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Abstract

Bogomolnaia and Moulin (2001) show that there is no rule satisfying equal treat-

ment of equals, sd-efficiency and sd-strategyproofness for a random assignment

problem of indivisible goods. Furthermore, Kasajima (2013) shows that the in-

compatibility result holds when agents have single-peaked preferences. In this

paper, we restrict the domain by requiring that all agents have a common peak

and investigate the existence of rules satisfying the three axioms. We show that

the three axioms are still incompatible. As it turns out, the three axioms are still

incompatible even though all agents have the same preferences except the three

least-preferable objects.
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1. Introduction

We consider the problem of allocating indivisible goods or objects among a group

of agents when each agent is supposed to recieve exactly one of them. Each agent

has a complete, transitive, and strict binary relation over objects.

Not surprisingly, the indivisibility of objects casues serious difficulties in achiev-

ing fairness. For instance, suppose there are two desirable objects to be allocated

to two agents, and they prefer the same object. It is clear that each of the two pos-

sible allocations will violate any reasonable notion of fairness. Therefore, we assign

a probability vector to get each object for each agent called random assignment.

There are many ways to allocate a random assignment to each agent. A natural

approach to the problem is to generalize the simple lottery mechanism: order the

agents uniformly at random and let them successively choose an available object

according to this (random) order; thus the first agent picks his favorite object, the

second agent picks his favorite object among the remaining objects, etc. This is

the random priority rule (Abdulkadiroğlu and Sönmez, 1998), and has a number of

attractive features: it is ex post efficient and truthful (or strategyproof: revealing

true preferences is a dominant strategy for all the agents); it is fair in the weak

sense of equal treatment of equals (agents with identical preferences are treated

in an identical manner); however, it is not efficient when agents are endowed with

utility functions consistent with their preferences, that is, it is not ex ante efficient.

A second solution to this problem is probabilistic serial (PS) rule (Bogomolnaia

and Moulin, 2001). This solution computes a random assignment that is sd-efficient

and envy-free. sd-efficiency is stronger than ex post efficiency but weaker than ex

ante efficiency; given the ordinal nature of the input to the rule (only preference

rankings are used, not complete utility functions), this is perhaps the most mean-

ingful notion of efficiency in an economy where ordinal preferences are reported.

Finally, this PS rule proposed by Bogomolnaia and Moulin is not truthful.

When each agent has single-peaked preferences, i.e., there is an order on the ob-

ject set such that each agent has a single most preferred object and becomes mono-

tonically worse off when moving away from her most preferred object, Kasajima(2013)

shows that equal treatment of equals , sd -efficiency and sd -strategy-proofness are

incompatible.

To make it compatible, we restrict this domain even more in strong sense. Every

agent has the same object for the most preferred object in single-peaked preference.
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There are many real life examples for this economy where every agent has the same

most preferred object. For example, every korean high school student wants to go

to Seoul Nat’l University the most in common, and there is a single-peaked pref-

erence over universities. Unfortunately, even on this more restricted domain than

the one that Kasajima (2013) considered, they are still incompatible. Moreover, if

every agent has the same preference over objects except the least-preferable three

objects, a result is the same.
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2. Model

There is a finite set of agents N = {1, 2, 3, . . . , |N |} and finite set of distinct

indivisible goods, or objects O = {o1, o2, o3 . . . , on}. and assume that |N | = |O|.
Each agent is supposed to receive exactly one object. Each agent i ∈ N has a

complete, transitive, and strict binary relation Ri over objects. We refer to Ri

as agent i’s preference relation and each agent i ∈ N is characterized by her

preference relation Ri. Let R be a domain of preference, and R = (Ri)i∈N be a

preference profile. We consider the following restriction on preferences. Let ΦO be

the set of strict orders on O. Without loss of generality, let O be ordered in such

a way that

o1 ≺ o2 ≺ · · · ≺ on

For each i ∈ N , Ri ∈ RN is single-peaked on O (with respect to ≺) if and only

if following condition holds:

- there is t ∈ {2, . . . , n− 1} such that

ot Ri ot−1 Ri · · ·Ri o1 and ot Ri ot+1 Ri · · ·Ri on

- on Ri on−1 Ri · · ·Ri o1,

- o1 Ri o2 Ri · · ·Ri on

We call the most preferred object ot ∈ O simply a peak. An economy where every

agent has single-peaked preference is called a single-peaked economy. Let RN

be a set of all single-peaked economies.

With a restriction of preferences, a possibility of obtaining positive results should

increase. But Kasajima(2013) shows a hope that the restriction of single-peaked

preferences would help to get a positive results comes to nothing. So we consider

even more stronger restriction on preferences that every agent has the same most

preferred object in the single-peaked economies. So the peak ot ∈ O is the same

for all agents. When the peak ot ∈ O is either the first or the last object in ordered

line over objects, the preference relation is the same for every agent. i.e. for all

i ∈ N ,

- o1 Ri o2 Ri · · ·Ri on, or

- on Ri on−1 Ri · · ·Ri o1

In these two cases, every agent is considered as the same person since they have

the same preference relations. These economies can be regarded as very extreme
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cases since there is only one agent with the size of n. So we consider the domain

except these two extreme cases. In other words, with a common peak ot ∈ O, we

only consider the case with t ∈ {2, . . . , n − 1} throughout the paper. When all

agents in single-peaked economies have a common peak, we call these economies

single-peaked economies with a common peak.

A deterministic allocation is a one-to-one correspondence between the set of

agents, N , and the set of objects, O. Often, it is convenient to think of a deter-

ministic assignment as a 0 - 1 matrix, with rows indexed by agents and columns

indexed by objects: a 0 - 1 matrix represents a deterministic assignment if and only

if it contains exactly one 1 in each row and each column. (Such matrices are called

permutation matrices.) We let D be the set of all deterministic assignments.

A random allocation is a probability distribution over deterministic alloca-

tions; the corresponding convex combination of permutation matrices is a stochas-

tic matrix, whose (i, j)th entry represents the probability with which agent i re-

ceives object j. More formally, a random allocation is a matrix M = [Mik]i∈N,k∈O

such that

- for each i ∈ N and each k ∈ O, Mik ∈ {0, 1}
- for each i ∈ N ,

∑
k∈OMik = 1 and

- for each k ∈ O,
∑

i∈N Mik = 1

Let M be the set of all random allocations. For each i ∈ N , her random

assignment in M ∈ M is a vector Mi = [Mik]k∈O, i.e. the ith row of M . A rule

is a function that associates with each problem a matrix in M. A generic rule is

denoted by ϕ.

We consider three requirements on rules. Let ϕ be an arbitrary rule. A rule ϕ

satisfies equal treatment of equals if agents with identical preferences get iden-

tical allocations (ϕi(R) = ϕj(R) if Ri = Rj).

The next definition requires specifying how an agent compares two assignments.

Upon enumeratingO from the best to the worst according toRi : õ1 Ri õ2 Ri . . . Ri õn,

An assignment Mi = [Mik]k∈O stochastically dominates another assignment

Ni = [Nik]k∈O at Ri, which we write Mi R
sd
i Ni, if

t∑
k=1

Miõk ≥
t∑

k=1

Niõk for t = 1, . . . , n

A random allocation M ∈M stocahstically dominates another random allocation

N ∈M if Mi R
sd
i Ni for all i ∈ N .
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A rule ϕ satisfies stochastic dominance efficiency (simply, sd-efficiency) if

a random allocation selected by the rule ϕ is not stochastically dominated by any

other random allocation N ∈M.

A rule ϕ is stochastic dominance strategyproof (simply, sd-strategyproof)

if for any preference profile R, agent i ∈ N and her preference Ri, we have

ϕi(R) Rsd
i ϕi(R

′
i, R−i). In words, a rule is sd-strategyproof if a random assign-

ment under truthtelling stochastically dominates the one under any misreported

preferences.

Now we introduce two pervasively discussed rules. The first one is a random

priority (RP) rule. In random priority, there are all possibile orderings of agents

with equal probability. For each realization of the ordering, the first agent in

the ordering takes her the most preferred object, and the second agent in the

ordering takes her the most preferred object among the remaining objects, and

so on. Random priority rule is sd-strategyproof and satisfies equal treatment of

equals. But there is an efficiency loss, that is, random priority rule is not sd-

efficient.

The second one is probabilistic serial (PS) rule introduced by Bogomolnaia

and Moulin (2001) eliminates the ineffiency present in RP. In PS, each indivisible

object is an infinitely divisible cake of probability share. Time runs from 0 to 1.

Given reported preferences, each agent ”eats” her favorite object that have not

been completely eaten away at every point in time with the speed of 1. When all

objects are eaten away, resulting profile of object share eaten by each agent induces

a random allocation. The probabilistic serial rule satiesfies equal treatment of

equals and is sd-efficient if all agents reveal their preferences truthfully. However,

the PS rule does not satisfy sd-strategyproofness. In other words, an agent may

receive a more desirable random assignment by misreporting her preferences.
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3. Results

For three agents, equal treatment of equals, sd-efficiency , and sd-strategy-

proofness are compatible (Bogomolnaia and Moulin, 2001). However, for four or

more agents, they are not. And they are still incompatible in restricted preference

domain, that is, single-peaked economies (Kasajima, 2013). This paper restrict

the preference domain in even more stronger sense. We consider single-peaked

economies with a common peak.

For easy understanding of this restricted domain, ifN = {1, 2, 3, 4}, O = {a, b, c, d},
assume a common peak is b. Then available preference relations for each agent are

only for 3 cases

- b Ri a Ri c Ri d or

- b Ri c Ri a Ri d or

- b Ri c Ri d Ri a

With this restriction, agents’ preference over objects is different only for 3 ob-

jects {a, c, d}. If we extend to n objects, these least three preferable objects in

different preferences order are significant factors for results.

In this way, suppose that every agent has a common peak ot ∈ O such that

t ∈ {2, . . . , n− 1}. Among many possible preference profiles with a common peak

ot, we divide this domain into following three :

- ot Ri · · · Ri o1 Ri on−1 Ri on (R′)

- ot Ri · · · Ri on−1 Ri o1 Ri on (R′′)

- ot Ri · · · Ri on−1 Ri on Ri o1 (R′′′)

and each preference profile is denoted by R′, R′′ and R′′′

Theorem Domain : single-peaked economies with a common peak. Let n ≥ 4.

No rule satisfies the following three requirements : equal treatment of equals, sd-

efficiency and sd-strategyproofness.

Proof.

Here, we only consider the cases that n is even. In Appendix, we provide a proof

for the cases that n is odd. Suppose, by a way of contradiction, that there is a rule

ϕ that satisfies the three requirements.

Profile 1: For all i ∈ N , preference relation is R′′. Then, by equal treatment of

equals, for each i ∈ N and each k ∈ O, ϕik(R) = 1
n
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Profile 1-1: For each i ∈ N \ {1}, preference relation is R′′. And agent 1 has

preference relation R′. Then by sd-strategyproofness

ϕ1(R
′′
1, R−1)R

′sd
1 ϕ1(R) and ϕ1(R)R′′sd1 ϕ1(R

′′
1, R−1).

Thus, ϕ1o2(R) = ϕ1o2(R
′′
1, R−1), . . . , ϕ1on−2(R) = ϕ1on−2(R

′′
1, R−1) and ϕ1on(R) =

ϕ1on(R′′1, R−1). Invoking our conclusion for Profile 1, ϕ1o2(R) = · · · = ϕ1on−2(R) =

ϕ1on(R) = 1
n
.

Next, we claim that ϕ1on−1(R) = 0. Suppose by way of contradiction that

ϕ1on−1(R) > 0. Since ϕ1o1(R) < 2
n
, there is i ∈ N \ {1} such that ϕio1(R) > 0. let

δ = min{ϕ1on−1(R), ϕio1(R)}. Let M ∈ M be such that M1on−1 = ϕ1on−1(R) − δ,
M1o1 = ϕ1o1(R) + δ, Mion−1 = ϕion−1 + δ, Mio1 = ϕio1(R)− δ, and other entries are

the same. Then, it is easy to see that M stochastically Pareto dominates ϕ(R), in

violation of sd-efficiency. Thus ϕ1on−1(R) = 0

Then by equal treatment of equals

ϕ(R) =


2
n

1
n
· · · 1

n
0 1

n
n−2

n(n−1)
1
n
· · · 1

n
1

n−1
1
n

...
...

. . .
...

...
...

n−2
n(n−1)

1
n
· · · 1

n
1

n−1
1
n


Profile 1-2: For each i ∈ N \ {1, 2}, preference relation is R′′. And agent 1,2

has preference relation R′. Then by sd-strategyproofness

ϕ2(R)R′sd2 ϕ2(Profile 1-1) and ϕ2(Profile 1-1)R′′sd2 ϕ2(R).

Thus, ϕ2o2(R) = · · · = ϕ2on−2(R) = ϕ2on(R) = 1
n

Next we claim that ϕ2on−1(R) =

0. Suppose by way of contradiction that ϕ2on−1(R) > 0. Then ϕ2o1(R) < 2
n
. By

equal treatment of equals, ϕ1o1(R) < 2
n
. Then, there is i ∈ {3, 4, . . . , n} such

that ϕio1(R) > 0. As the argument in the previous profile, it is easy to con-

struct M ∈ M such that M stochastically dominates ϕ(R) at R, in violation of

sd-efficiency. Then, by equal treatment of equals,

ϕ(R) =



2
n

1
n
· · · 1

n
0 1

n
2
n

1
n
· · · 1

n
0 1

n
n−4

n(n−2)
1
n
· · · 1

n
1

n−2
1
n

...
...

. . .
...

...
...

n−4
n(n−2)

1
n
· · · 1

n
1

n−2
1
n

n−4
n(n−2)

1
n
· · · 1

n
1

n−2
1
n


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Repeat this process until exact half of agents has a preference profile R′.

Profile 1-k: Agents i ∈ {1, 2, . . . , n
2
} has R′ and agents i ∈ {n

2
+ 1, . . . , n} has

R′′. By sd-strategyproofness ϕio2(R) = · · · = ϕion−2(R) = ϕion(R) = 1
n

for i ∈ N as

it was discussed above. By sd-efficiency ϕion−1 = 0 for i ∈ {1, 2, . . . , n
2
}. Suppose

by way of contradiction that ϕion−1(R) > 0, let δ = min{ϕion−1(R), ϕno1(R)}. Let

M ∈ M be such that Mion−1 = ϕion−1(R) − δ, Mio1 = ϕio1(R) + δ, Mnon−1(R) =

ϕnon−1(R) + δ, Mno1 = ϕno1(R)− δ. Then, M stochastically dominates ϕ(R) at R.

Thus, by equal treatment of equals,

ϕ(R) =



2
n

1
n
· · · 1

n
0 1

n
...

...
. . .

...
...

...
2
n

1
n
· · · 1

n
0 1

n

0 1
n
· · · 1

n
2
n

1
n

...
...

. . .
...

...
...

0 1
n
· · · 1

n
2
n

1
n


Profile 2-1: For each i ∈ N \ {n}, preference relation is R′′. And agent n has

preference relation R′′′. Then by sd-strategyproofness

ϕn(R)R′′′sdn ϕn(R′′n, R−n) and ϕn(R′′n, R−n)R′′sdn ϕn(R)

ϕio2(R) = ϕio3(R) = · · · = ϕion−1(R) = 1
n

for all agent i ∈ N . By sd-efficiency,

ϕna(R) = 0 as the argument in the previous profile. Then by equal treatment of

equals

ϕ(R) =


1

n−1
1
n
· · · 1

n
1
n

n−2
n(n−1)

...
...

. . .
...

...
...

1
n−1

1
n
· · · 1

n
1
n

n−2
n(n−1)

0 1
n
· · · 1

n
1
n

2
n


Profile 2-2: Agent 1 has preference relation R′, agent i ∈ {2, 3, . . . , n − 1} has

R′′ and agent n has R′′′. Invoking our conclusion for Profile 1-1 and Profile 2-1,

by sd-strategyproofness,

ϕ(R)R′sd1 ϕ(Profile 2-1) and ϕ(Profile 2-1)R′′sd1 ϕ(R)

ϕ(R)R′′′sdn ϕ(Profile 1-1) and ϕ(Profile 1-1)R′′sdn ϕ(R)

Thus, ϕio2(R) = ϕio3(R) = · · · = ϕion−2(R) = 1
n

for all agent i ∈ N . Also,

ϕ1on(R) = n−2
n(n−1) and ϕnon−1(R) = 1

n−1 . By sd-efficiency, ϕ1on−1(R) = 0 and
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ϕno1(R) = 0. By equal treatment of equals,

ϕ(R) =



2n−1
n(n−1)

1
n
· · · 1

n
0 n−2

n(n−1)
n2−3n+1

n(n−1)(n−2)
1
n
· · · 1

n
1

n−1
n2−4n+5

n(n−1)(n−2)
...

...
. . .

...
...

...
n2−3n+1

n(n−1)(n−2)
1
n
· · · 1

n
1

n−1
n2−4n+5

n(n−1)(n−2)
0 1

n
· · · 1

n
1

n−1
2n−3
n(n−1)


Profile 2-3: Agent 1,2 has preference relation R′, agent i ∈ {3, 4, . . . , n−1} has

R′′ and agent n has R′′′. Invoking our conclusion from Profile 2-2 and Profile 1-2,

ϕ2(R)R′sd2 ϕ2(Profile 2-2) and ϕ2(Profile 2-2)R′′sd2 ϕ2(R)

ϕn(R)R′′′sdn ϕn(Profile 1-2) and ϕn(Profile 1-2)R′′sdn ϕn(R)

by sd-strategyproofness, ϕio2(R) = ϕio3(R) = · · · = ϕion−2(R) = 1
n

for all agent

i ∈ N . Also, ϕnon−1(R) = 1
n−2 and ϕ2on(R) = n2−4n+5

n(n−1)(n−2) . By sd-efficiency,

ϕ2on−1(R) = 0 and ϕno1(R) = 0. Then, by equal treatment of equals,

ϕ(R) =



2n2−5n+1
n(n−1)(n−2)

1
n
· · · 1

n
0 n2−4n+5

n(n−1)(n−2)
2n2−5n+1

n(n−1)(n−2)
1
n
· · · 1

n
0 n2−4n+5

n(n−1)(n−2)
n3−7n2+48n−34

n(n−1)(n−2)(n−3)
1
n
· · · 1

n
1

n−2
(n−2)(n2−5n+8)
n(n−1)(n−2)(n−3)

...
...

. . .
...

...
...

n3−7n2+48n−34
n(n−1)(n−2)(n−3)

1
n
· · · 1

n
1

n−2
(n−2)(n2−5n+8)
n(n−1)(n−2)(n−3)

0 1
n
· · · 1

n
1

n−2
2n−6
n(n−2)


Profile 2-4: Agent 1, 2, 3 has preference relation R′, agent i ∈ {4, 5, . . . , n− 1}

has R′′ and agent n has R′′′. Invoking our conclusion from Profile 2-3 and Profile

1-3

ϕ3(R)R′sd3 ϕ3(Profile 2-3) and ϕ3(Profile 2-3)R′′sd3 ϕ3(R)

ϕn(R)R′′′sdn ϕn(Profile 1-3) and ϕn(Profile 1-3)R′′sdn ϕn(R)

By sd-strategyproofness, ϕ3on(R) = (n−2)(n2−5n+8)
n(n−1)(n−2)(n−3) and ϕnon−1(R) = 1

n−3 . By sd-

efficiency ϕno1(R) = 0 and ϕ3on−1(R) = 0. Then by equal treatment of equals,
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ϕ(R) =



(n−2)(2n2−7n+1)
n(n−1)(n−2)(n−3)

1
n
· · · 1

n
0 (n−2)(n2−5n+8)

n(n−1)(n−2)(n−3)
(n−2)(2n2−7n+1)
n(n−1)(n−2)(n−3)

1
n
· · · 1

n
0 (n−2)(n2−5n+8)

n(n−1)(n−2)(n−3)
(n−2)(2n2−7n+1)
n(n−1)(n−2)(n−3)

1
n
· · · 1

n
0 (n−2)(n2−5n+8)

n(n−1)(n−2)(n−3)
(n−2)(n3−10n2+24n−3)
n(n−1)(n−2)(n−3)(n−4)

1
n
· · · 1

n
1

n−3
(n−2)(n−3)(n2−6n+11)
n(n−1)(n−2)(n−3)(n−4)

...
...

. . .
...

...
...

(n−2)(n3−10n2+24n−3)
n(n−1)(n−2)(n−3)(n−4)

1
n
· · · 1

n
1

n−3
(n−2)(n−3)(n2−6n+11)
n(n−1)(n−2)(n−3)(n−4)

0 1
n
· · · 1

n
1

n−3
2n−9
n(n−3)


From these results, we can get a sequence for ϕ(n−1)on(R) and ϕnon(R) satisfying

sd-strategyproofness. Let k be the number of agent who have preference profile R′.

Then ϕ(n−1)on(R) = (n−2)(n−3)...(n−k)(n2−(k+3)n+(3k+2))
n(n−1)(n−2)...(n−(k+1))

and ϕnon(R) = 2n−3k
n(n−k) .

Profile 2-k: Agent i ∈ {1, 2, . . . , n
2
− 1} has R′ and agent i ∈ {n

2
, . . . , n− 1} has

R′′ and agent n has R′′′. So the number of agents who have preference profile of

R′, R′′, R′′′ is (n
2
−1), n

2
, 1 each. Since majority have preference R′′, by sd-efficiency

ϕno1(R) = 0 and ϕion−1(R) = 0 for i ∈ {1, 2, . . . , n
2
− 1}. By equal treatment of

equals,

ϕ(R) =



2(n2+n+1)
(n−1)n(n+2)

1
n
· · · 1

n
0 n2+n−8

(n−1)n(n+2)
...

...
. . .

...
...

...
2(n2+n+1)
(n−1)n(n+2)

1
n
· · · 1

n
0 n2+n−8

(n−1)n(n+2)
2(2n2−n+2)
n2(n−1)(n+2)

1
n
· · · 1

n
2

n+2

(n−2)(n−3)...(n
2
+1)(n2−n−2)

2n(n−1)...(n
2
+1)n

2
...

...
. . .

...
...

...
2(2n2−n+2)
n2(n−1)(n+2)

1
n
· · · 1

n
2

n+2

(n−2)(n−3)...(n
2
+1)(n2−n−2)

2n(n−1)...(n
2
+1)n

2

0 1
n
· · · 1

n
2

n+2
n+6

n(n+2)


Profile 3: Every agent i ∈ N has preference relation R′. By equal treatment of

equals, ϕ(R) = 1
n

Profile 3-1: Agent i ∈ N\{n} hasR′ and agent n hasR′′. By sd-strategyproofness,

ϕno2(R) = · · · = ϕnon−2(R) = ϕnon(R) = 1
n
. By sd-efficiency, ϕno1(R) = 0. Then

by equal treatment of equals,

ϕ(R) =


1

n−1
1
n
· · · 1

n
n−2

n(n−1)
1
n

...
...

. . .
...

...
...

1
n−1

1
n
· · · 1

n
n−2

n(n−1)
1
n

0 1
n
· · · 1

n
2
n

1
n


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Profile 3-2: Agent i ∈ N \ {n} has R′ and agent n has R′′′. Invoking our

conclusion from Profile 3-1, agent n change preference relation from o1 � on to

on � o1 and other relations are the same. But agent n has nothing of object o1.

Thus allocation will be the same to conclusion for Profile 3-1.

ϕ(R) =


1

n−1
1
n
· · · 1

n
n−2

n(n−1)
1
n

...
...

. . .
...

...
...

1
n−1

1
n
· · · 1

n
n−2

n(n−1)
1
n

0 1
n
· · · 1

n
2
n

1
n


Profile 3-3: Agent i ∈ N \ {n − 1, n} has R′, agent n − 1 has R′′ and agent n

has R′′′. Invoking our conclusion from Profile 3-2

ϕn−1(R)R′′sdn−1ϕn−1(Profile 3-2) and ϕn−1(Profile 3-2)R′sdn−1ϕn−1(R)

By sd-strategyproofness, ϕn−1on(R) = 1
n
. By sd-efficiency, ϕn−1o1(R) = 0. Then,

by equal treatment of equals,

ϕ(R) =


1

n−2
1
n
· · · 1

n
n−4

n(n−2)
1
n

...
...

. . .
...

...
...

1
n−2

1
n
· · · 1

n
n−4

n(n−2)
1
n

0 1
n
· · · 1

n
2
n

1
n

0 1
n
· · · 1

n
2
n

1
n


Repeat this process until agent i ∈ {n

2
+ 2, n

2
+ 3, . . . , n − 1} has a preference

profile R′′

Profile 3-k: Agent i ∈ {1, 2, n
2

+ 1} has R′, agent i ∈ {n
2

+ 2, . . . , n − 1} has

R′′ and agent n has R′′′. By sd-strategyproofness ϕion(R) = 1
n

for all i ∈ N . By

sd-efficiency ϕio1(R) = 0 for i ∈ {n
2

+2, . . . , n}. Then by equal treatment of equals,

ϕ(R) =



2
n+1

1
n
· · · 1

n

n−(n
2
−1)

n(n−n−1
2

)
1
n

...
...

. . .
...

...
...

2
n+1

1
n
· · · 1

n

n−(n
2
−1)

n(n−n−1
2

)
1
n

0 1
n
· · · 1

n
2
n

1
n

...
...

. . .
...

...
...

0 1
n
· · · 1

n
2
n

1
n


Profile 4: Agent i ∈ {1, 2, . . . , n

2
} has R′, agent i ∈ {n

2
+ 1, . . . , n − 1} has R′′

and agent n has R′′′. Invoking our conclusion from Profile 1-k, Profile 2-k and 3-k,

by sd-strategy-proofness

ϕn
2
(R)R′sdn

2
ϕ(Profile 2-k) and ϕ(Profile 2-k)R′′sdn

2
ϕn

2
(R)

11



ϕn
2
+1(R)R′′sdn

2
+1ϕ(Profile 3-k) and ϕ(Profile 3-k)R′sdn

2
+1ϕn

2
+1(R)

ϕn(R)R′′′sdn ϕn(Profile 1-k) and ϕn(Profile 1-k)R′′sdn ϕn(R)

ϕnon−1(R) = 2
n
. ϕn

2
on(R) =

(n−2)(n−3)...(n
2
+1)(n2−n−2)

2n(n−1)...(n
2
+1)n

2
= n2−n−2

n2(n−1) and ϕ(n
2
+1)on(R) =

1
n
. By sd-efficiency, ϕno1(R) = 0. So assignment of object on for all agents will be

n2 − n− 2

n2(n− 1)︸ ︷︷ ︸
assignment for i∈{1,...,n

2
}

·n
2

+
1

n︸︷︷︸
i∈{n

2
+1,...,n−1}

·(n
2
− 1) +

1

n
< 1

which means ϕ(R) /∈M �

The result of Kasajima (2013) strengthens the results by Bogomolnaia and

Moulin (2001) since the impossibility holds on a smaller domain of preferences.

And our result strengthens the results of both Kasajima (2013) and Bogomolnaia

and Moulin (2001) by restricting the domain in even more stronger sense than the

one Kasajima considered.

Remark 1 In two extreme economies where a common peak is either the first or

the last object, every agent is considered as the same agent. The rule ϕik(R) = 1
n

for all i ∈ N, k ∈ O satisfies the three requirements. In these two economies, the

impossibility result does not hold.

Remark 2 Even if we impose a restriction, not only a common peak but also the

same preference from the peak to (n − 3)th object, the impossibility result still

holds.

Remark 3 Whenever there are at least three possible preference profile, the im-

possibility result holds. For example, assume there is an economy where n − 2

agents have R′, 1 agent has R′′ and 1 has R′′′. Even though a majority of agents

have the same preference R′, because of two different preference profiles, the im-

possibility result holds.

12



4. Conclusion

We showed that sd-efficiency, sd-strategyproofness and equal treatment of equals

are incompatible in a single-peaked economies with a common peak. The result

contributes to the literature on the assignment problem to find preference domain

to make these axioms compatible. Bogomolnaia and Moulin (2002) consider that

all agents has same preference over objects while receiving no object(opting out)

choice is only difference for agents. In this case considered, three axioms are

compatible. It may be interesting to find the exact domain for these axioms to be

compatible for future research.
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Appendix : A formal proof for odd n

Consider the case which is extended to n (odd) object cases. A common peak is

ot for t ∈ {2, 3, . . . n− 1}, then possible preference relations are as follows:

- ot Ri . . . Ri o1 Ri on−1 Ri on (R′)

- ok Ri . . . Ri on−1 Ri o1 Ri on (R′′)

- ok Ri . . . Ri on−1 Ri on Ri o1 (R′′′)

Suppose, by a way of contradiction, that there is a rule ϕ that satisfies the three

requirements.

Profile 1: All agents have R′. Then by equal treatment of equals, ϕik(R) = 1
n

for all i ∈ N and k ∈ O.

Profile 1-1: Agents i ∈ N\{n} haveR′ and agent n hasR′′. By sd-strategyproofness,

ϕn(R)R
′sd
n ϕn(Profile 1) and ϕn(Profile 1)R

′sd
n ϕn(R)

Then ϕnon(R) = 1
n
. By sd-efficiency, ϕno1(R) = 0. Then by equal treatment of

equals,

ϕ(R) =


1

n−1
1
n
· · · 1

n
n−2

n(n−1)
1
n

...
...

. . .
...

...
...

1
n−1

1
n
· · · 1

n
n−2

n(n−1)
1
n

0 1
n
· · · 1

n
2
n

1
n


Profile 1-2: Agents i ∈ N \ {n} have R′, and agent n has R′′′. Agent n has just

changed her preference from o1Rnon to onRno1. But she already have 0 of object

o1. Thus a random assignment for agent n will be the same as the previous profile.

ϕ(R) =


1

n−1
1
n
· · · 1

n
n−2

n(n−1)
1
n

...
...

. . .
...

...
...

1
n−1

1
n
· · · 1

n
n−2

n(n−1)
1
n

0 1
n
· · · 1

n
2
n

1
n


Profile 1-3: Agents i ∈ N \ {n− 1, n} have R′. and agent n-1,n have R′′. Then

by sd-strategyproofness,

ϕn−1(R)R
′′sd
n−1ϕn−1(Profile 1-1) and ϕn−1(Profile 1-1)R

′sd
n−1ϕn−1(R)

Then ϕ(n−1)on(R) = 1
n
. By sd-efficiency, ϕ(n−1)o1(R) = 0. By equal treatment of
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equals,

ϕ(R) =


1

n−2
1
n
· · · 1

n
n−4

n(n−2)
1
n

...
...

. . .
...

...
...

1
n−2

1
n
· · · 1

n
n−4

n(n−2)
1
n

0 1
n
· · · 1

n
2
n

1
n

0 1
n
· · · 1

n
2
n

1
n


In Profile 1, Since majority agents have R′, to satisfy sd-efficiency, ϕio1(R) = 0

for i ∈ N \ {j ∈ N |agent j who has preference R′}. And we repeat this process

until we get Profile 1-k.

Profile 1-k: Agents i ∈ {1, 2, n+1
2
} have R′ and agent i ∈ {n+1

2
+ 1, . . . , n}

have R′′′. By sd-strategyproofness, ϕion(R) = 1
n

for all i ∈ N . By sd-efficiency,

ϕio1(R) = 0 for i ∈ {n+1
2

+ 1, . . . , n}. Then by equal treatment of equals,

ϕ(R) =



2
n+1

1
n
· · · 1

n
2

n(n+1)
1
n

...
...

. . .
...

...
...

2
n+1

1
n
· · · 1

n
2

n(n+1)
1
n

0 1
n
· · · 1

n
2
n

1
n

...
...

. . .
...

...
...

0 1
n
· · · 1

n
2
n

1
n


Profile 2: All agents i ∈ N have R′′′. Then by equal treatment of equals,

ϕik(R) = 1
n

for all i ∈ N and k ∈ O.

Profile 2-1: Agents i ∈ N \ {1} have R′′′, and agent 1 has R′′. By sd-

strategyproofness, ϕ1on−1(R) = 1
n
. By sd-efficiency, ϕ1on(R) = 0. By equal treat-

ment of equals,

ϕ(R) =


2
n

1
n
· · · 1

n
1
n

0
n−2

n(n−1)
1
n
· · · 1

n
1
n

1
n−1

...
...

. . .
...

...
...

n−2
n(n−1)

1
n
· · · 1

n
1
n

1
n−1


Profile 2-2: Agents i ∈ N\{1} haveR′′′ and agent 1 hasR′′. By sd-strategyproofness,

ϕ1on(R) = 0. By sd-efficiency, ϕ1on−1(R) = 0. Then by equal treatment of equals,

ϕ(R) =


3
n

1
n
· · · 1

n
0 0

n−3
n(n−1)

1
n
· · · 1

n
1

n−1
1

n−1
...

...
. . .

...
...

...
n−3

n(n−1)
1
n
· · · 1

n
1

n−1
1

n−1


Profile 2-3: Agents i ∈ N \ {1, 2} have R′′′ and agent 1,2 have R′′. By sd-

strategyproofness, ϕ2on−1(R) = 1
n
. By sd-efficiency, ϕ2on(R) = 0. Then by equal
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treatment of equals,

ϕ(R) =


2
n

1
n
· · · 1

n
1
n

0
2
n

1
n
· · · 1

n
1
n

0
n−4

n(n−2)
1
n
· · · 1

n
1
n

1
n−2

...
...

. . .
...

...
...

n−4
n(n−2)

1
n
· · · 1

n
1
n

1
n−2


Profile 2-4: Agents i ∈ N \ {1, 2} have R′′′, agent 2 has R′′ and agent 1 has

R′. By sd-strategyproofness, ϕ2on−1(R) = 1
n−1 , ϕ1on(R) = 0. By sd-efficiency,

ϕ2on(R) = 0. Then by equal treatment of equals,

ϕ(R) =


3
n

1
n
· · · 1

n
0 0

2
n

1
n
· · · 1

n
1
n

0
n−5

n(n−2)
1
n
· · · 1

n
1

n−1
1

n−2
...

...
. . .

...
...

...
n−5

n(n−2)
1
n
· · · 1

n
1

n−1
1

n−2


Since n is an arbitrary large number, there exists s (smaller than n) such that
3
n
· s > 1 and 3

n
· (s− 1) + 2

n
< 1. Let s be the smallest integer satisfying these two

requirements.

Profile 2-x: Agent i ∈ N \ {1, 2, . . . , s} has R′′′ and agent i ∈ {1, 2, . . . , s − 1}
has R′ and agent s has R′′. Then by equal treatment of equals,

ϕ(R) =



3
n

1
n
· · · 1

n
0 0

...
...

. . .
...

...
...

3
n

1
n
· · · 1

n
0 0

2n−3s+3
n(n−s+1)

1
n
· · · 1

n
1

n−(s−1) 0
n2−4ns+2n+3s2−3s

n(n−s)(n−s+1)
1
n
· · · 1

n
1

n−(s−1)
1

n−s
...

...
. . .

...
...

...
n2−4ns+2n+3s2−3s

n(n−s)(n−s+1)
1
n
· · · 1

n
1

n−(s−1)
1

n−s


Profile 2-x′: Agent i ∈ N \ {1, 2, . . . , s} has R′′′ and agent i ∈ {1, 2, . . . , s} has

R′. By sd-strategyproofness,

ϕs(R)R
′sd
s ϕs(Profile 2-s) and ϕs(Profile 2-x)R

′′sd
s ϕs(R)

Then ϕson(R) = 0. Since 3
n
· s > 1, ϕson−1(R) 6= 0. Thus ϕio1(R) = 0 for
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i ∈ {s+ 1, s+ 2, . . . , n} to satisfy sd-efficiency. By equal treatment of equals,

ϕ(R) =



1
s

1
n
· · · 1

n
3s−n
n·s 0

...
...

. . .
...

...
...

1
s

1
n
· · · 1

n
3s−n
n·s 0

0 1
n
· · · 1

n
2n−3s
n(n−s)

1
n−s

...
...

. . .
...

...
...

0 1
n
· · · 1

n
2n−3s
n(n−s)

1
n−s


From this point, agents who have preference profile R3 have zero probability of o1

Profile 2-k: Agent i ∈ {1, 2, . . . , n−1
2
} has R′ and agent i ∈ {n+1

2
, . . . , n} has

R′′′. As the argument in the previous profile, ϕio1(R) = 0 for i ∈ {n+1
2
, . . . , n} by

sd-efficiency. By equal treatment of equals,

ϕ(R) =



2
n−1

1
n
· · · 1

n
n−3

n(n−1) 0
...

...
. . .

...
...

...
2

n−1
1
n
· · · 1

n
n−3

n(n−1) 0

0 1
n
· · · 1

n
n+3

n(n+1)
2

n+1
...

...
. . .

...
...

...
0 1

n
· · · 1

n
n+3

n(n+1)
2

n+1


Profile 3: Agent i ∈ {1, 2, . . . , n−1

2
} has R′ and agent n+1

2
has R′′ and agent

i ∈ {n+3
2
, . . . , n} has R′′′. By sd-strategyproofness,

ϕn+1
2

(R)R
′′sd
n+1
2
ϕn+1

2
(Profile 1-k) and ϕn+1

2
(Profile 1-k)R

′sd
n+1
2
ϕn+1

2
(R)

ϕn+1
2

(R)R
′′sd
n+1
2
ϕn+1

2
(Profile 2-k) and ϕn+1

2
(Profile 2-k)R

′′′sd
n+1
2
ϕn+1

2
(R)

Then, ϕn+1
2

on−1
(R) = n+3

n(n+1)
and ϕn+1

2
on

(R) = 1
n
. And by sd-efficiency, ϕio1(R) = 0

for i ∈ {n+1
2

+ 1, . . . , n} and ϕion−1(R) = 0 for i ∈ {1, 2, . . . , n−1
2
}.

ϕ(R) =



2n2+2
n(n−1)(n+1)

1
n
· · · 1

n
0 n2−5

n(n−1)(n+1)
...

...
. . .

...
...

...
2n2+2

n(n−1)(n+1)
1
n
· · · 1

n
0 n2−5

n(n−1)(n+1)
n−1

n(n−1)
1
n
· · · 1

n
n+3

n(n+1)
1
n

0 1
n
· · · 1

n
2(n2−3)

n(n−1)(n+1)
n2+3

n(n−1)(n+1)
...

...
. . .

...
...

...

0 1
n
· · · 1

n
2(n2−3)

n(n−1)(n+1)
n2+3

n(n−1)(n+1)


Profile 3-1: Agent i ∈ {1, 2, . . . , n−1

2
} has R′ and agents n+1

2
, n+3

2
has R′′ and

agent i ∈ {n+1
2

+ 2, . . . , n} has R′′′. By sd-strategyproofness

ϕn+3
2

(R)R
′′sd
n+3
2
ϕn+3

2
(Profile 3) and ϕn+3

2
(Profile 3)R

′′′sd
n+3
2
ϕn+3

2
(R)
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ϕn+1
2

(R)R
′′sd
n+1
2
ϕn+1

2
(Profile 1-k) and ϕn+1

2
(Profile 1-k)R

′sd
n+1
2
ϕn+1

2
(R)

Then ϕn+3
2

on−1
(R) = 2(n2−3)

n(n−1)(n+1)
, and ϕn+1

2
on

(R) = 1
n
. Also, by sd-efficiency,

ϕion−1(R) = 0 for i ∈ {1, 2, . . . , n−1
2
} and ϕio1(R) = 0 for i ∈ {n+1

2
+ 2, . . . , n}.

By equal treatment of equals,

ϕ(R) =



(2((n−1)n(n+1)−8))
n(n−1)2(n+1)

1
n
· · · 1

n
0 n3−3n2−n+19

n(n−1)2(n+1)
...

...
. . .

...
...

...
(2((n−1)n(n+1)−8))

n(n−1)2(n+1)
1
n
· · · 1

n
0 n3−3n2−n+19

n(n−1)2(n+1)
4

n(n−1)(n+1)
1
n
· · · 1

n
2(n2−3)

n(n−1)(n+1)
1
n

4
n(n−1)(n+1)

1
n
· · · 1

n
2(n2−3)

n(n−1)(n+1)
1
n

0 1
n
· · · !

n
2(n2−n−4)
n(n−1)(n+1)

n2+2n+5
n(n−1)(n+1)

...
...

. . .
...

...
...

0 1
n
· · · 1

n
2(n2−n−4)
n(n−1)(n+1)

n2+2n+5
n(n−1)(n+1)


Profile 3-2: Agent i ∈ {1, 2, . . . , n−1

2
} has R′ and agents {n+1

2
, n+3

2
, n+5

2
} has R′′

and agent i ∈ {n+1
2

+ 3, . . . , n} has R′′′. By the argument above,

ϕ(R) =



2(n3−7n−18)
(n−1)2n(n+1)

1
n
· · · 1

n
0 n3−3n2+11n+39

2(n−1)n(n+1)
...

...
. . .

...
...

...
2(n3−7n−18)
(n−1)2n(n+1)

1
n
· · · 1

n
0 n3−3n2+11n+39

2(n−1)n(n+1)
2(n+3)

(n−1)n(n+1)
1
n
· · · 1

n
2(n2−n−4)
n(n−1)(n+1)

1
n

2(n+3)
(n−1)n(n+1)

1
n
· · · 1

n
2(n2−n−4)
n(n−1)(n+1)

1
n

2(n+3)
(n−1)n(n+1)

1
n
· · · 1

n
2(n2−n−4)
n(n−1)(n+1)

1
n

0 1
n
· · · 1

n
2{(n−5)(n−1)n+24}
n(n−1)(n+1)(n−5)

n3−3n2−13n−33
(n−5)(n−1)n(n+1)

...
...

. . .
...

...
...

0 1
n
· · · 1

n
2{(n−5)(n−1)n+24}
n(n−1)(n+1)(n−5)

n3−3n2−13n−33
(n−5)(n−1)n(n+1)


From this conclusion, we can get a sequence for ϕnon−1(R). Let k be a number

of agents who have preference profile R′′.

Then ϕnon−1(R) = 2{(n−(2k−1))(n−(2k−3))...(n−5)(n−1)n−(−1)k2(k−1)k!}
n(n−1)(n+1)(n−5)(n−7)...(n−(2k−1))

Profile 3-k: Agent i ∈ {1, 2, . . . , n−1
2
} has R′ and agents {n+1

2
, . . . , n − 2} has

R′′ and agents {n− 1, n} has R′′′.
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ϕ(R) =



1
n
· · · 1

n
0

...
...

. . .
...

...
...

1
n
· · · 1

n
0

1
n
· · · 1

n
2{(n−(n−6))(n−(n−8))...(n−5)(n−1)n−2

n−7
2 ·n−5

2 !}
n(n−1)(n+1)(n−5)(n−7)...(n−(n−6))

1
n

...
...

. . .
...

...
...

1
n
· · · 1

n
2{(n−(n−6))(n−(n−8))...(n−5)(n−1)n−2

n−7
2 ·n−5

2 !}
n(n−1)(n+1)(n−5)(n−7)...(n−(n−6))

1
n

1
n
· · · 1

n
2{(n−(n−4))(n−(n−6))...(n−5)(n−1)n−2

n−5
2 ···n−3

2 !}
n(n−1)(n+1)(n−5)(n−7)...(n−(n−4))

1
n
· · · 1

n
2{(n−(n−4))(n−(n−6))...(n−5)(n−1)n−2

n−5
2 ···n−3

2 !}
n(n−1)(n+1)(n−5)(n−7)...(n−(n−4))


Profile 4: All agents i ∈ N have R′′. By equal treatment of equals, ϕik(R) = 1

n

for all i ∈ N and k ∈ O.

Profile 4-1: Agents i ∈ N\{1} haveR′′ and agent 1 hasR′. By sd-strategyproofness,

ϕ1on(R) = 1
n
. By sd-efficiency, ϕ1on−1(R) = 0. Then by equal treatment of equals,

ϕ(R) =


2
n

1
n
· · · 1

n
0 1

n
n−2

n(n−1)
1
n
· · · 1

n
1

n−1
1
n

...
...

. . .
...

...
...

n−2
n(n−1)

1
n
· · · 1

n
1

n−1
1
n


Profile 4-k: Agents i ∈ {1, . . . , n−1

2
} have R′ and agent i ∈ {n+1

2
, . . . , n} have

R′′. Then by equal treatment of equals,

ϕ(R) =



2
n

1
n
· · · 1

n
0 1

n
...

...
. . .

...
...

...
2
n

1
n
· · · 1

n
0 1

n
2

n(n+1)
1
n
· · · 1

n
2

n+1
1
n

...
...

. . .
...

...
...

2
n(n+1)

1
n
· · · 1

n
2

n+1
1
n


Profile 5: Agents i ∈ {1, . . . , n−1

2
} have R′, agents i ∈ {n+1

2
, . . . , n− 1} have R′′

and agent n has R′′′. By sd-strategyproofness,

ϕn+1
2

(R)R
′′sd
n+1
2
ϕn+1

2
(Profile 1-k) and ϕn+1

2
(Profile 1-k)R

′sd
n+1
2
ϕn+1

2
(R)

ϕn(R)R
′′′sd
n ϕn(Profile 4-k) and ϕn(Profile 4-k)R

′′sd
n ϕn(R)

ϕn−1(R)R
′′′sd
n−1ϕn−1(Profile 3-k) and ϕn−1(Profile 3-k)R

′′sd
n−1ϕn−1(R)
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To satisfy sd-efficiency, ϕion−1(R) = 0 for i ∈ {1, 2, . . . , n−1
2
}. Then,

2{(n− (n− 4))(n− (n− 6)) . . . (n− 5)(n− 1)n− 2
n−5
2
···n−3

2
!}

n(n− 1)(n+ 1)(n− 5)(n− 7) . . . (n− (n− 4))︸ ︷︷ ︸
agent n’s assignment of on−1

+
2{(n− (n− 4))(n− (n− 6)) . . . (n− 5)(n− 1)n− 2

n−5
2
···n−3

2
!}

n(n− 1)(n+ 1)(n− 5)(n− 7) . . . (n− (n− 4))︸ ︷︷ ︸
assignment of on−1 for i ∈ {n+1

2
, . . . , n− 1}

·n−1
2

+ 0 6= 1

leads to a contradiction to ϕ(R) ∈M �
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