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Abstract 

 
Recently, the form of a pair of glasses is broadly utilized as a 

wearable device that provides the virtual and augmented reality in 

addition to its natural functionality as a visual aid. These approaches, 

however, have lacked the use of its inherent kinematic structure, 

which is composed of both the temple and the hinge. When we equip 

the glasses, the force is concentrated at the hinge, which connects 

the head piece and the temple, from the law of the lever. In addition, 

since the temple passes through a temporalis muscle, chewing and 

wink activity, anatomically activated by the contraction and relaxation 

of the temporalis muscle, can be detected from the mechanically 

amplified force measurement at the hinge. 

This study presents a new and effective method for automatic 

and objective measurement of the temporalis muscle activity through 

the natural-born lever mechanism of the glasses. From the 

implementation of the load cell-integrated wireless circuit module 

inserted into the both hinges of a 3D printed glasses frame, we 

developed the system that responds to the temporalis muscle activity 

persistently regardless of various form factor different from each 

person. This offers the potential to improve previous studies by 

avoiding the morphological, behavioral, and environmental 

constraints of using skin-attached, proximity, and sound sensors. In 

this study, we collected data featured as sedentary rest, chewing, 

walking, chewing while walking, talking and wink from 10-subject 
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user study. The collected data were transferred to a series of 84-

dimentional feature vectors, each of which was composed of the 

statistical features of both temporal and spectral domain. These 

feature vectors, then, were used to define a classifier model 

implemented by the support vector machine (SVM) algorithm. The 

model classified the featured activities (chewing, wink, and physical 

activity) as the average F1 score of 93.7%. 

This study provides a novel approach on the monitoring of 

ingestive behavior (MIB) in a non-intrusive and un-obtrusive 

manner. It supplies the possibility to apply the MIB into daily life by 

distinguishing the food intake from the other physical activities such 

as walking, talking, and wink with higher accuracy and wearability. 

Furthermore, through applying this approach to a sensor-integrated 

hair band, it can be potentially used for the medical monitoring of the 

sleep bruxism or temporomandibular dysfunction. 

 

Keywords: Glasses, law of the lever, wearable device, monitoring of 

ingestive behavior (MIB), pattern recognition, support 

vector machine (SVM) 

Student Number: 2011-20752 
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Chapter 1. 

Introduction 

1.1. Motivation 

“Give me a place to stand on, and I can move the earth.” 

- Archimedes, AD 340   

1.1.1. Law of the Lever 

This research starts from an Archimedes’ famous quote. He said 

that he could move the earth using a lever of sufficient length. 

Although this statement requires several mechanical assumptions 

and is physically impossible to do so in human performance, it 
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emphasizes the mechanically simple but also effective law of the 

lever. He proved it using geometric reasoning [1]. 

The lever is the beam that pivots at a fixed hinge, or fulcrum, 

from the effects of input and output forces. The input and output 

forces are generally referred to as effort and load, respectively. In 

the ideal condition of no energy dissipation or storage, such as no 

friction at the hinge or bending of the lever, the power that enters the 

lever must be equal to the power that comes out from the lever. From 

this basis, the moment, or torque, equilibrium of the lever system can 

be computed as 

Torque = Effort ∙ LEffort = Load ∙ LLoad (1.1) 

where Effort is the input force, Load is the resistant force, LEffort is 

the perpendicular distance from hinge to the effort, and LLoad is the 

perpendicular distance from the hinge to load. This equation is known 

as the law of the lever. 

The mechanical advantage, MA, of the lever is the ratio of Load 

to Effort, which is 

MA =
Load

Effort
=

LLoad

LEffort
. (1.2) 

This equation shows that the mechanical advantage can be 
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represented by geometric relationship of the hinge, load, and effort. 

This relationship is valid when assuming no losses and stores of 

energy due to friction, elasticity, etc. In the case of the lever, the 

effect of mechanical advantage is also referred to as leverage. 

The levers are classified into three classes by the relative 

positions of the fulcrum, effort and load: 

Class 1: the fulcrum is in the middle (MA > 0). 

Class 2: the load is in the middle (MA > 1). 

Class 3: the effort is in the middle (0 < MA < 1). 

Generally, the classes 1 and 2 are utilized as amplifying the force, 

because there is a gain of the force at the point of the load, whereas 

the class 3 is utilized as a precise operation because of a gain of the 

distance at the point of the load. 
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1.1.2. Lever Mechanism in Human Body 

The human body also utilizes the mechanical advantage from the 

law of the lever through musculoskeletal system. The joint between 

the head and the first cervical vertebra is an example of the class 1 

lever. The head (load) is rotated around the cervical vertebra (hinge) 

by the muscle activity (effort) located in the posterior neck. Another 

example of the class 2 lever is when lifting of the heel from the lower 

leg. The body weight (load) is sustained by the Achilles tendon 

(effort) connected to the calf muscles around the toes (hinge). This 

utilizes the gain of the force. In the case of class 3 lever, an example 

can be found in human’s arm. From the contraction and relaxation of 

the biceps muscle (effort), the forearm (load) can be rotate around 

the elbow joint (hinge). This allows the precise operation of the hand. 

1.1.3. Mechanical Advantage in Auditory Ossicle 

There is only one sensory organ that utilizes the mechanical 

advantage in our body. Each sensory organ, such as visual, auditory, 

olfactory, taste, or tactile organs, receives chemical molecules, sound 
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vibration, photons, or physical pressure, then generate chemical and 

electrical signals transferred to the nervous system. Among them, 

the auditory organ uses physical force amplification through the 

leverage, and force concentration to amplify the weak sound vibration. 

The vibration of air is amplified by the lever mechanism through the 

auditory ossicle, and the transmitted force is concentrated on the 

small stapes footplate area, compared with the large eardrum area 

(see Figure 1.2). 
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1.1.4. Mechanical Advantage in Glasses  

If we closely look at the glasses, there is a natural-born lever 

mechanism from the combination of the temple (effort), hinge 

(fulcrum), and head piece (load). The exerted force on the temple is 

amplified at the hinge contacting to the head piece by the law of the 

lever. This lever is class 2, as the point of the load is in the middle 

of the effect and fulcrum. In this case, the mechanical advantage is 

greater than 1, which results in the force amplification as the ratio of 

the distance from the hinge joint to the representative point where 

the temple contacts with the skin of the temple to the distance from 

the hinge joint to the support plate of the head piece. Also, the force 

concentration occurs at the support plate, as the area which the force 

exerted is different (see Fig. 1.3).
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1.2. Background 

1.2.1. Biological Information from Temporalis Muscle  

This study was motivated by two ideas: (i) measurement of 

temporalis muscle activity due to its role as a masticatory muscle 

during ingestive behavior; and (ii) the natural lever mechanism of a 

pair of glasses, which pass through the temporalis epidermis when 

equipped. To explain the first idea, contraction and relaxation of the 

temporalis muscle result in elevation, retraction, and side-to-side 

grinding movements of the mandible, or lower jawbone, during the 

mastication cycle [2, 3]. This muscle activity results in approximate 

1.2 mm changes of the muscle thickness, with a lower deviation 

compared with that of the masseter and sternocleidomastoid muscles 

for adults without temporomandibular disorder [4]. Based on this 

background, this study utilized oscillatory patterns of the thickness 

of the temporalis muscle for the monitoring of ingestive behavior 

(MIB). Here, we focused on the second idea and employed glasses 
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that are fastened by friction due to a compressive force at the contact 

area between the temples of the glasses and the temporalis epidermis 

on both sides of the head. In order words, we can monitor the 

temporalis muscle activity by measuring the force exerted onto the 

temple areas of the glasses.
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1.2.2. Detection of Temporalis Muscle Activity 

The force signal exerted on the temple, mentioned in chapter 

1.2.1, has several weaknesses; (a) it is too weak to be detected 

directly from the contact area, (b) it is distributed over the contact 

area, (c) both location and form factors of the contact area differ from 

individual to individual, and (d) direct contact with the epidermis 

exposes the sensor to possible damage from perspiration and rubbing. 

To resolve these problems, we proposed the use of a mechanical 

advantage created by the natural lever mechanism of the glasses. By 

measuring the force on the hinge, where the temple contacts the 

headpiece, it becomes much easier to detect the temporalis muscle 

activity during ingestive behavior. This solution provides the 

following advantages: (a) the force is amplified by the laws of a lever, 

(b) the force is concentrated on the small contact area between the 

temple and the headpiece, (c) the uniform form factor accommodates 

for variety in individuals, and (d) the sensor avoids damage from 

direct contact with the epidermis. The graphical description of these 

features and advantages is illustrated in Fig. 1.6. 

Recently, there has been more practical approaches to recognize 
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chewing events with utilizing the temporalis muscle activity and a 

glassed-type wearable device [5, 6]. Farooq and Sazonov [7] 

attached a piezoelectric sensor onto temporalis epidermis to monitor 

chewing cycles and collected data through a Bluetooth module 

embedded in a pair of glasses. So, they could monitor the eating 

behavior even in walking condition. Zhang, Bernhart, and Amft [8] 

used electromyography (EMG) electrodes in a pair of 3D-printed 

glasses. They designed the suitable placements and the type of the 

EMG electrodes within the glasses. However, they had common 

limitations that the sensor could easily be damaged or influenced by 

the perspiration or hairs between the skin and the sensor. Our 

approaches effectively solved this problem by taking advantage of 

kinematics of the glasses itself. Furthermore, utilizing the two 

sensors on both sides could differentiate left-and-right chewing and 

wink events. 
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1.2.3. Monitoring of Ingestive Behavior 

Maintaining energy balance in the human body is a vital condition, 

as abnormal or excessive energy accumulation is the central cause 

of obesity [9, 10], which could result in various medical 

complications [11]. The main factors in the energy imbalance are 

known to be from the both excessive food intake and insufficient 

physical activity [12].  In 2014, according to an announcement by 

the WHO, the obesity rate has more than doubled since 1980; further, 

39% of adults aged 18 years or older are overweight [13]. These 

figures indicate that energy imbalance is a worldwide prevalent 

epidemic; this condition is serious as it can promote many medical 

complications, such as stroke, heart disease, and cancer [14]. 

Although its etiology is still incompletely understood, the drastically 

increasing rate of recent years in modern societies suggests that a 

behavioral etiology is considered as a significant factor as a biological 

one [15]; therefore, reduced activity and changes in eating patterns 

must be monitored continuously over a long time span. Obviously, 

this behavioral monitoring can also help normal people, who are not 

suffering from obesity or other eating disorders, in maintaining a 
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healthy life. This study aims to present a device, method, and 

evaluation for monitoring the food intake at a practical level in daily 

life. 

There have been many discussions on the monitoring of physical 

activity [16-21], and a variety of commercial products have already 

been introduced at the consumer level and medical stage [22]. 

Monitoring of ingestive behavior (MIB), however, has been less 

studied in practice due to the difficulty of direct and objective 

measurement of food intake, and is still in laboratory setting since it 

is difficult to detect the food intake activity in a direct and objective 

manner. There have been different approaches in the MIB [23-27] 

such as acoustical approaches based on chewing or swallowing 

sounds [28-33], morphological approaches sensing deformation of 

the epidermis [34-39], behavioral approaches using a proximity 

sensor [40, 41] or an inertia measurement unit (IMU) [42-49],  

image analysis [50, 51], electrometric approaches analyzing facial 

muscle activity [52-55], and even pressure information on a smart 

table [56].  These approaches, however, share common limitations 

in that they are obtrusive to the eye and intrusive to use in daily life; 

therefore, we introduce a non-intrusive and un-obtrusive method of 

direct and objective monitoring of ingestive behavior employing the 

use of wearable devices. These approaches were also difficult to 
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apply into daily life applications because of their inherent limitations: 

the methods using sound were easy to be influenced by 

environmental sound; the methods using the movement of the wrist 

were difficult to distinguish from other physical activities when not 

consuming food; and the methods using the image and EMG restricted 

the boundary of movement and environment. These studies 

automated the detection of the food intake using sensors, but the 

scope of the application was limited to the laboratory. 

This study utilized the patterns of the temporalis muscle activity 

as the automatic and objective monitoring of the food intake. The 

temporalis muscle repeats the contraction and relaxation as a part of 

masticatory muscle during the food intake [2, 4]; Thus, the food 

intake activity can be monitored by detecting periodic patterns of the 

temporalis muscle activity. Recently, there have been several studies 

utilizing the temporalis muscle activity [7, 57-59], which used the 

EMG or piezoelectric strain sensor attaching them directly onto the 

skin. These approaches, however, were sensitive to the location of 

the EMG electrodes or strain sensor, and were easily detached from 

the skin due to the physical movement or perspiration. Therefore, we 

proposed a new and effective method using a pair of glasses that 

sense the temporalis muscle activity through two load cells inserted 

in the both hinges in our previous study [60]. This method proved 
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the possibility of detecting food intake with a high accuracy without 

touching the skin. It was also un-obtrusive and non-intrusive 

because of the use of the common glasses. 
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1.3. Research Scope and Objectives 

In this study, we present a new method for the MIB utilizing the 

natural lever mechanism of a pair of glasses, named GlasSense. To 

verity the amplification on the hinge, we conducted an experiment on 

comparing the force directly exerted on the temple area and its 

transmitted force on the hinge. In fact, this amplification principle 

mimics that of sound in the inner ear: the vibration of air (temporalis 

muscle activity) is amplified by the lever mechanism through the 

auditory ossicle (temple); and the transmitted force is concentrated 

on the small stapes footplate area (hinge), compared with the large 

eardrum area. For practical application, we analyzed left-and-right 

chewing behaviors and distinguished these from the other facial 

activity, such as natural head movement, talking and wink. Therefore, 

six distinct behavior sets from 10 subjects were collected and labeled 

into the corresponding set: natural head movement (NHM), left 

chewing (LC), right chewing (RC), left wink (LW), right wink (RW), 

and talking (TK). Then, algorithms for signal preprocessing, feature 

extraction, and supervised machine learning were proposed for the 

classification of the sets. 
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This study also presents a series of protocols of designing and 

manufacturing a glasses-type wearable device that detects the 

patterns of temporalis muscle activities during food intake and other 

physical activities. We fabricated a 3D-printed frame of the glasses 

and a load cell-integrated PCB module inserted in both hinges of the 

frame. The module was used to acquire the force signals, and 

transmit them wirelessly. These procedures provide the system with 

higher mobility, for which can be evaluated in practical wearing 

conditions such as walking and waggling. A performance of the 

classification is also evaluated by distinguishing the patterns of food 

intake from those of physical activities. A series of algorithms were 

used to preprocess the signals, generate feature vectors, and 

recognize the patterns of several featured activities (chewing and 

wink), and other physical activities (sedentary rest, talking, and 

walking). 

We also present detailed protocols of how to implement the 

system that utilized the glasses and temporalis muscle activity for 

the monitoring of the food intake. This system contains a 3D-printed 

frame of the glasses, a circuit module, a data acquisition module, and 

a series of algorithms for data analysis. Furthermore, we also 

investigated the classification among the featured activities (chewing, 

walking, and wink) to verify the potential as a practical system, 
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detecting the food intake distinguished from the physical activity. 
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Chapter 2. 

Proof-of-Concept Validation 

2.1. Experimental Apparatus 

We designed 3D-printed frames of a pair of glasses and 

embedded two ball-type load cells (FSS1500NSB, Honeywell, USA) 

in one of the temples. One load cell was placed between a gap in the 

hinge where the temple contacts the headpiece, and the other was on 

an assumed contact point with the epidermis, which was 69 mm from 

the hinge joint in this experiment (see Fig. 2.2). The device was fixed 

to a stage, which had a linearly movable sub-stage to contact the 

load cell of the temple and a micrometer dial gauge to measure the 

displacement of the temple. We applied the force to both load cells 

by moving the sub-stage with a 50 µm resolution.
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2.2. Measurement Results 

We set a separate experimental apparatus to conduct an 

objective experiment on the comparison of the forces between the 

hinge and the temple for the validation of the mechanical amplification. 

Figure 2.2 shows these settings which were composed of a fixed 

stage equipped with a linear sub-stage, a micrometer dial gauge, and 

the glasses. As displacement of the linear sub-stage was changing, 

the force signal from the hinge, Fhinge, showed a large rate of increase 

in magnitude compared with that from the temple, Ftemple (Fig. 2.3a). 

From linear regressions with the least square method which 

minimizes the sum of squared residuals, we obtained lines-of-best-

fit of Fhinge and Ftemple. The both measured force signals showed a high 

linearity with coefficients of determination of R2 = 0.998 for the hinge 

and R2 = 0.993 for the temple. The regressions were significant with 

p-values of p = 1.53e-121 for the hinge and p = 2.43e-95 for the 

temple. The slopes calculated from the regression coefficients of the 

lines-of-best-fit also showed the large rate of increase in 

magnitude from the hinge (slope = 3.31 N/mm) compared with from 

the temple (slope = 0.44 N/mm). 



 

 31 

Using Ftemple and Fhinge signals as x- and y-values, respectively, 

we obtained the experimental amplification factor from the 

regression coefficients (slope) of the line-of-best-fit (R2 = 0.997 

and p = 2.62e-110); the result showed that the slope was about 7.57, 

which was almost the same as the theoretical amplification factor, 

7.67 (Fig. 2.3b). The theoretical-amplified force is calculated by the 

moment equilibrium of the temple-hinge joint-head piece system as 

follows: 

Fhinge = Ftemple×(Ltemple Lhinge⁄ ) = Ftemple×7.67 (2.1) 
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2.3. Discussion 

In this study, we aim to present a novel method to sense 

temporalis muscle activity through load-cell-embedded-glasses, 

GlasSense. Utilizing the natural lever mechanism between the temple 

and the head piece, we obtained an amplified and concentrated force 

on the hinge. This mechanical amplification was verified by 

comparing the force between the temple and the hinge (Fig. 2.3). The 

experimental amplification factor, 7.57, showed almost the same 

value as the theoretical one, 7.67. It is expected that the slight 

decrease in the experimental value was due to measurement errors 

and other reaction forces in the real world, such as friction of the 

hinge joint. With the exception of such factors, the amplification 

factor is purely influenced by the geometric properties, Ltemple and 

Lhinge, according to the moment equilibrium equation (2.1). So, we can 

increase the amplification factor by increasing the proportion of Ltemple 

to the Lhinge as much as possible. 

When the exerted force on the temple was smaller than 0.5 N, a 

large deviation of the data from the line-of-best-fit was observed 

as shown in Figure 2.3b. We assume two possible reasons: the 
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contact and the exerted force were insufficient to measure the 

meaningful data in this condition (< 0.5 N); and weight of the temple 

and the electronic wires primarily affected the load cell on the hinge 

when the applied force was extremely small. When enough forces 

greater than 0.5 N were exerted on the temple, the experimental 

results were in a good agreement with simulation results for 

amplification factors. In general wearing condition, these gravitational 

and contactless factors can be discarded because the glasses is 

equipped with the perpendicular direction to the gravity, and the 

sensors have pre-loaded compressive force enough to support the 

glasses against the gravity. 

In practical wearing situation, the difference in the contact area 

between the temple and the hinge also affect the amplification factor. 

The contact area of the temple is larger than that of the hinge and 

differ from individual to individual. The transmitted force to hinge, 

meanwhile, can be concentrated and accommodate a variety of 

individual’s form factors. With the consideration of the force 

concentration, the amplification factor is expected to become much 

larger than the experimental result. 
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Chapter 3. 

Implementation of GlasSense 

3.1. Hardware Prototyping 

As this study focuses on a data analysis to distinguish the food 

intake from other physical activities such as walking, the sensor and 

data acquisition system need to be implemented to provide mobility. 

Thus, the system includes two load cells, two amplifiers, a micro 

controller unit (MCU) with wireless communication capability, and a 

battery. 
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3.1.1. Preparation 

In this step, we prepare electronic parts to manufacture a 

sensor-integrated and data-transmitting circuit module of 

GlasSense. 

Load cells 

We prepared two load cells to measure force signals on both the 

left and right sides of the glasses. In this study, two ball-type load 

cells (FSS1500NSB, Honeywell, USA) was used. This force sensor 

operates in a range between 0 N and 15 N, and produces an output 

of low differential voltage with maximum 120 mV span in a 3.3 V 

excitation. Thus, the amplification of the output voltage is needed to 

implement the protocol. 

Instrumentation Amplifier 

We prepared two amplifiers to magnify each force signal of the 

load cells, respectively. Two instrumentation amplifiers (INA125U, 

Texas Instruments, USA) were used to obtain an accurate and stable 

output voltage. The gain-setting resistor Rg was set to 15 kΩ, 

thereby it amplifies the force signals eight times, up to 960 mV, not 
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to exceed a 10-bit analog-to-digital converter (ADC) of the micro 

controller unit (MCU) we used in the next step. 

Micro controller unit 

We prepared an MCU to read the force signals and to transmit 

them to a data acquisition module wirelessly. The ESP8266 module 

(ESP-07, Shenzhen Anxinke Technology, China) was used to utilize 

the both 10-bit ADC and Wi-Fi connectivity. Note that we have two 

analog force inputs; we need to use a multiplexer in the next step, 

however, since the ESP8266 series have only one analog input pin. 

2-channel multiplexer 

We prepared an analog multiplexer to handle the two signals with 

one ADC pin. A two-channel multiplexer (74LVC1G3157, Nexperia, 

Netherlands) was used. 

Lithium-ion polymer battery 

We prepared a battery to operate the system during an 

experiment. A lithium-ion polymer (LiPo) battery (MP701435P, 

Maxpower, China) were used with a 3.7 V nominal voltage, 300 mAh 

nominal capacity, and 1 C discharge rate. As the entire circuit system 
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consumes maximum 200 mA per hour when transmitting data, the 

battery was chosen to supply enough current per hour more than 200 

mAh. 

Other parts 

We prepared five 12 kΩ registers as pull-up resistors of the 

ESP-07. The surface-mounted devices (SMD) type resistors of 

2012 metric size were used. 

3.1.2. Load Cell-Integrated Circuit Module 

Figure 3.1 and 3.2 show the schematic diagram of the left and 

right circuit, respectively. Autodesk EAGLE was used for the circuit 

design and the fabrication of the circuit boards. Figure 3.3 show the 

results of the left and right board artworks, respectively. In order to 

reduce the size and weight of the system and obtain a reliable quality, 

we placed an order of the fabrication process to a PCB fabrication 

company in South Korea. We soldered every electronic component 

prepared in chapter 3.1.1 of the protocol to the PCBs. In Figure 3.4, 

the complete version of the both top and bottom layers of the both 

boards are presented. Note that INA125 series is very sensitive to 
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the soldering temperature. Make sure that lead temperature does not 

exceed 300°C for 10 seconds during soldering, otherwise it may 

cause the permanent damage to the component. 
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3.1.3. 3D Printed Frame of Glasses 

The frame consists of a head piece and a pair of temples on both 

sides. 

Head piece design 

We designed a 3D model of the head piece of the glasses using 

a 3D modeling tool as shown in Fig. 3.5a. We used the Autodesk 

Fusion 360 for modeling. Any commercial 3D design tools can be 

replaced for it. 

Temples design 

We design the 3D model of the left and right temples of the 

glasses as shown in Fig. 3.5b and Fig. 3.5c. The temple parts should 

be designed to integrate the PCB modules fabricated in section 3.1.2 

of the protocol. The load cell should be placed to be pressed by a 

support bolt at a support plate of the head piece when equipped. 

3D printing 
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We printed the head piece and temple parts using a 3D printer 

(Ultimaker 2, Ultimaker, The Netherlands) and a carbon fiber 

filament (ColorFabb XT-CF20, ColorFabb, The Netherlands) at 

240°C of a nozzle temperature and 80°C of a bed temperature. The 

use of any commercial 3D printer and any types of filaments such as 

ABS and PLA can be permitted. The nozzle and bed temperatures 

may be adjusted according to the filament and printing conditions. 

Polishing 

The tips of the temples were heated using a hot air blower of a 

180°C setting and bend them inward like conventional glasses. The 

degree of bending does not need to be rigorous as the purpose of the 

curvature is to increase a form factor by helping the glasses fit on a 

subject’s head when equipped. Be careful, however, that excessive 

bending will prevent the temples from touching the temporalis muscle, 

which makes it impossible to collect significant patterns.
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3.1.4. Hardware Integration 

We inserted the PCB modules into the temples by using M2 bolts 

to fasten it. A representative result of the PCB-integrated glasses 

was shown in Fig. 3.6. Then, we assembled the head piece and the 

temples by inserting the M2 connecting bolts into the hinge joints. 

After that we connected the left and right PCBs using the connecting 

wires. Finally, the battery was connected to the left circuit and 

attached to the left temple. The mounting side of the battery is not 

critical, since it may vary depending on the PCB design. We also 

covered rubber tapes on the tip and the nose pad of the glasses to 

add more friction with the human skin as shown in Fig. 3.6. 

Through the procedures outlined above, we prepared two 

versions of the 3D printed frame by differentiating the length of the 

head piece, LH (133 and 138 mm), and the temples, LT (110 and 125 

mm), as shown in Fig. 3.5. Therefore, we can cover various wearing 

conditions which can be varied from subjects’ head size, shape, etc. 

The subjects chose one of the frames to fit it to their head in the user 

study. The vertical distance, Lh, between the hinge joint and the hole 

for the support bolt was set to 7.5 mm for the amplified force not to 



 

 48 

exceed the 15 N, the linear operating range of the load cell. The head 

piece should have a thickness, tH, enough to resist the bending 

moment transmitted from the both support bolts when equipped. We 

chose the tH to be 6 mm with a use of carbon fiber material from a 

heuristic approach. The contact points can be adjusted through the 

support bolts to fine-tune the tightness of the glasses as shown in 

Fig. 3.7.
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3.2. Data Acquisition System 

The data acquisition system is composed of a data transmitting 

module and a data receiving module. The data transmitting module 

read the time and the left and right force signals, and then send them 

to the data receiving module, which gathers the received data and 

write them to a file. 

3.2.1. Wireless Data Transmission 

We generated the codes which read the time and force signals 

with 200 samples per second, and transmit them to the data receiving 

module. We make the ESP-07 act as an access point (AP) and send 

the data through a user datagram protocol (UDP) stream. Arduino 

IDE was used to develop the codes. 

3.2.2. Data Collecting Module 

We also generated the codes which receive the transmitted data 
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and save them to a file. The received data is saved with a subject’s 

information such as name, sex, age, and body mass index (BMI). We 

used Unity IDE and C# with MonoDevelop to develop the codes. Build 

the generated codes into a smart phone. In this study, we used iPhone 

6s Plus (Apple, USA), but any computing device (Android, Windows, 

OSX, etc.) is allowed if it has a Wi-Fi capability.
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Chapter 4. 

Data Collection through User Study 

4.1. Preparation for Experiment 

In this study, all the experiments were performed by simply 

wearing the glasses. All the data were acquired by measuring the 

force signals from load cells inserted in the glasses and not in a direct 

contact with the skin. All the procedures including the use of human 

subjects were accomplished by a non-invasive manner of simply 

wearing a pair of glasses as usual. The data were wirelessly 

transmitted to the data recording module, which, in this case, a 

designated smart phone for the study. All the protocols were not 

related to in vivo/in vitro human studies. No drug and blood samples 

were used for the experiments. Informed consent was obtained from 
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all subjects of experiments. 

Before starting the user study, a subject selected a pair of 

glasses which have an appropriate size and form factors to the head. 

Then, fine-tune of the tightness with the support bolts at both the 

hinges was provided (Fig. 3.7). Note that the force values must not 

exceed 15 N, since the force sensors suggested in this study may 

lose the fine linear characteristic in case of 15 N input force. After 

all the preparation for the experiment, the six featured activity sets 

were collected: sedentary rest (SR), sedentary chewing (SC), 

walking (W), chewing while walking (CW), sedentary talking (ST), 

and sedentary wink (SW).
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4.2. Activity Recording 

The purpose of this study was to design a pair of glasses and 

define a classifier model that consistently sense temporalis muscle 

activity regardless of intra- and inter-individual variability. Thus, 

we collected and analyzed the data from 10-subject user study (five 

males and five females, the average age was 28.2 ± 3.3 (s.d.: standard 

deviation) years, ranged at 22–31 years, and the average body mass 

index (BMI) was 21.4 ± 3.5 (s.d.) kg/m2, ranged at 17.9-27.4 kg/m2) 

to define only one SVM classifier corresponding to all subjects. We 

recorded force signals per every consecutive window of 2-second 

frame. This window size was chosen from the fact that chewing 

frequency mainly ranges from 0.94 Hz (5th percentile) and 2.17 Hz 

(95th percentile) [61]. So a 2-second single window could contain 

multiple chewing activities. In order to reflect the variety of food 

properties, the chewing sets were conducted for three different food 

textures: bread (sliced white breads and croissants); potato chip 

(Lay’s); and jelly (Jelly Belly). Each item differentiates its texture 

from a distinct hardness, crispiness, and tackiness. For example, the 

bread represents the soft, the potato chip does the hard and crispy, 
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and the jelly does the soft and tacky texture. The toasted bread was 

served in slices of 20 mm by 20 mm size good for eating. In the case 

of SW, we informed the subjects of the timing of wink by an informing 

bell sound of 0.5 seconds long every three seconds. 

We recorded an activity during 120-second block and generate 

a recording file of it. This file contains a sequence of the time when 

the data was received, a left force signal, a right force signal, and a 

label representing the current facial activity. Visualizations of 

temporal signals of all activities in a block of a user were depicted in 

Fig. 4.1. The six featured activity sets (SR, SC, W, CW, ST and SW) 

were labeled as 1, 2, 3, 4, 5, and 6, respectively. The labels were 

used to compare the predicted classes in section 8 of the protocol. 

We provided a 60-second break after the recording block. The 

subjects took off the glasses during the break, and wore it again when 

the recording block restarted. This action prevents the data from 

being overfit to a specific wearing condition. We repeated the block-

and-break set four times for each activity. In the case of SC, SW, 

and W, the subjects conducted the blocks in the order of left, right, 

left, and right, sequentially. We also repeated the block-and-break 

sets for all the activity sets.
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Chapter 5. 

Feature Extraction 

5.1. Signal Preprocessing and Segmentation 

In order to classify the collected samples into the corresponding 

sets, we applied a series of algorithms for signal preprocessing, 

feature extraction, and supervised machine learning techniques. First, 

the Hanning window was applied to each window to reduce the 

spectral leakage on performing the FFT. A low-pass filter with cut-

off frequency of 10 Hz was then applied to calculated power spectral 

density (PSD) functions, because the chewing frequency does not 

exceed 3 Hz [61]. From the Figure 5.2, it was confirmed that the 

frequency higher than 10 Hz had too small variation among the sets 

to use for classification. 
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The left and right signals are calculated separately in the 

following procedures. All the procedures were implemented in 

MATLAB (Mathworks, U.S.A.). 

5.1.1. Temporal Frame 

We segmented the recorded signals into frames of two seconds 

long by hopping them at 1-second intervals as shown in Fig. 4.1. 

Apply a Low-Pass Filter (LPF) using a 5th order Butterworts filter 

with a cutoff frequency of 10 Hz for each frame. The results were 

saved as the temporal frames for the next steps. 

5.1.2. Spectral Frame 

We subtracted the median value from the original signals of a 

frame to remove the preload when equipped with the glasses. The 

preload value is not required for the following frequency analysis, 

since it does not include any information about chewing, walking, 

wink, etc. On the other hand, it connotes insignificant information, 

which can vary from subject to subject, from every setting of the 

glasses, and even from the moment a subject wear the glasses. We 
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applied the Hanning window to each frame to reduce a spectral 

leakage on frequency analysis. A single-sided spectrum use 

produced by applying a Fast Fourier Transform (FFT) to each frame. 

A combination of a temporal frame and a spectral frame of the same 

time was defined as a frame block or simply a frame.
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5.2. Feature Extraction 

In this study, the signals were related to time series analysis, 

such as audio signal, EMG signal, inertial signal, etc. Because these 

data is voluminous and dynamic, it is hard to process directly in any 

analysis task. Time-domain and frequency-domain features have 

representative information of the original signals and reducing the 

volume of data [62]. 

A feature vector is generated per frame produced in chapter 5.1. 

The left and right frames are calculated separately and combined into 

a feature vector in the following procedures. All the procedures were 

implemented in MATLAB. 

In order to extract appropriate features for the classification, we 

used statistical features from temporal and spectral domains of a 

window (2-second recording frame). The entire feature list can be 

found in Tables 5.1 and 5.2. Total number of 84 features was used 

to build a feature vector with a label ranged from 1 to 6 depending on 

its behavioral set. 

After that, we extracted statistical features from both temporal 

and spectral domains. The temporal features were calculated from 
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the filtered force signals and the spectral features from a single-

sided spectrum of the FFT. The left and right features were 

calculated separately except for correlation features such as a 

correlation coefficient and signal magnitude area. The correlation of 

the left and right force signals enabled the classification of the LC 

and RC. These features were then scaled and normalized over the 

whole feature vectors. After that, an 84-dimensional feature vector 

and the corresponding label were created for each sample. Finally, 

this feature vector and label were used to train and predict the class 

using Support Vector Machine (SVM), a well-known classifier that 

shows excellent performance in generalization and robustness on 

supervised machine learning problems [63]. In this study, we used 

the LibSVM [64] software package for MATLAB to implement the 

SVM classifier with a Radial Basis Function (RBF) kernel. 
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5.2.1. Temporal Features 

We extracted statistical features from a temporal frame. A list 

of the total number of 54 features is given in Table 5.1.
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Table 5.1 A list of extracted temporal features 

No. Feature description No. Feature description 

1 Standard deviation L 28 Skenwness R 

2 Standard deviation R 29 Kurtosis L 

3 Coefficient of variation L 30 Kurtosis R 

4 Coefficient of variation R 31 Autocorrelation function coefficients L 

5 Zero crossing rate L 32 Autocorrelation function coefficients R 

6 Zero crossing rate R 33 Signal energy L 

7 20th percentile L 34 Signal energy R 

8 20th percentile R 35 Log signal energy L 

9 50th percentile L 36 Log signal energy R 

10 50th percentile R 37 Entropy of energy L 

11 80th percentile L 38 Entropy of energy R 

12 80th percentile R 39 Peak-to-peak amplitude L 

13 Interquartile range L 40 Peak-to-peak amplitude R 

14 Interquartile range R 41 The number of peaks L 

15 Square sum of 20th percentile L 42 The number of peaks R 

16 Square sum of 20th percentile R 43 Mean of time between peaks L 

17 Square sum of 50th percentile L 44 Mean of time between peaks R 

18 Square sum of 50th percentile R 45 Std. of time between peaks L 

19 Square sum of 80th percentile L 46 Std. of time between peaks R 

20 Square sum of 80th percentile R 47 Prediction ratio L 

21 1st bin of binned distribution L 48 Prediction ratio R 

22 1st bin of binned distribution R 49 Harmonic ratio L 

23 2nd bin of binned distribution L 50 Harmonic ratio R 

24 2nd bin of binned distribution R 51 Fundamental frequency L 

25 3rd bin of binned distribution L 52 Fundamental frequency R 

26 3rd bin of binned distribution R 53 Correlation coefficient of L and R 

27 Skenwness L 54 Sigmal magnitude area of L and R 
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5.2.2. Spectral Features 

We extracted statistical features from a spectral frame. A list of 

the total number of 30 features is given in Table 5.2.
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Table 5.2 A list of extracted spectral features 

No. Feature description No. Feature description 

1 Spectral energy L 16 Spectral spread R 

2 Spectral energy R 17 Spectral entropy L 

3 Spectral zone 1 of energy L 18 Spectral entropy R 

4 Spectral zone 1 of energy R 19 Spectral entropy of energy L 

5 Spectral zone 2 of energy L 20 Spectral entropy of energy R 

6 Spectral zone 2 of energy R 21 Spectral flux L 

7 Spectral zone 3 of energy L 22 Spectral flux R 

8 Spectral zone 3 of energy R 23 Spectral rolloff L 

9 Spectral zone 4 of energy L 24 Spectral rolloff R 

10 Spectral zone 4 of energy R 25 Maximum spectral crest L 

11 Spectral zone 5 of energy L 26 Maximum spectral crest R 

12 Spectral zone 5 of energy R 27 Spectral skewness L 

13 Spectral centroid L 28 Spectral skewness R 

14 Spectral centroid R 29 Spectral kurtosis L 

15 Spectral spread L 30 Spectral kurtosis R 
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5.2.3. Feature Vector Generation 

An 84-dimentional feature vector was generated by combining 

the temporal and spectral features above. The generated feature 

vectors were labeled from the recordings. We repeated this 

procedures for all frame blocks and generate a series of feature 

vectors.



 

 72 

Chapter 6. 

Classification of Featured Activity 

6.1. Support Vector Machine (SVM) 

This chapter is to select the classifier model of a Support Vector 

Machine (SVM) [65] by determining parameters which shows the 

best accuracy from the given problem (i.e., feature vectors). The 

SVM is a well-known supervised machine learning technique, which 

shows excellent performance in generalization and robustness using 

a maximum margin between the classes and a kernel function. We 

used a grid-search and a cross-validation method to define a penalty 

parameter C and a kernel parameter γ of the Radial Basis Function 

(RBF) kernel. A minimum understanding of machine learning 

techniques and the SVM is required to perform the following 



 

 73 

procedures. All the procedures in this chapter was implemented using 

LibSVM [64] software package for MATLAB. 
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6.2. Design of Classifier Model 

6.2.1. Grid-Search 

We defined the grid of pairs of (C, γ) for the grid-search with 

exponentially growing sequences of C (2-10, 2-5, …, 230) and γ (2-30, 

2-25, …, 210) as shown in Fig. 6.3. These sequences were determined 

heuristically. 

6.2.2. Cross-Validation 

For each grid of a pair of (C, γ), the 6-fold cross-validation 

scheme was performed. This scheme divides the entire feature 

vectors into 6-part subsets, then test one subset from the classifier 

model trained by the other subsets, and repeat it over all the subsets, 

one by one. Therefore, every feature vectors can be tested 

sequentially. Note that each feature to be tested must be scaled, or 

normalized, from the training subset. For example, the first feature  
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of a feature vector should be scaled linearly to the range of [0, 

1] for the all first features in the training feature vectors. This step 

increases the accuracy of the classification by making the features 

the equal range and avoiding numerical errors during the calculation. 

The scale vector obtained from the above was applied to the testing 

set. 

A classification accuracy was calculated on the testing set. The 

accuracy was calculated from the percentage of feature vectors 

which are correctly classified. For each grid of a pair of (C, γ), the 

average accuracy was calculated from all the subsets. The local 

maximum of the highest accuracy of the grid can be found (see Fig. 

6.1). As a result, the precision, recall, and F1 score of each class of 

activities were calculated through following equations: 

where TP, FP, and FN represent true positives, false positives, and 

false negatives for each activity, respectively. The confusion matrix 

of all the activities is given in Table 6.1. 

Precision =
TP

TP +  ∑ FP
 (6.1) 

Recall =
TP

TP +  ∑ FN 
 (6.2) 

F1 score = 2 ∙
Precision ∙ Recall

Precision + Recall
 (6.3) 
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6.3. Classification Result 

Table 6.1 shows the representative results of the classification 

for the entire activity sets. The average F1 score resulted in 80.5%. 

If considered as a single score, the performance may seem to be 

relatively degraded compared to the result of the previous study [60] 

with the same approach. Significant information, however, can be 

extracted by comparing the outcomes between each activity. The SR 

was relatively well distinguished from the SC, CW, and SW, but not 

from the W and ST. The both chewing activities, the SC and CW, were 

hard to be distinguished from each other. On the other hand, it can be 

observed that the both chewing activities can be easily separable 

from the SR, W, ST, and SW, which represent the other physical 

activities. In the case of the SW, the wink activity turned out to be 

misclassified slightly throughout the other activities. 

In order to obtain more meaningful results from the above, we 

grouped and re-defined the activities into new ones. The two 

chewing activities, SC and CW, were grouped into one activity, and 

defined as chewing. The SR, W, and ST, which had a large degree of 

misclassification among themselves, were also grouped into one 
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activity, defined as physical activity. As a result, we obtained new 

representative results of the classification re-performed through the 

activities featured as chewing (C), physical activity (PA), and 

sedentary wink (SW), as shown in Table 6.2. The results showed 

that the high prediction score with 91.4% of F1 score. 
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6.4. Performance Improvement 

The performance of the classification can be improved by feature 

selection procedures. The feature selection is the process of 

selecting a subset of relevant features which simplify the given 

problem, reduce training times, avoid the curse of dimensionality, and 

enhance generalization by reducing overfitting [66]. This study used 

the forward feature selection (FFS) procedures, which is depicted in 

Fig. 6.4. 

The performance of the all activities improved from 80.4% to 

85.8% by verifying the features and eliminating redundant features. 

A total of 29 features were selected before the performance was 

saturated and diminished. The performance of the re-defined 

activities was improved from 92.3% to 93.7% as well. A total of 26 

features were selected as shown in Fig. 6.7 and Table 6.4. 

Figure 6.6 shows the scatter plot of the first two selected 

features of the all activities. Some notable observations were found: 

two chewing activities have small spectral spread and skewness; rest, 

talking, walking have large spectral spread; rest, talking, walking 

have small skewness; wink has large skewness; and wink was spread 
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on spectral spread. Figure 6.8 shows the scatter plot of the first two 

selected features of the re-defined activities. Some notable 

observations were found as well: chewing has large signal magnitude 

area (SMA); chewing has small SMA; wink has large skewness; wink 

has small SMA; and physical activities have small SMA and skewness. 
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Table 6.3 List of selected features for the entire activities 

Selected Feature Accuracy (%) 

1 Spectral spread (R) 41.3 

2 Skenwness (R) 50.7 

3 Log signal energy (R) 55.0 

4 20th percentile (L) 58.9 

5 80th percentile (R) 64.3 

6 Spectral spread (L) 68.9 

7 Correlation coefficient 72.0 

8 Log signal energy (R) 74.6 

9 Spectral centroid (R) 76.9 

10 Peak-to-peak amplitude (L) 78.2 

11 Spectral centroid (L) 79.4 

12 20th percentile (R) 80.5 

13 Peak-to-peak amplitude (R) 81.4 

14 80th percentile (L) 82.0 

15 Zero crossing rate (R) 82.7 

16 Entropy of energy (R) 83.3 

17 50th percentile (R) 83.6 

18 50th percentile (L) 84.3 

19 Harmonic ratio (R) 84.6 

20 Standard deviation (L) 84.8 

21 Spectral energy (R) 84.9 

22 Skenwness (L) 85.1 

23 5th Sub-band spectral energy (R) 85.3 

24 Standard deviation (R) 85.4 

25 Spectral rolloff (L) 85.5 

26 Entropy of energy (L) 85.5 

27 Spectral entropy (L) 85.7 

28 Spectral energy (L) 85.7 

29 Coefficient of vacation (L) 85.8 
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Table 6.4 List of selected features for the re-defined activities 

Selected Feature Accuracy (%) 

1 Signal magnitude area 73.5 

2 Skenwness (R) 81.0 

3 Correlation coefficient 84.1 

4 Harmonic ratio (L) 85.6 

5 20th percentile (L) 86.7 

6 80th percentile (R) 87.7 

7 Spectral crest (L) 88.6 

8 Entropy of energy (R) 89.3 

9 Log signal energy (L) 90.1 

10 Spectral spread (L) 90.9 

11 Spectral Skenwness (R) 91.3 

12 Peak-to-peak amplitude (L) 91.7 

13 Standard deviation (R) 92.0 

14 50th percentile (L) 92.2 

15 Fundamental frequency (R) 92.4 

16 Skewness (L) 92.7 

17 20th percentile (R) 92.9 

18 The number of peaks (L) 93.1 

19 Log signal energy (R) 93.2 

20 80th percentile (L) 93.4 

21 Spectral crest (R) 93.5 

22 50th percentile (R) 93.5 

23 Spectral entropy of energy (L) 93.6 

24 Entropy of energy (L) 93.7 

25 Standard deviation (L) 93.7 

26 Square sum up to 80th percentile (R) 93.7 
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6.5. Discussion 

To obtain the reliable data reflecting different head sizes and 

shapes for each subject, two versions of the glasses were provided 

by varying the length of the head piece and temples. In addition, 

utilizing the support volts to fine-tune the wearability, we could 

adjust the tightness of the glasses. Thus, the data collected through 

the various glasses, subjects, and wearing conditions could reflect 

intra- and inter-individual variability and different form factors. 

According to an earlier study of chewing frequency, the chewing 

activity is mainly ranged from the 0.94 Hz (5th percentile) to the 

2.17 Hz (95th percentile) [61]. Thus, this study set the frame size 

to 2 seconds so that a frame contains multiple chewing activities. This 

frame size is also suitable for containing the one or more walking 

cycles generally ranged from 1.4 Hz to 2.5 Hz [67]. We conducted 

the walking activity at a speed of 4.5 km/h on a treadmill, because 

the normal walking speed varies from 3.3 km/h to 6.5 km/h [67, 68]. 

The hop size in Fig. 4.1 was determined from that we had recorded 

the wink data at 1-second intervals by informing the subjects of the 

exact performing time from sound. We also filtered the data with the 
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cutoff frequency of 10 Hz, because we found that the signals over 10 

Hz had no significant information on chewing detection from our 

previous study [60]. 

From the results of the Table 6.1, we can discuss in-depth 

details of the classification. First, the two chewing activities, SC and 

CW, were clearly distinguished from the other activities. Among them, 

the distinction from the walking activity suggests a possibility that 

the food intake activity, which is the main purpose of this study, can 

be easily separable from the active physical activity, such as walking, 

using our system. As shown in Fig. 4.1, it can be verified that the 

chewing and wink signals, activated from the temporals muscle 

activity, were significantly different from those not. On the other 

hand, the distinction between the two chewing activities showed 

relatively high misclassifications. They played a dominant role in 

lowering the both precision and recall of the chewing activities. 

In terms of chewing detection, the SR, W and ST can be regarded 

as unintended noise in daily life. The wink activity, on the other hand, 

can be considered as meaningful measurement, because it is also 

activated from the temporalis muscle activity as well. Based on the 

above, the two chewing activities were bounded into a chewing 

activity (C), and the other activities except for the wink were 

grouped into a physical activity (PA). Table 6.2 shows the 
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classification results on these activities: chewing (C), physical 

activity (PA), and sedentary wink (SW). We can find more 

remarkable results from it. It connotes the information about whether 

the system is robust on detecting food intake without being affected 

by other physical activities. Furthermore, it also indicates whether it 

is possible to distinguish food intake from other face activity such as 

wink. The results show that the chewing activity can be well 

distinguished from the other activities by a high F1 score of 93.4%. 

In the case of wink, the recall (85.5%) was slightly lower than that 

of the other activities. This means that the quality of the collected 

data of wink was likely to be low, as the users had to wink at exact 

time in 3-second intervals. In fact, it was observed that the users 

missed the wink or the glasses flowed down occasionally during the 

user study. 

Because the system has two load cells on both sides, it can be 

possible to distinguish the left and right events of the chewing and 

wink, as proved in our previous study [60]. Unlike the previous one, 

the aim of this study was focused on showing the ability that the 

system could effectively separate food intake from the physical 

activities. If the data will be sufficiently accumulated through the user 

study, the further research on the left and right classification can be 

conducted, utilizing the correlation features included in the feature 
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vector. On the other hand, it is hard to distinguish between the 

sedentary activity and walking with the system. If possible, the 

detailed classification of the food intake like eating while sitting, and 

eating on the move will be available with a high accuracy. This can 

be implemented through a sensor fusion technique by adding an 

inertial measurement unit (IMU) to the system [7] . If so, the system 

can track the energy expenditure and the energy intake 

simultaneously. There have been previous approaches on energy 

estimation [69], and this concern will be the main goal of the dietary 

monitoring. We believe that our approach provided the practical and 

potential ways to the detection of food intake and physical activities. 
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Chapter 7. 

Conclusions 

In this study, we first proposed the design and manufacturing 

process of the glasses that sense the patterns of the food intake and 

physical activities. As this study mainly focused on the data analysis 

to distinguish the food intake from the other physical activities such 

as walking and wink, the sensor and data acquisition system needed 

to be implemented to provide mobility. Thus, the system included the 

sensors, the MCU with wireless communication capability, and the 

battery. The proposed protocol provided a novel and practical way to 

measure the temporalis muscles activity due to the food intake and 

wink in a non-contact manner. It is significant in that it provided the 

tools and methodologies that can easily detect the food intake in daily 

life without any cumbersome equipment. 

We are continuing this research in order to enhance practical 
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usability in daily life. There are more dynamic physical behaviors, 

such as head shaking, and running, which can affect the measured 

force signal from the hinge. In order to examine the effects of those 

behaviors, an extended user study will be conducted. This can be 

achieved by adding a MEMS accelerometer sensor to the device to 

cancel the force due to the body movement. From this sensor fusion 

technique, the monitoring of both the energy intake and energy 

expenditure can be tracked in daily life. 

Our approach has another strength on the sensing methodology 

because it utilizes the indirect contact with skin. If the sensor is 

attached or contact with the epidermis, it is prone to be damaged or 

removed from the body. We expect that the non-intrusive and 

contactless sensors in the form of the wearable glasses can achieve 

a robust monitoring of ingestive behaviors with a higher accuracy 

through these investigations. 

Here, we also want to discuss potential of our device as 

glassware wearable capable of recognizing facial patterns, such as 

[70], in a hands-free controller format. Recently, Google glass-

based wearable device has been developed to control voice 

recognition commands into their biomedical applications [71]. Their 

approach seems very creative and helpful for people who may require 

hands-free behaviors and motions in a controlled manner. In this 
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sense, this study can give us the potential to supplement the lack of 

input methods in AR or VR applications without disrupting other 

activities. Furthermore, through applying this approach to a sensor-

integrated hair band, it can be potentially used for the medical 

monitoring of the sleep bruxism [72-76] or temporomandibular 

dysfunction. We further believe that our approach can be an 

innovative wearable device for monitoring and controlling a set of 

facial behaviors such as chewing and talking in a daily lifecare format.
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초 록 

 
최근의 안경은 시력 보조의 기본적인 용도 외에도 증강 또는 가상 

현실 기능을 제공하는 착용형 장치로써 다양하게 연구 또는 활용되고 

있다. 하지만 안경에 대한 이러한 접근은 안경의 시력과 관련된 

기능만을 제공하는 것으로, 안경을 입력 장치로 사용하거나, 안경 

본연의 기구학적 구조를 활용하는 노력이 결여되어 있다. 안경의 

전면부와 다리를 연결하는 힌지는 지렛대의 원리에 의해 힘의 집중이 

발생하는 곳이다. 안경을 착용하였을 때 힌지에 가해지는 예압 패턴의 

변화로부터 측두근을 비롯한 안면 근육의 미세한 움직임을 감지할 수 

있다. 그 결과, 해부학적으로 측두근 및 눈둘레근의 수축과 이완을 

야기하는 저작 및 윙크 활동을 힌지에서 증폭된 힘의 형태로 감지하는 

것이 가능하다. 

본 연구는 안경 본연의 힌지 구조를 활용하여 측두근의 활동을 

객관적이고 자동적으로 감지하는 새롭고 효과적인 방법을 제시한다. 3D 

프린팅 된 안경 틀의 좌우 힌지에 로드셀 통합형 무선 모듈을 내장하여 

사람마다 다양한 형태 인자에 무관하게 안정적으로 반응하는 시스템을 

개발하였다. 이를 통해 기존 연구들이 피부 부착형, 근접형, 또는 소리 

감지형 센서를 사용함으로써 얻는 형태적, 운동적, 환경적 제약을 

효과적으로 해결하였다. 본 연구에서는 10명의 사용자 학습을 통해 

앉아서 쉬기, 씹기, 걷기, 걸으며 씹기, 말하기, 윙크로 정의된 활동의 

신호들을 수집하였다. 수집된 신호는 시간과 주파수 차원의 통계적 
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특징들로 구성된 84차원의 특징 벡터를 정의하였고, 서포트 벡터 머신 

알고리즘과 특징 선택 알고리즘을 통해 씹기, 윙크, 신체 활동을 

93.7%의 F1 점수로 분류하였다. 

본 연구는 비방해적이고, 비간섭적인 방법을 통해 섭식 활동 관찰에 

대한 새롭고 효과적인 접근을 제시한다. 음식 섭취 활동을 걷기, 말하기, 

윙크 등의 다른 활동과 높은 정확도로 구분함으로써, 궁극적으로 음식 

섭취 감지 연구가 일상 생활에 실용적으로 적용될 수 있는 발판을 

마련하였다. 나아가 안면 근육의 복합적 패턴을 분석하여 표정과 감정을 

감지하거나, 수면 중 이갈이나 턱관절 장애 등의 의료적 관찰의 

용도로도 활용될 수 있을 것이다. 

 

주요어: 안경, 지렛대 원리, 착용형 장치, 섭식 활동의 관찰, 패턴 인식, 

서포트 벡터 머신 
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