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Abstract

Synthesis Design to Optimize the Active 

Site Formation for Oxygen Reduction 

Reaction in Fe-N-C Catalysts

Minhyoung Kim

School of Chemical and Biological Engineering

The Graduate School

Seoul National University

Polymer electrolyte fuel cells (PEFCs), which covert chemical energy of hydrogen 

and oxygen to electrical energy without any pollutant emission, have been received 

great attention as sustainable and clean energy conversion devices. Due to the sluggish 

oxygen reduction reaction (ORR) kinetics at the cathode side, Pt-based 

electrochemical catalysts have been commercially utilized in PEFC systems. However, 

excessive cost and scarcity of Pt hinder the economic feasibility of commercial PEFC 

devises. Therefore, various studies have been conducted for replacing Pt with cheap 

and abundant materials, such as heteroatom doped carbon, metal and nitrogen 

codoped carbon (M-N-C), metal chalcogenide, and metal oxide. Among those 

materials, Fe-N-C catalysts have shown the best performance with reaching the level 
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of Pt-based catalyst. These Fe-N-C catalysts are generally synthesized through the 

pyrolysis of a mixture of Fe, N and C precursors. Based on recent spectroscopic 

studies, the active site of these catalysts are proposed to have Fe-N4 coordination 

structure within the micropores of carbon matrix. However, there are no established 

guideline or general strategy yet for Fe-N-C catalyst synthesis with optimizing the Fe-

N4 active site formation. In this thesis, I investigated the precursor and carbon support 

effect on Fe-N-C catalyst synthesis with systematic experiments, and suggested the 

rational synthesis design for optimizing the Fe-N4 ORR active sites.

In the precursor study, the Fe-N coordination precursor effect on the active site 

formation was investigated. To clarify this effect, three phenanthroline isomers were 

used as N precursor, because only 1,10-phenanthroline forms coordination bonds with 

Fe and other two phenanthrolines doesn’t form these bonds. I found that these 

coordination bonds suppressed the gasification of phenathroline precursor during high 

temperature pyrolysis, while it was completely gasified without Fe-N coordination. 

This suppression of precursor gasification due to coordination bonds resulted in an 

even distribution of Fe without particle aggregation. During heat treatment, 

furthermore, the Fe-N coordination helped N to be located in the pyridinic N position,

which is more favorable for active site formation than other N positions. Due to the 

above effects, Fe-N-C catalysts derived from 1,10-phenanthroline precursor showed 

much superior ORR activity compared to catalysts from other phenanthrolines. This 

results suggest that the utilization of Fe-N coordinated precursors can be a good 

strategy to design an optimized Fe-N-C catalysts with increasing the possibility of Fe-
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N4 active site formation.

In carbon support study, the role of pre-defined microporosity of carbon supports in 

ORR catalytic site formation was investigated. The microporosity of the carbon 

supports are initially controlled by using hot CO2 treatment. Then, Fe and N are doped 

into these supports by precursor impregnation and subsequent pyrolysis. In the 

synthesized Fe–N–C catalysts, the more developed microporosity in the parent carbon 

supports facilitates more iron and nitrogen contents, especially pyridinic nitrogen, and 

Fe–N–Cs derived from carbon supports with higher microporosities show enhanced 

ORR activity, strongly suggesting that a high catalytic site density can be achieved by 

utilizing carbon supports with well-developed microporosities. This results indicate 

that development of microporosity of carbon supports can be another strategy to get 

highly active Fe-N-C catalysts with enlarging the Fe-N4 active site density.  

Keywords: Oxygen reduction reaction, non-precious metal catalyst, Fe-N-C 

catalyst, active site formation, coordination state, pore structure, microporosity

Student Number: 2013-30983
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Chapter 1. Introduction

1.1 Fuel Cells

Fuel cell is an energy conversion devise that converts chemical energy from a fuel 

into electrical energy through an electrochemical reaction 1. Fuel cells, in some aspect, 

have characteristics in common with combustion engines and batteries. 2, 3. Like 

batteries, fuel cells generate electricity directly from chemical energy without moving 

part. So, they are far more efficient, silent and highly reliable compared to combustion 

engines. Also, fuel cell only produce water as byproduct without emission of 

undesirable pollutant, such as NOx, SOx, etc. Like combustion engines, on the other 

hand, fuel cell requires an external sources of fuel and oxygen or air to continue the 

chemical reaction, whereas batteries only hold a closed store of chemical energy in 

them. This make fuel cells can produce electricity continuously as long as the fuels are 

supplied. Lastly, fuel cells allows easy independent scaling between power and 

capacity, providing the opportunity for many applications. Due to many advantages as 

mentioned above, fuel cells have received great attention as future energy sources.
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1.1.1 Principle of Fuel Cell

Fuel cells combine fuel (such as hydrogen and alcohols) and oxidant (oxygen) to 

produce electricity 4. The basic principle of the fuel cells is illustrated in Fig. 1.1. The 

unit cell of fuel cells consists of an electrolyte and two electrodes; anode and cathode. 

The most basic fuel cell is a hydrogen fuel cell, and the following reactions take place 

at each side of electrode in hydrogen fuel cell:

Anode: 2H2 → 4H+ + 4e– E0 = 0.000 V

Cathode: O2 + 4H+ + 4e– → 2H2O E0 = 1.229 V

Overall: O2 + 2H2 → 2H2O Ecell = 1.229 V

When a hydrogen fuel cell is operated, hydrogen is oxidized at the anode side, while 

oxygen is reduced at the cathode side. While electrons from cathode side are moved to 

the anode side through the external circuit, produced protons at the anode side are 

transferred to the cathode side through the electrolyte, completing the closed circuit. 

The theoretical open circuit voltage of a hydrogen fuel cell is 1.229 V at 298 K. In 

practice, however, it is around 1 V at open circuit due to hydrogen crossover and/or 

internal current. When current density is increased, moreover, cell voltage is decreased 

by the overpotential from charge transfer resistance, ohmic resistance and mass 

transfer resistance 5. Under practical load condition, the cell voltage of hydrogen fuel 

cell is generally between 0.5 V and 0.8 V.
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Figure 1.1. Schematic illustration for basic principle of fuel cell.
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1.1.2 Types of Fuel Cells

Since the first description of the fuel cell principle by Sir William Grove in 1939, 

different types of fuel cells have been developed 6. These fuel cells differ in the 

electrolytes and electrodes materials used, the fuels used and their operating

temperature, etc. Depending on the working temperature, the main types of fuel cells 

are categorized into three groups; the low-temperature / the medium-temperature / 

high-temperature fuel cells 7. The “alkaline fuel cell” (AFC), the “proton exchange 

membrane fuel cell” (PEMFC), the “anion exchange membrane fuel cell” (AEMFC) 

and the “direct methanol fuel cell” (DMFC) are low-temperature fuel cells, and the 

“phosphoric acid fuel cell” (PAFC) is medium-temperature fuel cell, and the “molten 

carbonate fuel cell” (MCFC) and the “solid oxide fuel cell” (SOFC) are high-

temperature fuel cells. These fuel cells are named according to the electrolyte used; 

except DMFC, which is labeled by the fuel used. Detailed features of different fuel cell 

types are shown in Table 1.
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Table 1. Fuel cell types and features

Type Electrolyte
Charge 

carrier
Fuel

Operating

temp. (°C)
Applications

PEMFC
Polymer 

membrane
H+ H2 40 - 90

Transportation

Portable power

Distributed generation

AEMFC
Polymer 

membrane
OH- H2 40 - 90 Portable power

DMFC
Polymer 

membrane
H+ CH3OH 60 - 120 Portable power

AFC
Liquid KOH 

(immobilized)
OH- H2 90 - 100

Military

Space

PAFC
Liquid H3PO4

(immobilized)
H+ H2 150 - 200 Distributed generation

MCFC
Molten 

carbonate
CO3

2-- H2, CH4 600 - 700 Distributed generation

SOFC Ceramic O2-
H2, CH4, 

CO
700 - 1000

Auxiliary power

Distributed generation
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1.2. Polymer Electrolyte Fuel Cells (PEFCs)

Polymer electrolyte fuel cells (PEFCs), which have three subclasses of the “proton 

exchange membrane fuel cell” (PEMFC), the “anion exchange membrane fuel cell” 

(AEMFC) and the “direct methanol fuel cell” (DMFC), are a type of fuel cell using 

ion conducting polymer as their electrolyte. The general structure and operation of 

PEFC is illustrated in Fig. 1.2. During PEFC operation, hydrogen gas and oxygen gas 

(air) are supplied to anode and cathode, respectively. Through the electrochemical 

reactions, supplied hydrogen and oxygen are combined to water with producing 

electricity.

PEFCs have superior characteristics to other fuel cell classes. At first, PEFCs 

currently exhibit the highest power density among all the fuel cell types. Also, they can 

provide good start-stop capability. Furthermore, their operating temperature (~ 80°C) 

is relatively low compared to the others 8. From these advantages, PEMCs have been 

received great attention in many applications, especially transport applications. Indeed, 

numerous automobile companies, such as GM, Toyota, Nissan, and Hyundai-Kia 

motor, have recently conducted active researches on PEFC because it is one of the 

most suitable power sources for replacing internal combustion engine in vehicle 9, 10. 

Moreover, US Department of energy (DOE) encourages PEFC research 11, and 

various national research institutes, such as Los Alamos, Argon, and Lawrence 
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Berkeley National Laboratory also participate in development of PEFC technologies

12-18. 

Figure 1.2. Illustration of PEFC operation.
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1.2.1. Components of PEFC

In PEFC single cell, the anode and the cathode are separated by the polymer 

electrolyte membrane (PEM). This PEM conducts protons from the anode to the 

cathode. For the minimizing ohmic losses from the PEM, the membrane should be 

thin enough. At the same time, however, the PEM should also guarantee the electronic 

isolation, mechanical stability and impermeability of reactant gases 19. Therefore, only 

perfluorosufuric acid membranes, such as Nafion membrane (Dupont), have been 

commercially used at present time. The PEM is sandwiched between two gas 

diffusion electrodes (GDEs), which consist of at least two layers: catalyst layers and 

gas diffusion layers. Often these two layers are separated by a microporous layer 20. 

The catalyst layer typically consists of carbon supported Pt nano-particle 

electocatalysts 21. The gas diffusion layer usually consists of a porous carbon paper or 

carbon cloth, which can transport the reactants and electrons at the same time. GDEs 

should have optimum porosity, good electric and thermal conductivity, chemical and 

mechanical stability. Also, the optimum hydrophobicity is needed in order to avoid 

water flooding problem 22. 

The combination of PEM and the sandwich of GDEs is called a membrane electrode 

assembly (MEA). Typically, several MEAs are connected in series, separated by 
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bipolar plates, and the array of MEAs is generally called a stack 23. This fuel cell stack 

is completed by endplates. The PEFC single cell components mentioned above are 

systemically visualized in Fig. 1.3.

Figure 1.3. The components and structure of PEFC single cell.
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1.2.2 Overpotentials in PEFC

In PEFCs, the hydrogen is oxidized at the anode and the oxygen is reduced at the 

cathode, and a theoretically predicted voltage from Gibbs free energy is 1.229 V. 

During PEFC operation, however, the real voltage output for a fuel cell is much 

smaller than theoretical voltage due to overpotentials 5. These overpotentials influence 

the shape of i-V curve of PEFC, which can visualize the overall fuel cell performance. 

There are three major types of overpotentials, which gives a i-V curve its typical S-

shape characteristics. Each of these overpotentials is associated with following fuel cell 

steps:

1. Activation overpotentials (voltage losses from the electrochemical reactions)

2. Ohmic overpotentials (voltage losses from the charge carrier conductions)

3. Concentration overpotentials (voltage losses from the mass transport)

The output fuel cell voltage can be expressed by subtracting all the overpotentials

from a thermodynamically predicted fuel cell voltage. 
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� = �� − ���� − ������ − �����

Where, � is the real output voltage of fuel cell, �� is thermodynamically predicted 

voltage, ���� is activation overpotentials, ������ is ohmic overpotentials and 

����� is concentration overpotentials. In the fuel cell i-V curve, as shown in Fig. 1.4, 

the activation overpotentials mostly affect in the low current density region, and the 

ohmic overpotentials are most marked in the middle range of the curve, and the 

concentration overpotentials most intense in high current density region. 

While the ohmic and concentration overpotentials can be handled with improved 

electrolyte membranes and advanced electrode structure designs, the activation 

overpotentials provide a particular challenge because the kinetics of the 

electrochemical reaction in fuel cell is governed by the catalyst materials. In PEFC, 

compared to the anode side with fast hydrogen oxidation reaction kinetics, the cathode 

suffers from sluggish oxygen reduction reaction (ORR) kinetics 24, limiting the PEFC 

performance with high activation overpotential. In this respect, ORR reaction have 

been considered as one of the most important parts in PEFC operation. 
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Figure 1.4. Schematic of fuel cell i-V curve and three major 

overpotentials. (Adapted from O'hayre, Ryan, et al. Fuel cell fundamentals. John 

Wiley & Sons, 2016)
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1.2.3 Catalysts for Oxygen Reduction Reaction (ORR)

As mentioned earlier, in PEFC, ORR kinetics is very slow. For a practical usable 

level in PEFC, a cathode ORR catalyst is essential to speed up the ORR kinetics. At 

the current PEFC technology status, Pt nanoparticle catalysts supported on carbon 

materials are practically used as cathode catalysts. Due to their limited availability and 

high cost, however, these Pt catalysts are not the viable for PEFC mass production and 

commercialization 25. Therefore, two different approaches have been taken in 

developing the inexpensive and highly active PEFC catalyst materials. The first 

approach is to increase Pt utilization in the catalyst layers. This approach can be 

accomplished by alloying Pt with inexpensive metal, such as Fe, Co, Ni, etc 26-28. In 

this way, the amount of expensive Pt used would be minimized with lowering the 

catalyst price. However, Pt-based catalysts still suffer from long-term stability 29, 30. The 

limited reserves of Pt also remaining problem for large-scale applications of PEFCs 25. 

Clearly, the first approach mentioned above cannot be a long-term solution and a more 

economical and sustainable approach will be required. In this context, recent approach 

is to replace Pt-based catalysts with non-precious metal-based electrocatalyst materials, 

and many researchers have explored alternative non-precious metal-based 

electrocatalysts, such as such as heteroatom doped carbon 31-34, metal and nitrogen 

codoped carbon (M-N-C) 35-38, metal chalcogenide 39-42, and metal oxide 43-46. Among 

these candidates, Fe–N–C catalysts have shown promising ORR activities 
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approaching those of commercial Pt-based catalysts 14.

1.3 Fe-N-C ORR Catalysts

Research into the ORR using Fe–N–C electrocatalysts started with Jasinski in 1964, 

who reported that metal–phthalocyanine showed ORR activity in alkaline media 47. In 

the 1970s, enhanced ORR activities and stabilities were demonstrated by 

electrocatalysts obtained from the pyrolysis of Fe–N4 and Co–N4 (Fe and Co ions 

coordinated with four nitrogens) macrocycles supported on carbon surfaces under an 

inert atmosphere 48. After Yeager discovered that the macrocycles could be substituted 

by simple metal salts and N-rich polymers 49, Fe–N–C catalysts have been readily 

produced by high-temperature pyrolysis of a mixture of individual Fe, N, and C 

precursors.

1.3.1 Synthesis Approaches of Fe-N-C Catalysts

There are many options to combine Fe, N, and C elements to form a Fe-N-

C catalyst precursor (Fig. 1.5) and this precursor composite undergoes one or 

several heat treatments for Fe-N-C catalyst synthesis. The various synthesis

approaches have been invented, and these can be categorized as follows:

1. The supported macrocycle approach (pyrolysis of macrocycle/carbon)

50-52
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2. Templating method (pore and morphology control with sacrificial 

template) 53-55

3. Foaming agent approach (pore generation with using thermally 

decomposable precursor) 56, 57

4. N-molecule or Fe-ligand approach (pyrolysis of Fe and N molecule 

precursor after impregnated into carbon support pores) 58-61

5. N-polymer approach (pyrolysis of Fe, N and C compound after 

polymerization of N-containing monomer) 38, 62-64

6. Gaseous N-precursor approach (pyrolysis of Fe, C compound under 

NH3 or CH3CN condition) 65-68

7. Thermally decomposable metal-organic frameworks (MOF) approach 

(pyrolysis of Fe-based MOF or Zn-based MOF after impregnation of 

Fe precursors) 36, 69-71

The resulting ORR activity and performance of such catalysts from 

different synthetic routes vary by orders of magnitude, because of the different 

coordination chemistry of the formed catalytic sites and variable active site 

density in resultant catalysts.
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Figure 1.5. Different types of precursors for the iron, nitrogen, and 

carbon.
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1.3.2 Nature of Active Sites in Fe-N-C Catalysts

There have been numerous studies to figure out where are the ORR active sites in 

Fe-N-C catalysts. Various tools, such as time of flight secondary-ion mass-

spectroscopy (ToF-SIMS), X-ray absorption spectroscopy (XAS), Mössbauer 

spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) or 

transmission electron microscopy (TEM), have been applied to investigate Fe-N-C 

catalysts 72-83. At first, studies with ToF-SIMS revealed the existence of Fe species on 

the outmost surface of Fe-N-C catalysts even after several acid washing steps, 

demonstrating that the coordination of Fe by N atoms is strong enough to protect from 

dissolution in acid 73. ToF-SIMS studies also reveal that Fe is at the center of the most 

ORR-active site with confirming the similar trend relation between signal intensity of 

FeN4-like species and ORR activity 80. With XAS study, on the other hand, the local 

geometric and electronic structures around Fe atoms in Fe-N-C catalysts can be 

investigated. According to X-ray absorption near-edge structure (XANES) analysis 

(Fig. 1.6a), pyrolysis at high temperature resulted in the loss of the 7117 eV pre-peak, 

which is the characteristic peak for the D4h symmetry of square-planar structure of 

iron(III) tetraphenyl porphyrin (FeTPP) 75, 81. The extended X-ray absorption fine 

structure (EXAFS) analysis (Fig. 1.6b) also demonstrated the significant structural 

changes (from square-planar to square-pyramidal) started at around 500 °C, as 

suggested by the disappearance of the FT-EXAFS peaks between 2 and 3 Å 75. The 
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Mössbauer spectroscopy studies on the Fe-N-C catalysts also revealed that the nature 

of active sites have D3 square-pyramidal structure (micropore-hosted Fe(II)N4 species 

with high spin) 77. In the D3 site, as shown in Fig 1.7, a Fe atom is located at the center 

of four pyridinic-N functionalities on the edge of carbon, but out of the plane 

consisting of those N atoms. This D3 content showed a similar trend to ORR activity, 

identifying the D3 site is responsible for high ORR activity in Fe-N-C catalysts (Fig 

1.8) 77. 



20

Figure 1.6. The evidences of Fe displacement during pyrolysis: (a) XANES 

spectra of FeTPP-pyrolyzed catalysts and reference Fe(II) phthalocyanine. (b) 

Corresponding EXAFs spectra. (Adapted from Jia, Qingying, et al. ACS nano 2015, 9, 

12496)
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Figure 1.7. Proposed Fe-N4 structures from the Mössbauer spectroscopy: 

(a - c) Top and side views of proposed structure for Mössbauer doublet D1, D2 and D3. 

(Adapted from Kramm, Ulrike I., et al. Phys. Chem. Chem. Phys., 2012, 14, 11673)
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Figure 1.8. Compared evolution of the ORR activity and the relative 

composition of each Fe species: (a) ORR activity versus nominal iron content and 

(b - f) content of each Fe species detected by Mössbauer spectroscopy against the 

nominal iron content. (Adapted from Kramm, Ulrike I., et al. Phys. Chem. Chem. 

Phys., 2012, 14, 11673)
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1.3.3 Challenges in Fe-N-C Catalyst Synthesis

As mentioned in 1.3.2, the ORR active site consists of FeN2+2 structure hosted in 

micropores, which means Fe is atomically distributed and coordinated to four N atoms 

in an ideal Fe-N-C catalyst. However, a variety of Fe related crystalline phases (such 

as Fe, Fe oxide, Fe carbide, Fe nitride, etc.) are formed during this pyrolysis step in real, 

because high temperature treatment is essential for Fe-N-C catalyst synthesis (see 

section 1.3.1). Although some of those phases are ORR active, their activities are

much smaller than that of FeN2+2 site
84-86. Furthermore, these Fe crystalline particles 

block the active FeN2+2 site when ORR reaction occurs. This means most crystalline 

Fe phases formed during synthesis are unwanted residue in the resultant Fe-N-C 

catalysts. Therefore, acid leaching post treatment has been generally conducted for 

removing these unwanted Fe residues 84, 86, and consequently only small amount of Fe 

could be involved in ORR, which means the low active site density of acid-leached 

Fe-N-C catalysts. Therefore, the active site densities of Fe-N-C catalysts in current 

status are generally about one order magnitude lower than that of state-of-the-art 47wt% 

Pt/C catalysts (active site density of 3.2×1020 sites cm-3) 26. The low active site density 

of Fe-N-C catalysts require more catalyst loading for practical performance level of 

PEFC operation, resulting in additional mass transport problem with thicker catalyst 

layers 37. Obviously, therefore, maximizing the catalytic site density in Fe-N-C 

catalysts is important. However, if the amount of Fe precursor was increased for 
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maximizing the active site density, particle aggregation of Fe would become severe

during heat treatment at high temperature, rather than forming the ideal FeN2+2 active 

site. In order to solve this dilemma, rational synthesis design for Fe-N-C catalyst 

synthesis is needed at this stage. 
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1.4 Subjects of This Thesis

In this thesis, the main theme is how to synthesize the optimal Fe-N-C catalysts with 

maximizing the FeN2+2 active site in resultant catalysts. There are two different 

approaches; (1) precursor study (the effect of Fe and N precursor coordination state on 

active site formation in Fe-N-C catalysts), (2) carbon support study (The role of pre-

defined microporosity of carbon support in catalytic site formation in Fe-N-C 

catalysts).

1.4.1 Precursor Study

As mentioned in 1.3.2, the active sites of Fe–N–C catalysts have been proposed to 

consist of a central Fe ion coordinated to four pyridinic-Ns attached to two edges of 

the graphitic carbon surface (FeN2+2 structure) 77. Thus, it can be suggested that the

initial presence of Fe-N coordination bonds in precursor state is helpful for forming the 

FeN2+2 structure. Recently, Dodelet and coworkers demonstrated the coordination 

chemistry of precursor compounds could affect the ORR activity of resultant Fe-N-C 

catalysts after pyrolysis 87. They suggested the optimized catalysts could be obtained 

from the precursor with Fe-ligand coordination by its helping the localization of Fe on 

the surface of ZIF-8 support. Several other papers also reported the Fe-N-C catalysts 

with high ORR activity by using the N-coordinated Fe precursors 87-94, and some of 



26

those papers suggested that homogeneous Fe distribution from chemically mixed 

precursor states with Fe-N coordination bonds was the main reason for the better 

performance of their catalysts 91, 92. For the rational synthesis design, however, more 

deep investigation is needed to verify how the precursor coordination state affects the 

Fe-N4 active site formation during high-temperature pyrolysis. In this work, I suggest a 

systematic approach to determining the distinct precursor coordination effect on 

forming the catalytic sites of Fe-N-C catalysts.

1.4.2 Carbon Support Study

As mentioned in 1.3.2, the active sites of Fe–N–C catalysts are known to be hosted 

in micropores of the catalysts 77. Recently, Lef`evre and coworkers demonstrated the 

direct correlation between the microporous surface area (pore diameter < 2 nm) and 

ORR activity in Fe–N–C catalysts 74, 95. After that, significantly enhanced 

performances have been reported after impregnation of an iron precursor and pore 

filler (PF) into microporous carbon supports and subsequent two-step pyrolysis in Ar 

and NH3 gases 35, 36. Thus, the development of accessible micropores bearing Fe–N2+2

catalytic sites in Fe–N–C catalysts is essential for achieving greatly enhanced ORR 

activity. Considering that carbon supports usually act as main frameworks in Fe–N–C 

catalysts during and after the synthetic process, the micropore structure within the 

initial carbon supports of Fe–N–C catalysts could be a crucial factor in active site 
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formation. With this in mind, carbon support materials with high microporosity, such 

as Ketjenblack 96, Black Pearls 2000 35, and ZIF-8 36, have been utilized to maximize 

active site density. However, to my knowledge, no study has shown that the pre-

defined microporosity of parent carbon supports plays a distinct role in forming Fe–

N2+2 active sites, determining the catalytic site density and, ultimately, the ORR 

activities of the electrocatalysts. In this study, I present an effective approach for 

verifying the distinct role of pre-defined microporosity in carbon supports, which is 

directly related to the formation of catalytic sites within the accessible micropores of 

Fe–N–C catalysts.
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Chapter 2. Experimental

2.1 Precursor Study

2.1.1 Chemicals and Materials

FeIIacetate, phenanthrene, 1,7-phenanthroline (1,7-phen), 4,7-phenanthroline (4,7-

phen) and 1,10-phenanthroline (1,10-phen) were purchased from Aldrich. All 

chemicals were used as received. Ketjenblack EC-600JD (KB) was purchased from 

Akzo Nobel Polymer Chemicals. The KB powders were pretreated in aqueous HCl 

solution for 12 h at 80 °C to remove possible metal impurities. Nafion perfluorinated 

resin solution (Nafion, 5 wt% in lower aliphatic alcohol and water) and carbon 

supported platinum (Pt, HiSpec 3000, 20 wt%) was received from Aldrich and Alfa 

Aesar, respectively.

2.1.2 Precursor Variation and Preparation of Fe-N-C Catalysts

As shown in Fig. 2.1., four different precursor groups were prepared for this study. 

Each group has common Fe precursor of FeIIacetate, but has different pore fillers. 1,7-

phen, 4,7-phen, 1,10-phen were used as pore fillers and N precursors. Phenanthrene 
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was used as an N free pore filler for control sample synthesis, and denoted as 0,0-phen 

for convenience in this study.

Catalyst samples were synthesized by impregnation of precursors into pretreated 

KB carbon support and subsequent pyrolysis of mixture powders. Precursor solutions

were prepared by mixing Fe precursor with pore-filler in ethyl alcohol. After 15 min 

of ultrasonication, each precursor solution was impregnated into dry KB powders via 

repeated dropping and mixing with an agate mortar. After drying in an electric oven 

for overnight, all the resultant powder samples were heated to 800 °C at a heating rate 

of 5 °C min-1 under an Ar atmosphere and maintained at that temperature for 1 h. The 

final products were denoted as Fe/pore filler name/KB, such as Fe/0,0-phen/KB, 

Fe/1,7-phen/KB, Fe/4,7-phen/KB, and Fe/1,10-phen/KB. Fe free samples were 

prepared with same procedure except the absence of Fe precursor in the precursor 

solutions. These samples were denoted as pore filler name/KB.
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Figure 2.1. Schematic images of carbon micropores impregnated with 

different precursor compositions: (a) carbon black and its empty micropores. 

Carbon microcpores impregnated with (b) Fe/0,0-phen (c) Fe/1,7-phen, (d) Fe/4,7-

phen and (e) Fe/1,10-phen.
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2.1.3 Material Characterizations

For precursor characterizations, UV/Vis absorbance spectra of precursor solutions 

(6 mg FeIIacetate, 40 mg phenanthrolines in 5 mL ethyl alcohol) were obtained with 

Beckman DU 650 spectrophotometer. After rotary evaporation of above solutions, the 

weight-loss of dried precursor compounds during heat treatment by thermogravimetric 

analysis (TGA) using TA Instruments SDT Q600. 

For resultant catalyst samples, Transmission electron microscopy (TEM) and 

Energy-filtered TEM (EFTEM) images were recorded using a FEI Tecnai F-20 

microscopes and a JEOL-2200FS equipped with an image Cs corrector, respectively. 

X-ray diffraction (XRD) experiments were conducted with a Rigaku D/MAX 2500 

using Cu Ka radiation (λ=0.15406 nm). High-resolution X-ray photoelectron 

spectroscopy (XPS) data were obtained at the 8A2 beamline in the Pohang 

Accelerator Laboratory (PAL), equipped with a Scienta SES100 electron analyzer. Fe 

K-edge X-ray absorption spectroscopy (XAS) was performed at the 8C beamline in 

the PAL. Elemental analysis and inductively coupled plasma atomic emission 

spectroscopy (ICP-AES) were conducted using a CE Instrument Flash 2000 elemental 

analyzer and a Perkin Elmer Optima 4300DV spectrometer, respectively.
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2.1.4 Electrochemical Measurements

All electrochemical experiments were conducted with an Autolab potentiostat 

(PGSTAT) using a conventional three-electrode cell. Platinum wire and saturated 

Ag/AgCl were used as the counter and reference electrode, respectively. A catalyst-

coated rotating disk electrode (RDE, Pine Research Instrumentation) was used as the 

working electrode. To prepare the catalyst ink, catalyst samples were mixed with 

deionized water, Nafion solution (5 wt % in isopropanol, Aldrich), and 2-propanol by 

ultrasonication. The catalyst ink was deposited on a glassy carbon electrode (5.0 mm 

diameter) of the RDE, with catalyst loading of 0.4 mg cm-2 (20 μgPt cm-2 for the 

benchmark Pt/C catalyst; 20 wt% Pt/C, Johnson Matthey). 0.1 M KOH and 0.5 M 

H2SO4 aqueous solutions were used as alkaline and acid electrolyte, respectively. The 

solution temperature was kept at 20 °C with a water jacket. The reference electrode 

was calibrated with respect to the reversible hydrogen electrode (RHE) before the 

experiments, by determining the hydrogen oxidation and evolution potential with a Pt 

working electrode in H2-saturated solutions. For cleaning the catalysts, potential pre-

cycling was performed between 0.05 and 1.15 V (vs RHE) for 30 cycles at a scan rate 

of 50 mV s-1 in an Ar-saturated electrolytes. After that, RDE test was performed at 

1600 rpm with a scan rate of 10 mV s-1 in an O2-saturated electrolyte. In order to 

remove the non-Faradaic term from RDE measurements, the double layer capacity 

current recorded under same condition in an Ar-saturated electrolyte was subtracted.
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The apparent electron transfer numbers were estimated from RDE data at 400, 900, 

1200, and 1600 rpm at 0.60 V (vs. RHE) using the Koutecky-Levich (K–L) equation:

�

�
=

�

��
+

�

��
=

�

��
�
��
+

�

��
                  (1)

B = 0.62nF��(���)
�
�� �

��
��                  (2)

where, � , �� , and �� are the measured, diffusion limiting, and kinetic current 

densities, respectively, ω is the electrode rotation speed, F is the Faraday constant 

(96,485 C mol–1), C0 is the saturated O2 concentration in bulk solution (1.21 × 10–6 mol 

cm–3), ��� is the diffusion coefficient of O2 (1.86 × 10–5 cm2 s−1), and υ is the kinetic 

viscosity of the electrolyte (0.01 cm2 s–1). As a kinetic parameter, the kinetic current 

density was calculated at 0.85 V (vs. RHE) from the mass transfer correction of the 

RDE measurements using the following equation:
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The accelerated durability test (ADT) was conducted using the Department of Energy 

(DOE) protocol, in which the potential was cycled between 0.6 V and 1.0 V (vs. RHE) 

10,000 times at a scan rate of 50 mV s–1 in Ar-saturated electrolyte.
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2.2 Carbon support study

2.2.1 Chemical and Materials

Resorcinol (Junsei), formaldehyde (Amresco), ammonia solution (28%, Wako), 

FeIIacetate (Aldrich) and 1,10-phenanthroline (Aldirich) were used without 

purification. Nafion perfluorinated resin solution (Nafion, 5 wt% in lower aliphatic 

alcohol and water) and carbon supported platinum (Pt, HiSpec 3000, 20 wt%) was 

received from Aldrich and Alfa Aesar, respectively.

2.2.2 Preparation of Carbon Supports

For the resorcinol–formaldehyde polymer (RFP), resorcinol (0.76 g) and 

formaldehyde (0.88 g) were mixed in a solution of ammonia (28% aq.) in deionized 

water (200 mL). After stirring for 24 h at room temperature, the reaction mixture was 

placed in an oven and heated for 24 h at 90 °C without stirring. The solid product was 

recovered by centrifugation and washed several times with deionized water. For the 

carbonization process, RF polymer spheres were heated from ambient temperature to 

800 °C under a N2 atmosphere over 3 h at a heating rate of 4.3 °C min–1. The 

carbonized powders were denoted as RFC. For the porosity control, carbon dioxide 

activation was performed on the as-prepared RFC powders. RFC powders were 

placed in an alumina boat in a quartz tube in the isothermal zone of a tubular furnace 

and purged with a N2 flow. The samples were heated to 900 °C at a heating rate of 
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30 °C min–1 under N2 flow. Then, the flowing gas was changed to CO2 (1000 mL 

min–1) and the activation conditions were maintained for different time periods (30, 

120 and 240 min). After the programmed activation times, the gas flux was changed 

back to nitrogen during the cooling process. The activated carbon samples were 

denoted as RFC_CX, where X is the CO2 activation time.

2.2.3 Preparation of Fe-N-C Catalysts

The Fe-N-doped porous carbon spheres were produced by impregnation of the Fe 

and N precursor into activated carbon and subsequent pyrolysis of these mixtures. First, 

the precursor solution was prepared by mixing FeIIacetate (234 mg), 1,10-

phenanthroline (800 mg), and ethyl alcohol (10 mL). Then, 0.6 mL of the precursor 

solution was added to each carbon sample (250 mg) via repeated dropping and mixing 

with a mortar. The sample mixtures were dried in an electric oven (75 °C) for 12 h. 

The resulting powder samples were pyrolyzed at 800 °C (heating rate, 5 °C min–1) for 

1 h under a N2 flow. The resultant carbon materials were washed with 0.5 M H2SO4 at 

80 °C for 8 h to remove excess Fe species. After filtering with deionized water several 

times and drying in the oven for 12 h, the carbon samples were again heated under the 

same conditions as the previous pyrolysis step. The final products were denoted as Fe-

N-RFC_CX. The overall synthetic process of Fe-N-RFC_CXs was shown in Fig. 2.2.
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Figure 2.2. Illustration of the synthesis of Fe-N-RFC_CX (X: CO2 activation time): (a) Plan view of a graphite surfaces 

before activation. (b) Plan view of an empty slit pore between two graphite edge surfaces after activation. (c) Plan view of a slit pore filled 

with pore filer and iron precursor after impregnation. (d) Plan view of the presumed Fe and N configuration after Fe and N doping 

process. Shaded region comes from pore filler.
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2.2.4 Material Characterizations

Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) 

images were recorded using HITACHI S-4800 and FEI Tecnai F-20 microscopes, 

respectively. Energy-filtered TEM (EFTEM) were conducted using a JEOL-2200FS 

equipped with an image Cs corrector. X-ray diffraction (XRD) data were obtained on 

a Rigaku D/MAX 2500 using Cu Kα radiation (λ = 0.15406 nm). High-resolution X-

ray photoelectron spectroscopy (XPS) experiments were conducted at the 8A2 

beamline in Pohang Accelerator Laboratory, equipped with a Scienta SES100 electron 

analyzer. Nitrogen sorption isotherms were measured at –196 °C on a BEL MAX 

adsorption volumetric analyzer. Inductively coupled plasma atomic emission 

spectroscopy (ICP-AES) and elemental analysis data were obtained using a Perkin 

Elmer Optima 4300DV spectrometer and CE Instrument Flash 2000 elemental 

analyzer, respectively.

2.2.5 Electrochemical Measurements

The catalyst ink was prepared by mixing catalyst samples with deionized water, 

Nafion solution (5 wt%), and 2-propanol with ultrasonication. This catalyst ink was 

deposited on a glassy carbon electrode (5.0-mm diameter) in a rotating disk electrode 

(RDE) and dried at room temperature. The catalyst loadings were 0.5 mg cm–2 (20 μgPt

cm–2 for commercial Pt/C catalyst; Johnson Matthey, 20 wt% Pt/C). All 
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electrochemical measurements in this study were conducted in a conventional three-

electrode cell using an Autolab potentiostat (PGSTAT) with platinum wire, saturated 

Ag/AgCl, and the catalyst-coated RDE as the counter, reference, and working 

electrodes, respectively. The electrolyte was 0.1 M KOH and 0.5 M H2SO4 aqueous 

solution and the temperature was kept at 20 °C using a water jacket. All potentials in 

this study refer to the reversible hydrogen electrode (RHE), which was determined by 

a calibration measurement using the platinum wire as the working electrode in each 

H2-saturated solution. Cyclic voltammetry (CV) was performed between 0.05 and 

1.10 V (vs. RHE) with a scan rate of 50 mV s–1. The RDE test was measured in O2-

saturated electrolyte at 1600 rpm with a scan rate of 5 mV s–1. In order to remove the 

double layer capacity term, the current recorded in Ar-saturated electrolyte under the 

same scan conditions was subtracted. The limiting currents and half-wave potentials 

were determined at 0.30 V (vs. RHE) and half the limiting current from the ORR 

curves, respectively. The apparent electron transfer numbers were estimated from 

RDE data with 400, 900, 1200, and 1600 rpm at 0.60 V (vs. RHE) using the 

Koutecky-Levich (K–L) equation:
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densities, respectively, ω is the electrode rotation speed, F is the Faraday constant 

(96,485 C mol–1), C0 is the saturated O2 concentration in bulk solution (1.21 × 10–6 mol 

cm–3), ��� is the diffusion coefficient of O2 (1.86 × 10–5 cm2 s−1), and υ is the kinetic 

viscosity of the electrolyte (0.01 cm2 s–1). As a kinetic parameter, the kinetic current 

density was calculated at 0.85 V (vs. RHE) from the mass transfer correction of the 

RDE measurements using the following equation:

�� =
�×��

(����)
                 (3)

The methanol tolerance test was performed with chronoamperometry at a constant 

voltage of 0.7 V (vs. RHE). Methanol was injected into the electrolyte after 400 s, 

adjusting the final methanol concentration to 1 M. Output currents were normalized to 

those under the initial state. The accelerated durability test (ADT) was conducted using 

the Department of Energy (DOE) protocol, in which the potential was cycled between 

0.6 V and 1.0 V (vs. RHE) 10,000 times at a scan rate of 50 mV s–1 in Ar-saturated 

electrolyte.
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Chapter 3. Results and Discussion

3.1 Precursor Study

3.1.1 Precursor: Coordination State

The coordination states of each precursor group were investigated by UV/Vis 

absorbance spectra of precursor solutions. As shown in Fig. 3.1a, the absorption peak 

at 510 nm of [FeII(phen)3] were only observed in the UV/Vis spectrum of Fe/1,10-

phen, corresponding the reddish color of Fe/1,10-phen solution (Fig. 3.1b) 87, 97, 98. This 

indicates that only Fe/1,10-phen precursor group was impregnated into carbon pores 

with Fe-phenanthroline coordination complex form, whereas other precursor groups 

impregnated with physically mixed compound form in the absence of chelation, as 

shown in Fig. 2.1.

In order to investigate the pyrolysis behavior of each precursor group during heat 

treatment, thermogravimetric analysis (TGA) of dried precursor compounds was 

conducted under inert gas atmosphere. The pyrolysis progresses of each precursor 

compound are shown in the TGA curves (Fig. 3.2a). For Fe/1,7-phen and Fe/4,7-phen 

compounds, most of their weight was gasified at a temperature below 300 °C, and 

only about 5 % of initial weight was remained at 800 °C. In the case of Fe/1,10-

phen/KB, on the other hand, over 40 % of the initial weight was remained at that 

temperature. Considering that pure 1,10-phen was completely gasified below 300 °C 
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(Fig. 3.2b), the coordination state of Fe/1,10-phen compound significantly suppressed 

gasification of precursor during pyrolysis.
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Figure 3.1. The coordination state of each precursor group: (a) UV/Vis 

spectra for Fe/pore filler precursors, and (b) digital camera images for Fe and Fe/pore 

filler solutions.
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Figure 3.2. Thermal behaviors of each precursor group: (a) TGA curves for 

Fe/pore filler precursors, and comparative TGA curves of pore fillers with/without Fe 

for (b) 1,10-phen, (c) 1,7-phen and (d) 4,7-phen.
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3.1.2 Physicochemical Characterizations of Fe-N-C Catalysts

After precursor impregnation, the obtained powder samples were subjected to high-

temperature pyrolysis at 800 °C. With the same amount of impregnated precursor, 

however, resultant N contents of Fe/1,7-phen/KB and Fe/4,7-phen/KB were much 

lower than that of Fe/1,10-phen/KB (Table 2). The N content of Fe-N-C catalysts is 

known as one of the crucial factor for ORR activity 60, 66, 67. Therefore, in an attempt to 

verify the pure precursor coordination effect, the amounts of impregnated phen 

precursors were controlled for adjusting the resultant N contents in all samples to 

about 0.45 wt%. The Fe contents were also adjusted to about 0.7 wt% in all the 

catalysts. Further characterizations and ORR measurements were conducted with 

these N-content-controlled samples (Table 3). After synthesis, the XRD pattern of the 

Fe/1,10-phen/KB catalyst showed only carbon-related peaks, whereas the Fe/0,0-

phen/KB, Fe/1,7-phen/KB, and Fe/4,7-phen/KB showed additional peaks, 

corresponding to Fe3O4 (Fig. 3.3). The TEM images (Fig. 3.4) also showed that no 

particle aggregation was observed in Fe/1,10-phen/KB catalyst while several particles 

were found in Fe/1,7-phen/KB and Fe/4,7-phen/KB samples. In order to examine the 

elemental distributions in catalyst samples, electron energy loss spectroscopy (EELS) 

analysis was conducted with EFTEM, and resultant elemental mapping images of 

each catalyst were shown in Fig. 3.5. In Fe/1,7-phen/KB and Fe/4,7-phen/KB samples, 

Fe only existed in aggregated particles while N was embedded evenly throughout the 
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catalysts. On the other hand, both Fe and N were homogeneously distributed in 

Fe/1,10-phen/KB, indicating that Fe species were well dispersed in this catalyst 

without any particle aggregation even after high-temperature heat treatment. These 

results clearly suggest that Fe/1,10-phen coordination complex facilitate the uniform 

Fe distribution, suppressing the aggregation of Fe-based particle during high 

temperature pyrolysis.

Further investigation on the local and electronic structure of Fe species in Fe/pore 

filler/KB catalyst samples was conducted with XAS analysis. Fig. 3.6 showed Fe K-

edge XANES spectra of catalysts and reference samples, and each spectrum possessed 

the characteristic features labeled as A-E. The XANES spectra of Fe/0,0-phen/KB, 

Fe/1,7-phen/KB, and Fe/4,7-phen/KB had similar features (A-E) to the Fe3O4

spectrum, which was consistent the their XRD patterns (Fig. 3.3). On the other hand, 

the XANES spectrum of Fe/1,10-phen/KB was compared with that of Fe 

phthalocyanine (FePc) for estimating its Fe-Nx structure. Recently, Mukergee and their 

co-workers demonstrated that the XANES spectra of their pyrolyzed catalysts showed 

increased intensity of features C and decreased intensities of features B and D 

compared to that of FePc 75. These trends suggested that the pyrolyzed catalysts had 

central Fe located out of N4-plane by the distortion of the D4h symmetric Fe-N4

structure of FePc 75, 81. In this study, Fe/1,10-phen/KB also showed similar spectrum 

features with reported Fe-N-C catalysts, determining its nonplanar Fe-N4 structure.
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The EXAFS Fourier transforms spectra also revealed the local structure differences 

between Fe/1,10-phen/KB and others (Fig. 3.7). The EXAFS spectra of Fe/0,0-

phen/KB, Fe/1,7-phen/KB, and Fe/4,7-phen/KB showed two distinct peaks: one peak 

at around 1.5 Å and the other peak between 2.5 and 3.0 Å. Matching with two peaks 

of the reference spectra of Fe2O3/Fe3O4
99, the former one was assigned to the Fe-O 

bond distance and latter one was attributed to the Fe-Fe interaction in Fe oxide. In 

contrast to above samples, the EXAFS spectrum of Fe/1,10-phen/KB showed only 

one dominant peak at around 1.5 Å assigned to Fe-N(O) shell, and minor signal 

around 2.2 Å from Fe-Fe back scattering demonstrated the minimized Fe-Fe bonds 

were formed in it compared to the others 100. 

XPS analysis was also conducted to examine the effect of precursor coordination 

on N configuration after high temperature pyrolysis. High-resolution N1s spectra of 

pore filler/KB and Fe/pore filler/KB samples (Fig. 3.8) were deconvoluted into three 

nitrogen peaks: pyridinic N (approx. 398.6 eV), pyrrolic N (approx. 399.9 eV) and 

graphitic N (approx. 401.2 eV). For the pore filler/KB samples, all the samples shows 

similar N peak configurations regardless of pore filler species (Fig. 3.8a and Table 3). 

With Fe addition, no noticeable change was observed in Fe/1,7-phen/KB and Fe/4,7-

phen/KB samples (Fig. 3.8b and Table 3), indicating that physical mixing of those 

pore fillers with Fe had negligible effect on N doping site in carbon matrix during heat 

treatment. In Fe/1,10-phen/KB, however, the relative portion of graphitic N peak was 
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significantly decreased compared to other samples (Fig. 3.8b and Table 3), implying 

that Fe-N coordination selectively suppressed N doping at graphitic site.
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Table 2. N contents of each catalyst with different amount of impregnated 

phenanthroline precursor.

Precursor group         Fe/1,7-phen/KB

Phenanthroline [mg] 40 80 120

N content [wt%] 0.28 0.39 0.46

Precursor group         Fe/4,7-phen/KB

Phenanthroline [mg] 40 80 120

N content [wt%] 0.36 0.47 0.50

Precursor group         Fe/1,10-phen/KB

Phenanthroline [mg] 10 20 40

N content [wt%] 0.45 0.83 1.36

FeII acetate : 6 mg, ethyl alcohol : 1 mL, Ketjenblack : 200 mg
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Table 3. Physical and chemical properties of pore filler/KB, Fe/pore filler/KB catalysts.

Sample
Fe-ICP          

(wt%)

N-EA     

(wt%)

relative percentage of different N functionalities (%) Half-wave 

potential            

(V vs. RHE)

ORR onset 

potential    

(V vs. RHE)pyridinic graphitic pyrrolic

0,0-phen/KB - - - - - 0.66 0.77

1,7-phen/KB - 0.55 56.9 31.7 11.4 0.67 0.85

4,7-phen/KB - 0.56 57.0 31.9 11.1 0.68 0.86

1,10-phen/KB - 0.55 56.7 32.0 11.3 0.68 0.86

Fe/0,0-phen/KB 0.71 - - - - 0.63 0.77

Fe/1,7-phen/KB 0.72 0.45 59.1 28.5 12.4 0.74 0.89

Fe/4,7-phen/KB 0.72 0.46 57.8 28.6 13.6 0.74 0.90

Fe/1,10-phen/KB 0.71 0.45 65.6 15.0 19.4 0.87 1.00
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Figure 3.3. XRD patterns of Fe/pore filler/KB catalysts.
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Figure 3.4. TEM images of Fe/pore filler/KB catalysts: (a, b) Fe/1,7-phen/KB, 

(c, d) Fe/4,7-phen/KB and (e, f) Fe/1,10-phen/KB.
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Figure 3.5. Energy-filtered TEM elemental mapping images of Fe/pore 

filler/KB catalysts: Sequence of the unfiltered images and carbon, nitrogen and iron 

elemental maps of (a) Fe/1,7-phen/KB, (b) Fe/4,7-phen/KB and (c) Fe/1,10-phen/KB.
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Figure 3.6. XANES spectra of Fe/pore filler/KB catalysts. (with the Fe3O4, 

Fe2O3 and FePc as reference)
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Figure 3.7. FT-EXAFS spectra of Fe/pore filler/KB catalysts. (with the 

Fe3O4, Fe2O3 and FePc as reference)
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Figure 3.8. XPS N1s peaks and fitting results for the pyrolyzed catalysts:

(a) pore filler/KB catalysts and (b) Fe/pore filler/KB catalysts.
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3.1.3 Electrochemical Measurements

The ORR activities of Fe/pore filler/KB samples were investigated using rotating 

disk electrode (RDE) measurements. The RDE polarization curves of catalysts in 0.1 

M KOH clearly demonstrate that ORR activities depend on the impregnated precursor 

compounds during their synthetic process (Fig. 3.9a). Their onset potentials (Eonset is 

defined as the potential at 0.1 mA cm-2 of current density in this study) and half-wave 

potentials (E1/2) are summarized in Table 3 as activity parameters. At first, The N-

containing-precursor catalyst groups (Fe/1,7-phen/KB, Fe/4,7-phen/KB and Fe/1,10-

phen/KB) showed much improved ORR activities compared to Fe/0,0-phen/KB, N-

free-precursor catalyst. Among those N-containing-precursor catalysts, however, their 

ORR activities varied again depending on the presence of Fe-N coordination in their 

precursor compounds. Two catalysts without Fe-N coordination (Fe/1,7-phen/KB and 

Fe/4,7-phen/KB) showed almost same ORR polarization curves with similar Eonset

(0.89 and 0.90 V, respectively) and E1/2 (0.74 and 0.74 V, respectively). With 

utilization of precursor with Fe-N coordination, Fe/1,10-phen/KB demonstrated 

superior ORR activity with higher Eonset (1.00 V) and E1/2 (0.87 V). Considering their 

similar Fe and N contents, their ORR activity deviation was originated from their Fe 

and N configuration, which is related to their active site. Therefore, we further 

investigated the relationship between the structure of the N dopant and ORR kinetics 

in those catalyst samples. Interestingly, there was a strong correlation between the ratio 



57

of pyridinic N content to graphtic N content (P/G ratio) and the mass-transfer-

corrected kinetic current density (jK) at 0.85 V (Fig. 3.10). The P/G ratio and jK value 

of Fe/1,10-phen/KB (4.38 and 9.56 mA cm-2, respectively) were much bigger than 

those of Fe/1,7-phen/KB (2.08 and 0.36 mA cm-2, respectively) and Fe/4,7-phen/KB 

(2.02 and 0.38 mA cm-2, respectively). Considering that the Fe-free catalysts showed

similar configurations of N dopant and ORR activities (Fig. 3.9b and Table 3), the 

existence of Fe-N coordination in their precursors acted as a crucial factor for ORR 

activity with affecting the Fe-N4 active site formation during pyrolysis. The electron 

transfer numbers per O2 calculated from the slopes of K-L plots 101 at 0.6 V (Fig. 3.11) 

also suggested that the Fe/1,10-phen/KB (3.98) had better reaction selectivity for the 

four-electron pathway compared to Fe/1,7-phen/KB (3.84) and Fe/4,7-phen/KB (3.84). 

This ORR performance trends was also maintained in the acidic condition (Fig. 3.12).

The best performing catalyst, Fe/1,10-phen/KB, exhibited a comparable ORR 

activity to commercial Pt/C electrocatalyst in alkaline condition (Fig. 3.13a), with a 

small half-wave potential difference (approx. 18 mV). Also in the acid electrolyte, 

Fe/1,10-phen/KB showed a considerable activity with an onset potential of 0.82 V. 

(Fig. 3.13b). A long-term durability tests of Fe/1,10-phen/KB and Pt/C catalyst were 

also conducted, involving potential cycling between 0.6 and 1.0 V up to 10,000 times 

in Ar-saturated 0.1 M KOH solution. Fe/1,10-phen/KB exhibited remarkably high 

stability with a nearly identical polarization curve even after 10,000 cycles, whereas a 
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significant activity loss was observed for Pt/C catalyst (Fig. 3.14). I also evaluated the 

feasibility of Fe/1,10-phen/KB catalyst for practical fuel cell applications with 

AEMFC single cell analysis with MEA test. Fig. 3.15 shows the single cell 

performances of the MEA using Fe/1,10-phen/KB as a cathode catalyst. The 

maximum power density of Fe/1,10-phen/KB-based MEA was 197 mW cm-2, which 

was about 84 % of peak power density for reference MEA with Pt/C cathode. This 

excellent single cell performances indicate that the Fe/1,10-phen/KB catalyst is a 

promising non-precious metal catalysts for AEMFC applications
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Figure 3.9. ORR measurements for the pyrolyzed catalysts in alkaline 

conditions: RDE polarization curves of (a) Fe/pore filler/KB and (b) pore filler/KB 

catalysts in O2-saturated 0.1 M KOH with a scan rate of 5 mV sec-1, 1600 rpm. 

Catalyst loading: 0.4 mg cm-2
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Figure 3.10. Correlation between the ratio of pyridinic N content to 

graphtic N content and the mass-transfer-corrected kinetic current 

density at 0.85 V versus the RHE.
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Figure 3.11. Koutecky-Levich analysis for Fe/pore filler/KB catalysts: 

RDE polarization curves for (a) Fe/0,0-phen/KB (b) Fe/1,7-phen/KB (c) Fe/4,7-

phen/KB and (d) Fe/1,10-phen/KB in O2-saturated 0.1 M KOH at a scan rate of 5 mV 

sec-1 with various electrode rotating rates (inset) Koutecky-Levich plot of J-1 vs ω-1/2 at 

0.60 V vs RHE.



62

Figure 3.12. ORR measurements for the Fe/pore filler/KB catalysts in 

acid conditions: RDE polarization curves of Fe/pore filler/KB catalysts in O2-

saturated 0.5 M H2SO4 with a scan rate of 5 mV sec-1, 1600 rpm. Catalyst loading: 0.4 

mg cm-2.
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Figure 3.13. Comparative ORR activities Fe/1,10-phen/KB and Pt/C 

catalysts in half-cell conditions: RDE polarization curves of Fe/1,10-phen/KB 

with commercial Pt/C 20wt% catalyst in O2-saturated (a) 0.1 M KOH and (b) 0.5 M 

H2SO4. The electrode rotation speed was 1600 rpm. Fe/pore filler/KB catalysts loading: 

0.4 mg cm-2 and Pt/C loading: 0.02 mgPt cm-2.
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Figure 3.14. Long-term stability of Fe/1,10-phen/KB and commercial 

Pt/C catalysts: RDE polarization curves before/after accelerated durability test 

(ADT) for (a) Fe/1,10-phen/KB and (b) commercial Pt/C 20wt% catalyst. The 

electrode rotation speed was 1600 rpm in O2-saturated 0.1 M KOH.
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Figure 3.15. Comparative ORR activities Fe/1,10-phen/KB and Pt/C 

catalysts in single-cell conditions: Alkaline AEMFC single cell performances of 

MEAs with Fe/1,10-phen/KB and Pt/C cathode catalysts.
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3.1.4 Precursor Coordination Effect on Active Site Formation

In the process of Fe-N-C catalyst synthesis, the main active sites are generally 

formed during high temperature pyrolysis. Therefore, the actual thermal behavior of 

Fe and N precursors during heat treatment is crucial for catalytic site formation. In this 

context, the weight change data of precursor compounds provides clues to the active 

site forming process with those precursors. Without Fe-N coordination (Fe/1,7-phen 

and Fe/4,7-phen), the complete gasification of phen precursors was observed below 

300 °C, and the pyrolysis behaviors of these precursors were same as those of pure 

1,7-phen and 4,7-phen (Fig. 3.2). With Fe-N coordination (Fe/1,10-phen), however, a 

significant portion of weight remained at high temperature condition unlike pure 1,10-

phen. Due to above thermal behavior characteristics, their Fe and N configurations 

after pyrolysis were totally different, affecting the Fe-N4 active site formation. First, 

Fe-N coordination helped the Fe atoms to be evenly distributed in the catalysts, with 

increasing the possibility of Fe-N4 active site formation significantly (Fig. 3.4 and Fig. 

3.5). In the absence of Fe-N coordination, Fe was easily aggregated into particles 

without any physical disturbance from phen precursors after their gasification. 

However, when the Fe-N coordination existed in precursor, the Fe particle aggregation 

was suppressed due to physical interference of surrounding non-gasified phen 

precursor residues. In addition, the Fe-N coordination bonds in precursor improved the 

possibility of the Fe-N4 site formation by locating N atom near Fe during heat 
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treatment (Fig. 3.8). Without coordination, N atoms were doped into carbon through 

the gasification of phen precursors during pyrolysis, and there was no Fe effect in 

determining N doping sites. Therefore, N configurations of Fe/1,7-phen/KB and 

Fe/4,7-phen/KB were almost same as those of 1,7-phen/KB and 4,7-phen/KB. In the 

case of using Fe-N coordination complex precursor (Fe/1,10-phen/KB), on the other 

hand, there existed a Fe effect on the doping position of N atoms, with maintaining the

Fe-N distance of coordination complex (Fe/1,10-phen) during pyrolysis. Therefore, 

the relative amount of graphitic N of Fe/1,10-phen/KB, which is generally located in 

the middle of graphitic carbon and difficult to be adjacent to Fe, was significantly 

decreased compared to that of 1,10-phen/KB. As a result, Fe-N coordination helped N 

to be located in the pyridinic N position, which is more favorable for the active site 

formation than other N sites 95, 102.
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3.2 Carbon Support Study

3.2.1 Carbon Support: Pore Structure

Monodisperse and size-tunable resorcinol–formaldehyde polymer (RFP) spheres 

were prepared using a sol-gel method from resorcinol and formaldehyde precursors in 

aqueous solution with ammonia catalyst (see experimental section for more details). 

After determining the spherical and monodisperse shapes of the as-synthesized RFPs 

using SEM (Fig. 3.16a), the RFP spheres were carbonized to resorcinol–

formaldehyde carbon (RFC) with heat treatment under a N2 atmosphere. The SEM 

image of these RFC spheres showed that the monodispersity was retained and that the 

size had shrunk after carbonization. This size shrinkage (from 301±10 nm to 206±10 

nm) was probably due to radial contraction of RFP during the carbonization process 

(Fig. 3.16a, b). 103, 104

Attempting to modulate the microporosity of the RFC spheres, a hot CO2 treatment 

(C (s) + CO2 (g) → 2CO (g)) was employed, in which the microporosity of the 

carbonaceous materials could be readily controlled by the activation time. The 

activated RFC spheres are denoted as RFC_CX, where X is the CO2 activation time 

(e.g., 30, 120, and 240 min). During hot CO2 treatment, the RFC_CX samples 
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decreased in size, from 206±10 before treatment to 196±14, 179±19, and 163±23 nm

with CO2 activation times of 30, 120, and 240 min, respectively (Fig. 3.16b-e). This 

size decreasing tendency in the RFC_CX samples was probably caused by the loss of 

carbon mass during CO2 activation. The gradual development of porosity during 

prolonged hot CO2 treatment was also confirmed by TEM images, in which the 

features of the RFC_C30, C120, and C240 samples were observed to be much less 

dense compared with the pristine RFC sphere (Fig. 3.17). The development of 

porosity in RFC_CXs was further determined by nitrogen sorption isotherm 

measurements (Fig. 3.18 and Table 4). The increased vertical rise at low P P0
-1 of type 

I isotherms with increasing hot CO2 treatment time implied that the microporosity 

mainly developed in RFC during the CO2 activation process. In addition, the enhanced 

micropore surface areas with CO2 activation were actually determined by the non-

local density functional theory (NLDFT) (462, 903, 1536, and 2374 m2 g–1 for RFC, 

RFC_C30, C120, and C240, respectively). It was noted that prolonged activation 

treatment led to the generation of mesopores, indicated as a type IV isotherm, 

especially in RFC_C240. Specific surface areas (SSAs), obtained using the Brunauer–

Emmett–Teller (BET) method with N2 as adsorbate, of 572, 938, 1766, and 2975 m2

g–1 were measured for RFC, RFC_C30, C120, and C240 samples, respectively, 

indicating that the CO2 activation process effectively controlled the porosity of the 

RFC spheres (Table 4). In order to monitor the development of the pore structure 
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during CO2 activation, the pore size distribution (PSD) in the activated RFC samples 

was determined with the NLDFT assuming a slit-pore geometry. According to the 

PSD curves in Fig. 3.18b, two peaks, at around 0.7 nm and 1.5 nm, appeared for all 

the activated RFC samples, with a third peak at around 2.5 nm present only for the 

RFC_C240 sample. Therefore, a series of RFC spheres with controlled microporosity 

had been prepared to investigate the effect of the pre-defined microporosities of the 

carbon supports on the formation of catalytic sites in Fe-N-C catalysts, which 

ultimately determines the ORR activity.
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Figure 3.16. SEM images of prepared carbon supports: (a) RFP, (b) RFC, (c) 

RFC_C30, (d) RFC_C120, and (e) RFC_C240.
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Figure 3.17. TEM images of prepared carbon supports.
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Figure 3.18. Pore structures of prepared carbon supports: (a) Nitrogen 

adsorption-desorption isotherms for RFC_CXs and (b) BET isotherm analyses on 

incremental pore volume as the function of pore size in RFC_CXs.
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Table 4. Physical and chemical properties of RFC_CX and Fe-N-RFC_CX samples.

Sample
SBET            

(m2g-1)

Smicropore
a
   

(m2g-1)

VTotal
b                

(cm3 g-1)

Fe-ICP          

(wt%)

N-EA     

(wt%)

Half-wave potential            

(V vs. RHE)

RFC 572 462 0.348 No detected 1.09 -

RFC_C30 938 903 0.555 No detected 1.08 -

RFC_C120 1766 1536 1.170 No detected 0.91 -

RFC_C240 2975 2374 2.230 No detected 0.80 -

Fe-N-RFC 172 142 0.231 0.49 1.29 0.75 

Fe-N-RFC_C30 877 824 0.513 0.52 2.02 0.86 

Fe-N-RFC_C120 1537 1490 0.895 0.53 2.35 0.89 

Fe-N-RFC_C240 2913 2169 1.822 0.57 2.84 0.91 

a The micropore surface area was obtained by the NLDFT method. b Total pore volume was determined at P/P0=0.99.
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3.2.2 Physical Characterizations of Fe-N-C Catalysts

In order to synthesize the Fe-N-RFC_CX samples, an iron precursor with a pore 

filler was impregnated into the microporosity- controlled RFC samples, and the mixed 

powder samples were subsequently pyrolyzed under an inert atmosphere. After heat 

treatment, only carbon-related peaks were shown in XRD patterns for as-prepared Fe-

N-RFC_CX samples except Fe-N-RFC (Fig. 3.19b). Fe-N-RFC showed distinct Fe 

and Fe3O4 crystal peaks, as well as a well-developed graphitic-carbon-phase peak at 

approx. 26°, probably originating from Fe-particle-induced graphitization during heat 

treatment 105. Considering that negligible crystalline Fe-related phases appeared in the 

other as-prepared samples, less porous features in the RFC samples would probably 

result in more aggregated Fe nanoparticles on the carbon surface. As my main concern 

was the Fe-N4 ORR active sites formed within the micropores, Fe and Fe3O4 particles 

from excess Fe precursor, which might block the active sites, were removed by acid 

post-treatment, and the leached powders were heat treated again under inert conditions. 

The XRD patterns of the final Fe-N-RFC_CX series showed that the Fe and Fe3O4

crystals were successfully removed from all samples (Fig. 3.19c). The morphological 

features of the Fe-N-RFC_CX samples were characterized by SEM and TEM 

analyses. According to the SEM images (Fig. 3.20), the spherical shape, smooth 

surface, and uniform sizes of the RFC_CX samples had been maintained during the 

Fe-N-RFC_CX synthetic processes. In addition, the density of the features in the Fe-
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N-RFC_CX samples were similar to their corresponding RFC_CX samples, as shown 

by the TEM images, while more porous features were clearly observed for the more 

activated samples, as in the RFC_CX samples (Fig. 3.17 and Fig. 3.21). The elemental 

distributions were further examined using an EFTEM equipped with an electron 

energy-loss spectroscope (EELS). According to the elemental mapping of C, Fe and N 

on the Fe-N-RFC_C240 (Fig. 3.22), the Fe and N were homogeneously distributed in 

the resultant catalysts.

The porosity features of Fe-N-RFC_CX samples were further characterized by 

nitrogen sorption measurements. The nitrogen sorption isotherms of Fe-N-RFC_CXs 

showed similar features to those of RFC_CXs (Fig. 3.18a and Fig. 3.23a). SSAs of 

172, 877, 1537, and 2913 m2 g–1 were measured for Fe-N-RFC, RFC_C30, C120, and 

C240 samples, respectively. The micropore surface areas determined by the t-method 

for the Fe-N-RFC, Fe_N_RFC_30, C120, and C240 samples were 142, 824, 1490, 

and 2169 m2 g–1, respectively. Even after impregnation and multiple heating processes, 

more than 90% of the microporosity of the Fe-N-RFC_CX samples was maintained, 

except for in the Fe-N-RFC sample (Table 4). According to PSD analysis (Fig. 3.23b), 

while a substantial portion of the micropores remained after the syntheses of samples 

Fe-N-RFC_C30, C120, and C240, they had completely disappeared in Fe-N-RFC. 

These pore structure changes after the pyrolysis might be attributed to residual 

materials from the impregnated pore filler. The additional mesoporosity of Fe-N-
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RFC_C240, which had come from the prolonged activation process of carbon 

supports, was remained intact after Fe and N doping processes, implying the carbon 

pore structures within mesopore region was unaffected by the heat treatments.

To compare the Fe and N doping densities in each sample, the quantitative analysis 

for the Fe and N was conducted. The Fe doping contents measured by ICP-AES were 

0.49, 0.52, 0.53, and 0.57 wt% for Fe-N-RFC, Fe-N-RFC_C30, C120, and C240, 

respectively (Fig. 3.24 and Table 4). This showed the gradual increase in Fe content 

with increasing sample activation time. Furthermore, nitrogen incorporation was 

verified by elemental analysis. Before discussing the nitrogen contents for Fe-N-

RFC_CX samples, the nitrogen contents of the parent RFC_CX samples should be 

addressed first. As shown in Fig. 3.24, RFC possessed some nitrogen (1.09 wt%) in 

the matrix, which could originated from ammonia catalyst during its synthesis 103.

According to elemental analysis data, the nitrogen contents in RFC_C30, C120, and 

C240 were lower than RFC (1.08, 0.91, and 0.80 wt%, respectively), probably 

resulting from the loss of nitrogen moieties from the carbon matrix during prolonged 

CO2 activation. After the Fe and N doping process, the N contents of Fe-N-RFC, and 

Fe-N- RFC_C30, C120, and C240, were measured as 1.29, 2.02, 2.35, and 2.84 wt%, 

respectively (Fig. 3.24 and Table 4). Considering the initial nitrogen amounts in the 

RFC_CX series, the increases in incorporated N content during the doping process 

were 0.20, 0.94, 1.44, and 2.04 wt% for Fe-N-RFC and Fe-N-RFC_C30, C120, and 
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C240, respectively. This result indicated that more nitrogen was incorporated into 

more activated carbon matrices.

To characterize the chemical state of nitrogen within the carbon matrix, XPS 

analysis was performed. High-resolution N1s XPS spectra of the Fe-N-RFC_CX 

samples (Fig. 3.25a) were deconvoluted into four nitrogen components (Fig. 3.25b): 

pyridinic N (approx. 398.5 eV), pyrrolic N (approx. 399.9 eV), graphitic N (approx. 

401.2 eV), and oxidized N (approx. 402.5 eV). Interestingly, the relative amounts of

pyridinic nitrogen increased with increasing activation of the carbon templates (27.7, 

31.7, 33.6, and 36.2% for Fe-N-RFC and Fe-N-RFC_C30, C120, and C240, 

respectively), while those of graphitic N decreased (34.0, 32.0, 30.3, and 27.8%, 

respectively) (Fig. 3.25c and Table 5). Pyridinic nitrogen is located at the edge of the 

carbon matrix, and the edge sites in carbon supports are increased through the 

activation process. Therefore, the portion of pyridinic N after doping process in this 

study was likely to be controlled by activation of parent carbon supports. In contrast, 

the chemical state of the Fe species was not detected by XPS measurements, probably 

due to the low concentration of Fe (below 0.13 at% in the bulk sample), which was 

near the detection limit of XPS.
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Figure 3.19. XRD patterns in each step of synthesis: (a) RFC_CXs, (b) as-

prepared Fe-N-RFC_CXs; before acid leaching step, (c) Fe-N-RFC_CXs.
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Figure 3.20. SEM images of synthesized catalysts: (a) Fe-N-RFC, (b) Fe-N-

RFC_C30, (c) Fe-N-RFC_C120, and (d) Fe-N-RFC_C240.
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Figure 3.21. TEM images of synthesized catalysts.
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Figure 3.22. Energy-filtered TEM elemental mapping images for Fe-N-

RFC_C240: Sequence of unfiltered image and C, N, Fe elemental maps.
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Figure 3.23. Pore structures of synthesized catalysts: (a) Nitrogen adsorption-

desorption isotherms for Fe-N-RFC_CXs and (b) BET isotherm analyses on 

incremental pore volume as the function of pore size in Fe-N-RFC_CXs.
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Figure 3.24. Correlation between the BET & micropore specific surface area and N & Fe contents of RFC_CXs and 

Fe-N-RFC-CXs.
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Figure 3.25. XPS N1s analysis for synthesized catalysts: (a) XPS N1s peaks 

and fitting results for Fe-N-RFC_CX samples, (b) their structural representation 

showing N-containing functionalities on carbon surface based on N1s electrons, and (c) 

corresponding relative amount of N sites for Fe-N-RFC_CXs.
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Table 5. Relative N sites for Fe-N-RFC_CXs from the fitting results of 

XPS N1s peaks.

Sample relative N site (%)

pyridinic pyrrolic graphitic N-oxide

Fe-N-RFC 27.7 18.9 34.0 19.4 

Fe-N-RFC_C30 31.7 19.7 32.0 16.6 

Fe-N-RFC_C120 33.6 20.3 30.3 15.8 

Fe-N-RFC_C240 36.2 20.8 27.8 15.2 



88

3.2.3 Electrochemical Measurements

The ORR activities of the Fe-N-RFC_CXs were first investigated by CV in Ar-

saturated and O2-saturated 0.1 M KOH at a scan rate of 50 mV s–1 (Fig. 3.26a). The 

dotted-line voltammograms measured in Ar-saturated electrolyte showed a double-

layer capacity current without any cathodic peak within the scan range. In contrast, 

well-defined cathodic peaks were found in all catalysts for CV measured in O2-

saturated electrolyte, suggesting pronounced ORR activity in these samples. The peak 

potentials moved in the positive direction, until saturation at 0.83 V, with increasing 

CO2 activation of the carbon supports (0.71, 0.77, 0.83, and 0.83 V for Fe-N-RFC, and 

Fe-N-RFC_C30, C120, and C240, respectively). Further investigation of the ORR 

kinetics of the Fe-N-RFC_CXs samples was carried out using a RDE technique. The 

polarization curves obtained in O2-saturated 0.1 M KOH (Fig. 3.26b) showed that the 

half-wave potentials also moved in a positive direction with increasing hot CO2

treatment times of the carbon templates (0.75, 0.86, 0.89, and 0.91 V for Fe-N-RFC, 

and Fe-N-RFC_C30, C120, and C240, respectively), confirming that ORR activity 

was higher in the carbon supports with more developed pore structures. In order to 

verify the active site difference between samples, I also investigated the correlation 

between the N dopant and ORR kinetics in the Fe-N-RFC_CX series. As a kinetic 

parameter, kinetic current densities (jK) at 0.85 V vs. RHE were derived from the mass-

transport correction in the RDE data. The jK values and the overall N contents in Fe-N-



89

RFC_CXs increased with longer activation times for the initial carbon templates (Fig. 

3.27). 

To further investigate the ORR kinetics of the Fe-N-RFC_CXs, the electron transfer 

numbers per O2 were analysed on the basis of the K–L equations 101. From the slopes 

of these plots at 0.60 V, the electron transfer numbers were calculated to be 3.68, 3.83, 

3.92, and 3.99 for Fe-N-RFC, Fe-N-RFC_C30, C120, and C240, respectively (Fig. 

3.28). This result indicated that the ORR proceeded along a more favorable four-

electron pathway in catalysts derived from a carbon support with high microporosity. I

also performed RDE measurements under acidic conditions (0.5 M H2SO4) to check 

whether the performance trends changed with pH. Fig. 3.29a shows that the overall 

trend in ORR performance of the catalyst samples was maintained in acidic electrolyte.

With the aim of verifying the Fe-N4 active site structure in my catalysts, I further 

conducted RDE experiments in 0.1 M KOH containing 10 mM KCN. CN- ions are 

known to strongly interact with Fe and, therefore, cause ORR inhibition on Fe-N4

active sites 102, 106, 107. As shown in Fig. 3.29b, introduction of CN- ions shifted the ORR 

polarization curves toward negative potential and decreased the diffusion limited 

current. The impaired ORR activity in presence of CN- ion indicates that the main 

active sites in my catalysts is Fe-N4 structure, and this correlates with the tendency of 

Fe and N contents, amount of pyridinic N site, and ORR activity within Fe-N-RFC, 

Fe-N-RFC_C30, C120, and C240 samples (Fig. 3.27, Table 4 and Table 5).
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The best performing catalyst, Fe-N-RFC_C240, gave more improved ORR activity 

compared to Fe/1,10-phen/KB catalyst, with even ~18 mV higher half-wave potential

than a commercial Pt/C electrocatalyst in 0.1 M KOH solution (Fig. 3.30a). Even in 

acidic media, Fe-N-RFC_C240 showed significant activity, with an onset potential of 

0.84 V, although it was still lower than that of commercial Pt/C (Fig. 3.30b). I also 

performed chronoamperometry measurements in 0.1 M KOH solution with the 

injection of methanol to verify the methanol tolerance of my catalyst. While a 

significant methanol oxidation current was observed for Pt/C, no response was 

detected in the case of Fe-N-RFC_C240 (Fig. 3.31a). These results clearly showed 

that Fe-N-RFC_C240 was tolerant to methanol crossover and could be used as a 

cathode catalyst in a direct methanol fuel cell using an alkaline electrolyte. The long 

term stability of Fe-N-RFC_C240 was also confirmed by accelerated durability tests 

(ADTs) using the DOE protocol. Even after 10,000 cycles, negligible performance 

decay was observed in the Fe-N-RFC_C240 catalyst, suggesting outstanding stability 

(Fig. 3.31b).
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Figure 3.26. ORR measurements for the Fe-N-RFC_CXs in alkaline 

conditions: (a) Cyclic voltammograms of Fe-N-RFC_CXs in O2 (solid lines) and N2

(dash lines) saturated 0.1 M KOH solution. (b) RDE polarization curves of Fe-N-

RFC_CXs at a rotating rate of 1600 rpm. Catalyst loading: 0.5 mg cm-2
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Figure 3.27. Correlation between the N contents of four configurations 

and the mass-transfer-corrected kinetic current density at 0.85 V versus 

RHE.
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Figure 3.28. Koutecky-Levich analysis for Fe-N-RFC_CXs catalysts: RDE 

polarization curves for (a) Fe-N-RFC (b) Fe-N-RFC_C30 (c) Fe-N-RFC_C120 and (d) 

Fe-N-RFC_C240 in O2-saturated 0.1 M KOH at a scan rate of 5 mV sec-1 with various 

electrode rotating rates (inset) Koutecky-Levich plot of J-1 vs ω-1/2 at 0.60 V vs RHE.
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Figure 3.29. ORR measurements for the Fe-N-RFC_CXs in acid 

conditions and cyanide-ion poisoning test for Fe-N-RFC_C240: (a) RDE 

polarization curves of Fe-N-RFC_CX in O2-saturated 0.5 M H2SO4 with a scan rate of 

5 mV sec-1, 1600 rpm. (b) RDE polarization curves of Fe-N-RFC_C240 with/without 

cyanide ions (10 mM KCN).
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Figure 3.30. Comparative ORR activities Fe/1,10-phen/KB, Fe-N-

RFC_C240 and Pt/C catalysts: RDE polarization curves of Fe-N-RFC_C240, 

Fe/1,10-phen/KB and commercial Pt/C 20wt% catalyst in O2-saturated (a) 0.1 M 

KOH and (b) 0.5 M H2SO4. Fe-N-RFC_C240 catalyst loading: 0.5 mg cm-2 Fe/1,10-

phen/KB catalyst loading : 0.4 mg cm-2 and Pt/C loading: 0.02 mgPt cm-2.
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Figure 3.31. Methanol tolerance and long-term stability of Fe-N-

RFC_C240: (a) Chronoamperometric responses at 0.7 V vs RHE with injection of 

methanol at 400 sec (b) RDE polarization curves before/after accelerated durability 

test (ADT) for Fe-N-RFC_C240. The electrode rotation speed was 1600 rpm in O2-

saturated 0.1 M KOH.
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3.2.4 Carbon Pore Structure Effect on Active Site Formation

In order to verify the carbon pore structure effect on ORR active site formation, I 

investigated the ORR activity of Fe-N-C_CX series, which had been derived from 

pore-structure-engineered carbon supports. Interestingly, the catalyst samples were 

divided into two groups according to their onset potential region. For Fe-N-RFC_C30, 

C120, and C240, the onset potential was approx. 1.0 V and the difference among them 

started from the slope in the mixed kinetic-diffusion control region. However, Fe-N-

RFC had its onset potential at approx. 0.9 V, a more negative potential that the others. 

It is worth mentioning that a high proportion of the micropore structure remained after 

Fe-N doping process in the former group, while it had completely disappeared in Fe-

N-RFC (Fig. 3.23b and Table 4). Considering previous reports that the ORR catalytic 

active sites of Fe-N-C catalysts were hosted in the catalyst micropores, active sites 

might not be completely formed during heat treatment of the unactivated carbon 

template 74, 95. This result indicated that the utilization of low microporous carbon 

supports might lead to poor performance of Fe-N-C catalysts.  

In addition, the higher amounts of N incorporated during heat treatment in Fe-N-

RFC_C30, C120, and C240 (0.94, 1.44, and 2.04 wt%, respectively) compared with 

that in Fe-N-RFC (0.20 wt%) indicated a higher chance of active site formation in the 

activated carbon templates. Especially, the amount of pyridinic N increased markedly 

compared with other N species when the samples were derived from carbon supports 
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with higher microporosities, as mentioned above. These linear correlations between 

the jK values and pyridinic N contents were in accordance with previous reports of site 

features for active catalytic sites in pyrolyzed Fe-N-C catalysts, with the central Fe ion 

coordinated to four pyridinic-Ns attached to the edges of each graphene sheet. In other 

words, Fe-N4 active sites could be formed in Fe-N-precursor-filled micropores of the 

RFC_CX carbon templates during heat treatment (Fig 3.32). Therefore, a higher 

active site density in the Fe-N-RFC_CXs was achieved with an increased micropore

surface area in the initial RFC_CX templates. Considering the differences in PSD 

before and after the Fe and N doping process (Fig 3.33), mainly micropores between 1 

and 2 nm were decreased in Fe-N-RFC_C30, C120, and C240, suggesting that the 

physical space required for Fe-N4 sites to form on the edges of the two graphitic 

carbon surfaces could be strongly related to the specific micropore size of the carbon 

template, which seems to be around 1–2 nm. In addition, the mesopore size 

distribution in Fe-N-RFC_C240 was not much affected, strongly implying that the 

formation of Fe-N-C catalytic sites was not related to the mesopore regime. While the 

mesopore structures were ineffective to form the active site, the additional mesopores 

in Fe-N-RFC_C240 could enhance the mass transportation by smoothing the diffusion 

pathways and therefore increase the ORR activity.
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Figure 3.32. Illustration of Fe and N doping process within micropores: 

Plan view of (a) an empty slit pore between two graphite edge surfaces after activation, 

(b) a slit pore filled with pore filer and iron precursor after impregnation, and (c) the 

presumed Fe and N configuration after Fe and N doping process. Shaded region 

comes from pore filler.



100

Figure 3.33. Pore structure change during Fe-N-doping process: 

comparative BET isotherm analyses on incremental pore volume as the function of 

pore size in samples before/after Fe-N-doping process.



101

Chapter 4. Conclusions

In this thesis, I verified two activity determining factors in Fe-N-C ORR catalyst 

synthetic process, which could improve the Fe-N4 active site formation qualitatively 

and quantitatively. The first one is Fe-N coordination in precursors while the second is 

microporosity of carbon supports. The effects of these two factors on active site 

formation were confirmed by systematic precursor-controlled and carbon-support-

controlled experiments, respectively.

First, the Fe-N coordination precursor effect on the active site formation was 

investigated with utilizing three phenanthroline isomers as N precursors. UV/Vis 

absorbance spectra of Fe-phenanthroline precursor solutions confirmed that only 1,10-

phenanthroline formed coordination bonds with Fe while other two phenanthrolines 

didn’t form, and TGA curves showed that the Fe-N coordination bonds with 1,10-

phenanthroline suppressed the gasification of 1,10-phenathroline during high 

temperature pyrolysis, while 1,7-phenanthroline and 4,7-phenanthroline were

completely gasified without Fe-N coordination. These different thermal behaviors of 

each precursor group led to different Fe and N configurations of resultant Fe-N-C 

catalysts. According to TEM and energy-filtered TEM analysis, Fe was evenly 

distributed with using 1,10-phenathroline, while Fe-related particles aggregated with 

1,7-phenanthroline and 4,7-phenanthroline. XANES and EXAFS analysis further 



102

demonstrated that Fe-N4 active sites were well structured in Fe-N-C derived from 

1,10-phenathroline, and that Fe3O4 particles were formed in those from 1,7-

phenanthroline and 4,7-phenanthroline. Furthermore, the relative ratio of pyridinic N 

to graphitic N was significantly increased with using 1,10-phenathroline compared to

others, implying that Fe-N coordination with 1,10-phenathroline could have helped N-

positioning for Fe-N4 active site formation. Correspondingly, the Fe-N-C catalysts 

derived from 1,10-phenanthroline showed much superior ORR activity compared to 

the catalysts from other phenanthrolines, and there was a strong correlation between 

the relative ratio of pyridinic N to graphitic N and ORR kinetic current density, 

indicating that Fe-N coordination in precursor catalyzed Fe-N4 active site formation

during pyrolysis.

Next, the role of pre-defined microporosity of carbon supports in ORR catalytic site 

formation was investigated with the series of pore-controlled carbon supports. Before 

the Fe-N-C catalyst synthesis, spherical and monodisperse carbon supports were 

prepared and their pore structure were initially controlled by using hot CO2 treatment.

The development of porosity in these carbon supports was determined by nitrogen 

sorption isotherm measurements, and the enhanced micropore surface areas with CO2

activation were further determined by the NLDFT (462, 903, 1536, and 2374 m2 g–1). 

After precursor impregnation and subsequent pyrolysis, Fe and N was successfully 

doped into these carbon supports. After Fe and N doping process, it was found that the 
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more developed microporosity in the parent carbon supports facilitates more Fe and N

contents. Furthermore, XPS N1s spectra showed the relative portion of pyridinic N 

was selectively increased with increasing microporosity of initial carbon supports. 

Expectably, the higher microporosity of initial carbon supports actually led to more 

ORR active Fe-N-C catalysts, and a strong correlation was found between N contents, 

especially pyridinic N, and ORR kinetic current density. This results suggested that the 

enlarged microporosity of carbon supports contributed to the increase of Fe-N4 active 

site density during pyrolysis.

From the above precursor and carbon support study, Fe-N coordination in 

precursors and microporosity of carbon supports were indeed demonstrated to be 

ORR activity determining factors. During pyrolysis, the Fe-N coordination could 

boost the Fe-N4 active site formation and micropores could offer the spots for 

developing those active sites. Through proper adjustment and convergence of two 

factors proposed in this thesis, it is expected that a synthesis design for optimal Fe-N-C 

catalysts could be devised near future.
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국문초록

철-질소-탄소 촉매 내 산소 환원 반응

활성점 형성의 최적화를 위한 합성 설계

고분자 전해질 연료전지는 수소와 산소의 화학적 에너지를 전기 에너지로

변환시켜주는 에너지 변환장치로써, 에너지 변환 효율이 높고 부산물로

공해 물질 없이 물만 배출하여 친환경 차세대 에너지 소자로 주목 받고

있다. 고분자 전해질 연료전지는 환원극에서의 느린 산소 환원 반응으로

인하여 전기화학 촉매를 필요로 하는데, 현재에는 백금 소재의 촉매가 상

용적으로 사용되고 있다. 하지만 비싼 가격과 희소성으로 인하여 백금을

촉매 재료로 사용하는 것은 고분자 전해질 막 연료전지의 상용화에 대한

걸림돌로 작용하고 있다. 따라서 백금을 대체할 차세대 촉매 물질에 대한

연구의 진행이 활발하게 이루어지고 있다. 비백금계 촉매로는 금속 산화

물, 금속-질소-탄소 복합체 촉매, 질소-탄소 복합체 촉매 등이 연구되

고 있으며, 이 중에서도 철-질소-탄소 촉매들이 가장 우수한 성능을 보

고하고 있다. 이러한 철-질소-탄소 촉매들은 일반적으로 철, 질소, 탄소
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전구체의 혼합물을 고온에서 열처리함으로써 합성할 수 있다. 최근의 분

광학 연구 결과들을 종합하여 보면, 철-질소-탄소 촉매의 활성점은 탄소

의 미소 기공 내에 형성된 철-질소 배위 구조에 기반하고 있음을 알 수

있다. 하지만, 이러한 활성점을 형성하기 위한 포괄적인 합성 방법 혹은

가이드 라인은 아직 확립되지 못한 상황이다. 이에 본 연구에서는 체계적

인 실험을 통해 철-질소-탄소 촉매 합성에 대한 전구체 및 탄소 담지체

의 효과를 조사하고, 이를 통해 철-질소 활성점 형성의 최적화를 위한

합리적인 합성 설계를 제안하고자 하였다.

먼저 전구체 상태에서의 배위 결합의 유무가 철-질소-탄소 촉매에서

의 활성점 형성에 미치는 영향을 확인하는 실험을 진행하였다. 질소의 치

환 위치에 따른 구조 이성질체를 갖는 페난트롤린들을 질소 전구체로 사

용할 때, 1,10-페난트롤린만이 철과 배위 결합을 하고, 1,7-페난트롤린

과 4,7-페난트롤린은 배위 결합을 하지 않는 것이 자외선 가시광 흡수

분광법을 통해 확인할 수 있었다. 이 전구체들을 통하여 철-질소-탄소

촉매를 합성하였을 때, 배위 결합을 한 1,10-페난트롤린을 사용한 것이

산소 환원 반응 성능이 월등히 높았다. 투과 전자 현미경 및 엑스선 회절

분석을 통해 확인한 결과, 배위 결합을 한 전구체를 사용한 것은 철이 원

자 단위로 잘 분산되어 있는 반면에 배위 결합을 하지 않은 전구체를 사
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용한 것은 철이 덩어리로 뭉치는 것을 확인하였다. 또한, 엑스선 광전자

분광법을 통해 분석한 결과, 배위 결합을 한 전구체를 사용한 경우에 피

리디닉 질소의 비율이 크게 증가한 것을 확인하였다. 이를 통해 전구체내

배위 결합의 존재가 형성된 활성점의 질적 향상을 이루었음을 알 수 있었

다.

다음으로 탄소 담지체의 기공 구조가 철-질소-탄소 촉매의 활성점 형

성에 어떠한 영향을 미치는지를 확인하는 실험을 진행하였다. 이산화탄소

활성화 처리 시간으로 기공 구조가 조절된 탄소 담지체에, 동일한 양의

철과 질소 전구체를 함침한 후에 고온 열처리를 통해 촉매를 합성한 결과,

미소 기공률이 더 발달한 탄소 담지체를 사용한 경우에 철과 질소의 함량, 

특히 피리디닉 질소의 비율이 더 커진 것을 확인할 수 있었다. 또한, 산

소 환원 반응 활성 역시 미소 기공률이 발달한 탄소 담지체를 통해 만든

촉매가 더 높은 것을 확인하였다. 이를 통해서, 탄소 담지체의 미소 기공

률이 높을수록 만들어진 촉매의 활성점의 양적 향상이 이루어졌음을 알

수 있었다.

위 두 가지 실험을 종합하여 볼 때, 전구체내 배위 결합 형성을 통해

활성점의 질적 향상을, 탄소 담지체의 미소 기공률 증대를 통한 활성점의

양적 향상을 가져올 수 있음을 확인할 수 있다. 본 연구의 결과를 바탕으
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로 철-질소-탄소 촉매에 대한 합리적인 합성 설계를 구상할 수 있을 것

이며, 최적의 성능을 갖는 철-질소-탄소 촉매를 실제로 합성하는 데에도

도움이 될 것으로 기대한다.

주요어: 산소 환원 반응, 비귀금속 촉매, 철-질소-탄소 촉매, 활성점 형성,

배위 결합, 기공 구조, 미소 기공률

학  번: 2013-30983
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