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Abstract

Woong June Chung
Architectural Engineering
The Graduate School

Seoul National University

Building environments have been controlled by using heating and cooling
systems to maintain comfortable interior temperatures. However, a recent
popular trend in building heating and cooling system involves utilizing a
radiant system to achieve energy savings and comfortable temperatures. One
type of radiant system uses the concrete structure of a building as the
heating and cooling system by embedding pipes inside it. This system has
many advantages, such as reduced installation time, reduced building
material requirements, and non-necessity of increasing the height of the
building. Because the system uses the entire concrete structure of a building,
individual control may be difficult to perform. Thus, the system was
designed to remove the basic heating/cooling load in a building. Although
many studies propose utilizing different parameters to determine the basic
heating/cooling load of a building, the most common method used to remove
the basic load involves keeping the radiant surface as the room setpoint
temperature. When the surface temperature of the Thermally Activated
Building System (TABS) is kept at the setpoint temperature of the room, the
system will remove load based on how the air temperature of the room

changes from the load. This concept is called the self-regulation effect, and



was useful for removing load without any feedback. Because only partial
heating and cooling load can be removed by TABS via the self-regulation
effect, the remainder of the load was removed by an air-based heating and
cooling system. In a well-designed building with a small amount of heating
and cooling load, the self-regulation effect can be very effective. However,
the current method used for self-regulation was applied by supplying water
at the room setpoint temperature. In addition, the load able to be removed by
TABS is limited in a building with a significant amount of heating and
cooling load. Thus, the objective of this study is to identify the thermal
mechanism of TABS and increase its utilization by adjusting the supply
water temperature depending on the load.

To increase the utilization of radiant systems, the current TABS control
method should be carefully observed to determine how it can be improved.
Because the self-regulation effect was applied by supplying water at the
room setpoint temperature, the core layer where pipes are embedded will be
close to the room setpoint temperature and the surface temperature of TABS
cannot be kept at the room setpoint temperature from consistent effect from
the load. Therefore, the heat exchange between the surface of TABS and
room air temperature is lower than expected and utilization of TABS is
decreased. Moreover, the air system removes the remainder of the load and
keeps the room air temperature at the setpoint temperature. The amount of
load removed by TABS when following the self-regulation concept
decreases as the setpoint temperature is consistently met. Consequently, the
active use of TABS should be executed by targeting the specific basic load.

For the active utilization of TABS, its thermal mechanism should be
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analyzed and the target load should be identified. The thermal mechanism of
TABS demonstrates a significant amount of time delay due to the large heat
capacity of concrete, which was one of the advantages of TABS. However,
time-delay of TABS also means that the system needs a large amount of
time to supply the heat into the room. With the various changes on supply
water temperature and load, the TABS should use at least daily control
instead of hourly control. Once the control timestep was chosen, the target
basic load can be chosen by using the minimum load achieved over a
24-hour load period. Thus, a load prediction should be performed to
determine the basic load. The minimum load over a 24-hour period was
identified by studying load patterns based on historical data. In this study,
two load prediction methods were utilized to select the supply water
temperature for TABS. One popular method involved using the outdoor air
temperature to calculate the temperature of the supply water. The heating
and cooling curves are derived using a resistance—capacitance (RC) network.
The second method is an intelligence-based method, and uses an artificial
neural network (ANN) to recognize the load pattern. In the process of
learning the load patterns, the input parameters of the ANN were selected by
an analysis that divided the building load into external load, solar load, and
internal load. The input parameters should be obtained prior to the prediction,
and are defined as follows. The input parameters that consider the external
load, solar load, and internal load were outdoor air temperature, cloud
coverage based on weather forecasts, and type of day. Using these three
input parameters, the accuracy of the load prediction became reliable after

approximately one month of pattern learning. Because accuracy was poor
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during the ANN learning period, this study proposes the use of load
prediction based on outdoor air temperature during the ANN learning period,
and then use the ANN prediction after it has been validated.

Based on our understanding of the thermal mechanism of TABS and load
prediction methods, the goal of removing the minimum load of a building
over a 24-hour period (using TABS) was executed using a co-simulation
involving EnergyPlus and MATLAB. EnergyPlus was used to realize the
actual building environment, and MATLAB calculated the supply water
temperature and performed load predictions with the information obtained
from EnergyPlus. The Building Controls Virtual Test Bed (BCVTB) was
used as middleware connecting the two simulations to exchange information
at each timestep. TThrough the co-simulation, the thermal output of TABS
with different control strategies was compared to verify the utilization of
TABS. Among control strategies, predictive control with ANN demonstrated
the greatest thermal output of TABS. The validation of the method was
executed by applying different weather conditions and showed equivalent

results.
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control, Thermal output characteristics,
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Symbol Meaning Unit
S, Laplace complex term radian/hr
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t time hour
T Temperature T
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0, Setpoint temperature of upper floor for design T
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Chapter 1 Introduction

1.1 Background and Purpose
1.2 Scope and Method

1.1 Background and Purpose

The indoor environment of a building should be maintained within a
temperature range that 1s comfortable for its occupants. The
environment in office buildings is considered to be a particularly critical
space, because discomfort may decrease the productivity of the
occupants. One evaluation parameter that i1s commonly used to help
maintain comfortable conditions in an office building is the indoor air
temperature, which is controlled by supplying or removing heat via the
heating and cooling system. Conventional air conditioning systems are
all-air systems that maintain indoor air temperature by using convective
heat transfer only. However, as concerns about energy conservation
increase, the utilization of radiant heating and cooling systems has
become popular. This is because radiant systems can improve thermal

comfort by increasing the mean radiant temperature for heating, and



decreasing the mean radiant temperature for cooling.)2 Because these
systems provide superior thermal comfort compared to all-air systems,
the acceptable comfort range of the indoor air temperature may be
increased. With higher setpoint temperatures for cooling and lower
setpoint temperatures for heating, heat transfer between outdoor and
indoor environments may reduce heat losses and gains.

Of the many types of radiant systems available, the Thermally
Activated Building Systems (TABS) has become popular recently
because its use of embedded piping within the concrete structure of
buildings may decrease the installation, operation, and maintenance costs
associated with air conditioning systems. Because TABS does not
require additional installation provisions, the overall building height can
be reduced, which dramatically reduces the amount of building materials
needed for construction.3)

Within a building, many zones with different heating and cooling loads
exist depending on the external and internal conditions of the building;

these loads should be removed with different heating and cooling

1) Rhee, K.N.; Kim, KW. A 50 year review of basic and applied research in radiant heating
and cooling systems for the built environment. Build. Eviron. 2015, 91, 166-190.

2) National Renewable Energy Laboratory. Department of Energy Commercial Reference
Building Models of the National Building Stock; Technical Report; National Renewable
Energy Laboratory : Golden, CO, USA, 2011.

3) Olesen, B.W. Operation and Control of Thermally Activated Slab Heating and Cooling
Systems; Proceedings of CIB World Congress 2004, Toronto, Canada, Jan 2004



systems that are designated for the proper zones. However, because
TABS uses the concrete structure of a building as a heating and
cooling system, difficulties arise when operating the system to remove
specific load from a specific zone. Thus, the self-regulation control
concept 1s applied to TABS control to handle low and constant basic
loads that occur in all zones in a building. Self-regulation is
implemented by setting the surface temperature of the system as the
room setpoint temperature. Hence, when heating and cooling load occurs,
the room temperature will change, and the difference between the room
temperature and the system temperature will trigger heat exchange
between the room and the surface of the system exposed to that roo
m#5). Even a minor change in room temperature will trigger a
significant amount of radiant and convective heat exchange between the
room and the system; this is because TABS has large radiant surface
area exposed in a given room. As the amount of heating and cooling
load increases, the difference between the room temperature and the
surface temperature of TABS will increase and more heat exchange will

occur.

4) Babiak, J.; Olesen, B. W.; Petras, D. Low Temperature Heating and High Temperature
Cooling, Federation of European Heating and Air-Conditioning Associations (REHVA):
Brussels, Belgium, 2007.

5) Olesen, B.W.; Sommer, K.; Duchting, B. Control of Slab heating and Cooling Systems
Studied by Dynamic Computer Simulations. ASHRAE Trans. 2002, 108, 698-707.



Previously, the self-regulation of TABS was executed by setting the
supply water temperature as the setpoint temperature of the room to
remove the low and constant loads as basic load. However, the current
method used to perform self-regulation cannot keep the surface
temperature of TABS as the setpoint temperature of the room, and may
decrease the utilization of TABS. This is because the heat exchange
from the current timestep will change the surface temperature of TABS
in the next timestep, and therefore the self-regulation effect cannot be
preserved. Moreover, the heat exchange between the zone air and
surface temperature of TABS may be smaller than expected because the
air system continuously maintains the room temperature as the setpoint
temperature. Hence, the objective of this research is to increase the
utilization of TABS by targeting a suitable basic load with an

appropriate and optimized control time interval.

1.2. Scope and Method

A method to handle basic load with TABS is developed with
appropriate system control aspect and decision on the amount of
constant and low heating and cooling load. The research method and
scope 1In each section i1s described as follows.

1) Preliminary studies on controls of TABS



Before proposing how TABS control strategy can be improved,
preliminary studies are reviewed by examining previous research and
assessing TABS operation in actual buildings. The composition of TABS
1s determined by investigating typical radiant systems and TABS by
reviewing standards and guidebooks. In addition, because radiant
systems deal with the time delay phenomenon, the dynamic thermal
mechanism of TABS is explored. Moreover, the current TABS control
strategy is categorized to seek potential improvements.

2) Observation of current control method and improvement
direction of TABS

To discover potential improvements in TABS control, the principle of
self-regulation 1s simulated with the dynamic simulator, EnergyPlus.
Many Through an analysis of the results, the surface temperature of the
system could not be kept as room setpoint temperature are discovered
the changes of surface temperature depending on the amount load
occurred. Furthermore, changing the supply water temperature depending
on the return water temperature demonstrated the time-delay and
concluded that the appropriate basic load of the building should be
determined with load prediction.

3) TABS control method used to increase the load handled by

TABS



With the improvement direction identified in the previous chapter, the
system mechanism is analyzed to choose the control timestep of TABS.
After deciding the basic control structure, the target load for TABS is
calculated using outdoor air temperature because it is one of the most
influential parameters, and because weather forecasts are relatively
accurate. With the target load of TABS determined, the heating and
cooling curve that changes the supply water temperature, depending on
the outdoor air temperature, was derived. Because the outdoor air
temperature calculates the minimum cooling load and the maximum
heating load, the target load for TABS can be utilized only for cooling.
Moreover, the calculated external load with outdoor air temperature does
not correspond with the actual minimum load. Thus, a more promising
solution for predicting the load, the artificial neural network (ANN), was
used to predict the load. The thermal load was predicted and the supply
water temperature was derived based on the target load.

4) Application of TABS control using system analysis and load
prediction

Using the target load, the heating and cooling curve of the system,
and the load prediction, a co—simulation was performed to realize the
learning as the  Thistorical data was accumulated. The results

demonstrated that the load prediction used to determine the target the



load for TABS was accurate and effective. To validate the control
method, different weather conditions were used to operate TABS. The
load prediction maintained the accuracy and TABS performed better
with the control method applied.

The research process, according to the proposed method and scope, is

demonstrated by the research diagram in Fig. 1.1.
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Chapter 2 Preliminary Studies on Control of

TABS

2.1 Types of Radiant System and Thermal
Mechanism of TABS

2.2 Current Design and Operation of TABS

2.3 Estimation of Basic Load of Office
Buildings

2.4 Summary

Before proposing the improvement direction of the TABS control
strategy, previous studies are reviewed. The composition of TABS is
determined by investigating typical radiant systems and TABS by
reviewing standards and guidebooks. In addition, because radiant
systems deal with time delay phenomena, the heat transfer of the
system by means of conduction, convection, and radiation is studied
with the dynamic thermal mechanism of TABS. Moreover, the current
TABS control strategy is categorized to Investigate potential
improvements. After reviewing the system and operation, the
consideration of how much load TABS should handle is inspected by

examining typical types of basic load.



2.1 Types of Radiant System and Thermal Mechanism of
TABS
2.1.1 Types of Radiant System

TABS is one of many types of radiant systems that use a concrete
structure as a storage system. A radiant system is a more energy-—efficient
terminal system than an air system for three reasons. A radiant system uses
water pumps to deliver heat to a room, and an air system uses a fan to
distribute heat throughout the room. A water pump requires a lower amount
of energy than a fan to deliver heat to a room. With respect to heating and
cooling colils, a typical air system requires a lower coil temperature than a
radiant system because water has a higher specific heat capacity and carries
more energy than air. As a result, more energy consumption is expected in
an air system. From the perspective of thermal comfort, a radiant system
has a lower mean radiant temperature than an air system and thus creates a
more comfortable environment. Therefore, the setpoint temperature of a
radiant system may be higher than that of an air system.

A radiant heating and cooling system can be classified into radiant heating
and cooling panels, pipes isolated from the main building structure, and the
TABS. The following figures and table describe the diverse types of radiant

systems.
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Figure 2.6 Capillary pipes embedded in a layer at the inner

surface
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Table 2.1 Types of radiant system

Radiant Systems Types

Radiant heating and cooling panels -

= System with pipes embedded in
the screed or concrete("wet"
system)

Pipe isolated from main building|® System with pipes embedded

outside of the screed (e.g. in

structure the thermal insulation layer, "dry"
system)

= System with pipes embedded in

the screed

= System with pipes embedded in
Thermally Active Building the massive concrete slabs
Systems(TABS) = Capillary pipes embedded in a
layer at the inner surface
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2.1.2 Thermal Mechanism of TABS

TABS transfers heat through the interactions among conduction,
convection, and radiation as Figure 2.7. Conduction heat transfer occurs
between the supplying layer of the TABS and the surface exposed to the
room. Convection and radiation heat transfer occurs from the surface of the
TABS to the zone. Convection heat transfer occurs from the surface of the
TABS to the zone air. Radiation heat transfer occurs through longwave
radiation exchange with internal sources, longwave radiation exchange with
other surfaces in the zone, and shortwave radiation from transmitted solar
lights. Convective heat exchange with zone air removes the same type of
load as the air system; however, the TABS radiation heat transfer removes

the heat that is supposed to be heating and cooling load in the future.
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Figure 2.7 Mechanism of TABS
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Thermal mechanism of TABS can be calculated using the thermal
resistance method for steady-state conditions, and the finite element method
(FEM) or finite difference method (FDM) for the dynamic mechanism of
TABS. For the thermal resistance method, the following equations are the
basic equations of conduction, convection, and radiation. Figure 2.8 presents
a simple layout of TABS used for calculating the resistance.6)

The common application of the solution is a two—node state space. There
are multiple types of conduction transfer functions, such as the staggered
time history scheme, the sequential interpolation of new histories, and the

master history with interpolation.
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Figure 2.8 Resistance network

6) CEN. EN 15377 Heating Systems in buildings — Design of embedded water based surface
heating and cooling systems — Part 1: Determination of the design heating and cooling
capacity CEN 2005
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Equations 2.1 and 2.2 are called conduction transfer functions, which
replaced higher order terms with flux history terms. Equation 2.1 is a
calculation of heat flux inside and Equation 2.2 is a calculation of heat flux

outside.

q”kn( Z()T _ZZ it — ]5+YT +ZY o,t— 75+Z@]qkzt jo (21)

q,,lm( YT _ZY it — 75+X +ZX o,t— 75+Z@7Qkot jo (22)

j=1

Equations 2.3 and 2.4 are an example of the two—node state space. The left
side of the equation represents the amount of energy stored according to
time, and the right side of the equation represents the addition of conductive

and convective heat transfer.

Desired heat flux through the wall inward and outward is represented in

Equation 2.5 and 2.6, respectively.



¢ =h(T,—T,) (2.5)

(3

q,=h(T,—T,) (2.6)

Resistance through conduction is represented in Equation 2.7.

R=—-— (2.7

Stored heat is calculated with density, heat capacity, length, and area by

Equation 2.8.

_rGiA
= 2

(2.8)

The conduction transfer function considers the convection from the indoor
space to the ceiling surface, and the conduction from the water pipes to the
ceiling surface. The amount of convection and conduction to the surface is
equal to the heat stored in the concrete structure. Equation 5 through

Equation 8 describe the algorithm.
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2.2 Previous Research on Design and Operation of TABS
2.2.1 Previous Method to Design TABS

Typical radiant system design is employed to ensure that all the load can
be handled by the system. In EN15377, thermal output is proposed based on
the material used in the flooring, as shown in Figure 2.9. Having obtained
information on the maximum total heat gain in the space and the operating
period of the system, an appropriate TABS inlet temperature is proposed in
Figure 2.10. The expected thermal output of the system is proposed under

certain conditions.

TABS type E, T=150
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Figure 2.9 Heat exchanges as the function of water

temperature and floor covering
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Figure 2.10 Working principle of TABS from EN 15377



2.2.2 Previous Method to Control TABS

The common radiant system control methods are water temperature

control, flow rate control, and water temperature control and flow control.

For Thermally Activated Building System, control methods are pump

operation, water temperature, flow rate, and UBB method as Table 2.2.

Thermally activated building system control methods can be classified as

supply water temperature control and flow rate control as Table 2.3.

Constant water temperature control can be considered as operation instead of

control because it uses consistent water temperature to work as opposite

type of load.

Table 2.2 Control method of radiant system and TABS

Types

Contents

1) Radiant system control method

Water temperature control
Flow rate control
Water temperature control +Flow rate

control

2) Thermally Activated Building | =

System control method =

Pump operation control
Water temperature control
Flow rate control

UBB method and PWM method

- 20



Table 2.3 TABS control method

Supply water temperature
Control parameter -
Constant Variable
temperature temperature
1) Pump 3) Water
] Constant flow operation temperature control
Conti—
NUOUS control (24h) 4) UBB method
flow
Flow Variable flow
rate
Bang-bang-
control
On/off
Control ]
Intermittent
flow control

- Water . © Water - - Water temperature
temperature flow control and water
control control flow control

1) Pump operation control (24h)

The pump can be operated for 24 h with constant temperature to utilize
the self-regulation effect, which exchanges heat between the ceiling surface
and the room. This operation is a typical control scheme when TABS is

used as a secondary system.
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2) Pump operation control (12h, 8h)
When the pump is operated for 24 h, overcooling or overheating may occur
because of unnecessary operation. To prevent unnecessary operation, pump

operation may be reduced to 12 h or 8 h.7

3) Water temperature control

Current radiant systems control the water flow and temperature for a
certain thermal output and condensation can be avoided. Previous research
offered the following control methods.®

a) Operation at a dew-point temperature

b) Supply water temperature = 1.3 * 04 * (20 - Outdoor temperature) +
20

¢) Average temperature of supply and return water = 1.3 * 04 * (20 -
Outdoor temperature) + 20

d) Constant supply water temperature (18, 20, 22)

e) Constant average temperature of supply and return water (18, 20, 22)

According to previous studies, method b) was found to have achieved the

greatest energy reduction.

7) Babiak, Olesen, Petras, Low Temperature Heating and High Temperature Cooling, REHVA, 2007.
8) Olesen, Control of Slab Heating and Cooling Systems Studied by Dynamic Computer Simulation
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4) UBB method (Unknown But Bounded)

In TABS control, heat gain is considered on heating and cooling curves.
Since the heat gain is difficult to predict, the maximum and minimum heat
gain was used to set the range of upper bound and lower bound.?

Adjustments to the supply water temperature based on the room
temperature may not remove the cooling load because of the thermal inertia
of TABS. Based on the graph of the upper and lower heat gain bounds, the
supply water temperature may be controlled. The process of the UBB
method is listed in the following order.

a) Based on the heating curve, adjustments to the supply water
temperature are made as the outdoor temperature changes.

b) Minimum/maximum room temperature is calculated and lower/upper
heat gain bounds are chosen.

¢) Within the bound, on/off control is used.

5) Flow rate control
Similar to other radiant systems, the flow rate of supply water was

adjusted.10)

9) Gwerder, Control of thermally-activated building systems
10) Babiak, Olesen, Petras, Low Temperature Heating and High Temperature Cooling, REHVA, 2007.
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6) PWM method (Pulse Width Modulation)

Pulse width modulation operates the pump with intermittent on/off control.
Preliminary research used 1 h on/off, 1/2 h on/off, and 1/4 h on 3/4 h off
control patterns, and the pump energy consumption Wwas reduced.
Intermittent on/off control patterns should use a lower supply water
temperature to reduce the same amount of cooling load. As a result, 1/4 h on

3/4 h off control conserves the most energy of all the flow control method

s 1D12)

2.2.2 Operation Method in REHVA Guidebook

In the Representatives of the FEuropean Heating and Ventilating
Association (REHVA) Guidebook, TABS operation was separated into three
modes. The modes are pump operation control, water temperature control,
and flow rate control.

TABS pump control methods include the continuous heat supply method
and the intermittent heat supply method. In the continuous heat supply
method, TABS operates for 24 h, 12 h, and 8 h. The intermittent heat supply
method turns the system on and off on a consistent schedule. The following

operating windows are offered: 15 min ON and 45 min OFF, 1 h ON and 1

11) Gwerder_Control of thermally activated building systems(TABS) in intermittent operation with pulse
width modulation

12) Lehmann_Thermally activated building systems(TABS) : Energy efficiency as a function of control
strategy hydronic circuit topology and (cold) generation system

-l -
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h OFF, and 30 min ON and 30 min OFF.
In water temperature control, TABS may be operated with changes in
mean water temperature depending on the outdoor and indoor temperature.

Equation 2.13 describes the supply water temperature equation.

T

vty = 0-52%Q0— T, 1., ) +20— (1.6% T, —22) (2.13)
The second water temperature control method adjusts the average

temperature of the supply water and the return water based on Equation

2.14.

T =0.52¢*(20— T

average outdoor

)+20—(1.6% T, —22) (2.14)

In the third water temperature control method, the average temperature of
the supply and return water is kept at 22 °C in the summer and 25 °C in the
winter. In the fourth method, the supply water temperature is controlled with

only external temperature during the summer, as shown by Equation 2.15.

T

supply

=0.35%(18 = T,y 00y ) + 18 (2.15)

The fifth water temperature control method is demonstrated in Equation

2.16 and the supply water temperature is controlled according to the equation

y TR
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In winter.

T

supply

=0.45*(18 = T, 100 ) + 18 (2.16)

The last method involves controlling the water flow rate, however, the
REHVA guidebook did not contain any information on that approach.
Depending on the application, the REHVA guidebook indicates that the
capacity of the cooling system may be reduced to 60% by storing the heat in

TABS.
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2.3 Estimation of Basic Load of Office Buildings

Among various control strategies, the safest and most effective TABS
control method involves choosing supply water temperature based on the
basic load of the building. Because the basic load of the building is constant
and has a low wvalue, operation based on basic load can remove the
environmental load without considering other spontaneous loads.

The basic load of an office building can be estimated based on the
minimum density of the internal load imposed by people, lighting, and
equipment. A reasonably constant load based on the internal load can be
considered as the basic load, because the occupants are expected to work at
the office building. Although the basic load can be removed by TABS, in the
winter season TABS may have heating load in the perimeter zones. Thus,
targeting the internal load of the office building can be considered to be an
adequate solution for TABS control. However, the utilization of TABS can

be limited, so other loads should be considered to increase its effectiveness.

-l -
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2.4 Summary

In preliminary studies, the basic construction of TABS was observed by
reviewing different types of standard radiant systems. A typical TABS
design was examined to determine the magnitude of the heat output. In
addition, the method was applied under steady-state conditions, because the
design was selected to ensure TABS can handle the appropriate amount of
load under constant conditions.

Various control methods were reviewed from previous studies; however, 24
h operation with the concept of self-regulation was found to be the typical
control method used in the field. The target load to remove was the constant
and low basic load of an office building. Thus, the basic load of an office
building was assessed and it was determined that the internal load within
the interior zone could be considered as the basic load of the building.

Based on findings, the conditions of the TABS were set to observe

potential improvements that could be made to its control method.

3 T
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Chapter 3 Observation of Current Control

Method and Improvement Direction of TABS

3.1 Process of Improving the TABS Control
3.2 Observation of TABS Control with Simulation
3.3 Improvement Direction of TABS

3.4 Summary

To discover potential improvements to the TABS control method, the
principle of self-regulation is carefully observed and the problems
associated with the current TABS control method are established. An
office building with TABS and an air system is simulated with the
dynamic simulator, EnergyPlus. TABS uses the supply water
temperature that is equivalent to the room setpoint temperature in 24 h
operation, and the remainder of the load is handled by the air system.
To improve control by increasing the utilization of the TABS, new
findings from the analysis of the simulation result are used to set the

improvement direction.



3.1 Process of Improving the TABS Control

To wverify potential improvements to the current control method, a
detailed observation should be performed to determine if the goal is
achieved. After defining the problem in actual situation, theoretical
assumptions should be established to find the reason for the phenomenon.
A theoretical approach can provide an opportunity to explore every option
for improving TABS control. Theoretical assumptions can be confirmed by
assessing TABS in different situations. If the results do not coincide with
the theoretical assumptions, the theoretical assumptions should be restated
based on the observations made in different situations. After the
assumption is proven, the direction for theoretical improvements can be
established to achieve the goal. The process of the deriving the

improvement direction of TABS control is illustrated in the figure below.

! Current state _: Improved solution

Observation

|

|

I . -
Actual : Verify if the purpose Application

I

I

I

. Execute actual control
was achieved.

Improvement Direction
Reflect the reasons and
set the improving direction

Establish the reasons why
the purpose was not
achieved and investigate

e B e

T
|
| Assumption
|
|
|
|
|
1

Figure 3.1 Process of deriving improvement direction
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3.2 Observation of TABS Control with Simulation
3.2.1 Typical Control of TABS

The self-regulation control concept is applied to TABS control because
of the difficulties associated with supplying heat into the system and a
zone from long time delay effect. Self-regulation originates from the
Intention to remove rapidly varying heat gains, such as sunshine passing
through a window. Self-regulation can be executed by keeping the surface
temperature of the radiant system at the room setpoint temperature. In
Figure 3.2, as heating or cooling loads occur, the room temperature will
vary and the heat exchange between room and the system surface will
remove the load without the changing the system control method. The
heat exchange between the room and the system surface can decrease or

increase depending on the amount of load.
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Room setpoint temperature = 22°C

Surface temperature
= Room setpoint temperature

-

Figure 3.2 Concept of self-regulation
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To properly apply the mechanism of self-regulation, the surface
temperature of the radiant system should be kept at the room setpoint
temperature, as shown in Figure 3.2. However, TABS use supply water
temperature that is equivalent to the room setpoint temperature to apply
the concept of self-regulation in the field. In steady-state conditions,
supplying water temperature at the room setpoint temperature may have a
self-regulation effect. However, in dynamic conditions, the surface
temperature of the radiant system cannot be kept at the room setpoint
temperature because of consistent changes in heating and cooling loads.
Because the previous heating or cooling load affects the surface
temperature of the radiant system, the utilization of TABS may be
decreased. Therefore, the current TABS control method, which supplies
water at the room setpoint temperature, should be applied in the dynamic

simulation.

3.2.2 Simulation Conditions

The dynamic simulation is performed using EnergyPlus software v8.6,
and the TABS and air system are modeled to remove heating and cooling
loads. To choose a typical office building to observe common TABS
mechanisms, the reference building proposed by the US Department of

Energy is used to formulate the boundary conditions. An overview of the

3 " T
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building is presented in Figure 3.3, and detailed conditions are described in
Table 1. The typical internal heat gain schedule and density from the
document provided by the National Renewable Energy Laboratory (NREL)
of the US Department of Energy are used as illustrated in Figures 34, 3.5,
and 3.6. In addition, the constant supply water temperature is 22 °C and
the flow rate is 3,600 kg/h.

For modeling TABS, an internal source is applied on each ceiling using
the system module, ZoneHVAC: Low Temperature, Radiant: ConstantFlow,
to supply the water at a certain temperature. This system is connected to
the plant loop module to produce heat. The air system module,
ZoneHVAC: Ideal Loads Air System, is used for the air system. Peak
heating and cooling days are chosen to examine the operation of TABS

and the air system in extreme conditions.

Figure 3.3 Small office building
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Table 3.1 Detail information of small office building

Detail Conditions

Content

Building Orientation

South

District

Chicago, IL, USA

Area

28m x 18m (504m’*)

Building Height

3m (1 story)

Window Properties

Window to Wall Ratio 30%, Solar Heat Gain
Coefficient of 0.39, No Blinds

Internal Heat Gain

People: 0.054 Person/m’, Lighting: 10.76 W/,
Equipment: 10.76 W/m’

Setpoint
22 °C
Temperature
Supply Water
Temperature of 22 °C
TABS
TABS Operation 24 hrs of Operation
Air System
24 hrs of Operation
Operation

TABS Placement

Ceiling (on the Slab)
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Figure 3.4 Internal load schedule on weekdays
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Figure 3.5 Internal load schedule on Saturday
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Figure 3.7 Section view of TABS

In the small office building, TABS is applied by embedding the pipes
into the concrete structure, as illustrated in Figure 3.7. The typical slab

thickness and insulation size i1s selected from ISO 11855. The building
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simulation developed in EnergyPlus v.8.6 is created using these conditions.

In order to determine the proper flow in the TABS pipes, the basic

office building load, approximately 10 W/, is set as the removal target.

The thermal output of TABS is calculated using the equations from

EN1264 and 1s demonstrated in Figure 3.8. In Equation 34, the

temperature difference between the supply water and the return water is

assumed to be 3 °C to avoid temperature asymmetry.

Qverall = qupward + Yiownward

_ 1
trerd = (R By + By R+ TR

_ 1
Qdownward — (R,le + RlRt + RZRt)

) *(Rt (92 _91)+Rg(90791))

*(R,(0,—0,)+ R, 0,_0,))

Qoverall = mC;)(S T

(3.1

(3.2)

(3.3)

(3.4)

1

=R
[ e e B
ey

Figure 3.8 Heat transfer of TABS
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3.3 Observation of Current Control of TABS and Establishment

of Assumption for Improving Control

3.3.1 Supplying Room Setpoint Temperature into TABS

The effect of heating or cooling load on the surface of the radiant
system 1s observed through the dynamic simulation. The typical control
method that utilizes self-regulation is applied by supplying the water
temperature at the room setpoint temperature. Hourly data from the
simulation 1s observed and the surface temperature of TABS is not able to
remain consistent with the room setpoint temperature, as illustrated in
Figure 39. This means that the self-regulation effect was not able to

remove the load as expected.
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Figure 3.9 Surface temperature of the TABS with supplying 22C
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Figure 3.10 Load handled with TABS and ideal load

In Figure 3.9, the surface temperature shows a greater difference
between the surface temperature of TABS and the room setpoint
temperature during the winter and summer seasons. To confirm the
theoretical assumption, room load and the load handled by TABS are
compared. In Figure 3.10, the load handled with TABS correlates with the
room load. Thus, the theoretical assumption is made that the TABS
surface temperature proportionally changes with the amount of load. This

theoretical assumption is demonstrated in Figure 3.11.
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Figure 3.11 Surface temperature changes depending on the load

To verify the theoretical assumption, the surface temperature of TABS

and the ideal load of the air system on peak heating and cooling days is

compared in detail in Figures 3.12 and 3.13, respectively. The changes in

TABS surface temperature demonstrate a similar trend with the amount of

heating and cooling load.
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Figure 3.12 Surface temperature of TABS and load on winter season
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Because the load changes will be affected by the previous loads, a
possible situation in two time steps is considered. Changes in load can be

categorized in the following cases.

Case 1. Type of load (summer and winter season)

1-1 Small load to large load

1-2 Large load to small load

Case 2. Simultaneous heating and cooling load (Intermediate season)
2-1 Cooling load to heating load

2-2 Heating load to cooling load

Two types of cases are described. First, when constant type of load
occurs in the summer and winter seasons, most of the load will maintain
the type of load and increase or decrease. Second, when simultaneous
heating and cooling load occurs in the intermediate season, the changes on
type of load will occur. Both cases are demonstrated in Figure 3.14 and
detailed changes in the surface are illustrated in Figures 3.15, 3.16, 3.17,

and 3.18
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Figure 3.18 Heating load to cooling load in intermediate season (2-2)

When supply water temperature is maintained at the room setpoint
temperature, the amount of building load can be assumed to be the
dominant parameter. Thus, to keep the TABS surface temperature at the
room setpoint temperature, the supply water temperature should be
adjusted as shown in Figure 3.19. However, when the supply water

temperature 1s changed, different scenarios can occur, as shown in Figures

3.20, 3.21, 3.22, and 3.23.
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Figure 3.23 Supply water temperature strategy for heating load to cooling load

When the load changes from a small load to a large load within the
same type of load, the supply water temperature can be increased and
decreased for heating and cooling, respectively. In cases where the load
changes from a large load to a small load within the same type of load,
the supply water temperature should be decreased for heating and
increased for cooling to maintain the TABS surface temperature. However,
the high heat capacity of the system may maintain the temperature near
the pipe and remove heat that the system provided previously. Thus, in
the thermal analysis, the natural temperature changes should be considered
to reflect the changes from a large load to a small load.

During the intermediate season, the type of load may change depending
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on the weather and internal conditions. Thus, the operation of the system
should be determined depending how much mixing loss occurs.

As the amount of load changes, the load handled by TABS will
proportionally change, and the return water temperature will also change
accordingly. A control method was previously proposed to change the
supply water temperature depending on the changes in return water
temperature. Thus, the surface temperature of TABS is observed to
determine if it was kept at the room setpoint temperature when the return

water temperature control is applied.
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3.3.2 Setting Average of Supply Water Temperature and Return
Water Temperature as Room Setpoint Temperature

Because the surface temperature of TABS changes depending on the
load, the average of the supply water and return water temperatures is set
as the room setpoint temperature. Equation 3.5 is used in the simulation
and Figure 3.24 demonstrates the supply water temperature and return
water temperature of TABS.

Supply Water Temperature + Return Water Temperature
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Figure 3.24 Setting the supply water temperature according to the return

water temperature
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Figure 3.25 Surface temperature comparison between conventional

control and average temperature on a peak heating week
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Figure 3.26 Surface temperature comparison between conventional

control and average temperature on a peak cooling week
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Figure 3.27 Surface temperature comparison between conventional

control and average temperature on intermediate season

In the period near the peak heating and cooling days, setting the average
temperature of the supply and return water as the room setpoint
temperature does bring the surface temperature of TABS closer to the
room setpoint temperature, as shown in Figures 3.25 and 3.26. However, in
the intermediate season, when the type of load changes, changes of supply
water temperature depending on the return water temperature takes time
to appear the effect of the system, as shown in Figure 3.27. The thermal

phenomenon is expressed in Figures 3.28 and 3.29.
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Adjusting the supply water temperature based on the return water
temperature will introduce more heat into the zone. However, changes in
TABS supply water temperature will take time to provide the heat into a
zone. Thus, supply water temperature should be adjusted ahead of time by
considering the future load, to handle the target load. In addition, the time
delay should be defined to supply the proper water temperature ahead of
time. Although load effects are considered by changing TABS supply
water temperature based on the return water temperature, the thermal
output of TABS is still small because the air system is operated to keep
the room air temperature at the setpoint temperature. Because of the
energy efficiency of the radiant system, TABS should be actively utilized

during heating and cooling seasons to handle more load.
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3.4 Summary

To observe that the current method can be successfully used to control
TABS, the specification of a small office building from the DOE reference
building was used to simulate and consider the system characteristics of
time delay. Current control methods utilize the self-regulation effect and
continuously supply constant water temperature as the room setpoint
temperature to handle the basic load of a building. The remaining load is
handled by the air system to main the thermal comfort of the zone.

The observation of TABS with the current control method was
conducted by inspecting the surface temperature of the system. The
amount of load in the zone caused changes in the zone air temperature
and triggered a heat exchange between the surface of the system and the
zone air. Moreover, because TABS could not maintain the surface
temperature at the room setpoint temperature, especially during the
summer and winter seasons, the heat from the previous timestep was
stored and carried to the next timestep period. With the continuous zone
load, the concept of self-regulation could not be maintained, which
decreases the amount of load handled by TABS below our expectations.
Therefore, TABS should use higher supply water temperatures during the
winter season, and lower supply water temperatures during the summer

season. In intermediate season, the changes of supply water temperature
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depending on the return water temperature took time to provide the heat
into the zone. Thus, the target load should be predicted ahead of time to

apply proper supply water temperature on TABS.
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Chapter 4 TABS Control Method to Increase
the Amount of Load Handled by TABS

4.1 Thermal Analysis of the TABS
4.2 Target Load of TABS for Deciding the Supply Water
Temperature

4.3 Summary

Based on the improvement direction specified in the previous chapter,
the system mechanism is analyzed to determine the control timestep for
TABS. After selecting the basic control structure, the target load for
TABS is calculated using the outdoor air temperature, because it is
one of the most influential parameters and weather forecasts are
relatively accurate. Using the TABS target load, the heating and
cooling curve that changes the supply water temperature depending on
the outdoor air temperature is derived Moreover, the calculated
external load from the outdoor air temperature does not correspond
with the actual minimum load. Thus, a more promising solution, the
ANN, is used to predict the load The thermal load is predicted and

the supply water temperature is derived based on the target load.



4.1 Thermal Analysis of the TABS

Because the TABS has a large heat capacity, changes in supply water
temperature will take a long time to introduce heat into the zone. Thus, the
system mechanism should be analyzed to determine the time interval for
TABS control. The types of parameters that affect the thermal mechanism of
the system are classified as system parameters, control parameters, and zone
parameters. System parameters include thermal conductivity, volume, specific
heat, density, and area of the system. The control parameter is supply water
temperature. Because the zone load influences the surface temperature of

TABS, the zone load is set as a zone parameter.

-System parameters

J,.l'r r-'.. . Lrd
.-‘/ / - o /*’ N

e —EH s — @i‘v-—-a— — -@‘W—- — *“Control parameters

i/

.-'l.rl,r

N
\ ‘il Zone parameters

Figure 4.1 Parameters of TABS
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To define the system characteristics, the correlation between system
parameters and control parameters is analyzed without considering the zone
parameter. Among the many methods available to explain the thermal
dynamics of this scenario, the RC network is utilized to explain the
relationship between supply water temperature and the surface temperature
of the system. The basic equation used to explain the thermal mechanism is
demonstrated in Equation 4.1. The Laplace transform presented in Equation
4.2 1s used to derive the exact solution for the relationship between supply

water temperature and surface temperature.

drT
pCp Vﬁ: kA (Ts"upply - Ts"urface ) (41)
— kA '
; v cv .
‘s'k'zf'r';a(:e = supply + (Tf'urface - Ts"u“,zy )6 ’ (42>

The values of the system parameters are changed to observe the changes
in TABS surface temperature in Figures 4.2 and 4.3. As the time constant
and resistance of the system increase, the time needed for the heat to reach
the TABS increases. In Figure 4.4, 22 °C, 25 °C, and 28 °C supply water
temperatures are applied. As the supply water temperature increases, the

time it takes for heat to transfer onto the surface of TABS increases.
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Figure 4.4 Changes of surface temperature with increase of supply water

temperature

To verify the theoretical assumption, a room with constant load is modeled
with EnergyPlus and changes are made to the supply water temperature.
Constant heating load is assumed and the outdoor air temperature is set to
-20 °C. With a constant heating load, the changes in supply water
temperature are applied to examine how the characteristics of time delay
change based on the difference in supply water temperature. In Figure 4.5,
various supply water temperatures are used initially, and changed the supply
water temperature to 22 °C. As initial supply water temperature becomes
greater, the time it takes to transfer heat into the zone increases. Even

changes as small as 1 °C take 24 h to reach a consistent surface
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temperature. In Figure 4.6, a 22 °C constant supply water temperature is
used, and the supply water temperature was changed to various
temperatures. In Figure 4.7 and 4.8, detailed information on when the supply
water temperature is changed from 22 °C to 30 °C and from 30 °C to 22 °C
are presented, respectively. As the supply water temperature increases,
surface temperature and zone air is proportionately changed; however, the
time it takes to transfer the heat is approximately 100 h. Thus, significant
changes to supply water temperature should be executed long before the load

Ooccurs.
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Figure 4.5 Changes from different supply water temperatures to 22C of

supply water temperature
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Figure 4.8 Supply water temperature change from 30T to 22C

Changes from 22 degrees of supply water temperature to various supply
water temperature is similar to the characteristics of surface temperature
change from various supply water temperature to 22 degrees of supply water
temperature. Thus, hourly control of supply water temperature will not be

feasible, and the supply water temperature should be planned at least 24

hours before the load occurs.
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4,2 Target load of TABS for Deciding the Supply Water
Temperature

4.2.1 Target Load Based on Outdoor Air Temperature

Because the thermal output of the system changes depending on the
amount of load, the load prediction should be applied to the supply water
ahead of time. The most common basic load in an office building is the
internal load in the interior zone. However, the internal load may differ from
the design values and the load prediction may have high uncertainty.
Therefore, the load prediction should be based on the steady load.

Many studies utilize weather forecast data from weather stations to predict
simple loads, because the error between weather forecast data and actual
weather conditions is relatively small. Among many values of weather
forecast data, outdoor air temperature and solar radiation values are often
used in research papers. Because solar radiation may have a high chance of
changing due to cloud coverage, outdoor air temperature is selected to
predict the basic load of the building.

In Figure 4.1, the correlation between outdoor air temperature and building
load is observed, and it was discovered that the outdoor air temperature

values were proportional to the building loads.

A
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Figure 4.9 Correlation between outdoor air temperature and building load

An equation for simple steady-state conditions is used to express the
linear relationship between outdoor air temperature and building load and

expressed as 4.3 and it developed from Equation 4.4 to Equation 4.6.

Gotal = aT’o +b (43)
o= [ Z"K’wall.O]DLL(ﬂLe.avﬁq‘élsurface (]‘ - ?R) + Z’I(window‘élsurface ( :R)
AFloor AFloor
. X N X
+ 033147‘/ =0.85 (4.4)
Floor
_ [ Kwall.opawe.angsurface (]‘ — Wi I?R) + EKwindowAsurface( Wi I:R)
AFloor AFloor
o O ]
66 A=t e



=14.17

0.33 X N X V]( N Schedule, ;. < Density

mn

AFlom’ AFlom’

=0.85T, — 14.17

Qoutdoor

Table 4.1 Conditions to calculate the load from outdoor air

(4.5)

(4.6)

Building Conditions

Width 27.69\m

Length 1846/m

Height 3.05/m

Floors 1|Floors

Window area 27.8892/m*

Roof construction Thickness Thermal conductivity Heat transfer coefficient

1/2in gypsum 0.0127|m 0.16|W/mK 0.19227769|W/m’K

Attic floor nonres insulation 0.2368/m 0.049|W/mK

1/2 in gypsum 0.0127/m 0.16|W/mK

Roof membrane 0.0095/m 0.16|W/mK

Metal decking 0.0015/m 45\W/mK

Wall construction Thickness Thermal conductivity Heat transfer coefficient

1 in stucco 0.0253/m 0.6918 W/mK 0.698247997|W/m’K

8 in concrete HW 0.2032/m 1.311W/mK

Mass non res wall insulation 0.04954946/m 0.049|W/mK

1/2 in gypsum 0.0127/m 0.16|W/mK

Floor construction Thickness Thermal conductivity Heat transfer coefficient

HW Concrete 0.1016]m 1311]W/mK 2.252261926]W/m'K
Heat transfer coefficient

CP02 Carpet PAD 0.2165‘m2 K/W

Window Heat transfer coefficient

NonRes Fixed Assembly Window 3_23646‘W/m‘K

Surface area 281.515|m’

Floor area 511.1574|m’

Roof area 511.1574|m’

Kwall.opaque.avg 0.698247997 \W/m’K

Kroof 0.19227769|W/m’K

Kwindow 3.23646\W/m'K

Kfloor 2.252261926/W/m’K

Window to wall ratio 0.099068256

Total floor area 511.1574|m’

Volume 1559.03007 | m’

Internal (W/m") 10|W/m2 10

Internal (W) 5111.574|W 5111574

Infiltration (ACH) 0|ACH

Ground Temp 18/°C

Setpoint Temp in winter 22/°C

Setpoint Temp in Summer 22°C




The conditions associated with the effects of outdoor air temperature are
listed in Table 4.1. Based on Equation 4.6, the load prediction values are
plotted in Figure 4.10 with the actual building loads. Using outdoor air
temperature, the minimum heating and cooling loads could be predicted. The
hourly load prediction is presented in detail in Figure 4.11. To compare the
actual load and the predicted load in detail, the hourly values of the actual
load and predicted load during the winter and summer seasons are presented

in Figures 4.12 and 4.13.
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411 External load calculation in detail

30

[11/m] peol

A
i 7
[ ] S N
2
N mW
oy
~_ <
HRE e
yul N
P
< A

//JJ

0000 TE
0000 T
0D00:ET
000060
00000
Q00:ITo
Q00DITET
QUODUET
QUODIET
Q00060
00i00:50
0000 TOo
0000 TE
0000 T
0D00IET
000060
00000
Q00:ITo
Q000ITT
Q0IO0IET
Q0ODIET
000060
00:00:50
0000 T0
0000 TE
0000 T
0000IET
00i00:60
00i00:S0
0000 TOo
0000 TE
00i00HET
0000IET
000060
00i00iS0
Q0i00iTO
QI0DITE
QIODILT
Q0IODIET
000060
00i00iS0
Q000 T0

ezfto
ezfto
ezfto
zziLn
zziLn
zziLn
12/
12/
12/
12/
/o
1Z/io
0z/Lo
0z/Lo
0z/Lo
0z/Lo
0z/Lo
0z/Lo
6T/L0
6T/L0
6T/L0
6T/L0
6T/L0
6T/L0
81/L0
81/L0
8L/L0
8L/L0
8L/L0
8L/L0
(o
(o
(o
£/t
(/o
(/o
ar/eo
ar/eo
ar/eo
ar/eo
ar/eo
ar/eo

Time

412 Actual load and external load calculation on a peak cooling week

|
N
©
|



External load calculation

Heating load

N

-
P
—

-10

-20

B8

[u/m] peot

-50

f
=)
°

00:00:T2
00:00:LT
00:00:ET
00:00:60
00:00:50
00:00:10
00:00:1¢
00:00:LT
00:00:€T
00:00:60
00:00:50
00:00:T0
00:00:TZ
00:00:£T
00:00:€T
00:00:60
00:00:50
00:00:T0
00:00:TC
00:00:£T
00:00:ET
00:00:60
00:00:50
00:00:T0
00:00:TC
00:00:£T
00:00:ET
00:00:60
00:00:50
00:00'T0
00:00°12
00:00:£T
00:00:ET
00:00:60
00:00:50
00:00:T0
00:00:T2
00:00:LT
00:00:ET
00:00:60
00:00:50
00:00:T0

11/10
11/10
11/10
11/10
11/10
11/10
01/10
01/10
01/10
01/10
01/10
01/10
50/T0
50/T0
50/T0
50/T0
50/T0
50/T0
80/10
80/10
80/10
80/10
80/10
80/10
£0/10
£0/10
£0/10
£0/10
£0/10
£0/10
90/10
90/10
90/10
90/10
90/10
90/10
50/10
50/10
50/10
50/10
50/10
50/10

Time

Figure 4.13 Actual load and external load calculation on a peak heating week

Using the external load calculation, the daily target load could be obtained,

and with the target load, the relationship between the TABS supply water

temperature and outdoor air temperature could be derived. The derivation is

expressed by Equations (4.7), (4.8), and (4.9).

(4.7)

0.85 X ,‘To —14.17= kA(,‘Taverage - ,‘Tsurfaoe)

Aealculated

(4.8)

,‘Tsupply - ,‘Treturn

Tcwerage

(4.9)

+ ,‘Tm) - ,‘Treturn

Aealculated
kA

]
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Figure 4.14 Heating and cooling curve of the TABS
Equation 4.9 is plotted in Figure 4.14. The heating and cooling curves are

separately plotted because the expected return water temperature is different

in the pipe layer.
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4,2.2 Target Load Based on the Load Prediction with Artificial
Neural Network

Only a limited amount of load can be removed when only using the
outdoor air temperature; therefore, more parameters should be considered to
handle more load with TABS. However, the parameters may have different
patterns and may experience different basic loads each day. The appropriate
amount of target load is determined by learning the patterns in previous data
by using statistical methods.

Among the many statistical methods available, the ANN is selected to
express the correlation between input parameters and building load. The
ANN is one of the most commonly used statistical methods for data—driven
building load predictions. The concept of the ANN comes from neurology. A
function model family that uses the sigmoid function is selected because it
may express the correlation better than a linear function. The function model

family is demonstrated as follows.

fl@x)=ow"xz+b) (4.10)

1

o(z)=
1+e *

(4.11)

-l -
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Parameters Parameter

Input Layer , Hidden Layer Output Layer

Figure 4.15 Concept of ANN

Back propagation is used to train the weights and the learning rate is set
to 0.1. The learning rate is kept small because a larger learning rate may
increase the calculation time and cause convergence problems. The default
epoch is set to 500 times due to the possibility of overfitting.

As Figure 4.16 demonstrated, the input parameters for the ANN are chosen
by considering the external loads, infiltration loads, solar loads, and internal
loads. Because the information from a weather forecast station has relatively
accurate prediction capability, the outdoor air temperature and cloud coverage
are used to determine the external loads, infiltration loads, and solar
radiation. Because the office building has a regular occupancy schedule
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Figure 4.16 Input parameters for ANN
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Figure 4.17 ANN load prediction
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Figure 4.18 ANN load prediction on a peak heating week
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Figure 4.19 ANN load prediction on a peak cooling week
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In Figure 4.17, the ANN load prediction is executed; however, the accuracy
of the load prediction is very poor in the first month. A detailed ANN load
prediction plot is presented in Figures 4.18 and 4.19. As Figure 4.18
demonstrated, load prediction cannot be used to target the load for TABS.

To decide when the load prediction is valid, the index to determine the
feasibility is observed from standard. ASHRAE Guideline 14 proposes the
mean bias error and the coefficient of variation of the root-mean-squared
error (CVRMSE) to determine the accuracy of the predicted values. For
hourly load prediction, the CVRMSE should be lower than 30% to be

feasible. The equation used to calculate CVRMSE 1is demonstrated below.

\/Anlm—sy/n
M

avg

CV(RMSE) = <100 (4.13)

The hourly CVRMSE is calculated for each month to determine if the load
prediction is applicable. Because the TABS targets the minimum value of the
predicted cooling load and the maximum value of the predicted heating load,
the CVRMSE of the minimum and maximum values were calculated and

presented in Figure 4.20.
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Figure 4.20 CVRMSE of minimum and maximum load prediction

After learning the load patterns for one month, the load prediction became
feasible enough to incorporate into the TABS control method. However, the
load prediction struggled in the intermediate season and became inaccurate.
In the cooling season, the load prediction became accurate again and is ok to
incorporate into the control method. The ANN load prediction demonstrated
feasibility for load prediction during the heating and cooling seasons.
Because the heating and cooling mechanisms differ from each other, the load
prediction in the intermediate seasons struggled. However, after the extreme
season 1s reached, the load prediction could be applied after one month of
learning patterns.
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4.4 Summary

To actively use the TABS, the system mechanism should be analyzed to
identify the most appropriate control method. When using the RC network, a
long time delay could be observed and it was decided that the control
interval should be at least 24 h. Thus, daily TABS control with hourly load
observation was proposed.

After analyzing the system mechanism to decide the control time interval,
the magnitude of the load removed by TABS should be decided. Among the
many parameters that affect the building load, the outdoor air temperature
was selected to calculate the basic load of the building. This is because the
outdoor air temperature is one of the most influential parameters, and the
values obtained from weather forecasts are relatively accurate. Thus, the
external load was calculated using the building characteristics, and the
heating and cooling curve was used to determine supply water temperature
based on the outdoor air temperature was derived.

Although the outdoor air temperature was one of the most influential
factors and could predict the load relatively accurately, a difference between
actual load and predicted load still existed. Thus, different parameters should
be applied to increase the accuracy of the target load value. Because other
parameters cannot be measured or simply predicted, the ANN statistical

method was used to learn the pattern from the historical data. The ANN
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used outdoor air temperature, time, and type of day as input parameters.
Initially, load prediction did not meet the tolerance level that proposed by the
reference standards after one month. After one month, sufficient historical
data has been obtained and increases the accuracy of the load prediction,

resulting in the selection of an accurate target load.
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Chapter 5 Application of Optimized TABS
Control with System Analysis and Load

Prediction

5.1 Integration of Heating and Cooling Curve with Load Prediction
5.2 Validation of Control Method with Different Weather Conditions

5.3 Summary

Using the target load, the heating and cooling curve of the system, and
the load prediction obtained from the ANN in the previous chapter, the
co-simulation is performed to realize the learning in each timestep with
the accumulated historical data. In each case, the loads handled by
TABS were compared to assess the utilization of TABS. The results
demonstrate that TABS control with accurate load prediction is an
effective solution. However, load prediction with ANN significantly
struggles to learn the pattern at the beginning of the load prediction
process. Thus, load prediction using outdoor air temperature obtained
from a weather forecast should be used until the load prediction with
ANN becomes stable. To validate the control method, different weather

conditions were used to operate TABS.
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5.1 Integration of Heating and Cooling Curve with Load
Prediction
5.1.1 Co-simulation of Building to Apply Learning Algorithm
In order to apply the learning procedure to the control strategy, a
co—simulation with EnergyPlus and MATLAB is used. EnergyPlus is used to
realize the actual building, and MATLAB is used to predict the target load
and select the supply water temperature. As middleware, the BCVTB is used

to apply the control in each timestep while updating the values.

1

Co ller

Middleware

Figure 5.1 Concept of using middleware to optimize the control
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Figure 5.2 Overview of BCVTB

Due to a BCVTB software limitation, a 10 min timestep was used for

EnergyPlus. The actual building load was calculated with the measurable

values as the indoor air temperature, the TABS surface temperature, the

supply air temperature of the air system, and the supply air velocity of the

air system. According to the building load in each timestep, the ANN load

prediction was adjusted, and TABS control was applied every 24 h to

remove the basic load of the building.



5.1.2 TABS Control with Outdoor Air Temperature

Using outdoor air temperature information obtained from the weather
forecast, the load is predicted using the building information. In Figure 5.3,
the heating load can be predicted close to the actual value because it is the
most influential value, especially during heating seasons, due to the
significant difference between outdoor air and indoor air. During the cooling
season, the load predictions was relatively inaccurate with outdoor air
temperature, as shown in Figure 54. Significant difference occurred during

the day and became accurate at night, which can conclude the great effect

from solar radiation during the cooling season.
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Figure 5.3 Load calculation with outdoor air temperature from weather

forecast on the heating season
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Figure 5.5 Performance of TABS with external load calculation on a

peak heating week
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Figure 5.7 Performance of TABS with external load calculation on a
week of intermediate season




TABS performance is observed during a week in the peak heating season,
the peak cooling season, and the intermediate season, as shown in Figures
55, 56, and 5.7, respectively. TABS can remove the basic load of the
building; however, it can only remove a small amount of load during the
cooling season and intermediate season, because the load prediction is lower
than the actual season. This results in a smaller TABS target load. Thus,
load prediction that considers additional parameters should be utilized to

increase the accuracy of the load prediction.
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5.1.3 TABS Control with ANN Load Prediction

To increase the accuracy of the load prediction, a statistical method is used
to consider solar and internal load by learning the patterns from historical
data. In Figure 5.8, the load prediction using ANN is demonstrated and
shows poor accuracy during the initiating period while learning the patterns
of load. During the cooling season, a large amount of historical data
increases the accuracy of the load prediction, as shown in Figure 5.9.

In figure 5.10, TABS is controlled by an inaccurate load prediction and
overheats from January 6™ to January 7". Moreover, TABS cools while the
air system heats from January 8" to January 11%.

During the cooling season, the ANN load prediction is accurate due to the
learning pattern developed from a large amount of historical data. In Figure
5.11, the thermal output of TABS could be kept equivalent to the basic load

of the building.
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Figure 5.10 Performance of TABS with ANN load prediction on a peak

heating week
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Figure 5.11 Performance of TABS with ANN load prediction on a peak

cooling week
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Figure 5.12 Performance of TABS with ANN load prediction on a week

of intermediate season

During the intermediate season, because both cooling and heating load
exist throughout the day, the type of target load is decided according to a
comparison of the absolute value of the loads. Although the dominant load is
targeted, the simultaneous heating and cooling loads can cause overheating
and undercooling, depending on how the target load is determined. In
addition, the accuracy of ANN during the intermediate season 1S very poor.
Thus, a supply water temperature of 22 °C during the intermediate season is
imposed to utilize the self-regulation effect instead of targeting the specific
load. As Figure 5.13 demonstrates, overheating and undercooling can be

avoided.
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Figure 5.13 Performance of TABS with ANN load prediction on a week

of intermediate season considering the overheating and undercooling



5.1.4 Integration of Outdoor Air Temperature Curve and load

prediction

Because the performance of the ANN load prediction is very poor during

the initiating period, the outdoor air temperature curve can be used until

enough historical data is accumulated for the ANN. For a small office in the

Chicago weather case, the ANN load prediction was inaccurate for a month

and became accurate in February. Thus, the load prediction using outdoor air

temperature is applied for a month and then the ANN load prediction is

applied. In Figure 5.14, the integrated load prediction with outdoor air

temperature and the ANN is demonstrated, and it can be seen that the

overall accuracy of the prediction significantly increases.
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Figure 5.14 Outdoor air temperature curve and ANN load prediction
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5.2 Validation of Control Method with Different Weather

Conditions

5.2.1 Observation of Load Prediction and TABS Thermal

Output

To perform a validation of the method, a co-simulation under Seoul

weather conditions is performed. The

integration of the outdoor air

temperature curve and the load prediction is applied, and the daily TABS

supply water temperature is decided based on the minimum predicted load

over the next 24 h. In Figure 5.15, the load prediction is shown to have

relatively

high accuracy under Seoul weather conditions.
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Figure 5.15 Outdoor air temperature curve and ANN load prediction

with different weather conditions
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Figure 5.16 Outdoor air

with different weather conditions on a heating season
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Figure 5.17 Outdoor air

with different weather conditions on a cooling season
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Figure 5.19 Performance of TABS with outdoor air temperature curve
and ANN load prediction on a peak cooling week
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Figure 520 Performance of TABS with outdoor air temperature curve
and ANN load prediction on a week of intermediate season

In Figures 5.18, 5.19, and 5.20, TABS can remove the target load as
Seoul has more humid conditions than Chicago. Condensation on the surface

expected. However, condensation occurred on July 19" 20th, and 21°" because
should be avoided by limiting the minimum supply water temperature with

the moisture calculation in each building.



5.3 Summary

To wutilize the TABS with an accumulative learning pattern, the
EnergyPlus and MATLAB co-simulation was performed with the
middleware, BCVTB. During the heating season, the load prediction based on
predicted outdoor air temperature demonstrated high accuracy due to the
impact of outdoor air temperature on building load. However, the load
prediction during the cooling season had lower accuracy because of the
influences from solar radiation and internal load.

To increase the accuracy of the load prediction, other parameters, such as
solar and internal load, should be considered. However, information on solar
radiation and internal load were very difficult to obtain. Thus, the ANN
statistical method was used to learn a pattern using historical data. The
ANN load prediction was found to increase in accuracy after learning the
pattern, and TABS could remove the basic load of the building. However, the
initial period of the pattern learning process the pattern demonstrated poor
accuracy. Therefore, the load prediction that used the outdoor air temperature
curve and the ANN was integrated to improve the accuracy.

During the intermediate season, the target specific load for TABS may
cause overheating and undercooling. Therefore, the conventional method to
supply water at the room setpoint temperature may be applied to avoid the

risk of overheating and undercooling.
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Chapter 6 Conclusions

The most common methods wused to control TABS utilize the
self-regulation effect to keep the surface temperature the same as the room
setpoint temperature. However, a problem arises from the lack of utilization
of TABS, because the current control mechanism supplies the water
temperature at the room setpoint temperature. Moreover, keeping the surface
temperature at room setpoint temperature may have a lower effect than
expected because the air system maintains the room within the setpoint
temperature. The objective of the study is to identify the thermal mechanism
and increase the utilization of TABS by adjusting the supply water
temperature depending on the target load. To achieve this purpose, the

following procedure was executed.

1) Observation of current method

A small office building from the DOE reference building was simulated
and constant water temperature at the room setpoint temperature was
supplied to TABS to handle the basic load of the building. However, the
performance of TABS was not as high as expected because the amount of

load triggers heat exchange and changes the surface temperature in next

-l -
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time period. Moreover, the air system removes the rest of the load and keeps
the room air temperature at the setpoint temperature. The amount of load
removed by TABS by the self-regulation concept decreases as the setpoint
temperature was met at all times. Consequently, the active use of TABS

should be executed by targeting the specific basic load.

2) Control method considering the characteristics of TABS

To actively use TABS, the system mechanism was analyzed with an RC
network and it was discovered that the control interval should be at least 24
h. Thus, dailly TABS control with an observation of hourly load was
proposed.

After analyzing the system mechanism to determine the control time
interval, the magnitude of load removed by TABS was decided. Among the
many parameters that affect building load, the outdoor air temperature was
selected to calculate the basic load of the building. This is because outdoor
air temperature is one of the most influential parameter and the values from
weather forecasts are relatively accurate. Thus, the external load was
calculated using the building characteristics, and the heating and cooling
curves used to select the supply water temperature based on the outdoor air
temperature were derived.

Although the outdoor air temperature was one of the most influential

7 -
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factors and could predict the load relatively accurately, the difference
between actual load and predicted load still exists. Thus, different parameters
should be applied to increase the accuracy of the target load. Because other
parameters cannot be measured or simply predicted, one of the statistical
methods used to learn the pattern from the historical data, ANN, was used.
ANN used outdoor air temperature, time, and type of day as input
parameters. Initially, the load prediction did not meet the tolerance level
proposed by industry standards for a one-month timeframe. After one
month, a sufficient amount of historical data was gathered, the accuracy of

the load prediction was increased, and the load could be properly targeted.

3) Application of control method and validation

To utilize TABS with an accumulative learning pattern application, a
co—simulation of EnergyPlus and MATLAB was performed with the
middleware, BCVTB. During the heating season, the load prediction using
predicted outdoor air temperature demonstrated high accuracy due its impact
on building load. However, the load prediction during the cooling season had
lower accuracy due to the influences from solar radiation and internal load.

To increase the accuracy of load prediction, other parameters such as solar
and internal loads should be considered. However, information on solar

radiation and internal load are very difficult to obtain. Thus, the statistical

-l -
- 100 — A =T1TH !



method used to learn the pattern using historical data, such as ANN, was
used. The ANN load prediction could increase the accuracy after learning the
pattern, and TABS could remove the basic load of the building. However, the
initiating period needed to learn the pattern demonstrated poor accuracy.
Therefore, the load prediction that utilized the outdoor air temperature curve
and the ANN was integrated to improve the accuracy.

During the intermediate season, the targeted specific load for TABS may
cause overheating and undercooling. Therefore, the very conventional method
of supplying water at the room setpoint temperature may be applied to avoid

the risk of overheating and undercooling.

In this research, the utilization of TABS was increased by targeting the
basic load with load prediction. The load prediction was specifically designed
for TABS, and TABS was found to be able to remove the target load. In
future, diverse types of buildings and schedules may be studied to increase

the usability of TABS.
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Appendix I Control algorithm in MATLAB

[

% Initialize model variables

delTim = 600; % time step
TIni = 10;

tau = 2*3600;

QO0Hea = 100;

UA = QO0Hea / 20;

TOut = 5;

C = [tau*UA 2*tau*UA];

MAT = [22]; % Values export to EnergyPlus

EP = zeros(l,8); % Value from EnergyPlus, 1) Heatoutput 2)
To 3)surface Temp 4) Zone air Temp 5)Air Cooling 6)Air
Heating 7) Supply water Temp 8)Return water Temp

% Initialize flags

retVal =0
flaWri = 0;
flaRea = 0;

simTimWri = 0;

simTimRea = 0;

$%%%%% Add path to BCVTB matlab libraries

addpath ( strcat (getenv ('BCVTB HOME'), '/lib/matlab'));
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%%% Establish the socket connection
sockfd = establishClientSocket ('socket.cfg');
if sockfd < 0
fprintf ('Error: Failed to obtain socket file descriptor.

sockfd=%d.\n"',

sockfd) ;
exit;
end
990900000000000000000000000000000000000000000000000000000000
O0OO0OOOOOOOOOOOODODOOOODOODOOOODODODOODOOOODODOOOOOODODODOOOODOOOODOODOODODO™©
$%%%%% Loop for simulation time steps.

simulate=true;
while (simulate)
% Assign values to be exchanged.
try
[retVval, flaRea, simTimRea, EP] =
exchangeDoublesWithSocket (sockfd, flaWri,
length (EP), simTimWri,

MAT) ;

catch ME1
% exchangeDoublesWithSocket had an error. Terminate
the connection
processError (ME1l, sockfd, -1);
simulate=false;

end

- ‘H -
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if

BCVTB.

end

if

end

if

error.

%d\n"',

end

% Check return flags

(flaRea == 1) % End of simulation

disp('Matlab received end of simulation flag from
Exit simulation.');

closeIPC (sockfd);

simulate=false;

(retval < 0) % Error during data exchange

exception = MException ('BCVTB:RuntimeError',

'exchangeDoublesWithSocket returned wvalue %d',

retval) ;
processError (exception, sockfd, -1);

simulate=false;

(flaRea > 1) % BCVTB requests termination due to an

exception = MException ('BCVTB:RuntimeError',

['BCVTB requested MATLAB to terminate by sending

'"Exit simulation.\n'], retval);
processError (exception, sockfd, -1);

simulate=false;
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of the

[

% simulation.
% Having obtained u k, we compute the new state x k+1 =
f(u k)

% This is the actual simulation of the client.

if (simulate)

$save on matrix
TABS ((simTimWri/600) +1,1) = EP(1);

To ((simTimWri/600) +1,1) = EP(2);

Ts ((simTimWri/600) +1,1) EP(3);
Ti ((simTimWri/600) +1,1) = EP(4);
AirCoo ((simTimWri/600) +1,1) = EP(5);
AirHea ((simTimWri/600) +1,1) = EP(6);
Supply ((simTimWri/600) +1,1) = EP(7);

Return ((simTimWri/600) +1,1) = EP(8);

AirTotal = EP(5)+EP(6) *(-1);

output ((simTimWri/600) +1,1)

AirTotal + EP(1);

$hour matrix

hour (1:52560,1)= 1:52560;

hour ceil (hour/6) ;

hour rem (hour, 24) ;
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%day matrix

day (1:52560,1)= 1:52560;

day = fix ((day-1)/144)+1;

day rem(day,7) ;

%$Define input parameters

Para ( (simTimWri/600) +1,1) =
Para ((simTimWri/600) +1,2) =
+1);
Para((simTimWri/600) +1,3) =
+1);
%Reading variables
if (rem((simTimWri/600)+1,52560)
pPara (1:52560,1) =
'sheetl', 'A2:A52561");
pPara (1:52560,2) = hour;
pPara (1:52560,3) = day;

$for prediction

(52560:53704, 3)

pPara

end

0;

EP(2);

hour ( (simTimWri/600)

day ( (simTimWri/600)

== 1)

xlsread('Outdoor.xls"',
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+145,

+144,

pLload = pPara((simTimWri/600)+2: (simTimWri/600)
1) * 365.64 - 6000;

%$Recording predicted Load

pLoadRecord ( (simTimWri/600) +1: (simTimWri/600)
1) = pLoad;

if (simTimWri/600) < 4464

srunnung at the end of the day

if (rem((simTimWri/600)+1,144) == 0)

$0utdoor theoretical calculation

$Min Max load record

pLoadminRecord ( (simTimWri/600)+1,1) = min (pLoad);

pLoadmaxRecord ( (simTimWri/600)+1,1) max (pLoad) ;
$Decide if Heating load or cooling load occurred

TargetLoad = min (pLoad) ;

if TargetLoad > 0
TargetLoad = min (pLoad) ;

else

TargetLoad = max (pLoad) ;

end

[ |
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$Intermediate Period

if min(pLoad)<0 && max (pLoad) >0

TargetLoad = (min (pLoad)+max (pLoad)) /2;

end

supper side heat loss

TargetLoad = TargetLoad + (0.93 * 511

*(EP(2)-22));

sSupply water temperature = 2* (q/-kA
+Tin) -Treturn
MAT = 2*(TargetLoad /(-8.29*511) + 22) - EP(8);
end

else

srunnung at the end of the day

if (rem((simTimWri/600)+1,144) == 0)

$ANN Coding

net=fitnet (10, 'trainlm');

net=train(net, Para', output');
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$Applying next 24 hours and predict

nextPara = pPara ( (simTimWri/600)

+2: (simTimWri/600) +145, 1:3);

pload = net (nextPara')';
%Recording predicted Load
pLoadRecord ( (simTimWri/600) +1: (simTimWri/600)

+144, 1) = pLoad;

%$Min Max load record

pLoadminRecord ( (simTimWri/600)+1,1) min (pLoad) ;

pLoadmaxRecord ( (simTimWri/600)+1,1) max (pLoad) ;

%$Decide if Heating load or cooling load occurred

TargetLoad = min (pLoad) ;

if TargetLoad > 0
TargetLoad = min (pLoad) ;
else

TargetLoad = max (pLoad) ;

end

TargetLoad = TargetLoad + (0.93 * 511

*(EP(2)-22));
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sSupply water

MAT =

temperature = 2* (q/-kA +Tin)-Treturn

2* (TargetLoad / (-8.29*511) + 22) - EP(8);

%$Intermediate Period = supply water temp 22

if min(pLoad)<0 && max (pLoad) >0

MAT
end
end

end

% Advance
simTimWri
end

end

$write matrix on
x1lswrite ('write?2
x1lswrite ('write?2
x1lswrite ('write?2
x1lswrite ('write?2
x1lswrite ('write?2
x1lswrite ('write?2
x1lswrite ('write?2
x1lswrite ('write?2
x1lswrite ('write?2
x1lswrite ('write?2

xlswrite ('write?2

= 22;

simulation time

= simTimWri + delTim;

file

.x1ls', TABS, 'sheetl', 'A2'");

.x1ls', To, 'sheetl', 'B2');

.xls', Ts, 'sheetl', 'C2'");

.x1ls', Ti, 'sheetl', 'D2");

.x1s', AirCoo, 'sheetl', 'E2');

.x1ls', AirHea, 'sheetl', 'F2');

.x1ls', Supply, 'sheetl', 'G2");

.x1ls', Return, 'sheetl', 'H2');

.x1ls', output, 'sheetl', 'I2');

.xls', pLoadRecord, 'sheetl', 'J2");

.x1ls', pLoadminRecord, 'sheetl', 'K2');
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x1lswrite('write2.xls', pLoadmaxRecord,

exit

'sheetl’,

"L2");
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Appendix II Exact solution of RC network

dT

Ts"u,pply - Ts"u,rface )

(Laplace transform)

kAT,
k+1 k _ supply k41
pCp V(STS”U,T'f(LCC - Ts"u,rface ) - T_ kA Ts"u,rface
kAT,
k+1 k k+1 supply
pCp VSTS’UT'f(LC(ﬁ - pCp VTS”U,T'f(LC(ﬁ + kA Ts"u,rface - T
kA Ts"u, Iy .
Tfijfiu (p Cp VS+kA ) = %+ pCp VT:‘:(M‘face
kA Ts"u,pply + pCp VT:‘;LT'f(LCC S
TEHL S
surface pcp VS+kA
k
_ kA Ts"u,pply + pCp VTS”U,T'f(LC(ﬁ S
S*pC,V+ SkA
kAT,
supply k
B P) Cp vV + STs"u,rface
N kA
S(5+ oC, )

(Partial fraction)

A o + B()
S ot kA
pC,V
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kA kA Ts’upply k
A B, = ————+ 85T, tuce
()(S+ pCpV)+S o pCpV +5 surface
kA k kA Ts’upply
A A B, =87, teee t — A~
()S+ pCpV 0+S o S ‘surfau‘+ pCpV
kA o k kA Ts’upply
S(A()+Bo)+ pCpVAO - STS’UT'f(L(J(ﬁ + pCpV
Ao + Bo = Tf;n'face
Ao = Ts’upply
— k
Bo - Ts'urface - Ts’upply
k
Ts'upply Ts’urface - Ts’upply
S kA
ATenT
(Laplace inverse)
— kA
t
k+1 _ k PC,,V
surface — L supply + (Tsurface - Ts’upply)e

k : Thermal conductivity [W/m K]

A @ Area [m’]

Tyuppy, - Supply water temperature of TABS [TC]

T!\ e © Surface Temperature of TABS in current time [TC]

k+1

eurface - Surface Temperature of TABS in next timestep [T]
. k
p : Density [;93]

C, © Specific heat [J/kg K]

V @ Volume [m']
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S @ Laplace complex variable [radian/hour]

t © time [hour]
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