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Improved Hessian-Free optimization for acoustic full 

waveform inversion 
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Seoul National University 

 

 

Seismic full waveform inversion (FWI) is a method to reconstruct material 

properties of subsurface structures by minimizing the objective function based on 

residuals between modeled and observed seismic data. For seismic inverse problem, 

various kinds of optimization methods have been introduced. The truncated 

Newton method, also known as the Hessian-free (HF) optimization method, has 

been chosen to optimize large-scale inverse problems. The HF does not need to 

explicitly compute, store and invert the Hessian matrix. Instead of the Hessian 

matrix itself, the product of Hessian matrix and column vector is used for the linear 

conjugate-gradient loop during FWI process. To calculate the product of the 

Hessian matrix and column vector, the second-order adjoint (SOA) method or 

finite difference approximation (FDA) method has been widely used. The FDA is 

easy and intuitive to use in the linear conjugate-gradient method compared with 

SOA. The accuracy of FDA is dependent on not only the approximation interval 

but also the inversion settings, such as the model parameter, initial model, 

frequencies, etc. 

To overcome dependency of HF optimization on the approximation method 

and inversion setting, an improved method is proposed for a stable HF optimization 
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method. The derivations of the improved method are based on not the FDA method 

but the limit of a function, which is independent of epsilon value. In other words, 

the improved HF method stably and accurately approximates the matrix-vector 

product of the Hessian matrix and column vector without any selection of epsilon 

value. In addition, computational cost of the improved HF optimization method is 

much lower than the conventional HF optimization method because additional 

construction and factorization of modeling operator are not needed during the 

linear conjugate-gradient method in the improved HF optimization method. To 

demonstrate the feasibility of the improve HF method, numerical examples for the 

Marmousi and acoustic Overthrust models are performed. Numerical examples 

indicate that the improved HF method shows better computational efficiency and 

stability than the conventional HF method without any degradation of inversion 

results.  
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Chapter 1. Introduction 
 

 

1.1. Motivation 
 

 

One of the most significant and popular areas in geophysics is inferring 

material properties of subsurface structures. Among several techniques used for the 

estimation of material properties, seismic full waveform inversion (FWI) has been 

extensively studied in oil and gas exploration, because it provides detailed 

information of subsurface parameters, such as P- and S-wave velocity, density, 

anisotropic properties and attenuation factor. 

FWI reconstructs model parameters of subsurface structures by minimizing 

the objective function based on residuals between modeled and observed seismic 

data (Laily, 1983; Tarantola, 1984; Virieux and Operto, 2009). Among several 

optimization methods, the gradient-based method like the steepest-descent method 

has been widely applied for FWI because it is intuitive and easy to numerically 

implement. Laily (1983) and Tarantola (1984) proposed the adjoint-state method 

for calculating the gradient of objective function efficiently (Plessix, 2006; Shin 

and Min 2006). However, it has been widely known that the gradient-based 

optimization method is not suitable for solving nonlinear problems because of slow 

convergence rates and being easily stuck in local minima. To overcome these 

problems of the gradient-based method, several preconditioners have been 

introduced. Shin et al. (2001) and Choi et al. (2008) proposed using diagonal terms 

of the pseudo- or new pseudo-Hessian matrices as a preconditioner, respectively, 

instead of the Hessian matrix. These preconditioners compensate for the 

geometrical spreading effect of seismic wave propagations to some degree.  

To solve the nonlinear problem, the second-order optimization method like the 

Newton-based method should be considered. However, for the large-scaled FWI, 

calculating, storing and inverting the Hessian matrix is too overburdensome with 

the present computer’s capacities. To overcome this problem, Brossier et al. (2010) 
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proposed the quasi-Newton method like l-BFGS for seismic FWI. The l-BFGS 

method does not require explicit calculation of the Hessian or its inverse but 

approximate the inverse matrix of Hessian by using some previous information of 

model parameters and gradients (Nocedal and Wright, 2006). 

The truncated Newton method, also called the Hessian-Free (HF) optimization 

method, can be an attractive method for solving large-scaled and nonlinear FWI 

problem (Nash, 2000; Metivier et al., 2013; Wang et al., 2016). The explicit 

calculation of the Hessian matrix itself or its inverse is not required in FWI 

procedures based on the HF optimization. Only multiplication of the Hessian 

matrix with the column vector is needed for the linear conjugate-gradient 

procedure. The second-order adjoint-state method and the finite difference 

approximation (FDA) method have been proposed to calculate the product of the 

Hessian matrix and column vector (Nocedal and Wright, 2006; Metivier et al., 

2013; Schiemenz et al., 2014). Between the second-order adjoint-state method and 

the FDA method, the FDA method has been popularly used and applied to calculate 

the product of the Hessian matrix and column vector because of its convenience 

and efficiency of implementation to the HF optimization algorithm (Wang et al., 

2016). However, to accurately and stably approximate the matrix-vector product 

using the FDA method, it is essential to use an appropriate and small 

approximation interval for the FDA method. With too large an interval, the 

accuracy of the FDA method can be poor, whereas an extremely small interval can 

cause round-off errors. In both cases, FWI using the Hessian-free optimization 

method will fail to converge to the global minimum. The accuracy of the FDA can 

also be improved when the central FDA method is used instead of the forward FDA 

method. However, there exists a trade-off between computational cost and accuracy 

of the FDA because the central FDA method needs additional calculations to 

approximate the matrix-vector product of the Hessian matrix and column vector. 

To accelerate the convergence rates of the HF method, an appropriate 

preconditioner can also be applied in the linear conjugate-gradient process. Pan et 



 

 ３ 

al. (2016) applied the diagonal of the pseudo-Hessian matrix and the diagonal and 

pseudo-diagonal of the approximate Hessian matrix as preconditioners, and showed 

the faster convergence rates of the HF method with those preconditioners.  

Although the HF optimization method does not require explicit calculation of 

the Hessian matrix, there still exists computational overburden for 3-D cases, 

because computational cost of the HF optimization method increases linearly 

depending on the number of sources. To accelerate the convergence rate of the HF 

method and to reduce computational cost, the simultaneous-source technique has 

been applied to FWI (Krebs et al., 2009; Ben-Hadj-Ali et al., 2011; Schuster et al., 

2011; Jeong et al., 2013). Castellanos et al. (2015) proposed applying the 

simultaneous-source technique to the second-order optimization method, and 

showed that the simultaneous-source technique reduces computational cost and its 

convergence rate is faster than the individual-source technique. 
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1.2. Research Objectives 
 

 

The HF optimization method approximates the matrix-vector product of the 

Hessian matrix and column vector by using the second-order adjoint-state method 

or the FDA method. Since the FDA method is more intuitive and efficient than the 

second-order adjoint-state method in the aspect of the numerical implementation, 

the FDA method became more popular among geophysicists. The only thing 

required for the FDA method is calculating differences between the steepest-

descent directions with the perturbed model parameters.  

However, to obtain accurate results using the FDA method, an appropriate 

interval needs to be chosen. With too large an interval, the approximation error 

occurs. In contrast, with too small an interval, the FDA method can be unstable 

because of round-off errors. Consequently, choosing an appropriate interval is one 

of the main issues to approximate the matrix-vector product of the Hessian matrix 

and column vector accurately and stably. In addition, although an appropriate 

interval is chosen in the beginning of FWI, it may not be appropriate for later 

iteration steps, because magnitudes of the steepest-descent directions vary and 

change as the FWI iteration proceeds. 

To overcome these problems, a new approximation method using limit instead 

of the FDA method is proposed in this study. The new approximation method is not 

dependent on the approximation interval, and approximates the matrix-vector 

product of the Hessian matrix and column vector more accurately and stably than 

the FDA method without any degradation of FWI results. Furthermore, 

computational costs can be reduced, compared to the FDA method, which is 

because the new approximation method does not require constructing and 

factorizing the new modeling operator for the linear conjugate-gradient process.  
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1.3. Outline 
 

 

Before describing the improved HF optimization method for seismic FWI, 

basic theories of the steepest-descent method and the conventional HF optimization 

method for seismic FWI will be discussed in Chapter 2. In addition to the 

optimization methods, several techniques like the preconditioning, weighting and 

source encoding, which can be also applied to the improved HF optimization, will 

also be introduced in Chapter 2. Introducing those basic theories, numerical tests 

obtained by the conventional HF optimization method are provided and analyzed to 

show several limitations of the conventional method. As a method to overcome the 

limitations of the FDA method, a new approximation method is introduced. In 

Chapter 3, the new approximation will be derived and its efficiency will be 

demonstrated. In Chapter 4, numerical examples for the Marmousi and acoustic 

Overthrust models will be presented to demonstrate improvement of stability, 

accuracy and computational cost of FWI using the improved HF optimization 

method. 
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Chapter 2. Review of forward and inverse theory 
 

 

2.1. Forward modeling 
 

 

The acoustic wave equation has been widely applied to simulate the wave 

propagations in seismic exploration. Although the real earth media have the elastic 

properties, the acoustic wave equation has been popularly used because of 

numerical simplicity and computational efficiency compared to the elastic wave 

equations. The 2D acoustic wave equation in the frequency domain can be written 

as follows: 

 

 

2

2 2 2x z

  
   

 

u u
u f

c
, (2.1) 

 

where  , c , u  and f  indicate the angular frequency, P-wave velocity, 

pressure wavefields and source function in the frequency domain, respectively. 

Several methods like the finite-difference method (Kelly et al., 1976), finite-

element method (Zienkiewicz and Taylor, 2000) and pseudo-spectral method have 

been commonly used to approximate the acoustic wave equation. Among those 

methods, the finite-difference method is used to approximate the acoustic wave 

equation in this study because it is intuitive and numerically simple. The second-

order spatial derivative terms in the right-hand side of equation (2.1) can be 

approximated by 
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By substituting equation (2.2) into equation (2.1), the acoustic wave equation is 

expressed by the sparse linear system, which can be written as follows: 

 

 ( , ) ( , ) ( , )  S x u x f x ,  (2.3) 

 

where S , so-called modeling operator, is complex-valued, symmetric and sparse 

matrix (Marfurt, 1984). By directly solving the linear problem (equation 2.3), the 

modeled pressure wavefield ( , )u x  is obtained as follows: 

 

 ( , ) ( , ) ( , )   -1
u x S x f x .  (2.4) 

 

Unlike seismic wave propagation in the real earth media, the modeled 

pressure wavefield contains undesired edge reflections generated due to finite size 

of the modeling domain. To suppress the undesired edge reflections, some 

boundary conditions have been proposed (Reynolds, 1978; Clayton and Engquist, 

1977; Higdon, 1986; Shin, 1995; Cohen, 2002). In this study, the perfectly matched 

layer (PML) boundary condition (Cohen, 2002) is applied to suppress the 

artificially reflected waves. 
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2.2. Steepest-descent method for seismic FWI 
 

 

The gradient-based method like the steepest-descent method is the one of the 

easiest and the most favorable methods to solve the optimization problem. The 

first-order optimization method like the steepest-descent method, which does not 

consider the Hessian matrix or its inverse, may not be appropriate for solving the 

nonlinear problem. It is well known that seismic FWI based on the steepest-descent 

method recovers only near-surface structures because the geometrical spreading 

effects are not compensated. To overcome this problem and to accelerate the 

convergence rate, the Gauss-Newton method has been used for seismic FWI, where 

the geometrical spreading effects are described by the approximate Hessian matrix. 

On the other hand, simplified preconditioners, such as the pseudo-Hessian and new 

pseudo-Hessian matrices, were introduced by Shin et al. (2001) and Choi et al. 

(2008). Those preconditioners have an effect of depicting the geometrical 

spreading effects to some degree. 

The objective function for seismic FWI is based on the 
1l -, 

2l -, Huber or 

1l /
2l  hybrid norms (Guitton and Symes, 2003; Pyun et al., 2009; Virieux and 

Operto, 2009). Among them, the 
2l -norm has been widely used for seismic FWI, 

although it is not appropriate for noise-contaminated data like outlier. In this study, 

the objective function based on the 
2l -norm is used.  

Although the steepest-descent direction can be simply derived by using the 

adjoint-state method proposed by Laily (1983) and Tarantola (1984), computational 

cost almost increases linearly with the number of seismic sources. In case of using 

the source-encoding technique, computational cost of FWI can be almost 

independent of the number of seismic sources.  
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2.2.1 Inversion theory based on the steepest-descent method  
 

 

In this study, the steepest-descent method is used to minimize the objective 

function based on the 
2l -norm under the single source and frequency assumption, 

which is expressed by 

 

 
*1

( ) ( ) ( )
2

tE   m Lu d Lu d  , (2.5) 

 

where the superscripts 
t
and *  indicate the transpose and conjugate operator, 

respectively. The column vectors u , d  and m   indicate the modeled and 

observed pressure wavefield and model parameters for P-wave velocity, 

respectively. L  is the matrix to project the whole dimension onto the receiver 

positions. To minimize the objective function with respect to the kth model 

parameter, taking partial derivative of the objective function with respect to the kth 

model parameter can be expressed as follows: 
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u
Lu d .  (2.6) 

 

Computing the partial derivative wavefields 

km





u
 occupies the most portions of 

computational cost during seismic FWI. To calculate equation (2.6) efficiently and 

fast, the adjoint method proposed by Laily (1983) and Tarantola (1984) has been 

commonly used in seismic FWI. Taking the partial derivative with respect to the kth 

model parameter, equation (2.3) is written as follows: 
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k km m

 
 

 

S u
u S 0 .  (2.7) 

 

With equation (2.7), the partial derivative wavefields are derived efficiently as 

follows: 
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S u S v .  (2.8) 

 

Comparing equations (2.3) with (2.8), both equations require the matrix-vector 

product between the inversion of the modeling operator 
1

S  and the source vector 

f  or virtual source vector v , respectively. Substituting equation (2.8) into 

equation (2.6), the gradient of the kth model parameter can be expressed as follows: 

 

 

 

 

1 *

1 *

Re ( )

                  Re ( )

t

k k

k

t
t

k

E
E

m





     
  

  
  

S v Lu d

v S Lu d

.  (2.9) 

 

Consequently, the model parameter is updated by 

 

 
1iter iter

k k iter km m E    ,  (2.10) 

 

where 
k  is the step length, which can be chosen as a constant small value or 

estimated by the line search technique.  
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2.2.2 Preconditioner  
 

 

Unlike the second-order optimization method, the Hessian matrix is not 

considered in the gradient-based method. As a result, the steepest-descent method 

focuses on inverting near-surface structures and its convergence rate is slow. To 

overcome these problems, the preconditioned steepest-descent method has been 

proposed in seismic FWI (Guitton et al., 2012). The preconditioner plays a role in 

compensating for the geometrical spreading effect to some degree, therefore it 

helps to accelerate the convergence rates of seismic FWI by inverting the deeper 

structures at the same time. To avoid heavy computational cost, a diagonal matrix 

like the pseudo-Hessian is preferred as a preconditioner in seismic FWI.  

For the preconditioner, the pseudo-Hessian (Shin et al., 2001) and new 

pseudo-Hessian (Choi et al., 2008) matrices have been popularly used. In this study, 

the pseudo-Hessian is applied because it has proven to be effective in acoustic FWI. 

Followed by Shin et al. (2001), the kth diagonal element of the pseudo-Hessian 

matrix is derived by using the virtual source as follows: 

 

 
*

_

t

diagonal pseudo k kk
   H v v .  (2.11) 

 

Accordingly, computing the pseudo-Hessian matrix does not require additional 

computational cost. The model parameter is updated as follows: 

 

 
1

1

_

iter iter

k k iter diagonal pseudo kk
m m E 


      H I ,  (2.12) 

 

where I  is the identity matrix and   is the damping factor to avoid the 

singularity and to control the depth scaling like the Levenberg-Marquardt method 

(Levenberg, 1944). 
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2.2.3 Simultaneous source method 
 

 

These days, 3D seismic exploration has been essentially carried out in oil and 

gas exploration. However, 3D seismic FWI is not feasible yet due to heavy 

computational cost. In 3D case, the number of sources drastically increases 

compared to that of 2D case. As mentioned before, computational cost of seismic 

FWI increases almost linearly with the number of seismic sources. To overcome 

this problem, the source-encoding technique has been proposed and applied by 

many geophysicists to mitigate computational overburden in seismic FWI (Krebs et 

al., 2009; Ben-Hadj-Ali et al., 2011; Schuster et al., 2011; Jeong et al., 2013; 

Castellanos et al., 2015). The source-encoding technique makes it possible to 

compute the gradient summed over sources with the same computational cost as for 

a single source. In the source-encoding technique, super-source is defined as a 

linear combination of individual sources as follows: 
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1
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er ishot ind

ishot
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 f f ,  (2.13) 

 

where superf , 
ishot

indf , nshot and 
ishot  indicate the super-source, individual source, 

the number of seismic sources and complex-valued source encoder, respectively. In 

this study, the complex-valued source encoder is randomly generated at every 

iteration and its property is described as follows: 

 

 
*

,i j i jExp       ,  (2.14) 

 

where Exp  stands for the expectation over   (Castellanos et al., 2015). With 

the source encoder, the encoded, modeled and observed wavefield can be expressed 
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as follows: 
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With equation (2.15), the encoded objective function and encoded gradient of the 

model parameter are written as follows: 
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Equation (2.16) shows that the gradient summed over sources can be efficiently 

computed by using the encoded modeled and observed wavefield with the cost of 

computing the gradient for a single source. Substituting equation (2.15) into 

equation (2.16) yields: 
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where the second term in the right-hand side indicates the crosstalk term and the 

expectation over the crosstalk term becomes zero as FWI iteration proceeds.  

As mentioned before, computational cost of seismic FWI depends on the 

number of forward modeling; the forward modeling depends on the number of 

seismic sources. In the individual source algorithm, the total number of forward 
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modeling needed is 2 nshot , because in each source, two times of the forward 

modeling are needed to calculate the modeled wavefield u  and the back-

propagated wavefield    
*1

t
 S Lu d . 
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2.2.4 Weighting method 
 

 

Lack of the low-frequency components in seismic data is the one of the main 

issues in seismic FWI. Because the low-frequency components of the seismic data 

contribute to construction of the long-wavelength structures in the early stage of 

FWI process. Without good initial models (i.e., sufficiently close to true model), 

FWI gets easily stuck in local minima if the low-frequency components of the 

seismic data are not available. Even though low-frequency components are 

available, low-frequency components of the gradient do not contribute to the model 

update because of smaller amplitudes compared to those of the high frequency 

components (Oh and Min, 2013). To overcome this problem, some weighting 

techniques were proposed by Ha et al. (2009), Jang et al. (2009) and Jeong et al. 

(2016) to emphasize amplitudes of low-frequency components.  

In this study, the weighting technique proposed by Jeong et al. (2016) is 

applied to enhance contribution of low-frequency components for the model update. 

The weighting technique proposed by Jeong et al. (2016) modifies the objective 

function, and introduces the preconditioned gradient of the model parameter as 

follows: 
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where nfreq , 
i , J  and P  indicates the number of frequencies, the ith angular 
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frequency, the Jacobian matrix and the preconditioner, respectively. In equation 

(2.18), the weighting factor is inversely proportional to each frequency and 

emphasizes low-frequency components of the gradient only to construct long-

wavelength structures. Figure 2.1 shows the workflow of FWI procedure using 

the steepest-descent method preconditioned by the pseudo-Hessian matrix.  
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Observed data Modeled data

Seismic Survey Initial model

Define the Objective function  

Calculate   using 
back-propagate 

technique

Calculate the 
pseudo-Hessian as 
a preconditioner

Model update

Satisfy stop criteria?

FWI complete

YES

NO

 

Figure 2.1 The workflow of the FWI algorithm using the preconditioned steepest-

descent method. Light-grey box requires calculation of forward modeling once.  
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2.3. Hessian-Free optimization for seismic FWI 
 

 

In recent years, the second-order optimization method, such as the quasi-

Newton method like l-BFGS method and the truncated Newton method (i.e., the 

HF method), has attracted many applied mathematicians and engineers to optimize 

nonlinear problems. Unlike the gradient-based method, the second-order 

optimization method accounts for the Hessian matrix, which should be essentially 

considered to optimize the nonlinear problem. Many previous works have shown 

that the second-order optimization method gives much more reliable model 

parameters and much faster convergence rates than the gradient-based method 

(Brossier et al., 2010; Wang et al., 2016; Metivier et al., 2013; Schiemenz et al., 

2014). Furthermore, for some FWI settings, the HF method outperforms the l-

BFGS method (Metivier et al., 2013; Castellanos et al., 2015; Metivier et al., 2015). 

In this section, the basic theory of the HF optimization method for the seismic FWI 

will be discussed. 
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2.3.1 Review of the Hessian-Free optimization method 
 

 

The second-order optimization method is derived from the second-order 

Taylor series approximation of the objective function with small model 

perturbation as follows: 

 

        2

0 0 0 0
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t tE E E E       m m m m m m m m ,  (2.19) 

 

where  2

0E m  is the Hessian matrix H . From equation (2.19), the search 

direction m  can be derived as follows: 

 

        
1 12

0 0 0 0E E E
 

      m m m H m m .  (2.20) 

 

By using equation (2.20), the model parameters are updated during the iterative 

optimization procedure as follows: 

 

 
1iter iter iter iter   m m m .  (2.21) 

 

However, explicit derivation, inversion and store of the Hessian matrix are too 

expensive for seismic FWI with the present computer’s capacities, although the 

Hessian matrix is essential to optimize the seismic FWI. Because the HF 

optimization method does not require deriving, storing and inverting the Hessian 

matrix explicitly, the HF optimization method attracts many geophysicists’ 

attentions. The linear conjugate-gradient method, which is employed inside the HF 

method, solves the linear problem described in equation (2.20) to derive the search 

directions of model parameter. In the linear conjugate-gradient process, the 
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algorithm never requires the exact Hessian matrix, but only requires the matrix-

vector product of the Hessian matrix and column vector. By using this product, the 

search direction of model parameter is obtained without computational overburden.  

Several methods have been proposed to efficiently calculate the matrix-vector 

product of the Hessian matrix and column vector. Metivier et al. (2013) proposed 

using the second-order adjoint method. Nocedal and Wright (2006) also proposed 

using the FDA. In this study, the FDA is employed because of its simplicity and 

efficient implementation (Wang et al., 2016). Figure 2.2 shows the workflow of 

seismic FWI algorithm using the HF optimization method. A dark-grey box in 

Figure 2.2 indicates that the forward modeling is performed twice for that 

procedure. Consequently, for a single shot and frequency, the number of forward 

modeling required to obtain the search direction of the model parameter using the 

HF optimization is 2 2 CG  . 
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Observed data Modeled data

Seismic Survey Initial model

Define the Objective function  

Calculate   using back-propagate technique

Solve        using the linear 
conjugate-gradient method

Satisfy stop criteria?

FWI complete

YES

NO

Model update

 

Figure 2.2 The workflow of FWI algorithm using the Hessian-free optimization 

method. Light-grey box requires calculation of forward modeling once. Dark-grey 

box requires calculation of forward modeling twice. 
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2.3.2 Linear conjugate-gradient method 
 

 

As an iterative algorithm, the linear conjugate-gradient method has been 

widely employed to solve large-scale linear systems that are too heavy to solve 

directly. In the HF optimization method, the linear conjugate-gradient method is 

applied to solve equation (2.20) by minimizing  

 

 
k k kE     r b Ax H m  . (2.22) 

 

The linear conjugate-gradient method begins with a good initial solution 
0

x  of 

equation (2.20) if it is known. If not, the initial solution is set to be zero vector, and 

the other initial vectors are defined automatically as follows: 
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After initialization, the linear conjugate-gradient method starts its own iteration as 

follows: 
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where icg  is the iteration number and ncgmax  is the maximum iteration 

number. During the iterations, some stopping criteria for the loop are needed to 

improve computational efficiency of the truncated Newton method and to avoid 

using the non-positive definite (i.e., negative definite, positive semi-definite or 

negative semi-definite) matrix A . The stopping criterion used in this study is 

expressed as follows:  

 

 1icg  .  (2.25) 

 

The other stopping criterion is the negative curvature test written by  

 

   0
t

icg icg p Ap ,  (2.26) 

so that the linear conjugate-gradient method can be applied only when the matrix 

A  is the positive definite matrix. 

The matrix A  in equation (2.24) indicates the Hessian matrix H , and it is 

noticed that the matrix A  itself (i.e., the Hessian matrix H ) is not needed inside 



 

 ２４ 

the linear conjugate-gradient loop. The matrix-vector product of A  and p  is 

needed to find a solution of equation (2.20). In other words, the Hessian matrix H  

itself, which is too expensive to derive, store and invert, is not needed although the 

second-order optimization method (i.e., the Hessian-free optimization) is applied to 

seismic FWI.  
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2.3.3 Matrix-vector product using the FDA method 
 

 

The matrix-vector product of the Hessian matrix and column vector is the one 

of the most important processes in the HF optimization method. The FDA method 

is preferred to the second-order adjoint method because of its intuitive and 

convenient implementation. Nocedal and Wright (2006) proposed approximating 

the Hessian matrix with the FDA method based on the Taylor’s series as follows:  
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Equation (2.28) shows that the matrix-vector product of H  and p  can be 

calculated using the forward FDA method with an appropriate interval  . The 

approximation cost is just for computing additional gradient  0E  m p  at 

every linear conjugate-gradient iteration. Note that computing the additional 

gradient  0E  m p  requires the forward modeling twice with the new 

modeling operator  0 S m p  and the approximation error is  O  . The 

matrix-vector product can also be approximated by the backward or central FDA 

method as follows: 
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The backward FDA method requires the same cost as the forward FDA method 

does, because the backward FDA method requires to derive the additional gradient 

 0E  m p . Unlike the backward and forward FDA methods, the central FDA 

method requires computing two additional gradients (i.e.,  0E  m p  and 

 0E  m p ) at every iteration of the linear conjugate-gradient method. 

However, in the aspect of accuracy, it is obvious that the approximation error of the 

central FDA method is much smaller than those of the forward and backward FDA 

methods as shown in equations (2.28), (2.29) and (2.30). Therefore, there exists 

trade-off between accuracy and computational efficiency. Table 2.1 summarizes 

computational cost and accuracy for the FDA methods. Computational cost is 

computed by the number of the forward modeling required to calculate the model 

parameter update, and each gradient requires the forward modeling twice for 

calculating the modeled wavefields and back-propagated wavefields. The 

procedure of the linear conjugate-gradient algorithm considering the FDA method 

and stopping criteria is expressed as follows: 
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Table 2.1  Computational amount and accuracy of the forward, backward and 

central FDAs for Hp  approximation. Computational amount is computed based 

on the number of forward modeling and conjugate gradient loops needed to 

compute the model parameter update. 

 Approximation Cost Accuracy 

Forward 

FDA 

   0 0E E



  m p m   
2 2CG    O 

 

Backward 

FDA 

   0 0E E 



  m m p  
2 2CG   O 

 

Central FDA 
   0 0

2

E E 



   m p m p  
2 4CG   2O 
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2.3.4 Preconditioned Hessian-Free optimization 
 

 

In section 2.2.2, the preconditioned steepest-descent method is discussed. In 

this section, in order to enhance convergence rates of the linear conjugate-gradient 

method in the HF optimization, the preconditioned HF optimization algorithm is 

introduced. The cost of the Hessian-free optimization method depends on the 

number of iterations for application of the linear conjugate-gradient method. Some 

preconditioners for the HF optimization method were proposed and investigated by 

Pan et al. (2016). The diagonal of the pseudo-Hessian matrix, diagonal of the 

Gauss-Newton Hessian matrix and pseudo-diagonal of the Gauss-Newton Hessian 

matrix were introduced as a preconditioner to accelerate the convergence rate of 

the HF optimization. In this study, as discussed in the previous section 2.2.2, the 

diagonal of the pseudo-Hessian matrix as a preconditioner is applied to accelerate 

the Hessian-free optimization method. The procedure of the HF optimization using 

the diagonal of the pseudo-Hessian matrix can be expressed as follows:   
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  (2.32) 

Figure 2.3 shows the workflow of the preconditioned HF optimization. As 

mentioned in Figure 2.2, a dark-grey box in Figure 2.3 indicates that the forward 

modeling is performed twice for that procedure. 
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Figure 2.3 The workflow of the FWI algorithm using the preconditioned Hessian-

free optimization method. Light-grey box requires calculation of forward modeling 

once. Dark-grey box requires calculation of forward modeling twice. 
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Chapter 3. Improved Hessian-Free optimization 
 

 

3.1. Analysis of the Hessian approximation 
 

 

The HF optimization method solves the nonlinear problem like the seismic 

FWI without full information of the Hessian matrix itself or its inverse. Instead, it 

requires the matrix-vector product of the Hessian matrix and column vector, which 

is approximated by the FDA method. Therefore, the accuracy and stability of the 

Hessian matrix information depend on those of the matrix-vector product 

approximation. To approximate the matrix-vector product, the forward FDA 

method has been preferred to the central FDA method because of computational 

efficiency. With an appropriate interval   obtained by the trial and error method, 

the FDA method approximates the matrix-vector product reasonably. To investigate 

the stability and accuracy of the Hessian approximation according to the FWI 

settings, numerical examples for synthetic data will be presented in this section. 
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3.1.1 Analysis of the forward and central FDA methods 
 

 

As described in Chapter 2, the product of the Hessian matrix and column 

vector is approximated by using the FDA method (equations 2.29 and 2.30). To 

analyze the accuracy and stability of the Hessian approximation based on the 

forward and central FDA methods, numerical tests for the Marmousi model are 

performed. Figure 3.1 shows the true and initial models for P-wave velocity and 

the FWI settings are described in Table 3.1. To avoid the multi-parameter problems, 

density is assumed to be homogeneous. Figures 3.2 and 3.3 show the matrix-vector 

products of the Hessian matrix and column vector, Hp , computed by using 

forward and central FDA methods for various intervals   ranging from 0.1 to 

0.00001. As shown in Figure 3.3, the Hp  approximation using the central FDA 

method gives consistent results for intervals ranging from 0.1 to 0.0001. However, 

the Hp  approximation using the forward FDA method is not stable for an 

interval   of 0.0001. In this case, the HF optimization method will fail to solve 

seismic FWI because of the wrong Hp  approximation.  

As mentioned in equations (2.29) and (2.30), it has been widely known that 

the central FDA method gives more accurate and stable approximation compared to 

the forward FDA method. In the aspect of the stability and accuracy, the central 

FDA method should be implemented to approximate the matrix-vector product of 

the Hessian matrix and column vector rather than the forward FDA method. 

However, most of the Hessian-free optimization studies have been developed based 

on the forward FDA method to decrease the number of forward modeling, which is 

directly related to computational cost, as shown in Table 2.1.  
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Table 3.1 Inversion settings used for numerical tests of the Marmousi model. 

 

 

 

Model size 
No. of 

shot 

No. of 

receiver 

Shot 

interval 

Recording 

time 

Maximum 

Frequency 

Minimum 

Frequency 
9.2 km 

 3.26 km 
150 450 0.06 km 8 sec 10 Hz 0.25 Hz 
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(a)

(b)

 

Figure 3.1 P-wave velocity models for numerical tests to obtain the approximation 

of Hp  by using the forward and central FDA methods: (a) the true Marmousi and 

(b) linearly-increasing initial models. 
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(a)

(b)

(c)

 

Figure 3.2 The matrix-vector product of the Hessian matrix and column vector 

Hp  obtained using the forward FDA method with intervals of (a) 0.1, (b) 0.01, (c) 

0.001, (d) 0.0001 and (e) 0.00001 for the Marmousi model. 
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(d)

(e)

 

Figure 3.2 (Continued)  
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(a)

(b)

(c)

 

Figure 3.3 The matrix-vector product of the Hessian matrix and column vector 

Hp  obtained using the central FDA method with intervals of (a) 0.1, (b) 0.01, (c) 

0.001, (d) 0.0001 and (e) 0.00001 for the Marmousi model. 
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(d)

(e)

 

Figure 3.3 (Continued)  
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3.1.2 Analysis of frequency dependency  
 

 

Followed by the general inverse theory, equation (2.20) can be rewritten as 

follows: 

 

    0 0E  H m m m .  (3.1) 

 

Note that the Hessian matrix and the steepest-descent direction of model parameter 

are composed of the summation over frequencies (equation 3.2) in the frequency 

domain as follows: 
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In the same manner, the Hessian approximation in equation (2.28) is composed of 

the summation over frequencies, which can be expressed as follows: 
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With the model perturbation vector p , the first-order partial derivative of the 

objective function  0iE m p , (i.e., the steepest-descent direction of model 

parameter), have different sensitivity depending on frequency. Consequently, the 

interval   can be different depending on frequency. Figures 3.4, 3.5 and 3.6 show 
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approximations of 
iH p  using the forward FDM with various intervals for 

frequencies of 1.5, 2.5, and 5.5 Hz. The approximations of 
iH p  in Figures 3.5 

and 3.6 show similar results regardless of the interval  , while the approximation 

of 
iH p  obtained using   of 0.0001 in Figure 3.4d shows different patterns 

compared to those for   of 0.1, 0.01 and 0.001. To investigate the approximations 

more precisely, depth profiles recorded at 6.9 km are shown in Figures 3.7, 3.8 and 

3.9. Comparing the depth profiles, the differences between the approximations 

decrease as the frequencies increase. It is obvious that the accuracy and stability of 

the 
iH p  approximation depend on the interval  . In other words, an interval, 

which is appropriate for a certain frequency, may fail in approximating 
iH p  in 

other frequencies.  
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(a)

(b)

(c)

(d)

 

Figure 3.4 The matrix-vector product of the Hessian matrix and column vector 

iH p  at 1.5 Hz obtained using the forward FDA method with intervals of (a) 0.1, 

(b) 0.01, (c) 0.001 and (d) 0.0001 for the Marmousi model. 
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(a)

(b)

(c)

(d)

 

Figure 3.5 The matrix-vector product of the Hessian matrix and column vector 

iH p  at 2.5 Hz obtained using the forward FDA method with intervals of (a) 0.1, 

(b) 0.01, (c) 0.001 and (d) 0.0001 for the Marmousi model. 
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(a)

(b)

(c)

(d)

 

Figure 3.6 The matrix-vector product of the Hessian matrix and column vector 

iH p  at 5.5 Hz obtained using the forward FDA method with intervals of (a) 0.1, 

(b) 0.01, (c) 0.001 and (d) 0.0001 for the Marmousi model. 
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Figure 3.7 Depth profiles of 
iH p  extracted at a distance of 6.9 km for 1.5 Hz. 

The forward FDA method is used to approximate 
iH p  with intervals of 0.1 

(black dashed line), 0.01 (red dotted line), 0.001 (blue dashed line) and 0.0001 

(black solid line). 
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Figure 3.8 Depth profiles of 
iH p  extracted at a distance of 6.9 km for 2.5 Hz. 

The forward FDA method is used to approximate 
iH p  with intervals of 0.1 

(black dashed line), 0.01 (red dotted line), 0.001 (blue dashed line) and 0.0001 

(black solid line). 
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Figure 3.9 Depth profiles of 
iH p  extracted at a distance of 6.9 km for 5.5 Hz.  

The forward FDA method is used to approximate 
iH p  with intervals of 0.1 

(black dashed line), 0.01 (red dotted line), 0.001 (blue dashed line) and 0.0001 

(black solid line). 
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3.1.3 Analysis of model dependency 
 

 

Numerical tests for the Marmousi model show that using too small interval   

(e.g., lower than 0.0001) can cause the failure of the Hp  approximation because 

of round-off errors depending on the FDA method and frequency range. To avoid 

round-off errors, a sufficiently large interval is needed for the successful Hp  

approximation. Numerical tests for the Marmousi model show that large intervals, 

which are larger than 0.0001, approximate the Hessian approximation stably and 

accurately. However, a large interval like 0.1, 0.01 and 0.001 may fail to 

approximate Hp  accurately because the approximation errors of the forward and 

central FDA methods depend on  O   and  2O  , respectively (equations 2.29 

and 2.30).  

In addition, the steepest-descent directions, which are needed to approximate 

Hp , have the different amplitudes depending on the model parameters like true, 

initial and inverted models. In this section, numerical tests for the acoustic 

Overthrust model are provided to investigate the problem generated by model 

parameters. Table 3.2 shows the FWI settings. Figure 3.10 shows the true model for 

the acoustic Overthrust model and the initial model used for inversion. In the initial 

model, the velocity increases linearly from 3 km/s to 6.5 km/s. Consider that the 

interval, used to approximate Hp  stably and accurately for the Marmousi model, 

can fail to approximate Hp for the acoustic Overthrust model. With the poorly or 

wrongly estimated Hp  approximation, the search direction of model parameters, 

which is derived by solving the linear conjugate-gradient method, will fail to 

minimize the objective function. Figure 3.11 shows the search directions of P-wave 

velocity obtained at the first iteration for different approximation intervals. Search 

directions obtained using intervals of 0.1 and 0.01 (Figures 3.11a and 3.11b) show 
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reverse search directions compared with that obtained using an interval of 0.001 

(Figure 3.11c). To investigate which search directions minimize the objective 

function, RMS error curves are compared in Figure 3.12. The RMS error curve 

increases or oscillates, which means that the HF optimization method with intervals 

of 0.1, 0.01, 0.001 and 0.0001 fails in solving the nonlinear problem because of the 

failure of Hp  approximation.  
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Table 3.2 Inversion settings used for numerical tests of the acoustic Overthrust 

model. 

 

 

Model size 
No. of 

shot 

No. of 

receiver 

Shot 

interval 

Recording 

time 

Maximum 

Frequency 

Minimum 

Frequency 
9.6 km 

 3.4 km 
157 470 0.06 km 8 sec 10 Hz 0.25 Hz 
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(a)

(b)

 

Figure 3.10 P-wave velocities of (a) the true acoustic Overthrust and (b) linearly-

increasing initial models used to analyze model dependency of the Hp  

approximation using the forward FDA method. 
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Figure 3.11 Comparisons of search directions obtained by the HF optimization 

method using forward FDA method with intervals of (a) 0.1, (b) 0.01, (c) 0.001 and 

(d) 0.0001 for the acoustic Overthrust model. 
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Figure 3.12 RMS error curves obtained by the HF optimization method using the 

forward FDA method with intervals of 0.1 (black dashed line), 0.01 (red dotted 

line), 0.001 (blue dashed line) and 0.0001 (black solid line). 
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Numerical tests for the Marmousi and acoustic Overthrust models show that 

the approximation interval   which is used to approximate Hp  is very sensitive 

to model parameters because the steepest-descent directions vary depending on 

model parameters. In the same way, during seismic FWI, the model vector 
i

m  at 

the ith FWI iteration changes as FWI iteration proceeds. To demonstrate this 

phenomenon, FWI using the HF optimization is performed for the acoustic 

Overthrust model assuming the approximation intervals   to be 0.01, 0.001 and 

0.0001. All inversion settings are the same as those in Table 3.2. The linearly-

increasing initial model ranges from 3 km/s to 6 km/s. RMS error curves are 

plotted in Figure 3.13. The RMS error curve with an interval of 0.0001 converges 

at the 6th iteration, although the others for intervals of 0.01 and 0.001 are still 

decreasing after the 6th iteration. In other words, the HF optimization using an 

approximation interval of 0.0001 is stuck in local minimum. To escape from the 

local minimum, the approximation interval is changed from 0.0001 to 0.001 at the 

6th iteration. Figure 3.14 shows RMS error curves after changing the approximation 

interval. From Figure 3.14, we see that the HF optimization using changed 

approximation interval converges to solutions close to the global minimum just like 

the other cases using intervals of 0.01 and 0.001.  
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Figure 3.13 RMS error curves obtained by the HF optimization method using the 

forward FDA method with intervals of 0.01 (red dotted line), 0.001 (blue dashed 

line) and 0.0001 (black solid line). 
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Figure 3.14 RMS error curves obtained by the HF optimization method using the 

forward FDA method with intervals of 0.01 (red dotted line) and 0.001 (blue 

dashed line) and the interval changing from 0.0001 to 0.001 (black solid line). 
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3.1.4 Limitation of the Hessian approximation  
 

 

The HF optimization method does not require the exact information of the 

Hessian matrix itself or its inverse although it is a kind of the second-order 

optimization methods. Instead of using the exact Hessian matrix, the HF 

optimization method uses the approximation of the matrix-vector product of the 

Hessian matrix and column vector Hp .  

The Hp  approximation is derived using the forward or the central FDA 

methods which require additional gradient calculations per a linear conjugate-

gradient iteration as described in equations (2.29) and (2.30). From Figures 3.2a ~ 

3.2c and 3.3a ~ 3.3c, it is noted that both the forward and central FDA methods 

yield similar approximations of Hp . However, the forward FDA method fails to 

approximate Hp  with intervals of 0.0001 and 0.00001, whereas the central FDA 

method can approximate Hp  with an interval of 0.0001. In addition, using an 

interval of 0.00001 fails to approximate Hp  in both methods because of the 

round-off errors. Although the central FDA method is more stable and accurate 

than the forward FDA method, the forward FDA method has been preferred to the 

central FDA method due to reduction of computational cost related with the 

number of forward modeling.  

The first-order partial derivative of objective function,  0E  m p , is 

affected by inversion settings like true and initial model parameters (Figures 3.11 

and 3.12), and frequencies (Figures 3.4~3.6). To determine an appropriate 

approximation interval  , the trial and error need to be applied. In other words, to 

approximate Hp  accurately and stably, a number of numerical tests should be 

performed to find an appropriate approximation interval  . In addition, an 

appropriate interval   chosen to approximate the Hp  accurately in the early 
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stage of FWI may not be appropriate for the later stage of FWI, and thus the 

convergence to the global minimum is not guaranteed as shown in Figure 3.13.  
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3.2 The improved Hessian-Free optimization 
 

 

As mentioned in section 3.1.4, an appropriate approximation interval   

determines needs to be chosen for a success of the HF optimization method in 

reaching the global minimum. In this study, to resolve the problems caused by 

using the FDA method, a new approximation method is proposed to approximate 

the matrix-vector product of the Hessian matrix and column vector, Hp , without 

using interval  . The new method does not require a number of numerical tests, 

which are required to determine an appropriate interval   for the FDA method. In 

section 3.2.1, the new approximation method will be introduced. The derivation of 

the new approximation method is based on the limit of a function. After that, Hp  

approximated by the FDA method and the new approximation method will be 

compared to investigate the stability and accuracy of the improved HF optimization 

method.  
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3.2.1 Theory of the improved Hessian-Free optimization 
 

 

The derivation of the improved HF optimization method is based on the limit 

of a function. Starting from equation (2.30) and considering the definition of the 

partial derivatives, equation (2.30) can be rewritten as follows:  

 

    
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m p m p
H m p E m p ,  (3.4) 

 

where the error term  2O   is missing because the approximation interval   

goes to 0 by the definition of the limit. Note that the approximation interval  , 

which is discussed in the previous section 3.1, is not 0 but a finite small real value 

and the choice of the approximation interval   requires sophisticated and careful 

efforts depending on inversion settings. The new approximation method is 

designed to be independent of the approximation interval by making the 

approximation intervals   cancelled in numerator and denominator of equation 

(3.4).  

The steepest-descent directions can be efficiently calculated using the 

backpropagation technique (Pratt et al., 1998) as described in equation (2.9). With 

the virtual source, equation (3.4) can be rewritten as: 

 

  

      

      

*1

0 0 0

0 *10

0 0 0

  
2

lim

2

t

t

  



  







    
 
 
 

    
  

v m p S m p Lu m p d

H m p

v m p S m p Lu m p d
, (3.5) 

 

where the matrix  0 S m p  is the modeling operator and  0 u m p  
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indicates the modeled data with the perturbed P-wave velocity vector 
0 m p , 

respectively. Equation (2.3) can also be rewritten with respect to the model vector 

0m  as follows: 

 

  0 0 0 0( )  S m u m S u f ,  (3.6) 

 

where 
0S  indicates the modeling operator and 

0u  denotes the modeled data with 

0m  (e.g., P-wave velocity). In the same manner, the forward modeling equation 

can be expressed with perturbed model parameter 
0 m p  as: 

 

    0 0      S m p u m p f .  (3.7) 

 

By defining the vector 
u  and matrix 

S  as the perturbed modeled 

wavefields and the perturbed modeling operator, respectively, equation (3.7) can be 

rewritten as follows:  

 

   0 0

   S S u u f   (3.8) 

 

with relationships of  0 0S S m ,  0 0u u m ,  0 0    S m p S S  and 

 0 0    u m p u u . From the forward modeling equations (3.6) and (3.8), a 

new relationship can be introduced as follows: 

 

 0 0

   S u S u ,  (3.9) 

 

where 
  S u  is neglected. The perturbed modeling operator and the perturbed 
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modeled wavefields can be expressed as: 
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where 
S  is a diagonal matrix. The kth diagonal element of 

S  in equation 

(3.10) can be expressed as follows: 
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In the same manner, the perturbed back-propagated wavefield vector b , which is 

expressed in equation (2.9), can also be derived by  
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 b S Lu d ,  (3.13) 
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where 
0b  indicates the back-propagated wavefields with the model parameter 

0m  and the conjugated residual vector  
*

0 Lu d  behaves similarly just like 

the seismic source vector f  in equation (3.6). With the perturbed modeling 

operator 
S , the perturbed back-propagated wavefields 

b  can be expressed 

as: 

 

      
*

0 0 0

         S S b b L u u d .  (3.15) 

 

By substituting equation (3.14) into equation (3.15) and neglecting 
  S b  just 

like equation (3.9), the perturbed back-propagated wavefields can be written as 

follows: 
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       b S S b L u .  (3.17) 

 

Consequently, deriving the perturbed modeled wavefields and the perturbed back-

propagated wavefields, which are expressed as equations (3.11) and (3.17), 

requires computation of 
1

0


S  with the model parameter 

0m  twice. In other 

words, construction and factorization of the new modeling operator  0

S S  

with the model parameter 
0 m p  are not needed in iterations for the linear 

conjugate-gradient method. Substituting equation (3.15) into equation (3.5) yields  
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The virtual source v  (defined in equation 2.8) with the small perturbed 

model parameter 
0 m p   in equation (3.18) can be derived using the perturbed 

modeled wavefields as follows: 
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By substituting equation (3.19) into (3.18), the kth element in equation (3.18) can 

be rewritten as: 
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The first term in the right hand side of equation (3.20) becomes  
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The second term in the right hand side of equation (3.20) reduces to  
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The third term in the right hand side of equation (3.20) is expressed as follows:  
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In equation (3.21), the approximation intervals are cancelled out and, by the 

definition of the limit, the remaining   goes to zero as follows: 
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In equations (3.22) and (3.23),   does not appear in the numerator unlike in 

equation (3.21). However, the perturbed modeled wavefields u  and the 

perturbed back-propagated wavefields b  in equations (3.22) and (3.23) have   

in themselves according to equations (3.11), (3.12) and (3.17). After dividing 

equation (3.12) by   and taking the limit, equations (3.25), (3.26) and (3.27) can 

be written as follows: 

 

 
2

0 0

2
lim limk

 








 




S   2

0 k
m p  2

kp

  
2

2 3
2

00 0

2

k
k

p

mm pm




 
      

   
 

,  (3.25) 

 



 

 ６７ 

 

1 1

0 0 0 0
0 0 0

2

3

0 1

21

0 03

0

2

3

0

lim lim lim

2

2

2

k

nxz

p

m

p

m

p

m

    







  
 

  



      
      

    

   
   

   
  
  
   

    
   

  
  
   
   
     

u S S
S u S u

S u

, (3.26) 

 

 

 

 

 

*

1

0 0
0 0

*

1

0 0
0 0

*

1

0
0

2

3

0 1

21

0 3

0

2

3

0

lim lim

lim lim

lim

2

2

2

k

nxz

p

m

p

m

p

m

 

 



  

 









 


 

 


 









    
 
 

             
  

 
  
 
 

  
  

  
 
 
  
  

  
 
 
  
  
   

L ub S
S b

u S
S L b

u
S L

S 0

 
 
 
 
 
 
 
 
 
 
 
 

  

b

. (3.27) 

 

Because equations (3.22) and (3.23) contain b  and u  terms in themselves 

respectively,   can be cancelled out as shown in equations (3.25), (3.26) and 
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(3.27). Using equations (3.26) and (3.27), equations (3.22) and (3.23) can be 

rewritten as follows:  

 

 

 
   

   

 

3 2 2

0 02

0 3 3
0

0 0

2 0

3 0
0

3
lim

lim

k k

k

k k

k

k

u u m m p
b

m p m p

u ub

m








  




 



 



    
 
   

    
   
    

,  (3.28) 

 

 

 
   

   

 

3 2 2

0 02

0 3 3
0

0 0

2 0

3 0
0

3
lim

lim

k k

k

k k

k

k

b b m m p
u

m p m p

b bu

m








  




 



 



    
 
   

    
   
    

.  (3.29) 

 

Consequently, substituting equations (3.24), (3.28) and (3.29) into equation (3.20), 

the new method for the Hp  approximation can be written as follows: 
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where the second and the third terms in the right hand side of equation (3.30) can 

be derived using equations (3.26) and (3.27), respectively. From equation (3.30), it 

is noted that the new approximation of Hp is independent of the approximation 

interval  . 
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3.2.2 Demonstration of the improved Hessian-Free 

optimization 
 

 

To demonstrate the improved HF optimization method, numerical tests are 

performed with the same inversion settings as in Section 3.1. Figure 3.15 shows 

results of the Hp  approximation obtained by the improved HF optimization 

method for the Marmousi model. For comparison, results obtained by the 

conventional optimization method (already presented in Figure 3.2) are also 

displayed in Figure 3.15. Results obtained by the improved HF optimization 

method look similar to those obtained by the conventional HF optimization method 

for intervals of 0.1, 0.01 and 0.001. To compare the accuracy of approximations 

more clearly, comparisons of depth profile for Hp  are plotted in Figure 3.16. The 

depth profile obtained by the conventional HF optimization method using the 

interval of 0.1 shows slightly different values compared to the others because of the 

approximation error.  
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(a)

(b)

(c)

 

Figure 3.15 The matrix-vector product of the Hessian matrix and column vector 

Hp obtained by (a) the improved HF method and by the conventional HF method 

with intervals of (b) 0.1, (c) 0.01, (d) 0.001, (e) 0.0001 and (f) 0.00001 for the 

Marmousi model.  
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(d)

(e)

(f)

 

Figure 3.15 (Continued)  
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Figure 3.16 Depth profiles of Hp  approximation obtained at a distance of 6.9 

km by the improved HF method using the limit of a function (purple dotted line) 

and by the conventional HF method using the forward FDA method with intervals 

of 0.1 (black dashed line), 0.01 (red dotted line), 0.001 (blue dashed line) and 

0.0001 (black dotted line). 
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As discussed in section 3.1.2, the accuracy and stability of Hp  

approximation depend on frequency, specifically low-frequency components. To 

investigate the accuracy and stability of 
iH p  approximation obtained by the 

improved HF optimization method, numerical tests are performed with the same 

inversion settings as in section 3.1.2. Numerical results of 
iH p  approximations 

obtained by the improved HF optimization method at 1.5, 2.5 and 5.5 Hz are shown 

in Figures 3.17(d), 3.18(d) and 3.19(d), respectively. 
iH p  approximation 

obtained by the improved HF optimization method yields similar results to those 

obtained by the conventional method. To compare more precisely, depth profiles of 

iH p  approximation extracted at a distance of 6.9 km are plotted in Figures 3.20, 

3.21 and 3.23. 
iH p  approximation results obtained by the improved HF 

optimization method match well with those obtained by the conventional HF 

optimization method with intervals of 0.1, 0.01 and 0.001. However, 
iH p  

approximation results obtained by the conventional HF optimization method with 

an interval of 0.1 show small approximation errors.  
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(a)

(b)

(c)

(d)

 

Figure 3.17 The matrix-vector product of the Hessian matrix and column vector 

iH p  at 1.5 Hz obtained by (a) the improved HF method and by the conventional 

HF method with intervals of (b) 0.1, (c) 0.01 and (d) 0.001 for the Marmousi model. 
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(a)

(b)

(c)

(d)

 

Figure 3.18 The matrix-vector product of the Hessian matrix and column vector 

iH p  at 2.5 Hz obtained by (a) the improved HF method and by the conventional 

HF method with intervals of (b) 0.1, (c) 0.01 and (d) 0.001 for the Marmousi model.  
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(a)

(b)

(c)

(d)

 

Figure 3.19 The matrix-vector product of the Hessian matrix and column vector 

iH p  at 5.5 Hz obtained by (a) the improved HF method and by the conventional 

HF method with intervals of (b) 0.1, (c) 0.01 and (d) 0.001 for the Marmousi model. 
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Figure 3.20 Depth profiles of 
iH p  approximation obtained at a distance of 6.9 

km for 1.5 Hz by the improved HF method using the limit of a function (black 

solid line) and by the conventional HF method using the forward FDA method with 

intervals of 0.1 (black dashed line), 0.01 (red dotted line) and 0.001 (blue dashed 

line). 
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Figure 3.21 Depth profiles of 
iH p  approximation obtained at a distance of 6.9 

km for 2.5 Hz by the improved HF method using the limit of a function (black 

solid line) and by the conventional HF method using the forward FDA method with 

intervals of 0.1 (black dashed line), 0.01 (red dotted line) and 0.001 (blue dashed 

line). 
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Figure 3.22 Depth profiles of 
iH p  approximation obtained at a distance of 6.9 

km for 5.5 Hz by the improved HF method using the limit of a function (black 

solid line) and by the conventional HF method using the forward FDA method with 

intervals of 0.1 (black dashed line), 0.01 (red dotted line) and 0.001 (blue dashed 

line). 
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Remember that the approximation intervals, which yield accurate and stable 

approximations of Hp  for the Marmousi model, may not be proper for the 

acoustic Overthrust model (Figure 3.11). In other words, a number of numerical 

tests should be pre-performed before seismic FWI to determine an appropriate 

approximation interval depending on models. In addition, the interval is also 

affected by the initial and kth inverted models as shown in Figures 3.13 and 3.14. 

To investigate robustness of the improved HF optimization method for model 

parameters, numerical tests for the acoustic Overthrust model are performed with 

the same inversion settings as in Section 3.1 and compared with those obtained by 

the conventional HF optimization method. Figure 3.23e shows search directions at 

the first FWI iteration obtained by the improved HF optimization method with the 

linearly-increasing initial model ranging from 3 km/s to 6.5 km/s (which is slightly 

overestimated). To investigate the convergence rates, RMS error curves are 

compared in Figure 3.24. Figure 3.24 shows that the conventional HF optimization 

method diverges, whereas the improved HF optimization method converges. The 

initial model is slightly changed with better estimation, whose velocity ranges from 

3 km/s to 6 km/s. RMS error curves for the better initial model are shown in Figure 

3.25. Figure 3.25 shows that the improved HF optimization method converges as 

fast as the conventional HF optimization method. 
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(a)

(b)

(c)

 

Figure 3.23 Comparison of search directions at the first FWI iteration obtained by 

(a) the improved HF method using the limit of a function and by the conventional 

HF method using the forward FDA method with intervals of (b) 0.1, (c) 0.01, (d) 

0.001 and (e) 0.0001 for the acoustic Overthrust model. 
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(d)

(e)

 

Figure 3.23 (Continued)  

 



 

 ８３ 

 

Figure 3.24 RMS error curves obtained by the improved HF method using the 

limit of a function (black solid line) and by the conventional HF method using the 

forward FDA method with intervals of 0.1 (black dashed line), 0.01 (red dotted 

line), 0.001 (blue dashed line) and 0.0001 (black dotted line). 
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Figure 3.25 RMS error curves obtained by the improved HF method using the 

limit of a function (black solid line) and by the conventional HF method using the 

forward FDA method with intervals of 0.01 (red dotted line), 0.001 (blue dashed 

line) and intervals changing from 0.0001 to 0.001 (black dotted line). 
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3.2.3 Advantages of the improved Hessian-Free optimization 
 

 

The improved HF optimization method was designed to approximate the 

matrix-vector product of the Hessian matrix and column vector in the linear 

conjugate-gradient loop. Its derivation was based not on the FDA method but on 

the limit of a function. In other words, a number of numerical tests for determining 

an appropriate approximation interval   are not needed, because the 

approximation intervals are cancelled and go to 0 by the limit. In section 3.1, 

results of Hp  approximations, which are approximated by the forward or central 

FDA methods, show that the FDA methods can be inaccurate depending on the 

approximation interval  . In contrast, the improved HF optimization does not 

suffer from instability due to the approximation interval. 

Another advantage of the improved HF optimization method is associated 

with computational cost. As mentioned in section 2.3.3, the conventional HF 

optimization using the forward FDA method carries out forward modeling twice 

per iteration for the linear conjugate-gradient method, whereas the central FDA 

method needs calculations of forward modeling 4 times. That’s why the forward 

FDA method has been preferred to the central FDA method in seismic FWI fields, 

although the central FDA method yields more accurate and stable approximation. 

The improved HF optimization also performs forward modeling twice per iteration 

for the linear conjugate-gradient method just like the conventional HF optimization 

using the forward FDA method, one for calculating equation (3.26) and the other 

for equation (3.27). The main difference between the improved HF optimization 

and the conventional one using the central FDA is that the conventional HF method 

additionally construct and factorize the modeling operator for the perturbed 

modeled parameters [  0 S m p ], whereas the improved HF optimization only 

applies the modeling operator  0S m , which was already constructed, factorized 
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and solved for the calculation of  0E m . Because this process should be 

repeated at every iteration for the linear conjugate-gradient method, because the 

perturbed model parameter vector p  varies over iterations. Accordingly, the 

improved HF method can achieve computational efficiency compared to the 

conventional HF method. 
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Chapter 4. Numerical examples 
 

 

To demonstrate the stability and accuracy of the improved HF optimization 

method, the conventional and improved HF optimization methods are applied for 

the Marmousi and acoustic overthrust models. To guarantee the convergence of 

FWI, the approximation intervals for the conventional HF method are chosen 

through a number of pre-performed numerical tests. To accelerate the convergence 

rates and to improve inversion results, the preconditioning, weighting, source 

encoding and line-search techniques, which were already discussed in Chapter 2, 

are applied to both the optimization methods. 
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4.1. The Marmousi model 
 

 

To compare inversion results obtained by the conventional and improved HF 

optimization methods for the Marmousi model, the approximation interval for the 

conventional HF optimization method is determined as 0.1, 0.01 and 0.001 by 

numerical tests which were already performed in Section 3.2.2. To avoid the multi-

parameter problem, density is fixed at 1 g/cc and not inverted. Figure 4.1 shows P-

wave velocity for the true Marmousi model and the linearly-increasing initial 

model ranging from 1.5 km/s to 4.5 km/s. Inversion settings for numerical 

examples are identical with Table 3.1. To guarantee convergence to the global 

minimum, the line-search technique is applied to determine the optimal step length 

of the search directions.  

In Figure 4.2, RMS error curves obtained by the conventional and improved 

HF optimization methods are displayed. RMS error decreases at almost the same 

rate for both the conventional and improved HF optimization methods. This 

indicates that the improved HF optimization can be applied to seismic FWI just 

like the conventional HF optimization method. Considering that the approximation 

intervals for the conventional HF optimization method were chosen through a 

number of pre-performed numerical tests, the improved method can be better than 

the conventional method. Figure 4.3 shows inversion results for P-wave velocity 

and Figures 4.4, 4.5 and 4.6 show depth profiles recorded at distances of 2.3 km, 

4.6 km and 6.9 km, respectively. Figures 4.3 to 4.6 show that the improved HF 

optimization method yields similarly good inversion results to those obtained by 

the conventional HF optimization method.  
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(a)

(b)

 

Figure 4.1 P-wave velocities of (a) the true Marmousi and (b) linearly-increasing 

initial models. 
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Figure 4.2 RMS error curves obtained by the conventional HF method using the 

forward FDA method with intervals of 0.1 (black dashed line), 0.01 (red dotted 

line), 0.001 (blue dashed line) and by the improved HF method using the limit of a 

function (black solid line). 
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(a)

(b)

 

Figure 4.3 Seismic FWI results for P-wave velocity obtained by the conventional 

HF method using the forward FDA method with intervals of (a) 0.1, (b) 0.01 and 

(c) 0.001, and by (d) the improved HF method using the limit of a function. 
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(c)

(d)

 

Figure 4.3 (Continued)  

 



 

 ９３ 

 

Figure 4.4 Depth profiles for P-wave velocity recorded at a distance of 2.3 km 

obtained by the conventional HF method using the forward FDA method with 

intervals of 0.1 (purple dashed line), 0.01 (blue dashed line) and 0.001 (black 

dashed line), and by the improved HF method using the limit of a function (red 

dashed line). The true velocities are denoted by the black solid line. 
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Figure 4.5 Depth profiles for P-wave velocity recorded at a distance of 4.6 km 

obtained by the conventional HF method using the forward FDA method with 

intervals of 0.1 (purple dashed line), 0.01 (blue dashed line) and 0.001 (black 

dashed line), and by the improved HF method using the limit of a function (red 

dashed line). The true velocities are denoted by the black solid line. 

 



 

 ９５ 

 

Figure 4.6 Depth profiles for P-wave velocity recorded at a distance of 6.9 km 

obtained by the conventional HF method using the forward FDA method with 

intervals of 0.1 (purple dashed line), 0.01 (blue dashed line) and 0.001 (black 

dashed line), and by the improved HF method using the limit of a function (red 

dashed line). The true velocities are denoted by the black solid line. 
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4.2. The acoustic Overthrust model with individual source 
 

 

Numerical examples for the Marmousi model showed that the improved HF 

optimization method is applicable and reliable just like the conventional HF 

optimization method. In this section, numerical examples for the acoustic 

Overthrust model are presented and it is assumed that there are no low-frequency 

components below 3 Hz in observed data. The low-frequency components in 

observed data are essential to invert the long-wavelength structure in the early 

stage of seismic FWI (Sirgue and Pratt, 2004).  

To compare the improved HF optimization method with the conventional HF 

optimization method, the approximation intervals of 0.1, 0.01 and 0.001 were 

chosen through a number of numerical tests to guarantee the accurate and stable 

approximation of the Hessian matrix. Table 4.1 shows the inversion settings for 

numerical examples and the line-search technique is also applied to enhance the 

convergence rate towards the global minimum. Figure 4.7 shows the true and initial 

models for the acoustic Overthrust model. RMS error curves are plotted in Figure 

4.8. RMS error curve obtained by the conventional HF optimization method with 

an approximation interval of 0.1 shows different tendency at the 20th iteration 

compared to the others. It indicates that using the approximation interval of 0.1 

degrades the accuracy of the Hessian approximation. In other words, the 

conventional HF optimization method with approximation intervals larger than 0.1 

may fail to converge to the global minimum. The failure of convergence in the 

seismic FWI process has been already discussed in Figures 3.24 and 3.25. Figure 

4.9 shows inversion results for P-wave velocity obtained by the conventional and 

improved HF optimization methods. Figures 4.10, 4.11 and 4.12 show depth 

profiles for P-wave velocity recorded at distances of 2.4 km, 4.8 km and 7.2 km, 

respectively.  
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 Table 4.1 Inversion settings for numerical examples of the acoustic Overthrust 

model. 

 

 

 

Model size 
No. of 

shot 

No. of 

receiver 

Shot 

interval 

Recording 

time 

Maximum 

Frequency 

Minimum 

Frequency 
9.6 km 

 3.4 km 
157 470 0.06 km 8 sec 15 Hz 3 Hz 
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(a)

(b)

 

Figure 4.7 P-wave velocities of (a) the true acoustic Overthrust and (b) linearly-

increasing initial models. 
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Figure 4.8 RMS error curves obtained by the conventional HF method with 

intervals of 0.1 (black dashed line), 0.01 (red dotted line) and 0.001 (blue dashed 

line), and by the improved HF method using the limit of a function (black solid 

line). 
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(a)

(b)

 

Figure 4.9 Seismic FWI results for P-wave velocity obtained by the conventional 

HF method using intervals of (a) 0.1, (b) 0.01 and (c) 0.001, and (d) by the 

improved HF method. 
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(c)

(d)

 

Figure 4.9 (Continued)  
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Figure 4.10 Depth profiles for P-wave velocity recorded at a distance of 2.4 km 

obtained by the conventional HF method using the forward FDA method with 

intervals of 0.1 (purple dashed line), 0.01 (blue dashed line) and 0.001 (black 

dashed line), and by the improved HF method using the limit of a function (red 

dashed line). The true velocities are denoted by the black solid line. 
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Figure 4.11 Depth profiles for P-wave velocity recorded at a distance of 4.8 km 

obtained by the conventional HF method using the forward FDA method with 

intervals of 0.1 (purple dashed line), 0.01 (blue dashed line) and 0.001 (black 

dashed line), and by the improved HF method using the limit of a function (red 

dashed line). The true velocities are denoted by the black solid line. 
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Figure 4.12 Depth profiles for P-wave velocity recorded at a distance of 7.2 km 

obtained by the conventional HF method using the forward FDA method with 

intervals of 0.1 (purple dashed line), 0.01 (blue dashed line) and 0.001 (black 

dashed line), and by the improved HF method using the limit of a function (red 

dashed line). The true velocities are denoted by the black solid line. 
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4.3. The acoustic Overthrust model with simultaneous source 
 

 

The HF optimization method requires a number of forward modeling 

calculations to approximate the product of the Hessian matrix and column vector. 

In addition, computational cost of the forward modeling calculation depends on the 

number of seismic sources. To enhance computational efficiency, the source-

encoding technique for the HF optimization method, which is proposed by 

Castellanos et al. (2015), is applied to the acoustic Overthrust model. The inversion 

settings are the same as those in Section 4.2.  

As mentioned in Section 3.2.3, the improved HF optimization method does 

not need to additionally construct, factorize and solve the modeling operator 

 0 S m p  for the perturbed model at every iteration for the linear conjugate-

gradient method. In other words, the conventional HF optimization method 

requires to construct, factorize and solve the modeling operator  0 S m p  at 

every iteration for the linear-conjugate gradient method. Figures 4.13, 4.14 and 

4.15 show computing time required by the conventional HF optimization method 

and by the improved HF optimization method depending on the number of the 

source-encoding group. Table 4.2 shows average computing time per FWI iteration 

required by the conventional and improved HF optimization methods with 4, 8 and 

16 encoding groups. The ratios of average computing time between the 

conventional and improved HF method are 3.19, 2.34 and 1.59 with 4, 8 and 16 

encoding groups, respectively. To compare them under the same conditions, the 

iteration number of the linear-conjugate gradient method is fixed at 5. Computing 

time of the improved HF optimization method is much smaller than those of the 

conventional HF optimization method, because construction and factorization of 

the modeling operator for the perturbed model are not needed for the improved HF 

optimization method. From Figures 4.16 and 4.17, it is noted that as the number of 
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source-encoding groups increases, computing time increases. However, in the 

aspect of convergence rate, as the number of the source-encoding groups increases, 

the convergence rate is enhanced in Figures 4.18 and 4.19, since more and more 

source-encoding groups can suppress the crosstalk terms in the search direction of 

P-wave velocity as shown in Figure 4.20. There exists the trade-off between the 

number of source-encoding groups and convergence rate. Figures 4.21 and 4.22 

show inversion results for P-wave velocity and RMS error curve obtained by the 

improved HF optimization method using the source-encoding and line-search 

techniques. 
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Figure 4.13 Computing time required by the conventional (black solid line) and 

improved (red solid line) HF optimization methods using the source-encoding 

technique with 4 encoding groups. 
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Figure 4.14 Computing time required by the conventional (black solid line) and 

improved (red solid line) HF optimization methods using the source-encoding 

technique with 8 encoding groups. 
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Figure 4.15 Computing time required by the conventional (black solid line) and 

improved (red solid line) HF optimization methods using the source-encoding 

technique with 16 encoding groups. 
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Figure 4.16 Computing time required by the conventional HF method using the 

source-encoding technique with 4 (black solid line), 8 (red solid line) and 16 (blue 

solid line) encoding groups. 
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Figure 4.17 Computing time required by the improved HF method using the 

source-encoding technique with 4 (black solid line), 8 (red solid line) and 16 (blue 

solid line) encoding groups. 
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Table 4.2 Average computing time per FWI iteration required by the conventional 

and improved HF optimization methods using the source-encoding technique with 

4, 8 and 16 encoding groups for the acoustic Overthrust model. Note that the ratio 

of the conventional HF method to the improved HF method decreases as the 

number of encoding group increases. 

 4 encoding groups 8 encoding groups 16 encoding groups 

Conventional HF 7.08 s 7.87 s 9.90 s 

Improved HF 2.22 s 3.36 s 6.24 s 

Ratio (C/I) 3.19 2.34 1.59 
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Figure 4.18 RMS error curves obtained by the conventional HF method using the 

source-encoding technique with 4 (black solid line), 8 (red solid line) and 16 (blue 

solid line) encoding groups. The approximation interval is 0.01. 
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Figure 4.19 RMS error curves obtained by the improved HF method using the 

source-encoding technique with 4 (black solid line), 8 (red solid line) and 16 (blue 

solid line) encoding groups. 
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(a)

(b)

(c)

 

Figure 4.20 Search directions for P-wave velocity at the first FWI iteration 

obtained by the improved HF method using the source-encoding technique with 

source encoding group of (a) 4, (b) 8 and (c) 16. 
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Figure 4.21 Seismic FWI results for P-wave velocity obtained by the improved HF 

method using the source-encoding technique with 4 groups and the line-search 

technique. 
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Figure 4.22 RMS error curve obtained by the improved HF method using the 

source-encoding technique with 4 groups and the line-search technique. 
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Chapter 5. Conclusions 
 

 

Seismic full waveform inversion has been performed on the basis of the first-

order (i.e., linear) optimization such as the steepest-descent method, because of its 

easy and intuitive implementation. However, the first-order optimization has a 

characteristic of focusing on recovering shallow structures in seismic FWI, which 

is a large-scale non-linear problem. To overcome this limitation, a preconditioner 

has been incorporated to the steepest-descent method, or the second-order 

optimization method using the Hessian matrix has been applied.  

However, the Hessian matrix for seismic FWI requires too heavy 

computational cost and computing time with the present computer’s capacities. To 

avoid calculating, storing and inverting the Hessian matrix explicitly, the Hessian-

free optimization method is one of the most appealing and efficient optimization 

methods, because it does not require full information of the Hessian matrix itself. 

Instead of the Hessian matrix itself, the matrix-vector product of the Hessian 

matrix and column vector is needed in iterations for the linear conjugate-gradient 

method inside the seismic FWI code. The matrix-vector product of the Hessian 

matrix and column vector can be approximated by the second-order adjoint method 

or the FDA method. The FDA method has been popularly used to compute the 

matrix-vector product because it is simpler and more efficient to be implemented to 

seismic FWI than the second-order adjoint method. It only requires additional 

calculation of the steepest-descent directions for the perturbed model parameters to 

approximate the matrix-vector product of the Hessian matrix and column vector.  

However, there exist several problems arising from the FDA method, which 

were discussed in Section 3.1. That is, the FDA method depends on the 

approximation interval  . With too large or small approximation interval, the 

FDA method will fail in approximating the matrix-vector product of the Hessian 
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matrix and column vector due to the approximation errors  O   or round-off 

errors, respectively. In addition, the appropriate approximation interval  is 

dependent on model parameters, frequency components of data, and model 

perturbations. To choose an appropriate approximation interval  , a number of the 

numerical tests are needed before seismic FWI. In addition, if one of the inversion 

environments changes during the inversion process, it would be better to find a new 

approximation interval  .  

To overcome those problems arising from the FDA method, the improved HF 

optimization was introduced in this study. The derivations of the new 

approximation method using the limit were addressed in Section 3.2. Its derivations 

are based on not the FDA method but the limit (i.e., the approximation interval   

approaches zero). Consequently, the improved HF optimization method 

approximates the matrix-vector product Hp  without selection of an 

approximation interval  . In other words, a number of the numerical tests are not 

needed to determine an appropriate approximation interval   by using the new 

approximation method. In addition to the interval problem, the improved HF 

optimization method is more efficient than the conventional HF optimization 

method in the aspect of computational cost and computing time. Note that the 

conventional HF optimization method requires to construct, factorize and solve the 

new modeling operator  0 S m p  for the perturbed model at every iteration 

for the linear conjugate-conjugate gradient method, whereas the improved HF 

optimization method only requires to solve the original modeling operator  0S m  

which has been already constructed and factorized before the linear conjugate-

gradient loop. 

To demonstrate those advantages of the improved HF optimization method 

over the conventional HF method, numerical examples for the Marmousi and 

acoustic Overthrust models are provided and discussed in Chapter 4. Inversion 

results for P-wave velocity parameters obtained by the improved HF optimization 
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method show almost the same accuracy compared to those obtained by the 

conventional HF optimization method, although the approximation interval is not 

considered in the improved HF optimization method. In addition, the improved HF 

optimization method has proved to be much more efficient than the conventional 

HF method by comparing computing time when the source-encoding technique is 

incorporated.  

The improved HF optimization can also be applied to other optimization 

problems in geophysics such as seismic FWI for elastic media and controlled-

source electromagnetic (CSEM) inversion. Because those problems have similar 

inversion work flows such as construction of modeling operator and calculation of 

gradient schemes, the derivations of the improved HF method for elastic FWI and 

CSEM inversion will be similar to those for acoustic FWI. These applications will 

be addressed in further work.  
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국문초록 

 

음향파 파형역산을 위한  

개선된 헤시안-프리 최적화 기법 

 

탄성파 파형역산은 지하 매질의 물성 정보를 추출하는 탄성파 

자료처리 기법 중 하나로, 관측 파동장과 수치 파동장의 잔차를 

최소화하는 방향으로 물성 정보를 반복적으로 업데이트 한다. 잔차를 

최소화하는 물성 방향을 구하기 위한 여러 최적화 기법 중, 본 

연구에서는 헤시안-프리 최적화 기법을 이용한다. 헤시안-프리 최적화 

기법은 헤시안 행렬을 직접 계산하거나 그 역행렬을 계산할 필요가 없기 

때문에 다른 최적화 기법에 비해 계산량이 적으며 탄성파 파형역산과 

같이 많은 물성 값을 갖는 비선형 문제에 적합한 기법이다. 직접적인 

헤시안 행렬 계산 대신, 헤시안-프리 최적화 기법은 헤시안 행렬과 

임의의 열벡터 곱이 켤례기울기법 과정에서 필요하며, 이는 

유한차분법을 이용하면 쉽게 근사값을 구할 수 있다. 그러나 정확하고 

안정적으로 근사값을 구하기 위해서는 적절한 차분간격을 반복적인 수치 

예제를 통해 구해야 하며, 지하 매질의 물성이나 주파수와 같은 다양한 

역산 변수들에 따라 새로운 차분간격을 다시 구해야 하는 단점이 있다.  

본 연구에서는 이러한 문제를 해결하기 위해 유한차분법이 아닌 

극한값을 이용하는 개선된 헤시안-프리 최적화 기법을 제안한다. 

극한의 정의에 따라 새로운 방법은 차분간격이 0에 가까워지며 이로 

인해 역산 환경에 따라 매번 새로운 차분간격을 구할 필요가 없이 

정확하고 안정으로 헤시안 행렬과 열벡터의 곱을 구할 수 있다는 장점이 

있다. 또한 개선된 헤시안-프리 최적화 기법은 기존의 헤시안-프리 
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최적화 기법과 달리 켤례기울기법 과정에서 새로운 임피던스 행렬을 

구축하거나 분해할 필요가 없기 때문에 훨씬 빠르게 파형역산을 수행 할 

수 있다. 따라서, 본 연구에서 제안하는 개선된 헤시안-프리 최적화 

기법은 기존의 헤시안-프리 최적화 기법과 비교하여 파형역산의 정확성, 

안정성을 제공할 뿐만 아니라 훨씬 빠른 계산 속도를 제공한다.  

 

 

 

주요어: 탄성파 파형역산, 뉴턴법, 헤시안-프리 최적화 기법, 음향파 

파동방정식 
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