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Abstract

Improved Hessian-Free optimization for acoustic full
waveform inversion

Shinwoong Kim
Department of Energy Systems Engineering
The Graduate School

Seoul National University

Seismic full waveform inversion (FWI) is a method to reconstruct material
properties of subsurface structures by minimizing the objective function based on
residuals between modeled and observed seismic data. For seismic inverse problem,
various kinds of optimization methods have been introduced. The truncated
Newton method, also known as the Hessian-free (HF) optimization method, has
been chosen to optimize large-scale inverse problems. The HF does not need to
explicitly compute, store and invert the Hessian matrix. Instead of the Hessian
matrix itself, the product of Hessian matrix and column vector is used for the linear
conjugate-gradient loop during FWI process. To calculate the product of the
Hessian matrix and column vector, the second-order adjoint (SOA) method or
finite difference approximation (FDA) method has been widely used. The FDA is
easy and intuitive to use in the linear conjugate-gradient method compared with
SOA. The accuracy of FDA is dependent on not only the approximation interval
but also the inversion settings, such as the model parameter, initial model,
frequencies, etc.

To overcome dependency of HF optimization on the approximation method
and inversion setting, an improved method is proposed for a stable HF optimization
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method. The derivations of the improved method are based on not the FDA method
but the limit of a function, which is independent of epsilon value. In other words,
the improved HF method stably and accurately approximates the matrix-vector
product of the Hessian matrix and column vector without any selection of epsilon
value. In addition, computational cost of the improved HF optimization method is
much lower than the conventional HF optimization method because additional
construction and factorization of modeling operator are not needed during the
linear conjugate-gradient method in the improved HF optimization method. To
demonstrate the feasibility of the improve HF method, numerical examples for the
Marmousi and acoustic Overthrust models are performed. Numerical examples
indicate that the improved HF method shows better computational efficiency and
stability than the conventional HF method without any degradation of inversion

results.

Keyword: seismic full waveform inversion, truncated Newton method, Hessian-

free method, acoustic wave equation
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Chapter 1. Introduction

1.1. Motivation

One of the most significant and popular areas in geophysics is inferring
material properties of subsurface structures. Among several techniques used for the
estimation of material properties, seismic full waveform inversion (FWI) has been
extensively studied in oil and gas exploration, because it provides detailed
information of subsurface parameters, such as P- and S-wave velocity, density,
anisotropic properties and attenuation factor.

FWI reconstructs model parameters of subsurface structures by minimizing
the objective function based on residuals between modeled and observed seismic
data (Laily, 1983; Tarantola, 1984; Virieux and Operto, 2009). Among several
optimization methods, the gradient-based method like the steepest-descent method
has been widely applied for FWI because it is intuitive and easy to numerically
implement. Laily (1983) and Tarantola (1984) proposed the adjoint-state method
for calculating the gradient of objective function efficiently (Plessix, 2006; Shin
and Min 2006). However, it has been widely known that the gradient-based
optimization method is not suitable for solving nonlinear problems because of slow
convergence rates and being easily stuck in local minima. To overcome these
problems of the gradient-based method, several preconditioners have been
introduced. Shin et al. (2001) and Choi et al. (2008) proposed using diagonal terms
of the pseudo- or new pseudo-Hessian matrices as a preconditioner, respectively,
instead of the Hessian matrix. These preconditioners compensate for the
geometrical spreading effect of seismic wave propagations to some degree.

To solve the nonlinear problem, the second-order optimization method like the
Newton-based method should be considered. However, for the large-scaled FWI,
calculating, storing and inverting the Hessian matrix is too overburdensome with

the present computer’s capacities. To overcome this problem, Brossier et al. (2010)
1 T | ] o | |
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proposed the guasi-Newton method like I-BFGS for seismic FWI. The I-BFGS
method does not require explicit calculation of the Hessian or its inverse but
approximate the inverse matrix of Hessian by using some previous information of
model parameters and gradients (Nocedal and Wright, 2006).

The truncated Newton method, also called the Hessian-Free (HF) optimization
method, can be an attractive method for solving large-scaled and nonlinear FWI
problem (Nash, 2000; Metivier et al., 2013; Wang et al., 2016). The explicit
calculation of the Hessian matrix itself or its inverse is not required in FWI
procedures based on the HF optimization. Only multiplication of the Hessian
matrix with the column vector is needed for the linear conjugate-gradient
procedure. The second-order adjoint-state method and the finite difference
approximation (FDA) method have been proposed to calculate the product of the
Hessian matrix and column vector (Nocedal and Wright, 2006; Metivier et al.,
2013; Schiemenz et al., 2014). Between the second-order adjoint-state method and
the FDA method, the FDA method has been popularly used and applied to calculate
the product of the Hessian matrix and column vector because of its convenience
and efficiency of implementation to the HF optimization algorithm (Wang et al.,
2016). However, to accurately and stably approximate the matrix-vector product
using the FDA method, it is essential to use an appropriate and small
approximation interval for the FDA method. With too large an interval, the
accuracy of the FDA method can be poor, whereas an extremely small interval can
cause round-off errors. In both cases, FWI using the Hessian-free optimization
method will fail to converge to the global minimum. The accuracy of the FDA can
also be improved when the central FDA method is used instead of the forward FDA
method. However, there exists a trade-off between computational cost and accuracy
of the FDA because the central FDA method needs additional calculations to
approximate the matrix-vector product of the Hessian matrix and column vector.

To accelerate the convergence rates of the HF method, an appropriate
preconditioner can also be applied in the linear conjugate-gradient process. Pan et

.

-
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al. (2016) applied the diagonal of the pseudo-Hessian matrix and the diagonal and
pseudo-diagonal of the approximate Hessian matrix as preconditioners, and showed
the faster convergence rates of the HF method with those preconditioners.
Although the HF optimization method does not require explicit calculation of
the Hessian matrix, there still exists computational overburden for 3-D cases,
because computational cost of the HF optimization method increases linearly
depending on the number of sources. To accelerate the convergence rate of the HF
method and to reduce computational cost, the simultaneous-source technique has
been applied to FWI (Krebs et al., 2009; Ben-Hadj-Ali et al., 2011; Schuster et al.,
2011; Jeong et al., 2013). Castellanos et al. (2015) proposed applying the
simultaneous-source technique to the second-order optimization method, and
showed that the simultaneous-source technique reduces computational cost and its

convergence rate is faster than the individual-source technique.



1.2. Research Objectives

The HF optimization method approximates the matrix-vector product of the
Hessian matrix and column vector by using the second-order adjoint-state method
or the FDA method. Since the FDA method is more intuitive and efficient than the
second-order adjoint-state method in the aspect of the numerical implementation,
the FDA method became more popular among geophysicists. The only thing
required for the FDA method is calculating differences between the steepest-
descent directions with the perturbed model parameters.

However, to obtain accurate results using the FDA method, an appropriate
interval needs to be chosen. With too large an interval, the approximation error
occurs. In contrast, with too small an interval, the FDA method can be unstable
because of round-off errors. Consequently, choosing an appropriate interval is one
of the main issues to approximate the matrix-vector product of the Hessian matrix
and column vector accurately and stably. In addition, although an appropriate
interval is chosen in the beginning of FWI, it may not be appropriate for later
iteration steps, because magnitudes of the steepest-descent directions vary and
change as the FW1 iteration proceeds.

To overcome these problems, a new approximation method using limit instead
of the FDA method is proposed in this study. The new approximation method is not
dependent on the approximation interval, and approximates the matrix-vector
product of the Hessian matrix and column vector more accurately and stably than
the FDA method without any degradation of FWI results. Furthermore,
computational costs can be reduced, compared to the FDA method, which is
because the new approximation method does not require constructing and

factorizing the new modeling operator for the linear conjugate-gradient process.



1.3. Outline

Before describing the improved HF optimization method for seismic FWI,
basic theories of the steepest-descent method and the conventional HF optimization
method for seismic FWI will be discussed in Chapter 2. In addition to the
optimization methods, several techniques like the preconditioning, weighting and
source encoding, which can be also applied to the improved HF optimization, will
also be introduced in Chapter 2. Introducing those basic theories, numerical tests
obtained by the conventional HF optimization method are provided and analyzed to
show several limitations of the conventional method. As a method to overcome the
limitations of the FDA method, a new approximation method is introduced. In
Chapter 3, the new approximation will be derived and its efficiency will be
demonstrated. In Chapter 4, numerical examples for the Marmousi and acoustic
Overthrust models will be presented to demonstrate improvement of stability,
accuracy and computational cost of FWI using the improved HF optimization

method.



Chapter 2. Review of forward and inverse theory

2.1. Forward modeling

The acoustic wave equation has been widely applied to simulate the wave
propagations in seismic exploration. Although the real earth media have the elastic
properties, the acoustic wave equation has been popularly used because of
numerical simplicity and computational efficiency compared to the elastic wave
equations. The 2D acoustic wave equation in the frequency domain can be written

as follows:

—%u=%+%+f, (2.1)
where @, ¢, u and f indicate the angular frequency, P-wave velocity,
pressure wavefields and source function in the frequency domain, respectively.

Several methods like the finite-difference method (Kelly et al., 1976), finite-
element method (Zienkiewicz and Taylor, 2000) and pseudo-spectral method have
been commonly used to approximate the acoustic wave equation. Among those
methods, the finite-difference method is used to approximate the acoustic wave
equation in this study because it is intuitive and numerically simple. The second-

order spatial derivative terms in the right-hand side of equation (2.1) can be

approximated by
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By substituting equation (2.2) into equation (2.1), the acoustic wave equation is

expressed by the sparse linear system, which can be written as follows:

S(X, w)u(X, w) =f(X, ), (2.3

where S, so-called modeling operator, is complex-valued, symmetric and sparse
matrix (Marfurt, 1984). By directly solving the linear problem (equation 2.3), the

modeled pressure wavefield u(X,®) is obtained as follows:

u(x, ) =S™(x, o)f (x, w) . (2.4)

Unlike seismic wave propagation in the real earth media, the modeled
pressure wavefield contains undesired edge reflections generated due to finite size
of the modeling domain. To suppress the undesired edge reflections, some
boundary conditions have been proposed (Reynolds, 1978; Clayton and Engquist,
1977; Higdon, 1986; Shin, 1995; Cohen, 2002). In this study, the perfectly matched
layer (PML) boundary condition (Cohen, 2002) is applied to suppress the

artificially reflected waves.



2.2. Steepest-descent method for seismic FWI

The gradient-based method like the steepest-descent method is the one of the
easiest and the most favorable methods to solve the optimization problem. The
first-order optimization method like the steepest-descent method, which does not
consider the Hessian matrix or its inverse, may not be appropriate for solving the
nonlinear problem. It is well known that seismic FWI based on the steepest-descent
method recovers only near-surface structures because the geometrical spreading
effects are not compensated. To overcome this problem and to accelerate the
convergence rate, the Gauss-Newton method has been used for seismic FWI, where
the geometrical spreading effects are described by the approximate Hessian matrix.
On the other hand, simplified preconditioners, such as the pseudo-Hessian and new
pseudo-Hessian matrices, were introduced by Shin et al. (2001) and Choi et al.
(2008). Those preconditioners have an effect of depicting the geometrical

spreading effects to some degree.

The objective function for seismic FWI is based on the | -, I,-, Huber or
l,/1, hybrid norms (Guitton and Symes, 2003; Pyun et al., 2009; Virieux and

Operto, 2009). Among them, the |,-norm has been widely used for seismic FWI,

although it is not appropriate for noise-contaminated data like outlier. In this study,

the objective function based on the |,-norm is used.

Although the steepest-descent direction can be simply derived by using the
adjoint-state method proposed by Laily (1983) and Tarantola (1984), computational
cost almost increases linearly with the number of seismic sources. In case of using
the source-encoding technique, computational cost of FWI can be almost

independent of the number of seismic sources.



2.2.1 Inversion theory based on the steepest-descent method

In this study, the steepest-descent method is used to minimize the objective
function based on the 1,-norm under the single source and frequency assumption,

which is expressed by
l t *
E(m) :E(Lu—d) (Lu-d) , (2.5)

where the superscripts ‘and * indicate the transpose and conjugate operator,
respectively. The column vectors u, d and m indicate the modeled and
observed pressure wavefield and model parameters for P-wave velocity,
respectively. L is the matrix to project the whole dimension onto the receiver
positions. To minimize the objective function with respect to the k™ model
parameter, taking partial derivative of the objective function with respect to the k™

model parameter can be expressed as follows:

vE=-E_ R{(a—“} (Lud)*]. 2.6)
om

om, X

. . o . ou ) .
Computing the partial derivative wavefields —— occupies the most portions of
mk

computational cost during seismic FWI. To calculate equation (2.6) efficiently and
fast, the adjoint method proposed by Laily (1983) and Tarantola (1984) has been
commonly used in seismic FWI. Taking the partial derivative with respect to the k™

model parameter, equation (2.3) is written as follows:



—u+S——=0. (2.7

With equation (2.7), the partial derivative wavefields are derived efficiently as

follows:

K st (—é uj =Sy, . (2.8)
om, om,

Comparing equations (2.3) with (2.8), both equations require the matrix-vector

product between the inversion of the modeling operator S™* and the source vector
f or virtual source vector Vv, respectively. Substituting equation (2.8) into

equation (2.6), the gradient of the k™ model parameter can be expressed as follows:

V,E == =Re[(s7,) (Lu-o) ]

omy (2.9)
= Re[v‘k (S‘l)t (Lu —d)*}
Consequently, the model parameter is updated by
me ™t =m* -, V,E, (2.10)

where ¢, is the step length, which can be chosen as a constant small value or

estimated by the line search technique.
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2.2.2 Preconditioner

Unlike the second-order optimization method, the Hessian matrix is not
considered in the gradient-based method. As a result, the steepest-descent method
focuses on inverting near-surface structures and its convergence rate is slow. To
overcome these problems, the preconditioned steepest-descent method has been
proposed in seismic FWI (Guitton et al., 2012). The preconditioner plays a role in
compensating for the geometrical spreading effect to some degree, therefore it
helps to accelerate the convergence rates of seismic FWI by inverting the deeper
structures at the same time. To avoid heavy computational cost, a diagonal matrix
like the pseudo-Hessian is preferred as a preconditioner in seismic FWI.

For the preconditioner, the pseudo-Hessian (Shin et al., 2001) and new
pseudo-Hessian (Choi et al., 2008) matrices have been popularly used. In this study,
the pseudo-Hessian is applied because it has proven to be effective in acoustic FWI.
Followed by Shin et al. (2001), the k™ diagonal element of the pseudo-Hessian

matrix is derived by using the virtual source as follows:

[ H diagonal _ pseudo :|k = VL V’I: ' (211)

Accordingly, computing the pseudo-Hessian matrix does not require additional

computational cost. The model parameter is updated as follows:

mli(ter+1 = mli(ter — ey I:H + ﬂ,q ' V.E, (2.12)

diagonal _ pseudo K

where | is the identity matrix and A is the damping factor to avoid the
singularity and to control the depth scaling like the Levenberg-Marquardt method
(Levenberg, 1944).

11



2.2.3 Simultaneous source method

These days, 3D seismic exploration has been essentially carried out in oil and
gas exploration. However, 3D seismic FWI is not feasible yet due to heavy
computational cost. In 3D case, the number of sources drastically increases
compared to that of 2D case. As mentioned before, computational cost of seismic
FWI increases almost linearly with the number of seismic sources. To overcome
this problem, the source-encoding technique has been proposed and applied by
many geophysicists to mitigate computational overburden in seismic FWI (Krebs et
al., 2009; Ben-Hadj-Ali et al., 2011; Schuster et al., 2011; Jeong et al., 2013;
Castellanos et al., 2015). The source-encoding technique makes it possible to
compute the gradient summed over sources with the same computational cost as for
a single source. In the source-encoding technique, super-source is defined as a

linear combination of individual sources as follows:

nshot

_ ishot
fsuper - Z aishotfind ! (213)
ishot=1
where f ., fih' nshotand e« indicate the super-source, individual source,

the number of seismic sources and complex-valued source encoder, respectively. In
this study, the complex-valued source encoder is randomly generated at every

iteration and its property is described as follows:
Exp[ai*aj]=5i]j, (2.14)

where EXxp stands for the expectation over « (Castellanos et al., 2015). With

the source encoder, the encoded, modeled and observed wavefield can be expressed

1]

12



as follows:

(2.15)

With equation (2.15), the encoded objective function and encoded gradient of the

model parameter are written as follows:

1 *
Esuper (m) = E(Lusuper _dsuper )t (Lusuper _dsuper)
5 : ) (2.16)
vkEsuper (m) =Re (;s—niim] (Lusuper _dsuper)

Equation (2.16) shows that the gradient summed over sources can be efficiently
computed by using the encoded modeled and observed wavefield with the cost of
computing the gradient for a single source. Substituting equation (2.15) into

equation (2.16) yields:

nshot t .
Za@f(%} (Lu,-d,) +

i=1 K

V,Eqper (M) =Re

k =super

, (2.17)

S a2 000
oo | —= u. —d.
Jamk J J

| i=l j#i

where the second term in the right-hand side indicates the crosstalk term and the
expectation over the crosstalk term becomes zero as FWI iteration proceeds.

As mentioned before, computational cost of seismic FWI depends on the
number of forward modeling; the forward modeling depends on the number of

seismic sources. In the individual source algorithm, the total number of forward

13 A 2-1H



modeling needed is 2xnshot, because in each source, two times of the forward

modeling are needed to calculate the modeled wavefield u and the back-

propagated wavefield (S’l )t (Lu- d)* :
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2.2.4 Weighting method

Lack of the low-frequency components in seismic data is the one of the main
issues in seismic FWI. Because the low-frequency components of the seismic data
contribute to construction of the long-wavelength structures in the early stage of
FWI process. Without good initial models (i.e., sufficiently close to true model),
FWI gets easily stuck in local minima if the low-frequency components of the
seismic data are not available. Even though low-frequency components are
available, low-frequency components of the gradient do not contribute to the model
update because of smaller amplitudes compared to those of the high frequency
components (Oh and Min, 2013). To overcome this problem, some weighting
techniques were proposed by Ha et al. (2009), Jang et al. (2009) and Jeong et al.
(2016) to emphasize amplitudes of low-frequency components.

In this study, the weighting technique proposed by Jeong et al. (2016) is
applied to enhance contribution of low-frequency components for the model update.
The weighting technique proposed by Jeong et al. (2016) modifies the objective
function, and introduces the preconditioned gradient of the model parameter as

follows:

nfreq nshot
Eweight (m) = Z Z w, / w; maXI:

i=1 j=1

nfreq nshot
Z Z o, | o, max[

P'VE(m)=—11

nfreq | nshot
YD ole max[

i=1 | j=1

I (Lui'. _di,J)

]

*

I (Lu” —d;; )HJTJ (Lui'j _di,j) , (2.18)

}diag(J{jJ;j)m,}

37, (Lu, —d,,;)

where nfreq, @, J and P indicates the number of frequencies, the i"" angular

2
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frequency, the Jacobian matrix and the preconditioner, respectively. In equation
(2.18), the weighting factor is inversely proportional to each frequency and
emphasizes low-frequency components of the gradient only to construct long-
wavelength structures. Figure 2.1 shows the workflow of FWI procedure using

the steepest-descent method preconditioned by the pseudo-Hessian matrix.

b i 211
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Seismic Survey Initial model

1 1

Observed data Modeled data [

v

Define the Objective function E

A 4 A 4

Calculate VE using Calculate the
back-propagate pseudo-Hessian as
technique a preconditioner

y

Model update

: o

Satisfy stop criteria?

YES

v

FWI complete

Figure 2.1 The workflow of the FWI algorithm using the preconditioned steepest-
descent method. Light-grey box requires calculation of forward modeling once.
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2.3. Hessian-Free optimization for seismic FWI

In recent years, the second-order optimization method, such as the quasi-
Newton method like I-BFGS method and the truncated Newton method (i.e., the
HF method), has attracted many applied mathematicians and engineers to optimize
nonlinear problems. Unlike the gradient-based method, the second-order
optimization method accounts for the Hessian matrix, which should be essentially
considered to optimize the nonlinear problem. Many previous works have shown
that the second-order optimization method gives much more reliable model
parameters and much faster convergence rates than the gradient-based method
(Brossier et al., 2010; Wang et al., 2016; Metivier et al., 2013; Schiemenz et al.,
2014). Furthermore, for some FWI settings, the HF method outperforms the I-
BFGS method (Metivier et al., 2013; Castellanos et al., 2015; Metivier et al., 2015).
In this section, the basic theory of the HF optimization method for the seismic FWI

will be discussed.
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2.3.1 Review of the Hessian-Free optimization method

The second-order optimization method is derived from the second-order
Taylor series approximation of the objective function with small model

perturbation as follows:
E(m, +Am)=~ E(m0)+Am‘VE(mO)+%AmtV2E(mO)Am . (2.19)

where VZE(mO) is the Hessian matrix H. From equation (2.19), the search

direction Am can be derived as follows:

-1

Am =-V2E(m,) " VE(my)=-H(m,)" VE(m,). (2.20)
By using equation (2.20), the model parameters are updated during the iterative

optimization procedure as follows:
miter+l — miter + aiterAmiter . (221)

However, explicit derivation, inversion and store of the Hessian matrix are too
expensive for seismic FWI with the present computer’s capacities, although the
Hessian matrix is essential to optimize the seismic FWI. Because the HF
optimization method does not require deriving, storing and inverting the Hessian
matrix explicitly, the HF optimization method attracts many geophysicists’
attentions. The linear conjugate-gradient method, which is employed inside the HF
method, solves the linear problem described in equation (2.20) to derive the search
directions of model parameter. In the linear conjugate-gradient process, the
.:l ]

—1
|
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algorithm never requires the exact Hessian matrix, but only requires the matrix-
vector product of the Hessian matrix and column vector. By using this product, the
search direction of model parameter is obtained without computational overburden.

Several methods have been proposed to efficiently calculate the matrix-vector
product of the Hessian matrix and column vector. Metivier et al. (2013) proposed
using the second-order adjoint method. Nocedal and Wright (2006) also proposed
using the FDA. In this study, the FDA is employed because of its simplicity and
efficient implementation (Wang et al., 2016). Figure 2.2 shows the workflow of
seismic FWI algorithm using the HF optimization method. A dark-grey box in
Figure 2.2 indicates that the forward modeling is performed twice for that
procedure. Consequently, for a single shot and frequency, the number of forward
modeling required to obtain the search direction of the model parameter using the

HF optimization is2+2xCG .
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Seismic Survey Initial model
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Observed data Modeled data [
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Define the Objective function E
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conjugate-gradient method
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Model update

A 4
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NO
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FWI complete

Figure 2.2 The workflow of FWI algorithm using the Hessian-free optimization
method. Light-grey box requires calculation of forward modeling once. Dark-grey
box requires calculation of forward modeling twice.
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2.3.2 Linear conjugate-gradient method

As an iterative algorithm, the linear conjugate-gradient method has been

widely employed to solve large-scale linear systems that are too heavy to solve

directly. In the HF optimization method, the linear conjugate-gradient method is

applied to solve equation (2.20) by minimizing

r* =b— Ax“ = -VE —HAm"

(2.22)

The linear conjugate-gradient method begins with a good initial solution x° of

equation (2.20) if it is known. If not, the initial solution is set to be zero vector, and

the other initial vectors are defined automatically as follows:

x =0;
r’ =b;
pO:rO

(2.23)

After initialization, the linear conjugate-gradient method starts its own iteration as

follows:
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Foricg=0,---, ncgmax

icg (ricg )t ricg
A =———
(picg )t Apicg
Xicg+1 _ Xicg + angpiCQ
[io+l _ picy _ ica Apicg (2.24)
(ricg+l )t I,icg+1
icg _ _
=
(rlcg) rice

icg+1l __ ,.icg+1 icg ~icg
prT=r="+47p

End For CG iteration

where icg is the iteration number and ncgmax is the maximum iteration
number. During the iterations, some stopping criteria for the loop are needed to
improve computational efficiency of the truncated Newton method and to avoid
using the non-positive definite (i.e., negative definite, positive semi-definite or
negative semi-definite) matrix A. The stopping criterion used in this study is

expressed as follows:
£ >1. (2.25)

The other stopping criterion is the negative curvature test written by

(p™) Ap™ >0, (2.26)

so that the linear conjugate-gradient method can be applied only when the matrix
A is the positive definite matrix.

The matrix A in equation (2.24) indicates the Hessian matrix H, and it is
noticed that the matrix A itself (i.e., the Hessian matrix H) is not needed inside
<

-
|
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the linear conjugate-gradient loop. The matrix-vector product of A and p is

needed to find a solution of equation (2.20). In other words, the Hessian matrix H
itself, which is too expensive to derive, store and invert, is not needed although the
second-order optimization method (i.e., the Hessian-free optimization) is applied to

seismic FWI.

b i 211 ";
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2.3.3 Matrix-vector product using the FDA method

The matrix-vector product of the Hessian matrix and column vector is the one
of the most important processes in the HF optimization method. The FDA method
is preferred to the second-order adjoint method because of its intuitive and
convenient implementation. Nocedal and Wright (2006) proposed approximating

the Hessian matrix with the FDA method based on the Taylor’s series as follows:
VE (M, +£p) = VE(m,)+&V’E(m,)p+0(&?), (2.27)

VE(m, +&p)-VE(m,)

g

V’E(m,)p=H(m,)p= +0(g). (228
Equation (2.28) shows that the matrix-vector product of H and p can be
calculated using the forward FDA method with an appropriate interval &. The
approximation cost is just for computing additional gradient VE(mo +gp) at
every linear conjugate-gradient iteration. Note that computing the additional

gradient VE(m0+8p) requires the forward modeling twice with the new

modeling operator S(m,+&p) and the approximation error is O(¢). The

matrix-vector product can also be approximated by the backward or central FDA

method as follows:

O(e), (2.29)

H(mo)p:VE(mO+8p)2;VE(m°_gp)+O(82). (2.30)
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The backward FDA method requires the same cost as the forward FDA method

does, because the backward FDA method requires to derive the additional gradient

VE(m,—&p). Unlike the backward and forward FDA methods, the central FDA
method requires computing two additional gradients (i.e., VE(mO +8p) and

VE(mo—gp)) at every iteration of the linear conjugate-gradient method.

However, in the aspect of accuracy, it is obvious that the approximation error of the
central FDA method is much smaller than those of the forward and backward FDA
methods as shown in equations (2.28), (2.29) and (2.30). Therefore, there exists
trade-off between accuracy and computational efficiency. Table 2.1 summarizes
computational cost and accuracy for the FDA methods. Computational cost is
computed by the number of the forward modeling required to calculate the model
parameter update, and each gradient requires the forward modeling twice for
calculating the modeled wavefields and back-propagated wavefields. The
procedure of the linear conjugate-gradient algorithm considering the FDA method

and stopping criteria is expressed as follows:
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Foricg=0,---, ncgmax
Calculate Ap™ using FDA method

Check (p'* )t Ap™ >0

. t .
. (rlcg) ey
a®=—"t

(picg )t Apicg
Xicg+1 — Xicg +a{ict_qpicg

ricg+1 — I,icg _aichpicg
(ricngl)t ricg+1
Ot
(rlcg) picy
check g

icg+l __ icg+l icg 4 icg
prT=r=+ 47p

ﬁicg —

End For CG iteration
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Table 2.1 Computational amount and accuracy of the forward, backward and
central FDAs for Hp approximation. Computational amount is computed based

on the number of forward modeling and conjugate gradient loops needed to
compute the model parameter update.

Approximation Cost Accuracy
Forward VE(m, +ep)-VE(m,) 2+2CG O(e)
FDA &
Backward VE(m,)-VE(m,-e&p) 2+2CG O(e¢)
FDA &

VE(m, +&p)—VE(m,—ep)
2¢

Central FDA 2+4CG 0(32)
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2.3.4 Preconditioned Hessian-Free optimization

In section 2.2.2, the preconditioned steepest-descent method is discussed. In
this section, in order to enhance convergence rates of the linear conjugate-gradient
method in the HF optimization, the preconditioned HF optimization algorithm is
introduced. The cost of the Hessian-free optimization method depends on the
number of iterations for application of the linear conjugate-gradient method. Some
preconditioners for the HF optimization method were proposed and investigated by
Pan et al. (2016). The diagonal of the pseudo-Hessian matrix, diagonal of the
Gauss-Newton Hessian matrix and pseudo-diagonal of the Gauss-Newton Hessian
matrix were introduced as a preconditioner to accelerate the convergence rate of
the HF optimization. In this study, as discussed in the previous section 2.2.2, the
diagonal of the pseudo-Hessian matrix as a preconditioner is applied to accelerate
the Hessian-free optimization method. The procedure of the HF optimization using

the diagonal of the pseudo-Hessian matrix can be expressed as follows:
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Initialization: x° =0, r®=b, p’ =P'r°
Foricg=0,---, ncgmax
Calculate Ap™ using FDA method
Check (p™) Ap™ >0
: t .
) rICg P—lrlcg
o () (P
(plcg) Aplcg
Xicg+l — Xicg +aicgpicg

ricg+l — r.icg _aichpicg

- icg+1 t P—l icg+1
ﬂlcg :(r icg)t( 1ricg )

() (P7r)
check g

picg+1 — P—lricg+1 +ﬂicgpicg

L (2.32)
End For CG iteration

Figure 2.3 shows the workflow of the preconditioned HF optimization. As
mentioned in Figure 2.2, a dark-grey box in Figure 2.3 indicates that the forward

modeling is performed twice for that procedure.
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Figure 2.3 The workflow of the FWI algorithm using the preconditioned Hessian-
free optimization method. Light-grey box requires calculation of forward modeling
once. Dark-grey box requires calculation of forward modeling twice.
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Chapter 3. Improved Hessian-Free optimization

3.1. Analysis of the Hessian approximation

The HF optimization method solves the nonlinear problem like the seismic
FWI without full information of the Hessian matrix itself or its inverse. Instead, it
requires the matrix-vector product of the Hessian matrix and column vector, which
is approximated by the FDA method. Therefore, the accuracy and stability of the
Hessian matrix information depend on those of the matrix-vector product
approximation. To approximate the matrix-vector product, the forward FDA
method has been preferred to the central FDA method because of computational
efficiency. With an appropriate interval ¢ obtained by the trial and error method,
the FDA method approximates the matrix-vector product reasonably. To investigate
the stability and accuracy of the Hessian approximation according to the FWI

settings, numerical examples for synthetic data will be presented in this section.
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3.1.1 Analysis of the forward and central FDA methods

As described in Chapter 2, the product of the Hessian matrix and column
vector is approximated by using the FDA method (equations 2.29 and 2.30). To
analyze the accuracy and stability of the Hessian approximation based on the
forward and central FDA methods, numerical tests for the Marmousi model are
performed. Figure 3.1 shows the true and initial models for P-wave velocity and
the FWI settings are described in Table 3.1. To avoid the multi-parameter problems,
density is assumed to be homogeneous. Figures 3.2 and 3.3 show the matrix-vector
products of the Hessian matrix and column vector, Hp, computed by using
forward and central FDA methods for various intervals ¢ ranging from 0.1 to
0.00001. As shown in Figure 3.3, the Hp approximation using the central FDA
method gives consistent results for intervals ranging from 0.1 to 0.0001. However,
the Hp approximation using the forward FDA method is not stable for an
interval ¢ of 0.0001. In this case, the HF optimization method will fail to solve
seismic FWI because of the wrong Hp approximation.

As mentioned in equations (2.29) and (2.30), it has been widely known that
the central FDA method gives more accurate and stable approximation compared to
the forward FDA method. In the aspect of the stability and accuracy, the central
FDA method should be implemented to approximate the matrix-vector product of
the Hessian matrix and column vector rather than the forward FDA method.
However, most of the Hessian-free optimization studies have been developed based
on the forward FDA method to decrease the number of forward modeling, which is

directly related to computational cost, as shown in Table 2.1.
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Table 3.1 Inversion settings used for numerical tests of the Marmousi model.

No. of No. of Shoat Recording  Maximum Minimum

Model size shot receiver  interval time Frequency Frequency
92km
150 450 006km 8sec 10Hz 025Hz
X 326km
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Figure 3.1 P-wave velocity models for numerical tests to obtain the approximation
of Hp by using the forward and central FDA methods: (a) the true Marmousi and

(b) linearly-increasing initial models.
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Figure 3.2 The matrix-vector product of the Hessian matrix and column vector
Hp obtained using the forward FDA method with intervals of (a) 0.1, (b) 0.01, (c)
0.001, (d) 0.0001 and (e) 0.00001 for the Marmousi model.
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Figure 3.3 The matrix-vector product of the Hessian matrix and column vector
Hp obtained using the central FDA method with intervals of (a) 0.1, (b) 0.01, (c)
0.001, (d) 0.0001 and (e) 0.00001 for the Marmousi model.
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3.1.2 Analysis of frequency dependency

Followed by the general inverse theory, equation (2.20) can be rewritten as

follows:
H(m,)Am=-VE(m,). 3.1)

Note that the Hessian matrix and the steepest-descent direction of model parameter
are composed of the summation over frequencies (equation 3.2) in the frequency

domain as follows:

nfreq nfreq

> HAm=->"VE,. (3-2)

In the same manner, the Hessian approximation in equation (2.28) is composed of

the summation over frequencies, which can be expressed as follows:

nfreq

Z Hip: H1p+H2p+”'+anreqp

i=1
N VE, (m, +¢&p)—VE,(m,) . VE, (m, +&p)—VE, (m,)
& &
T4 VE, (M, +&p)—VE; (m,)

&

+---. (3.3

With the model perturbation vector p, the first-order partial derivative of the
objective function VEi(m0+p), (i.e., the steepest-descent direction of model

parameter), have different sensitivity depending on frequency. Consequently, the

interval & can be different depending on frequency. Figures 3.4, 3.5 and 3.6 show

2
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approximations of H.,p using the forward FDM with various intervals for

frequencies of 1.5, 2.5, and 5.5 Hz. The approximations of H,p in Figures 3.5

and 3.6 show similar results regardless of the interval ¢, while the approximation

of H;p obtained using ¢ of 0.0001 in Figure 3.4d shows different patterns

compared to those for ¢ of 0.1, 0.01 and 0.001. To investigate the approximations
more precisely, depth profiles recorded at 6.9 km are shown in Figures 3.7, 3.8 and
3.9. Comparing the depth profiles, the differences between the approximations

decrease as the frequencies increase. It is obvious that the accuracy and stability of

the H,p approximation depend on the interval ¢. In other words, an interval,

which is appropriate for a certain frequency, may fail in approximating H;p in

other frequencies.
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Figure 3.4 The matrix-vector product of the Hessian matrix and column vector
H,p at 1.5 Hz obtained using the forward FDA method with intervals of (a) 0.1,
(b) 0.01, (c) 0.001 and (d) 0.0001 for the Marmousi model.
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Figure 3.5 The matrix-vector product of the Hessian matrix and column vector
H.p at 2.5 Hz obtained using the forward FDA method with intervals of (a) 0.1,
(b) 0.01, (c) 0.001 and (d) 0.0001 for the Marmousi model.
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Figure 3.7 Depth profiles of H,p extracted at a distance of 6.9 km for 1.5 Hz.

The forward FDA method is used to approximate H,p with intervals of 0.1

(black dashed line), 0.01 (red dotted line), 0.001 (blue dashed line) and 0.0001
(black solid line).
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Figure 3.8 Depth profiles of H,p extracted at a distance of 6.9 km for 2.5 Hz.

The forward FDA method is used to approximate H,p with intervals of 0.1

(black dashed line), 0.01 (red dotted line), 0.001 (blue dashed line) and 0.0001
(black solid line).
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Figure 3.9 Depth profiles of H,p extracted at a distance of 6.9 km for 5.5 Hz.

The forward FDA method is used to approximate H.,p with intervals of 0.1

(black dashed line), 0.01 (red dotted line), 0.001 (blue dashed line) and 0.0001
(black solid line).
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3.1.3 Analysis of model dependency

Numerical tests for the Marmousi model show that using too small interval &
(e.g., lower than 0.0001) can cause the failure of the Hp approximation because
of round-off errors depending on the FDA method and frequency range. To avoid
round-off errors, a sufficiently large interval is needed for the successful Hp
approximation. Numerical tests for the Marmousi model show that large intervals,
which are larger than 0.0001, approximate the Hessian approximation stably and
accurately. However, a large interval like 0.1, 0.01 and 0.001 may fail to

approximate Hp accurately because the approximation errors of the forward and
central FDA methods depend on O(¢) and O(gz), respectively (equations 2.29

and 2.30).

In addition, the steepest-descent directions, which are needed to approximate
Hp, have the different amplitudes depending on the model parameters like true,
initial and inverted models. In this section, numerical tests for the acoustic
Overthrust model are provided to investigate the problem generated by model
parameters. Table 3.2 shows the FWI settings. Figure 3.10 shows the true model for
the acoustic Overthrust model and the initial model used for inversion. In the initial
model, the velocity increases linearly from 3 km/s to 6.5 km/s. Consider that the

interval, used to approximate Hp stably and accurately for the Marmousi model,
can fail to approximate Hp for the acoustic Overthrust model. With the poorly or
wrongly estimated Hp approximation, the search direction of model parameters,

which is derived by solving the linear conjugate-gradient method, will fail to
minimize the objective function. Figure 3.11 shows the search directions of P-wave
velocity obtained at the first iteration for different approximation intervals. Search

directions obtained using intervals of 0.1 and 0.01 (Figures 3.11a and 3.11b) show
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reverse search directions compared with that obtained using an interval of 0.001
(Figure 3.11c). To investigate which search directions minimize the objective
function, RMS error curves are compared in Figure 3.12. The RMS error curve
increases or oscillates, which means that the HF optimization method with intervals
of 0.1, 0.01, 0.001 and 0.0001 fails in solving the nonlinear problem because of the

failure of Hp approximation.
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Table 3.2 Inversion settings used for numerical tests of the acoustic Overthrust
model.

No. of No. of Shot Recording  Maximum Minimum

Mokl sze shot receiver interval time Frequency Frequency
96km
157 470 006km 8sc 10Hz 025Hz
X 34km
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increasing initial models used to analyze model dependency of the Hp

approximation using the forward FDA method.
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Figure 3.11 Comparisons of search directions obtained by the HF optimization
method using forward FDA method with intervals of (a) 0.1, (b) 0.01, (c) 0.001 and
(d) 0.0001 for the acoustic Overthrust model.
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Figure 3.12 RMS error curves obtained by the HF optimization method using the
forward FDA method with intervals of 0.1 (black dashed line), 0.01 (red dotted
line), 0.001 (blue dashed line) and 0.0001 (black solid line).
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Numerical tests for the Marmousi and acoustic Overthrust models show that

the approximation interval ¢ which is used to approximate Hp is very sensitive
to model parameters because the steepest-descent directions vary depending on

model parameters. In the same way, during seismic FWI, the model vector m' at
the i FWI iteration changes as FWI iteration proceeds. To demonstrate this
phenomenon, FWI using the HF optimization is performed for the acoustic
Overthrust model assuming the approximation intervals & to be 0.01, 0.001 and
0.0001. All inversion settings are the same as those in Table 3.2. The linearly-
increasing initial model ranges from 3 km/s to 6 km/s. RMS error curves are
plotted in Figure 3.13. The RMS error curve with an interval of 0.0001 converges
at the 6™ iteration, although the others for intervals of 0.01 and 0.001 are still
decreasing after the 6" iteration. In other words, the HF optimization using an
approximation interval of 0.0001 is stuck in local minimum. To escape from the
local minimum, the approximation interval is changed from 0.0001 to 0.001 at the
6" iteration. Figure 3.14 shows RMS error curves after changing the approximation
interval. From Figure 3.14, we see that the HF optimization using changed
approximation interval converges to solutions close to the global minimum just like

the other cases using intervals of 0.01 and 0.001.
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Figure 3.13 RMS error curves obtained by the HF optimization method using the
forward FDA method with intervals of 0.01 (red dotted line), 0.001 (blue dashed
line) and 0.0001 (black solid line).
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Figure 3.14 RMS error curves obtained by the HF optimization method using the
forward FDA method with intervals of 0.01 (red dotted line) and 0.001 (blue
dashed line) and the interval changing from 0.0001 to 0.001 (black solid line).
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3.1.4 Limitation of the Hessian approximation

The HF optimization method does not require the exact information of the
Hessian matrix itself or its inverse although it is a kind of the second-order
optimization methods. Instead of using the exact Hessian matrix, the HF
optimization method uses the approximation of the matrix-vector product of the
Hessian matrix and column vector Hp.

The Hp approximation is derived using the forward or the central FDA

methods which require additional gradient calculations per a linear conjugate-
gradient iteration as described in equations (2.29) and (2.30). From Figures 3.2a ~
3.2c and 3.3a ~ 3.3c, it is noted that both the forward and central FDA methods

yield similar approximations of Hp . However, the forward FDA method fails to
approximate Hp with intervals of 0.0001 and 0.00001, whereas the central FDA
method can approximate Hp with an interval of 0.0001. In addition, using an
interval of 0.00001 fails to approximate Hp in both methods because of the

round-off errors. Although the central FDA method is more stable and accurate
than the forward FDA method, the forward FDA method has been preferred to the
central FDA method due to reduction of computational cost related with the

number of forward modeling.
The first-order partial derivative of objective function, VE(m0+5p), is
affected by inversion settings like true and initial model parameters (Figures 3.11

and 3.12), and frequencies (Figures 3.4~3.6). To determine an appropriate

approximation interval ¢, the trial and error need to be applied. In other words, to
approximate Hp accurately and stably, a number of numerical tests should be

performed to find an appropriate approximation interval & . In addition, an

appropriate interval ¢ chosen to approximate the Hp accurately in the early
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stage of FWI may not be appropriate for the later stage of FWI, and thus the

convergence to the global minimum is not guaranteed as shown in Figure 3.13.
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3.2 The improved Hessian-Free optimization

As mentioned in section 3.1.4, an appropriate approximation interval &
determines needs to be chosen for a success of the HF optimization method in
reaching the global minimum. In this study, to resolve the problems caused by
using the FDA method, a new approximation method is proposed to approximate

the matrix-vector product of the Hessian matrix and column vector, Hp, without

using interval & . The new method does not require a number of numerical tests,
which are required to determine an appropriate interval ¢ for the FDA method. In
section 3.2.1, the new approximation method will be introduced. The derivation of
the new approximation method is based on the limit of a function. After that, Hp
approximated by the FDA method and the new approximation method will be
compared to investigate the stability and accuracy of the improved HF optimization

method.
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3.2.1 Theory of the improved Hessian-Free optimization

The derivation of the improved HF optimization method is based on the limit
of a function. Starting from equation (2.30) and considering the definition of the

partial derivatives, equation (2.30) can be rewritten as follows:

H(m,)p=V’E(m,)p = Iirrg VE(m, +8p)2_VE(m° —<p) . (34)
£—> &

where the error term O(gz) is missing because the approximation interval &

goes to O by the definition of the limit. Note that the approximation interval ¢,
which is discussed in the previous section 3.1, is not O but a finite small real value
and the choice of the approximation interval & requires sophisticated and careful
efforts depending on inversion settings. The new approximation method is
designed to be independent of the approximation interval by making the
approximation intervals & cancelled in numerator and denominator of equation
(3.4).

The steepest-descent directions can be efficiently calculated using the
backpropagation technique (Pratt et al., 1998) as described in equation (2.9). With

the virtual source, equation (3.4) can be rewritten as:

I v(mo+gp)tS(m0+gp)71(Lu(mO+gp)—d)*_
H(m,)p=Ilim 2¢ .|, 35)
0 _v(mo—gp)tS(mo—ep)_l(Lu(mo—gp)—d)

L 2¢ _

where the matrix S(m,+¢p) is the modeling operator and u(m,+e&p)

2
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indicates the modeled data with the perturbed P-wave velocity vector m, +&p,

respectively. Equation (2.3) can also be rewritten with respect to the model vector

m, as follows:
S(mg)u(m,) =Spu, =f, (3.6)

where S, indicates the modeling operator and u, denotes the modeled data with
m, (e.g., P-wave velocity). In the same manner, the forward modeling equation

can be expressed with perturbed model parameter m,te&p as:
S(mytep)u(m,+ep)=F. (3.7

By defining the vector Au® and matrix AS® as the perturbed modeled
wavefields and the perturbed modeling operator, respectively, equation (3.7) can be

rewritten as follows:

(SO+ASi)(u0+Aui):f (3.8)

with relationships of S, =S(m,), u, =u(m,), S(m,+ep)=S,+AS* and
u(m,£&p)=u,+Au”. From the forward modeling equations (3.6) and (3.8), a

new relationship can be introduced as follows:
S,Au” =-AS*u,, (3.9

where AS*AU” is neglected. The perturbed modeling operator and the perturbed

2
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modeled wavefields can be expressed as:

AS* =S(m,£ep)-S, =

2 2
0] (0]

- 2 + 2
(m, igp)1 (mo)1

o’ o’ (3.10)

Au* =S (-AS"u, ), (3.11)

where AS™ is a diagonal matrix. The k™ diagonal element of AS® in equation

(3.10) can be expressed as follows:

+2(emyp), +(€p)k2

2
k

AS, =’

(3.12)
(m; +£pm,)

In the same manner, the perturbed back-propagated wavefield vector Ab, which is

expressed in equation (2.9), can also be derived by

b, =S;*(Lu, —d) , (3.13)

Syb, =(Lu, —d), (3.14)
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where b, indicates the back-propagated wavefields with the model parameter

m, and the conjugated residual vector (Lu0 —d)* behaves similarly just like

the seismic source vector f in equation (3.6). With the perturbed modeling

operator AS™, the perturbed back-propagated wavefields Ab* can be expressed

as:

*

(S +48*)(by +Ab*) = (L (u, +Au*)—d) . (3.15)

By substituting equation (3.14) into equation (3.15) and neglecting AS*Ab™ just
like equation (3.9), the perturbed back-propagated wavefields can be written as

follows:

S,Ab* +AS*b, = (LAU*) (3.16)

Ab* =S (—AsibO +(Lau? )) (3.17)

Consequently, deriving the perturbed modeled wavefields and the perturbed back-

propagated wavefields, which are expressed as equations (3.11) and (3.17),

requires computation of Sgl with the model parameter m, twice. In other
words, construction and factorization of the new modeling operator (SO +ASi)

with the model parameter m,+=&p are not needed in iterations for the linear

conjugate-gradient method. Substituting equation (3.15) into equation (3.5) yields

H(m,)p = lim v(m, +€p)t(bo JrAb*)_v(m0 —gp)t (b0 +Ab’)

£—-0 2¢

. (3.18)

6 3



The virtual source v (defined in equation 2.8) with the small perturbed
model parameter m,=&p in equation (3.18) can be derived using the perturbed

modeled wavefields as follows:

Vi (mytep)=|- . (3.19)

By substituting equation (3.19) into (3.18), the k™ element in equation (3.18) can

be rewritten as:

| 20 (u,+Au") (0, +Ab") |

H( p] jim 28(m0+8p)i

0 20 (uy+Au”) (by+Ab7),

+ 3
2&(my —&p),

_(uobo)k (—(mo—gp)i+(m0+gp)i)
g(m0+gp)i(m0—gp)i
i +(Au*b) (—( —gp)S) (Au‘b) ((m +gp)i)
e e(my +ep), (Mo~ ep),

#p).) |

+(u Ab*) ( (u,Ab”) (m +gp)i)

(m0+8p)k( 0_8p)k
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The first term in the right hand side of equation (3.20) becomes

@* (Ugh ), lim

&0

{((m0 —gp)i +(m, +gp)i)}
(

& m0+gp)i(m0—gp)i 21

2ep, (3m +&°p?
= ” (Ughy ), Ilml pk( : p)k ]

0 e(mg +5p)i (m, —€p)i

The second term in the right hand side of equation (3.20) reduces to

o (LN o s CON (LN
0 Jk 8(m0+gp)3(m0_8p)i

__(Au*—Au’)k(m§+3m gzpz) | (3.22)
), (m

&(m; +p), (M, —p),
=0 (Aut+ AU )k (3miep+£°p )k

+ 3
e(m, +gp)k (m, —ep)k

The third term in the right hand side of equation (3.20) is expressed as follows:

®*(u,) lim
(t), 50 €(m0+€p)i(mo

(40°), (=(my—&p); )+(ab), (m; +2p); )
&p),
—_(Ab+—Ab_) (m3+3m gzpz)k
_ 2 . 8(m0+8p)( )
= 0 (uy), lim +(Ab++Ab—)k(3m ep+2°p?),
(m

5(m0+‘9p)k )k

(3.23)
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In equation (3.21), the approximation intervals are cancelled out and, by the

definition of the limit, the remaining & goes to zero as follows:

£—0

2/£p, (3m; +‘92p2)k ]
£(m, +5p)i (m, —gp)i

— 60?| u b, >
”(mJ

In equations (3.22) and (3.23), ¢ does not appear in the numerator unlike in

o (Uhy), Iim[

. (3.24)

equation (3.21). However, the perturbed modeled wavefields Au and the
perturbed back-propagated wavefields Ab in equations (3.22) and (3.23) have ¢
in themselves according to equations (3.11), (3.12) and (3.17). After dividing
equation (3.12) by ¢ and taking the limit, equations (3.25), (3.26) and (3.27) can

be written as follows:

- +2 4 (m Zn?
IimA—Skzlima)2 £ (mop), +¢” by =J—F2“’2(£3J' (3.25)
m
k

. . 2
>0 ¢ -0 /g(mg ié‘pmo)k o
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, (3.26)

mO nxz _|

20 ( i1 ] (327
mo nxz _|

Because equations (3.22) and (3.23) contain Ab and Au terms in themselves

respectively, & can be cancelled out as shown in equations (3.25), (§.26) and
6 7 .':l'\._i "';:_' 1_. !:



(3.27). Using equations (3.26) and (3.27), equations (3.22) and (3.23) can be

rewritten as follows:

€ (m0+8p)i(m0 p),
, (3.28)
i (Au*—Au‘)
=o’| =% | lim| -
m0 kg»o &
o2 (1), lim _(Ab*—Ab’)k (mg +3mysp?),
0 kg—)O E 3 _ 3
(my+&p), (M, —&p),
(3.29)

=w2£“—°j i _(Alcf—Ab-)k

3
—0
my ) ¢ £

Consequently, substituting equations (3.24), (3.28) and (3.29) into equation (3.20),

the new method for the Hp approximation can be written as follows:

[H(m,)p], :Gwz(uobo mijk

0

NG (Au*—Au’)k
+@’| =% | lim| ———— |, (3.30)
m0 ks—)O &
[ (Ab"—Ab) |
+CO2 {%J !SI_I;T(]) _( )k
0 /k L € ]

where the second and the third terms in the right hand side of equation (3.30) can
be derived using equations (3.26) and (3.27), respectively. From equation (3.30), it

is noted that the new approximation of Hpis independent of the approximation

interval ¢ .
3 i i d —
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3.2.2 Demonstration of the improved Hessian-Free
optimization

To demonstrate the improved HF optimization method, numerical tests are
performed with the same inversion settings as in Section 3.1. Figure 3.15 shows
results of the Hp approximation obtained by the improved HF optimization
method for the Marmousi model. For comparison, results obtained by the
conventional optimization method (already presented in Figure 3.2) are also
displayed in Figure 3.15. Results obtained by the improved HF optimization
method look similar to those obtained by the conventional HF optimization method
for intervals of 0.1, 0.01 and 0.001. To compare the accuracy of approximations
more clearly, comparisons of depth profile for Hp are plotted in Figure 3.16. The
depth profile obtained by the conventional HF optimization method using the
interval of 0.1 shows slightly different values compared to the others because of the

approximation error.
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Figure 3.15 The matrix-vector product of the Hessian matrix and column vector
Hp obtained by (a) the improved HF method and by the conventional HF method

with intervals of (b) 0.1, (c) 0.01, (d) 0.001, (e) 0.0001 and (f) 0.00001 for the
Marmousi model.
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Figure 3.16 Depth profiles of Hp approximation obtained at a distance of 6.9

km by the improved HF method using the limit of a function (purple dotted line)
and by the conventional HF method using the forward FDA method with intervals
of 0.1 (black dashed line), 0.01 (red dotted line), 0.001 (blue dashed line) and
0.0001 (black dotted line).
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As discussed in section 3.1.2, the accuracy and stability of Hp
approximation depend on frequency, specifically low-frequency components. To
investigate the accuracy and stability of H.p approximation obtained by the
improved HF optimization method, numerical tests are performed with the same
inversion settings as in section 3.1.2. Numerical results of H,p approximations
obtained by the improved HF optimization method at 1.5, 2.5 and 5.5 Hz are shown
in Figures 3.17(d), 3.18(d) and 3.19(d), respectively. H.p approximation

obtained by the improved HF optimization method yields similar results to those

obtained by the conventional method. To compare more precisely, depth profiles of
H.p approximation extracted at a distance of 6.9 km are plotted in Figures 3.20,
3.21 and 3.23. H,p approximation results obtained by the improved HF

optimization method match well with those obtained by the conventional HF
optimization method with intervals of 0.1, 0.01 and 0.001. However, H.p

approximation results obtained by the conventional HF optimization method with

an interval of 0.1 show small approximation errors.
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Figure 3.17 The matrix-vector product of the Hessian matrix and column vector
H,p at 1.5 Hz obtained by (a) the improved HF method and by the conventional

HF method with intervals of (b) 0.1, (c) 0.01 and (d) 0.001 for the Marmousi model.
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Figure 3.18 The matrix-vector product of the Hessian matrix and column vector
H.p at 2.5 Hz obtained by (a) the improved HF method and by the conventional
HF method with intervals of (b) 0.1, (c) 0.01 and (d) 0.001 for the Marmousi model.
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Figure 3.19 The matrix-vector product of the Hessian matrix and column vector
H.p at 5.5 Hz obtained by (a) the improved HF method and by the conventional
HF method with intervals of (b) 0.1, (c) 0.01 and (d) 0.001 for the Marmousi model.
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Figure 3.20 Depth profiles of H,p approximation obtained at a distance of 6.9
km for 1.5 Hz by the improved HF method using the limit of a function (black
solid line) and by the conventional HF method using the forward FDA method with
intervals of 0.1 (black dashed line), 0.01 (red dotted line) and 0.001 (blue dashed
line).
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Figure 3.21 Depth profiles of H,p approximation obtained at a distance of 6.9

km for 2.5 Hz by the improved HF method using the limit of a function (black
solid line) and by the conventional HF method using the forward FDA method with
intervals of 0.1 (black dashed line), 0.01 (red dotted line) and 0.001 (blue dashed
line).
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Figure 3.22 Depth profiles of H,p approximation obtained at a distance of 6.9
km for 5.5 Hz by the improved HF method using the limit of a function (black
solid line) and by the conventional HF method using the forward FDA method with
intervals of 0.1 (black dashed line), 0.01 (red dotted line) and 0.001 (blue dashed
line).
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Remember that the approximation intervals, which yield accurate and stable
approximations of Hp for the Marmousi model, may not be proper for the

acoustic Overthrust model (Figure 3.11). In other words, a number of numerical
tests should be pre-performed before seismic FWI to determine an appropriate
approximation interval depending on models. In addition, the interval is also
affected by the initial and k™ inverted models as shown in Figures 3.13 and 3.14.
To investigate robustness of the improved HF optimization method for model
parameters, numerical tests for the acoustic Overthrust model are performed with
the same inversion settings as in Section 3.1 and compared with those obtained by
the conventional HF optimization method. Figure 3.23e shows search directions at
the first FWI iteration obtained by the improved HF optimization method with the
linearly-increasing initial model ranging from 3 km/s to 6.5 km/s (which is slightly
overestimated). To investigate the convergence rates, RMS error curves are
compared in Figure 3.24. Figure 3.24 shows that the conventional HF optimization
method diverges, whereas the improved HF optimization method converges. The
initial model is slightly changed with better estimation, whose velocity ranges from
3 km/s to 6 km/s. RMS error curves for the better initial model are shown in Figure
3.25. Figure 3.25 shows that the improved HF optimization method converges as

fast as the conventional HF optimization method.
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Figure 3.23 Comparison of search directions at the first FWI iteration obtained by
(a) the improved HF method using the limit of a function and by the conventional
HF method using the forward FDA method with intervals of (b) 0.1, (c) 0.01, (d)

0.001 and (e) 0.0001 for the acoustic Overthrust model.
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Figure 3.24 RMS error curves obtained by the improved HF method using the
limit of a function (black solid line) and by the conventional HF method using the
forward FDA method with intervals of 0.1 (black dashed line), 0.01 (red dotted
line), 0.001 (blue dashed line) and 0.0001 (black dotted line).

83



Interval
----- 0.01 = --0.001 ----- from 0.0001 to 0.001 =— limit

RMS error

ced

> s W e e ey

e

0 L) l L) l L) l
0 10 20 30

FW!I iteration number

Figure 3.25 RMS error curves obtained by the improved HF method using the
limit of a function (black solid line) and by the conventional HF method using the
forward FDA method with intervals of 0.01 (red dotted line), 0.001 (blue dashed
line) and intervals changing from 0.0001 to 0.001 (black dotted line).
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3.2.3 Advantages of the improved Hessian-Free optimization

The improved HF optimization method was designed to approximate the
matrix-vector product of the Hessian matrix and column vector in the linear
conjugate-gradient loop. Its derivation was based not on the FDA method but on
the limit of a function. In other words, a number of numerical tests for determining
an appropriate approximation interval & are not needed, because the
approximation intervals are cancelled and go to 0 by the limit. In section 3.1,

results of Hp approximations, which are approximated by the forward or central

FDA methods, show that the FDA methods can be inaccurate depending on the
approximation interval & . In contrast, the improved HF optimization does not
suffer from instability due to the approximation interval.

Another advantage of the improved HF optimization method is associated
with computational cost. As mentioned in section 2.3.3, the conventional HF
optimization using the forward FDA method carries out forward modeling twice
per iteration for the linear conjugate-gradient method, whereas the central FDA
method needs calculations of forward modeling 4 times. That’s why the forward
FDA method has been preferred to the central FDA method in seismic FWI fields,
although the central FDA method yields more accurate and stable approximation.
The improved HF optimization also performs forward modeling twice per iteration
for the linear conjugate-gradient method just like the conventional HF optimization
using the forward FDA method, one for calculating equation (3.26) and the other
for equation (3.27). The main difference between the improved HF optimization
and the conventional one using the central FDA is that the conventional HF method

additionally construct and factorize the modeling operator for the perturbed

modeled parameters [S(m0 +sp)], whereas the improved HF optimization only

applies the modeling operator S(mo), which was already constructed, factorized

1]
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and solved for the calculation of VE(m,). Because this process should be
repeated at every iteration for the linear conjugate-gradient method, because the
perturbed model parameter vector p varies over iterations. Accordingly, the

improved HF method can achieve computational efficiency compared to the

conventional HF method.
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Chapter 4. Numerical examples

To demonstrate the stability and accuracy of the improved HF optimization
method, the conventional and improved HF optimization methods are applied for
the Marmousi and acoustic overthrust models. To guarantee the convergence of
FWI, the approximation intervals for the conventional HF method are chosen
through a number of pre-performed numerical tests. To accelerate the convergence
rates and to improve inversion results, the preconditioning, weighting, source
encoding and line-search techniques, which were already discussed in Chapter 2,

are applied to both the optimization methods.
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4.1. The Marmousi model

To compare inversion results obtained by the conventional and improved HF
optimization methods for the Marmousi model, the approximation interval for the
conventional HF optimization method is determined as 0.1, 0.01 and 0.001 by
numerical tests which were already performed in Section 3.2.2. To avoid the multi-
parameter problem, density is fixed at 1 g/cc and not inverted. Figure 4.1 shows P-
wave velocity for the true Marmousi model and the linearly-increasing initial
model ranging from 1.5 km/s to 4.5 km/s. Inversion settings for numerical
examples are identical with Table 3.1. To guarantee convergence to the global
minimum, the line-search technique is applied to determine the optimal step length
of the search directions.

In Figure 4.2, RMS error curves obtained by the conventional and improved
HF optimization methods are displayed. RMS error decreases at almost the same
rate for both the conventional and improved HF optimization methods. This
indicates that the improved HF optimization can be applied to seismic FWI just
like the conventional HF optimization method. Considering that the approximation
intervals for the conventional HF optimization method were chosen through a
number of pre-performed numerical tests, the improved method can be better than
the conventional method. Figure 4.3 shows inversion results for P-wave velocity
and Figures 4.4, 4.5 and 4.6 show depth profiles recorded at distances of 2.3 km,
4.6 km and 6.9 km, respectively. Figures 4.3 to 4.6 show that the improved HF
optimization method yields similarly good inversion results to those obtained by

the conventional HF optimization method.
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Figure 4.1 P-wave velocities of (a) the true Marmousi and (b) linearly-increasing

initial models.
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Figure 4.2 RMS error curves obtained by the conventional HF method using the
forward FDA method with intervals of 0.1 (black dashed line), 0.01 (red dotted
line), 0.001 (blue dashed line) and by the improved HF method using the limit of a
function (black solid line).
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Figure 4.3 Seismic FWI results for P-wave velocity obtained by the conventional
HF method using the forward FDA method with intervals of (a) 0.1, (b) 0.01 and
(c) 0.001, and by (d) the improved HF method using the limit of a function.
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Figure 4.4 Depth profiles for P-wave velocity recorded at a distance of 2.3 km
obtained by the conventional HF method using the forward FDA method with
intervals of 0.1 (purple dashed line), 0.01 (blue dashed line) and 0.001 (black
dashed line), and by the improved HF method using the limit of a function (red
dashed line). The true velocities are denoted by the black solid line.
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Figure 4.5 Depth profiles for P-wave velocity recorded at a distance of 4.6 km
obtained by the conventional HF method using the forward FDA method with
intervals of 0.1 (purple dashed line), 0.01 (blue dashed line) and 0.001 (black
dashed line), and by the improved HF method using the limit of a function (red
dashed line). The true velocities are denoted by the black solid line.
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Figure 4.6 Depth profiles for P-wave velocity recorded at a distance of 6.9 km
obtained by the conventional HF method using the forward FDA method with
intervals of 0.1 (purple dashed line), 0.01 (blue dashed line) and 0.001 (black
dashed line), and by the improved HF method using the limit of a function (red
dashed line). The true velocities are denoted by the black solid line.
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4.2. The acoustic Overthrust model with individual source

Numerical examples for the Marmousi model showed that the improved HF
optimization method is applicable and reliable just like the conventional HF
optimization method. In this section, numerical examples for the acoustic
Overthrust model are presented and it is assumed that there are no low-frequency
components below 3 Hz in observed data. The low-frequency components in
observed data are essential to invert the long-wavelength structure in the early
stage of seismic FWI (Sirgue and Pratt, 2004).

To compare the improved HF optimization method with the conventional HF
optimization method, the approximation intervals of 0.1, 0.01 and 0.001 were
chosen through a number of numerical tests to guarantee the accurate and stable
approximation of the Hessian matrix. Table 4.1 shows the inversion settings for
numerical examples and the line-search technique is also applied to enhance the
convergence rate towards the global minimum. Figure 4.7 shows the true and initial
models for the acoustic Overthrust model. RMS error curves are plotted in Figure
4.8. RMS error curve obtained by the conventional HF optimization method with
an approximation interval of 0.1 shows different tendency at the 20" iteration
compared to the others. It indicates that using the approximation interval of 0.1
degrades the accuracy of the Hessian approximation. In other words, the
conventional HF optimization method with approximation intervals larger than 0.1
may fail to converge to the global minimum. The failure of convergence in the
seismic FWI process has been already discussed in Figures 3.24 and 3.25. Figure
4.9 shows inversion results for P-wave velocity obtained by the conventional and
improved HF optimization methods. Figures 4.10, 4.11 and 4.12 show depth
profiles for P-wave velocity recorded at distances of 2.4 km, 4.8 km and 7.2 km,

respectively.
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Table 4.1 Inversion settings for numerical examples of the acoustic Overthrust
model.

. No. of No. of Recording  Maximum Minimum
Model size . .
shot receiver time Frequency Frequency
96km
157 470 006km 8sec 15Hz 3Hz
X 34km

97



(a) Distance (km)
0 1 2 3 4 5 6 7 8 9

55
;é‘ 47
= w
= 39 €
S 31 =
= 2.3
15
(b) Distance (km)
00 1 2 3 4 5 6 7 8 9
55
;€1 47
X ®
£, 3.9 E
> 3.1
(]

2.3
1.5

Figure 4.7 P-wave velocities of (a) the true acoustic Overthrust and (b) linearly-
increasing initial models.
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Figure 4.8 RMS error curves obtained by the conventional HF method with
intervals of 0.1 (black dashed line), 0.01 (red dotted line) and 0.001 (blue dashed
line), and by the improved HF method using the limit of a function (black solid
line).
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Figure 4.9 Seismic FWI results for P-wave velocity obtained by the conventional
HF method using intervals of (a) 0.1, (b) 0.01 and (c) 0.001, and (d) by the

improved HF method.
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Figure 4.9 (Continued)
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Figure 4.10 Depth profiles for P-wave velocity recorded at a distance of 2.4 km
obtained by the conventional HF method using the forward FDA method with
intervals of 0.1 (purple dashed line), 0.01 (blue dashed line) and 0.001 (black
dashed line), and by the improved HF method using the limit of a function (red
dashed line). The true velocities are denoted by the black solid line.
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Figure 4.11 Depth profiles for P-wave velocity recorded at a distance of 4.8 km
obtained by the conventional HF method using the forward FDA method with
intervals of 0.1 (purple dashed line), 0.01 (blue dashed line) and 0.001 (black
dashed line), and by the improved HF method using the limit of a function (red
dashed line). The true velocities are denoted by the black solid line.
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Figure 4.12 Depth profiles for P-wave velocity recorded at a distance of 7.2 km
obtained by the conventional HF method using the forward FDA method with
intervals of 0.1 (purple dashed line), 0.01 (blue dashed line) and 0.001 (black
dashed line), and by the improved HF method using the limit of a function (red
dashed line). The true velocities are denoted by the black solid line.
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4.3. The acoustic Overthrust model with simultaneous source

The HF optimization method requires a number of forward modeling
calculations to approximate the product of the Hessian matrix and column vector.
In addition, computational cost of the forward modeling calculation depends on the
number of seismic sources. To enhance computational efficiency, the source-
encoding technique for the HF optimization method, which is proposed by
Castellanos et al. (2015), is applied to the acoustic Overthrust model. The inversion
settings are the same as those in Section 4.2.

As mentioned in Section 3.2.3, the improved HF optimization method does

not need to additionally construct, factorize and solve the modeling operator

S(m0 +gp) for the perturbed model at every iteration for the linear conjugate-

gradient method. In other words, the conventional HF optimization method
requires to construct, factorize and solve the modeling operator S(m0 +gp) at

every iteration for the linear-conjugate gradient method. Figures 4.13, 4.14 and
4.15 show computing time required by the conventional HF optimization method
and by the improved HF optimization method depending on the number of the
source-encoding group. Table 4.2 shows average computing time per FWI1 iteration
required by the conventional and improved HF optimization methods with 4, 8 and
16 encoding groups. The ratios of average computing time between the
conventional and improved HF method are 3.19, 2.34 and 1.59 with 4, 8 and 16
encoding groups, respectively. To compare them under the same conditions, the
iteration number of the linear-conjugate gradient method is fixed at 5. Computing
time of the improved HF optimization method is much smaller than those of the
conventional HF optimization method, because construction and factorization of
the modeling operator for the perturbed model are not needed for the improved HF

optimization method. From Figures 4.16 and 4.17, it is noted that as the number of

1]
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source-encoding groups increases, computing time increases. However, in the
aspect of convergence rate, as the number of the source-encoding groups increases,
the convergence rate is enhanced in Figures 4.18 and 4.19, since more and more
source-encoding groups can suppress the crosstalk terms in the search direction of
P-wave velocity as shown in Figure 4.20. There exists the trade-off between the
number of source-encoding groups and convergence rate. Figures 4.21 and 4.22
show inversion results for P-wave velocity and RMS error curve obtained by the
improved HF optimization method using the source-encoding and line-search

techniques.
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Figure 4.13 Computing time required by the conventional (black solid line) and
improved (red solid line) HF optimization methods using the source-encoding
technique with 4 encoding groups.
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Figure 4.14 Computing time required by the conventional (black solid line) and

improved (red solid line) HF optimization methods using the source-encoding
technique with 8 encoding groups.
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Figure 4.15 Computing time required by the conventional (black solid line) and
improved (red solid line) HF optimization methods using the source-encoding
technique with 16 encoding groups.
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Figure 4.16 Computing time required by the conventional HF method using the
source-encoding technique with 4 (black solid line), 8 (red solid line) and 16 (blue
solid line) encoding groups.
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Figure 4.17 Computing time required by the improved HF method using the

source-encoding technique with 4 (black solid line), 8 (red solid line) and 16 (blue
solid line) encoding groups.
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Table 4.2 Average computing time per FWI iteration required by the conventional
and improved HF optimization methods using the source-encoding technique with
4, 8 and 16 encoding groups for the acoustic Overthrust model. Note that the ratio
of the conventional HF method to the improved HF method decreases as the
number of encoding group increases.

4 encoding groups 8encoding groups 16 encoding groups

Conventional HF 708s 787s 990s
Improved HF 222s 336s 6245
Ratio (C/l) 319 234 159
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Figure 4.18 RMS error curves obtained by the conventional HF method using the
source-encoding technique with 4 (black solid line), 8 (red solid line) and 16 (blue
solid line) encoding groups. The approximation interval is 0.01.
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Figure 4.19 RMS error curves obtained by the improved HF method using the
source-encoding technique with 4 (black solid line), 8 (red solid line) and 16 (blue
solid line) encoding groups.
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Figure 4.20 Search directions for P-wave velocity at the first FWI iteration
obtained by the improved HF method using the source-encoding technique with
source encoding group of (a) 4, (b) 8 and (c) 16.
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Figure 4.21 Seismic FWI results for P-wave velocity obtained by the improved HF
method using the source-encoding technique with 4 groups and the line-search
technique.
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Figure 4.22 RMS error curve obtained by the improved HF method using the
source-encoding technique with 4 groups and the line-search technique.
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Chapter 5. Conclusions

Seismic full waveform inversion has been performed on the basis of the first-
order (i.e., linear) optimization such as the steepest-descent method, because of its
easy and intuitive implementation. However, the first-order optimization has a
characteristic of focusing on recovering shallow structures in seismic FWI, which
is a large-scale non-linear problem. To overcome this limitation, a preconditioner
has been incorporated to the steepest-descent method, or the second-order
optimization method using the Hessian matrix has been applied.

However, the Hessian matrix for seismic FWI requires too heavy
computational cost and computing time with the present computer’s capacities. To
avoid calculating, storing and inverting the Hessian matrix explicitly, the Hessian-
free optimization method is one of the most appealing and efficient optimization
methods, because it does not require full information of the Hessian matrix itself.
Instead of the Hessian matrix itself, the matrix-vector product of the Hessian
matrix and column vector is needed in iterations for the linear conjugate-gradient
method inside the seismic FWI code. The matrix-vector product of the Hessian
matrix and column vector can be approximated by the second-order adjoint method
or the FDA method. The FDA method has been popularly used to compute the
matrix-vector product because it is simpler and more efficient to be implemented to
seismic FWI than the second-order adjoint method. It only requires additional
calculation of the steepest-descent directions for the perturbed model parameters to
approximate the matrix-vector product of the Hessian matrix and column vector.

However, there exist several problems arising from the FDA method, which
were discussed in Section 3.1. That is, the FDA method depends on the
approximation interval ¢. With too large or small approximation interval, the
FDA method will fail in approximating the matrix-vector product of the Hessian

.
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matrix and column vector due to the approximation errors O(s) or round-off

errors, respectively. In addition, the appropriate approximation interval ¢ is
dependent on model parameters, frequency components of data, and model
perturbations. To choose an appropriate approximation interval &, a number of the
numerical tests are needed before seismic FWI. In addition, if one of the inversion
environments changes during the inversion process, it would be better to find a new
approximation interval ¢ .

To overcome those problems arising from the FDA method, the improved HF
optimization was introduced in this study. The derivations of the new
approximation method using the limit were addressed in Section 3.2. Its derivations
are based on not the FDA method but the limit (i.e., the approximation interval ¢
approaches zero). Consequently, the improved HF optimization method

approximates the matrix-vector product Hp without selection of an

approximation interval ¢ . In other words, a number of the numerical tests are not
needed to determine an appropriate approximation interval & by using the new
approximation method. In addition to the interval problem, the improved HF
optimization method is more efficient than the conventional HF optimization
method in the aspect of computational cost and computing time. Note that the

conventional HF optimization method requires to construct, factorize and solve the

new modeling operator S(m0 +gp) for the perturbed model at every iteration

for the linear conjugate-conjugate gradient method, whereas the improved HF
optimization method only requires to solve the original modeling operator S(mo)

which has been already constructed and factorized before the linear conjugate-
gradient loop.

To demonstrate those advantages of the improved HF optimization method
over the conventional HF method, numerical examples for the Marmousi and
acoustic Overthrust models are provided and discussed in Chapter 4. Inversion

results for P-wave velocity parameters obtained by the improved HF optimization
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method show almost the same accuracy compared to those obtained by the
conventional HF optimization method, although the approximation interval is not
considered in the improved HF optimization method. In addition, the improved HF
optimization method has proved to be much more efficient than the conventional
HF method by comparing computing time when the source-encoding technique is
incorporated.

The improved HF optimization can also be applied to other optimization
problems in geophysics such as seismic FWI for elastic media and controlled-
source electromagnetic (CSEM) inversion. Because those problems have similar
inversion work flows such as construction of modeling operator and calculation of
gradient schemes, the derivations of the improved HF method for elastic FWI and
CSEM inversion will be similar to those for acoustic FWI. These applications will

be addressed in further work.
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