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Abstract 
Nickel-Samaria Doped Ceria (Ni-SDC) cermet anodic thin films were prepared on Scandia 

Stabilized Zirconia (ScSZ) electrolyte supports by two distinct physical vapor deposition 

processes, 1) pulsed laser deposition (PLD) 2) radio frequency (RF) sputtering. For PLD, 

the deposition was carried out at a target temperature range of 0°C ~ 700°C. For RF 

sputtering, the target temperature was kept constant at room temperature of 25°C, however 

the background sputtering gas was either Ar or Ar:O2/80:20. Once the intended deposition 

conditions were established, the Ni-SDC anodes were deposited with a range of different 

sputtering powers (50W ~ 200W) and background Ar gas pressures (30mTorr ~ 90mTorr). 

The oxide conducting fuel cell configuration was completed by screen printing of 

lanthanum strontium manganite (LSM/YSZ) cathodes on the other side of ScSZ supports. 

Peak performance comparison of these cells was measured under hydrogen (H2) fuel source 

at an intermediate temperature range of 600°C ~ 800°C by voltage-current-power curves. 

The resistances of various cell components were observed by nyquist plots.  

Initial results showed that anode thin films made at increased target temperature, pressure, 

and high deposition power, performed better than the low powered ones, for a specific Ar 

or O2 pressure. Interestingly, however, anodes made at the highest power and the highest 

pressure, were not the ones that showed the maximum power output at an intermediate 

oxide fuel cell temperature range. Eventually, an optimal condition was reported for high 

performance thin film Ni-SDC anodes. These high performance anodes were then tested 

under an indirect carbon fuel source which utilizes raw unprocessed cheap carbon in a 

simple home-made gasifier. The carbon fuel source matched up to the H2 fuel in terms of 

a) peak power b) longevity c) lowered costs.  
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1. Introduction 

 1.1 Motivation  

As the wrath of unconventional environmental shifts befuddles mankind, we are forced 

to ponder about the of self-created global warming dilemma. Since the industrial revolution, 

the Earth’s near surface temperature has increased by 0.6°C on average [1]. With pollution 

from burning of fossil fuels to provide energy for industries ever rising, emission of gases 

like carbon dioxide (CO2) and methane(CH4) have been increasing inevitably. Research has 

shown an approximate linear relationship between global warming and aggregate CO2 

emission [2-4].  

We as human beings first, and secondly as responsible engineers, need to find solutions 

to this daunting global warming problem in this age. Otherwise, the future generations, 

perhaps as near as our grandchildren, will remember us only as a selfish lot, that sucked up 

all the resources of this planet, without leaving much behind for the future. So we need to 

shift towards cleaner sources of energy, where we take something from the mother nature 

and use it as a means of energy without harming the ecological balance of the planet.  

For this, renewable energy conversion systems like fuel cells, stand out to be the most 

viable source of energy. Even though the concept of fuel cell was developed first in 1839 

by a British lawyer with a hobby in physics, William Grove [5], the interest in its 

development and improvement has paced much more in the last two decades [6, 7]. They 

exhibit high energy density as compared to internal combustion engines and lithium-ion 

batteries [8]. In addition, fuel cells combine the advantages of both engines and batteries 

by being mechanically ideal, as the fuel cell doesn’t involve any moving parts to produce 

power. 
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Despite these several advantages, there are a few disadvantages that are hampering the 

advancement and complete implementation of the fuel cells in power generating industry. 

High costs of a fuel cell components is one of the major problems. A simple fuel cell 

consists of an electrolyte and two electrodes, an anode and a cathode. Till date the platinum 

(Pt) remains the most efficient electrode (cathode/anode) catalyst material for fuel cells. As 

of March 2017, the price of Pt is 30.7US$/g [9]. For this reason, Pt stands right there at the 

top with other precious metals like gold and silver, and there are no recent signs of its price 

going down. 

Another hurdle is the fuel cost and storage. Fuel cells are electrochemical devices that 

keep on producing electric power as long as they have a constant supply of fuel. Unlike 

batteries, which can store energy, fuel cells produce energy only when supplied with fuel. 

The major fuel source for the most of the fuel cells is hydrogen, which is not an easy fuel 

to store [10]. Also replacing the existing infrastructure with a hydrogen infrastructure is not 

being seen as a favorable option in the foreseeable future [11]. 

This dissertation intends to provide some viable options, by using of technology as well 

as by unraveling naturally existing resources, to deal with the above mentioned problems. 

The thesis is, but a small contribution, to play my part in solving the crisis of global 

warming in this lifetime 
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1.2 Background Literature Survey  

1.2.1. The need for cermet anodes  

In an effort to replace noble metals like Pt as electrodes, researchers have been turning 

towards a relatively cheaper material, with a performance comparable to Pt. In this search, 

nickel (Ni) is coming out as a preferred alternate material. It is a much cheaper material 

and costs only 0.0106US$/g almost 3000times cheaper than Pt [12]. 

However, the electronic conductivity and catalytic activity of using only Ni is lower 

than Pt. Hence Ni is almost always used in conjunction with a ceramic, making a cermet 

anode, where Ni acts as a catalyst and the ceramic provides the framework for ionic 

conduction to the electrode [13]  

For oxide conducting fuel cells, zirconia based electrolytes are an almost automatic 

choice for researchers [14]. Ni-YSZ (yttria stabilized zirconia) cermet anodes can naturally 

match the thermal coefficient of expansion of the YSZ electrolyte[15, 16]. Thus providing 

mechanical stability to the cell at elevated temperatures (800°C ~1000°C), necessary for 

rapid O2- ion transport through the electrolyte. 

However, with hydrocarbon fuels, Ni-YSZ is susceptible to sulfur poisoning [17], and 

carbon coking [18], which essentially block the triple-phase-boundaries (TPBs) of the fuel 

cell, where all the electrochemical action takes place. If hydrocarbon fuels are to be used 

with Ni-YSZ, they must go through rigorous reforming and partial oxidation processes to 

strip H2 from the C, and these add to cost and time of the system [19-21]. 

Ceria(Ce) based Ni anodes are less prone to carbon deposition, hence direct usage of 

hydrocarbon fuels is possible, which automatically lowers system cost. Since ceria is a 

mixed ionic electronic conductor (MIEC) [22, 23], its use as an anode can extend the TPB 
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zone above the electrolyte electrode interface. It is for these reasons that Ni-Ce based 

anodes can outperform Ni-Zr at intermediate temperature(IT) range of 600°C ~800°C. As 

will be explained in the next chapters, we will be using carbon as a fuel source for this 

study, so carbon contamination is a big concern. That is why we chose a Ni-samaria doped 

ceria(SDC) thin anodes. Also for carbon as a fuel source, all the major action takes place at 

the anode side. This is the sole reason we worked upon optimizing only the anode side of 

fuel cell. 

1.2.2. Why Thin Film Fabrication 

Regardless of the type of cermet used for anode manufacturing, all conventional 

fabrication methods (screen-printing, tape casting, slurry spraying of the oxides), require 

sintering of these oxides at high temperature [24-26]. Processes like screen-printing, 

spraying, require a temperature as high as 1500°C to properly adhere the cermet inter-intra-

actively. Also to achieve this temperature in a furnace one requires a substantially long time. 

Some ceramics are susceptible to poor sintering, which results to poor grain boundaries, 

hence leads to inefficient TPBs (Fig.1). The thickness control is normally in 

micrometers(µm) and repeatability is poor.  

In physical vapor deposition (PVD) methods like, sputtering and pulsed laser deposition 

(PLD), we can control the thickness of the deposited structure in nm. Fig. 2 shows a post 

operation scanning electron microscopic (SEM) image of PLD/Ni-SDC on scandia 

stabilized zirconia (ScSZ) substrate at room temperature (used in this study). We can see 

that the anode structure is adhered well to the substrate, without any added high temperature 

sintering process. Repeatability is exceptional, and we were able to produce almost exact 

thicknesses in nm range for the same process multiple times.  
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Fig. 1 Post operation SEM image of slurry sprayed BCZY at 1500°C for 2hrs[27] 

 

 

Fig. 2 Post operation SEM image of PLD/Ni-SDC on ScSZ substrate at room temperature 

 

Despite of the above mentioned benefits, in electrode manufacturing via PVD, 

achieving porosity for gas transport to the TPB, is a problem. For a porous substrate, like 

anodic aluminum oxide (AAO), achieving porosity with thin film deposition is not difficult. 

The porosity of the substrate is translated onto the porosity of the structure deposited on 

top of that substrate. Fig 3, has been taken from a paper by Park et. al [28]. In this paper, 

the authors showed how the anode morphology changes when the chamber pressure is 
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increased from 0.67Pa (5mTorr) to 12Pa (90mTorr) for varying thicknesses of the Pt anodes. 

For thin structures, the porosity is high even at a low pressure. While porosity is low for 

thicker anodes at low pressure. And sometimes, in severe conditions, we need a relatively 

thicker anode (still in the same range. i.e. nm) but thick enough to provide the necessary 

active area for long time, without being consumed. When the sputtering pressure was 

increased to 90mTorr, even the thicker anodes showed porosity. 

However, for dense substrates, the deposition follows the dense behavior of the 

substrate and it is much more difficult to achieve porosity. Fig. 4 has been taken from a 

paper by Jung et.al [29]. The authors deposited symmetric Pt structures on either end of a  

 

 

Fig. 3 FE-SEM images of the Pt anode surface morphologies deposited by sputtering on 

AAO at various Ar pressures [28]. 
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dense YSZ substrate using a mixture of Ar and O2 reactive background sputtering gases. It 

can be seen that the films were almost dense until 20% of O2/(O2+Ar) reactive mixture gas. 

Pores, marked by arrows, begin to be appear at an O2/(O2 + Ar) ratio of 25%. As the ratio 

of O2/(O2+Ar) was increased, the porosity of the Pt films also increased. the All of as-

deposited films have the same thickness (∼200 nm). 

 Hence by controlling the pressure and background gas composition of the vacuum 

chamber, one can make porous structures even with dense substrates, by using thin film 

deposition techniques. 

Another reason for using automated thin film deposition techniques instead of 

handmade conventional methods, is to improve mass production output. For large scale 

production, thin film deposition for mass industrial application can lower the ultimate  

 

 

Fig. 4 Scanning electron microscope micrographs of the resulting Pt films as a function of 

the oxygen ratio, O2/(O2 + Ar) utilized during sputtering [29]. 
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production cost and time of a system. 

1.2.3. Carbon as a fuel source 

By mass, carbon is fourth most abundant element in the whole universe [30]. On Earth’s 

lithosphere, which is the earth’s crust and outer mantle, the carbon content is about 0.032 

percent. Upon calculation the total weight of lithosphere by David Smith [31], carbon by   

weight comes out to be 1.4*1023kg. Also, the human body is almost 18% carbon, so once 

we die, we become a carbon source too. All in all, it is a very abundant material, whose 

abundancy is always increasing. So to utilize it as a fuel is only natural and humans have 

been doing it since start of times. 

Coal, which is the richest form of carbon, is providing 30% of the energy worldwide 

according to World Coal Association. Even though efforts have been made for carbon 

capturing to reduce CO2 emission [32-34], it is a fact that burning of the coal to produce 

electricity for power generation is the leading cause of increase in global warming [2, 3]. 

CO2 makes 0.04 percent of the Earth’s atmosphere according to National Oceanic & 

Atmospheric Administration (NOAA). Compared to H2, CO2 is much easier to store, and 

we can see them easily in carbonated drinks industries. The use of carbon fuel, directly, or 

in conjunction with CO2, not only gives an ethical advantage towards reducing global 

warming, but also, because of abundance of these substances in nature, it could lead to a 

much cheaper infrastructure than H2 infrastructure. And it will not take as much of a 

reformation time either, because a carbon infrastructure, in one form or the other, already 

exists in the current system.  

The process that utilizes both carbon and CO2 as a fuel source, it termed as Boudouard 

Reaction. It was named after Octave Leopold Boudouard, who discovered this reaction in 
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1905. He utilized direct carbon as a fuel source. In this reaction carbon reacts with oxygen 

ions from the cathode, conducted through the electrolyte and produces CO2 in a 4 electrons 

process. A reverse of this reaction is when the C reacts with CO2 at an elevated temperature 

of above 700°C to produce CO (Eq.1). It is a non-electrochemical reaction and is called the 

reverse boudouard reaction (RBR). This CO from RBR can then be fed to the fuel cell 

anode, where it meets with the conducted O2- ion transmitted from the cathode via 

electrolyte, and produce 2 electrons. (Eq.2) 

C + CO2 → 2CO (> 700°C ) … (1)  

CO + O2− → CO2 + 2e− (𝑂𝑂𝑂𝑂𝑂𝑂 1.1𝑉𝑉) … (2) 

Carbon as an indirect for of fuel via RBR has been used to fuel Ni- cermet anodes by 

several researchers [35-41], however to our knowledge, the performance of carbon as a fuel 

on thin film anodes has never been analyzed prior to this research. Now for carbon fuel 

source, the reaction at cathode and subsequent O2- ion conduction through dense electrolyte 

is important, but the whole action of RBR takes place at the anode side. This is the reason 

we have chosen anode optimization only for this study. 

In this research we have devised a cheap, easy to fabricate, and efficient system to 

utilize carbon in its most crude form as an efficient and cheap indirect fuel source for 

optimal thin film Ni-SDC anode for intermediate temperature oxide conducting fuel cells 

(ITOFCs).  
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2. Methods and Materials 
The experimental methods used in this paper have already been published in journal of 

current applied physics by Tanveer et al. [42] that is the author of this thesis, and are 

reported here again for detailed understanding. 

 

2.1 ScSZ electrolyte support fabrication 

We chose the conventional oxygen-ion-conducting 9mol.% scandia-stabilized-

zirconia (ScSZ:(Sc2O3)0.09(ZrO2)0.91: China, Beijing) sheets as electrolyte material to 

fabricate the supporting material for the cells. This doping concentration was previously 

found to have the highest ionic conductivity at the given temperature range (600°C-800°C) 

[43]. These sheets were sent for cutting and subsequent polishing. A 4hr heat treatment at 

1250°C was done to remove any impurities adhered to the electrolyte after the machining 

process. Electrolyte membranes fabricated by this method had a square geometry of 1x1cm2 

and an average thickness of about 150µm.  

 

2.2 LSM/YSZ cathode formation 

LSM/YSZ ink (50:50 by wt.% (La0.80Sr0.20)0.95MnO3-x / (Y2O3)0.08(ZrO2)0.92 FCM: Fuel 

Cell Materials, Columbus, OH, USA) was deposited onto one side of electrolyte membrane 

via a screen-printing mesh (1cm x 1cm Mesh-400: Samborn screen). Up to three layers of 

ink were brushed on top of one another by subsequently drying each layer at 100°C and 

then depositing a second layer on top of the first. The layers were sintered at 1200°C for 

5hrs in air to minimize the charge transfer resistance at the cathode [44]. 
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Fig. 5 The process of uni-axial pressing of ScSZ powder followed by sintering and 

machining 

 

 

Fig 6 The screen printing board with a hand-made plastic brush. Magnified image shows 

the dimension and structure of the mesh 

 

2.3 Ni-SDC anode formation 

The anode was deposited on the other side of the electrolyte membrane via pulsed laser 

deposition (PLD) and radio-frequency (RF) sputtering. The target chemical composition 

for PLD anode was by XRF to be Ni:67.23%, Ce:22.05, Sm:9.8%, by weight. The 
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deposition was carried out on ScSZ substrate for 1hr. The target was deposited at room 

temperature and 700°C to analyze the effect of sintering of the target. 

 

Fig. 7 The physical vapor deposition (PVD) vacuum chambers 

 

In RF sputtering the target used for the anode deposition process was Ni-SDC (50:50 

by wt.% nickel-[CeO2]0.9 [SmO1.5]0.1: R&D Korea). The reason for choosing this doping 

concentration was because this configuration has been reported to give the lowest anodic 

polarization [45]. The deposition process lasted for 6hrs, at a constant power of 100W, and 

pressure of the chamber was maintained at 50mTorr. To analyze the effect of reactive O2  

gas on the anode manufacturing process, two different background gases were used during 

deposition, a) reactive mixture of Ar/O2:8/2, b) Ar only. 

 

2.4 Cell test setup 

The cells were placed inside a test station that has a gold ring with an internal diameter 

of 0.7cm used to seal the anode compartment from the cathode. A Ni mesh was used as 
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current collector on the anode side, and a Pt mesh was used as a current collector on the 

cathode side. The schematic of the cell configuration is shown in Fig. 8. The cell station 

was placed inside a furnace, where a temperature of up to 800°C was obtained at a ramp 

rate of 10°C/min. A ceramic rod was placed on top of the center of the test station and 

sealing was achieved by pressing the gold ring against the anode by rotating a turn screw 

on top of the ceramic rod. An average pressure of 5kg/cm2 was used for effective sealing. 

The electrochemical surface area of the cell was 0.38cm2. 

The anode gas used was either H2 or indirect carbon, while air was used as the cathode 

gas, with a flow rate of 100sccm for both gases. Cells were tested at 600, 700 and 800°C  

respectively. The actual temperature of the cells was measured by a thermocouple attached 

to the top of the cell assembly. Cells were characterized electrochemically by an 

electrochemical cell test system (1287/1260, Solartron Analytical, Hampshire, England). A 

VIP plot was constructed at a scan rate of 10mV/sec. EIS measurements were taken at open-

circuit-voltage (OCV) for various discharging currents. The impedance spectra were 

analyzed by a sine wave at an amplitude of 30mV within a frequency range of 0~10KHz. 
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Fig. 8 Schematic of the thin film hybrid fuel cell  

Analyses of the data and curve fittings with nyquist plots of the anodic and cathodic 

resistance of the cells were done with the software packages Z-Plot and Z-View, 

respectively, for Windows (Scribner Associates Incorporated, NC, USA). The 

microstructures of thin films were investigated using FIB & FE-SEM (Quanta 3D, FEG, 

FEI Company, Hillsboro, OR, USA). 
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Fig 9 (a)1x1cm
2
 cell, (b) Test station placed in center of furnace (c) Jig to hold the cell 

(d) Ceramic rod attached to turn screw to apply pressure for sealing anode from cathode 

gas 
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3. Thin Film Physical Vapor Deposition of the  
Nickel Cermet Anodes 

 

 3.1 Pulsed Laser Deposition of Ni-SDC 

 

Fig. 10 Schematic representation of pulsed laser deposition process 

 

Pulsed laser deposition (PLD) is a thin film deposition technique based on PVD 

principle. High-powered pulsed laser beam is directed inside a vacuum chamber to strike a 

rotating target of the material which is to be deposited. This target material is then vaporized 

as a result of this high energy strike from the target, and forms a plume, which can normally 
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be seen as a bright pinkish color. This plume then deposits as a thin film on to the substrate. 

This process requires an ultra-high vacuum and normally occurs in the presence of a 

background gas, such as argon, nitrogen and/or oxygen. Schematic representation of the 

PLD process is shown in Fig. 10. 

From plume generation to final film deposition is a relatively complicated process to 

understand. Researches have tried to put ahead various theories regarding modelling and 

understanding of the process [46-50]. The whole process can be narrowed down to five 

basic steps 

1) high power laser is absorbed on the target surface,  

2) laser erodes the target material at its surface and generates a plume (ions/electrons and 

neutrons),  

3) the plume progresses towards the substrate through the chamber 

4) deposition of the ablated material on the substrate 

5) nucleation and growth of the film on the substrate surface 

 

3.1.1. Under the microscope 

 First a target was deposited on bare Si wafer and sent for characterization. Chemical 

composition of the target by X-ray Fluorescence (XRF) was found out to be Ni:67.23%, 

Ce:22.05, Sm:9.8%, by weight %. Table 1 shows the deposition conditions of the Ni-SDC 

anode on the ScSZ electrolyte for performance analysis, and SiO2 bare wafer to measure 

thickness. All depositions were carried out under O2 pressure of 100mTorr and laser power 

of 2J/cm2 and target to substrate distance was maintained at 6cm. 
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Table 1. Deposition conditions for the Ni-SDC anodes on ScSZ substrates by pulsed laser 

deposition(PLD). Target to substrate distance was 6cm 

# Oxygen Pressure Laser Power Temperature Thickness 

(1) 100mTorr 2J/cm
2
 Room Temp ~250nm 

(2) 100mTorr 2J/cm
2
 700°C ~250nm 

 

 

 

Fig. 11 (a) SEM image of PLD/Ni-SDC on ScSZ substrate at room temperature, (b)top 

surface SEM of Ni-SDC deposited at room temperature. 

 

One cell was deposited at room temperature (RT) and the other was heated till 700°C 

at a ramp rate of 10°C /min. After 1hr of successful deposition, both cells were taken for 

subsequent analysis under the microscope. Thickness of both the films was tested by 

FESEM. The analysis confirmed that the temperature had no effect on the anode thickness, 

when deposited with PLD. Both showed a remarkably fast growth rate of nearly 250nm/hr.  

Fig. 11 shows an SEM image of the PLD/Ni-SDC anode. Both anodes had relatively 
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similar structure. It can be seen that the Ni-SDC is adhered well with the ScSZ electrolyte 

in Fig. 11(a), and has a uniform columnar growth on top of a dense zirconia based substrate, 

which was remarkable. Also the porosity, which is a necessary feature of an electrode was 

well observed in the Fig. 11(b). Hence on a microscopic level, PLD served as a satisfactory 

thin film deposition method. 

 

3.1.2. Performance 

Now the cells made at the two PLD target temperatures were applied to the test at the 

test station mentioned in section 2.4. The results of the test are shown by voltage-current-

power (VIP) curves in Fig. 12. The first thing to notice was that the open-circuit-voltage 

(OCV) for both the types of cells was almost same, however there was a marked different 

between peak power density of the two cells. For the cells produced with a Ni-SDC anode 

at room temperature, the peak power density at 700°C was no more than 5mW/cm2. The 

peak power density at the same conditions for a Ni-SDC anode deposited at 700°C target 

temperature, was 52mW/cm2, about 10 times higher than the ones deposited at room 

temperature. 
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Fig. 12 Peak Power density comparisons of PLD/ Ni-SDC anode cell fabricated at 

different temperatures 

 

Fig. 13 EIS measurements of the PLD/ Ni-SDC anode cell fabricated at different 

temperatures 
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Table 2 Resistances measured by curve fitting of the nyquist plots from Fig.12 

Temperature R𝞨𝞨  
(ohm-cm2) 

RI 
(ohm-cm2) 

RII 
(ohm-cm2) 

25°C 2.7 0.8 20 

700°C 2.4 0.45 5 
 

Now we wanted to see the resistances of the measured cell. Fig.13 shows the 

electrochemical impedance spectroscopy of the two cells. Two distinct peaks were visible 

for both the cells. One at high frequency, around 1MHz and other at low frequency of about 

60Hz. On an ideal electrochemical circuit, the x-intercept owes to the electrolyte ohmic 

loss, the first semicircle at high frequency is related to anode activation loss, while the one 

at low frequency range is related to the cathode activation loss [51].  

We can model the electrochemical processes of the fuel cell in form of circuit elements. 

Table 2 shows an equivalent circuit model of the EIS plots from Fig. 13. RI is the ohmic 

resistance, straight off from the electrolyte. It is almost identical for both cells at the 

measuring temperature, since both cells have the same thickness of electrolyte. The 

remaining two resistances were modelled using a capacitor in parallel to the resistance, to 

represent the electrochemical behavior of the anode and the cathode. Since cathode is the 

same for all cells, the main electrode creating this difference in impedances is anode, and 

is the reason for shifts in performances.  

 

 

Equivalent 
Circuit Model 



35 

 

3.1.3. X-ray diffraction analysis 

Since there was a heating of targets involved, it was suspected the that crystallinity of 

the deposited substances may be something to look at. Fig. 14 shows the X-ray diffraction 

analysis (XRD) of the two cells before reduction by H2 in the cell tests. Both of these 

depositions were done on bare Si wafer, so Si peaks are visible for both cells. For room 

temperature deposited PLD/Ni-SDC there was no peak seen for either NiO or SDC. While 

the red-line peak for the Ni-SDC deposited at a target temperature of 700C shows distinct 

SDC(111) and NiO(200) peaks at around 29° and 47.5° respectively. Whatever the Ni-SDC 

is present in the Ni-SDC deposited at room temperature is not crystalline. Similar results 

were shown by Noh et al. [52] where authors deposited Ni-YSZ at different target  

 

Fig. 14 XRD measurements of PLD/ Ni-SDC pre-operation, non-reduction anode cell 

fabricated at room temperature and 700°C. (*) marks the unidentified peaks. 
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Fig. 15 XRD measurements of PLD/ Ni-YSZ anode at various temperatures after 

reduction in H2 atmosphere by Noh et al. [52] 

 

temperatures and their XRD was measured post H2 reduction (Fig. 15). One can see that 

the Ni and YSZ content keeps on increasing as the temperature is increased from room 

temperature up to 800°C. This means that in order to deposit a well performing crystalline 

anode, one needs high temperature sintering of the anode during deposition, to get the 

required thin-film anode characteristics.   

 

3.1.4. EPMA analysis 

 As no Ni-SDC could be detected by the XRD for the Ni-SDC deposited at room 

temperature, we wanted to check whether we actually could detect any Ni or SDC from 
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other methods. Electron Probe Micro Analyzer (EPMA) was used to detect the average 

count and distribution of the constituent materials making up the cermet anodes. 

 Fig 16 shows the top view EPMA analysis of the Ni-SDC PLD anodes. Fig 16 (a)&(b) 

are the pre-operation images. One can see that the Ni count is much larger in the 700°C Ni-

SDC PLD anodes. The average count for Ni is 20 compared to only 5 for a given area of 

observation of 625µm2. Similarly, the count for samaria (Sm) and ceria (Ce) was also 

considerably lower for the anodes deposited at room temperature. This could be the main 

cause of the poor performance shown in Fig 12, and high impedance measured in Fig 13  

 

 

Fig. 16 Electron Probe Micro Analysis (EPMA) of PLD Ni-SDC anode, (a)&(c) pre- and 

post-operation, of anodes deposited at room temperature, (b)&(d) pre and post operation 

of anodes deposited at 700°C. 
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for room temperature deposited Ni-SDCs. Fig 16 (c)&(d) show the post operation analysis 

of the two anodes. Clear agglomerated Ni particles are visible for the anodes deposited at 

700°C while Ni is only slight agglomerated at certain spots and the average count of Ni 

remains the same. 

 This means that for a PLD –Ni-SDC, one needs high temperature sintering of the target 

material to attain the necessary deposited anode properties. However, the core idea of 

shifting towards a thin film deposition technique in this paper, is to remove high 

temperature sintering methods that consume both time and resources. So it was concluded 

that PLD is not the suitable technique for deposited thin film anodes. We had to look for 

other options. 
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3.2 Sputtering of Ni-SDC thin film anodes 

 

 

Fig. 17 Schematic Representation of the sputtering process 

 

Sputtering is a thin film deposition technique based on the principle of collision of 

particles. Atoms are knocked up and ejected from a solid target (normally a metallic oxide 

or processed metal). Although sputtering is a very mature process these days, its history 

dates back to early 19th century where there first patents were filed [53-55].   

Sputtering usually results smaller grain size than PLD, but larger than atomic layer 
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deposition. It shows similar adhesion to the substrate as PLD. A variety of different grain 

orientations can be achieved by using different types of sputtering. Various types of 

sputtering depending upon the power source  

1) Direct Current (DC)  

2) Radio Frequency (RF) 

3) Magnetron, where usage of magnetic fields is done to control electron motion 

4) Ion Assisted 

We used RF sputtering source in our research. The schematic of which is shown in  

Fig. 17. This setup has a rotation unit to rotate the substrate, in order to give maximum 

exposure to all areas of the substrate. Target to substrate distance was 7.5cm. RF sputtering 

is normally used to sputter insulated targets, and has a lower deposition rate than the DC 

sputtering. However, it has been found that RF deposited films have a better stoichiometric 

reproducibility [56], and this is what we require for a repetitive thin film process. 

 

3.2.1. Under the microscope 

  First a target was deposited on bare Si wafer and sent for characterization. Chemical 

composition of the target by X-ray Fluorescence (XRF) was found out to be Ni:50%, 

Ce:46%, Sm:3.6%, by weight %. So in essence the Ni concentration for this target is lower 

than the PLD target.  

As mentioned in section 1.2.2, one needs to have a proper background gas with certain 

content of O2 with Ar to achieve the necessary porosity for a thin film electrode deposition. 

I deposited various Ni-SDC anodes on ScSZ substrate at room temperature for 1~5hrs 

under Ar and Ar/O2:80/20. The deposition conditions are explained in Table 3. The  
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Table 3. Deposition conditions for the Ni-SDC anodes on SSZ substrates by RF sputtering  

# Chamber Pressure RF Power Temperature 

Ar/O2:80/20 50mTorr 100W Room Temp 

Ar 50mTorr 100W Room temp 
 

 

 

Fig. 18 Post operation SEM of sputtered Ni-SDC on ScSZ substrate at room temperature 

at Ar/O2:80/20 reactive sputtering gas& Top surface SEM of Ni-SDC deposited at room 

temperature. 

 

thickness varied with the deposition time. 

Fig 18 shows the SEM image of the Ni-SDC anode deposited on the ScSZ substrate. 

We can see uniform granular structure of about 250nm with good adherence to the 

electrolyte. The second image in Fig. 18 shows the top view of the Ni-SDC anode. We can 

see that it is moderately porous structure and the arrangement of the surface is quite 

different from the PLD structure shown in Fig. 11. The thickness of the Ar/O2 deposited  
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Fig. 19 SEM image of (a) ScSZ electrolyte support (b)microstructure of LSM/YSZ 

cathode, (c) top view of the Ni-SDC anode made by reactive sputtering (Ar/O2:8/2), pre-

operation (d) high-resolution SEM image of the same anode after cell test at 800C in H2 

(e) growth rate comparison of the anodes with time 

 

anode was slightly lesser than the Ar only deposited, but nothing significant to report about. 

The structure was more or less the same.  

From here on the results and discussions are taken again from the author’s published 

work in journal of current applied physics [42], are forwarded here to explain the scope of 

work presented in this thesis, more elaborately. Fig. 19(a) & (b) are the FE-SEM images of 

the micrometer scaled electrolyte and the cathode respectively. Fig. 19(a) shows that the 

ScSZ electrolyte support layer was dense and approximately 150µm thick. Fig. 19(b) shows 

that the LSM/YSZ cathode consistently adhered to the electrolyte surface and the three-

layer screen-printing process resulted in an average thickness of about 20µm. Fig.19 (c) is 

a pre-operation top-view of the Ni-SDC anode made by reactive sputtering. The porosity 
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of the anodes could not be clearly calculated by this image for both anodes. Fig 19(d) shows 

the high-resolution SEM image of the same anode after 1hr of heat treatment at 800°C 

under H2 atmosphere. Such high temperature reduction results in a) agglomeration of Ni 

[57], which can be seen as bright balls above the dark grey SDC framework, b) loss of the 

oxygen from the Ni-O-SDC, resulting in nano-porous Ni-SDC anode. Pores are indicated 

by white arrows and average pore size was calculated to be around 3.5nm on average. 

Fig.19 (e) shows the growth rate comparisons of both anodes. Anode thickness 

increased linearly with increase in sputtering time, however the growth rate of films 

sputtered with Ar/O2:80/20 reactive gas, was 20% slower than the ones sputtered with Ar 

only. We confirmed a similarly decreased growth rate on average for Ar/O2:80/20 sputtered 

Ni-SDC anodes in about 5 samples consistently. This means that the O2 in the reactive gas 

mixture is somehow retarding the growth rate of Ni-SDC anode films. A similarly lower 

growth rate was found by other researchers while using O2 reactive sputtering gas while 

depositing thin metallic films [58]. 

 

3.2.2. Performance Comparison 

Fig. 20 shows the polarization and power density curves of the two cells at 600,700 and 

800°C. As expected, the cell power density and current density increased with an increase 

in the temperature due to the increased reaction kinetics of fuel cells at higher temperatures. 

The cells showed an OCV of about 1.05V at 600°C, and when the temperature was raised 

to 800°C, the OCV decreased by 5%, which is consistent with the reversible voltage 

variation with a change in the temperature as noted in the literature [59].  

Peak power densities for Ar/O2 sputtered anode cells were 150mW/cm2, 75mW/cm2  
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Fig. 20 Polarization curves for cells, having reactively (Ar/O2:8/2) and non-reactively (Ar 

only) sputtered Ni-SDC anodes, at various temperatures. 

 

and 25mW/cm2 at 800°C, 700°C and 600°C respectively. Peak power densities for Ar only 

sputtered anode cells were 240mW/cm2, 140mW/cm2 and 50mW/cm2 at 800°C, 700°C and  

600°C respectively. These results show that the performance of Ar/O2 (reactively) sputtered 

anode cell is almost half of the cell with Ar only sputtered anode. 

 

3.2.3. EIS Characterization 

In order to investigate the cause of this performance variation, we turned towards 

impedance measuring techniques. Fig. 21 shows the EIS of the cells at above mentioned  
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Fig. 21 Electrochemical impedance spectroscopy (EIS) analysis of the cells, having 

reactively (Ar/O2:80/20) and non-reactively (Ar only) sputtered Ni-SDC anodes, at 

various temperatures. 

 

temperatures. The inset shows a magnified view of both cells at 700°C and 800°C. Two 

major curves can be seen in this figure. The one corresponding to a higher frequency is 

related to the anode activation loss, while the one corresponding to a lower frequency range 

is related to activation losses on the cathode side [51]. Since the cathode sides were identical 

in both cells, the cells have the same semicircle diameter at a low frequency of 2Hz, at a 

given temperature. There is however a marked difference in the anode activation loss, the 

semicircle at a high frequency range of 10KHz, between the two cells. At a temperature 

range of 600°C-800°C, it can be seen from Fig. 21 that the anode activation loss semicircles 

for the cells with a reactively (Ar/O2) sputtered anode are significantly larger as compared 
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to those with a non-reactively (Ar only) sputtered anode. 

For a clearer perspective we calculated the exact values of the anode and cathode 

resistances by drawing an equivalent circuit model of the cells. These values were obtained 

by the curve fitting of the EIS plots from Fig.21 and are shown in Table 4. The circuit model 

consists of the electrolyte ohmic resistance R, attached in series to the anode and the cathode 

polarization resistances of RI & RII. The impedance behavior of the electrochemical 

reaction at the anode and cathode is represented by the double-layer capacitance constant-

phase element (CPE), parallel to the respective electrodes. Table 4 shows that the anodic 

over-potential is increased in the case of reactively sputtered anodes. Reactively sputtered 

anodes showed an over-potential value almost twice that of the non-reactive ones. While 

cathode over-potential values were almost similar for both cells. Since cathode and 

electrolyte are same for all cells, we can conclude that the low peak power density in case 

of reactively sputtered anode cell, seen in Fig.20, is primarily related to the increased anodic 

over-potential seen in Fig.21, and calculated in Table 4 for these cells. 
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Table 4. Resistance values at the anode and cathode of the two cell types obtained via curve 

fitting of EIS plots from Fig.20. 

  

Furnace 
Temperature Anode Type RI 

(ohm-cm2) 
RII 

(ohm-cm2) 

600°C 
Ar 0.67 9.21 

Ar/O2:80/20 1.40 9.45 

700°C 
Ar 0.28 2.68 

Ar/O2:80/20 0.55 2.72 

800°C 
Ar 0.08 1.77 

Ar/O2:80/20 0.14 1.83 

 

Table 5. XPS analysis of the RF sputtered Ni-SDC anodes 

# Ce3d Sm3d Ni2p O1s C1s 

Ar only 15.49% 5% 25.05% 54.02% 0.44 

Ar/O2 18.6% 6.14% 18.91% 55.24% 1.11 

 

 

3.2.4. XPS analysis 

The XPS analysis of both anodes has been shown in Table 5. It was revealed that both 

methods produced a slightly different composition of Ni-SDC anodes. There was 

especially a marked difference between the Ni percentages for both methods. Ni content 

Equivalent 
Circuit Model 
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was higher in the case of Ar only sputtered anode as compared to Ar/O2:80/20 sputtered 

ones. The Ni in Ni-SDC provides the catalytic and electronic conductivity while Sm 

doped Ce is responsible only for providing the structural framework to the cermet anodes 

[60, 61]. Low atomic percentage seen in XPS for the catalytic Ni could be the reason for 

increased over-potentials (Fig.21) and reduced performance (Fig.20) for reactively 

sputtered anodes. 

A comparison between XPS binding energy peaks for the two anodes before and after 

the electrochemical evaluation has been shown in Fig.22. Fig.22 (a)&(b) shows the nickel 

binding energy peaks before and after characterization respectively. Two distinct peaks 

are visible for both reactively (Ar/O2) and non-reactively (Ar only) sputtered anodes. The 

first (minor) peak in Fig.22 (a) is closer to the theoretical value for Ni0 (metallic) and 

second (major) peak is more relatable to Ni2+ (oxidized) theoretical value for both anodes 

[62]. 
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Fig. 22 Ni2P XPS spectra of the two anodes before (a) and after (b) electrochemical 

evaluation, (The dashed lines are peak values of Ni2+ and Ni0 in theory), Ce3d XPS 

spectra of the anodes before(c) and after (b) electrochemical evaluation 

 

This shows that both metallic and oxidized Ni phases were present in the two anodes. 

Fig.22(b) shows that after cell test, the major peak for both anodes shifts towards the 

metallic Ni (Ni0) region, which is understandable under reducing anodic conditions 

(100sccm of H2 @ 600-800°C for 12hrs), while the minor peak shifted to even lower 

values compared to pure phase Ni. There was no distinct change seen in the intensity of 

the peaks. 

Fig.22(c)&(d) shows the ceria binding energy peaks before and after characterization 

respectively. Normally in Ce, six distinct peaks can be seen due to multi-electron 
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interaction [63]. All the peaks seen in Fig.22(c)&(d) can be attributed to Ce4+ oxidation 

state. After electrochemical measurement, no shift in binding energies for the respective 

peaks was found. One of the shortcoming for using Ceria based anodes is the partial 

oxidation of Ce4+ to Ce3+ which can lead to mechanical issues as a result of lattice 

expansion. This lattice expansion can cause the electrolyte and electrode interface to 

delaminate [64], thereby sabotaging the triple phase boundaries and life-time of the cell. 

No such problems are found in our cell, which can mean that the cell can perform for 

longer periods than a conventional method deposited anode. However, the intensity of the 

peaks increased by a factor of 104 on average. Nonetheless a change in the valence state 

of the ceria was not found. 

 

3.2.5. EPMA analysis 

Fig.23 shows the EPMA images of both anodes before and after cell tests. The first 

image in each row shows a back-scattered image of Ni-SDC anode, while remaining 

images in the same row show the average count of the detected materials, Ni, Sm, and Ce, 

for that anode. From Fig.23(a)&(b), we cannot see a significant difference in the Ni 

distribution in the cermet anodes made by both methods. However, the average count of 

the detected Ni is higher in the case of Ar only sputtered anodes. This result is consistent 

with the XPS results showed in Table 5. 

Another important aspect is that even though the constituent target Ni distribution was 

lower in case of sputtering as compared to PLD the deposited films showed a remarkably 

higher Ni content for sputtered Ni-SDC films. Average count for both Ar/O2:80/20 and Ar 

was 25 and 40 counts per given area of 625µm2.  
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Fig. 23 Electron Probe Micro Analysis (EPMA) of Ni-SDC sputtered anode, (a) pre-

operation Ar only, (b) pre-operation Ar/O2:8/2, (c) post-operation Ar only, (d) post-

operation Ar/O2:8/2. 

 

Post operation images , Fig. 23(c)&(d) show significantly higher counts of Ni for both 

anodes. This can be because the Ni-O has now been reduced to metallic agglomerated Ni 

and is more clearly detectable. Interestingly, the average count of the Ni still remains the 

same for Ar only sputtered anodes, while the average count of Ni drops from 25 to 19 in 

the case of Ar/O2 sputtered anodes.  

The results from Fig.22 and Fig.23 clearly indicate that both metallic and oxide phases 

of nickel were present in the two anodes, which get reduced to clustered metallic Ni, post 

operation. For Ar/O2 sputtered anodes the clusters of Ni appear much more pronounced, 
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both in number and the size. Sm and Ce remain unaffected at this high temperature and 

reducing condition.  

 

3.2.6. Anode Lifetime 

Another factor in the manufacturing electrodes for IT-SOFC applications, is their 

effective lifetime. Fig. 24 shows the SEM top view of the Ni-SDC anode, before and after 

12hrs of electrochemical operation, manufactured by both methods. From the pre-

operational image, Fig.24(a)&(c) we cannot see any distinct difference in the 

microstructure between the two electrodes. Fig.24 (b) & (d) show the post operational SEM  

 

 

 

Fig 24 (a)&(c) Pre-operation (b)&(d) Post-operation top view SEM images of Ni-SDC 

anode. (e) Peak power density comparison of the Ni-SDC anodes with time at 800°C. 
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Fig 25 Peak power density comparison of the Ni-SDC anodes with time at 800°C. 

 

images of the Ni-SDC top surface.  

It can be seen that there is a very high agglomeration set-in within the reactively sputtered 

anode as compared to the non-reactive one. The results are similar to the EPMA images 

(see Fig.23). 

Fig. 25 shows the comparison of the peak power densities for both anodes with time at 

800°C. It can be seen that Ar only sputtered anodes continued to show nearly the same 

peak power density with time. Meanwhile, the peak power density of the reactively 

sputtered anode decreased from 150mW/cm2 to 105mW/cm2 after 12hrs of operation. The 
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high agglomeration with time (Fig.24) combined with the post-operation decreased Ni 

content (Fig.23), could be the cause of the deterioration in peak power density with time, 

for the reactively sputtered anode. Thus contrary to the common notion shown by previous 

researchers, about introduction of O2 to achieve porosity and other required attributes of 

a successful electrode on a dense substrate, in case of Ni cermet anodes the 20% O2  

1. Retards growth rate 

2. Produces lesser catalytic Ni 

3. Which leads to decreased performance 

4. Also sets in higher agglomeration with time  

 

3.2.7. Logging the optimal sputtering conditions for thin film Ni-SDC anodes 

So once we had established it is best not to use O2 is not the right background gas to use 

when depositing electrode structures of cermet, we started logging the optimal power and 

pressure conditions for the Ni-SDC thin film anodes.  

Table 6 is a description of the various conditions used to deposit and analyze a suitable 

Ni-SDC anode for our application. All the anodes were deposited on room temperature. 

Three main categories of background Ar gas pressures were used to maintain the vacuum 

pressure, they were 90mTorr, 50mTorr, and 30mTorr. All pressures were tested at a RF 

power source range of 50W,100W,150W, and 200W.  

All samples were deposited on a bare Si wafer and sent for subsequent thickness 

measurement by FE-SEM. Generally, the deposition rate increased with increasing power 

at all pressures. It can be speculated that higher sputtering power owes to more  
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Table 6. Deposition rates of Ni-SDC anodes deposited at various pressures and sputtering 

powers 

 

Ar ions in the plasma, consequently the number of collisions with the target is increased 

with increasing power [65-67].  

A graph of the growth rate was depicted in Fig. 26 to analyze the trend of the growth rate 

increase with time. Different trends of growth rate were seen for various deposition 

pressures at various sputtering powers. For 30mTorr the growth rate increased linearly 

with increasing power. While for 90mTorr, the growth rate increased exponentially. The 

most interesting case of growth rate increase was for the 50mTorr chamber pressure. For 

this pressure the growth rate increase was not as significant as compared to other sputtering 

pressures. It increases almost sinusoidal until 150W and then there was little or no increase  

Temperature Chamber  
Pressure RF Power Deposition Rate 

(nm/hr) 

25°C 90mTorr 

50W 13.5 

100W 53 

150W 120 

200W 200 

25°C 50mTorr 

50W 35 

100W 80.5 

150W 101 

200W 110 

25°C 30mTorr 

50W 25 

100W 60.5 

150W 95.5 

200W 130 
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Fig 26. Deposition rate for Ni-SDC at various pressures and sputtering powers 

 

in growth rate found when the sputtering power was increased from 150W to 200W.  

 

3.2.7. 1 Microstructure at different sputtering powers 

The top surfaces of the Ni-SDC anodes were then analyzed under high resolution SEM 

and are shown in Fig. 27. Regardless of the pressure of the sputtering chamber, different 

sputtering powers showed different thin film micro-structures. The micro-structure for 50W 

Ni-cermet is rice like, for 100W it changes to granular, for 150 one can see a mix of granular 

and circular while for 200W the structure of the Ni-cermet is completely circular.  

It is common knowledge that circular shape is the easiest to produce porous 

microstructure, and hence more passage for the fuel to reach the TPBs. Also circular  
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Fig 27 Post operation analysis of Ni-SDC anodes after 12hrs of electrochemical tests 

 

structures are the most favorable for thin film fabrication as they have the smallest 

perimeter for a given area [68], hence maintaining the low thickness with maximum 

efficiency. 

 

3.2.7.2 XPS analysis at various powers 

The subsequent films deposited at various powers and pressures were now sent for XPS 

analysis. Table 7 shows an XPS analysis detail of the various anodes deposited at the 

sputtering power ranges of 50W ~ 200W. It was found out that the RF sputtering showed 

stoichiometric thin films, and sputtering power had little to no effect upon the percentages 

on the atomic percentages of Ni or Ce. However, there was a difference in the atomic 

percentages between the two.  

Even though both Ni and Ce have almost similar atomic percentages, (calculated by 

converting the weight% mentioned in section 3.2.1) Ni 30 at.% ,Ce 29 at.%, Sm 2%,  

and the rest is oxygen, yet Ni percentage is always higher than the Ce percentage in RF 

sputtering. This phenomenon can be best described by Winters and Sigmund preferential  
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Table 7. XPS analysis of various constituent of the cermet Ni-SDC anode at various powers 

 

 

 

 

 

 

 

sputtering for [69]. Winters and Sigmund defined an existence of the energy transfer 

coefficient during sputtering of chemisorbed nitrogen on tungsten by low energy ions. This 

coefficient can be best described from Eq. (3) 

𝛾𝛾 =
4𝑀𝑀1.𝑀𝑀2

(𝑀𝑀1 + 𝑀𝑀2)2  … (3) 

Here,          

 𝛾𝛾 = the energy transfer coefficient of a certain species, 

𝑀𝑀1 = the incident ion mass  

𝑀𝑀2 = the target atom mass 

So, in our case the incident atom is always Ar and the target atom constituents are Ni, Sm, 

and Ce, their respective transfer coefficients can be obtained from Eq. (3) as follows, 

𝛾𝛾𝛾𝛾𝛾𝛾 = 0.96 

𝛾𝛾𝛾𝛾𝛾𝛾 = 0.65 

Sputtering Power  
(W) 

Cerium  
(at.%) 

Samaria  
(at.%) 

Nickel  
(at.%) 

50 16 2 25 

100 16 2 26 

150 17 2.5 25 

200 16 1.9 25 
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𝛾𝛾𝛾𝛾𝛾𝛾 = 0.68 

Transfer coefficient of Ni is larger than Ce in a Ni-SDC cermet target. So, regardless of the 

nearly equal atomic percentage of Ni &Ce in a Ni-SDC cermet, the Ni deposition will 

always be higher than Ce. This fact works in our favor since Ni provides the catalytic 

activity in a Ni cermet anode, the more catalytic the anode, the better its performance. 

 

3.2.7.3 Performance Comparison 

Since 90mTorr sputtering vacuum chamber pressure is the most comparable to the 

PLD vacuum pressure (100mTorr) used in this paper, in order to make apple-to-apple 

comparison, this pressure was taken as a representative pressure for comparison of 

performances. Fig. 28 shows the peak power densities of the Ni-SDC anodes sputtered at 

90mTorr at various powers ranging from 50W ~ 200W at 700°C.  

OCV for 50W ~ 150W range was almost similar and was nearly 1.0V, OCV for 200W 

was near 1.15. Peak power density increases linearly with the increase of anode sputtering 

power. For a 50W sputtered Ni-SDC the peak power density was 12mW/cm2, for 100W it 

increased to 40mW/cm2. Peak power density was about 70mW/cm2 and finally 

130mW/cm2 for the Ni-SDC anode cells sputtered at 200W.  

A similar increase in performance of indium tin oxide (ITO) films by RF magnetron 

sputtering by Wu et al. [70]. The authors in the afore-mentioned paper found strong 

connection of sputtering power and structural orientation of the ITO films. In our deposition 

process the structure of the films is also constantly changing from rice like shape at 50W, 

to circular shaped at increased sputtering powers of 150W and 200W. Hence a case can be 

made that due to the preferred change in film structure at higher sputtering powers, the cells  
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Fig. 28 Performance Analysis of cells with Ni-SDC anodes sputtered at various 

powers at 90mTorr 

 

containing thin film anodes deposited at higher power at a given background gas 

pressure, are performing better than those sputtered at lower powers. 

 

3.2.7.4 EIS Characterization 

In order to confirm that the shift in performance was due to the change in anode 

sputtering power, we shifting to the EIS analysis on the cells. Fig. 29 shows the impedance 

curves of the various cell components taken at OCV for the cells performance measured 

in Fig. 28.  
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Fig. 29 EIS of the cells from Fig. 28 

 

 

Table 8. Resistance values at the anode and cathode of the cell obtained via curve fitting of 

EIS plots from Fig.29 

 

Sputtering 
Power (W) 

R𝞨𝞨  
(ohm-cm2) 

RI 
(ohm-cm2) 

RII 
(ohm-cm2) 

50 2.9 0.7 20 

100 2.7 0.4 6 

150 1.25 0.3 3.1 

200 0.8 0.3 1.8 
 

Equivalent 
Circuit Model 
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For all the cells, two distinct peaks were visible, and impedance curve diameter 

increased with decreasing Ni-SDC sputtering power. One peak appeared at high frequency 

range of 1.0MHz ~ 0.2MHz, and the other at a low frequency range of 600Hz ~ 60Hz. 

Since the curve difference in large, most of the high frequency curves could not be shown 

in a single picture, so they have been described in detail in the in-set magnified view in 

Fig. 29. 

For a clearer perspective we calculated the exact values of the anode and cathode 

resistances by drawing an equivalent circuit model of the cells. These values were obtained 

by the curve fitting of the EIS plots from Fig.29 and are shown in Table 8. The circuit model 

consists of the resistance R, attached in series to the two resistance of RI & RII. The 

impedance behavior of the electrochemical reaction at the anode and cathode is represented 

by the double-layer capacitance constant-phase element (CPE), parallel to the respective 

electrodes.  

Table 8 shows almost all the resistance values were different from each other for cells 

deposited with different anode sputtering powers. Since the electrolyte and cathode are 

same for all the cells, at a given temperature range at least the electrolyte and cathode 

resistances should be comparatively same.  

Apart from the ideal system conditions where the electrolyte, anode and cathode 

resistances are clearly visible in the EIS plot [51]. However, another explanation given by 

Tuller et al. [71] and then endorsed by Shim et al. [72], was that there might be two different 

distributions within a high frequency EIS curve, and both can be related to the electrolyte. 

One could be due to the bulk electrolyte and other due to its grain boundary. Also Meyer et 

al. reported that the grain boundary arc can be perturbed by application of a small bias of 
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200mV [73]. So we applied various voltage biases of 0.2V ~ 0.8V to our EIS measurements. 

The results are shown in Fig. 30. However, we could not see any existence of a second 

semicircle within the high frequency range. Since we can only see one semicircle in our 

case, even at magnified views, we can safely say that both the resistances are encapsulated 

in one semicircle.  

 

 

 

 

Fig. 30 EIS plots of cells deposited with Ni-SDC anodes at sputtering powers (50-200W) 

at various applied biases. 
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Also for a symmetric Pt/YSZ/Pt cell the low frequency arcs were related to the electrode 

(both anode and cathode) process in literature [74, 75]. For 200W to 150W, high sputtering 

power Ni-SDC anodes, the low frequency anodes increased with the increasing applied bias 

from 0.2V~ 0.8V which is normal. However, for 100W and especially for 50W the over 

potential of the electrodes increased at lower applied biases. The reason could be that the 

thickness of these films was low. For a 100W Ni-SDC film it was 50nm, while it was about 

12nm for a 50W Ni-SDC. And at low applied biases the only contribution to the impedance 

semicircle is coming from the cathode which is thicker and has much more resistance.    

So from Table 8 and Fig. 29 we can see that except for the 50W-Ni-SDC cells, all cells 

showed the same ohmic resistance RI of about 0.3ohm-cm2, and the capacitance values for 

C1 were found to be around 10-8F/cm2, typically related to the electrolyte process [72]. 

There was a marked difference seen in RII of Table 8. RII was high for low power sputtered 

Ni-SDC anode cells while it was low for high power sputtered Ni-SDC anode cells. This 

trend was analogous to the peak power shift trend in Fig. 28. Since cathode is the same for 

all cells, the main electrode creating this difference in impedances is anode, and is the 

reason for shifts in performances.  

 

3.2.7.5 AFM of the anode surface 

The surface roughness is one of the key parameters in determining the structure of 

deposited materials. Especially for our thin film deposition, it is necessary to see the trend 

of the surface, since it translates almost similar properties at the top surface as the TPB 

junction between the anode and electrolyte where all the action takes place. 

Atomic Force Microscopic (AFM) results of the anode samples on top of ScSZ pellets 
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is shown in Fig. 31. Films deposited at 50W were almost flat with no visible grains even 

at such high resolution. The root mean square (RMS) roughness was about 2.58nm. For 

100W we can actually start detecting some grains and the RMS roughness increased to 

4.41nm. 150W Ni-SDC anodes started to show some clarity in grain structure until at 200W 

Ni-SDC we can see clearly visible grains. This grain structure variation is again verifying 

the trend in grain structure seen in Fig. 27. This phenomenon can be explained in this way, 

that at high powers, the sputtered particles can get more energized before colliding with 

the substrate [76]. 

However, the RMS roughness actually starts to decrease with increased sputtering 

power after 100W. For 150W the RMS roughness decreased to 3.13nm and for 200W it 

 

 

Fig. 31 Atomic Force Microscopy (AFM) of the Ni-SDC anode samples deposited at 

different sputtering powers, on top of ScSZ electrolytes 
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decreased to 2.72nm. A similar increase in RMS roughness for RF sputtered In2S3 thin 

films by Hwang et al. [77]. They showed that the RMS increased consistently from 60 – 

120W, however the scope of that research was limited to medium powered thin films with 

a difference in powers of only 20W, which might not be so significant. In our research, the 

power range is larger, and the difference between two samples is 50W, so it encompasses 

a wider scope of study. And by increasing this scope we have found that the best roughness 

is found at 100W, and then it decreases. Previous researchers have showed that the RMS 

roughness increases with increased thickness due to increase in the grain size [78, 79], 

however in our case the grain size actually starts to decrease after 100W, and is the lowest 

for the 200W deposited films and hence shows the minimum surface RMS roughness  

 

3.2.7.6 Optimal Pressure and Power for Thin Film Sputtered Anode  

After testing the various thin film properties of the most relatable sputtered anode 

conditions to PLD anode of 90mTorr, we then went on and checked the performance of 

50mTorr and 30mTorr background Ar sputtering gas pressure with a range of sputtering 

powers of 50W ~ 200W at 700°C. The results have been shown in Fig. 32  

Logic would say, that the anode deposited at the largest sputtering power and highest 

pressure must be the best performing anode. Interestingly, it was not the case. The peak 

power density was achieved for the anode deposited at an Ar pressure of 50mTorr and RF 

sputtering power of100W. This high performance was directly related to the low frequency 

arc of the nyquist plots, as can be seen from the Fig 32, that the anodes deposited at 

50mTorr-100W had the lowest anode over-potential. Thus the optimal deposition condition 

was logged. 
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Fig. 32 Peak power density and low frequency arc of the nyquist plot comparison at 700°C, 

for thin film Ni-SDC anode fabrication via RF sputtering at various sputtering pressures and 

powers 
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4. Utilization of Carbon as an indirect source of  
fuel for the optimized cell 

The use of carbon as a direct source of fuel was first introduced about a century ago. The 

reaction was named as Boudouard reaction named after Octave Leopold Boudouard who 

discovered this reaction in 1905 [80, 81] . The reaction is highly endothermic and is mostly 

used in the gasification of carbon (carbonaceous products) [82],  and is represented in Eq. (4) 

𝐶𝐶 + 𝐶𝐶𝐶𝐶2 
 ↔  𝐶𝐶𝐶𝐶 …(4)    ΔH = 172kJ/mol. 

This is the initial concept, that we will place carbon on top of the thin film anode, carbon 

will react with oxygen ions from the cathode, conducted through the electrolyte, and produces 

CO2 in a 4 electrons process.  

 

 

Fig. 33 shows the concept of carbon fuel in direct contact with the cermet anode. Two 

different carbon types were used 1) Super P-Li carbon 2) Industrial waste Carbon. Super P-Li 

carbon is a conductive black carbon used as conductive additive in Li-ion batteries [83]. It is 

of high purity, which means it has a low ash and sulphur content, and its highly structured with 

a moderate surface area [84]. Industrial waste carbon is amorphous and has a high ash and 

sulphur content, with low conductivity and moderate surface area [85, 86].  

Both carbons were ball milled in order to make them in powdered form and allow easy access 

to the carrier gas, and placed as a fuel on the anode. The rest of the configuration was exactly 

the same as used in the cell tested with H2. Fig. 34 shows the actual picture of the test station.  

 

𝑂𝑂2 + 4𝑒𝑒− =   2𝑂𝑂2− (𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) … (5) 
 

𝐶𝐶 + 2𝑂𝑂2− = 𝐶𝐶𝐶𝐶2 + 4𝑒𝑒−(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) … (6) 
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Fig. 33 Usage of Carbon as direct source of fuel to the optimized cell concept 

 

 

Fig. 34 Ball milled carbon placed on the anode compartment sealed by a gold ring. 

 

Unfortunately, we could not find any OCV and consequently no power output, with 

the inert carrier gases for both carbons. It might be the carbon is not making any 

electrochemical connection with the electrolyte at the TPB. It was only when we introduced 
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hydrogen into the system, that the fuel cell started to show a power output. 

Fig. 35 shows the peak power density comparison for the optimized cell under various 

fuels and carrier gases at 700°C. We found out that with H2 the impure carbon performed better 

than the pure one. This is an interesting result, since pure carbon goes through a lot of 

processing to reach the pureness and has increased costs, so it should be working better than 

the impure one.  

Naqvi et al. [87] showed that in the presence a catalyst of with K2CO3 with ash, whose 

main constituent are sulphur and carbonates of metals, there are extra reactions taking place at  

 

 

Fig. 35 Peak power density comparison for the two carbons with and without H2 fuel. 
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the anode, that produce more CO, and in turn the potassium reacts with steam to give more H2  

fuel. Upon XPS analysis of the Ni-SDC anodes after testing with carbon fuel, we found traces 

of aluminum and silicon together with some sulphur in the industrial waste carbon.  It is 

possible that these elements are producing some carbon monoxide, under equations below and 

this CO can react with the oxygen ions conducted through the electrolyte.  

 

 

 

Fig. 35 also shows that with H2 there was an OCV and power Output, however it was 

considerably lower than the performance of the cell without carbon. This means that carbon 

is actually blocking the gas supply until the TPB. Li et al [88] showed that the solid carbon  

 

 

Fig 36. Schematic representation of the carbon reaction sites in a cermet anode on a 

ScSZ electrolyte base 

𝐴𝐴𝐴𝐴2𝑂𝑂3 + 3𝐶𝐶 ↔   2𝐴𝐴𝐴𝐴 + 3𝐶𝐶𝐶𝐶… (7)  
 

𝑆𝑆𝑆𝑆𝑆𝑆2 + 2𝐶𝐶 ↔ 𝑆𝑆𝑆𝑆 + 2𝐶𝐶𝐶𝐶… (8) 
 

𝐶𝐶𝐶𝐶 + 𝑂𝑂2− → 𝐶𝐶𝐶𝐶2 + 2𝑒𝑒−(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)… (9) 
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has three distinct reaction sites on a cell, 1) the intersection of anode and the electrolyte 2) 

on the surface of the electrolyte 3) on the surface of the anode. Regardless of the type of 

carbon used, the processes that make up the carbon particles, like ball-milling, cannot 

produce less than 1µm carbon. Our thin film anode however has porosity is in nanometers.  

In order to confirm that in case the carbon reached the anode and electrolyte interface, 

there would be some Boudouard reaction, we removed the anode of the cell and deposited 

carbon on top of an anode-less cell. Fig. 37 shows the performance of the anode-less cells 

with pure and impure carbon fuels. Similar to the results seen in Fig. 35, the impure carbon 

performed better than the pure one. The OCV for pure carbon anode-less cell was nearly 

0.5 while the OCV for impure carbon anode-less cell was 0.9V. The peak power density for 

impure and pure anode-less cells was 0.27mW/cm2 and 0.1412mW/cm2. Xu et al. [89] was 

also able to achieve high power densities without any anode using a carbon and carbonate 

mixture suspended in form of a slurry on top of a cathode support. Our cell didn’t show 

such high performances, because the carbon was in solid form, but an electrochemical 

interface was certainly proved. 

 

 

Fig. 37 Anode less cell test for (a) Pure (b) Impure carbon at 700°C. 
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Hence it can be concluded that carbon in its solid form is failing to reach these reaction 

sites and hence not showing any electrochemical reaction. Another option is to use carbon 

in some form of liquid phase, since liquid phase has a better chance to find its ways to the 

TPBs, however the test station setup does not allow the usage of carbon in this form. We 

had to take other steps 

 

 4.1 The Reverse Boudouard Reaction (RBR) 

In order to deliver carbon to the nano-pores of the thin film cermet anode and ultimately 

to the TPBs, we needed to devise a method that can utilize carbon or its by-products in 

other forms. The reverse boudouard reaction is a non –electrochemical reaction where CO2 

reacts with coke or carbon at a high temperature (>700°C) and produces CO. This CO gas 

in turn can be used as a source of fuel. The detailed reactions are shown in Table 9.  

 

Table 9. The equations involved in the indirect utilization of carbon fuel. 

# Reactions Details 

(a) 
𝐂𝐂 + 𝐂𝐂𝐂𝐂𝟐𝟐 → 𝟐𝟐𝟐𝟐𝟐𝟐… (𝟏𝟏𝟏𝟏) 

(> 𝟕𝟕𝟕𝟕𝟕𝟕°𝐂𝐂) 

Reverse Boudouard Reaction 

(NonElectrochemical Reaction) 

(b) 𝐂𝐂𝐂𝐂 + 𝐎𝐎𝟐𝟐− → 𝐂𝐂𝐂𝐂𝟐𝟐 + 𝟐𝟐𝐞𝐞− … (𝟏𝟏𝟏𝟏) Anode Reaction OCV~1.1V 

(c) 𝐂𝐂 + 𝐎𝐎𝟐𝟐− → 𝐂𝐂𝐂𝐂𝟐𝟐 + 𝟐𝟐𝐞𝐞− … (𝟏𝟏𝟏𝟏) Anode Reaction OCV~1.2V 
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We have already seen that Eq. (12) from Table 9 is not viable for our setup so we need to 

filter out any unreacted carbon from our system. However, the CO gas produced from the 

carbon in Eq. (10), which is essentially called the reverse boudouard reaction, can be used 

as a fuel. Reverse Boudouard reaction takes place at high temperatures of > 700C, because 

at higher temperature the standard enthalpy of the endothermic reaction in Eq. (4) becomes 

less negative with increase in temperature [90]. Additionally, reaction kinetics and mass 

transport rates are faster in a gaseous phase than in liquid or solid phase. 

 

4.1.1 The gasification of carbon with Inconel Filter 

The process of reacting a material with a gas at a given temperature is termed as 

gasification. Carbon gasification is achieved at high temperatures of 700°C as mentioned 

in Table 8, and its byproducts need to be removed. An inconel 600 grade (APEC Industries, 

South Korea) was used to filter the by-products of the carbon gasification process. It is a 

2mm thick inconel plate which has a 20µm pore opening. It was tested for good condition 

and air permeability by the manufacturer. The filter was machined and placed in the outlet 

of a bubbler. The pictures of this bubbler and attachment of the Inconel filter are shown in 

Fig. 38.  

The inconel filter was machined to sit on a stainless steel ring, which was welded to the 

outlet of the bubbler. A carbon fuel inlet was designed on top of the bubbler, for readily 

filling up the depleted carbon fuel. CO2 enters the bubbler and reacts with the carbon inside 

the bubbler at a high temperature. The resulting CO produced due to the reverse boudouard 

reaction will then leave the outlet of this bubbler after being filtered from the filter. 
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Fig. 38 Inconel Filter and its attachment on the bubbler assembly 

 

4.1.2 The Indirect Carbon Fueled Hybrid Fuel Cell  
Fig. 39 shows the system devised to utilize the carbon fuel indirectly in the optimized 

anode cell. A 100sccm CO2 gas enters the bubbler via a CO2 mass flow controller. The 

bubbler contains 10g of raw impure waste carbon, placed inside a furnace at which the 

temperature can reach up to 1000°C. The outlet of the bubbler was fitted to the gas 

chromatograph (GC) to identify the products of the reverse boudouard reaction. The GC 

was off-station and measured in Chung-Ang University material science lab. 

The outlet to GC was attached to a H2 gas supply line with a switch. The H2 can also 

enter the fuel cell system easily by controlling the H2 MFC. This hybrid fuel system is 

connected to the test station setup discussed in detail in section 2.4, where the optimized 

cell is tested for electrochemical measurement via Solatron. 
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Fig. 39 Schematic Representation of the indirect carbon fueled hybrid fuel cell 

 

4.1.2.1 Performance 

Fig. 40 shows the gas chromatography and the OCV of the optimized fuel cell with 

increasing furnace temperature over a period of 12hrs. It is noted that as the temperature 

increases there is nothing picked up by the GC other than the unreacted CO2 for almost 

2hrs. After 2hrs, the percentage of CO2 starts to drop, and even though there is no CO 

detected, we can detect a slight OCV of 0.2 V.  

The drop in the CO2 keeps happening steadily, and the OCV rises from 0.2V to 0.5V after 

7hrs, until the bubbler temperature of 750°C is achieved. After 7hrs the GC starts detecting 

CO which keeps on increasing steadily as the CO2 drops further down. The maximum CO 

level is attained after 11hrs. After 9hrs an OCV of 0.6V is achieved. It is at this point that 

the peak power density of the cell was tested.  
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Fig. 40 Off-grid Gas Chromatography results of 5g of carbon. OCV of the cells was taken 

with time at various temperatures 

 

Fig. 41 shows the peak power density of the indirect carbon fueled hybrid fuel cell at 

700°C. It can be seen that the peak power density and the OCV achieved with the carbon 

are almost half the peak power density achieved with hydrogen fuel for the same hybrid 

cell. However, this wasn’t the biggest concern.  

It was seen that after 9hrs of operation, the OCV and the power density continuously kept 

on decreasing. Fig. 42 shows that after 10hrs of operation, the OCV of the cell starts 

decreasing and consequently the peak power density also decreases. Both keep on 

decreasing until there is no more OCV after about 20hrs of operation.  
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Fig. 41 Peak Power Density comparison for the indirect carbon fueled hybrid fuel cell at 

700°C 

 

Fig. 42 Peak power density and OCV shift with time 
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The bubbler was then taken to the off-grid GC setup, and it was found that no CO was 

being produced by the system. It is possible that after the first few hours of operation, the 

CO2 might have stopped reacting with the available carbon in the bubbler. The OCV is 

produced by the CO produced only in the first 12hrs of operation, and then CO2 gas makes 

a consistent shortest possible route outside the bubbler via the filter. Fig 43 (a) shows a 

schematic representation of this process. Upon opening of the bubbler outlet, some 

unreacted carbon dust was also seen at the pipe connections. Also the carbon in the bubbler 

was forced out and weighed, it had only dropped by 0.3g. This means that almost 97% of 

the carbon remained un-utilized for such a long operation. 

In order to maximize the utilization of the carbon fuel, I updated the design of the bubbler. 

The new design is shown in Fig. 43(b). The inlet to the bubbler was modified, so  

 

 

Fig. 43 (a) Schematic of the old design of the bubbler with little or no CO (b) modification 

in the bubbler design resulting in higher carbon utilization and hence higher CO. 
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that the CO2 now enters from the base of the bubbler. A second inconel filter is welded just 

a few centimeters above the base of the bubbler. With this new design the carbon fuel now 

sits on top of the filter, and almost all of the CO2 passes through the filter and bubbler after 

reacting with the carbon. Also with the two filters, the carbon dust does not build up, and 

allows free passage of the gases without blocking the lines. Hence even unprocessed carbon 

in raw form can also be used with this new design.  

After updating the bubbler design, the hybrid fueled cell performance was again 

measured and is shown in Fig. 44. First noticeable thing is that the OCV has increased to 

0.86V compared to 0.6V with the old bubbler design. Also the peak power density has 

increased to 110mW/cm2. It is almost 82% of the peak power density achieved by H2 fuel 

source. Which is quite reasonable considering the cost effectiveness of the carbon fuel 

compared to the H2 fuel. 

There is however a certain noise during the electrochemical measurement, especially at 

the mass transport region of the IV curve in Fig. 44 for carbon fuel. It is possible that in the 

start of the reaction process, say first few hours, the reverse boudouard reaction is not 

producing CO at a constant rate, and hence the fuel is not readily available for the 

electrochemical reaction. Later on the reverse boudouard reaction attains equilibrium, and 

we did not find any noise in the IV curve measurement. 

Fig. 45 shows the peak power densities and OCV with time for the updated bubbler 

design. It shows that an OCV of 0.86V is achieved after 2hrs, which increases to 0.9V in 

6hrs and stays there for the next 8 hrs. These measurements were taken after every hour 

until 20hrs of operation, the optimal hybrid cell showed a consistent OCV of 0.85 V and 

the peak power density reduced to 90mW/cm2. This means that for nearly 1 day of operation  
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Fig. 44 Peak Power Density comparison for the indirect carbon fueled hybrid fuel cell at 700°C 

 

Fig. 45 Peak power density and OCV with time for the updated bubbler 
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the cell keeps on performing under carbon fuel with a decrease of only 20% of its peak  

power density compared to the start of the day. The ScSZ electrolyte support is dense and 

it is believed that this cell can perform as long as there is carbon inside the bubbler. The 

cell was tested to give a consistent OCV of 0.8V for 50hrs of operation. 

Fig. 46 shows the peak power density comparisons OCV comparisons of cells made by 

other researchers at various carbon fuel mixtures, with this research. Tang et al. [36] utilized 

Fe-loaded pure carbon fuel on an Ag-GDC anode to achieve a peak power density of 

45mW/cm2 at 800°C. Even with the use of a noble metal as an electrode with a catalyzed 

fuel at 100C higher temperature than our paper, the cell by Tang et al. performed 

remarkably lower than ours. Wu et al. [37] showed a carbon fuel cell (CFC) with a high 

power output by integrating FemOn–MxO (M = Li, K, Ca) catalyst with activated carbon in 

a Ni-ScSZ anode supported cell on ScSZ electrolyte with LSM cathode. The peak power 

density for this cell setup was 98mW/cm2 at 775°C. So even at a higher temperature than 

our setup, this cell couldn’t match with the performance of this paper.  

Naqvi et al. [87] used steam gasified carbon with K2CO3 catalyst on a tubular Ni-YSZ 

anode support with a YSZ electrolyte and LSM cathode, and was able to achieve a peak 

power density of 53mW/cm2 at 700°C, which lacks behind the system proposed in this 

study by a fair margin. Li et al. [91] showed an improvement in performance of a Ni/YSZ 

anode supported button cell on a 20µm electrolyte with an LSM/ScSZ cathode, by using a 

potassium (K) catalyst with carbon black gasified by RBR. It showed a peak power density 

of 95.6mW/cm2 at 700°C. Even with a thinner electrolyte, leading to lower ohmic resistance, 

the peak power density was lower than the result of this research.  

The reason of the performance enhancements achieved in this research, can be related  
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Fig.46 Peak power density and OCV comparison of the optimal carbon fuel cell proposed in 

this study with previous reported cells. 

 

directly to the use of optimal thin film fabrication methods utilized to fabricate the Ni-

SDC anode in this paper, since all the action of the RBR takes place on the anode side of 

the cell.  

Thus this improved, cost effective system, to utilize waste-carbon in its most raw, un-

processed form, without any added catalysts, performs better than the reported cells of same 

category, at an intermediate temperature of 700°C. 
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5. Simulation of the Optimal Ni-SDC Anode 

Nomenclature 

𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡  𝑇𝑇𝑇𝑇𝑇𝑇 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (𝑚𝑚/𝑚𝑚3) 

𝑖𝑖0    𝐸𝐸𝑥𝑥𝑥𝑥ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 (𝐴𝐴/𝑚𝑚3) 

𝑖𝑖0,𝑡𝑡𝑡𝑡𝑡𝑡 𝐸𝐸𝑥𝑥𝑥𝑥ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑇𝑇𝑇𝑇𝑇𝑇 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ (𝐴𝐴/𝑚𝑚) 

𝜂𝜂    𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 (𝑉𝑉) 

𝐹𝐹    𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑦𝑦′𝑠𝑠 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝐶𝐶/𝑚𝑚𝑚𝑚𝑚𝑚) 

𝑃𝑃    𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑃𝑃𝑃𝑃) 

𝜎𝜎    𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝑚𝑚2/𝑠𝑠) 

𝐸𝐸    𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑉𝑉) 

𝐸𝐸𝑒𝑒𝑒𝑒  𝐸𝐸 𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑉𝑉) 

𝐸𝐸0
𝑒𝑒𝑒𝑒  𝐸𝐸𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

∅𝑒𝑒𝑒𝑒  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑉𝑉) 

∅𝑖𝑖𝑖𝑖  𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑉𝑉) 

𝑉𝑉   𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  

𝜏𝜏   𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 

𝐶𝐶𝑖𝑖  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖 

𝑁𝑁𝐿𝐿𝑖𝑖𝑖𝑖    𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖 

𝑁𝑁𝐿𝐿
𝑖𝑖𝑖𝑖𝑖𝑖  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖𝑖𝑖 

𝜆𝜆𝑖𝑖   𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝ℎ 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖 

𝐿𝐿�𝑖𝑖    𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ (𝑚𝑚) 

𝑑𝑑𝑖𝑖   𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖 (𝑚𝑚) 
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𝐷𝐷𝑖𝑖𝑖𝑖    𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑚𝑚2/𝑠𝑠)  

𝑋𝑋𝑖𝑖    𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑖𝑖  

𝑃𝑃𝑖𝑖     𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖 (𝑃𝑃𝑃𝑃)    

𝑁𝑁𝑖𝑖    𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝑔𝑔𝑔𝑔𝑔𝑔 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖 (𝑚𝑚𝑚𝑚𝑚𝑚/𝑠𝑠.𝑚𝑚2)  

𝜇𝜇    𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 (𝑃𝑃𝑃𝑃. 𝑠𝑠)    

𝐾𝐾    𝐺𝐺𝐺𝐺𝐺𝐺 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑚𝑚2)    

𝑀𝑀𝑖𝑖    𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖   

∑𝑣𝑣𝑖𝑖  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖 (𝑚𝑚3/𝑚𝑚𝑚𝑚𝑚𝑚)  

(𝑆𝑆
𝑉𝑉

)   𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡𝑡𝑡 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟     

 
 

In order to simulate a Ni-SDC composite anode, we have to take a representative porous 

homogeneous anode as shown in Fig. 47. Electrochemical representation of the RBR is given 

by a Butler-Volmer Type equation. Local charge transfer rate at the Ni-SDC anode is given by 

following equation, 

 

 

 

Exchange current density per unit length of tpb for H2 oxidation has been given by Suzue et al. 
[92] 
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Fig.47 Schematic representation of the nanostructured anode for simulation 

 

However, Yakabe et al. [93] reported that there is a higher over-potential for CO oxidation 

than H2 

 

So we can assume that the exchange current density of CO oxidation can be represented as  

 

 

So Equation 12 can be updated as 

 

 

Governing equations for ionic and electronic conduction in a cermet anode are introduced by 
Kishimoto et al. [94]  

 

𝐽𝐽𝐶𝐶𝐶𝐶, 𝑎𝑎𝑎𝑎 < (2~3) 𝐽𝐽𝐻𝐻2, 𝑎𝑎𝑎𝑎 … (13) 

𝑖𝑖0,𝑡𝑡𝑡𝑡𝑡𝑡,𝐶𝐶𝐶𝐶 = 0.4 𝑖𝑖0,𝑡𝑡𝑡𝑡𝑡𝑡,𝐻𝐻2 … (14) 

𝑖𝑖0,𝑡𝑡𝑡𝑡𝑡𝑡,𝐶𝐶𝐶𝐶 = 12.5 𝑃𝑃𝐶𝐶𝐶𝐶−0.03𝑃𝑃𝐶𝐶𝐶𝐶2
0.4  exp[−

18300
𝑇𝑇

] … (15) 
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Effective electron and ion conductivity for Ni-SDC anode can be defined as 

 

 

 

 

Bulk electronic and ionic conductivities of Ni and SDC were defined by Nicollet et al. [95] 

 

 

 

Now , we can define the activation over-potential of a cermet anode operating on RBR 

 

 

Re-writing in form of ionic, electronic and concentration potential 

 

 

Where 

 

 

 

 

 

In order to calculate the volume fractions of the different fractions of the cermet anode, we 

took the aid of High resolution SEM images. Fig. 48 shows the HRSEM top surface of the Ni-

𝛻𝛻 ∗ (𝜎𝜎𝑒𝑒𝑒𝑒
𝑒𝑒𝑒𝑒𝑒𝑒.  𝛻𝛻∅𝑒𝑒𝑒𝑒) = 𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡 … (16) 

𝛻𝛻 ∗ (𝜎𝜎𝑖𝑖𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒.  𝛻𝛻∅𝑖𝑖𝑖𝑖) = -𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡 … (17) 

𝜎𝜎𝑒𝑒𝑒𝑒
𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜎𝜎𝑒𝑒𝑒𝑒 

𝑉𝑉𝑁𝑁𝑁𝑁 
𝜏𝜏𝑁𝑁𝑁𝑁

… (18) 

𝜎𝜎𝑖𝑖𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜎𝜎𝑖𝑖𝑖𝑖 

𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆 
𝜏𝜏𝑆𝑆𝑆𝑆𝑆𝑆

… (19) 

σel  = 3.27*104 -10.653T… (20)  

σio  = 3.40*102 exp(-10350/T) … (21)   

𝜂𝜂𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐸𝐸 − 𝐸𝐸𝐸𝐸𝐸𝐸… (22) 

𝜂𝜂𝑎𝑎𝑎𝑎𝑎𝑎 = ∅𝑒𝑒𝑒𝑒 − ∅𝑖𝑖𝑖𝑖 − 𝜂𝜂𝑐𝑐𝑐𝑐𝑐𝑐… (23) 

∅𝑒𝑒𝑒𝑒 =  𝛷𝛷𝑒𝑒𝑒𝑒 … (24) 

∅𝑖𝑖𝑖𝑖 =  𝛷𝛷𝑖𝑖𝑖𝑖 + 𝐸𝐸0
𝑒𝑒𝑒𝑒 + 𝑅𝑅𝑅𝑅

2𝐹𝐹
ln (𝑃𝑃𝐶𝐶𝐶𝐶2,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵/𝑃𝑃𝐶𝐶𝐶𝐶,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) … (25) 

𝜂𝜂𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑅𝑅𝑅𝑅
2𝐹𝐹

ln (𝑃𝑃𝐶𝐶𝐶𝐶2,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵/𝑃𝑃𝐶𝐶𝐶𝐶2 ∗ 𝑃𝑃𝐶𝐶𝐶𝐶/𝑃𝑃𝐶𝐶𝐶𝐶,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) … (26) 
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SDC anode. In order to quantify the volume fraction of the we used the freeware of Image J 

software. By thresh holding we can separate them and it has an easy function of finding out the 

total cover area of each threshold. Which can separate the phases in 2D and then integrate them 

along the 500nm thickness to get the volume fraction. 

 

Fig.48 High resolution SEM image of the Ni-SDC anode and phase separation by Image J  

Table 10. Volume Fractions Vi of each phase [%] 

Sample# 1 2 3 

Ni 28.6 25.9 27.2 
SDC+ Pore 71.4 74.1 72.8 

Pore 13.8 15.9 17.3 
SDC 57.6 58.2 55.5 
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Now Ni and Pore, (black and white phases) were able to be separated easily by using the 

threshold. However, the thresh holding of grey and black particles was difficult. So we first 

found out the grey and black covered area in one thresh hold, which would represent both the 

SDC and pore structure. Then we changed the settings of the thresh hold so that now only the 

black pores area was seen. Then that pore area was subtracted from the SDC and pore area to 

give the SDC volume fraction. The volume fractions of each phase were taken across three 

HRSEM representative samples and have been summarized in Table 10. 

 

 

Fig.49 Magnified view of the HRSEM Ni-SDC anode with triple phase boundaries marked  

Triple phase boundary (TPB) density was calculated by volume expansion method (VEM). 

A magnified view of the HRSEM was taken and the junction points between Ni, SDC were 

expanded to an infinitely small area. This small expansion resulted in overlapping of the Ni-

SDC-pore phase, highlighting a TPB point. Fig. 49 shows the magnified view of the HRSEM 

anode image and the TPB points are marked.  

Hiroshi et al. [96] showed that the TPB points can be joined to form a string along the 

volume of a structure if a) the space resolution is high, b) volume expansion is limited to 

infinitely small level. Fig. 50 shows such mapping of the TPBs obtained by VEM in image J 
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software. These TPBs were mapped along 3 different densely populated TPB areas and are 

represented in Table 11. Average TPB densities were about 3.3um/um3. This value is higher 

than the value of TPBs found by Hiroshi et al. for Ni-YSZ thick anode. The reason might be 

that the conventional fabrication methods like the one used by above mentioned authors are 

not providing the perfect conditions for an optimal cermet anode containing maximum TPBs. 

Also the thickness of their anode is in micrometer range, so there might be some errors along 

the large thickness. 

 

 

Fig.50 TPB strings for Ni-SDC anode formed by volume expansion method  

 

Table 11. TPB densities from three different images similar to Fig. 50 

Sample# 1 2 3 

TPB 
density[µm/µm3] 

3.39 3.22 3.44 
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Now we aimed to find the tortuosity of each phase in order to see how tortuous the path of 

the respected transported item is, from a certain phase. Gurland et al. first defined the contiguity 

of a phase in a i-j mixture as a fraction of the total internal surface area of this phase shared 

with particles of the same phase and expressed as, 

 

 

For Relation of phase contiguity and mean free path, another relation was derived by the 

same group,  

 

 

where 𝐿𝐿�𝑖𝑖 is the mean intercept length, which for our case of 3 phases can be described by 

the following relation 

 

 

where 𝑁𝑁𝐿𝐿
𝑖𝑖𝑖𝑖𝑖𝑖is the number of intercepts between the three species and is equivalent to the 

length of the TPBs found from Table 11. 

Underwood [97], related the contiguity of and mean intercept length in a mixture of two 

phases 

 

 

𝐶𝐶𝑖𝑖 =  
2𝑁𝑁𝐿𝐿𝑖𝑖𝑖𝑖

2𝑁𝑁𝐿𝐿𝑖𝑖𝑖𝑖 + 𝑁𝑁𝐿𝐿
𝑖𝑖𝑖𝑖 … (27) 

𝜆𝜆𝑖𝑖 =  
𝐿𝐿�𝑖𝑖

1 − 𝐶𝐶𝑖𝑖
… (28) 

𝐿𝐿�𝑖𝑖 =  
𝑉𝑉𝑖𝑖

𝑁𝑁𝐿𝐿𝑖𝑖𝑖𝑖 + 𝑁𝑁𝐿𝐿
𝑖𝑖𝑖𝑖𝑖𝑖 … (29) 

𝐶𝐶𝑖𝑖𝑖𝑖 =  
𝑉𝑉𝑖𝑖 𝐿𝐿�𝑗𝑗

𝑉𝑉𝑖𝑖 𝐿𝐿�𝑗𝑗 + 𝑉𝑉𝑗𝑗 𝐿𝐿�𝑖𝑖
… (30) 
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Fan et al. [98] proved that for equi-axed grains the mean intercept length of the species 𝐿𝐿�𝑖𝑖 is 

equal to the mean diameter 𝑑𝑑𝑖𝑖  of that species, So Eq. 30 can be rewritten for each phase 

interaction as, 

 

 

 

 

 

 

 

 

In order to calculate the exact grain size, we took the aid of High resolution TEM images  

 

 

Fig.51 HRTEM image of the Ni-SDC anode, clearly distinguishing the Ni, SDC and Pore 

grain sizes  

𝐶𝐶𝑖𝑖𝑖𝑖 =  
𝑉𝑉𝑖𝑖 𝑑𝑑𝑗𝑗

𝑉𝑉𝑖𝑖 𝑑𝑑𝑗𝑗 + 𝑉𝑉𝑗𝑗 𝑑𝑑𝑖𝑖
 ,𝐶𝐶𝑗𝑗𝑗𝑗 =  

𝑉𝑉𝑗𝑗 𝑑𝑑𝑘𝑘
𝑉𝑉𝑗𝑗 𝑑𝑑𝑘𝑘 + 𝑉𝑉𝑘𝑘 𝑑𝑑𝑗𝑗

 ,𝐶𝐶𝑘𝑘𝑘𝑘 =  
𝑉𝑉𝑘𝑘 𝑑𝑑𝑖𝑖

𝑉𝑉𝑘𝑘 𝑑𝑑𝑖𝑖 + 𝑉𝑉𝑖𝑖 𝑑𝑑𝑘𝑘
… (31) 

𝐶𝐶𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖 +   𝐶𝐶𝑘𝑘𝑘𝑘 … (32) 

𝐶𝐶𝑗𝑗 = 𝐶𝐶𝑗𝑗𝑗𝑗 +   𝐶𝐶𝑖𝑖𝑖𝑖 … (33) 

𝐶𝐶𝑘𝑘 = 𝐶𝐶𝑘𝑘𝑘𝑘 +   𝐶𝐶𝑗𝑗𝑗𝑗 … (34) 



93 

 

Table 12. Average grain sizes, contiguities and tortuosities for the three phases 

Parameter Ni SDC Pore 
Avg. Grain size[𝑑𝑑]  9 𝑛𝑛𝑛𝑛 13 𝑛𝑛𝑛𝑛 6nm 
Contiguity of a 
phase [Ci] 

0.8703 1.0366 1.0897 

Tortuosity 
Factor[1/Ci]2 

1.32 0.93 0.84 

 

(HRTEM) images. Fig. 51 shows the HRTEM image, where the Ni, SDC and pore phases were 

clearly distinguished. Table 12 shows the average grain size of the particles calculated from the 

HRTEM images. Contiguities of the phases were calculated from Eq. 32-34. Previously 

contiguity of a species has been shown to have an inverse relationship with tortuosity [99]. So 

the tortuosity factor has also been calculated in Table 12. The values of tortuosity are slightly 

lower than the ones cited in other Ni-Cermet anodes made by conventional methods[96], 

showing that the gas pathways and electrical conduction through sputtered media less tortuous 

(more favorable to easier conduction). 

Once the tortuosity was calculated, we now calculated the diffusion of fuel gas molecules 

through the pores. The two gases were 1:CO and 2:CO2 , and their diffusion through porous Ni-

SDC anode was defined by using Dusty Gas Model (DGM). DGM is written as a relationship 

of molar flux, molar fraction, and total pressure gradient. 

 

 

Effective molecular diffusion coefficient can be expressed as a relationship of Volume 

fraction and tortuosity with Fuller-Schettler Giddings Equation 

𝑁𝑁𝑖𝑖
𝐷𝐷𝑖𝑖,𝐾𝐾
𝑒𝑒𝑒𝑒𝑒𝑒 + ∑ 𝑋𝑋𝑗𝑗𝑁𝑁𝑖𝑖−𝑋𝑋𝑖𝑖𝑁𝑁𝑗𝑗

𝐷𝐷𝑖𝑖𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒

𝑛𝑛
𝑗𝑗=1,𝑗𝑗≠1  = − 𝑃𝑃𝑖𝑖

𝑅𝑅𝑅𝑅
𝛻𝛻𝑋𝑋𝑖𝑖 −

𝑋𝑋𝑖𝑖
𝑅𝑅𝑅𝑅

�1 + 𝐾𝐾𝐾𝐾𝑡𝑡
𝜇𝜇𝐷𝐷𝑖𝑖,𝐾𝐾

𝑒𝑒𝑒𝑒𝑒𝑒�𝛻𝛻𝑃𝑃𝑡𝑡 … (35)   
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Knudsen diffusion is a type of diffusion where the scale length of system is comparable or 

smaller to the mean free path of the species travelling through that system. In the Ni-SDC 

porous electrode, it is estimated that the mean free-path of the molecules is larger than the 

anode pore size, which means the collisions between the molecules and the boundaries of the 

anode, are more frequent than with other neighboring molecules. Therefore, it is better to use 

a Knudsen diffusion coefficient to estimate the reactants and products of the reverse boudouard 

reaction in this case 

 

 

 

 

 

 

Permeability is defined by combining the Darcy’s flow and Poiseuille’s flow 

 

 

𝐷𝐷𝑖𝑖𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒 =  

𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝐷𝐷𝑖𝑖𝑖𝑖 … (36) 

𝐷𝐷𝑖𝑖𝑖𝑖 =  
0.01013 𝑇𝑇1.75(� 1

𝑀𝑀𝑖𝑖
∗ 103 �+ � 1

𝑀𝑀𝑗𝑗
∗ 103 �)1/2

𝑃𝑃((∑𝑣𝑣𝑖𝑖 ∗ 106)1/3 +(∑𝑣𝑣𝑗𝑗 ∗ 106)1/3)2
… (37) 

𝐷𝐷𝑖𝑖,𝐾𝐾
𝑒𝑒𝑒𝑒𝑒𝑒 =

𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝐷𝐷𝑖𝑖,𝐾𝐾 … (38) 

𝐷𝐷𝑖𝑖,𝐾𝐾 =
𝑑𝑑𝑝𝑝

3
�

8𝑅𝑅𝑅𝑅
𝜋𝜋𝑀𝑀𝑖𝑖

… (39) 

𝑑𝑑𝑝𝑝= 4

(𝑆𝑆𝑉𝑉)𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
… (40) 

𝐾𝐾 =  
𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

6𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 �
𝑆𝑆
𝑉𝑉�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

2 … (41) 
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We can relate the conservation of gases transported by the Knudsen diffusion, with the 

charge transfer current by this relation 

 

 

 

 

 

 

 

 

 

Combined effective Knudsen diffusion coefficient is expressed as 

 

 

Since the total pressure is assumed to be constant, hence we can neglect the equations 

containing 𝑃𝑃𝑡𝑡 terms. Then all the equations take the form of the Poisson-like equation 

 

 

𝛻𝛻 ∗ (𝛤𝛤.  𝛻𝛻ø)± S = 0 

𝛻𝛻. �𝑘𝑘1
𝑅𝑅𝑅𝑅
𝛻𝛻𝑃𝑃1� + 𝛻𝛻. �𝑘𝑘1′𝑃𝑃1

𝑅𝑅𝑅𝑅
𝛻𝛻𝑃𝑃𝑡𝑡�= 

𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡
2𝐹𝐹

 … (42) 

𝛻𝛻. �𝑘𝑘2
𝑅𝑅𝑅𝑅
𝛻𝛻𝑃𝑃2� + 𝛻𝛻. �𝑘𝑘2′𝑃𝑃2

𝑅𝑅𝑅𝑅
𝛻𝛻𝑃𝑃𝑡𝑡�= - 

𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡
2𝐹𝐹

 … (43) 

𝑘𝑘1 =  
𝐷𝐷12
𝑒𝑒𝑒𝑒𝑒𝑒 .𝐷𝐷1,𝐾𝐾

𝑒𝑒𝑒𝑒𝑒𝑒

𝐷𝐷12
𝑒𝑒𝑒𝑒𝑒𝑒 + 𝐷𝐷12,𝐾𝐾

𝑒𝑒𝑒𝑒𝑒𝑒 … (44) 

𝑘𝑘2 =  
𝐷𝐷12
𝑒𝑒𝑒𝑒𝑒𝑒 .𝐷𝐷2,𝐾𝐾

𝑒𝑒𝑒𝑒𝑒𝑒

𝐷𝐷12
𝑒𝑒𝑒𝑒𝑒𝑒 + 𝐷𝐷12,𝐾𝐾

𝑒𝑒𝑒𝑒𝑒𝑒 … (45) 

𝑘𝑘1′ = 𝑘𝑘2′ = 𝐾𝐾
𝜇𝜇

+
𝐷𝐷1,𝐾𝐾
𝑒𝑒𝑒𝑒𝑒𝑒.𝐷𝐷2,𝐾𝐾

𝑒𝑒𝑒𝑒𝑒𝑒

𝐷𝐷12
𝑒𝑒𝑒𝑒𝑒𝑒+𝐷𝐷12,𝐾𝐾

𝑒𝑒𝑒𝑒𝑒𝑒 . 1
𝑃𝑃𝑡𝑡

 … (46) 

𝐷𝐷12,𝐾𝐾
𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑋𝑋1𝐷𝐷2,𝐾𝐾

𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑋𝑋2𝐷𝐷1,𝐾𝐾
𝑒𝑒𝑒𝑒𝑒𝑒 … (47) 

𝛻𝛻 ∗ (𝜎𝜎𝑒𝑒𝑒𝑒
𝑒𝑒𝑒𝑒𝑒𝑒.  𝛻𝛻∅𝑒𝑒𝑒𝑒) = 𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡 ,𝛻𝛻 ∗ (𝜎𝜎𝑖𝑖𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒.  𝛻𝛻∅𝑖𝑖𝑖𝑖) =−𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡 
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Fig.52 Schematic representation of the point P inside the Ni-SDC anode solved by control 

volume method 

 

Here S is the source of charge transfer between the electronic and ionic phase. The charge 

conservation equation is solved for the involved charge transport in the ionic/electronic phase. 

It involves the solution of the Poisson equations for the ionic/electric field over the entire region. 

A 1-D steady state diffusion equation is solved by control volume method (CV) over the 

entire region to find the solution of this Poisson equation. Fig. 52 shows the control volume 

schematic representation over a certain point P in consideration. 

 

 

Integrating it inside a control volume from w to e  

 

 

 

 

𝑑𝑑
𝑑𝑑𝑑𝑑 �

𝛤𝛤.
𝑑𝑑∅
𝑑𝑑𝑑𝑑�

+ 𝑆𝑆 = 0 

� �
𝑑𝑑
𝑑𝑑𝑑𝑑 �

𝛤𝛤.
𝑑𝑑∅
𝑑𝑑𝑑𝑑�

+ 𝑆𝑆� 𝑑𝑑𝑑𝑑 = 0
𝑒𝑒

𝑤𝑤
 

(𝛤𝛤.
𝑑𝑑∅
𝑑𝑑𝑑𝑑

)𝑒𝑒 − (𝛤𝛤.
𝑑𝑑∅
𝑑𝑑𝑑𝑑

)𝑤𝑤 + � 𝑆𝑆𝑆𝑆𝑆𝑆 = 0
𝑒𝑒

𝑤𝑤
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Table 13. Boundary conditions for the control volume 1D steady state simulation of the Ni-

SDC anode 

Parameter Surface(X=0) Interface(X=L) 
Total Pressure 𝑃𝑃𝑡𝑡(0) = 𝑃𝑃𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑑𝑑𝑃𝑃𝑡𝑡

𝑑𝑑𝑑𝑑
(𝐿𝐿) = 0 

CO partial pressure 𝑃𝑃𝐶𝐶𝐶𝐶(0) = 𝑃𝑃𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑑𝑑𝑃𝑃𝐶𝐶𝐶𝐶
𝑑𝑑𝑑𝑑

(𝐿𝐿) = 0 
CO2 partial pressure 𝑃𝑃𝐶𝐶𝐶𝐶2(0) = 𝑃𝑃𝐶𝐶𝐶𝐶2

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑑𝑑𝑃𝑃𝐶𝐶𝐶𝐶2
𝑑𝑑𝑑𝑑

(𝐿𝐿) = 0 
Electric potential in Ni ∅𝑒𝑒𝑒𝑒(0) = 𝜂𝜂𝑡𝑡 𝑑𝑑∅𝑒𝑒𝑒𝑒

𝑑𝑑𝑑𝑑
(𝐿𝐿) = 0 

Electronic & Ionic Potential 
in SDC 

𝑑𝑑∅𝑒𝑒𝑒𝑒
𝑑𝑑𝑑𝑑

,
𝑑𝑑∅𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑

= 0 ∅𝑒𝑒𝑒𝑒(𝐿𝐿),∅𝑖𝑖𝑖𝑖(𝐿𝐿) = 0 

 

 

 

Here we use a uniform grid system of infinitely small grid points and use the function of 

circular reference in excel to get the value of the desired point. Since the input value of the 

point includes the value of that specific point, hence circular reference function in excel gives 

a viable option. We used a grid system of about 200 points and iterated them over an average 

of 1000 iterations to give the desired result. For a uniform grid system, δx= Δx, so Eq. 48 re-

arranges to 

 

 

And this is what we basically solve to attain the desired value through iterations in excel. Table 

14 summarizes the results of the calculated parameters from the HRSEM images and the above 

𝛤𝛤(∅𝐸𝐸−∅𝑃𝑃)
(𝛿𝛿𝛿𝛿)𝑒𝑒

−  𝛤𝛤(∅𝑃𝑃−∅𝑊𝑊)
(𝛿𝛿𝛿𝛿)𝑤𝑤

 +𝑆𝑆𝛥𝛥𝑥𝑥 = 0 … (48) 

∅𝑃𝑃=�
∅𝐸𝐸+∅𝑊𝑊

2
� + 𝑆𝑆(𝛿𝛿𝛿𝛿)2

2𝛤𝛤
… (49) 
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defined equations. All of these results were used as input parameters to solve the steady state 

diffusion equations. The units were kept consistently SI. 

 

 

Table 14. Calculated parameters for simulation 

Parameter Symbol Value Unit 
Total Pressure 𝑃𝑃𝑡𝑡,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 101325 [Pa] 
Temperature T 1073-873 [K] 

CO partial pressure 𝑃𝑃𝐶𝐶𝐶𝐶,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 0.97 ∗ 𝑃𝑃𝑡𝑡,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 [Pa] 
CO2 partial pressure 𝑃𝑃𝐶𝐶𝐶𝐶2,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 0.03 ∗ 𝑃𝑃𝑡𝑡,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 [Pa] 
Ni Volume Fraction 𝑉𝑉𝑁𝑁𝑁𝑁 0.273  

SDC Volume Fraction 𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆 0.571  

Pore Volume Fraction 𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 0.156  

Ni Tortuosity Factor 𝜏𝜏𝑁𝑁𝑁𝑁 1.32  

SDC Tortuosity Factor 𝜏𝜏𝑆𝑆𝑆𝑆𝑆𝑆 0.93  

Pore Tortuosity 
Factor 

𝜏𝜏𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 0.84  

Pore Diameter 𝑑𝑑 6*10-6 [m] 
TPB Density 𝑙𝑙𝑡𝑡𝑡𝑡𝑡𝑡 3.35*1012 [m/m3] 

Anode Thickness L 5*10-7 [m] 
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Fig 53. Volume specific current and potential distributions from simulation. Anode over-

potential is set to be 0.05V 

 

Fig. 53 shows typical distributions of the potentials and the volume specific current inside the 

anode in the thickness direction. The left hand of the Fig. 53 corresponds to the anode surface 

while the right side shows the electrolyte-anode interface. We can see that largest 𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡 (charge 

transfer current) is at the interface, but some current is still available at about 200nm distance 

from the interface. To the authors knowledge, this is the first time the active region thickness 

of a cermet anode is reported for such a thin nanostructure. The anode over-potential is fixed 

at 0.05 for studying a sample test case. Since the fuel supply (Through CO2 reduction) is  
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Fig 54. Anode over-potentials at various temperatures for indirect carbon fueled SOFC 

 

constant, the concentration over-potential in very small (blue squares). And naturally the 

activation losses tend to decrease towards the right side of the figure (blue circles) as there is 

more charge transfer opportunities available at the interface. 

Fig. 54 shows the effect of the operating temperature on the anode over-potential. The 

simulated over-potential agrees fairly well with the experimental counterpart at high temp of 

1073 K(800°C). The anode over-potential increases with the operating temperature decrease in 

the experiment. The simulation can reproduce this tendency but in the low temperature 
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conditions, 973-873K, it is overestimated especially in the large current density region. One of 

the reason could be that the reverse boudouard reaction that is taking place outside the cell is 

heated at near 800°C, so the fuel gas doesn’t experience any temperature gradient when it finds 

the cell at the very same temperature. But at lower cell operating temperatures (600-700°C) the 

CO fuel might experience a sudden temperature gradient when it enters the fuel cell chamber. 

The exact temperature loss could not be exactly estimated and was not accounted for in this 

simulation. Nonetheless we can still fairly match the trend of the nanostructured anode working 

on CO2 reduction via carbon fuel, within acceptable limits at high temp range.  

We also were able to see the anode structure in high resolution STEM image Fig. 55. The 

figure on the left side shows the Ni-SDC on top of the zirconia electrolyte. Fig55(b) shows the 

EDX representation of the same image. We can see that orange dots represent ceria while the 

sea blue color areas represent Ni. Below that is of course zirconia and the black empty marks 

are actually pores. So we can see that the cermet anode is arranged systematically with ceria 

rings surrounding the Ni particles. The schematic of such arranged nanostructured is shown in 

Fig. 4(c) So we can assume the conduction of the O2 ions through the cathode via the electrolyte 

and where there is a triple phase boundary, the electrochemical reaction will take place, 

producing the necessary electrons conducted by the Ni. To the author’s knowledge, this is the 

first time that the structure of a sputtered cermet anode of this size is seen under TEM and their 

arrangement explained. It is probably due to this arranged structure that the tortuosity (or 

blockage to conduction of gases through pores and conduction of ions and electrolytes) of the 

thin porous electrodes is found lower in simulation, resulting in higher charge transfer currents 

throughout the cermet anode 
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Fig. 55 (a) Scanning Transmission Electron Microscope (STEM) image of the Ni-SDC anode 

on top of the ScSZ electrolyte (b) EDX image of the electrolyte and anode junction (c) 

schematic representation of the Ni-SDC TPBs. 
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6. Concluding Remarks 

6.1 Conclusion 

Thin film nickel-ceria based anode cells were fabricated via two physical vapor deposition 

methods, PLD, and RF sputtering. The anodes were supported on a 150µm zirconia based 

electrolyte support having a screen printed 20µm LSM/YSZ cathode on the other end. Under 

H2 fuel, the PLD Ni-SDC cells exhibited a rather poor performance. It was only when the target 

temperature was increased up to 700°C that the cells showed a meager improvement in 

performance. For RF sputtering of the Ni-SDC anodes, firstly, two sputtering background gases 

were analyzed a) non-reactive Ar only b) reactive Ar/O2:80/20. It was found that O2 reactive 

sputtering background gas, i) retards growth rate, ii) decreases performance, ii) produces lower 

catalytic Ni, and iv) shows higher agglomeration with time, in Ni-SDC cermet anodes, when 

compared to the anodes produced with a non-reactive background gas. Once the proper 

background gas for thin film cermet anode deposition was established, the optimal RF 

sputtering pressure and power conditions were logged. A range of sputtering powers from 50W 

~ 200W with various background Ar pressures of 30mTorr ~ 90mTorr were analyzed. It was 

found out that in general, deposition rate of the thin films grew exponentially with the increase in 

sputtering power for the same target. Also peak power density increased linearly with the increase of 

anode sputtering power. Also, the shape of the thin film Ni-SDC grains changes from, rice like at 50W 

to circular shaped 200W sputtering powers. Remarkably, the anodes made at the largest pressure and 

highest power were not the ones that showed the best performance at an intermediate temperature of 

700°C. After various experiments under same conditions, the optimum conditions for an excellent 

performing Ni-SDC anode were found to be 50mTorr Ar at 100W RF sputtering power. 

Once the optimal anode conditions were established, the optimal cell was now ready to be 

tested by carbon fuel source via the Boudouard reaction. Two different types of carbon were 
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tested, one was pure, conductive, processed carbon Super P-Li, and the other was non-

processed, impure, waste-carbon. It was witnessed that even after costly and lengthy processes, 

thin film Ni-SDC anode did not favor an electrochemical reaction with solid carbon fuel. Once 

the anode was removed and cells were tested with carbon as a fuel as well as an anode, the 

impure waste-carbon performed better than the pure Super P-Li carbon. It was deducted that 

this improvement in performance was due to the presence of impurities like Al and Si, that 

facilitated the oxidation of carbon at high temperatures. Nonetheless, direct carbon was not the 

proper choice to use with a thin film anode, so we shifted towards gasification of waste-carbon 

via Reverse-Boudouard Reaction (RBR). The product of RBR, CO, was made outside the fuel 

cell chamber in a simple home-made bubbler fitted with an inconel filter. The cells showed 

unsatisfactory performance with this system and soon stopped performing due to unfavorable 

reaction conditions between C and CO2 that constitute the RBR at high temperatures. The 

bubbler design was updated and this time it was ensured that no CO2 goes wasted without 

reacting with the carbon. The new designed bubbler showed immediate improvement, with 

OCVs of nearly 0.9V and a peak power density that was 82% of when the same cell was 

operated under hydrogen fuel. The system shown in this research was tested to produce an 

average OCV of 0.8V over a period of 100hrs. Additionally, there was no need to process the 

waste-carbon by this method, which would save cost and time. Due to the optimal methods 

used to produce thin film cermet anodes with indirect carbon fuel source, the results presented 

in this thesis report, matched, and at times outperformed, the results shown in other cited 

researches of the same category.  

Simulation of the thin film anodes was done by the aid of high resolution 2D SEM and 

HRTEM images projected along the nanometer thickness. Simulation results matched fairly 

with the experimental ones. This was the first attempt to successfully model thin cermet anode 
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films fueled by carbon by simple 2D imaging. The combination of cheap fuel conversion 

methods with the state-of-the art thin film fabrication processes to produce high performance 

renewable energy conversion systems, like the one shown in this thesis, have a prospect of 

paving the way for a responsible green energy future.  

 

6.2 Future Work 

The international market for carbon fuel cells(CFCs) is still small compared to SOFC and 

PEMFCs. To improve the standing of CFCs, one needs to combine the simple carbon 

gasification methods, with state-of-the art fabrication technologies that can be tested for 

superior performances for longer operation times. Even though our methods outperformed 

many of the same category researchers’ output, a margin of improvement will always be there 

for those who dare to excel.  

From the promising results achieved in this paper, I intend to apply the simple and cost 

effective methods of carbon gasification shown here, to fuel cells where all the constituents, 

including the electrolytes and the electrodes, are made up of thin film deposition methods. Only 

with the proper research utilization of all aspects this low cost fuel, we shall be able to 

successfully implement the CFCs in the carbon energy infrastructure, that will lead to the 

reduction in emission of greenhouse gases and global warming, ultimately realizing the dream 

of a greener future.    
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국문 초록 
 

Nickel-Samaria 기술 Ceria(Ni-SDC)서멧 양극의 얇은 막들 ScSZ 전해질에 준비되어 

다른 배경 나오는 가스에 의해 RFsputtering에 의해 지원합니다. 일단 의도한 

퇴적 상태 설립되었으며, 그 Ni-SDC 것 다른 sputtering powers(50W~200W)과 배경 

아르곤 가스 pressures(30mTorr~90mTorr)의 범위에 보관되어 있다. 초기 결과는 

양극 얇은 막들 증가 압력과 높은 부착력으로 만든 더 낮은 힘으로 움직이는 

것보다 보여 주었다. 는 중간 산화물 연료 전지 온도 범위에서 최대 전력 출력을 

보였다 흥미롭게도, 가장 높은 출력과 높은 압력에서 만들어진 anodes 유일한 

세력이 아니었다. 결국, 최적의 조건 고성능 박막 Ni-SDC 것을 기록한 것. 이러한 

고성능 것 그때는 단순한 집에서 만든 gasifier에 역 boudouard 반응의 도움으로 

생가공되지 않은 탄소를 이용해서 간접적인 탄소 연료의 원천에 따라 

시험하였다.(위험도 근거 규제). 탄소 연료의 원천은 H2연료 upto a)상시 첨두 

출력 b)장수 c)비용을 낮추는 경기했다. 저자의 아는 바로는 서멧 양극 원료의 

탄소원까지 날짜에 운영 이 일은 가장 높은 보고된 효율성이다. 

 

얇은 영화 것의 시뮬레이션 고화질 2DSEM과 HRTEM 이미지는 나노 미터 

두께를 따라 예상의 도움에 의해 이루어졌다. 시뮬레이션 결과 양이 상당히 

실험적인 것으로 경기했다. 이것은 첫번째 시도 성공적으로 얇은 인쇄 서멧 양극 

영화 탄소가 단순한 2D영상에 힘입어 모델에. 값싼 연료를 변환 방법의 state-of-

the 예술 박막 제작과 조합은 프로세스, 이 중에서 나온 것처럼 고성능 재생 
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에너지 변환 시스템을 생산해야 한다.논문 책임 있는 녹색 에너지 미래의 길을 

될 가능성이 있다. 
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