows best fit with 1/¥ = 0.333(1) when y = 1.00(5).



fig. From this analysis, we found the average cluster size exponent

y=1.00(5).

1.2.4 Finite size scaling ansatz and data collapse : clus-

ter size density

For all cluster sizes s < s¢, the cluster size distribution ny(f) decay as a
power law in s, that is ny(¢) ~ s~ 7, while decaying faster than a power law
for s > sg. Now when ¢ — 7. and s > s¢, we propose the following scal-
ing ansatz ny(t) ~ s~ "exp(—s/s¢) for ny(t), where the characteristic cluster
size s¢ diverges as a power law with critical exponent —1/¢ in term of the
distance of ¢ from ¢, that is, sg ~ |t — tc|_1/‘5 [31]]. Then we can know that
ny(t) follow scaling function ansatz ny(t) ~ s~ exp(—s|t —1.|'/?).

And we numerically observed the order parameter () are made when

N = 107 and measures are averaged over more than 10° ensembles. If we

10° : —
ol @ (b) ——
_ 107 4=047 t=0.53 ——
@ 5| t=0.46 t=0.54
107 1 ¢=0.45 £=0.55
S 41 =044 t=0.56
10" =0.43 t=0.57
5| t=0.42 t=0.58 ——
10 =0.41 £=0.59 ——
Lo6 (=040 | =060 — |
10* 10° 102 107! 10° 10' 4 10° 102 101 10° 10!
|t-tc|1los |t-tc|llos

Fig. 1.4: (Color online) Data collapse plots of the rescaled cluster size distribution
ny(t)s® versus s|tr — tc|1/ % for different time steps when (a) t < 7. and (b) t > 1,
where 7 = 2.50(1) and o = 0.50(1).



use the correct #., ng(¢) must show the power-law behavior s~ *. Using t, =
0.5000(1), we found that T = 2.50(1) and we try to make the curves for
various ¢ collapse to finite size scaling form of n,(¢) as shown fig. H From

this analysis, we found o = 0.50(1).



Chapter 2

Two models: the growing and the

static network models

In this paper, we consider two types of network models, growing and
static. In a growing network, the number of nodes increases one by one at
each time step, whereas in a static model, the number of nodes remains fixed
from the beginning. Links are added one by one at each time step in both
models according the following rules:

(i) A growing networks begins with isolated nodes in a system. At each
time step, a node is added in the system and then m candidate nodes are
selected randomly. At time 7, when the number of nodes N(¢f) = 1 +1 is
less than m, all of the nodes are selected as candidates. Next m clusters are
identified for each selected node. Some of clusters may be identical when
they contain more than one selected nodes. The two smallest clusters are
selected among the m clusters, and the corresponding nodes are identified
and connected with probability p if they are not already connected. When
m = 2, this growing network model reduces to the exponentially growing
network model, which was proposed by Callaway et al. [[14].

(ii) For the static network model, N nodes are present from the begin-
ning and remain fixed. At each time step, m candidate nodes are selected

uniformly at random, and the sizes of the respective clusters where they be-



long are identified. The two nodes corresponding to the two smallest clusters
are connected with probability one. When m = 2, this static network model

reduces to the Erdds-Rényi (ER) random network model [29].
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Chapter 3

Rate equation approach for the cluster

size distribution

3.1 Growing network model with m = 3

Let ns(p,t) be the cluster number density of size s at time ¢, where p
denotes the probability that a links is connected between two selected nodes.

The rate equation of n(p,t) is given by

d(N(t)n . N\2
(;t)s):p{ 3 Bini(jny) 3.1)
i+ j=s5i<j
+ Z 6inl~jnjc.,-+1
i+ j=s5i<j

s 3 s 2
— 2(sns)3 — 6(sns)zcs+1 — 3(sns)2(1 — cs)

— 3sny (Cs+1)2 — Osn; (1 - Cs)cs+1:| + O,

where n; denotes n;(p,t) and c,(p,t) = 1—>,_ ini(p,t) to simplify the
notation. The first term of the right hand side of Eq. (3.1)) comes from merg-
ing two clusters of size i and j with i < j, which produces a cluster of size
s =i+ j. One node is selected from a cluster of size i and the other two nodes

are selected from either one cluster of size j or two distinct clusters of the

11



same size j. For simplicity, this process is denoted by (i, > i, > )it j—s.
Similarly, each term is obtained from the merging process as follows: for the
second term, (i, j > i,k > j)iy j=s, the third, (5, 5, 5 ), the fourth, (5, 5,i> 3).
The third and fourth terms appear only when s is even. Furthermore, for the
fifth term, (s,s,s), the sixth term, (s,s,i > s), the seventh term, (s,s,i < s),
the eighth term, (s,i > s, j > s), and the ninth term, (s,i <s,j > s) refer-
ring to Ref. [30]. The last term J;4 arises when a node is added every time
step, and the factor p comes from the probability that a link is added, which
causes the merging process.

Based on this rate equation, we calculate ng(p) in the steady state up to
a certain size s*, for instance, s* = 10°. Note that n,(p) decays in a power-

~7 at a transition point p., and exhibits crossover

law way as ng(p.) ~ s
behavior ng(p) ~ s Fexp(—s/s.) for p # p. with s. ~ |p — pe|~1/° [1, 2.
When p > p., an infinite cluster exists separately from the finite clusters.
The percolation threshold is calculated as p. = 0.413842(1) using the cri-
terion that ng(p.) follows power law at p. as shown in Fig. Moreover,
the exponent 7 is determined to be T ~ 2.5. We also check the crossover
behaviors for p < p. and p > p. in Fig. The exponent ¢ is obtained by
scaling the plots of ny(p)s® versus s|p — p.|'/ for different p values. It can
be shown that the data are well collapsed on a single curve when o ~ 0.72.

Next, the order parameter is obtained using the relation, G(p) ~ 1 —
Zﬁ;l sng(p) [} 2], where s* takes on several values to observe the effect
of the artificially established cutoff values. The order parameter follows

the power-law form, G(p) ~ (p — p.)P, where B = 0.694(2). The inset of

Fig. is a double logarithmic plot of the order parameter as a function

12 -



Fig. 3.5: (Color online) For growing networks with m = 3, plot of ng(p) vs s at
p = pc (blue solid line), p > p.(red dashed curves) and p < p.(black solid curves)
based on numerical values obtained from the rate equation. The transition point p.
is p. = 0.413842(1), and the exponent T is approximately 2.5. The black dashed
line is a guide line with slope —2.5.

of (p — pc), which exhibits power-law behavior as expected. The obtained
value of f3 satisfies the hyperscaling relation f = (7 —2) /o [1} 12, 31].

The mean cluster size (s) is obtained from the cluster size distribution
as (s) = > | s’ns(p), which behaves like the susceptibility, (s) ~ (p —
pe) Y for p > p. and (p. — p)~7 for p < p.. We also determine that y =y ~
0.696. The numerical values obtained from the rate equation are shown in
Fig. In the insets, (s) is plotted in double logarithmic axes as a function
of p— p. for p > p., and p. — p for p < p.. The exponent ¥ satisfies the

well-known scaling relation y = (3 — 1) /o [1}2].
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Fig. 3.6: (Color online) For growing networks with m = 3, plot of ny(p)s® versus
s|p — pe|V/@ for different values of p when (a) p < p. and (b) p > p,. Data for
different p values are well collapsed onto a single curve by choosing ¢ = 0.720(2)
and T =2.500(1).

3.2 Growing model with general m

We extend the rate equation in Eq. (3.1) for m = 3 to arbitrary m as

follows:

m—1 m—(r—1)
m § r—1
+ <r_ 1) <2n§> (cs41) (3.2)

|
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—
D
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3
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00 02 04 06 08 10
p

Fig. 3.7: (Color online) For growing networks with m = 3, plot of G(p) vs p. The
data points are obtained from the rate equation. Inset: The dashed line is a guide
line with slope 0.694(2).

Again, the second term on the right hand side is valid only when s is even.
Repeating the steps taken in the case m = 3, we obtain the critical exponents
7, 0, B, 7, and the percolation threshold p. up to m = 10, which are listed
in Table 3.11

Following the conventional formalism for the second-oder percolation
transition, we examine the scaling relation between the critical exponents
and their tendencies for m candidates. Note that the critical point p. and
critical exponent 3 behave like 1 — p. ~ 1.81/m and B ~ 1/(m — 1.56) as
shown in Fig. [3.9] However, a rigorous derivation of these formulas is still
necessary. Next, we determine the exponents T and ¢ for m =4.-- 10 by

following similar steps used for m = 3. We find that the values are approx-
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Fig. 3.8: (Color online) For growing model with m = 3, plot of the susceptibility,
that is mean cluster size, as a function of p. The data points are obtained from the
rate equation. Insets : Double logarithmic plots of (s) versus |p — p.| for p < p,
(left) and p > p, (right). The dashed lines are guide lines with slope —0.696(3).

imately by the formulae t=2+1/(m—1) and 1/0 = (m— 1) as shown

in Fig.3.10} Furthermore, we determine that y = (m —2)f.

3.3 Static model with m =3

‘We consider the evolution of static networks under the rule described in

Chap.[2] In this case, the number of nodes is fixed all the way as N. The rate
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Fig. 3.9: (Color online) For growing model with general m, (a) empirical plot of
1 — p. versus m. Data points of 1 — p, for different values of m behave like the
formula 1.81/m. (b) Empirical plot of 3 vs m. Data points of 8 for different values
of m behave like the formula 8 = 1/(m — 1.56). Note that the error bars are smaller
than the symbol sizes.

equation is written as

dng . .
Ndr;‘: Z 31n,~(]n,~)2+ Z 6in;jn;cj

i+ j=s5;i<]j i+ j=s5i<j

s 3 S 2
— 2(snS)3 — 6(sns)2cs+1 — 3(sns)2(1 — cs)

—3sny(exi1)” — 655 (1 —¢5) e, (3.3)

where n; denotes n;(t) and ¢4(t) = 1 — >, in;(t). The terms on the second
line of Eq. related with 5 are valid only when s is even. In contrast to
the growing network, there is no steady state in the size distribution, and n;
depends on ¢. Accordingly it takes longer time to evaluate n(z) explicitly

compared with that of the growing network model. We obtain n,(¢) up to a
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Table. 3.1: Numerical estimates of the percolation threshold p., exponent of the
cluster size distribution 7, exponent of the characteristic cluster size o, exponent of
the order parameter 3, and exponent of the susceptibility v of the growing network
model for m = 3,---,10. 7* and B* were obained from t* =2+ 1/(m— 1) and
B* = 1/(m—1.56), respectively.

m Pe T T o B* B Y

3 0.413842(1) % 2.500(1) 0.720(2) 0.694 0.694(2) 0.696(3)
4 0.555873(1) % 2.333(1) 0.812(2) 0410 0.4102) 0.813(3)
5 0.642748(1) % 2.250(1) 0.858(2) 0.291 0.291(1) 0.874(6)
6 0.701282(1) 15—1 2.200(1) 0.885(2) 0.225 0.226(1) 0.904(2)
7 0.743370(1) % 2.167(1) 0.905(2) 0.184 0.184(1) 0.922(2)
8 0.775078(1) 175 2.143(1) 0.918(2) 0.155 0.156(1) 0.934(2)
9 0.799820(1) % 2.125(1) 0.928(2) 0.134 0.135(1) 0.944(3)
10 0.819663(1) % 2.111(1) 0.936(2) 0.119 0.119(1) 0.950(3)
05| (a) :j (b) Zzz ©

'0,1 0.2 ?lf?m” 0.4 0.5 .1.0 11 1,2(m-1);.3 14 1.5 0.70 0.75 0(.10»2)2.85 0.90 0.95

Fig. 3.10: (Color online) For growing networks with general m, formula testing for
the exponents of (a) the cluster size distribution 7, (b) the characteristic cluster size
o, and (c) the mean cluster size y, where the numerical data are obtained from the
rate equation. Data are fit reasonably to the straight line predicted by the formula,
and the error bars are smaller than the symbol sizes.

certain cluster size s* = 5 x 10°.

We determine the percolation threshold 7. as shown in Fig. by
the criterion that the cluster size distribution follows power law at #.. It is
obtained that 7, = 0.849130(1) and ny(z,) ~ s~ % with 7 ~ 2.105. For t <
t. and t > t., the cluster size distribution exhibits a crossover behavior as
ng(t) ~ s Fexp(—s|t —1.|'/%). Using the data-collapse method, we obtain

0 ~ 0.79 as shown in Fig.[3.12]
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Fig. 3.11: (Color online) For static networks with m = 3, plot of n,(¢) vs s at t =
t.(blue solid line), t > t.(red dashed curves) and ¢ < f.(black solid curves) based
on the numerical values obtained from the rate equation. The transition point ¢, is
determined as 7, = 0.849130(1) and the exponent 7 is determined as T = 2.105(5).
Black dashed line is a guideline with slope —2.105.

Next, we consider the behavior of the order parameter G(¢) at time step

t. The order parameter is calculated using the relation G(¢) = 1 — 22:1 sng(t).

We expect that G(t) ~ (t — )P, and obtain B = 0.133(1) in Fig. m
We also obtain the mean cluster size or the susceptibility defined as (s) =
Z;;l s?n,(t). Following the convention, it behaves as (s) ~ |t —.|77. We
estimate that ¥ = 1.131(6) in Fig. [3.14] The obtained exponent values § =
0.133 and y = 1.133 satisfy the scaling relation f = (1 —2)/c and v =

(3—1)/0, respectively.
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Fig. 3.12: (Color online) For static networks with m = 3, scaling plot of ng(r)s®
versus s|t — tc|1/  for different ¢ that are (a) less and (b) greater than ¢.. Taking
T =2.105(5) and 6 = 0.790(1), the data for different ¢ values look collapsed onto

a single curv

c.

3.4 Static network model with general m

We extend the rate equation for m = 3 to an arbitrary value of m as

follows:

i+ j=s;i<j

20
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m—1
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Fig. 3.13: (Color online) For static networks with m = 3, plot of the order parameter
G(r) as a function of 7. Inset : The dashed line is a guide line with slope 0.133(1).

where the second term of the right hand side is valid only when s is an even
number.

Taking similar steps used for m = 3, we determine the transition points
and critical exponent 3 for general m up to m = 15. We determine empiri-
cally that these values behave asymptotically like 1 — 7, ~ exp(—0.59m) and
B ~ exp(—0.70m), respectively. This conjecture was alluded to in [25] 26].
A numerical test is shown in Fig. [3.15]

Furthermore, we determine the exponent values T and ¢ for m = 4
and m = 5 because of the instability of the cluster size distribution when
the exponents 7 and o are calculated in the vicinity of T = 2. The obtained
values are listed in Table [3.2] Notice that that the values approximate the

formulas T =2+ B/[1+(m—1)B] and 1/0 = 1+ (m — 1), as shown in
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t

Fig. 3.14: (Color online) For static networks with m = 3, plot of (s) as a function of
t. Inset : Plot of the susceptibility, the mean cluster size as a function of t for ¢ > ¢,
(right) and ¢ < t, (left). The dashed lines are guide lines with slope —1.131(6).

Fig. 3.16] This conclusion is based on a previous analytic solution to the
model in [25} 26]. Due to a slight difference in the dynamic rule, the value
of m in our model corresponds to 2m in [25, [26]; thus, the analytic solution
in is valid for our model by replacing 2m with m. This allows us to
obtain y =1+ (m—2)p.
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Table. 3.2: Numerical estimates of the percolation threshold 7., exponent of the
cluster size distribution 7, exponent of the characteristic cluster size ¢, exponent
of the order parameter 3, and exponent of the susceptibility y of the static network
model for m =2,...,5. t* and B* were obtained from t* =2+ f/[1+ (m—1)]
and B* ~ 0.465exp(—0.70m), respectively.

m te T* T c B* B Y
2 0.5 2.5 2.5 0.5 1 1 1
3 0.849130(1) 2.105 2.105(1) 0.790(1) 0.057 0.133(1) 1.131(6)
4 0.939678(1) 2.037 2.037(1) 0.890(1) 0.028 0.042(1) 1.082(6)
5 0.972672(1) 2.016 2.01522) 0.940(1) 0.014 0.017(1) 1.050(4)

10— 10° ‘

10-1 L 10'1 L @ (b) 1
, 102} 102}
i Sal

102} 102}

104} 104+

10 10

2 4 6 8 10 12 14 2 4 6 8 10 12 14
m m

Fig. 3.15: (Color online) For static networks, (a) plot of 1 — ¢, versus m on a semi-
logarithmic scale. (b) Plot of the estimated values of the exponent 3 for general m
versus m on a semi-logarithmic scale. Asymptotically, the data points likely lie on
a straight line. The error bars are smaller than the symbol sizes.
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00 1.0
0.0 0.1 0.2 0.3 0.4 0.5 1.0 1.2 1.4 1.6 1.8 2.0 1.00 1.05 1.10 1.15
BI(1+(m-1)B) 1+(m-1)p 1+(m-2)p

Fig. 3.16: (Color online) For static networks, formula testing for the exponents of
(a) the cluster size distribution 7, (b) the characteristic cluster size o, and (c) the
mean cluster size ¥, where the numerical data is obtained from the rate equation.
Note that the data fit reasonably to the straight line predicted by the formula.
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Chapter 4

Monte Carlo simulations

4.1 Growing network model with m = 3

100 ‘ ‘ 100 — ‘
&b—\ \7 .
107 | @ e
102} \‘ 102}
o o
=107 2107}
N p=0.34 — = p=0.44 —
104 | p=0.35 — 104} p=0.45 —
p=0.36 — p=0.46 —
10°} p=0.37 — 10°} p=0.47 —
5 p=0.38 - p=0.48
10 ‘2 ‘1 ‘0 10 ‘-2 ‘-1 ‘O 1
107 107 10 10 10 10 10
1/o 1/o
s(pg-p) s(p-p¢)
Fig. 4.17: (Color online) To obtain 7 and ¢ by Monte Carlo simulations for

growing networks, scaling plot of ny(p)s® versus s|p — p.|'/°. Data are collapsed
onto a single curve by choosing T = 2.5 and ¢ = 0.72 for (a) p < p. and (b) p > p..

To determine the exponents 7 and o for the cluster size distribution,

we numerically perform Monte Carlo simulations of the growing network

models for different system sizes N/10* = 23 — 21°; the ensemble average

is taken over 10* configurations.

We first examine the cluster size distribution for several values of p

around the transition point p. in Fig. The cluster size distribution fol-

lows power law at p. and exhibits crossover behavior of ns(p) ~ s~ "exp(—s|p—

pc]l/") [31,132]. We determine p. = 0.4138(2) using the criteria that at p,,
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Fig. 4.18: (Color online) To obtain B by Monte Carlo simulations for growing
networks, scaling plot of GNB/V versus (p — p.)N'/V for system sizes N/10* =
23 — 210 Data are collapsed onto a single curve with the values of 1/V = 0.35(3)
and B/v =0.24(3).

ng(pc) decays in a power-law way and the relative size of the largest cluster,
Gy (p). follows a power law, G ~ N~B/7_ Using the data-collapse method,
we determine the exponent values of T and ¢ to be T~ 2.5 and ¢ ~ 0.72,
respectively, which are in good agreement with the values obtained by the
rate equation approach.

By measuring the exponent of the power-law behavior of Gy(p) and
using a finite-size scaling formula Gy (p) = NV £((p — p.)N'/V), we de-
termine the ratios §/V = 0.24(3) and 1/ ~ 0.35(3), as shown in Fig[4.18]
We determine an exponent value of 8 ~ 0.69. These values are consistent
with those obtained from the rate equations.

The susceptibility is also examined by plotting it in scaling form, i.e.,
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Fig. 4.19: (Color online) To obtain the exponent ¥ using Monte Carlo simulations
for growing networks, data collapse plot of (s)N~Y/¥ versus (p — p.)N'/V for the
system sizes N/10* = 26 — 210 in growing networks. The exponent values are y =
0.696 and 1/¥ = 0.35.

(s)N=Y/V versus (p — p.)N'/V with y = 0.696 and 1/ = 0.35 in Fig.
for different sizes N /10% = 26 —2!9; the ensemble average is taken over 10*
configurations. Notice that the data are well collapsed. This means that the

hyperscaling relation v = 23 4+ y does not hold.

4.2 Static network model with m = 3

To determine the exponents T and o for the cluster size distribution, we
numerically perform Monte Carlo simulations of the static network models
for different system sizes N/10* = 2° — 210, The ensemble average is taken

over 10° for each data point. The cluster size distributions n(t) for differ-
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Fig. 4.20: (Color online) To obtain the exponents ¥ and ¢ using Monte Carlo
simulations for static networks, data collapse plots of the rescaled cluster size dis-
tribution ny(¢)s® versus s|t — tc|1/ ° for different time steps when (a) ¢ < . and (b)
t >t., where T=2.105 and o = 0.79.

ent times are plotted in scaling form, i.e., ny(f) ~ s~ Texp(—s|t —.|'/%), as
shown in Fig. Using the previously obtained values 7, = 0.84913(1)
and 7 ~ 2.1, we determine that the data for different ¢ are well collapsed
onto a single curve with ¢ ~ 0.79.

Next, we consider the order parameter G(t) as a function of the time
step ¢ for different sizes N/10* = 2° — 219, The critical point ¢, and critical
exponent B3 are determined using the scaling ansatz Gy(t) = N~P/V f((r —
1.)N'/¥). Using the criterion that Gy(r) ~ N~B/V at r = 1., we determine
t. = 0.84913(1) and B/V =~ 0.06 in Fig. Moreover, all of the data for
different system sizes are systematically collapsed onto a single curve when
1/V ~ 0.45, as shown in Fig. [4.21] This suggests that 8 =~ 0.133. The value
of B is consistent with the results obtained by the rate equation approach.

Finally, we study the susceptibility behavior as a function of the time

step. The susceptibility is also examined by plotting it in scaling form, i.e.,
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Fig. 4.21: (Color online) To obtain 8 using Monte Carlo simulations for static net-
works, data collapse plot of GNP/V versus (r —1,)N'/V for system sizes N/10* =
20 — 219 Data for different values of N are systematically collapsed near the tran-
sition point by taking 1/v = 0.45 and /v = 0.06.

(s)N~Y/V versus (t —1,)N'/V with y = 1.133 and 1/¥ = 0.45 in Fig.
Notice that the data are well collapsed. This means that the hyperscaling

relation Vv =23 4y doe not hold.
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Fig. 4.22: (Color online) To obtain y using Monte Carlo simulations for static
networks, data collapse plot of (s)N~/V versus (r —£.)N'/V for system sizes
N/10* =27 — 219 where the exponent values y = 1.133 and 1/V = 0.45 are used.

N s ki



Chapter 5

Comparison of ny(p) for growing

network models

10° - - - - -

10-5 i ~’\a~§ T
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10-20 0 I1 I2‘ 3 ‘ 4 ‘ 5 6
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S

Fig. 5.23: (Color online) ~ For growing network with m = 2, plot of ny(p) versus
s at p = p, (blue solid line), p > p, (red dashed line), and p < p. (black solid line)
based on the numerical values obtained from the rate equation. The transition point
is p. = 0.125. For p < p,, ng(p) decays in a power-law manner, indicating that the
transition is infinite-order.

It is interesting to note that the percolation occurring in growing net-
work models when m > 3 is a second-order phase transition, whereas it is of

infinite order when m = 2. We investigate the cluster size distribution ny(p)
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for m = 2. As shown in Fig. ng(p) decays in a power-law way when
p < p¢, while it exhibits crossover behavior when p > p.. The power-law
behavior of ny(p) when p < p. implies that the region p < p, is the critical
phase, which is noticeable in the infinite-order transition. Intuitively, when
p < p., in the growing network, the fraction of nodes that belong to small-
size clusters is relatively low compared to the fraction for the second-order
phase transition model; for example, when m > 3 in Fig. However, when
m > 3, the density of large-size clusters is suppressed by the Achlioptas rule,
which leads to crossover behavior even for p < p.. Thus, the percolation

transition in growing networks for m > 3 is second order.
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Chapter 6

Summary and discussion

In our minimal model that incorporates both growing and static Achliop-
tas processes, the results obtained from the rate equations and Monte-Carlo
simulations for the cluster size distribution are consistent. When m = 2,
the growing and static models correspond to the Callaway random grow-
ing model [14] and Erd6s-Rényi model [29]], respectively.

In the growing network model, as m increases from 2 to 3, the tran-
sitional nature of percolation changes from infinite-order to second-order
due to the Achlioptas process [[16]]. On the other hand, in the static model,
the order of the phase transition is the same as that of the second-order ER
model, but the order parameter exponent 3 decreases exponentially as m
increases and the transition becomes more explosive. The Achlioptas pro-
cess rule leads to the suppression effect against the growth of large clusters,
which causes the cluster size distribution in large-cluster regions to decay
exponentially; thus, the transition is second-order.

Moreover, in this paper, we showed that the critical exponent 3 de-
creases algebraically with m in growing networks; however, it decays ex-
ponentially in static networks. This fact reflects that the suppression ef-
fect in growing networks is weaker than that in static networks. Further-
more, we obtained the critical exponents and their tendencies in both grow-

ing and static models for arbitrary values of m. We also found that the m-
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dependent exponents always satisfy the scaling relations § = (2—1)/0
and ¥y = (3 —1)/0o [} 2l]. However, the hyperscaling relation v =2 + v
does not hold in both growing and static networks. We expected v ~ 2.08
from the relation 23 + y for the growing networks of m = 3, but obtained
v &~ 2.86 (1/v = 0.35) from Monte Carlo simulations. For the static net-
work with m = 3, we expected V ~ 1.4 (1/v = 0.71), but obtained v = 2.22
(1/v = 0.45). The origin of these inconsistencies are still not clear. We re-
mark that the failure of the hyperscaling relation v = 28 + ¥ was also ob-

served in the previous research of Achlioptas process [33]].
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