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Abstract

Recently, the form of a pair of glasses is broadly utilized as a
wearable device that provides the virtual and augmented reality in
addition to its natural functionality as a visual aid. These approaches,
however, have lacked the use of its inherent kinematic structure,
which is composed of both the temple and the hinge. When we equip
the glasses, the force is concentrated at the hinge, which connects
the head piece and the temple, from the law of the lever. In addition,
since the temple passes through a temporalis muscle, chewing and
wink activity, anatomically activated by the contraction and relaxation
of the temporalis muscle, can be detected from the mechanically
amplified force measurement at the hinge.

This study presents a new and effective method for automatic
and objective measurement of the temporalis muscle activity through
the natural—born lever mechanism of the glasses. From the
implementation of the load cell—integrated wireless circuit module
inserted into the both hinges of a 3D printed glasses frame, we
developed the system that responds to the temporalis muscle activity
persistently regardless of various form factor different from each
person. This offers the potential to improve previous studies by
avoiding the morphological, behavioral, and environmental
constraints of using skin—attached, proximity, and sound sensors. In
this study, we collected data featured as sedentary rest, chewing,
walking, chewing while walking, talking and wink from 10—subject
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user study. The collected data were transferred to a series of 84—
dimentional feature vectors, each of which was composed of the
statistical features of both temporal and spectral domain. These
feature vectors, then, were used to define a classifier model
implemented by the support vector machine (SVM) algorithm. The
model classified the featured activities (chewing, wink, and physical
activity) as the average Fi score of 93.7%.

This study provides a novel approach on the monitoring of
ingestive behavior (MIB) in a non-—intrusive and un—obtrusive
manner. It supplies the possibility to apply the MIB into daily life by
distinguishing the food intake from the other physical activities such
as walking, talking, and wink with higher accuracy and wearability.
Furthermore, through applying this approach to a sensor—integrated
hair band, it can be potentially used for the medical monitoring of the

sleep bruxism or temporomandibular dysfunction.

Keywords: Glasses, law of the lever, wearable device, monitoring of
ingestive behavior (MIB), pattern recognition, support
vector machine (SVM)
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Chapter 1.

Introduction

1.1. Motivation

“Give me a place to stand on, and [ can move the earth.”

— Archimedes, AD 5340

1.1.1.Law of the Lever

This research starts from an Archimedes’ famous quote. He said
that he could move the earth using a lever of sufficient length.
Although this statement requires several mechanical assumptions

and is physically impossible to do so in human performance, it



emphasizes the mechanically simple but also effective law of the
lever. He proved it using geometric reasoning [1].

The Jever is the beam that pivots at a fixed Ainge, or fulcrum,
from the effects of input and output forces. The input and output
forces are generally referred to as effort and /load, respectively. In
the ideal condition of no energy dissipation or storage, such as no
friction at the hinge or bending of the lever, the power that enters the
lever must be equal to the power that comes out from the lever. From
this basis, the moment, or torque, equilibrium of the lever system can

be computed as

Torque = Effort* Lgfort = Load - Ligaq (1.1

where Effort is the input force, Load is the resistant force, Lggort 1S
the perpendicular distance from hinge to the effort, and Ly is the
perpendicular distance from the hinge to load. This equation is known
as the law of the lever.

The mechanical advantage, MA, of the lever is the ratio of Load
to Effort, which is

_ Load  Lioad
 Effort LEffort.

(1.2)

This equation shows that the mechanical advantage can be

9 ] 2- 1_l|



represented by geometric relationship of the hinge, load, and effort.
This relationship is valid when assuming no losses and stores of
energy due to friction, elasticity, etc. In the case of the lever, the
effect of mechanical advantage is also referred to as /everage.

The levers are classified into three classes by the relative
positions of the fulcrum, effort and load:

Class 1: the fulcrum is in the middle (MA>0).

Class 2: the load is in the middle (MA>1).

Class 3: the effort is in the middle (0 <MA<1).
Generally, the classes 1 and 2 are utilized as amplifying the force,
because there is a gain of the force at the point of the load, whereas
the class 3 is utilized as a precise operation because of a gain of the

distance at the point of the load.
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1.1.2.Lever Mechanism in Human Body

The human body also utilizes the mechanical advantage from the
law of the lever through musculoskeletal system. The joint between
the head and the first cervical vertebra is an example of the class 1
lever. The head (load) is rotated around the cervical vertebra (hinge)
by the muscle activity (effort) located in the posterior neck. Another
example of the class 2 lever is when lifting of the heel from the lower
leg. The body weight (load) is sustained by the Achilles tendon
(effort) connected to the calf muscles around the toes (hinge). This
utilizes the gain of the force. In the case of class 3 lever, an example
can be found in human’s arm. From the contraction and relaxation of
the biceps muscle (effort), the forearm (load) can be rotate around

the elbow joint (hinge). This allows the precise operation of the hand.

1.1.3.Mechanical Advantage in Auditory Ossicle

There is only one sensory organ that utilizes the mechanical
advantage in our body. Each sensory organ, such as visual, auditory,

olfactory, taste, or tactile organs, receives chemical molecules, sound



vibration, photons, or physical pressure, then generate chemical and
electrical signals transferred to the nervous system. Among them,
the auditory organ uses physical force amplification through the
leverage, and force concentration to amplify the weak sound vibration.
The vibration of air is amplified by the lever mechanism through the
auditory ossicle, and the transmitted force is concentrated on the
small stapes footplate area, compared with the large eardrum area

(see Figure 1.2).
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1.1.4.Mechanical Advantage in Glasses

If we closely look at the glasses, there is a natural—born lever
mechanism from the combination of the temple (effort), hinge
(fulcrum), and head piece (load). The exerted force on the temple is
amplified at the hinge contacting to the head piece by the law of the
lever. This lever is class 2, as the point of the load is in the middle
of the effect and fulcrum. In this case, the mechanical advantage is
greater than 1, which results in the force amplification as the ratio of
the distance from the hinge joint to the representative point where
the temple contacts with the skin of the temple to the distance from
the hinge joint to the support plate of the head piece. Also, the force
concentration occurs at the support plate, as the area which the force

exerted is different (see Fig. 1.3).
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1.2. Background

1.2.1.Biological Information from Temporalis Muscle

This study was motivated by two ideas: (i) measurement of
temporalis muscle activity due to its role as a masticatory muscle
during ingestive behavior; and (ii) the natural lever mechanism of a
pair of glasses, which pass through the temporalis epidermis when
equipped. To explain the first idea, contraction and relaxation of the
temporalis muscle result in elevation, retraction, and side—to—side
grinding movements of the mandible, or lower jawbone, during the
mastication cycle [2, 3]. This muscle activity results in approximate
1.2 mm changes of the muscle thickness, with a lower deviation
compared with that of the masseter and sternocleidomastoid muscles
for adults without temporomandibular disorder [4]. Based on this
background, this study utilized oscillatory patterns of the thickness
of the temporalis muscle for the monitoring of ingestive behavior

(MIB). Here, we focused on the second idea and employed glasses

10 =Tl



that are fastened by friction due to a compressive force at the contact
area between the temples of the glasses and the temporalis epidermis
on both sides of the head. In order words, we can monitor the
temporalis muscle activity by measuring the force exerted onto the

temple areas of the glasses.
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1.2.2.Detection of Temporalis Muscle Activity

The force signal exerted on the temple, mentioned in chapter
1.2.1, has several weaknesses; (a) it is too weak to be detected
directly from the contact area, (b) it is distributed over the contact
area, (c) both location and form factors of the contact area differ from

individual to individual, and (d) direct contact with the epidermis

exposes the sensor to possible damage from perspiration and rubbing.

To resolve these problems, we proposed the use of a mechanical
advantage created by the natural lever mechanism of the glasses. By
measuring the force on the hinge, where the temple contacts the
headpiece, it becomes much easier to detect the temporalis muscle
activity during ingestive behavior. This solution provides the
following advantages: (a) the force is amplified by the laws of a lever,
(b) the force is concentrated on the small contact area between the
temple and the headpiece, (c¢) the uniform form factor accommodates
for variety in individuals, and (d) the sensor avoids damage from
direct contact with the epidermis. The graphical description of these
features and advantages is illustrated in Fig. 1.6.

Recently, there has been more practical approaches to recognize

13 ] 2-1



chewing events with utilizing the temporalis muscle activity and a
glassed—type wearable device [5, 6]. Farooq and Sazonov [7]
attached a piezoelectric sensor onto temporalis epidermis to monitor
chewing cycles and collected data through a Bluetooth module
embedded in a pair of glasses. So, they could monitor the eating
behavior even in walking condition. Zhang, Bernhart, and Amft [8]
used electromyography (EMG) electrodes in a pair of 3D—printed
glasses. They designed the suitable placements and the type of the
EMG electrodes within the glasses. However, they had common
limitations that the sensor could easily be damaged or influenced by
the perspiration or hairs between the skin and the sensor. Our
approaches effectively solved this problem by taking advantage of
kinematics of the glasses itself. Furthermore, utilizing the two
sensors on both sides could differentiate left—and—right chewing and

wink events.
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1.2.3.Monitoring of Ingestive Behavior

Maintaining energy balance in the human body is a vital condition,
as abnormal or excessive energy accumulation is the central cause
of obesity [9, 10], which could result in various medical
complications [11]. The main factors in the energy imbalance are
known to be from the both excessive food intake and insufficient
physical activity [12]. In 2014, according to an announcement by
the WHO, the obesity rate has more than doubled since 1980; further,
39% of adults aged 18 years or older are overweight [13]. These
figures indicate that energy imbalance is a worldwide prevalent
epidemic; this condition is serious as it can promote many medical
complications, such as stroke, heart disease, and cancer [14].
Although its etiology is still incompletely understood, the drastically
increasing rate of recent years in modern socileties suggests that a
behavioral etiology is considered as a significant factor as a biological
one [15]; therefore, reduced activity and changes in eating patterns
must be monitored continuously over a long time span. Obviously,
this behavioral monitoring can also help normal people, who are not

suffering from obesity or other eating disorders, in maintaining a
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healthy life. This study aims to present a device, method, and
evaluation for monitoring the food intake at a practical level in daily
life.

There have been many discussions on the monitoring of physical
activity [16—21], and a variety of commercial products have already
been introduced at the consumer level and medical stage [22].
Monitoring of ingestive behavior (MIB), however, has been less
studied in practice due to the difficulty of direct and objective
measurement of food intake, and is still in laboratory setting since it
1s difficult to detect the food intake activity in a direct and objective
manner. There have been different approaches in the MIB [23—27]
such as acoustical approaches based on chewing or swallowing
sounds [28—33], morphological approaches sensing deformation of
the epidermis [34—39], behavioral approaches using a proximity
sensor [40, 41] or an inertia measurement unit (IMU) [42-409],
image analysis [50, 51], electrometric approaches analyzing facial
muscle activity [52—55], and even pressure information on a smart
table [56]. These approaches, however, share common limitations
in that they are obtrusive to the eye and intrusive to use in daily life;
therefore, we introduce a non—intrusive and un—obtrusive method of
direct and objective monitoring of ingestive behavior employing the

use of wearable devices. These approaches were also difficult to
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apply into daily life applications because of their inherent limitations:
the methods wusing sound were easy to be influenced by
environmental sound; the methods using the movement of the wrist
were difficult to distinguish from other physical activities when not
consuming food; and the methods using the image and EMG restricted
the boundary of movement and environment. These studies
automated the detection of the food intake using sensors, but the
scope of the application was limited to the laboratory.

This study utilized the patterns of the temporalis muscle activity
as the automatic and objective monitoring of the food intake. The
temporalis muscle repeats the contraction and relaxation as a part of
masticatory muscle during the food intake [2, 4]; Thus, the food
intake activity can be monitored by detecting periodic patterns of the
temporalis muscle activity. Recently, there have been several studies
utilizing the temporalis muscle activity [7, 57—59], which used the
EMG or piezoelectric strain sensor attaching them directly onto the
skin. These approaches, however, were sensitive to the location of
the EMG electrodes or strain sensor, and were easily detached from
the skin due to the physical movement or perspiration. Therefore, we
proposed a new and effective method using a pair of glasses that
sense the temporalis muscle activity through two load cells inserted
in the both hinges in our previous study [60]. This method proved
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the possibility of detecting food intake with a high accuracy without
touching the skin. It was also un—obtrusive and non-—intrusive

because of the use of the common glasses.
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1.3. Research Scope and Objectives

In this study, we present a new method for the MIB utilizing the
natural lever mechanism of a pair of glasses, named GlasSense. To
verity the amplification on the hinge, we conducted an experiment on
comparing the force directly exerted on the temple area and its
transmitted force on the hinge. In fact, this amplification principle
mimics that of sound in the inner ear: the vibration of air (temporalis
muscle activity) is amplified by the lever mechanism through the
auditory ossicle (temple); and the transmitted force is concentrated
on the small stapes footplate area (hinge), compared with the large
eardrum area. For practical application, we analyzed left—and—right
chewing behaviors and distinguished these from the other facial
activity, such as natural head movement, talking and wink. Therefore,
six distinct behavior sets from 10 subjects were collected and labeled
into the corresponding set: natural head movement (NHM), left
chewing (LC), right chewing (RC), left wink (LW), right wink (RW),
and talking (TK). Then, algorithms for signal preprocessing, feature
extraction, and supervised machine learning were proposed for the

classification of the sets.
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This study also presents a series of protocols of designing and
manufacturing a glasses—type wearable device that detects the
patterns of temporalis muscle activities during food intake and other
physical activities. We fabricated a 3D—printed frame of the glasses
and a load cell—integrated PCB module inserted in both hinges of the
frame. The module was used to acquire the force signals, and
transmit them wirelessly. These procedures provide the system with
higher mobility, for which can be evaluated in practical wearing
conditions such as walking and waggling. A performance of the
classification is also evaluated by distinguishing the patterns of food
intake from those of physical activities. A series of algorithms were
used to preprocess the signals, generate feature vectors, and
recognize the patterns of several featured activities (chewing and
wink), and other physical activities (sedentary rest, talking, and
walking).

We also present detailed protocols of how to implement the
system that utilized the glasses and temporalis muscle activity for
the monitoring of the food intake. This system contains a 3D—printed
frame of the glasses, a circuit module, a data acquisition module, and
a series of algorithms for data analysis. Furthermore, we also
investigated the classification among the featured activities (chewing,
walking, and wink) to verify the potential as a practical system,

I:.'_'l'li -"_I.i —Il
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detecting the food intake distinguished from the physical activity.
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Chapter 2

Proof-of-Concept Validation

2.1. Experimental Apparatus

We designed 3D-—printed frames of a pair of glasses and
embedded two ball—type load cells (FSS1500NSB, Honeywell, USA)
in one of the temples. One load cell was placed between a gap in the
hinge where the temple contacts the headpiece, and the other was on
an assumed contact point with the epidermis, which was 69 mm from
the hinge joint in this experiment (see Fig. 2.2). The device was fixed
to a stage, which had a linearly movable sub—stage to contact the
load cell of the temple and a micrometer dial gauge to measure the
displacement of the temple. We applied the force to both load cells

by moving the sub—stage with a 50 pum resolution.
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2.2. Measurement Results

We set a separate experimental apparatus to conduct an

objective experiment on the comparison of the forces between the

hinge and the temple for the validation of the mechanical amplification.

Figure 2.2 shows these settings which were composed of a fixed
stage equipped with a linear sub—stage, a micrometer dial gauge, and
the glasses. As displacement of the linear sub—stage was changing,
the force signal from the hinge, Fringe, sShowed a large rate of increase
in magnitude compared with that from the temple, Fempe (Fig. 2.3a).
From linear regressions with the least square method which
minimizes the sum of squared residuals, we obtained lines—of—best—
fit of Fhinge and Fiemple. The both measured force signals showed a high
linearity with coefficients of determination of R = 0.998 for the hinge
and R* = 0.993 for the temple. The regressions were significant with
p—values of p = 1.53e—121 for the hinge and p = 2.43e—95 for the
temple. The slopes calculated from the regression coefficients of the
lines—of—best—fit also showed the large rate of increase in
magnitude from the hinge (slope = 3.31 N/mm) compared with from

the temple (slope = 0.44 N/mm).
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Using Fremple and Fhinge signals as x— and y—values, respectively,
we obtained the experimental amplification factor from the
regression coefficients (slope) of the line—of—best—fit (R>= 0.997
and p = 2.62e—110); the result showed that the slope was about 7.57,
which was almost the same as the theoretical amplification factor,
7.67 (Fig. 2.3b). The theoretical—amplified force is calculated by the
moment equilibrium of the temple —hinge joint—head piece system as

follows:

Fhinge = Ftemplex(Ltemple/Lhinge) = FtempleX7-67 (2.1
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2.3. Discussion

In this study, we aim to present a novel method to sense
temporalis muscle activity through load—cell-embedded—glasses,
GlasSense. Utilizing the natural lever mechanism between the temple
and the head piece, we obtained an amplified and concentrated force
on the hinge. This mechanical amplification was verified by
comparing the force between the temple and the hinge (Fig. 2.3). The
experimental amplification factor, 7.57, showed almost the same
value as the theoretical one, 7.67. It is expected that the slight
decrease in the experimental value was due to measurement errors
and other reaction forces in the real world, such as friction of the
hinge joint. With the exception of such factors, the amplification
factor is purely influenced by the geometric properties, Liemple and
Lhinge, according to the moment equilibrium equation (2.1). So, we can
increase the amplification factor by increasing the proportion of Liemple
to the Lhinge as much as possible.

When the exerted force on the temple was smaller than 0.5 N, a
large deviation of the data from the line—of—best—fit was observed

as shown in Figure 2.3b. We assume two possible reasons: the
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contact and the exerted force were insufficient to measure the
meaningful data in this condition (< 0.5 N); and weight of the temple
and the electronic wires primarily affected the load cell on the hinge
when the applied force was extremely small. When enough forces
greater than 0.5 N were exerted on the temple, the experimental
results were in a good agreement with simulation results for
amplification factors. In general wearing condition, these gravitational
and contactless factors can be discarded because the glasses is
equipped with the perpendicular direction to the gravity, and the
sensors have pre—loaded compressive force enough to support the
glasses against the gravity.

In practical wearing situation, the difference in the contact area
between the temple and the hinge also affect the amplification factor.
The contact area of the temple is larger than that of the hinge and
differ from individual to individual. The transmitted force to hinge,
meanwhile, can be concentrated and accommodate a variety of
individual’s form factors. With the consideration of the force
concentration, the amplification factor is expected to become much

larger than the experimental result.
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Chapter 3

Implementation of GlasSense

3.1. Hardware Prototyping

As this study focuses on a data analysis to distinguish the food
intake from other physical activities such as walking, the sensor and
data acquisition system need to be implemented to provide mobility.
Thus, the system includes two load cells, two amplifiers, a micro
controller unit (MCU) with wireless communication capability, and a

battery.
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3.1.1.Preparation

In this step, we prepare electronic parts to manufacture a
sensor—integrated and data—transmitting circuit module of

GlasSense.

Load cells

We prepared two load cells to measure force signals on both the
left and right sides of the glasses. In this study, two ball—type load
cells (FSS1500NSB, Honeywell, USA) was used. This force sensor
operates in a range between O N and 15 N, and produces an output
of low differential voltage with maximum 120 mV span in a 3.3 V
excitation. Thus, the amplification of the output voltage is needed to

implement the protocol.

Instrumentation Amplifier

We prepared two amplifiers to magnify each force signal of the
load cells, respectively. Two instrumentation amplifiers (INA125U,
Texas Instruments, USA) were used to obtain an accurate and stable
output voltage. The gain—setting resistor R; was set to 15 kQ,

thereby it amplifies the force signals eight times, up to 960 mV, not
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to exceed a 10—bit analog—to—digital converter (ADC) of the micro

controller unit (MCU) we used in the next step.

Micro controller unit

We prepared an MCU to read the force signals and to transmit
them to a data acquisition module wirelessly. The ESP8266 module
(ESP—-07, Shenzhen Anxinke Technology, China) was used to utilize
the both 10—bit ADC and Wi—Fi connectivity. Note that we have two
analog force inputs; we need to use a multiplexer in the next step,

however, since the ESP8266 series have only one analog input pin.

2—channel multiplexer

We prepared an analog multiplexer to handle the two signals with
one ADC pin. A two—channel multiplexer (74LVC1G3157, Nexperia,

Netherlands) was used.

Lithium—ion polymer battery

We prepared a battery to operate the system during an
experiment. A lithium—ion polymer (LiPo) battery (MP701435P,
Maxpower, China) were used with a 3.7 V nominal voltage, 300 mAh

nominal capacity, and 1 C discharge rate. As the entire circuit system
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consumes maximum 200 mA per hour when transmitting data, the
battery was chosen to supply enough current per hour more than 200

mAh.

Other parts

We prepared five 12 kQ registers as pull—up resistors of the
ESP—-07. The surface—mounted devices (SMD) type resistors of

2012 metric size were used.

3.1.2.Load Cell—Integrated Circuit Module

Figure 3.1 and 3.2 show the schematic diagram of the left and
right circuit, respectively. Autodesk EAGLE was used for the circuit
design and the fabrication of the circuit boards. Figure 3.3 show the
results of the left and right board artworks, respectively. In order to
reduce the size and weight of the system and obtain a reliable quality,
we placed an order of the fabrication process to a PCB fabrication
company in South Korea. We soldered every electronic component
prepared in chapter 3.1.1 of the protocol to the PCBs. In Figure 3.4,
the complete version of the both top and bottom layers of the both
boards are presented. Note that INA125 series is very sensitive to
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the soldering temperature. Make sure that lead temperature does not
exceed 300°C for 10 seconds during soldering, otherwise it may

cause the permanent damage to the component.
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3.1.3. 3D Printed Frame of Glasses

The frame consists of a head piece and a pair of temples on both

sides.

Head piece design

We designed a 3D model of the head piece of the glasses using
a 3D modeling tool as shown in Fig. 3.5a. We used the Autodesk
Fusion 360 for modeling. Any commercial 3D design tools can be

replaced for it.

Temples design

We design the 3D model of the left and right temples of the
glasses as shown in Fig. 3.5b and Fig. 3.5¢c. The temple parts should
be designed to integrate the PCB modules fabricated in section 3.1.2
of the protocol. The load cell should be placed to be pressed by a

support bolt at a support plate of the head piece when equipped.

3D printing
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We printed the head piece and temple parts using a 3D printer
(Ultimaker 2, Ultimaker, The Netherlands) and a carbon fiber
filament (ColorFabb XT—CF20, ColorFabb, The Netherlands) at
240°C of a nozzle temperature and 80°C of a bed temperature. The
use of any commercial 3D printer and any types of filaments such as
ABS and PLA can be permitted. The nozzle and bed temperatures

may be adjusted according to the filament and printing conditions.

Polishing

The tips of the temples were heated using a hot air blower of a
180°C setting and bend them inward like conventional glasses. The
degree of bending does not need to be rigorous as the purpose of the
curvature is to increase a form factor by helping the glasses fit on a
subject’s head when equipped. Be careful, however, that excessive
bending will prevent the temples from touching the temporalis muscle,

which makes it impossible to collect significant patterns.
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3.1.4. Hardware Integration

We inserted the PCB modules into the temples by using M2 bolts
to fasten it. A representative result of the PCB—integrated glasses
was shown in Fig. 3.6. Then, we assembled the head piece and the
temples by inserting the M2 connecting bolts into the hinge joints.
After that we connected the left and right PCBs using the connecting
wires. Finally, the battery was connected to the left circuit and
attached to the left temple. The mounting side of the battery is not
critical, since it may vary depending on the PCB design. We also
covered rubber tapes on the tip and the nose pad of the glasses to
add more friction with the human skin as shown in Fig. 3.6.

Through the procedures outlined above, we prepared two
versions of the 3D printed frame by differentiating the length of the
head piece, Ly (133 and 138 mm), and the temples, Lt (110 and 125
mm), as shown in Fig. 3.5. Therefore, we can cover various wearing
conditions which can be varied from subjects’ head size, shape, etc.
The subjects chose one of the frames to fit it to their head in the user
study. The vertical distance, L, between the hinge joint and the hole

for the support bolt was set to 7.5 mm for the amplified force not to
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exceed the 15 N, the linear operating range of the load cell. The head
piece should have a thickness, ty, enough to resist the bending
moment transmitted from the both support bolts when equipped. We
chose the ty to be 6 mm with a use of carbon fiber material from a
heuristic approach. The contact points can be adjusted through the
support bolts to fine—tune the tightness of the glasses as shown in

Fig. 3.7.
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3.2. Data Acquisition System

The data acquisition system is composed of a data transmitting
module and a data receiving module. The data transmitting module
read the time and the left and right force signals, and then send them
to the data receiving module, which gathers the received data and

write them to a file.

3.2.1. Wireless Data Transmission

We generated the codes which read the time and force signals
with 200 samples per second, and transmit them to the data receiving
module. We make the ESP—07 act as an access point (AP) and send
the data through a user datagram protocol (UDP) stream. Arduino

IDE was used to develop the codes.

3.2.2.Data Collecting Module

We also generated the codes which receive the transmitted data
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and save them to a file. The received data is saved with a subject’s
information such as name, sex, age, and body mass index (BMI). We
used Unity IDE and C# with MonoDevelop to develop the codes. Build
the generated codes into a smart phone. In this study, we used iPhone
6s Plus (Apple, USA), but any computing device (Android, Windows,

OSX, etc.) is allowed if it has a Wi—Fi capability.

52 . ,H '~,r 1_'_” r



Aiqeded SSafoJIM (3NOoJy) Wa)SAS UONISINDOR BlRD JO QWRYdS §'¢ 2nsd1yg

#2 AQ padojanaq

VAV AqQ padojarsQ

ddy Ma-01) (A L-0) (PdAAEE IR
SuIp10day 3 vvv AAA . g = UIeY /M AW QZL >)
Suloyuo Aunngeded 14-1m Jav ‘dwe Sojeuy 192 peo

(ua112) (dV ‘ul0d $5920Y)
9|npo Suidaj|o) eleq osuasse|nH
ZH 00C =°4
W31y pue Ya ‘swiy
uoissiuusuel] ejeg
.................................. .

|0203101d weigejeq 1asn
(dan)

7 35Uasse|n

53



Chapter 4

Data Collection through User Study

4.1. Preparation for Experiment

In this study, all the experiments were performed by simply
wearing the glasses. All the data were acquired by measuring the
force signals from load cells inserted in the glasses and not in a direct
contact with the skin. All the procedures including the use of human
subjects were accomplished by a non—invasive manner of simply
wearing a pair of glasses as usual. The data were wirelessly
transmitted to the data recording module, which, in this case, a
designated smart phone for the study. All the protocols were not
related to in vivo/in vitro human studies. No drug and blood samples

were used for the experiments. Informed consent was obtained from

54 ._:I_‘_E _l.;_':_.l.li



all subjects of experiments.

Before starting the user study, a subject selected a pair of
glasses which have an appropriate size and form factors to the head.
Then, fine—tune of the tightness with the support bolts at both the
hinges was provided (Fig. 3.7). Note that the force values must not
exceed 15 N, since the force sensors suggested in this study may
lose the fine linear characteristic in case of 15 N input force. After
all the preparation for the experiment, the six featured activity sets
were collected: sedentary rest (SR), sedentary chewing (SC),
walking (W), chewing while walking (CW), sedentary talking (ST),

and sedentary wink (SW).
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4.2. Activity Recording

The purpose of this study was to design a pair of glasses and
define a classifier model that consistently sense temporalis muscle
activity regardless of intra— and inter—individual variability. Thus,
we collected and analyzed the data from 10—subject user study (five
males and five females, the average age was 28.2 + 3.3 (s.d.: standard
deviation) years, ranged at 22-31 years, and the average body mass
index (BMID) was 21.4 + 3.5 (s.d.) kg/m?, ranged at 17.9—27.4 kg/m?)
to define only one SVM classifier corresponding to all subjects. We
recorded force signals per every consecutive window of 2—second
frame. This window size was chosen from the fact that chewing
frequency mainly ranges from 0.94 Hz (5" percentile) and 2.17 Hz
(95" percentile) [61]. So a 2—second single window could contain
multiple chewing activities. In order to reflect the variety of food
properties, the chewing sets were conducted for three different food
textures: bread (sliced white breads and croissants); potato chip
(Lay’s); and jelly (Jelly Belly). Each item differentiates its texture
from a distinct hardness, crispiness, and tackiness. For example, the

bread represents the soft, the potato chip does the hard and crispy,
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and the jelly does the soft and tacky texture. The toasted bread was
served in slices of 20 mm by 20 mm size good for eating. In the case
of SW, we informed the subjects of the timing of wink by an informing
bell sound of 0.5 seconds long every three seconds.

We recorded an activity during 120—second block and generate
a recording file of it. This file contains a sequence of the time when
the data was received, a left force signal, a right force signal, and a
label representing the current facial activity. Visualizations of
temporal signals of all activities in a block of a user were depicted in
Fig. 4.1. The six featured activity sets (SR, SC, W, CW, ST and SW)
were labeled as 1, 2, 3, 4, 5, and 6, respectively. The labels were
used to compare the predicted classes in section 8 of the protocol.

We provided a 60—second break after the recording block. The
subjects took off the glasses during the break, and wore it again when
the recording block restarted. This action prevents the data from
being overfit to a specific wearing condition. We repeated the block—
and—break set four times for each activity. In the case of SC, SW,
and W, the subjects conducted the blocks in the order of left, right,
left, and right, sequentially. We also repeated the block—and—break

sets for all the activity sets.
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Chapter 5

Feature Extraction

5.1. Signal Preprocessing and Segmentation

In order to classify the collected samples into the corresponding
sets, we applied a series of algorithms for signal preprocessing,
feature extraction, and supervised machine learning techniques. First,
the Hanning window was applied to each window to reduce the
spectral leakage on performing the FFT. A low—pass filter with cut—
off frequency of 10 Hz was then applied to calculated power spectral
density (PSD) functions, because the chewing frequency does not
exceed 3 Hz [61]. From the Figure 5.2, it was confirmed that the
frequency higher than 10 Hz had too small variation among the sets

to use for classification.

59 M =T} @



The left and right signals are calculated separately in the
following procedures. All the procedures were implemented in

MATLAB (Mathworks, U.S.A.).

5.1.1. Temporal Frame

We segmented the recorded signals into frames of two seconds
long by hopping them at 1—second intervals as shown in Fig. 4.1.
Apply a Low—Pass Filter (LPF) using a 5" order Butterworts filter
with a cutoff frequency of 10 Hz for each frame. The results were

saved as the temporal frames for the next steps.

5.1.2. Spectral Frame

We subtracted the median value from the original signals of a
frame to remove the preload when equipped with the glasses. The
preload value is not required for the following frequency analysis,
since it does not include any information about chewing, walking,
wink, etc. On the other hand, it connotes insignificant information,
which can vary from subject to subject, from every setting of the

glasses, and even from the moment a subject wear the glasses. We
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applied the Hanning window to each frame to reduce a spectral
leakage on frequency analysis. A single—sided spectrum use
produced by applying a Fast Fourier Transform (FFT) to each frame.
A combination of a temporal frame and a spectral frame of the same

time was defined as a frame block or simply a frame.
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5.2. Feature Extraction

In this study, the signals were related to time series analysis,
such as audio signal, EMG signal, inertial signal, etc. Because these
data is voluminous and dynamic, it is hard to process directly in any
analysis task. Time—domain and frequency—domain features have
representative information of the original signals and reducing the
volume of data [62].

A feature vector is generated per frame produced in chapter 5.1.
The left and right frames are calculated separately and combined into
a feature vector in the following procedures. All the procedures were
implemented in MATLAB.

In order to extract appropriate features for the classification, we
used statistical features from temporal and spectral domains of a
window (2—second recording frame). The entire feature list can be
found in Tables 5.1 and 5.2. Total number of 84 features was used
to build a feature vector with a label ranged from 1 to 6 depending on
its behavioral set.

After that, we extracted statistical features from both temporal

and spectral domains. The temporal features were calculated from

64 .__:Ix_s _'q.;:-' ok



the filtered force signals and the spectral features from a single—
sided spectrum of the FFT. The left and right features were
calculated separately except for correlation features such as a
correlation coefficient and signal magnitude area. The correlation of
the left and right force signals enabled the classification of the LC
and RC. These features were then scaled and normalized over the
whole feature vectors. After that, an 84 —dimensional feature vector
and the corresponding label were created for each sample. Finally,
this feature vector and label were used to train and predict the class
using Support Vector Machine (SVM), a well—known classifier that
shows excellent performance in generalization and robustness on
supervised machine learning problems [63]. In this study, we used
the LibSVM [64] software package for MATLAB to implement the

SVM classifier with a Radial Basis Function (RBF) kernel.
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5.2.1. Temporal Features

We extracted statistical features from a temporal frame. A list

of the total number of 54 features is given in Table 5.1.
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Table 5.1 A list of extracted temporal features

No. Feature description No. Feature description
1 Standard deviation L 28 Skenwness R
2 Standard deviation R 29 Kurtosis L
3  Coefficient of variation L 30 Kurtosis R
4 Coefficient of variation R 31 Autocorrelation function coefficients L
5 Zero crossing rate L 32 Autocorrelation function coefficients R
6 Zero crossing rate R 33 Signal energy L
7 20th percentile L 34 Signal energy R
8 20th percentile R 35 Log signal energy L
9 50th percentile L 36  Log signal energy R
10  50th percentile R 37 Entropy of energy L
11  80th percentile L 38 Entropy of energy R
12 80th percentile R 39 Peak—to—peak amplitude L
13 Interquartile range L 40 Peak—to—peak amplitude R
14 Interquartile range R 41  The number of peaks L
15 Square sum of 20th percentile L 42  The number of peaks R
16  Square sum of 20th percentile R 43  Mean of time between peaks L
17  Square sum of 50th percentile L 44  Mean of time between peaks R
18 Square sum of 50th percentile R 45  Std. of time between peaks L
19 Square sum of 80th percentile L 46  Std. of time between peaks R
20  Square sum of 80th percentile R 47  Prediction ratio L
21  1st bin of binned distribution L 48  Prediction ratio R
22 1st bin of binned distribution R 49  Harmonic ratio L
23 2nd bin of binned distribution L 50 Harmonic ratio R
24 2nd bin of binned distribution R 51 Fundamental frequency L
25  3rd bin of binned distribution L 52 Fundamental frequency R
26 3rd bin of binned distribution R 53 Correlation coefficient of L. and R
27  Skenwness L 54  Sigmal magnitude area of L and R
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5.2.2.Spectral Features

We extracted statistical features from a spectral frame. A list of

the total number of 30 features is given in Table 5.2.
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Table 5.2 A list of extracted spectral features

No. Feature description No. Feature description
1 Spectral energy L 16 Spectral spread R
2 Spectral energy R 17 Spectral entropy L
3 Spectral zone 1 of energy L | 18 Spectral entropy R
4 Spectral zone 1 of energy R | 19 Spectral entropy of energy L
5 Spectral zone 2 of energy L | 20 Spectral entropy of energy R
6  Spectral zone 2 of energy R | 21 Spectral flux L
7  Spectral zone 3 of energy L | 22 Spectral flux R
8  Spectral zone 3 of energy R | 23 Spectral rolloff L
9  Spectral zone 4 of energy L | 24 Spectral rolloff R
10  Spectral zone 4 of energy R | 25 Maximum spectral crest L
11 Spectral zone 5 of energy L | 26 Maximum spectral crest R
12 Spectral zone 5 of energy R | 27 Spectral skewness L
13 Spectral centroid L 28 Spectral skewness R
14 Spectral centroid R 29 Spectral kurtosis L
15 Spectral spread L 30 Spectral kurtosis R
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5.2.3.Feature Vector Generation

An 84—dimentional feature vector was generated by combining
the temporal and spectral features above. The generated feature
vectors were labeled from the recordings. We repeated this
procedures for all frame blocks and generate a series of feature

vectors.
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Chapter 6

Classification of Featured Activity

6.1. Support Vector Machine (SVM)

This chapter is to select the classifier model of a Support Vector
Machine (SVM) [65] by determining parameters which shows the
best accuracy from the given problem (/e., feature vectors). The
SVM is a well—known supervised machine learning technique, which
shows excellent performance in generalization and robustness using
a maximum margin between the classes and a kernel function. We
used a grid—search and a cross—validation method to define a penalty
parameter C and a kernel parameter y of the Radial Basis Function
(RBF) kernel. A minimum understanding of machine learning

techniques and the SVM 1is required to perform the following
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procedures. All the procedures in this chapter was implemented using

LibSVM [64] software package for MATLAB.
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6.2. Design of Classifier Model

6.2.1. Grid—Search

We defined the grid of pairs of (C, y) for the grid—search with

exponentially growing sequences of C (27%°,27° ..., 2°9) and y (277,
2725 ..., 219 as shown in Fig. 6.3. These sequences were determined
heuristically.

6.2.2.Cross—Validation

For each grid of a pair of (C, y), the 6—fold cross—validation
scheme was performed. This scheme divides the entire feature
vectors into 6—part subsets, then test one subset from the classifier
model trained by the other subsets, and repeat it over all the subsets,
one by one. Therefore, every feature vectors can be tested
sequentially. Note that each feature to be tested must be scaled, or

normalized, from the training subset. For example, the first feature
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of a feature vector should be scaled linearly to the range of [0,
1] for the all first features in the training feature vectors. This step
increases the accuracy of the classification by making the features
the equal range and avoiding numerical errors during the calculation.
The scale vector obtained from the above was applied to the testing
set.

A classification accuracy was calculated on the testing set. The
accuracy was calculated from the percentage of feature vectors
which are correctly classified. For each grid of a pair of (C, y), the
average accuracy was calculated from all the subsets. The local
maximum of the highest accuracy of the grid can be found (see Fig.
6.1). As a result, the precision, recall, and F; score of each class of

activities were calculated through following equations:

TP
Precision = ———— 6.1
recision TP n ZFP ( )
Recall = — & 6.2

A= TP+ YFN 6.2)

. _5 Precision * Recall (6.3)
1 score = Precision + Recall )

where TP, FP, and FN represent true positives, false positives, and
false negatives for each activity, respectively. The confusion matrix

of all the activities is given in Table 6.1.
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6.3. Classification Result

Table 6.1 shows the representative results of the classification
for the entire activity sets. The average F;1 score resulted in 80.5%.
If considered as a single score, the performance may seem to be
relatively degraded compared to the result of the previous study [60]
with the same approach. Significant information, however, can be
extracted by comparing the outcomes between each activity. The SR
was relatively well distinguished from the SC, CW, and SW, but not
from the W and ST. The both chewing activities, the SC and CW, were
hard to be distinguished from each other. On the other hand, it can be
observed that the both chewing activities can be easily separable
from the SR, W, ST, and SW, which represent the other physical
activities. In the case of the SW, the wink activity turned out to be
misclassified slightly throughout the other activities.

In order to obtain more meaningful results from the above, we
grouped and re—defined the activities into new ones. The two
chewing activities, SC and CW, were grouped into one activity, and
defined as chewing. The SR, W, and ST, which had a large degree of

misclassification among themselves, were also grouped into one
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activity, defined as physical activity. As a result, we obtained new
representative results of the classification re—performed through the
activities featured as chewing (C), physical activity (PA), and
sedentary wink (SW), as shown in Table 6.2. The results showed

that the high prediction score with 91.4% of F; score.
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6.4. Performance Improvement

The performance of the classification can be improved by feature
selection procedures. The feature selection is the process of
selecting a subset of relevant features which simplify the given
problem, reduce training times, avoid the curse of dimensionality, and
enhance generalization by reducing overfitting [66]. This study used
the forward feature selection (FFS) procedures, which is depicted in
Fig. 6.4.

The performance of the all activities improved from 80.4% to
85.8% by verifying the features and eliminating redundant features.
A total of 29 features were selected before the performance was
saturated and diminished. The performance of the re—defined
activities was improved from 92.3% to 93.7% as well. A total of 26
features were selected as shown in Fig. 6.7 and Table 6.4.

Figure 6.6 shows the scatter plot of the first two selected
features of the all activities. Some notable observations were found:
two chewing activities have small spectral spread and skewness; rest,
talking, walking have large spectral spread; rest, talking, walking

have small skewness; wink has large skewness; and wink was spread
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on spectral spread. Figure 6.8 shows the scatter plot of the first two
selected features of the re—defined activities. Some notable
observations were found as well: chewing has large signal magnitude
area (SMA); chewing has small SMA; wink has large skewness; wink

has small SMA; and physical activities have small SMA and skewness.
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Table 6.3 List of selected features for the entire activities

Selected Feature Accuracy (%)
1 Spectral spread (R) 41.3
2 Skenwness (R) 50.7
3 Log signal energy (R) 55.0
4 20" percentile (L) 58.9
5 80" percentile (R) 64.3
6 Spectral spread (L) 68.9
7 Correlation coefficient 72.0
8 Log signal energy (R) 74.6
9 Spectral centroid (R) 76.9
10 Peak-to-peak amplitude (L) 78.2
11 Spectral centroid (L) 79.4
12 20" percentile (R) 80.5
13 Peak-to-peak amplitude (R) 81.4
14 80 percentile (L) 82.0
15 Zero crossing rate (R) 82.7
16 Entropy of energy (R) 83.3
17 50" percentile (R) 83.6
18 50" percentile (L) 84.3
19 Harmonic ratio (R) 84.6
20 Standard deviation (L) 84.8
21 Spectral energy (R) 84.9
22 Skenwness (L) 85.1
23 5" Sub-band spectral energy (R) 85.3
24 Standard deviation (R) 85.4
25 Spectral rolloff (L) 85.5
26 Entropy of energy (L) 85.5
27 Spectral entropy (L) 85.7
28 Spectral energy (L) 85.7
29 Coefficient of vacation (L) 85.8
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Table 6.4 List of selected features for the re—defined activities

Selected Feature Accuracy (%)
1 Signal magnitude area 73.5
2 Skenwness (R) 81.0
3 Correlation coefficient 84.1
4 Harmonic ratio (L) 85.6
5 20" percentile (L) 86.7
6 80" percentile (R) 87.7
7 Spectral crest (L) 88.6
8 Entropy of energy (R) 89.3
9 Log signal energy (L) 90.1
10 Spectral spread (L) 90.9
11 Spectral Skenwness (R) 91.3
12 Peak-to-peak amplitude (L) 91.7
13 Standard deviation (R) 92.0
14 50" percentile (L) 92.2
15 Fundamental frequency (R) 92.4
16 Skewness (L) 92.7
17 20" percentile (R) 92.9
18 The number of peaks (L) 931
19 Log signal energy (R) 93.2
20 80" percentile (L) 93.4
21 Spectral crest (R) 93.5
22 50" percentile (R) 93.5
23 Spectral entropy of energy (L) 93.6
24 Entropy of energy (L) 93.7
25 Standard deviation (L) 93.7
26 Square sum up to 80" percentile (R) 93.7
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6.5. Discussion

To obtain the reliable data reflecting different head sizes and
shapes for each subject, two versions of the glasses were provided
by varying the length of the head piece and temples. In addition,
utilizing the support volts to fine—tune the wearability, we could
adjust the tightness of the glasses. Thus, the data collected through
the various glasses, subjects, and wearing conditions could reflect
intra— and inter—individual variability and different form factors.

According to an earlier study of chewing frequency, the chewing
activity is mainly ranged from the 0.94 Hz (5th percentile) to the
2.17 Hz (95th percentile) [61]. Thus, this study set the frame size
to 2 seconds so that a frame contains multiple chewing activities. This
frame size is also suitable for containing the one or more walking
cycles generally ranged from 1.4 Hz to 2.5 Hz [67]. We conducted
the walking activity at a speed of 4.5 km/h on a treadmill, because
the normal walking speed varies from 3.3 km/h to 6.5 km/h [67, 68].
The hop size in Fig. 4.1 was determined from that we had recorded
the wink data at 1 —second intervals by informing the subjects of the

exact performing time from sound. We also filtered the data with the
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cutoff frequency of 10 Hz, because we found that the signals over 10
Hz had no significant information on chewing detection from our
previous study [60].

From the results of the Table 6.1, we can discuss in—depth
details of the classification. First, the two chewing activities, SC and
CW, were clearly distinguished from the other activities. Among them,
the distinction from the walking activity suggests a possibility that
the food intake activity, which is the main purpose of this study, can
be easily separable from the active physical activity, such as walking,
using our system. As shown in Fig. 4.1, it can be verified that the
chewing and wink signals, activated from the temporals muscle
activity, were significantly different from those not. On the other
hand, the distinction between the two chewing activities showed
relatively high misclassifications. They played a dominant role in
lowering the both precision and recall of the chewing activities.

In terms of chewing detection, the SR, W and ST can be regarded
as unintended noise in daily life. The wink activity, on the other hand,
can be considered as meaningful measurement, because it is also
activated from the temporalis muscle activity as well. Based on the
above, the two chewing activities were bounded into a chewing
activity (C), and the other activities except for the wink were

grouped into a physical activity (PA). Table 6.2 shows the
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classification results on these activities: chewing (C), physical
activity (PA), and sedentary wink (SW). We can find more
remarkable results from it. It connotes the information about whether
the system is robust on detecting food intake without being affected
by other physical activities. Furthermore, it also indicates whether it
1s possible to distinguish food intake from other face activity such as
wink. The results show that the chewing activity can be well
distinguished from the other activities by a high F1 score of 93.4%.
In the case of wink, the recall (85.5%) was slightly lower than that
of the other activities. This means that the quality of the collected
data of wink was likely to be low, as the users had to wink at exact
time in 3—second intervals. In fact, it was observed that the users
missed the wink or the glasses flowed down occasionally during the
user study.

Because the system has two load cells on both sides, it can be
possible to distinguish the left and right events of the chewing and
wink, as proved in our previous study [60]. Unlike the previous one,
the aim of this study was focused on showing the ability that the
system could effectively separate food intake from the physical
activities. If the data will be sufficiently accumulated through the user
study, the further research on the left and right classification can be

conducted, utilizing the correlation features included in the feature
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vector. On the other hand, it is hard to distinguish between the
sedentary activity and walking with the system. If possible, the
detailed classification of the food intake like eating while sitting, and
eating on the move will be available with a high accuracy. This can
be implemented through a sensor fusion technique by adding an
inertial measurement unit (IMU) to the system [7] . If so, the system
can track the energy expenditure and the energy intake
simultaneously. There have been previous approaches on energy
estimation [69], and this concern will be the main goal of the dietary
monitoring. We believe that our approach provided the practical and

potential ways to the detection of food intake and physical activities.
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Chapter 7

Conclusions

In this study, we first proposed the design and manufacturing
process of the glasses that sense the patterns of the food intake and
physical activities. As this study mainly focused on the data analysis
to distinguish the food intake from the other physical activities such
as walking and wink, the sensor and data acquisition system needed
to be implemented to provide mobility. Thus, the system included the
sensors, the MCU with wireless communication capability, and the
battery. The proposed protocol provided a novel and practical way to
measure the temporalis muscles activity due to the food intake and
wink in a non—contact manner. It is significant in that it provided the
tools and methodologies that can easily detect the food intake in daily
life without any cumbersome equipment.

We are continuing this research in order to enhance practical
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usability in daily life. There are more dynamic physical behaviors,
such as head shaking, and running, which can affect the measured
force signal from the hinge. In order to examine the effects of those
behaviors, an extended user study will be conducted. This can be
achieved by adding a MEMS accelerometer sensor to the device to
cancel the force due to the body movement. From this sensor fusion
technique, the monitoring of both the energy intake and energy
expenditure can be tracked in daily life.

Our approach has another strength on the sensing methodology
because it utilizes the indirect contact with skin. If the sensor is
attached or contact with the epidermis, it is prone to be damaged or
removed from the body. We expect that the non-—intrusive and
contactless sensors in the form of the wearable glasses can achieve
a robust monitoring of ingestive behaviors with a higher accuracy
through these investigations.

Here, we also want to discuss potential of our device as
glassware wearable capable of recognizing facial patterns, such as
[70], in a hands—free controller format. Recently, Google glass—
based wearable device has been developed to control voice
recognition commands into their biomedical applications [71]. Their
approach seems very creative and helpful for people who may require
hands—free behaviors and motions in a controlled manner. In this
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sense, this study can give us the potential to supplement the lack of
input methods in AR or VR applications without disrupting other
activities. Furthermore, through applying this approach to a sensor—
integrated hair band, it can be potentially used for the medical
monitoring of the sleep bruxism [72—76] or temporomandibular
dysfunction. We further believe that our approach can be an
innovative wearable device for monitoring and controlling a set of

facial behaviors such as chewing and talking in a daily lifecare format.
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