저작자표시 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.
- 이차적 저작물을 작성할 수 있습니다.
- 이 저작물을 영리 목적으로 이용할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

- 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건을 명확하게 나타내어야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer: ☐
약학석사 학위논문

Rat BCRP의 Cloning과 이를 발현하는 MDCK cell line의 구축

Cloning and expression of rat BCRP (abcg2) in MDCK cells for transporter screening system

2015 년 2 월

서울대학교 대학원
약학과 약제과학 전공
이 은 정
국문초록

약물이 체내에서 특정 조직으로 이동할 때 많은 수송체가 관여하는데, 수송체가 약물을 얼마나 조직세포로 잘 흡수하는지, 또는 조직세포 밖으로 내보내는지에 따라 약물의 체내 분포가 달라진다. 이런 중요성을 인식하여 미국 FDA는 여러 약물 수송체 중 약물 상호작용에 주로 관여하는 7가지 수송체를 선정하고, 신약개발 중 신약 후보물질이 약물 수송체와 관련한 약물상호작용을 발생시키는지 검토하도록 권고하였다.

신약개발 단계에서는 인간을 대상으로 약의 유효성, 안전성을 평가하기 전에 실험동물에 약물을 투여하여 체내 분포, 대사, 배설이 어떻게 진행되는지 알아보는 in vivo 실험을 반드시 거쳐야 하며 이 실험 결과를 바탕으로 신약 후보물질을 결정하게 된다. 이 때 인간의 약물 수송에 관여하는 수송체는 기질 특이성, affinity 등의 측면에서 실험동물의 수송체와 다르다. 실험동물로 in vivo 실험을 하는 것은 궁극적으로 인간에서 나타날 결과를 미리 예측해보기 위함인데, 종간 차이에 대해 예측하지 못한다면 실험동물에서의 약물 체내동태 결과를 신뢰하기 힘들다. 따라서 실험동물과 인간에게 나타나는 약물동태 결과의 괴리를 극복하기 위하여 약물 수송체의 종차를 정확하게 이해하는 것이 매우 중요하다.

따라서 본 실험이는 FDA 선정 7가지 수송체 중 하나인 BCRP에 해당하는 rat에서의 abcg2를 cloning 하기로 하였다. Rat abcg2가 많이 발현된 rat liver total RNA로부터 Reverse transcription과 PCR (Polymerase Chain Reaction)을 통해 abcg2 gene을 증폭시켰다. 그리고 PCR을 통해 얻은 abcg2 DNA를 T-vector와 ligation 시킨 뒤 pcDNA3.1/myc-His(-) vector 내로 subcloning 하였다. 완성된 clone은 MDCK II cell에 stable 하게 transfection 시켰다. 이후 2~3주간 geneticin
으로 selection 과정을 거친 후 RT-PCR 반응을 진행하여 rat BCRP DNA가 mRNA 단계에서 존재함을 확인할 수 있었다. 이 in-vitro system이 기능적으로도 잘 발현되다면 신약후보물질에 대한 약물 수송계 수준의 약물상호작용 가능성을 개발 초기단계에서 예측할 수 있으며 궁극적으로 신약개발 가능성을 높일 수 있을 것으로 기대된다.

주요어 : BCRP, abcg2, cloning, 약물 상호작용
학번 : 2013-21606
목차

1. Introduction ...1
 1.1. 약물 수송체 (Drug transporter)1
 1.2. Breast cancer resistance protein (BCRP)1
 1.3. 약물 상호작용 (Drug-drug interactions)3
 1.4. In-vitro screening system ..3
2. Materials ..5
3. Methods ..7
 3.1. Reverse transcription (RT)7
 3.2. Polymerase Chain Reaction (PCR)8
 3.3. Gel extraction ...9
 3.4. Ligation ..9
 3.5. Transformation ..10
 3.6. Liquid culture ..11
 3.7. Miniprep ..12
 3.8. Sequencing ...12
3.9. Subcloning ..12
3.10. Mutagenesis ...14
3.11. Transfection ...15
3.12. RT-PCR ...16
4. Results ..17
5. Discussion ..20
6. Reference ..23

Abstract ..26
표 목차

표 1. Reaction mixture required for Reverse transcription7
표 2. Condition of Reverse transcription ...7
표 3. Reaction mixture of PCR ...8
표 4. Condition of PCR ..9
표 5. Condition of double digestion ...13
표 6. Reaction mixture of mutagenesis ..14
표 7. Condition of mutagenesis ..14

그림 목차

[그림 1] 주요 장기에 존재하는 중요 transporters ..2
[그림 2] T-vector map ..10
[그림 3] pcDNA3.1/neo-His(-) vector ..13
[그림 4] rat BCRP DNA 젤 전기 영동 결과 ...17
[그림 5] T-vector에 삽입된 rat BCRP DNA ..17
[그림 6] rat BCRP stable cell line의 RT-PCR 결과 ...19
1. Introduction

1.1. 약물 수송체 (Drug transporters)

약물 수송체는 세포막에 존재하여 여러 약물의 이동에 관여하는 막 단백질이다. 약물 수송체는 다양한 조직에 분포하여 약물의 흡수 (Absorption), 분포 (Distribution), 배설 (Excretion) 등 약물의 이행에 관여하며 따라서 약물의 동태와 효과 그리고 안정성을 결정짓는 주요 요인 이 된다. 그러므로 약물의 개발단계에서 약물수송체의 중요성은 날로 증가하고 있으며 이에 따라 미국 FDA에서는 여러 약물 수송체 중 약물 상호작용에 주로 관여하는 7가지 수송체를 선정하고 이 수송체에 관한 약물 개발 지침을 제시하였다.

막 수송체는 약 400개 이상이 존재하고 그것은 크게 ABC (ATP-binding cassette) 와 SLC (solute carrier) 의 superfamily로 나눌 수 있다. [그림1]은 소장, 간, 신장과 BBB (Blood-brain barrier) 에 존재하는 막 수송체를 나타낸 것으로 약물 개발 단계에서 특별히 관심을 기울여야 할 수송체이다. (Giacomini, Kathleen M., et al.)

1.2. Breast Cancer Resistance Protein (BCRP)

Breast cancer resistance protein (BCRP) 은 유방암세포가 항암제에 내성을 일으키는 원인으로서 밝혀지게 되었으며 ABCG2 라고도 불린다.
주요 장기에 존재하는 중앙 transporters

주로 intestine, blood-brain barrier, placenta 등에 많이 발현되어 외부물질로부터 장벽으로서의 기능을 수행하며, P-gp와 같이 efflux transporter로서 apical membrane에 분포하여 물질을 장기의 luminal side로 내보내는 역할을 한다.

BCRP의 주요 substrate으로는 statin 계열의 고지혈증 약물과 항암제인 methotrexate, doxorubicin, imatinib, mitoxantrone 등이 있으며 따라서 백혈병과 여러 고형종양 암세포에 발현된 BCRP는 암세포가 항암제에 내성을 나타내는 원인이 된다. 이 외에도 내인성 substrate로 estrone 3-sulfate, porphyrin 등이 있으며 BCRP의 inhibitor로는 17β-estradiol, fumitremorgin C 등이 있다.
1.3. 약물 상호작용 (Drug-drug interactions)

최근에 진행된 연구에 의하면 약물의 흡수와 배설에 있어 transporter가 가지는 역할의 중요성이 대두되고 있다. Transporter는 여러 약물의 기질 특이성을 나타내는데 이 중 몇몇 약물은 서로 다른 transporter의 공통 기질이 되기도 한다. 이것은 transporter로 인한 약물 상호작용이 일어날 수 있음을 시사한다.

현대인들은 여러 질병을 앓고 있는 경우가 많고, 또 효과적인 치료를 위해 여러 약물을 함께 복용하는 일이 많다. 이 경우 약물 상호작용으로 인해 투여된 약물의 체내동태 양상이 크게 달라질 수 있으며 이로 인해 사람에게 큰 부작용을 초래할 수 있다. 따라서 미국 FDA에서는 7가지 주요 transporter를 정하여 약물 개발 단계에서 이들 transporter와의 상호작용을 면밀히 검토하도록 권고하였다. 7가지 transporter에는 SLC transporter 5가지 OAT1, OAT3, OCT2, OATP1B1, OATP1B3와 ABC transporter 2가지 p-gp, BCRP가 있다. (U.S department of Health and Human Services 2012)

1.4. In-vitro screening system

약물 수송체의 중요성이 점차 증가함에 따라 그 수송체의 기질성과 활성을 파악하여 약물의 흡수, 분포, 배설을 예측할 수 있는 표준화된 in-vitro system이 요구된다. 이를 통해 in-vivo 상에서 약물의 상호작용을 예측하여 추후 실험설계를 하는데 정보를 제공하고, 신약으로 적합하지 않은 후보물질을 효율적으로 제외시킬 수 있다.
그러나 in-vivo 실험의 경우, 임상실험에 앞서 사람과 비슷한 rat을 사용하는 경우가 많다. 하지만 in-vitro의 경우 human의 것으로 실험을 진행하는 경우가 많아 human과 rat의 종차가 발생하여 두 실험결과를 직접적으로 비교하기 어렵다. 따라서 rat의 in-vitro transporter system을 구축하여 human과 rat의 in-vitro 실험결과를 비교하여 상관성을 도출하는 것이 중요하다. 따라서 본 연구에서는 앞서 언급한 7가지 주요 수송체 중에서 BCRP에 해당하는 rat에서의 abcg2를 cloning 하기로 하였다.
2. Materials

Rat liver total RNA (Takara)
Primescript 1st strand cDNA Synthesis Kit (Takara)
Ex taq polymerase (Takara)
WelPrep Gel Extraction Kit (Welgene)
WelPrep Plasmid Miniprep Kit (Welgene)
CoreOne PCR Purification Kit (Corebio)
The Original TA Cloning Kit pCR 2.1 vector (Invitrogen)
pcDNA3.1/Mye-His(-) vector (Invitrogen)
10xM buffer, Kpn I, Xho I, Nhe I (Takara)
DNA ligation mix <Mighty mix> (Takara)
E.coli HST08 Premium Competent Cells (Takara)
AbleK Competent Cells (Agilent Technologies)
SURE2 Competent Cells (Agilent Technologies)
QuickChangeII XL Site-Directed Mutagenesis Kit (Stratagen)
LB media <Tryptone 5g, NaCl 5g, Yeast extract 2.5g in 500ml, 고체 배지인 경우 agarose 첨가> (Beckton-Dickinson)
MDCK II cell
MDCK II/FRT cell
FuGENE HD DNA transfection reagent (Promega)
RNeasy Mini Kit (Quiagen)
Geneticin (G418, invitrogen)
Trypsin EDTA (Sigma)
Dulbecco’s Modified Eagle Medium (Welgene)
10% Fetal Bovine serum (Welgene)
Penicillin/Streptomycin (Welgene)
HEPES (Welgene)
Non-essential amino acid (Sigma)
gentamycin (Welgene)
3. Methods

3.1 Reverse transcription (RT)

BCRP는 인체 내 liver, intestine, blood-brain barrier 등에서 많이 발현되는 것으로 알려져 있다. 따라서 rat liver total RNA (takara)를 source로 하여 reverse transcription 반응을 통해 cDNA를 합성하였다. Primescript 1st strand cDNA Synthesis Kit (Takara)를 사용하였고, 반응 조성물과 조건은 다음과 같다.

표1. Reaction mixture required for Reverse transcription (RT)

<table>
<thead>
<tr>
<th>Materials</th>
<th>Volume (μl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First step</td>
<td></td>
</tr>
<tr>
<td>RNase free water</td>
<td>6</td>
</tr>
<tr>
<td>dT primer</td>
<td>1</td>
</tr>
<tr>
<td>dNTP</td>
<td>1</td>
</tr>
<tr>
<td>Rat liver total RNA</td>
<td>2</td>
</tr>
<tr>
<td>Second step</td>
<td></td>
</tr>
<tr>
<td>5x buffer</td>
<td>4</td>
</tr>
<tr>
<td>inhibitor</td>
<td>0.5</td>
</tr>
<tr>
<td>RTase</td>
<td>1</td>
</tr>
<tr>
<td>RNase free water</td>
<td>4.5</td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
</tr>
</tbody>
</table>

표2. Condition of Reverse transcription (RT)

<table>
<thead>
<tr>
<th>Temperature (℃)</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First step</td>
<td>65</td>
</tr>
<tr>
<td>Ice incubation</td>
<td></td>
</tr>
</tbody>
</table>
3.2. Polymerase Chain Reaction (PCR)

Reverse transcription 반응으로부터 얻은 cDNA를 template로 하여 PCR 반응을 통해 rat abc2 gene을 증폭시켰다. 이를 위해 BCRP의 CDS를 포함하도록 하여 primer를 제작하였다. 이때 사용한 reference sequence는 NCBI의 NM_181381.2 이다.

- CDS: 82 ~ 2055
- Primer
 - Forward: 5’-GTGTAGGTCGGTGTGCGAG-3’
 - Reverse: 5’-ACTGTGAAGAAAAGAACACTGACT-3’

PCR에 사용된 반응 조성물과 조건은 다음과 같다.

표3. Reaction mixture of PCR

<table>
<thead>
<tr>
<th>Materials</th>
<th>Volume (μl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNase free water</td>
<td>14.15</td>
</tr>
<tr>
<td>10x buffer</td>
<td>2</td>
</tr>
<tr>
<td>dNTP</td>
<td>1.6</td>
</tr>
<tr>
<td>cDNA</td>
<td>1</td>
</tr>
<tr>
<td>primer (forward/reverse)</td>
<td>0.5/0.5</td>
</tr>
<tr>
<td>Ex Taq polymerase</td>
<td>0.25</td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
</tr>
</tbody>
</table>
표4. Condition of PCR

<table>
<thead>
<tr>
<th>Temperature (℃)</th>
<th>Time</th>
<th>Back to step2 and repeat 29 cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>94</td>
<td>5 min</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>30 sec</td>
<td></td>
</tr>
<tr>
<td>64.3</td>
<td>30 sec</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>2 min</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>10 min</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>∞</td>
<td></td>
</tr>
</tbody>
</table>

3.3. Gel extraction

PCR 반응 후 첼 전기영동을 통해 DNA band 크기를 확인하고 Gel extraction kit (Welgene)를 이용하여 각종 불순물을 제거, 높은 순도로 rat BCRP DNA를 얻을 수 있었다.

3.4. Ligation

PCR 반응에 사용한 Ex Taq polymerase는 product의 3’end에 adenine 을 붙이는 속성이 있어 양 말단에 thymine을 가진 T-vector와 ligation 반응이 가능하다. DNA ligation mix (Takara) 7.5μl와 DNA 7μl 그리고 T-vector 0.5μl를 섞어 총 15μl를 만들고 16℃에서 한 시간 동안 incubation 하였다.
3.5 Transformation

Ligation 반응을 통해 얻은 circular 형태의 plasmid를 E.coli competent cell 안으로 transformation 하였다.

실험에 사용한 E.coli competent cell은 총 세 가지로써, HST08 Premium Competent Cells (Takara), AbleK Competent Cells (Agilent Technologies) 와 SURE2 Competent Cells (Agilent Technologies) 를 사용 하였다.

Transformation은 다음과 같은 순서로 진행되었다. 우선 prechilled EP tube에 각각의 E.coli competent cell 30μl와 β-mercaptoethanol을 SURE2 competent cell에는 0.6μl, AbleK competent cell에는 0.5μl씩 넣어준다. HST08 competent cell의 경우에는 β-mercaptoethanol을 넣지 않는다. 이 [그림2] T-vector map
어서 각각의 EP tube에 ligation product 10μl를 넣고 pipeting으로 잘 섞어준 후 30분간 ice incubation을 하였다. 이후 42℃ 수욕상에서 SURE2 cell은 30초, HST08 cell과 AbleK cell은 45초간 heat shock을 가했고 바로 이어서 2분간 ice incubation을 진행하였다. 그 후 항생제가 들어있지 않은 LB 액체배지를 400μl 가한 후 shaking incubator (230rpm, 37℃)에서 2시간 동안 incubation 하였다. 그 후 미리 37℃로 데워놓은 ampicillin 함유 (100μg/ml) LB 고체배지에 blue-white screening을 위해 X-gal 도말하였다. 그 후 E.coli를 오염되지 않도록 조심히 고체배지에 spreading 하여 37℃ CO2 incubator에서 overnight 배양하였다.

T-vector 상의 lacZ는 β-galactosidase를 생성하여 X-gal과 반응할 경우 푸른색의 colony를 형성하지만 의도한대로 PCR product가 t-vector에 잘 삽입된 경우 lacZ가 발현되지 못해 하얀색의 colony를 형성한다. 따라서 본 연구에서는 하얀색의 colony만을 취해 다음 실험을 진행하였다.

3.6. Liquid culture

50ml의 conical tube에 LB 액체 배지 5ml와 ampicillin 2.5μl를 넣어 총 농도가 100μg/ml가 되도록 하였다. 그 후 white tip을 불로 소독하여 흰색 colony만을 한 개씩 취해 conical tube에 넣어준 후 shaking incubator (230rpm, 37℃)에서 overnight incubation 시켜 E.coli가 충분히 자랄 수 있도록 하였다.
3.7. Miniprep

충분히 자란 E.coli로부터 복제된 plasmid DNA를 얻기 위해 mini prep을 실시하였다. 이 과정은 Welprep plasmid miniprep kit (Welgene)을 사용하여 주어진 protocol에 따라 진행되었으며 얻어진 plasmid DNA는 gel에 loading하여 전기영동을 후 대략의 크기를 확인 하였다.

3.8. Sequencing

Gel에서 확인한 plasmid DNA 중 알맞은 크기에 해당하는 DNA는 sequencing 업체에 맡겨 전체 sequence 분석을 하였다. rat BCRP는 총 2134bp로, 한번에 분석이 어렵기 때문에 추가적으로 750bp, 1500bp 근처에서 primer를 제작하여 분석을 맡겼다.

3.9. Subcloning

Sequence를 확인하여 알맞은 DNA가 들어간 경우 MDCK II cell에 rat BCRP를 발현시키기 위해 T-vector로부터 pcDNA3.1/myc-His(-) vector로의 subcloning을 진행하였다. 본 실험의 경우 T-vector에서 abcg2 gene이 거꾸로 삽입되어있기 때문에 Kpn I과 Xho I을 사용하여 pcDNA3.1/myc-His(-) vector에 올바른 방향으로 subcloning 할 수 있었 다. 반응 조건은 다음과 같다.
Table 5. Condition of double digestion

<table>
<thead>
<tr>
<th>Materials</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA</td>
<td>1 µg</td>
</tr>
<tr>
<td>Kpn I</td>
<td>1 µl</td>
</tr>
<tr>
<td>Xho I</td>
<td>1 µl</td>
</tr>
<tr>
<td>10x M buffer</td>
<td>2 µl</td>
</tr>
<tr>
<td>FDDW</td>
<td>up to 20 µl</td>
</tr>
</tbody>
</table>

37 °C, 1hr incubation

위와 같은 방법으로 rat BCRP DNA와 pcDNA3.1/ myc-His(-) vector를 각각 절단한 다음 gel 전기영동을 통해 band를 분리할 수 있었다. Gel extraction 으로 원하는 band 만을 얻어 서로 ligation 시켜 새로운 plasmid를 얻었다.

![Diagram](attachment:image.png)

[그림3] pcDNA3.1/ myc-His(-) vector
3.10 Mutagenesis

Sequence 확인 후, mutation이 존재할 시 amino acid change가 일어나 transporter function에 영향을 미칠 수 있으므로 reference sequence와 일치하도록 mutagenesis를 해야 한다. 각 mutation마다 primer를 새로 제작하였으며 QuickChange II XL Site-Directed Mutagenesis kit (Stratagen)을 사용하였으며 조건은 다음과 같다.

표 6. Reaction mixture of mutagenesis

<table>
<thead>
<tr>
<th>Materials</th>
<th>Volume (μl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10x reaction buffer</td>
<td>2.5</td>
</tr>
<tr>
<td>dNTP mix</td>
<td>0.5</td>
</tr>
<tr>
<td>Quick solution reagent</td>
<td>1.5</td>
</tr>
<tr>
<td>Primer (forward/reverse)</td>
<td>2.5/2.5</td>
</tr>
<tr>
<td>Template DNA</td>
<td>0.5</td>
</tr>
<tr>
<td>DDW</td>
<td>15</td>
</tr>
<tr>
<td>PfuUltra HF DNA Polymerase</td>
<td>0.5</td>
</tr>
<tr>
<td>Total</td>
<td>25.5</td>
</tr>
</tbody>
</table>

표 7. Condition of mutagenesis

<table>
<thead>
<tr>
<th>Temperature (℃)</th>
<th>Time</th>
<th>Back to step 2 and repeat 18 cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>1 min</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>50 sec</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>50 sec</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>8 min</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>7 min</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>∞</td>
<td></td>
</tr>
</tbody>
</table>
위 반응이 끝난 후에 reaction mixture에 Dpn I restriction enzyme을 0.5 μl 가하고 37℃에서 1시간동안 incubation하여 methylation 되어있는 template DNA를 제거하여준다.

3.11. Transfection

Transfection 하기 전날 12 well plate에 MDCKII cell을 seeding 하여 다음날 cell이 80% confluent 하도록 만들었다. 즉 2*10⁵cells/ml 가 되도록 한 후에 한 well 당 1ml 씩 넣어주었다. 각 well 당 들어가는 DNA의 양은 2μg으로, 총 volume이 100μl가 되게끔 EP tube에 DMEM 배지를 넣어준다. Transfection에 사용한 시약은 FuGENE® HD Transfection
reagent (Promega)로, DNA와의 비율이 3:1 이므로 각 well 당 6μl가 들어가게끔 위의 EP tube에 가해 주고 이때 시약이 벽에 묻지 않고 바로 배지에 떨 수 있게끔 한다. 이 transfection reagent/DNA mixture를 0-15분간 실온에 둔 뒤 하루 전날 seeding해 두었던 plate에 각 well 당 100μl 씩 넣어준다. 이 때 고르게 퍼지도록 점검한다. 이 plate를 24-48시간 동안 배양 후 25T flask로 옮겨 하루 더 배양한다. 그 이후로는 2~3주 동안 selection marker 가 들어간 complete media로 배양하여 stable cell line을 얻는다. 이때 selection marker로는 geneticin을 사용하였으며 농도는 600 μg/ml로 맞춰주었다.

3.12. RT-PCR

3주간의 selection이 끝나고 만들어진 stable cell line을 검증하기 위해 RT-PCR을 통해 mRNA 수준에서 rat BCRP의 발현을 확인한다.
Cell을 harvest하여 RNeasy mini kit (Qiagen)를 이용하여 세포 내 RNA를 추출하였다. 얻어진 mRNA를 template로 하여 RT-PCR 반응을 진행했다. 이때 positive control은 house-keeping gene으로 알려진 canine GAPDH를 사용했으며, 크기는 234bp이다.

- Canine GAPDH primer
 Forward: 5’-AACATCATCCCTGCTTCCAC-3’
 Reverse: 5’-GACCACCTGCTCAGTGT-3’
4. Results

![그림4] rat BCRP DNA 젤 전기 영동 결과

![그림5] T-vector에 삽입된 rat BCRP DNA

크기에서 보인다. [그림5]에서 plasmid가 5000 bp와 6000 bp 사이에서 나타나므로 알맞은 크기로 보이며, 그 위에 나타나는 또 다른 band는 nicked DNA 로 생각된다.

Gel extraction을 통해 얻어진 plasmid를 sequencing을 통해 총 7개의 mutation이 있는 것을 확인하였다. 이 중 882번은 같은 glycine을, 1560번 또한 같은 leucine을 coding 하는 silent mutation이므로 고치지 않았고 나머지 5개에 대해 mutagenesis를 진행했다.

위와 같이 reference sequence를 확보하였다. 완성된 plasmid를 MDCK II cell에 transfection 하여 stable cell line을 얻을 수 있었고, rat BCRP의 발현을 mRNA 수준에서 확인하고자 RT-PCR을 진행하였다. 실험 결과 [그림6]에서와 같이 2000 bp 보다 살짝 큰 크기에서 band를 확인 할
수 있었으며, canine GAPDH 역시 234 bp에서 선명하게 관찰되었다. Rat BCRP DNA band는 gel extraction을 하여 sequence를 확인하였으며 full sequence가 mutation 없이 발현된 것을 알 수 있었다.

[그림6] rat BCRP stable cell line의 RT-PCR 결과
5. Discussion

약물 상호작용 연구에서 약물 수송체의 중요성이 점차 증가함에 따라 미국 FDA에서는 7가지 주요 약물 수송체를 선정하였고, 본 연구에서는 그 중 하나인 BCRP에 대응하는 rat BCRP의 in vitro system을 구축하고자 하였다.

stable cell line을 만들기 위해 rat liver total RNA 로부터 cloning을 진행하였다. PCR을 위해 제작한 primer는 안정적으로 원하는 DNA 부분만을 합성하였다. 그러나 증폭된 DNA를 T-vector와 ligation 시켜 transformation까지 진행하였을 때 얻어지는 plasmid는 대부분의 경우에 있어 rat BCRP DNA가 부분적으로 잘려 들어가거나 E.coli의 DNA와 recombination이 일어나는 것이었다. 몇 번은 full sequence가 거꾸로 들어가기도 했다. 이것을 해결하기 위해 몇 가지 방법을 시도해보았다.

우선은 최대한 많은 colony를 취하는 것이었다. 많은 colony를 시험해볼수록 내가 원하는 plasmid를 가진 E.coli를 얻을 수 있을 것이라 생각했으나 유효하지 않았다.

또는 DNA가 어떠한 삼차구조를 형성하여 특정한 한 방향으로 preference가 생겨서 거꾸로만 들어가는 경우라면, 양쪽에 restriction enzyme site를 붙여 새로운 primer를 제작하는 방법을 시도하였다. 이를 통해 PCR product가 이전과는 다른 folding structure를 가질 수 있고, T-vector에 거꾸로 들어가더라도 재분리가 잘 됨을 조절할 수 있을 것으로 기대하였다. 하지만 예전과는 다르게 PCR 반응이 잘 진행되지 않았고, 재분리가 처리 후에는 colony 형성을 하지 못하였다.

또 다른 경우는 BCRP protein이 cell에 toxic하게 작용하여 insert DNA가 올바르게 들어간 경우는 cell이 모두 죽어 colony를 생성하지 못할 수
있다고 생각하였다. 이 경우에 있어서는 여러 방법을 시도해보았는데 첫 번째는 cloning site의 위쪽에 존재하는 promoter를 suppress 시키는 것이었다. E.coli는 lactose보다 glucose를 carbon source로써 더 선호하므로 배지에 glucose가 있을 경우 transcription inhibitor로 작용하여 lac promoter의 발현을 억제시킨다. 따라서 BCRP protein이 host cell에 toxic 하더라도 발현되지 않고 colony를 형성할 수 있을 것으로 생각하여 glucose가 높은 농도로 존재하는 배지에서 배양시켰으나 원하는 결과를 얻지 못했다. 두 번째로는 E.coli의 원래 배양 온도인 37℃가 아닌 20℃ 이하에서 서서히 배양시킴으로서 host cell의 activity를 낮추어 E.coli의 부담을 완화시키는 방법이다. 이 방법은 앞서 말한 다른 시도 보다는 효과가 있는 듯 했으나 여전히 full sequence는 얻을 수 없었다. 마지막으로 difficult cloning에 이용한다는 AbleK competent cells와 SURE2 competent cells (Agilent Technologies)를 구입하여 transformation을 진행하였다. AbleK competent cell은 복제된 plasmid의 수를 약 10배 가까이 감소시킴으로서 cloning된 toxic protein의 발현을 줄여 cell의 생존가능성을 증가시킨다. 반면 SURE2 competent cell은 E.coli의 DNA repair system에 결합이 있는 cell로써, eukaryotic DNA가 prokaryotic cell에서 복제될 때 일어나는 DNA의 재조합이나 결실과 같은 문제로부터 안전하다. 따라서 DNA가 inverted repeats나 Z-DNA와 구조를 가지고 있을 때에 cloning 효율을 증가시킬 수 있다. 본 실험에서는 AbleK competent cell을 사용한 경우 원하는 plasmid를 얻을 수 없었고, SURE2 competent cell을 사용한 경우 3개 colony 중 한 개의 colony에서 거꾸로 full sequence가 삽입되었다. 이 거꾸로 삽입된 plasmid를 이용하기 위해 multi cloning site의 제한효소 순서가 일반적인 순서와 반대인 pcDNA3.1/myc-His(-) vector을 사용하였다. [그림2] 와

위와 같이 stable cell line을 만들어 RT-PCR을 통해 rat BCRP DNA가 mRNA 수준에서 안정적으로 발현됨을 확인하였다. 이 in-vitro system이 기능적으로도 잘 발현된다면 uptake study를 통해 신약 개발 초기 단계에서 약물의 상호작용을 예측하고 효율적인 신약개발에 기여할 수 있는 transporter screening system이 될 것으로 생각된다. 또한 human과 rat의 in-vitro 실험결과를 비교하여 그 상관성을 도출함으로써 임상시험에서 나타날 수 있는 위험을 미리 배제 시킬 수 있을 것으로 기대된다.
6. Reference

Abstract

Cloning and expression of rat BCRP (abcg2) in MDCK cells for transporter screening system

Eun-Jung Lee
Department of Pharmaceutics, College of Pharmacy
The Graduate School
Seoul National University

Recently, it became increasing clear that transporters are involved in the absorption, distribution and excretion of drugs. Thus, US Food and Drug Administration recommended in a recent guidance that a potential drug-drug interaction of new drugs be monitored for major drug transporters, including BCRP. In this laboratory, a mammalian cell expressing human BCRP has been developed and validated previously; for the case of the rat abcg2, however, the rat analog has not been previously cloned. The purpose of this study, therefore, is to
clone and express rat abcg2 in MDCK II cells for a routine monitoring of potential drug-drug interaction at the level of the efflux transporter.

In this study, standard protocols for cloning of abcg2, a rat analog of human ABCG2 (BCRP), was initially attempted. However, when the PCR product of abcg2 gene was inserted in pcr2.1, the orientation was always in reverse orientation and typical troubleshooting protocol was not successful. As an attempt, primers to include a novel restriction site for direction ligation had to be used for the introduction of the amplified product into the vector in a correct orientation. A series of experimental difficulties were associated with the transformation process. It was found that the suppression of bacterial promoter by addition glucose was required for the adequate transformation, along with the incubation of E. coli in a reduced temperature to alleviate the cellular burden. Furthermore, SURE2 competent cell has to be used for the insertion of the full sequence.

After a series of attempts, it was biochemically confirmed that the transporter gene was sub-cloned to pcDNA3.1/myc-His(-) in the right orientation. The transporter was transfected to MDCKII cells and RT-PCR used to confirm the biochemical expression of abcg2.

Since BCRP is recognized as the major transporter requiring routine monitoring, the rat analog is necessary for understanding the species-difference in the function of the efflux transporter. Therefore, the current system may be used in the identification of potential drug-drug interaction at the level of BCRP, as well as in
understanding the similarity /dissimilarity of the transporter function between the rat and human.

Key Words : abcg2, BCRP, cloning, DDI
Student Number : 2013-21606