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Abstract 
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Propagation Path Estimation using Principal 

Component Analysis and Granger Causality 

 

Daegeun Ha 

School of Chemical & Biological Engineering 

The Graduate School of Seoul National University 

 

Modern industrial process is a complex device industry consisting of a 

combination of numerous unit processes. Numerous process parameters such as flow 

rate, temperature, pressure, concentration and composition have strong linear or 

nonlinear correlation. Since improvement of computing power and process control 

systems in industrial processes, several board operator and field operator can manage 

huge amounts of data and whole process information from industrial plant. However, 

the number of processes and devices to be handled by a single operator will increase, 

and operators meets a limitation of cognitive ability due to flood of information, 
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causing problems such as process malfunction or instrumental failure. To solve this 

problem, we propose a PCA modeling procedures that aims to improve monitoring 

performance by variable selection, removing noise, operation mode classification 

and mode change detection. Fault diagnosis and causal analysis is also introduced. 

We calculated the causal relationship matrix between the process variables and find 

out the root cause of the unexpected process changes. The proposed approach was 

applied and validated to LNG plant located in Incheon and plasma condition 

monitoring in plasma etcher. 

Chapter 2 discusses the application methodologies of signal processing to 

eliminate noises from OES signal and multivariate statistical techniques to improve 

monitoring sensitivity. Among the plasma sensors, optical emission spectroscopy 

(OES) has been widely utilized and its high dimensionality has required multivariate 

analysis (MVA) techniques such as principal component analysis (PCA). PCA, 

however, might devaluate physical meaning of target process during its statistical 

calculation. In addition, inherent noise from charge coupled devices (CCD) array in 

OES might deteriorate PCA model performance. Therefore, it is desirable to pre-

select physically important variables and to filter out noisy signals before modeling 

OES based plasma data. For these purposes, this chapter introduces a peak 

wavelength selection algorithm for selecting physically meaningful wavelength in 

plasma and discrete wavelet transform (DWT) for filtering out noisy signals from a 

CCD array. The effectiveness of the PCA model introduced in this paper is verified 

by comparing fault detection capabilities of conventional PCA model under the 

various source power or pressure faulty situations in a capacitively coupled plasma 
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etcher. The PCA model introduced in this chapter successively detect even extremely 

small variation such as 0.67% of source power change even though the conventional 

PCA model fails to detect all of the faulty situations under the tests.  

Chapter 3 discusses the application methodology of operation mode identification 

and multimode PCA to improve the performance of LNG mixed refrigeration (MR) 

process and prevent process shutdown. LNG MR process is usually used for 

liquefying natural gas. The compressors for refrigerant compression are operated 

with the high-speed rotating parts to create a high-pressure. However, any 

malfunction in the compressors can lead to significant process downtime, 

catastrophic damage to equipment and potential safety consequences. The existing 

methodology assumes that the process has a single mode of operation, which makes 

it difficult to distinguish between a malfunction of the process and a change in mode 

of operation. Therefore, k-nearest neighbor algorithm (k-NN) is employed to classify 

the operation modes, which is integrated into multi-mode principal component 

analysis (MPCA) for process monitoring and fault detection. When the fault 

detection performance is evaluated with real LNG MR operation data, the proposed 

methodology shows more accurate and early detection capability than conventional 

PCA.  

Chapter 4 discusses PCA based fault amplification algorithm to detect both the 

root cause of fault and the fault propagation path in the system. The developed 

algorithm project the samples on the residual subspace (RS) to determine the 

disturbance propagation path. Usually, the RS of the fault data is superimposed with 
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the normal process variations which should be minimized to amplify the fault 

magnitude. The RS containing amplified fault is then converted into the co-variance 

matrix followed by singular value decomposition (SVD) analysis which in turn 

generates the fault direction matrix corresponding to the largest eigenvalue. The fault 

variables are then re-arranged according to their magnitude of contribution towards 

a fault which in turn represents the fault propagation path using an absolute 

descending order functions. Moreover, the multivariate granger causality (MVGC) 

algorithm is used to analyze the causal relationship among the variables obtained 

from the developed algorithm. Both the methodologies are tested on the LNG 

fractionation process train and distillation column operation where some fault case 

scenarios are assumed to estimate the fault directions. It is observed that the 

hierarchy of variables obtained from fault propagation path algorithm are in good 

agreement with the MVGC algorithm. Therefore, fault amplification methodology 

can be used in industrial systems for identifying the root cause of fault as well as the 

fault propagation path. 

The application results show that the proposed multivariate statistical method can 

improve productivity and safety by providing useful information for process 

monitoring and fault diagnosis in various processes with distributed control system. 

 

Keywords: Process monitoring, Fault diagnosis, Mode identification, Granger 

causality, Principal component analysis, k-NN classification 

 

Student ID: 2013-30990  
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CHAPTER 1 Introduction 

 

 Research motivation 

With an increase in the complexities in the industrial systems and high level 

process integrations allows the industry to obtain enormously huge amount of 

information on the process operation including thousands of sensors, analyzers and 

control loops have strong interactions among each other in terms of process variables. 

Therefore, in order to efficiently manage such complex processes, detect the 

instrumental malfunctions are required to improve product yield, reduce operational 

risk, ensure safe operation and achieve sustainable profit. 

A fault is defined as a departure from an acceptable range of an observed variable 

or an unpredicted deviation of at least one characteristic property or variable of the 

system. (Chiang et al. 2001). The underlying causes of this abnormality, such as a 

failed compressor motor operation or controller failure, are called the basic events 

or root causes. The four procedures associated with process monitoring are: fault 

detection, fault identification, fault diagnosis, and process recovery. There appears 

to be no standard terminology for these procedures as the terminology varies across 

disciplines; the terminology given by Raich and Cinar (1996) is adopted here. 

 

- Fault detection: determine whether a fault has occurred. Early detection may 

provide invaluable warning on emerging problems, with appropriate actions 

taken to avoid serious process upsets. 

 

- Fault identification: identify the observation variables most relevant to 
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diagnosing the fault. The purpose of this procedure is to focus the plant 

operator’s and engineer’s attention on the subsystems most pertinent to the 

diagnosis of the fault, so that the effect of the fault can be eliminated in a more 

efficient manner. 

 

- Fault diagnosis: determine which fault occurred, or determining the cause of 

the observed out-of-control status. The fault diagnosis procedure is essential 

to the counteraction or elimination of the fault. 

 

- Process recovery: remove the effect of the fault. 

 

When a fault is detected, the fault identification, fault diagnosis, and process 

recovery procedures are employed in the respective sequence; otherwise, only the 

fault detection procedure is repeated. 

Process monitoring and fault diagnosis in industrial plant are significant task for 

improve efficiency and ensure the safety. When fault occur in industrial plant, the 

operator must quickly detect the fault, diagnose its root causes of abnormal events 

as soon as possible with ensure accuracy so corrective action can be taken in a timely 

manner. Due to the varying operational conditions, process and quality variables 

need to be monitored continuously to ensure a reliable and efficient operation and, 

thus, day average values are not sufficient to get early detections or warnings of 

deviating or abnormal conditions. Consequently, this calls for techniques to handle 

large data sets online. The methods for monitoring used today are normally based on 

time series charts, where the operator can view the different variables as historical 

trends.  
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However, it is very difficult for operators to take correct actions when facing faults 

because of complexity and integrity of modern industrial processes. Therefore, 

automatic fault detection and diagnosis systems for industrial plants have become 

extremely required to support operator or engineer’s decision making for process 

control and monitoring.  

To solve this problem, multivariate statistical techniques are powerful tools 

capable of compressing data and reducing its dimensionality so that essential 

information is retained and easier to analyze than the original huge data set; and they 

are also able to handle noise and correlation to extract true information effectively. 

PCA method, initially proposed by Pearson (1901) and later developed by Hotelling 

(1947), is a standard multivariate technique and has been included in many textbooks 

(Anderson, 1984; Jackson, 1991) as well as research papers (Wold, 1978; Wold, 

Esbensen, & Geladi, 1987). The main function of multivariate statistical techniques 

is to transform a number of related process variables to a smaller set of uncorrelated 

variables. PCA method is due to their ability to efficiency handle a large number of 

highly correlated variables, measurement errors, and missing data caused by sensor 

fault. More important is their ability to provide an operator with useful information 

on process improvement through projecting the high dimensional process data into 

the low dimensional space defined by a few latent variables. 

Proposed process monitoring and fault diagnosis system is required to data 

collection, data preprocessing, analyze on-line process data, process trend 

monitoring, multivariate statistical process monitoring, fault diagnosis and 

information visualization. 
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 Research objectives 

The objective of this thesis is to suggest a real-time process monitoring and fault 

diagnosis of various industrial processes including LNG manufacturing process and 

semiconductor etching process based on the MSPC approach and causal relationship 

approach. The thesis deals with several real plant operation cases and achieve more 

accurate process monitoring and fault diagnosis techniques which is required to 

improve product efficiency, reduce operational risk, ensure safe operation. The detail 

objectives to achieve the principal goal are considered as follows: (i) Analyze the 

types of noise sources that occur due to process and device characteristics, and 

applies a filtering technique to remove noise; (ii) Adapt and combine the well-known 

multivariate statistical analysis model considering the target process dynamics and 

operation strategy; (iii) Develop extensions to existing modeling techniques to 

improve simplicity and accuracy of models for on-line process monitoring; (iv) 

Develop methodology of fault diagnosis and causal relationship model for plant-

wide root cause diagnosis and fault propagation using the developed models.  
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 Outline of the thesis 

The thesis is organized as follows. Chapter 1 describes necessity of multivariate 

process monitoring and fault diagnosis with an introduction of this study and outline 

of this thesis. Chapter 2 describes noise reduction technique using discrete wavelet 

transform, automatically signal selection methodology and principal component 

analysis for OES data dimension reduction and plasma state monitoring. Chapter 3 

describes a methodology of fault detection method using process mode classification 

and identification technique and multimode PCA to LNG Mixed Refrigeration 

Process. Chapter 4 describes a methodology of fault diagnosis and causal analysis 

using a statistical model for a LNG fractionation process. Further, in this chapter, we 

suggested MVGC methodology to find root cause of process malfunction.  
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 : Multivariate monitoring, variable 

selection and OES signal filter design of 

plasma process1 

 

 Introduction 

With an advent of sub-20nm device era, Moore’s law that predicts the number of 

transistor in an integrated circuit doubles approximately every sixteen months 

becomes difficult to follow. The reasons are physical difficulties to shrink gate width 

physically and electrically. Instead, the concept of more than Moore’s law which 

proposes an equivalent scaling approach rather than shrinkage technology has 

become prevalent in semiconductor industry. (Kahng, 2010; Ramm et al., 2010; 

Waldrop, 2016) The equivalent scaling approach has three main directions such as 

introduction of innovative process schemes like 3D transistor, additional chip and 

system-level architectural design, and cost-effective manufacturing. 

As a cost-effective manufacturing approach, plasma etching, which is one of the 

major processes in semiconductor manufacturing, has developed real-time 

monitoring and control techniques. (Gaman et al., 2015; Keville et al., 2013; Lynn 

et al., 2012) Specifically, inherent complexity of plasma has driven this activity to 

mostly focus on development of plasma sensors and their applications. (Baek et al., 

2005; Booth et al., 2000; Klick et al., 1997; Lee et al., 2007; Oh et al., 2010; 

Sobolewski, 2006) 

                                                      
1 The partial part of this chapter is taken from the author’s published paper. 
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Among plasma sensors, optical emission spectroscopy (OES) which measures 

emission from plasma and analyzes chemical composition in plasma has been widely 

utilized in plasma etching for endpoint detection and process monitoring. (Litvak et 

al., 1996; White et al., 2000; Yue et al., 2000; Yue et al., 2001) Since OES detects 

light from ultra violet (UV) to visible ranges with less than 1nm spectral resolution, 

size of data generated during a typical plasma etching process is larger than 1 

megabyte and the number of variable to consider is around 2048. Therefore, a 

multivariate analysis (MVA) technique such as principal component analysis (PCA) 

has been studied for dimension reduction and variable selection. (White et al., 1997; 

White et al., 2000; Yue et al., 2000; Yue et al., 2001) 

 PCA, however, might devaluate physical meaning of target process during its 

statistical calculation. In addition, inherent noise from charge coupled device (CCD) 

array in OES might deteriorate PCA model performance. For these reasons, it is 

desirable to pre-select physically important variables and to filter out noise signals 

in modeling OES based plasma data. 

This paper introduces improvement of PCA performance by developing a pre-

variable selection technique and by applying discrete wavelet transform (DWT) in 

modeling OES based plasma data. In Section 2-2, issues in PCA modeling of OES 

based plasma data are described especially in terms of huge data size and inherent 

noise. In Section 3, theoretical background of developed techniques in this paper is 

explained and how they are integrated into PCA is described. After a brief 

description of experimental conditions in Section 4, performances of conventional 

and this paper-introducing PCA model are compared under various test conditions 

in Section 5. 
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 Issues in PCA Modeling of OES based Plasma Data 

Figure 2-1 shows a schematic of a plasma reactor and OES installation in this paper. 

Emission in plasma is transported to an entrance slit in an OES system via an optical 

fiber which is attached on the viewport of plasma etcher. The incoming light at the 

entrance slit in OES system travels to the collimating mirror where the light is 

reflected to a diffraction grating. The diffraction grating then spreads the light to the 

focusing mirror where the spread light is transported to a CCD array. The CCD array 

which is assigned as each wavelength convert light to electrical signal. 

In current plasma etch processes, a high resolution OES which can measure wider 

range of spectrum ranging from 150nm to 1,000nm with less than 0.8 spectral 

resolution is employed for process monitoring. Accordingly, huge data from the high 

resolution OES makes it difficult to manually identify useful features and key 

wavelengths. Therefore, these high volumes of OES data in plasma etching requires 

to develop robust and automated data reduction, feature extraction and analysis 

techniques.
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Figure 2-1. Schematic of a plasma reactor and an OES installation, in which inside of OES system is also described



10 

 

Principal component analysis (PCA) has been applied for those purposes in 

plasma etching. (Ragan et al., 1997; White et al., 1997; Yue et al., 2000) PCA, 

however, might devaluate physically important parameters during its statistical 

calculation. Specifically, in consideration of the previous results that core plasma 

parameters can explain plasma etch processes well, it is desirable to include plasma 

variables in PCA. (Baek et al., 2014; Park et al., 2015) Thus variable selection 

techniques which can extract physically meaningful wavelength from OES data 

should be incorporated into PCA in modeling plasma etching processes. 

In addition, inherent noise from a CCD array in OES system might deteriorate 

PCA model performance. There are several types of noise associated with a CCD 

array. (Ma et al., 2010; Goodlin, 2002) Firstly, photon shot noise arises from 

quantum detection of photons. Secondly, spontaneous photoelectron in the absence 

of photons is generated, which is called as dark current. Readout noise is also 

generated through electronic processing of signal. Lastly, there is pixel shift and drift, 

which is change in the location of the pixel as a function of time, possibly due to 

subtle mechanical vibrations.  

Among these noise sources, the readout noise and the pixel shift and drift can be 

significantly reduced by optimum design of a CCD array. However, other existing 

noise such as shot noise and dark current can frequently deteriorate results of signal 

processing. Therefore, it is desirable to separate this noise effect in modeling. 
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 Theoretical Background 

 Peak Wavelength Selection Algorithm 

Sharp emission in plasma is the result of electron transition from excited to lower 

energy states within atom. Considering each atom has its own energy state, 

wavelength of sharp emission can estimate which atom exists in plasma. The 

intensity of the sharp emission can also estimate how much the atom exists in plasma. 

A peak wavelength selection algorithm is devised to automatically search 

wavelength of peak emission in OES spectrum. Figure 2-2 shows a flow chart of the 

peak wavelength selection algorithm. Firstly, threshold value, α, is specified in 

consideration of signal to noise ratio of an employed OES system. Here, α is 300, 

which comes from the signal-to-noise specification of the employed OES. Then, 

emission intensities of three consecutive wavelengths are compared. If the emission 

intensity of wavelength in the middle is higher than both that of wavelength in the 

left side and that of wavelength in the right side to the extent of more than threshold 

α, the wavelength is selected temporarily. 
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Figure 2-2. Flow chart of a peak wavelength selection algorithm 

 

 



13 

 

The temporarily selected wavelength is then compared with technical database 

from NIST (http://physics.nist.gov/PhysRefData/Handbook/element_name.htm) to 

check whether it is physically meaningful or not. If it is matched, then the wavelength 

is finally selected for PCA modeling. This process is done from the starting 

wavelength, 150nm, to the ending wavelength, 1000nm, sequentially.  
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 Discrete Wavelet Transform 

As described in Section 2-2, OES signal is composed of major information from 

plasma and several minor noise from a CCD array. Therefore, it is desirable to 

decompose OES data into major and minor signals before PCA modeling.  

For this purpose, discrete wavelet transform (DWT) can be useful because it can 

decompose a signal in both time and frequency domain through variable window 

function. The variable window function uses a shorter time interval to analyze the 

high frequency components of a signal and a longer one to analyze the low frequency 

components of the signal.  Many studies also utilized this characteristics of wavelet 

transformation for the purpose of improving performance of sensor fault detection 

and diagnosis. (Chen et. al., 2006; Ding et. al., 2003; Lada et. Al., 2002; Wang et. al., 

2005; Xu et. al., 2008; Zuppa et. al., 2007) 

According to Mallat’s theory of multi-resolution analysis (Mallat, 1989), any 

signal 𝑓(𝑡) ∈  𝐿2(𝑅) can be represented at multiple scales by decomposition on a 

family of scaling functions Φ𝑚,𝑛(𝑡) and wavelet functions ψ𝑚,𝑛(𝑡) shown in Eq. 

(1). 

 

f(t) = ∑ 𝑐𝑚0,𝑛𝜙𝑚0,𝑛(𝑡) + ∑ ∑ 𝑑𝑚,𝑛𝜓𝑚,𝑛(𝑡)𝑛∈𝑍
∞
𝑚=𝑚0𝑛∈𝑍      (1) 

where, 

 𝜙𝑚,𝑛(𝑡) = 2−𝑚𝜙(2−𝑗𝑡 − 𝑛),  

 Ψ 𝑚,𝑛(𝑡)  =  2−𝑚 2⁄ 𝜓(2−𝑗𝑡 − 𝑛),  

 𝑐𝑚0,𝑛 = ∫ 𝑓(𝑡)𝜙𝑚0,𝑛(𝑡)𝑑𝑡
𝑅

,   

 𝑑𝑚,𝑛 = ∫ 𝑓(𝑡)𝜓𝑚,𝑛(𝑡)𝑑𝑡
𝑅

.  
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When the signal is projected onto the scaling functions, one set of coefficients 

𝑐𝑚0,𝑛 known as approximation coefficients is obtained. The approximation 

coefficients describe the trend or approximation of the signal. On the other hand, 

when the signal is projected onto the wavelet functions, another set of coefficients 

𝑑𝑚,𝑛 known as wavelet coefficients is obtained. The wavelet coefficients describe 

the details of the signals. 

Figure 2-3 shows decomposition of an OES signal by the wavelet transformation. 

The original OES signal S is decomposed into approximation cA1 and detail cD1 

coefficients at the first level. Application of the same transform on the approximation 

cA1 causes it to be decomposed further into approximation cA2 and details cD2 

coefficient at the second level. The decomposition process can continue to a level L 

as long as the length of approximation coefficients in cAL is more than the length of 

coefficients in the wavelet filter. 
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Figure 2-3. Results of DWT of OES signal in which 3 level decomposition 
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At this stage, there are details coefficients, cD1, cD2, and cD3, and approximation 

coefficients, cA3. The optimum level L is determined by checking a signal to noise 

ratio (SNR) and a root mean square error (RMSE) described in Eqs. (2) and (3).  

 

SNR = 
𝐴

𝜎
      (2) 

where,    

A: average of selected OES peak,  

σ: standard deviation of selected OES peak. 

 

RMSE = √
1

𝑛
∑ (𝑦𝑗 − 𝑦̌𝑗)

2𝑛
𝑗=1     (3) 

where, 

n: number of samples, 

𝑦𝑗: modified OES signal after DWT filtering,  

𝑦̌𝑗: original OES signal’s average. 

 

In OES signal case, the SNR are increased as the level increases from one to three 

and are saturated at the level 4 in Figure 2-4. Similarly, the RMSE are decreased as 

the level increases from one to three and are saturated at the level 4. Thus, level 3 is 

determined as an optimum.  

As a result, OES signal can be decomposed into approximation coefficients and 

detail coefficients by discrete wave transformation. That is, noise from a CCD array 

are represented by detail coefficients and plasma conditions from process variable 

changes are represented with approximation coefficients.
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Figure 2-4. SNR (a) and RMSE (b) for Each Level after DWT decomposition 
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 Experimental Set-up 

Figure 2-5 shows a plasma etching reactor employed in this paper. It is a 

capacitively coupled plasma reactor for 300mm wafer, which is powered by three 

radio frequency (RF) generators such as 60MHz on top electrode, 13.56MHz and 

2MHz on bottom electrode. The gap size between top and bottom electrodes is 25mm 

and the area ratio of top showerhead and bottom electrodes is 1.33. The employed 

optical emission spectrometer in this paper is capable of measuring light ranging 

from 150nm to 1000nm wavelengths with 0.4nm spectral resolution. 

The reference plasma condition is 20mT of pressure, 300W of 60MHz RF power, 

400sccm of Ar flow rate, and 16sccm of SF6 flow rate. With the regard to the 

reference plasma condition, 60MHz RF power or pressure is changed intentionally 

to generate faulty situations.
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Figure 2-5. Schematic diagram of a plasma etching reactor 
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 Results and Discussion 

 Pre-selected variables in OES data 

Figure 2-6 shows reduction of OES spectrum data before and after applying peak 

wavelength selection algorithm. As described in Section 2.3.1, peak wavelengths 

with higher signal to noise ratio, α, are selected among neighbor wavelengths. Then, 

the wavelengths are matched with technical database of Ar and SF6 from NIST. As a 

result, the number of wavelength variables is reduced from 2048 to 20.
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Figure 2-6. OES spectrum data before after applying peak wavelength selection 

algorithm 
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 Decomposition of OES signal by DWT 

In Section 2.5.1, it is described that one of issues in OES signal analysis, high 

dimensionality, can be mitigated by applying the peak wavelength selection 

algorithm. The selected signals are then decomposed by DWT in order to filter out 

noisy signals from a CCD array. Considering the fact that frequencies from OES 

measurement and those from noise in a CCD array are different, the threshold of 

detail coefficient is adjusted so as to separate noise in a CCD array.  

Figure 2-7 shows the time resolved signal of Ar emission at 750nm wavelength 

before and after DWT. For the DWT filter design, soft threshold is applied and the 

setting values for the detailed coefficient are 105.48 for level 1, 99.636 for level 2, 

and 118.28 for level 3. It is clearly shown that the noise from the CCD array is 

excluded from the original signal in Figure 2-7-(b). Likewise, the other signals are 

filtered out by DWT before PCA modeling.



24 

 

 

Figure 2-7. Time resolved signal of Ar emission at 750nm wavelength before and 

after DWT 
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 Comparison of Fault Detection Performance in OES 

based PCA Models 

To evaluate performance of OES based PCA models, various Ar + SF6 plasmas 

are tested in the CCP etcher as shown in Figure 2-5. Based on the reference Ar + SF6 

plasma with which a reference PCA model is built, source power (60MHz RF power) 

or pressure is changed intentionally to see the detection capability of PCA models.  

Tested PCA models are summarized in Table 2-1. The conventional PCA model is 

built with all wavelength variables in OES spectrum. On the contrary, the P-PCA 

model where the peak wavelength selection algorithm is applied and the PD-PCA 

model where the peak wavelength selection algorithm and DWT are applied.
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Table 2-1. Summary of tested PCA models in this study. 

PCA Model 
No. of 

Variables 

Noise Filtering 

by DWT 

No. of PC to Capture 

70% Variance 

Upper Limit of Hotelling's 

T2 with 99% Confidence 

Level 

Conventional PCA 2048 No 26 90.8 

P-PCA1 20 No 9 32.2 

PD-PCA2 20 Yes 4 18.9 

1P-PCA: peak wavelength selection algorithm is applied. 

2PD-PCA: peak wavelength selection algorithm and DWT are applied. 
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Figure 2-8 shows Hotelling’s T2 for pressure fault cases where 5% or 10% of 

pressure with regard to the reference condition is increased. As is shown in Figure 

2-8 (a), the conventional PCA model fails to detect any pressure faults in Hotelling’s 

T2. In contrast, the P-PCA and PD-PCA models detect both pressure faults like that 

shown in Figure 2-8(b), (c). As a result, missed detection rates for each case in Table 

2-2 are 1, 0 and 0 for the conventional PCA, the P-PCA and PD-PCA, respectively.  

Figure 2-9 shows SPE for pressure fault cases. Different from the Hotelling’s T2, 

all of the PCA models detect all faults in SPE. This might come from the fact that 

some of Ar emission peak is contained in residual space because captured variance 

of all PCA models is 70%. As a result, missed detection rates for each case in Table 

2-3 are 1, 0 and 0 for the conventional PCA, the P-PCA and PD-PCA, respectively.



28 

 

 

Figure 2-8. Hotelling’s T2 under pressure fault situations.  

(a) Conventional PCA model, (b) P-PCA model, and (c) PD-PCA model 
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Figure 2-9. SPE under pressure fault situations. (a) Conventional PCA model, (b) P-PCA model, and (c) PD-PCA model 
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Table 2-2. Summary of missed detection rate in this study. (Hotelling’s T2) 

 Conventional PCA P-PCA1 PD-PCA2 

Pressure Fault 5% 50/50 = 1.0 0/50 = 0.0 0/50 =0.0 

Pressure Fault 10% 50/50 = 1.0 0/50 = 0.0 0/50 = 0.0 

Source Power Fault 0.67% 50/50 = 1.0 31/50 = 0.62 0/50 = 0.0 

Source Power Fault 1.33% 50/50 = 1.0 0/50 = 0.0 0/50 = 0.0 

Source Power Fault 1.67% 50/50 = 1.0 0/50 = 0.0 0/50 = 0.0 

1P-PCA: peak wavelength selection algorithm is applied. 

2PD-PCA: peak wavelength selection algorithm and DWT are applied. 
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Table 2-3. Summary of missed detection rate in this study. (SPE) 

 Conventional PCA P-PCA1 PD-PCA2 

Pressure Fault 5% 0/50 = 0.0 0/50 = 0.0 0/50 = 0.0 

Pressure Fault 10% 0/50 = 0.0 0/50 = 0.0 0/50 = 0.0 

Source Power Fault 0.67% 0/50 = 0.0 21/50 = 0.41 0/50 = 0.0 

Source Power Fault 1.33% 0/50 = 0.0 1/50 = 0.02 0/50 = 0.0 

Source Power Fault 1.67% 0/50 = 0.0 0/50 = 0.0 0/50 = 0.0 

1P-PCA: peak wavelength selection algorithm is applied. 

2PD-PCA: peak wavelength selection algorithm and DWT are applied. 
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In a similar way, Figure 2-10 shows Hotelling’s T2 for source power fault cases 

where 0.67%, 1.33% or 1.67% of source power with regard to the reference condition 

is increased. Similar to pressure fault cases, the conventional PCA model fails to 

detect any source power faults. The P-PCA model fails to detect 0.67% source power 

fault, as shown in Figure 2-10(b). On the contrary, the PD-PCA model surely detect 

all of the source power faults, as shown in Figure 2-8(c). As a result, the missed 

detection rate of the PD-PCA model in table 2-2 is 0. 

SPE for the source power fault cases in Figure 2-11 shows a bit different trend 

from that for the pressure fault cases. Only the P-PCA model misses 21 faults in 0.67% 

of source power fault case and 1 fault in 1.33% of source power fault case. This 

might come from the fact that source power change (0.67%, 1.33%) is so slight that 

the noise from OES signal plays a role in the P-PCA case. 

Consequently, PD-PCA model can detect faults from process condition variations 

more accurately and sensitively than P-PCA and conventional PCA model. The 

results so far propose that pre-selection of physically meaningful wavelength in OES 

spectrum and filtering of noise from a CCD array should be considered in modeling 

OES based plasma data by PCA.
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Figure 2-10. Hotelling’s T2 under source power fault situations. (a) Conventional PCA model, (b) P-PCA model, and (c) PD-

PCA model 
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Figure 2-11. SPE under source power fault situations. (a) Conventional PCA model, (b) P-PCA model, and (c) PD-PCA 

model
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 Conclusion 

Improvement of OES based PCA modeling is achieved by applying the peak 

wavelength selection algorithm and DWT in this paper. The peak wavelength 

selection algorithm effectively reduces high dimensional OES data into a group of 

physically meaningful wavelength variables. DWT successively decomposes OES 

signal into major signal and high frequency noise. Both techniques, in fact, enhance 

fault detection capabilities of the PCA model over the conventional PCA model 

under various source power and pressure faulty situations. The results introduced in 

this paper can be applied to other multivariate analysis (MVA) techniques, which is 

expected to contribute OES based plasma monitoring in plasma etching in such a 

way to enhance a cost-effective manufacturing approach for more than Moore's law 

era. 
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 : Multimode PCA and k-nearest 

neighbor algorithm for LNG mixed 

refrigeration process monitoring 

 

 Introduction 

With an increase in the complexities in the industrial systems and high level 

process integrations, the need for more accurate process monitoring techniques to 

detect the instrumental malfunctions are required to improve product yield, reduce 

operational risk, ensure safe operation and achieve sustainable profit. In the 

industrial process, thousands of sensors, analyzers and control loops have strong 

interactions among each other in terms of process variables. In order to efficiently 

manage such complex processes, data-driven process monitoring methods have been 

utilized to handle large dimensional data from thousands of sensors. In this regard, 

MacGregor and Kourti (1995), Kano et al. (2001), Kourti (2002), Qin (2003), and 

Venkatasubramanian et al. (2003) have developed multivariate statistical tools for 

process control. 

Process operating condition changes frequently due to set point changes, 

fluctuations in raw materials, composition of feed material, equipment aging and 

seasoning effects. In these situations, the application of traditional process 

monitoring methods based on the assumption that the process has only one stable 

operation region may cause false alarms, when the process is operated under another 
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steady-state nominal operating mode. This is because different modes of process 

usually have different statistical properties such as mean value, variance, and 

correlation between variables (Chiang et al. (2000), Lee et al. (2004), and Yin et al. 

(2014)). 

To cope with these situations, multi-mode process monitoring methods were 

developed, which can be categorized into (a) global modeling, (b) multiple modeling, 

and (c) adaptive modeling approaches. Global modeling is an approach to 

developing the uniform model which can be applied to all operation modes. Hwang 

and Han (1999) proposed hierarchical clustering and super-principal component 

analysis (PCA) model. Lane et al. (2001) built a group model capable of generating 

the cluster of processes in terms of grades. Multiple modeling is a method to build 

local models which can match each operation mode. Zhao et al. (2004) and Yoo et 

al. (2007) proposed a multiple PCA model based process monitoring methodology. 

Adaptive modeling is a sort of a model update scheme for mode changes. Jin et al. 

(2006) and Choi et al. (2006) proposed a robust recursive PCA monitoring 

methodology for a process that includes frequent operation mode changes. 

There are certain limitations of those approaches. For instance, global model which 

is based on multi-mode monitoring frequently shows low detection resolutions for a 

particular mode because it employs statistical mean of the whole data (Tan et al. 

(2010) and Ge et al. (2013)). In addition, a priori process knowledge is required in 

the preliminary step to manually segment the historical operating data according to 

different operating modes. Moreover, a similarity threshold has to be predefined by 

user to incorporate the similar data groups. Those conditions are not desirable for 

automatic process monitoring in industrial practice. Multiple modeling has a 
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detection capability with high resolution but the false alarm rate also increases in 

monitoring between-mode transition situations because it ignores cross-mode 

correlation (Zhang et al. (2013) and Haghani et al. (2014)). Adaptive modeling 

shows low reliability of monitoring results when process disturbance is included in 

model update (Qin et al. (1998), Li et al. (2000), and Wang et al. (2005)). Thus, it is 

still required to develop monitoring techniques of multi-mode operation cases. 

This paper utilizes the k-nearest neighbor (k-NN) classification and multiple PCA 

models to enhance process monitoring performance under frequent operation mode 

change environments. The proposed methodology is evaluated with collected data 

from a real liquefied natural gas (LNG) mixed refrigeration (MR) process. The rest 

of paper is organized as follows. In Section 2, a LNG MR process is briefly described 

and the data collection procedure is explained. After describing the target process 

and data collection, theoretical background of PCA and k-NN is described in Section 

3. In Section 4, mode identification techniques and fault detection models proposed 

in this study are explained as well as how they are integrated. In Section 3.5, 

performances of the proposed techniques are compared with those of general PCA 

by using real LNG MR process data. 

 

 Target process and data description 

Figure 3-1 shows a flow of a general LNG process, which consists of pre-

processing, refrigeration, liquefaction, and storage sections. In the pre-processing 

stage, impurities including CO2 and H2S in natural gas are removed in acid gas 

removal unit, whereas the moisture is removed in the dehydration unit. In the 

refrigeration and distillation stage, mixed refrigerant (MR) which comprises of 
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nitrogen, methane, ethane, propane, and sometimes butane is also used to cool down 

natural gas in a single main cryogenic heat exchanger (MCHE). In the liquefaction 

stage, liquefied natural gas reduces its volume by a factor of more than 600, making 

it more economical to transport over long distances by transport ships or pipelines.
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Figure 3-1. Process flow of a typical LNG process 
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This study focuses the MR compression process for process monitoring. 

The simplified MR compression process used in a LNG liquefaction plant is shown 

in Figure 3-2. The storage suction drums are placed before the 1st and 5th stage of the 

compressor. They separate the liquid refrigerant from gas and liquid mixture so as to 

prevent the liquid phase of refrigerant from entering the compressors. In the MR 

compression, multiple stages of gas compression are required to achieve the desired 

pressure (27 – 34 bar) to make compressed mixed refrigerant. The MR compressor 

operates at 3.8 bar and continually compresses until the pressure reaches to 20 bar at 

fourth stage. The discharge flow from the 4th stage compressor is then cooled to 32℃ 

by the 1st cooler and passes to the 5th stage compressor via the 5th stage suction drum. 

The discharge flow is then compressed to the designed pressure level in the 5th and 

6th stage compressors. The discharge from this compressor is cooled again by the 2nd 

cooler and is partially condensed in propane and mixed refrigerant evaporators. The 

mixed refrigerant liquid is sub-cooled while the mixed refrigerant vapor is condensed 

in MCHE. The partially condensed mixed refrigerant liquid is routed to a MR 

separator through the warm Joule-Thompson valve while the condensed mixed 

refrigerant vapor is sent to MCHE. 

Major process variables described in Figure 3-2 are summarized in Table 

3-1. Total 17 variables are collected including compressor’s pressure, temperature 

and flowrate variables in this study. Each pressure, temperature, and flow gauge is 

located at inlet or outlet of compressors. Among variables from each gauge, pressure 
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variables can represent compressors’ efficiency and flowrate variables can monitor 

refrigerant flow. If the operating conditions of compressors fluctuate or some 

compressors have a malfunction, pressure and flowrate are directly affected. 
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Figure 3-2. Schematic diagram of a LNG MR process 
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Table 3-1. Variable description in the LNG MR Process 

Module Inlet Variable Outlet Variable Description 

Compressor #1 PI-001 PI-002 Pressure 

 TI-001 TI-002 Temperature 

 FI-001  Flowrate 

Compressor #2 PI-002 PI-003 Pressure 

 TI-002 TI-003 Temperature 

Compressor #3 PI-003 PI-004 Pressure 

 TI-003 TI-004 Temperature 

Compressor #4 PI-004 PI-005 Pressure 

 TI-004 TI-005 Temperature 

Compressor #5 PI-006 PI-007 Pressure 

 TI-006 TI-007 Temperature 

 FI-006  Flowrate 

Compressor #6 PI-007  Pressure 

 TI-007 TI-008 Temperature 
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 Theoretical Background 

 Principal component analysis based fault detection 

3.3.1.1 Principal component analysis 

Principal component analysis (PCA) is a linear data reduction method by 

capturing the optimal variability in multivariate dataset. PCA determines a set of 

loading vector matrix V and diagonal matrix Λ, ordered by the amount of variance 

explained in the loading vector directions and solving an eigenvalue decomposition 

of the sample covariance matrix S.  

 

S =  
1

𝑛−1
𝑋𝑇𝑋 = 𝑉Λ𝑉𝑇     (1) 

 

, where  =  diag 1,2,3 , . . . . ,𝑙.  

 

The training data matrix X (𝑛 × 𝑚) , which has 𝑛  observations of 𝑚 

measurement variables, can be decomposed to produce loading vectors 

corresponding to the largest singular values in order to optimally capture the 

variations. A PCA model is usually built from a few principal component. These 

principal components are the results of decomposing a data matrix X using PCA as 

follows: 

 

X = 𝑇𝑃𝑇 + 𝐸 = ∑ 𝑡𝑖𝑝𝑖
𝑇 + 𝐸𝑘

𝑖=1            (2) 
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, where 𝑝𝑖 is loading vector and 𝑡𝑖 is score vector in the PCA model. 

 

3.3.1.2  Fault detection index 

On-line monitoring of measurement variables can be carried out with the 

help of the Hotelling’s T2 and Q statistics, this last, also known as the squared 

prediction error (SPE). These two statistics can be used to detect faults for 

multivariate process data. 

The T2 statistic for the lower-dimensional space can be calculated for each 

new observation x by: 

 

𝑇2 = 𝑥𝑇𝑃(Σ𝑎)−2𝑃𝑇𝑥     (3) 

 

, where Σ𝑎represents the non-negative real eigenvalues corresponding to 

the P principal components. 

The upper confidence limit for T2 is obtained using the F-distribution: 

 

𝑇𝑎,𝑛,𝛼
2 = 

𝑎(𝑛−1)

𝑛−𝑎
𝐹𝑎,𝑛−𝑎,𝛼            (4) 

 

, where n is the number of samples in the data set, a represents the number 

of principal components and α shows the level of significance.  
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T2 statistic can be interpreted as the measure of systematic variations of the 

process, and any violation of the threshold would indicate that the systematic 

variations are out of control. The portion of the measurement space corresponding 

to the lowest m − a eigenvalues can be monitored using the squared prediction error 

(SPE) or Q statistic. 

Q = 𝑥𝑇(𝐼 − 𝑃𝑃𝑇)𝑥    (5) 

, where I is the identity matrix. 

The upper confidence limit for the Q can be computed from its approximate 

distribution: 

𝑄𝑎 = 𝜃1 (
ℎ0𝑐𝛼√2𝜃2

𝜃1
+ 1 +

𝜃2ℎ0(ℎ0−1)

𝜃1
2 )

1

ℎ0
    (6) 

with: 

𝜃𝑖 = ∑ 𝜆𝑗
𝑖𝑚

𝑗=𝑎+1 ,       (7) 

ℎ0 = 1 − 
2𝜃1𝜃3

3𝜃2
2        (8) 

 

 , where cα is the value of the normal distribution with α representing the 

level of significance.  

The Q statistic does not suffer from an over-sensitivity to inaccuracies in the smaller 

singular values and it is associated with noise measurements. A violation of the 

threshold would indicate that the random noise has significantly changed, or un-

usual event has occurred, which had produced a change in the covariance structure 

of the model. 
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 k-Nearest Neighbor classifier 

k-nearest neighbor (k-NN) algorithm is a method to classify a new dataset by 

calculating its distance to the nearest neighbor by training samples in the feature 

space. For a given unlabeled sample x, the k-NN rule finds the k-nearest labeled 

samples in the training data set based on some distance metrics. The point is assigned 

to the class with most votes for class label amongst the k-neighbor points. The 

classifier is defined by its parameters. Setting parameter k depends on the data and 

affects the performance of the classifier. Parameter ‘k’ must be large enough to 

reduce misclassification of an example point and must be small enough so that the 

sample point is close to the neighboring points, which results in better estimation of 

the point’s class. For pattern classification, the k-NN algorithm only requires a set of 

labeled samples k, and a metric to measure distance. There are in general two steps 

in the k-NN algorithm: 

1) Calculate the k-NN for each sample in the training dataset. 

2) Calculate the k-NN squared distance for each sample, where k-NN 

squared distance of sample i (𝐷𝑖
2) is defined as the sum of squared distances of 

sample i to its k-NN. 

𝐷𝑖
2 = ∑ 𝑑𝑖,𝑗

2𝑘
𝑗=1            (10) 

, where 𝑑𝑖,𝑗
2  denotes squared Euclidean distance from sample i to its jth 

nearest neighbor. 
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 Mode identification and fault detection 

 Operation mode identification and fault detection 

In general, chemical processes are operated under several operation modes and 

frequently change due to the alteration of feed flow rate or composition, product 

specifications and utility supply conditions. Under these circumstances, multivariate 

statistical process monitoring methods should retain their monitoring capabilities 

against performance degradation from operating mode changes or disturbances. In 

order to do that, it is necessary to firstly determine which operation mode an 

incoming process belongs to. For this purpose, the k-NN classifier described in 

Section 3.2 is employed in this study.  

Figure 3-3 illustrates a proposed sequence of operation mode classification using the 

k-NN classifier. In a global PCA modeling stage, collected historical data is firstly 

pre-processed by filtering out trip or transition data which is defined as in-between 

data of operation mode changes. With this pre-processed data, PCA is then done to 

build a global PCA model and to reduce data space so that it can alleviate 

computational resource burden in calculating k-NN classifier. Of course, outliers 

which surpass pre-determined Hotelling’s T2 and SPE specification are excluded 

before k-NN classification.
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Figure 3-3. Flow chart of operation mode classification using k-NN classifier 
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Figure 3-4 shows score values in the 1st and the 2nd principal component spaces 

for normal operation data which is collected in a real LNG MR process. Data set is 

grouped into 6 modes by the k-NN classifier, which is shown in Figure 3-5. For each 

mode, sub-PCA model is built with new average and new standard deviation of each 

group and they are stored in a fault detection library together with the global PCA 

model. Figure 3-6 illustrates a flow chart of a fault detection procedure proposed in 

this paper. When it comes in, new data set is normalized with the average and the 

standard deviation of the global PCA model and it is projected into the global PCA 

model space. The score value is then matched with the nearest neighbor mode by the 

k-NN classifier algorithm. A sub-PCA model corresponding to the matched mode is 

applied to the incoming data to decide whether it is in normal operation or in a fault 

situation with its Hotelling's T2 and SPE specifications.
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Figure 3-4. PCA score plot for normal operation data 
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Figure 3-5. Results of operation mode classification using k-NN classifier algorithm 
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Figure 3-6. Flow chart of proposed mode identification and fault detection using k-NN and multimode PCA algorithm 
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 Results and Conclusion 

 Consideration in LNG MR process monitoring 

Compression processes manufacturing mixed refrigerant in LNG processes are 

generally operated under high pressure and high speed environment and thus 

accurate and speedy monitoring capabilities are inevitable for process safety. Major 

variables to be monitored in compressor operation are pressure, flowrate, 

temperature, pressure ratio and so on. Pressure or pressure ratio is a variable to 

monitor load to each compressor in series. Flowrate is a variable to monitor 

continuous flow in and out of compressor, which is a necessary parameter to prevent 

mechanical damage from sudden fluctuations. Temperature is a variable to check 

heat balance across whole compressors. 

The main sources of possible faults in compressors are vibration from irregular 

and/or fluctuated gas flow. Increasing vibration might indicate blade, bearing, and/or 

shaft have problems, which can lead to catastrophic compressor failure and then 

potential unit shutdown. Fluctuations in gas flow induce instability of compressor’s 

operation, which can lead to mechanical damage and/or compressor performance 

drift. These types of faults occur during frequent changes in the process state that 

occurs throughout the MR process. Figure 3-7 shows examples of pressure and 

flowrate trend in a MR process, which illustrates how frequently the processes are 

changed during 5 day trial operation; there are 6 different normal processes in blue 

shade, 3 trip periods in red shade and 3 transition periods before the normal processes. 

The set point for each normal process is summarized in Table 3-2. When there are 

various combinations of the set points of the variables like that shown in Figure 3-7 
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and Table 3-2, it is desirable to distinguish the difference of dynamic characteristics 

in advance. In addition, multivariate statistical methodologies, which can monitor 

whole process state changes by using measurable sensor variables are thought to be 

appropriate approaches to LNG MR process. 

 Under these circumstances, this paper proposes integration of k-NN 

algorithm into multi-mode PCA and evaluates its dynamic fault detection 

characteristics in LNG MR process. The results are shown step-by-step in following 

sections. 
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Figure 3-7. . Examples of pressure and flowrate trend in a LNG MR process: (a) PI-007 and (b) FI-006 in Table 3-1. 
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Table 3-2. Operation mode description (set point1). 

Operation modes Pressure (bar) Flowrate (liter/hr) Temperature (℃) 

Mode #1 27.2, steady 7500, steady 73, steady 

Mode #2 27 - 28.5 6800 - 7300 71.5, steady 

Mode #3 28 - 30.5 8000, steady 72 - 76 

Mode #4 27 - 28.5 9300, steady 69.5, steady 

Mode #5 27 - 30 7500, steady 69.5, steady 

Mode #6 30 - 35 7500, steady 69 - 73 

1 set point at the 6th compressor 
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 Global and local PCA modeling 

For the off-line analysis of the monitoring performance, data of 17 variables 

summarized in Table 1 are collected from a real LNG MR process plant during 5 day 

trial operation. This data contains several normal operation and trip history which is 

a period of sudden drops of sensor variables caused by malfunctioning or process 

changes. Data in Figure 3-7 is utilized for a global and each local PCA model. The 

global PCA model is built with all data from 6 normal operation periods in blue shade, 

but each local PCA model is built separately with each data in blue shade. Table 3-3 

summarizes variance explained for the global and local PCA models. Every model 

employs only the first and second principal components and captures more than 70% 

~ 80%  
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Table 3-3. Variance explained for the global and local PCA models. 

 PC #1 (%) PC #2 (%) Cumulative Sum (%) 

Global Model 48.12 25.81 73.94 

Local (Mode 1) Model  71.18 18.49 89.67 

Local (Mode 2) Model 67.83 15.25 83.08 

Local (Mode 3) Model 54.86 30.38 85.24 

Local (Mode 4) Model 53.08 21.26 74.34 

Local (Mode 5) Model 41.30 35.28 76.58 

Local (Mode 6) Model 45.79 35.14 80.93 
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 Detection of operation mode 

In this section, it will be verified how the proposed methodology can detect mode 

changes in the process operation. For the verification, two normal process periods 

are randomly selected and their data for 60 min is extracted to make two different 

operation modes. Those two operation modes are connected by transition period 

which is generated by data interpolation between them. Based on the procedure in 

Figure 3-3, the operation mode of the first and second cases is determined. For the 

real-time monitoring, moving window of 20 min with every 5 min upgrade scheme 

is applied for PCA modeling and k-NN classification. Figure 3-8 shows an example 

of operation mode detection result by using k-NN classification under moving 

window circumstance. It is detected that the first test case (Figure 3-8(a)) starts with 

operation mode 3 and transfers to operation mode 4. The matching ratio by k-NN 

classification is 100% of mode 3 or mode 4 for each mode period. The matching 

ratio for mode 3 is decreasing but that for mode 4 is increasing during the transition 

period. The similar result is obtained for another example (Figure 3-8(b)).
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Figure 3-8. Results of mode detection according to nth moving window: (a) mode 3 to 4 change and (b) mode 3 to 5 change. 
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Operation mode change might increase false alarm rate unless it is recognized in 

advanced. Figures 3-9 and 3-10 show Hotelling’s T2 and Q statistics of the global, 

local and k-NN + multi-mode PCA models for the first and second test cases. Here, 

the global PCA model is described in Section 5.2. The local PCA model is the model 

only with data in mode 3. The procedure in Figure 3-3 is followed with 6 local PCA 

models in Table 3-3 to build the k-NN + multi-mode PCA model. 

In the global PCA model case, there is no false alarming like that shown in Figures 

3-9(a) and 3-10(a). Of course, it does not distinguish the operation modes since the 

data including all operation mode is employed in modeling. 

In the local mode PCA model case (Figures 3-9(b) and 3-10(b)), there is false 

alarming from transition to operation mode 4 period, which is because the model is 

built with operation mode 3 data set and it does not consider operation mode changes. 

The local PCA model is subject to false alarming under other operation modes. 

On the contrary, the proposed k-NN + multi-mode PCA model detects mode 

changes and monitors the processes with the changed model. (Figure 3-9(c) and 3-

10(c)). Thus, it will be possible to successfully distinguish real faults in normal 

operation even under operation mode change environment.
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Figure 3-9. Monitored Hotelling’s T2 and Q statistics under mode change from 3 to 4: (a) global PCA case, (b) local PCA 

(mode 3) case, and (c) k-NN + multi-mode PCA case 
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Figure 3-10. Monitored Hotelling’s T2 and Q statistics under mode change from 3 to 5: (a) global PCA case, (b) local PCA 

(mode 3) case, and (c) k-NN + multi-mode PCA case 



66 

 

 Comparison of fault detection performance 

Two critical fault cases from a real LNG MR process plant are selected to 

demonstrate how compressor shutdown can be detected accurately and in advance. 

Both cases are compressor vibration caused by unstable flow, which eventually leads 

to process shutdown. In order to compare fault detection performance under 

operation mode change, the proposed k-NN integrated multi-mode PCA and 

conventional PCA methodologies are applied to the cases. 

The historical data which contains from the stable operation region of the MR 

compression process to the emergency shutdown are retrieved. The Hotelling’s T2 

statistics and Q statistics for each PCA model are shown in Figures 3-11 and 3-12. 
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Figure 3-11. . Monitoring performance for the fault case in mode 3: (a) global PCA, (b) local PCA (for mode 2), and (c) k-

NN + Multi-mode PCA 
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Figure 3-12. Monitoring performance for the fault case in mode 6: (a) global PCA, (b) local PCA (for mode 2), and (c) k-

NN + Multi-mode PCA
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When the operation condition changes from mode 2 to 3 and eventually process 

shutdown occurs at around 90 minutes (Figure 3-11), each PCA model shows 

different fault detection performance. The global PCA (Figure 3-11(a)) detects fault 

after the process shutdown. This is because detection sensitivity of the global PCA 

covering all of the operation modes is relatively low. The local PCA (Figure 3-11(b)) 

detects changed mode 3 as a fault. This comes from the fact when operation mode is 

mismatched with that in local PCA model, the local PCA can be subject to false 

alarming. The k-NN + PCA (Figure 3-11(c)), however, shows accurate fault 

detection at around 90 min in terms of Hotelling’s T2 statistics and at around 70 min 

in terms of Q statistics. The similar results are obtained when the operation condition 

changes from mode 5 to 6 and eventually process shutdown occurs (Figure 3-12). 

As a result, it is proved that the proposed k-NN integrated multi-mode PCA 

methodology is more sensitive to the change of covariance structure caused by 

operation condition than conventional PCA. Therefore, when this proposed 

methodology is applied, an abnormal operating condition can be quickly detected 

and the generated information will help operators better recognize potential fault 

situations or symptoms. Correct actions, then, can be taken by the operators and 

process engineers to prevent a process shutdown, which can avoid catastrophic 

instrumental damage. 
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 Conclusion 

This paper proposes a systematic method for classifying process operation modes 

using k-NN algorithm and detecting process malfunction using multiple PCA models. 

Applying the operation mode classification based on the k-NN algorithm, it is 

possible to effectively classify the process operation modes according to changes in 

the process operating conditions. When the fault detection performance is evaluated 

with real LNG MR process data, the k-NN integrated multi-mode PCA shows more 

accurate and early detection capability even under operation mode change situations 

than conventional PCA. This indicates that false alarm rate can be reduced and 

enhance early fault detection capabilities even under operation mode changes.  

Since LNG MR process contains various compressors in series and operates under 

high pressure and speed environments, early and accurate fault detection capability 

is a must for process safety and cost-effectiveness. In addition, process operation 

conditions change frequently. Under these circumstances, it is expected that the 

proposed k-NN integrated multi-mode PCA methodology will play an important role 

in monitoring the LNG MR process. 
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 : Estimation of disturbance propagation 

path using PCA and multivariate 

Granger Causality 

 Introduction 

 With the developments in the automation and control systems in the process and 

product industries, it is possible to collect enormous amount of data. However, 

analysis and interpretation of data is a key issue. Using various statistical tools, it is 

possible to quickly analyze the data to enhance both the process performance and 

reduce industrial waste, thereby, improving process economics. Online and offline 

process monitoring techniques are widely used in the industries to statistically 

analyze the process behavior. To ensure the smooth and safe operation of chemical 

plants, large number of sensors are usually used to record and analyze the data. 

However, with an increase in number of sensors, the chances for sensor faults in 

addition to the process faults have also been increased. Moreover, the occurrence of 

any fault in a system affects all the associated variables and disturbs their normal 

correlations which makes it difficult to detect the actual root cause of fault. Therefore, 

instant fault detection through analyzing the root cause and estimating fault 

propagation path in the system has always remained a key issue in process 

monitoring. 

Data-driven models (Ge et al., 2013) have been widely used in semiconductor 
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manufacturing (Yue et al., 2000), chemical (Kosanovich et al., 1996) and steel 

industries (Miletic et al., 2004) exhibiting multi-level control hierarchy during the 

last few decades. Several univariate and multivariate statistical tools have been 

developed that can be efficiently used for both the fault detection and diagnosis. 

However, multivariate statistical methodologies are more preferred over the 

univariate techniques for analyzing the complex industrial system where process 

variables exhibits a strong correlations. Principal component analysis (PCA) is one 

of the effective multivariate statistical technique that finds its applications for 

process monitoring and control (Kresta et al., 1991; De Veaux et al., 1994), fault 

detection and diagnosis (Koutri and MacGregor, 1994; Raich and Cinar, 1996), and 

sensor validation(Tong and Crowe, 1995; Dunia et al., 1996) in various process 

industries. The PCA converts the higher dimensional correlated data into lower 

dimensional un-correlated data while retaining most of the original information. It 

can linearly reduce the dimensionality while ignoring the nonlinearities in the 

process data. PCA models the process behavior in terms of process variables during 

normal operation and compares the variation in those variables during fault situation. 

Hotelling’s T2 statistics and Q-statistic (squared prediction error (SPE)) are the two 

fault detection indices commonly used for analyzing the variation in process 

variables. The T2 statistics represents the systematic part of process variation in 

principal component subspace (PCS), whereas, SPE shows the residual part of the 

process variation in the residual subspace (RS). The T2 statistics and SPE can be 

calculated for each sample and compared with the confidence limits to monitor the 
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process faults. The occurrence of any fault in the process either affects the T2 statistic 

or SPE of the samples or even changes both the statistics in some cases. Usually both 

the indices exceed their critical values during fault situation, whereas, the process is 

considered to be normal if both the indices remain under the control limits. T2 

statistics is usually used for overall process monitoring as it measures the variation 

among samples and indicate their distance from the center of the model. As multiple 

sensors are simultaneously affected by a certain fault, the contribution plot of 

samples shows the involvement of many variables towards a fault that makes it 

difficult to identify the actual fault variable. On the contrary, SPE measures the 

difference/residuals between the sample and its projection on the model. It measures 

the sum of variations in the RS which is not explained by the principle components 

(PC). SPE is highly sensitive to even minor process variations due to its smaller 

value compared to the T2 statistic (Mujica et al., 2010). Qin also performed the 

detailed comparison for both the indices and showed that SPE can detect the fault 

more readily compare to the T2 statistics. (Qin et al., 2003) 

The PCA models combined with the fault detection indices finds it applications in 

various industries (Qin et al., 2003; Chiang et al., 2001; Bezergianni et al., 2008; 

Villegas et al., 2010; Yoon et al., 2004; Qin et al., 2012) to monitor the process 

variations and diagnose process faults. For an instance, Pehna applied the PCA 

model to the nuclear power plant and used the fault detection indices to monitor the 

temperature variation in the nuclear reactors. (Penha and Hines, 2001) Similarly, 

Ferrer used the T2 statistics to analyze the process shift in the automobile 
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manufacturing industries. Landells et al. used the PCA methodology along with the 

statistical indices for early fault detection in refineries and other chemical production 

industries. (Ferrer et al., 2007; Landells and RaWi, 2012) 

Several studies have relied on PCA models and used fault detection indices for 

early fault detection in the industrial systems. However, little attention has been paid 

towards identifying the fault propagation path in addition to the fault detection. As 

the fault in one variable affects the other associated variables, it is important to 

estimate the fault propagation path direction moving across the variables. Recently, 

Hong et al. developed the fault propagation path estimation algorithms based on the 

progressive PCA models. (Hong et al., 2010; Hong et al., 2011; Hong et al., 2014) 

The algorithm uses the SPE contribution plots to detect the variable having high 

contribution and identifies it as the fault variable. The detected variable is then 

eliminated and new PCA model is developed to identify the next variable. The 

detection of fault variable from each model in turns represent the order of variables 

affected by a certain fault. This methodology can be applied to the small systems 

with limited number of variables, however, it can become more complex and time 

consuming with an increase in number of process variables or unit processes.  

Granger causality (GC) algorithms based on time series hypothesis is another tool 

that can evaluate the cause and effect relationship among variables. (Granger et al., 

1969) Developing the logical interpretation of causal analysis along with the process 

knowledge can help in detecting the root cause of the faults. GC algorithms not only 

find its application in process and energy industries (Yuan et al., 2014; Yuan et al., 
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2016; Landman et al., 2014) but also in economics (Granger et al., 1988) due to its 

ease of implementation and reliable interpretation of results. It uses a statistical 

hypothesis to predict whether one time series can affect the other time series or not. 

Additionally, the PCA models can be combined with the GC algorithms for efficient 

process monitoring. For instance, Li et al. developed the framework of locating the 

root cause of fault using both PCA and GC algorithms. (Li et al., 2016) Similarly, 

Landman et al. integrates the process causality and topology information to develop 

a causal model that determine the disturbance propagation path. (Landman et al., 

2014) Moreover, Yuan et al. used the multilevel GC framework with clustering 

techniques for determining the causal relationship among plant-wide oscillatory 

variables. (Yuan et al., 2016) Ladman et al. also compared various statistical 

techniques for different industrial process and suggested that only one specific 

method is not powerful enough to predict the actual causal and effect relationship. 

(Landman et al., 2013) Therefore, several techniques should be used in addition with 

the process knowledge to obtain successful results. 

The PCA models usually require a training data set for developing the model and to 

determine confidence limits for the fault detection indices. Then the real plant data 

or fault data can be used for detecting and diagnosing the fault. On the other hand, 

GC uses only the time series information of variables irrespective of the normal or 

fault data to evaluate the causal relationship among variables. The aim of this study 

is to develop a robust algorithm that can predict the fault propagation path in a system 

while verifying the causal relationship among those fault variables. Therefore, the 
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fault amplification methodology is first applied to the conventional PCA model to 

amplify the fault magnitude to identify the disturbance propagation path in terms of 

process variables. Then, the standalone multivariate GC (MVGC) methodology is 

used to identify the cause and effect relationship among the fault variables. The 

results from both the models are then compared to ensure the reliability of the fault 

propagation path obtained and verifying the causal relationship among variables at 

the same time. The developed models are applied to the LNG fractionation process 

and distillation columns operation where some of the common fault case scenarios 

are assumed to estimate the fault directions.  

The paper is divided into four major sections. First section briefly explains the PCA 

model development process and the methodology for estimating the fault 

propagation path. The following section explains the time series multi-variate 

granger causality algorithm to determine the causal analysis among variables. The 

third section explains the LNG fractionation process taken as an exemplary case and 

discusses the results for the simulated fault case scenarios to determine the fault 

propagation path. Finally, the last section embodies the conclusion of the paper. 
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 Theoretical Background 

 Fault propagation path detection 

Occurrence of any fault in a system changes the value of variables in a way 

that the resultant contains sum of normal portion and fault portion of data. Therefore, 

it is important to reduce the impact of normal portion of data to amplify the fault 

effect. Qin and Valle developed an expressions to estimate the fault directions in the 

residual subspace of a fault data as given in Eq. (1). (Qin et al., 2003; Valle et al., 

2001) For an instance, sample vector x under fault situation can be projected on the 

RS where 𝒙∗ presents the fault free portion of the subspace and 𝜩𝒊𝒇 represents the 

actual fault.  

𝒙 = 𝒙∗ + 𝜩𝒊𝒇      (1)  

, where 𝚵𝐢 represents the orthonormality and ||f|| denotes the fault 

magnitude that subjects to change over time as the fault develops. The contribution 

of 𝒙∗ projected on the RS is usually very small compared to the fault magnitude so 

it can be eliminated as given in Eq. (2).  

∥ 𝒙∗ ∥2 = 𝑆𝑃𝐸(𝒙)  <  
 2      (2)  

On the contrary, moving data average techniques can be used to reduce the impact 

of normal variations in situations where the fault magnitude is not too large. (Granger, 

1988) In an actual fault situation, 𝒙∗ is usually unavailable and is overlapped with 

the fault data. Therefore, the removal of 𝒙∗ from RS can be achieved by rescaling 

the residual matrix of the fault data with mean zero and unit variance of residuals of 

the normal matrix. The algorithm developed for PCA model to estimate the fault 

propagation path is given in Figure 4-1. The PCA model is developed by using the 
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normal operation data which determines the principal component loadings, principal 

component scores and the limits of fault detection indices. The developed model can 

be further utilized for the process monitoring using real time operational data or it 

can be compared with any hypothetical fault case scenario to estimate the fault 

direction. As fault detection is more accurate in the RS so the normal process 

variations are eliminated from the RS of the fault data to amplify the fault magnitude. 

The removal of 𝒙∗ amplifies the fault portion of the data as given in Eq. (3).  

 

𝒙 = 𝜩𝒊𝒇        (3)  

 

For an illustrative example, Xi in Eq. (4) represents the fault data collected for any 

fault case scenario containing n and m number of samples and variables, respectively. 

  

𝑿𝒊 = [

𝒙𝟏𝟏 ⋯ 𝒙𝟏𝒎

⋮ ⋱ ⋮
𝒙𝒏𝟏 ⋯ 𝒙𝒏𝒎

]   [ 𝒙𝟏   𝒙𝟐  . . .   𝒙𝒏]𝑇    (4)  

 

, where xi represents the row vector showing 𝑖𝑡ℎ  sample corresponding to m 

variables. The projection of these samples on the RS containing the amplified fault 

data can be achieved from the above Eq. (3) as shown in Eq. (5).  

 

𝑿̃𝒊
𝑇 = 𝚵𝐢[ 𝒇𝟏   𝒇𝟐  . . .   𝒇𝒏]      (5)  

 

, where 𝚵̃𝐢 and 𝑿̃𝒊
𝑇 shares the same range space. The covariance matrix of 

fault data can be used to analyze the covariance among different variables (𝑖𝑗) for 
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a particular number of samples using Eq. (3). 

  

Covariance [𝑿̃𝒊
𝑇] = [

11 ⋯ 1𝑚

⋮ ⋱ ⋮
𝑚1 ⋯ 𝑚𝑚

]  = [𝑖𝑗] ;   𝑖, 𝑗 = 1,2…𝑚 (6) 
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Figure 4-1. Algorithm for fault propagation path estimation 
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Performing SVD on the covariance matrix 𝑿̃𝒊
𝑇and retaining singular values can help 

in transforming correlated variables into un-correlated variables. SVD decomposes 

the covariance matrix (𝑿̃𝑇) into product of three matrices as given in equation 22. 

  

𝑿̃𝒊
𝑻 = 𝑼𝒊𝑫𝒊𝑽𝒊

𝑇      (7) 

 

, where 𝑼𝒊 is the orthogonal matrix and represents the fault direction, 𝑫𝒊 

represents the diagonal matrix containing nonzero singular values arranged in 

descending order and 𝑽𝒊
𝑇is the transpose of orthogonal matrix such that 𝑼𝒊𝑼𝒊

𝑇 =

𝑼𝒊
𝑇𝑼𝒊 = 𝑰 and 𝑽𝒊𝑽𝒊

𝑇 = 𝑽𝒊
𝑇𝑽𝒊 = 𝑰. The fault direction matrix can be chosen as 𝚵̃𝐢 

where the first column of the orthogonal matrix 𝑼𝒊 corresponding to the highest 

eigenvalue in the diagonal matrix 𝑫𝒊  represents the maximum variation in the 

variables as represented in equation 5.    

 

𝚵̃𝐢 = 𝑼𝒊 (: , 1)        (8) 

 

The historical data of various fault case scenarios can be used in a similar way to 

extract the fault directions that could be used in future to identify the particular fault. 
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 Causal analysis based on Granger Causality (GC) 

In this section, the concept of time domain granger causality (GC) is discussed to 

determine the cause and effect relationship among various time series and variables. 

Barnett developed the multivariate granger causality (MVGC) toolbox in Matlab®  

that has been successfully used in various process industries to perform the causal 

analysis. (Barnett et al., 2014) The function of the GC is to determine whether one 

time series can causally affect the other time series or not. (Granger et al., 1969) The 

outcome of the causal analysis is the causality matrix, where each element (i, j) in 

the data matrix represents its causal relationship e.g. effect of variable i on variable 

j. For instance, if one time series (X2) affects the other time series (X1), than the 

knowledge of X2 should help in determining the future values of X1. For an 

illustrative example, consider two time series X1(t) and X2(t) and their bivariate 

autoregressive (AR) models as shown in equation 9 and equation 10. 

 

X1(t) = ∑ 𝑎11,𝑙𝑋1(𝑡 − 𝑙)𝑘
𝑡=1 + ∑ 𝑎12,𝑙𝑋2(𝑡 − 𝑙)𝑘

𝑡=1 + 𝑒1(𝑡) (9)  

X2(t) = ∑ 𝑎21,𝑙𝑋1(𝑡 − 𝑙)𝑘
𝑡=1 + ∑ 𝑎22,𝑙𝑋2(𝑡 − 𝑙)𝑘

𝑡=1 + 𝑒2(𝑡) (10)  

 

, where 𝑎𝑖𝑗,𝑙 , k and 𝑒𝑖(𝑡) represents the AR co-efficients, model order and 

the prediction errors of the model, respectively. Equation 9 and equation 10 are 

regarded as an un-restricted or full models. On the other hand, restricted model35 can 

be generated by omitting all the co-efficient of  𝑎12  or 𝑎21  from the above 
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equations shown in equation 11 and equation 12 as follows. 

 X1(t) = ∑ 𝑏1,𝑙𝑋1(𝑡 − 𝑙)𝑘
𝑡=1 + 𝑒1(2)(𝑡)   (11)  

X2(t)  = ∑ 𝑏2,𝑙𝑋2(𝑡 − 𝑙)𝑘
𝑡=1 + 𝑒2(1)(𝑡)   (12)  

After developing both the un-restricted and restricted model, the GC from X2 to X1 

can be quantified by the ratio of variances as given in equation 13. Where, ei(j) and 

ei  represents the residuals/error terms of the restricted and un-restricted models, 

respectively.  

 

FX2→ X1
= ln

var (ei(j))

var (ei)
      (13) 

 

Bivariate GC concept can be extended to the multivariate case by defining the AR 

co-efficients as given in equation 14, where 𝑞−1  represents the backward shift 

operator. 

 

𝐴𝑖𝑗(𝑞
−1) =  ∑ 𝑎𝑖𝑗,𝑙𝑞

−1𝑘
𝑡=1      (14) 

 

Equations 9 and 10 can be transformed for the multivariate case containing m 

number of variables as shown in equation 15. 
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[

𝑋1(𝑡)
𝑋2(𝑡)

⋮
𝑋𝑚(𝑡)

] =  

[
 
 
 
𝐴11(𝑞

−1) 𝐴12(𝑞
−1) … 𝐴𝑚1(𝑞

−1)

𝐴21(𝑞
−1) 𝐴22(𝑞

−1) … 𝐴𝑚2(𝑞
−1)

⋮ ⋮ ⋱ ⋮
𝐴𝑚1(𝑞

−1) 𝐴𝑚2(𝑞
−1) … 𝐴𝑚𝑚(𝑞−1)]

 
 
 
[

𝑋1(𝑡)
𝑋2(𝑡)

⋮
𝑋𝑚(𝑡)

] + [

𝑒1(𝑡)
𝑒2(𝑡)

⋮
𝑒𝑚(𝑡)

]  (15) 

 

It can be said that 𝑋𝑗 causes 𝑋𝑖 if excluding the 𝑋𝑗 reduces the ability to predict 

future values of 𝑋𝑖  and vice versa, even though all the other variables remain 

included in the regression model. If each  𝑋𝑗 is removed once for predicting all other 

variables 𝑋𝑖 such that ∀i≠j, there will be (m-1)×m prediction error sequences and 

correspondingly (m-1)×m covariance matrix which can be denoted as 

𝑖(𝑗) 𝑐𝑜𝑣 (𝑒𝑖(𝑗)). The cause and effect matrix of variances can be generated as 

shown in Table 4-1 , where the 𝑖𝑗𝑡ℎ element is the co-variance matrix predicts the 

𝑖𝑡ℎ  row variable by excluding the 𝑗𝑡ℎ  column variable for i≠j. Moreover, the 

diagonal elements shows the residual covariance of the k full models represented 

as 𝑖 = 𝑐𝑜𝑣(𝑒𝑖)
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Table 4-1. Structure for cause and effect matrix 

 X1 X2 … Xm 

X1 1 1(2) … 1(𝑚) 

X2 2(1) 2 … 2(𝑚) 

⋮ ⋮ ⋮ ⋱ ⋮ 

Xm 𝑚(1) 𝑚(2) … 𝑚 
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The diagonal elements of the matrix are usually smaller than the other elements of 

the same row since un-restricted (full) model use more inputs for the regression to 

fit the data. If the variable 𝑋𝑗  has more causal effect on the 𝑋𝑖   then the 𝑖𝑗𝑡ℎ 

element in the matrix must be greater than the 𝑖𝑖𝑡ℎ element. Therefore, the GC from 

𝑋𝑗 to 𝑋𝑖  can be determined by the GC index as shown in equation 16. 

 

Fj→ i= ln
i(j)

i

        (16) 

 

Moreover, the statistical significance can be established by using the F-statistical test 

prior making any inference from GC results as given in equation 17.  

 

𝐹 =
𝑅𝑅𝑆𝑟− 𝑅𝑅𝑆𝑢𝑟

𝑅𝑅𝑆𝑢𝑟
 ×  

𝑇−2𝑝−1

𝑝
     (17) 

 

, where 𝑅𝑅𝑆𝑟 and 𝑅𝑅𝑆𝑢𝑟 are the residual sum of squares for the restricted 

and un-restricted models, respectively. On the other hand, T and p represents the total 

number of observations and the model order, respectively. 
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 Application to the Liquefied Natural Gas (LNG) Process 

 Process Description 

LNG (Liquefied Natural Gas) fractionation process has been selected in this study 

to evaluate the stability and accuracy of the developed methodologies. LNG plant 

consists of three major sections i.e. pretreatment section, liquefaction section and 

post treatment section. Pre-treatment section mainly includes the acid gas removal 

(AGR) unit and dehydration unit. Liquefaction unit contains the cryogenic heat 

exchanger network to liquefy the gas streams and the post-treatment unit mainly 

include the fractionation unit. The natural gas (NG) from the extraction wells 

contains higher concentration of methane and natural gas liquids (NGL’s) such as 

ethane, propane, butane and fraction of higher hydrocarbons in addition to the acid 

gases (H2S, CO2). Fractionation units are usually used to obtain high purity methane 

and to separate the NGLs. In this study, the dynamic model of LNG fractionation 

process is developed in Aspen HYSYS®  for multivariate statistical process 

monitoring and fault diagnosis. The data is generated through computer simulations 

and various fault case scenarios are developed to statistically examine the fault 

propagation path algorithms.  The process flow diagram of the fractionation process 

is represented in Figure 2. Four cryogenic distillation columns namely de-methanizer, 

de-ethanizer, de-propanizer and de-butanizer are installed in series to achieve high 

percentage of methane, ethane, propane and butane, respectively. Table 4-2 shows 

the composition of product streams from each column of fractionation unit during 

normal operation. 
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Figure 4-2. Schematic Diagram of LNG Fractionation Proces
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Table 4-2. Stream compositions for fractionation units. 

Component Quality Stream 

Methane 

C1 91.60% Top of De-Methanizer 

C2 5.31%   

C3 2.06%   

C4 0.80%   

Others 0.23%   

Ethane 
C2 99.55% Top of De-Ethanizer 

Others 0.45%   

Propane 
C3 99.61% Top of De-Propanizer 

Others 39.00%   

Butane 

C3 1.23% Top of De-Butanizer 

C4 98.00%   

Others 0.77%   
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 Development of fault case scenarios 

Number of fault cases scenarios can be developed by manipulating various variables 

during dynamic simulation. The change in any process variables (stream flow rates, 

temperatures, pressures or the reboiler’s heat duty) readily affects the other 

associated variables. Figure 4-2 represents the NGL fractionation process considered 

in this study. The numbers in red shows the location of specific variables. 

 

4.3.2.1 Malfunction in the de-ethanzier column 

In this case, de-ethanizer column malfunctioning has been considered to analyze its 

effect on overall NGL fractionation process. Thirty two different variables are 

selected from various sections of the fractionation process where the prefix and 

suffix denotes the fractionation column and the specific process variables, 

respectively, as shown in table 4-3. For an instance, the prefix dM, dE, dP and dB 

represents the de-methanizer, de-ethanizer, de-propanizer and de-butanizer column 

respectively. Whereas, the suffix 1T, 2P and 5F represent the temperature of first 

stream, pressure of second stream and flow rate of fifth stream, respectively.
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Table 4-3. Stream variables used for PCA model and fault case scenario 

No Stream Number Variable Name 

1 dM-1T De-methanizer Stream 1 Temperature 

2 dM-2P De-methanizer Stream 2 Pressure 

3 dM-2T De-methanizer Stream 2 Temperature 

4 dE-3T De-ethanizer Stream 3 Temperature 

5 dE-4F De-ethanizer Stream 4 Flow Rate 

6 dE-4T De-ethanizer Stream 4 Temperature 

7 dP-5F De-propanizer Stream 5 Flow Rate 

8 dP-5T De-propanizer Stream 5 Temperature 

9 dB-6F De-butanizer Stream 6 Flow Rate 

10 dB-6T De-butanizer Stream 6 Temperature 

11 dB-7T De-butanizer Stream 7 Temperature 

12 dM-8P De-methanizer Stream 8 Pressure 

13 dM-9P De-methanizer Stream 9 Pressure 

14 dM-10T De-methanizer Stream 10 Temperature 

15 dE-11P De-ethanizer Stream 11 Pressure 

16 dE-12P De-ethanizer Stream 12 Pressure 

17 dE-13P De-ethanizer Stream 13 Pressure 

18 dE-11T De-ethanizer Stream 11 Temperature 

19 dE-14T De-ethanizer Stream 14 Temperature 

20 dP-15P De-propanizer Stream 15 Pressure 

21 dP-16P De-propanizer Stream 16 Pressure 

22 dP-17T De-propanizer Stream 17 Temperature 

23 dB-18P De-butanizer Stream 18 Pressure 

24 dB-19P De-butanizer Stream 19 Pressure 

25 dB-20T De-butanizer Stream 20 Temperature 
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No Stream Number Variable Name 

26 dE-21P De-ethanizer Stream 21 Pressure 

27 dE-21T De-ethanizer Stream 21 Temperature 

28 dP-22P De-propanizer Stream 22 Pressure 

29 dB-23P De-butanizer Stream 23 Pressure 

30 dE-24T De-ethanizer Stream 24 Temperature 

31 dP-25T De-propanizer Stream 25 Temperature 

32 dB-26T De-butanizer Stream 26 Temperature 
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Some of the common factors that can affect column’s operation includes the un-

controlled reboiler heat duty, failure of the steam valves and sensor faults36. In this 

case, fault is introduced in the distillation column by increasing the reboiler’s heat 

duty by a step change to analyze its effect on the other variables. The data from the 

dynamic simulations is recorded to statistically analyze the process variations and 

detecting the fault propagation path. Figure 4-3 represents the dynamic behavior of 

some process variables for both the normal and abnormal operation. It can be seen 

from the results of dynamic model that the process variables were kept within their 

limits with small oscillation around the set point, whereas, the fault graph shows a 

steep rise in process variables for the fault case scenario. 
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Figure 4-3. Dynamic behavior of process variables for normal and fault operation. 
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The PCA algorithm is developed using a training data and tested for fault 

propagation path estimation, whereas, MVGC analysis is performed to evaluate the 

reliability of fault propagation path through analyzing the cause and effect 

relationship among variables. Following the algorithm given in figure 1, the scores 

are generated for both the normal and abnormal operation which are represented in 

Figure 4-4. The results showed that all the scores are plotted within the process limits 

on PC1 and PC2, however, the scores tend to plot outside the control limits in case 

of fault situation. For detailed analysis, the fault detection indices are used to 

determine the process limits for a normal operation and to compare them with the 

sample’s value for detecting the fault variable. Using equation 9 and equation 10, the 

confidence limits for the T2 statistics and SPE for the normal process is calculated as 

14.715 and 17.61, respectively.  
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Figure 4-4. Score plot for normal and fault operation on principal components. 
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The Figure 4-5 shows the T2 statistical limit for normal operation (red line), whereas, 

the samples T2 statistics is represented as blue line. The results showed that the 225th 

sample exceeds the upper confidence limit of T2 statistics. However, the contribution 

plot of 225th sample given in Figure 4-6 shows the involvement of many variables 

towards a fault that makes it difficult to accurately identify the fault variable. On the 

other hand, the SPE index can be alternatively used for detecting the fault variable. 

The Figure 4-7 shows the upper confidence limit (red line) of SPE for the normal 

process as well as the SPE for each sample. The results showed that the sample 103 

exceeds the upper confidence limit of SPE, where, the contribution plot in Figure 4-

8 shows that the variable dP-5T has the highest contribution towards a fault. After 

developing the fault detection indices, fault propagation path estimation 

methodology is applied to determine the hierarchy of variables affected by a 

particular fault. As fault amplification is an important section of the fault propagation 

path estimation algorithm, fault is amplified in the RS as given in Figure 4-9.  
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Figure 4-5. Fault detection using T2 Statistic 
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Figure 4-6. Contribution plot of variables using score matrix of fault data. 
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Figure 4-7. Fault detection using SPE index. 
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Figure 4-8. Contribution plot of variables using residual matrix of fault data. 
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Figure 4-9. Contribution of variables in a fault case scenario. 



103 

 

Additionally, the developed algorithm followed the absolute descending order 

functions that re-arranged the variables according to their magnitude of contribution. 

The fault propagation path obtained in this case is represented in Figure 4-10 where 

the x-axis represents the hierarchy of variables affected by the developed fault. It can 

be seen from results that variables (dP-5T, dE-24T, dP-25T, dE-21T, dE-13P and dE-

11P) associated with the de-ethanizer and de-propanizer columns are readily affect 

by the fault. On the other hand, the upstream variables (dM-1T, dM-2P, dM-9P, dM-

8P, dM-2T, dM-10T) associated with the de-methanizer column are least affected by 

the fault. Furthermore, the variables with the higher and least contributions towards 

a fault are automatically rearranged at the left and right of the graph, respectively. 

The variable showing the highest contribution (dP-5T) is most likely to be the fault 

variable, whereas, the variable showing the least contribution (dM-10T) is 

considered as the least affected variable. Moreover, the difference between Figure 4-

8 and Fig 4-9 can be clearly seen in terms of difference of fault magnitude among 

variables. Figure 4-8 highlights the only first few affected variables (dP-5T, dE-24T) 

that could be used to identify the root cause of fault. On the other hand, Fig 9 clearly 

showed an amplification in fault magnitude of all the affected variables (dP-5T, dE-

24T, dP-25T, dE-21T, dE-13P, dE-11P, dE-21P, dE-12P and so on) depending on their 

contribution towards a fault that makes it easy to determine the fault propagation 

path.  
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Figure 4-10. Fault propagation path for de-ethanizer column malfunction. 
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As discussed earlier in the introduction section, any single methodology is not 

powerful enough for the purpose of fault diagnosis, therefore, a combination of 

techniques are usually employed for the accurate and reliable process monitoring. 

To validate the accuracy of PCA model results, the fault propagation path 

methodology has been also cross checked using the MVGC analysis to evaluate the 

cause and effect relationship among variables. The outcome of the MVGC is the 

causal matrix that represents the cause and effect among variables. Thirty two 

variables have been chosen for analysis in this study. Since, it is difficult to draw a 

visualization of all the variables, only first ten variables (dP-5T, dE-24T, dP-25T, dE-

21T, dE-13P, dE-11P, dE-21P, dE-12P, dB-17T and dB-14T) from the fault 

propagation path are used for causal analysis. Table 4-4 shows the causal matrix 

generated for the above mentioned variables. 
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Table 4-4. Causal matrix for de-ethanizer column malfunction 



107 

 

The causality matrix shows the impact of one variable on other variables where 

each of the column variable show its effect on the all the row variables. For instance, 

the dP-5T variable in the first column affects all the row variables where the highest 

affect is received by the variable dE-24T. Similarly, all the column variables are 

evaluated to determine their effect on the row variables. For simplicity, table 4 shows 

the highlighted (grey) cells to represent the maximum causal relationship among 

respective column and row variables. Moreover, Figure 4-11 represents the causal 

relationship among variables to determine how the variation in one process variable 

can trigger the fault in the other variable. The bold arrows represents the sequential 

effect of one variable on the other variable. On the other hand, the thin arrows 

represents the second highest effect of the process variables on each other that can 

be simultaneously affected. The results showed that the hierarchy of variables 

obtained from MVGC analysis and the fault propagation path algorithm are in good 

agreement which represents the robustness of the developed algorithm. 
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Figure 4-11. Causal flow for de-ethanizer column malfunction 
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4.3.2.2 Flooding in the de-propanizer column 

Flooding is one of the most common problem in the distillation column operation 

caused by various factors including excessive vapor generation at the bottom of 

column, un-suitable reflux rate, increase feed flow rate and so on. (Kister et al., 1990; 

Kister et al., 1992) As the temperature and pressure are highly correlated at each 

stage due to vapor liquid equilibrium, increase in plate’s temperature cause an 

increase in the pressure gradient too across the column. (Gorak and Schoenmakers, 

2014) To analyze the flooding scenario in the distillation column, excessive vapor 

generation case is selected in this study by manipulating the reboiler’s heat duty. The 

increase in reboiler heat duty increases the plate’s temperature across the column 

which also affects the product purity. The excessive vapors generation at the bottom 

of the column not only entrains the liquid to the above stages causing an increased 

liquid hold up on the trays but also plug the downcomers with the excessive liquid. 

As a result of flooding, the flow rate of liquid down to the column decrease that 

results in an increase of ∆T and ∆P across the column. (Cheremisioff et al., 2000) In 

this case study, the temperature of ten stages (ST-44, ST-39, ST-28, ST-26, ST-20, 

ST-18, ST-16, ST-8, ST-4 and ST-1) of the de-propanizer column have been selected 

to generate the data. The temperatures of bottom and top stage of the distillation 

column are represented by ST-44 and ST-1, respectively. As done earlier, the PCA 

based fault propagation path detection and MVGC algorithms are used to analyze 

both the disturbance propagation path in the system and to determine the cause and 
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effect relationship among variables. 

The data for the ten variables from de-propaznizer column is generated 

through dynamic simulation for both the normal and fault case scenarios. PCA model 

and the fault detection indices are developed using the normal (training) data and 

tested against the fault data to detect both the fault variable and to develop the 

disturbance propagation path. Figure 4-12 shows the score plot for both the normal 

and abnormal operation represented as blue and red points, respectively, on PC1 and 

PC2. Using the algorithm given in Figure 4-1, the confidence limits for the fault 

detection indices are developed and compared with the sample’s T2 statistics and 

SPE. Furthermore, the developed algorithm is tested for the flooding case to 

determine the fault propagation path in the de-propanizer distillation column. Figure 

4-13 represents the fault propagation path in terms of change in the stage’s 

temperature that are affected by an increase in reboiler’s heat duty. For instance, the 

fluctuation in reboiler’s heat duty more readily affects the temperature of bottom 

plates (ST-44, ST-39) compared to the top plates (ST-4, ST-1) of the column, the 

similar effect can be seen from the fault propagation path estimation results. The 

results from the fault propagation path algorithm also shows that the faults 

propagates from bottom to the top of the column where the variables showing the 

highest and least contribution are arranged to the left and right of the graph, 

respectively. Moreover, the results obtained from the fault propagation path has been 

cross checked with the MVGC analysis to analyze the cause and effect relationship 

among fault variables. The causal matrix obtained from the MVGC corresponding 

to eleven variables is given in Table 4-5. 
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Figure 4-12. Score plot for training and fault data on principal components for 

flooding in de-propanizer column 
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Figure 4-13. Fault propagation path estimation for flooding in de-propanizer 

column. 
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Table 4-5. Causal matrix for de-propanizer distillation column flooding 
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It can be seen from results that each stage showed a strong causal relationship with 

the next stage. Where, the highlighted cells show the maximum causal effect of 

column variables to the corresponding row variables. For instance, ST-28 variable in 

the column affects the ST-26 variable in the row. Similarly, the hierarchy of variables 

are generated that are affected by the fault from cause and effect matrix. Figure 4-14 

shows the sequential pattern of variables (bold arrows) that are affected during 

distillation column flooding. On the other hand, thin arrows represent the second 

highest causal relationship among variables that can simultaneously affect each other. 

Moreover, the results showed that the hierarchy of variables generated from the fault 

propagation path follows the similar pattern as obtained from MVGC analysis. 

Therefore, the developed algorithm for fault amplification can be efficiently used for 

determining the fault propagation path in a system. 
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Figure 4-14. Causal flow for flooding in de-propanizer column. 
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 Conclusion 

With the increase in complexities of industrial systems, multivariate data analysis 

methodologies for process monitoring and fault diagnosis is getting a lot of attention. 

The occurrence of any fault in the process readily affect the associated variables and 

disturbs their normal co-relations. Hence, instant fault detection and identifying the 

root cause of fault is of great importance. In this study, PCA based fault amplification 

methodology has been developed for estimating the fault propagation path in the 

industrial systems. The developed algorithm projects the samples on the RS to 

estimate the fault directions. The RS is usually masked by the normal process 

variations in addition to the fault data, therefore, fault data is rescaled with the mean 

average and unit variance of the residuals of the normal data to maximize the fault 

magnitude in the resultant matrix. Furthermore, the covariance of the fault amplified 

RS is generated followed by the SVD analysis to generate orthogonal matrix 

corresponding to the largest eigenvalue which in turn represents the hierarchy of 

variables contributing to the certain fault. Using absolute descending order functions, 

the variables are arranged according to their magnitude of contribution towards a 

fault which in turn represent the fault propagation path. The hierarchy of variables 

obtained from fault propagation path is verified by using the time domain MVGC 

analysis that highlights the causal relationship among variables. In this study, LNG 

fractionation process train and distillation column operation is considered to test the 

developed algorithms. The comparative analysis obtained for both case studies 

showed that the developed fault propagation path and the causal pattern obtained 

from the MVGC analysis are in good agreement. Therefore, the developed algorithm 

can be used in various process and product development industries for not only 
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estimating the fault propagation directions but also for the instant fault detection. 
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 Concluding Remarks 

 

This thesis addressed process monitoring and fault diagnosis strategies for 

industrial process such as early detection of a process malfunction or mode changes, 

increase sensitivity of process sensors and fault propagation path estimation. In order 

to satisfy the purpose of the study, the process monitoring and fault diagnosis 

methodology developed and validated LNG process in Incheon and lab-scale 

semiconductor etching process. In the development and validation of process 

monitoring and fault diagnosis algorithm to codes, various tools such as excel VBA, 

MATLAB®  with Classification Learner, Visual C++ and Plant Analyst are conducted. 

In order to handle a huge amount of process operation data, MATLAB or Plant 

Analyst among commercial packages are more suitable than spreadsheet when 

monitoring method is based on PCA and Granger Causality. In order to simulate 

dynamic model, Aspen HYSYS also used for design LNG Plant. 

In chapter 2, DWT filter was introduced to maximize the SNR ratio and remove 

noise source due to the measurement characteristics of the CCD array. The photon 

shot noise is the most dominant source of noise in OES and has different frequency 

characteristics from signal, so separation of noise and signal through DWT filter was 

effective. As a result of introducing DWT filter to OES signal, SNR ratio increased 

from 300 to 1300. After the noise signal associated with CCD array device 

characteristics such as shot noise is removed through the DWT filter, only the signal 

intensity due to process variation is measured. Therefore, it is possible to detect more 
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sensitive process condition change when compared with before implementation. 

Applying the variable selection algorithm to the measured OES signal, only 20 

signals related to the reaction gas among 2048 signals were selected. After variable 

selection, we generated PCA model using 20 selected signals and testing 

detectability in multivariate statistical model in case of changes in source power and 

pressure. As a result, in the PCA model using DWT filtering and variable selection 

introduced in this study, the minimum detectable variation was reduced from 1.33% 

to less than 0.67%. 

In Chapter 3, the development of the operation mode classification method 

according to the process operation condition enables the process monitoring with the 

process monitoring model having the most similar dynamic characteristics to the 

current process state. Therefore, compared to the existing methodology, we were 

able to reduce the problem of false alarms and missing faults. With the process 

monitoring methodology, several compressor failure were detected and prevented. 

Some other benefits realized from this system at LNG testbed plant installed in the 

Incheon include; supporting daily operation to achieve stable casting operation by 

providing real-time indications of process health during operation; and helping 

operators and process engineers better understand the process by troubleshooting 

operation failures using multivariate statistical tools. 

In the Chapter 4, hierarchy of variables obtained from fault propagation path is 

verified by using the time domain MVGC analysis that highlights the causal 

relationship among variables. In this chapter, LNG fractionation process train and 

distillation column operation is considered to test the developed algorithms. The 

comparative analysis obtained for both case studies showed that the developed fault 



120 

 

propagation path and the causal pattern obtained from the MVGC analysis are in 

good agreement. Therefore, the developed algorithm can be used in various process 

and product development industries for not only estimating the fault propagation 

directions but also for the instant fault detection. 

In addition to the existing DCS-based statistical process monitoring and control 

techniques, the DWT filtering technique to improve the sensitivity of the process 

sensor, a method of improving the performance of the PCA model through variable 

selection in Chapter 2, combined with the early detection by the multimode PCA, 

the process mode classification method in Chapter 3, and the method for finding the 

root cause using the fault propagation path in chapter 4, the operator or process 

engineer can help achieve the goal of stable process operation and improvement of 

process operation efficiency. Related to Industry 4.0, smart manufacturing, or the 

industrial Internet of Things is the technological evolution from embedded systems 

to digital manufacturing and production systems powered by big data and advances 

in technology, such as artificial intelligence, rapid automation, machinery, and 

additive manufacturing. Related to Industry 4.0, our research contributes to the 

design and implementation of process automation and efficient process monitoring 

systems.– productivity, ensuring consistency in quality, reducing costs, and 

optimizing inventory. 
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Nomenclature and Abbreviations 

 

AGR: Acid gas removal 

DWT: Discrete wavelet transform 

GC: Granger Causality 

LNG: Liquefied natural gas 

MVGC: Multi variate granger causality 

NG: Natural gas 

NGL: Natural gas liquids 

PCA: Principal component analysis   

PC: Principal component  

PCS: Principal component subspace 

RS: Residual subspace 

SPE: Squared prediction error 

SVD: Singular value decomposition  
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Abstract in Korean (요 약) 

현대의 산업 공정은 수 많은 단위 공정의 조합으로 이루어진 복잡한 장

치 산업이며, 유량, 온도, 압력, 농도 및 조성 등의 수 많은 공정 변수들

은 강한 선형적 또는 비선형적인 상관관계를 가지고 있다. 컴퓨터 성능

의 향상과 공정 제어 시스템의 발전으로 인하여 공정에서 발생하는 수많

은 데이터 및 공정 정보들을 단지 몇 명의 보드 작업자와 현장 작업자들

이 관리할 수 있게 되었다. 그렇지만, 한 명의 작업자가 관리해야 하는 

공정과 장치가 증가하였기 때문에, 작업자가 전체적인 공정 정보를 인지

하지 못한 채로 발생하게 되는 공정 이상 또는 장치 이상이 발생할 수 

있는 위험성 또한 존재한다. 이러한 문제를 해결하기 위해 변수 선별법, 

잡음 제거, 공정 운전 모드 분류 및 모드 변경 감지를 통해 모니터링 성

능을 향상시키는 주성분분석법 모델링 절차를 제안하였다. 그리고 공정 

이상 진단 및 인과관계 분석 기법을 도입하였다. 공정 변수 간의 인과관

계 행렬을 계산하였으며 이를 통해 예상치 못한 공정 상태의 변화에 대

한 원인을 분석하였다. 제안된 방법론은 인천에 있는 액화천연가스 공정

과 플라즈마 식각 장치의 플라즈마 상태 모니터링을 대상으로 적용, 검

증하였다. 

Chapter 2에서는 광진단계가 가지고 있는 잡음을 제거하기 위한 신호 

처리 기법의 적용과 모니터링 민감도를 향상시키는 다변량 통계 기법을 
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제시하였다. 플라즈마 센서 중 광진단계는 널리 사용되고 있으며 광진단

계의 고차원성은 주성분분석법과 같은 다변량 통계기법을 필요로 한다. 

그렇지만 주성분분석법은 통계적인 계산 과정에서 대상 공정이 가지고 

있는 물리적인 의미를 평가 절하할 수 있으며 광진단계의 전하 결합 소

자(CCD)의 고유 잡음은 주성분모델의 성능을 저하시킬 수 있다. 그러므

로 물리적으로 중요한 변수를 미리 선별하고 광진단계 기반 플라즈마 데

이터를 모델링학기 전에 잡음 신호를 필터링 하는 것이 필요하다. 이를 

위하여 이번 chapter에서는 플라즈마에서 물리적으로 의미 있는 파장을 

선별하는 기법과 CCD array에서 잡음 신호를 필터링하기 위한 이산 웨

이블릿 변환 기법을 제시하였다. 기존의 conventional PCA 모델을 적용

하였을 때에는 테스트 한 모든 공정 이상 상황에 대해 감지하지 못하였

지만 이번 chapter에서 도입한 PCA 모델에서는 0.67%의 소스 전력 변

화와 같은 극히 적은 공정의 변화도 감지할 수 있었다. 

 

Chapter 3에서는 액화천연가스 혼합 냉매 공정의 성능을 향상시키고 공

정 가동 정지를 방지하기 위한 운전 모드 식별 및 다중 모드 PCA 방법

론의 적용 방법을 제시하였다. 액화천연가스 혼합 냉매 공정은 주로 천

연가스를 액화하기 위한 공정이다. 냉매 압축용 압축기는 고속 회전 부

품과 결합되어 고압 조건에서 운전된다. 그러나 압축기의 오작동으로 인
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해 공정 가동 중단이 발생하고, 장비에 치명적인 손상을 야기시키며 안

전에 관한 문제가 발생할 수 있다. 기존의 방법론에서는 공정이 단일 운

전 모드에서 운전된다고 가정하므로 공정의 오작동과 운전 모드의 변경

을 구별하기가 쉽지 않다. 따라서 k-nearest neighbor algorithm (k-

NN)를 이용하여 운전 모드를 분류하고 이를 다중 운전 모드용 주성분

분석법 (MPCA)로 공정 모니터링 및 이상 탐지를 수행하였다. 제안된 

방법의 성능 검증을 위하여 실제 LNG 플랜트 운전 데이터를 활용하였

으며 검증 결과 기존의 PCA 방법론에 비해 보다 정확하고 빠른 이상 

감지 능력을 가짐을 확인할 수 있었다. 

Chapter 4에서는 PCA 기반의 이상 증폭 알고리즘을 사용하여 시스템에

서의 이상의 원인과 이상 전파 경로를 모두 탐지할 수 있는 방법론을 제

시하였다. 개발된 알고리즘은 공정 샘플을 잔여 부분 공간 (RS)에 투사

하여 외란 전파 경로를 결정한다. 일반적으로 공정 이상 데이터의 RS는 

이상의 크기를 증폭하기 위해 최소화되어야 하는 정상적인 공정 내에서

의 변화와 겹쳐진다. 증폭된 이상을 포함하는 RS는 공분산 행렬로 변환

되고, 그 다음에는 최대 고유치에 대응하는 이상 방향 행렬을 차례로 생

성하는 특이 값 분해(SVD) 분석이 수행된다. 이상이 발생한 변수는 절

대 내림차순 함수를 사용하여 이상 전파 경로를 나타내는 이상에 대한 

기여도에 따라 다시 배열된다. 또한 다변량 Granger Causality 알고리즘
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을 사용하여 개발된 알고리즘에서 얻은 변수 간의 인과 관계를 분석할 

수 있다. 두 가지 방법론은 LNG Fractionation 공정의 distillation 

column 운전 케이스에 대해 검증하였으며 이상 시나리오는 이상 방향을 

계산한다고 가정하였다. 이상 전파 경로 알고리즘에서 얻어진 변수들의 

계층 구조는 MVGC 알고리즘과 잘 일치함을 알 수 있다. 그러므로 이상 

증폭 방법론은 이상 전파 경로뿐만 아니라 이상의 근본 원인을 확인하기 

위하여 사용될 수 있다. 

 위의 적용 결과를 토대로 제시된 다변량 통계기법 기반 분석 방법은 분

산 제어 시스템이 적용된 다양한 공정에서 공정 모니터링 및 이상 진단

을 위한 유용한 정보를 제공함으로써 생산성 향상, 안전성 향상 등을 이

룰 수 있음을 알 수 있다. 

 

주요어: 공정 모니터링, 이상진단, 운전 모드 식별, 그레인저 인과관계, 

주성분분석법, k-NN 분류 기법 
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