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Abstract

Explosive percolation transitions
in growing networks

SooMin Oh

Department of Physics and Astronomy

The Graduate School

Seoul National University

Recent extensive studies of the explosive percolation (EP) model revealed

that the EP transition is of second order with extremely small value of the

order parameter exponent β . This result was obtained from static random

networks, in which the number of nodes in the system remains constant dur-

ing the evolution of the network. However, on-line social networks, where

the giant component among the members grows quickly, can be growing

networks, in which the number of nodes in the system is increased with

time steps. Thus, one needs to study EP transitions occurring in growing

networks. Here we study a general case in which the number of node can-

didates that are selected at each time step is given as m. When m = 2, this

model reduces to an existing model that is the ordinary percolation model

in growing networks, which undergoes an infinite-order transition. When

m ≥ 3, however, we find that the transition becomes second order due to
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the suppression effect against the growth of large clusters. Using the rate

equation approach and Monte Carlo simulations, we show that the exponent

β decreases algebraically with increasing m, whereas it decreases exponen-

tially for static networks.

Keywords : Percolation transition, Spanning cluster, Explosive percolation

transition, Discontinuous percolation transition, Achlioptas process, Finite

size scaling theory

Student Number : 2012-20372
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Chapter 1

Introduction

1.1 Percolation

In statistical physics, percolation theory helps to understand the emer-

gence of a giant component as links are occupied with a certain probabil-

ity between each pair of nodes in a system [1, 2] and phase transitions in

non-equilibrium systems. This simple model has been applied to a variety

of real-world phenomena such as the sol-gel transition [3–6], spreading of

epidemic diseases [7–10], and the metal-insulator transition [11]. Conven-

tionally, a percolation transition is second-order [1, 2]; however, interest

in other types of percolation transitions such as first-order [12], infinite-

order [13, 14] or mixed-order [15] phase transitions has increased recently.

This trend has been triggered by the explosive percolation (EP) model [16]

under the Achlioptas process in static networks. These Achlioptas processes,

choosing a pair which minimizes the size of the resulting cluster among m

candidate nodes, suppresses the formation of large clusters. It delays the

phase transition point and then the explosive phase transition arises. Many

physicists looked for the possibility that there are discontinuous phase tran-

sition models like k-core percolation models [15, 17–19] and invented

study the explosive percolation models. For example, there are cascading

failure model in interdependent networks [20, 21], the spanning cluster-
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avoiding(SCA) model [22], synchronization transition model [23], jamming

transition model [24] and so on.

Now, we recall a percolation model in growing networks, which ex-

hibits an infinite-order phase transition [14]. In this model, at each time

step, a node is added to the system, and then two distinct nodes are chosen

randomly and connected unless they are not connected yet. The model we

consider here is a generalization of the existing model [14] by applying the

Achlioptas process to it. Instead of choosing two nodes, we choose m dis-

tinct nodes and identify the sizes of the components to which each selected

node belongs. The two nodes that belong to the smallest two components

among those m components are connected. When the two nodes belong to

the same component, they are connected but the size of that component does

not increase.

We investigate critical behaviors as a function of m, and show that the

cluster size distribution changes drastically when the Achlioptas process is

applied. When m = 2, the cluster size distribution follows power law not

only at the transition point p = pc but also below pc; however, when m ≥ 3,

it exhibits critical behavior only at pc and sub-critical behavior for p < pc.

The EP dynamic rule leads to the suppression effect against the growth

of large clusters, which results that the cluster size distribution in a large-

cluster region decays exponentially. Thus, the transition is second-order. We

also show that the critical exponent β associated with the order parameter

decreases with m algebraically in growing networks; however, it does expo-

nentially in static networks [25, 26]. This fact reflects that the suppression

effect is weaker in growing networks than that in static networks. Moreover,
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we obtain the critical exponents and their tendency in both growing and

static models for a general value of m. In fact, the explosive percolations in

static networks were well studied in ref. [26, 27] but we rechecked this in

our static network models. we expect that our studies help the development

of researches in complex networks.

1.2 Percolation in Erdős-Rényi network

1.2.1 Phase transition to percolation

There are many percolation models in lattice, networks, etcetera but in

this paper we focused on the percolation in networks. Networks consists of

lines(edges) and nodes(vertices). In this section we introduce Erdős-Rényi

(ER) networks model which is classical percolation model in network. ER

networks model introduced in 1959 [29] is one of the percolation models

which undergoes continuous phase transition. This ER model is the growth

network model with randomly selecting two nodes to be linked at each time

t and the total number of nodes N is fixed. And there is no giant cluster if

the average degree ⟨k⟩ is less than 1 in the limit N → ∞ [28]. However,

the giant cluster emerges at ⟨k⟩ = 1 and its size monotonically increases as

⟨k⟩ increases with the order parameter(the relative size of the giant cluster)

critical exponent β = 1.
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1.2.2 Finite size scaling ansatz and data collapse : or-
der parameter

Now, we introduce the finite scaling methods using scaling ansatz and

data collapse. For continuous phase transitions, every physical variable X

near the threshold tc is scale-free due to the infinite correlation length of

the system at tc [31, 32], so it has a power-law form X ∼ |t − tc|a, where

a is a critical exponent and t is time which is equivalent to link density.

On a finite system of size N, any physical variable X has the following

scaling ansatz form X = N−a/ν̄ f [(t − tc)N1/ν̄ ] near the threshold [32, 33],

where the scaling function f (z) is analytic at all finite z and ν̄ is equal to

the dimension d times the correlation exponent ν . Now, the order parameter

10-3

10-2

105 106 107

G

N

t = 0.4990
t = 0.5000
t = 0.5001

slope = -0.333

Fig. 1.1: (Color online) Log-log plot of G versus N at different t. It is well described
by power law at tc = 0.5000(1), β/ν̄ = 0.333(1).
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GN(t) is the relative size of the largest cluster in a system with N fixed nodes

at time t. The critical exponent of the GN(t) is β and the scaling ansatz is

GN(t) = N−β/ν̄g[(t − tc)N1/ν̄ ], where the scaling function g(z) is analytic at

all finite z.

And we numerically observed the order parameter GN(t) are made

when N/104 = 26,27,28,29, and 210. Measures are averaged over more than

105 ensembles. If we use the correct tc, GN(t) must show the power-law be-

havior N−β/ν̄ . We investigate it and find that tc = 0.5000(1) and β/ν̄ =

0.333(1) [see fig. 1.1]. And using tc = 0.5000(1) and β/ν̄ = 0.333(1),

we try to make the curves for various system size collapse to finite size

scaling form of GN(t) as shown fig. 1.2. From this analysis, we found

1/ν̄ = 0.333(1) and it gives us the order parameter exponent β = 1.00(3).

0.0

2.0

4.0

6.0

8.0

10.0

12.0

-2 -1  0  1  2  3

G
N

β
/— ν

(t-tc)N
1/—ν

N = 640000
N = 1280000
N = 2560000
N = 5120000

N = 10240000

Fig. 1.2: (Color online) Finite-size scaling collapse using GN(t) = N−β/ν̄ f ((t −
tc)N1/ν̄) It shows best fit with 1/ν̄ = 0.333(1) when β/ν̄ = 0.333(1).
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1.2.3 Finite size scaling ansatz and data collapse : av-
erage cluster size

The average cluster size ⟨s⟩ is obtained from the cluster size distribution

as ⟨s⟩=
∑s∗

s=1 s2ns(t), where ns(t) is the relative number of cluster of size s

and s∗ is limited to finite clusters. This value behaves like the susceptibility.

The critical exponent of the ⟨s⟩ is γ and the scaling ansatz is ⟨s⟩=Nγ/ν̄h[(t−

tc)N1/ν̄ ], where the scaling function h(z) is analytic at all finite z. And we

numerically observed the order parameter GN(t) are made when N/104 =

27,28,29, and 210. Measures are averaged over more than 105 ensembles.

And using tc = 0.5000(1) and 1/ν̄ = 0.333(1), we try to make the curves

for various system size collapse to finite size scaling form of ⟨s⟩ as shown

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

-10 -5  0  5  10

G
N

β
/— ν

(t-tc)N
1/—ν

N = 1280000
N = 2560000
N = 5120000

N = 10240000

Fig. 1.3: (Color online) Finite-size scaling collapse using ⟨s⟩= Nγ/ν̄ h[(t− tc)N1/ν̄ ]
It shows best fit with 1/ν̄ = 0.333(1) when γ = 1.00(5).
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fig. 1.3. From this analysis, we found the average cluster size exponent

γ = 1.00(5).

1.2.4 Finite size scaling ansatz and data collapse : clus-
ter size density

For all cluster sizes s ≪ sξ , the cluster size distribution ns(t) decay as a

power law in s, that is ns(t) ∼ s−τ , while decaying faster than a power law

for s ≫ sξ . Now when t → tc and s ≫ sξ , we propose the following scal-

ing ansatz ns(t)∼ s−τexp(−s/sξ ) for ns(t), where the characteristic cluster

size sξ diverges as a power law with critical exponent −1/σ in term of the

distance of t from tc, that is, sξ ∼ |t − tc|−1/σ [31]. Then we can know that

ns(t) follow scaling function ansatz ns(t)∼ s−τexp(−s|t − tc|1/σ ).

And we numerically observed the order parameter ns(t) are made when

N = 107 and measures are averaged over more than 105 ensembles. If we

10-6
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10-2

10-1
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(b)
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)s
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s
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t=0.55
t=0.56
t=0.57
t=0.58
t=0.59
t=0.60

Fig. 1.4: (Color online) Data collapse plots of the rescaled cluster size distribution
ns(t)sτ versus s|t − tc|1/σ for different time steps when (a) t < tc and (b) t > tc,
where τ = 2.50(1) and σ = 0.50(1).
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use the correct tc, ns(t) must show the power-law behavior s−τ . Using tc =

0.5000(1), we found that τ = 2.50(1) and we try to make the curves for

various t collapse to finite size scaling form of ns(t) as shown fig. 1.4. From

this analysis, we found σ = 0.50(1).
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Chapter 2

Two models: the growing and the
static network models

In this paper, we consider two types of network models, growing and

static. In a growing network, the number of nodes increases one by one at

each time step, whereas in a static model, the number of nodes remains fixed

from the beginning. Links are added one by one at each time step in both

models according the following rules:

(i) A growing networks begins with isolated nodes in a system. At each

time step, a node is added in the system and then m candidate nodes are

selected randomly. At time t, when the number of nodes N(t) = 1+ t is

less than m, all of the nodes are selected as candidates. Next m clusters are

identified for each selected node. Some of clusters may be identical when

they contain more than one selected nodes. The two smallest clusters are

selected among the m clusters, and the corresponding nodes are identified

and connected with probability p if they are not already connected. When

m = 2, this growing network model reduces to the exponentially growing

network model, which was proposed by Callaway et al. [14].

(ii) For the static network model, N nodes are present from the begin-

ning and remain fixed. At each time step, m candidate nodes are selected

uniformly at random, and the sizes of the respective clusters where they be-
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long are identified. The two nodes corresponding to the two smallest clusters

are connected with probability one. When m = 2, this static network model

reduces to the Erdős-Rényi (ER) random network model [29].
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Chapter 3

Rate equation approach for the cluster
size distribution

3.1 Growing network model with m = 3

Let ns(p, t) be the cluster number density of size s at time t, where p

denotes the probability that a links is connected between two selected nodes.

The rate equation of ns(p, t) is given by

d(N(t)ns)

dt
= p

[ ∑
i+ j=s;i< j

3ini
(

jn j
)2 (3.1)

+
∑

i+ j=s;i< j

6ini jn jc j+1

+

(
s
2

n s
2

)3

+3
(

s
2

n s
2

)2(
c s

2+1
)

−2
(
sns

)3 −6
(
sns

)2cs+1 −3
(
sns

)2(1− cs
)

−3sns
(
cs+1

)2 −6sns
(
1− cs

)
cs+1

]
+δ1s,

where ni denotes ni(p, t) and cs(p, t) = 1 −
∑

i<s ini(p, t) to simplify the

notation. The first term of the right hand side of Eq. (3.1) comes from merg-

ing two clusters of size i and j with i < j, which produces a cluster of size

s= i+ j. One node is selected from a cluster of size i and the other two nodes

are selected from either one cluster of size j or two distinct clusters of the

11



same size j. For simplicity, this process is denoted by (i, j > i, j > i)i+ j=s.

Similarly, each term is obtained from the merging process as follows: for the

second term, (i, j > i,k> j)i+ j=s, the third, ( s
2 ,

s
2 ,

s
2), the fourth, ( s

2 ,
s
2 , i>

s
2).

The third and fourth terms appear only when s is even. Furthermore, for the

fifth term, (s,s,s), the sixth term, (s,s, i > s), the seventh term, (s,s, i < s),

the eighth term, (s, i > s, j > s), and the ninth term, (s, i < s, j > s) refer-

ring to Ref. [30]. The last term δ1s arises when a node is added every time

step, and the factor p comes from the probability that a link is added, which

causes the merging process.

Based on this rate equation, we calculate ns(p) in the steady state up to

a certain size s∗, for instance, s∗ = 106. Note that ns(p) decays in a power-

law way as ns(pc) ∼ s−τ at a transition point pc, and exhibits crossover

behavior ns(p) ∼ s−τ exp(−s/sc) for p ̸= pc with sc ∼ |p− pc|−1/σ [1, 2].

When p > pc, an infinite cluster exists separately from the finite clusters.

The percolation threshold is calculated as pc = 0.413842(1) using the cri-

terion that ns(pc) follows power law at pc as shown in Fig. 3.5. Moreover,

the exponent τ is determined to be τ ≈ 2.5. We also check the crossover

behaviors for p < pc and p > pc in Fig. 3.5. The exponent σ is obtained by

scaling the plots of ns(p)sτ versus s|p− pc|1/σ for different p values. It can

be shown that the data are well collapsed on a single curve when σ ≈ 0.72.

Next, the order parameter is obtained using the relation, G(p) ≈ 1−∑s∗
s=1 sns(p) [1, 2], where s∗ takes on several values to observe the effect

of the artificially established cutoff values. The order parameter follows

the power-law form, G(p) ∼ (p− pc)
β , where β = 0.694(2). The inset of

Fig. 3.7 is a double logarithmic plot of the order parameter as a function

12
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Fig. 3.5: (Color online) For growing networks with m = 3, plot of ns(p) vs s at
p = pc (blue solid line), p > pc(red dashed curves) and p < pc(black solid curves)
based on numerical values obtained from the rate equation. The transition point pc
is pc = 0.413842(1), and the exponent τ is approximately 2.5. The black dashed
line is a guide line with slope −2.5.

of (p− pc), which exhibits power-law behavior as expected. The obtained

value of β satisfies the hyperscaling relation β = (τ −2)/σ [1, 2, 31].

The mean cluster size ⟨s⟩ is obtained from the cluster size distribution

as ⟨s⟩ =
∑s∗

s=1 s2ns(p), which behaves like the susceptibility, ⟨s⟩ ∼ (p −

pc)
−γ for p> pc and (pc− p)−γ ′ for p< pc. We also determine that γ = γ ′ ≈

0.696. The numerical values obtained from the rate equation are shown in

Fig. 3.8. In the insets, ⟨s⟩ is plotted in double logarithmic axes as a function

of p− pc for p > pc, and pc − p for p < pc. The exponent γ satisfies the

well-known scaling relation γ = (3− τ)/σ [1, 2].
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Fig. 3.6: (Color online) For growing networks with m = 3, plot of ns(p)sτ versus
s|p− pc|1/σ for different values of p when (a) p < pc and (b) p > pc. Data for
different p values are well collapsed onto a single curve by choosing σ = 0.720(2)
and τ = 2.500(1).

3.2 Growing model with general m

We extend the rate equation in Eq. (3.1) for m = 3 to arbitrary m as

follows:

d(N(t)ns)

dt

= p
[ m−1∑

r=1

m
(

m−1
r−1

) ∑
i+ j=s;i< j

ini
(

jn j
)m−r(c j+1

)r−1

+
m−1∑
r=1

(
m

r−1

)(
s
2

n s
2

)m−(r−1)(
c s

2+1
)r−1 (3.2)

−2
m∑

r=2

(
m
r

)(
sns

)r(cs+1
)m−r −m

(
sns

)(
cs+1

)m−1

−
m−1∑
r=1

m
(

m−1
r

)(
1− cs

)(
sns

)r(cs+1
)m−1−r

]
+δ1s.
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Fig. 3.7: (Color online) For growing networks with m = 3, plot of G(p) vs p. The
data points are obtained from the rate equation. Inset: The dashed line is a guide
line with slope 0.694(2).

Again, the second term on the right hand side is valid only when s is even.

Repeating the steps taken in the case m = 3, we obtain the critical exponents

τ , σ , β , γ , and the percolation threshold pc up to m = 10, which are listed

in Table 3.1.

Following the conventional formalism for the second-oder percolation

transition, we examine the scaling relation between the critical exponents

and their tendencies for m candidates. Note that the critical point pc and

critical exponent β behave like 1− pc ≈ 1.81/m and β ≈ 1/(m− 1.56) as

shown in Fig. 3.9. However, a rigorous derivation of these formulas is still

necessary. Next, we determine the exponents τ and σ for m = 4 · · · ,10 by

following similar steps used for m = 3. We find that the values are approx-
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Fig. 3.8: (Color online) For growing model with m = 3, plot of the susceptibility,
that is mean cluster size, as a function of p. The data points are obtained from the
rate equation. Insets : Double logarithmic plots of ⟨s⟩ versus |p− pc| for p < pc
(left) and p > pc (right). The dashed lines are guide lines with slope −0.696(3).

imately by the formulae τ = 2+ 1/(m− 1) and 1/σ = (m− 1)β as shown

in Fig. 3.10. Furthermore, we determine that γ = (m−2)β .

3.3 Static model with m = 3

We consider the evolution of static networks under the rule described in

Chap. 2. In this case, the number of nodes is fixed all the way as N. The rate
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formula 1.81/m. (b) Empirical plot of β vs m. Data points of β for different values
of m behave like the formula β = 1/(m−1.56). Note that the error bars are smaller
than the symbol sizes.

equation is written as

N
dns

dt
=

∑
i+ j=s;i< j

3ini
(

jn j
)2

+
∑

i+ j=s;i< j

6ini jn jc j+1

+

(
s
2

n s
2

)3

+3
(

s
2

n s
2

)2(
s s

2+1
)

−2
(
sns

)3 −6
(
sns

)2cs+1 −3
(
sns

)2(1− cs
)

−3sns
(
cs+1

)2 −6sns
(
1− cs

)
cs+1, (3.3)

where ni denotes ni(t) and cs(t) = 1−
∑

i<s ini(t). The terms on the second

line of Eq. (3.3) related with s
2 are valid only when s is even. In contrast to

the growing network, there is no steady state in the size distribution, and ns

depends on t. Accordingly it takes longer time to evaluate ns(t) explicitly

compared with that of the growing network model. We obtain ns(t) up to a
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Table. 3.1: Numerical estimates of the percolation threshold pc, exponent of the
cluster size distribution τ , exponent of the characteristic cluster size σ , exponent of
the order parameter β , and exponent of the susceptibility γ of the growing network
model for m = 3, · · · ,10. τ∗ and β ∗ were obained from τ∗ = 2+ 1/(m− 1) and
β ∗ ≈ 1/(m−1.56), respectively.

m pc τ∗ τ σ β ∗ β γ

3 0.413842(1) 5
2 2.500(1) 0.720(2) 0.694 0.694(2) 0.696(3)

4 0.555873(1) 7
3 2.333(1) 0.812(2) 0.410 0.410(2) 0.813(3)

5 0.642748(1) 9
4 2.250(1) 0.858(2) 0.291 0.291(1) 0.874(6)

6 0.701282(1) 11
5 2.200(1) 0.885(2) 0.225 0.226(1) 0.904(2)

7 0.743370(1) 13
6 2.167(1) 0.905(2) 0.184 0.184(1) 0.922(2)

8 0.775078(1) 15
7 2.143(1) 0.918(2) 0.155 0.156(1) 0.934(2)

9 0.799820(1) 17
8 2.125(1) 0.928(2) 0.134 0.135(1) 0.944(3)

10 0.819663(1) 19
9 2.111(1) 0.936(2) 0.119 0.119(1) 0.950(3)
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Fig. 3.10: (Color online) For growing networks with general m, formula testing for
the exponents of (a) the cluster size distribution τ , (b) the characteristic cluster size
σ , and (c) the mean cluster size γ , where the numerical data are obtained from the
rate equation. Data are fit reasonably to the straight line predicted by the formula,
and the error bars are smaller than the symbol sizes.

certain cluster size s∗ = 5×105.

We determine the percolation threshold tc as shown in Fig. 3.11 by

the criterion that the cluster size distribution follows power law at tc. It is

obtained that tc = 0.849130(1) and ns(tc) ∼ s−τ with τ ≈ 2.105. For t <

tc and t > tc, the cluster size distribution exhibits a crossover behavior as

ns(t) ∼ s−τ exp(−s|t − tc|1/σ ). Using the data-collapse method, we obtain

σ ≈ 0.79 as shown in Fig. 3.12.
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Fig. 3.11: (Color online) For static networks with m = 3, plot of ns(t) vs s at t =
tc(blue solid line), t > tc(red dashed curves) and t < tc(black solid curves) based
on the numerical values obtained from the rate equation. The transition point tc is
determined as tc = 0.849130(1) and the exponent τ is determined as τ = 2.105(5).
Black dashed line is a guideline with slope −2.105.

Next, we consider the behavior of the order parameter G(t) at time step

t. The order parameter is calculated using the relation G(t)= 1−
∑s∗

s=1 sns(t).

We expect that G(t) ∼ (t − tc)β , and obtain β = 0.133(1) in Fig. 3.13.

We also obtain the mean cluster size or the susceptibility defined as ⟨s⟩ =∑s∗
s=1 s2ns(t). Following the convention, it behaves as ⟨s⟩ ∼ |t − tc|−γ . We

estimate that γ = 1.131(6) in Fig. 3.14. The obtained exponent values β =

0.133 and γ = 1.133 satisfy the scaling relation β = (τ − 2)/σ and γ =

(3− τ)/σ , respectively.
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Fig. 3.12: (Color online) For static networks with m = 3, scaling plot of ns(t)sτ

versus s|t − tc|1/σ for different t that are (a) less and (b) greater than tc. Taking
τ = 2.105(5) and σ = 0.790(1), the data for different t values look collapsed onto
a single curve.

3.4 Static network model with general m

We extend the rate equation for m = 3 to an arbitrary value of m as

follows:

N
dns

dt

=
m−1∑
r=1

m
(

m−1
r−1

) ∑
i+ j=s;i< j

ini
(

jn j
)m−r(c j+1

)r−1

+

m−1∑
r=1

(
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)(
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2
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2+1
)r−1
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m
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)(
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)r(cs+1
)m−r −m

(
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)(
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)m−1

−
m−1∑
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m
(
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)(
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, (3.4)
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Fig. 3.13: (Color online) For static networks with m= 3, plot of the order parameter
G(t) as a function of t. Inset : The dashed line is a guide line with slope 0.133(1).

where the second term of the right hand side is valid only when s is an even

number.

Taking similar steps used for m = 3, we determine the transition points

and critical exponent β for general m up to m = 15. We determine empiri-

cally that these values behave asymptotically like 1−tc ≈ exp(−0.59m) and

β ≈ exp(−0.70m), respectively. This conjecture was alluded to in [25, 26].

A numerical test is shown in Fig. 3.15.

Furthermore, we determine the exponent values τ and σ for m = 4

and m = 5 because of the instability of the cluster size distribution when

the exponents τ and σ are calculated in the vicinity of τ = 2. The obtained

values are listed in Table 3.2. Notice that that the values approximate the

formulas τ = 2+β/[1+(m−1)β ] and 1/σ = 1+(m− 1)β , as shown in
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Fig. 3.14: (Color online) For static networks with m = 3, plot of ⟨s⟩ as a function of
t. Inset : Plot of the susceptibility, the mean cluster size as a function of t for t > tc
(right) and t < tc (left). The dashed lines are guide lines with slope −1.131(6).

Fig. 3.16. This conclusion is based on a previous analytic solution to the

model in [25, 26]. Due to a slight difference in the dynamic rule, the value

of m in our model corresponds to 2m in [25, 26]; thus, the analytic solution

in [25, 26] is valid for our model by replacing 2m with m. This allows us to

obtain γ = 1+(m−2)β .
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Table. 3.2: Numerical estimates of the percolation threshold tc, exponent of the
cluster size distribution τ , exponent of the characteristic cluster size σ , exponent
of the order parameter β , and exponent of the susceptibility γ of the static network
model for m = 2, . . . ,5. τ∗ and β ∗ were obtained from τ∗ = 2+β/[1+(m−1)β ]
and β ∗ ≈ 0.465exp(−0.70m), respectively.

m tc τ∗ τ σ β ∗ β γ

2 0.5 2.5 2.5 0.5 1 1 1
3 0.849130(1) 2.105 2.105(1) 0.790(1) 0.057 0.133(1) 1.131(6)
4 0.939678(1) 2.037 2.037(1) 0.890(1) 0.028 0.042(1) 1.082(6)
5 0.972672(1) 2.016 2.015(2) 0.940(1) 0.014 0.017(1) 1.050(4)
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Fig. 3.15: (Color online) For static networks, (a) plot of 1− tc versus m on a semi-
logarithmic scale. (b) Plot of the estimated values of the exponent β for general m
versus m on a semi-logarithmic scale. Asymptotically, the data points likely lie on
a straight line. The error bars are smaller than the symbol sizes.
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(a) the cluster size distribution τ , (b) the characteristic cluster size σ , and (c) the
mean cluster size γ , where the numerical data is obtained from the rate equation.
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Chapter 4

Monte Carlo simulations

4.1 Growing network model with m = 3
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Fig. 4.17: (Color online) To obtain τ and σ by Monte Carlo simulations for
growing networks, scaling plot of ns(p)sτ versus s|p− pc|1/σ . Data are collapsed
onto a single curve by choosing τ = 2.5 and σ = 0.72 for (a) p < pc and (b) p > pc.

To determine the exponents τ and σ for the cluster size distribution,

we numerically perform Monte Carlo simulations of the growing network

models for different system sizes N/104 = 23 − 210; the ensemble average

is taken over 104 configurations.

We first examine the cluster size distribution for several values of p

around the transition point pc in Fig. 4.17. The cluster size distribution fol-

lows power law at pc and exhibits crossover behavior of ns(p)∼ s−τ exp(−s|p−

pc|1/σ ) [31, 32]. We determine pc = 0.4138(2) using the criteria that at pc,
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Fig. 4.18: (Color online) To obtain β by Monte Carlo simulations for growing
networks, scaling plot of GNβ/ν̄ versus (p− pc)N1/ν̄ for system sizes N/104 =
23 − 210. Data are collapsed onto a single curve with the values of 1/ν̄ = 0.35(3)
and β/ν̄ = 0.24(3).

ns(pc) decays in a power-law way and the relative size of the largest cluster,

GN(p), follows a power law, G ∼ N−β/ν̄ . Using the data-collapse method,

we determine the exponent values of τ and σ to be τ ≈ 2.5 and σ ≈ 0.72,

respectively, which are in good agreement with the values obtained by the

rate equation approach.

By measuring the exponent of the power-law behavior of GN(p) and

using a finite-size scaling formula GN(p) = N−β/ν̄ f ((p− pc)N1/ν̄), we de-

termine the ratios β/ν̄ = 0.24(3) and 1/ν̄ ≈ 0.35(3), as shown in Fig 4.18.

We determine an exponent value of β ≈ 0.69. These values are consistent

with those obtained from the rate equations.

The susceptibility is also examined by plotting it in scaling form, i.e.,
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Fig. 4.19: (Color online) To obtain the exponent γ using Monte Carlo simulations
for growing networks, data collapse plot of ⟨s⟩N−γ/ν̄ versus (p− pc)N1/ν̄ for the
system sizes N/104 = 26 −210 in growing networks. The exponent values are γ =
0.696 and 1/ν̄ = 0.35.

⟨s⟩N−γ/ν̄ versus (p− pc)N1/ν̄ with γ = 0.696 and 1/ν̄ = 0.35 in Fig. 4.19

for different sizes N/104 = 26−210; the ensemble average is taken over 104

configurations. Notice that the data are well collapsed. This means that the

hyperscaling relation ν̄ = 2β + γ does not hold.

4.2 Static network model with m = 3

To determine the exponents τ and σ for the cluster size distribution, we

numerically perform Monte Carlo simulations of the static network models

for different system sizes N/104 = 20 −210. The ensemble average is taken

over 105 for each data point. The cluster size distributions ns(t) for differ-
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Fig. 4.20: (Color online) To obtain the exponents γ and σ using Monte Carlo
simulations for static networks, data collapse plots of the rescaled cluster size dis-
tribution ns(t)sτ versus s|t − tc|1/σ for different time steps when (a) t < tc and (b)
t > tc, where τ = 2.105 and σ = 0.79.

ent times are plotted in scaling form, i.e., ns(t) ∼ s−τ exp(−s|t − tc|1/σ ), as

shown in Fig. 4.20. Using the previously obtained values tc = 0.84913(1)

and τ ≈ 2.1, we determine that the data for different t are well collapsed

onto a single curve with σ ≈ 0.79.

Next, we consider the order parameter G(t) as a function of the time

step t for different sizes N/104 = 20 −210. The critical point tc and critical

exponent β are determined using the scaling ansatz GN(t) = N−β/ν̄ f ((t −

tc)N1/ν̄). Using the criterion that GN(t) ∼ N−β/ν̄ at t = tc, we determine

tc = 0.84913(1) and β/ν̄ ≈ 0.06 in Fig. 4.21. Moreover, all of the data for

different system sizes are systematically collapsed onto a single curve when

1/ν̄ ≈ 0.45, as shown in Fig. 4.21. This suggests that β ≈ 0.133. The value

of β is consistent with the results obtained by the rate equation approach.

Finally, we study the susceptibility behavior as a function of the time

step. The susceptibility is also examined by plotting it in scaling form, i.e.,
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Fig. 4.21: (Color online) To obtain β using Monte Carlo simulations for static net-
works, data collapse plot of GNβ/ν̄ versus (t − tc)N1/ν̄ for system sizes N/104 =
20 −210. Data for different values of N are systematically collapsed near the tran-
sition point by taking 1/ν̄ = 0.45 and β/ν̄ = 0.06.

⟨s⟩N−γ/ν̄ versus (t − tc)N1/ν̄ with γ = 1.133 and 1/ν̄ = 0.45 in Fig. 4.22.

Notice that the data are well collapsed. This means that the hyperscaling

relation ν̄ = 2β + γ doe not hold.
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Chapter 5

Comparison of ns(p) for growing
network models
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Fig. 5.23: (Color online) For growing network with m = 2, plot of ns(p) versus
s at p = pc (blue solid line), p > pc (red dashed line), and p < pc (black solid line)
based on the numerical values obtained from the rate equation. The transition point
is pc = 0.125. For p ≤ pc, ns(p) decays in a power-law manner, indicating that the
transition is infinite-order.

It is interesting to note that the percolation occurring in growing net-

work models when m ≥ 3 is a second-order phase transition, whereas it is of

infinite order when m = 2. We investigate the cluster size distribution ns(p)
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for m = 2. As shown in Fig. 5.23, ns(p) decays in a power-law way when

p ≤ pc, while it exhibits crossover behavior when p > pc. The power-law

behavior of ns(p) when p ≤ pc implies that the region p ≤ pc is the critical

phase, which is noticeable in the infinite-order transition. Intuitively, when

p ≤ pc, in the growing network, the fraction of nodes that belong to small-

size clusters is relatively low compared to the fraction for the second-order

phase transition model; for example, when m≥ 3 in Fig. 3.5. However, when

m≥ 3, the density of large-size clusters is suppressed by the Achlioptas rule,

which leads to crossover behavior even for p < pc. Thus, the percolation

transition in growing networks for m ≥ 3 is second order.
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Chapter 6

Summary and discussion

In our minimal model that incorporates both growing and static Achliop-

tas processes, the results obtained from the rate equations and Monte-Carlo

simulations for the cluster size distribution are consistent. When m = 2,

the growing and static models correspond to the Callaway random grow-

ing model [14] and Erdős-Rényi model [29], respectively.

In the growing network model, as m increases from 2 to 3, the tran-

sitional nature of percolation changes from infinite-order to second-order

due to the Achlioptas process [16]. On the other hand, in the static model,

the order of the phase transition is the same as that of the second-order ER

model, but the order parameter exponent β decreases exponentially as m

increases and the transition becomes more explosive. The Achlioptas pro-

cess rule leads to the suppression effect against the growth of large clusters,

which causes the cluster size distribution in large-cluster regions to decay

exponentially; thus, the transition is second-order.

Moreover, in this paper, we showed that the critical exponent β de-

creases algebraically with m in growing networks; however, it decays ex-

ponentially in static networks. This fact reflects that the suppression ef-

fect in growing networks is weaker than that in static networks. Further-

more, we obtained the critical exponents and their tendencies in both grow-

ing and static models for arbitrary values of m. We also found that the m-
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dependent exponents always satisfy the scaling relations β = (2 − τ)/σ

and γ = (3− τ)/σ [1, 2]. However, the hyperscaling relation ν̄ = 2β + γ

does not hold in both growing and static networks. We expected ν̄ ≈ 2.08

from the relation 2β + γ for the growing networks of m = 3, but obtained

ν̄ ≈ 2.86 (1/ν̄ = 0.35) from Monte Carlo simulations. For the static net-

work with m = 3, we expected ν̄ ≈ 1.4 (1/ν̄ = 0.71), but obtained ν̄ = 2.22

(1/ν̄ = 0.45). The origin of these inconsistencies are still not clear. We re-

mark that the failure of the hyperscaling relation ν̄ = 2β + γ was also ob-

served in the previous research of Achlioptas process [33].
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[29] P. Erdős and A. Rényi, Publ. Math. Inst. Hungar. Acad. Sci. A 5, 17

(1960).

[30] R. M. D’Souza and M. Mitzenmacher, Phys. Rev. Lett. 104, 195702

(2010).

[31] K. Christensen and N. R. Moloney, Complexity and Criticality (World

Scientific Pub Co Inc, 2005).

[32] F. Radicchi and S. Fortunato, Phys. Rev. E 81, 036110 (2010).

[33] P. Grassberger, C. Christensen, G. Bizhani, S.-W. Son, and M.

Paczuski, Phys. Rev. Lett. 106, 225701 (2011).

36



초록

최근 폭발적 여과 상전이 모델(EP 모델)에 대한 많은 연구들이 행해지고

있다.이러한연구들로인해 EP모델이 0(불연속 1차상전이)이아닌매우

작은 양의 β 값을 갖는 연속 상전이(2차상전이) 모델이라는 것이 밝혀졌

다. 이는 네트워크의 전체 노드의 개수가 시간에 따라 변하지 않는 정적

네트웨크에서 얻어진 결과들이다. 하지만, 실제 사회 네트워크를 구성하

는 구성원들 중에서 거대한 구성요소가 빠르게 자라나는 사회 네트워크

는 특정 시간 간격마다 네트워크를 구성하는 전체요소(노드)의 수가 증

가하는 성장하는 네크워크에 해당 될 수 있다. 그러므로 우리는 이러한

성장하는 네트워크에서 발생하는 폭발적 여과 상전이에 대해서 연구할

필요성을느꼈다.이에우리는매초마다선택되는후보노드의개수가 m

개인일반적인경우에대해서연구를해보고자하였다.후보노드개수 m

이 2 일 때, 본 연구의 모델은 과거 Callaway 등에 의해 연구가 진행 되었

던무한차상전이를겪는보통의임의로성장하는네트워크모델이된다.

하지만,우리는후보노드개수 m이 3이상이되면본모델은거대한클러

스터의 생성을 억제하는 아클리옵타스 과정에 의한 효과로 인하여 연속

상전이(2차상전이)를겪게된다는것을알아내었다.그리고이러한성장

하는네트워크에서의클러스터크기분포에대한비율방정식과몬테칼로

시뮬레이션을 이용하여, 후보 노드 개수 m이 증가할수록 임계 계수 β가

지수적으로감소하였던정적네트워크의경우와는달리성장하는네트워
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크에서는대수적으로감소한다는것을보였다.

주요어 : 여과상전이,여과클러스터,폭발적인여과상전이,불연속여과

상전이,아클리옵타스과정 ,유한크기축적이론

학번 : 2012-20372
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