저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원작작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

- 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건을 명확하게 나타내어야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

Collection
A DISSERTATION FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN FOOD AND NUTRITION

Anti-inflammatory effect of isoegomaketone isolated from radiation mutant *Perilla frutescens* var. *crispa*

방사선육종 차조기에서 분리한 이소에고마케톤의 항염증 효능

August 2017

Department of Food and Nutrition
Graduate School
Seoul National University

Chang Hyun Jin
Anti-inflammatory effect of isoegomaketone isolated from radiation mutant Perilla frutescens var. crispa

방사선육종 차조기에서 분리한 이소에고마케톤의 항염증 효능

지도 교수 한 성 림

이 논문을 생활과학박사 학위논문으로 제출함
2017년 4월

서울대학교 대학원
식품영양학과
진 창 현

진 창 현의 생활과학박사 학위논문을 인준함
2017년 6월

위원장 ___________________(인)
부위원장 ___________________(인)
위원 ___________________(인)
위원 ___________________(인)
위원 ___________________(인)

서울대학교

SEUL NATIONAL UNIVERSITY
Abstract

Anti-inflammatory effect of isoegomaketone isolated from radiation mutant *Perilla frutescens* var. *crispa*

Chang Hyun Jin

Department of Food and Nutrition

Graduate School

Seoul National University

About 165 lines of radiation-induced mutant *P. frutescens* var. *crispa* were screened for their anti-inflammatory activities. Among those screened, the one mutant with the highest inhibitory activity on NO production in lipopolysaccharide (LPS)-treated RAW264.7 cells was selected. The enhanced anti-inflammatory activity of the mutant seemed to be due to the increase in isoegomaketone (IK) content. IK has been shown to exhibit several biological activities including anti-inflammatory, anti-cancer, and anti-obesity effects. The induction of heme oxygenase-1 (HO-1) seemed to contribute to anti-inflammatory activity of IK in RAW264.7 cells. However, there were no studies which investigated the mechanism of HO-1 induction by IK. In the present study, anti-inflammatory effect of IK isolated from radiation mutant *P. frutescens* var. *crispa* (“Antisperill”) was investigated using *in vitro* and *in vivo* models. In addition, in an effort to investigate any potentiality of radiation mutant *P. frutescens* var. *crispa* as functional food, optimal extraction method was chosen, as well as anti-arthritic properties of the extracts was investigated in CAIA model.
In **Study 1**, the mechanism of IK-induced HO-1 expression was investigated using RAW264.7 cells. RAW264.7 cells were treated with IK (5, 10, 15 μM) to study the mechanism of IK-induced HO-1 expression. IK upregulated HO-1 mRNA and protein expression in a dose dependent manner. IK-induced HO-1 mRNA expression was suppressed only by SB203580, a specific inhibitor of p38 MAPK. ROS scavengers (N-acetyl-L-cysteine, NAC, and glutathione, GSH) also blocked the IK-induced ROS production and HO-1 expression. Both NAC and SB203580 suppressed the IK-induced Nrf2 activation.

In **Study 2**, whether IK has an anti-arthritic activity in collagen antibody-induced arthritis (CAIA) animal model was investigated. Rheumatoid arthritis was induced in male Balb/c mice by collagen-antibody injection. Experimental animals were randomly divided into five groups: normal, CAIA, CAIA + IK (5 mg/kg/day), CAIA + IK (10 mg/kg/day), and CAIA + apigenin (16 mg/kg/day) and respective treatments were administered via oral gavage once per day for 4 days. Mice treated with IK (10 mg/kg/day) showed improvement in disease outcome. Arthritic score, paw volume, and paw thickness were significantly lower compared to the control CAIA mice at day 7 (73%, 15%, and 14% lower, respectively). Furthermore, histopathological examination of ankle for inflammation showed that infiltration of inflammatory cells and edema formation were reduced by IK treatment. Similarly, neutrophil to lymphocyte ratio (NLR) in whole blood was lower in mice treated with IK (10 mg/kg/day) by 51.9% compared to the control CAIA mice.

In **Study 3**, to determine the optimal extraction method for developing radiation mutant *P. frutescens* var. *crispa* as functional food, extracts were
obtained by two methods: extract obtained by supercritical carbon dioxide extraction (SFE) and extract obtained by ethanol extraction (EE). SFE contained 5-fold higher levels of IK compared with EE. When LPS-induced RAW264.7 cells were treated with extracts at 25 µg/mL, the SFE inhibited the expression of inflammatory mediators such as nitric oxide (NO), monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6), interferon-β (IFN-β), and inducible nitric oxide synthase (iNOS) to a much greater extent compared with EE.

In Study 4, whether SFE (in Study 3) has an anti-arthritic activity in collagen antibody-induced arthritis (CAIA) animal model was investigated. Extracts were obtained by supercritical carbon dioxide extraction method from radiation mutant *P. frutescens* var. *crispa* leaf (SFE-M) and from wild type species leaf (SFE-W). Experimental animals were randomly divided into four groups: normal, CAIA, CAIA + SFE-M (100 mg/kg/day), and CAIA + SFE-W (100 mg/kg/day) and respective treatments were administered via oral gavage once per day for 4 days. Mice treated with SFE-M showed improvement in disease outcome. Arthritic score, paw volume, and paw thickness were significantly lower compared to the control CAIA mice from day 3 to day 7. Furthermore, histopathological examination of ankle for inflammation showed that infiltration of inflammatory cells and edema formation were reduced by SFE-M treatment. Similarly, NLR in whole blood was lower in mice treated with SFE-M by 37% compared to the control CAIA mice. However, SFE-W didn’t show any significant effect compared to the control CAIA group.

IK showed anti-inflammatory properties by HO-1 expression via ROS/p38 MAPK/Nrf2 pathway in RAW264.7 cells, as well as real, actual, and
palpable anti-arthritic effect in CAIA animal model. Furthermore, supercritical carbon dioxide extraction was found to be the better method compared with the ethanol extraction method for the presentation of extract from leaves of radiation mutant P. frutescens var. crispa to be used as functional food because of higher IK content. Efficacy of the extract from radiation mutant P. frutescens var. crispa by SFE was confirmed as the treatment with the extract reduced the incidence of clinically evident signs and symptoms in CAIA animal model. Taken together, the results of this study encourage the commercial use of the extract of radiation mutant P. frutescens var. crispa as a functional food in the chronic inflammatory situation like RA.

Key words: isoegomkatone, anti-inflammation, supercritical carbon dioxide extraction, radiation mutant P. frutescens, collagen antibody-induced arthritis

Student Number: 2011-31095
Contents

Abstract i
Contents v
List of Tables x
List of Figures xi
List of Abbreviations xiv

I. Introduction 1
1. Background 2
2. Objectives of the study 5

II. Literature review 7
1. Radiation breeding 8
2. Characteristics of Perilla frutescens 13
 2.1. Bioactivity 13
 2.2. Active constituents 16
 2.3. Extraction method 18
3. Pharmacological activities of isoegomaketone 20
4. Mouse model of rheumatoid arthritis 21
 4.1. Collagen-induced arthritis (CIA) 22
 4.2. Collagen antibody-induced arthritis (CAIA) 23
 4.3. Zymosan-induced arthritis 23
5. Previous study 24

III. Study 1: Isoegomaketone upregulates heme oxygenase-1 in RAW264.7 cells via ROS/p38 MAPK/Nrf2 pathway 28
1. Abstract 29
2. Introduction

3. Materials and Methods
 3.1. Reagents
 3.2. Isolation of IK
 3.3. Cell culture
 3.4. Cytotoxicity assay
 3.5. Determination of NO concentration
 3.6. Preparation of cell extracts and western analysis
 3.7. Quantitative real-time PCR
 3.8. Statistical analysis

4. Results
 4.1. Effect of IK on HO-1 expression in RAW264.7 cell
 4.2. Effect of kinase inhibitors on HO-1 expression by IK treatment
 4.3. Effect of ROS scavengers on HO-1 expression by IK treatment
 4.4. Effect of ROS scavenger and p38 MAPK inhibitor on Nrf2 activation by IK treatment
 4.5. Effect of NAC on NO production in LPS-treated RAW264.7 cells
 4.6. Effect of ROS scavengers on the production of antioxidant enzymes

5. Discussion

IV. Study 2: Isoegomaketone alleviates the development of collagen antibody-induced arthritis in male Balb/c mice
 1. Abstract
2. Introduction

3. Materials and Methods
 3.1. Animals
 3.2. Sample preparation
 3.3. Collagen antibody-induced arthritis
 3.4. Assessment of clinical signs of inflammation
 3.5. Histopathological assessment
 3.6. Analysis of neutrophil and lymphocyte
 3.7. Statistical analysis

4. Results
 4.1. Effect of IK treatment on development of RA in CAIA model
 4.2. Effect of IK treatment on paw volume in CAIA model
 4.3. Effect of IK treatment on paw thickness in CAIA model
 4.4. Effect of IK treatment on arthritic score in CAIA model
 4.5. Effect of IK treatment on blood cell population in CAIA model

5. Discussion

V. Study 3: Comparison of the anti-inflammatory activities of supercritical carbon dioxide versus ethanol extracts from leaves of radiation mutant *Perilla frutescens* var. *crispa*

1. Abstract
2. Introduction
3. Materials and Methods
 3.1. Materials
 3.2. Cell culture
3.3. Ethanol extraction
3.4. SC-CO₂ extraction
3.5. HPLC analysis
3.6. Cytotoxicity assay
3.7. Determination of NO concentration
3.8. Preparation of cell extracts and western blot analysis
3.9. Quantitative real-time PCR
3.10. Measurement of MCP-1, IFN-β, and IL-6 by ELISA
3.11. Statistical analysis
4. Results
4.1. Yield and composition of SFE (supercritical carbon dioxide extract) and EE (ethanol extract)
4.2. Effect of SFE and EE on cell viability
4.3. Effect of SFE and EE on LPS-stimulated NO production in RAW264.7 cells
4.4. Effect of SFE and EE on production of inflammatory mediators in LPS-stimulated RAW264.7 cells
5. Discussion

VI. Study 4: Anti-arthritic activities of the supercritical carbon dioxide extract from radiation mutant Perilla frutescens var. crispa in collagen antibody-induced arthritis
1. Abstract
2. Introduction
3. Materials and Methods
 3.1. Animals
 3.2. SC-CO₂ extraction
3.3. HPLC analysis

3.4. Sample preparation and treatment

3.5. Collagen antibody-induced arthritis

3.6. Assessment of clinical signs of inflammation

3.7. Histopathological assessment

3.8. Analysis of neutrophil and lymphocyte

3.9. Statistical analysis

4. Results

4.1. Composition of SFE-M (supercritical carbon dioxide extract from radiation mutant *P. frutescens*) and SFE-W (supercritical carbon extract from wild type *P. frutescens*)

4.2. Effect of SFE-W and SFE-M treatment on development of RA in CAIA model

4.3. Effect of SFE-W and SFE-M treatment on paw volume in CAIA model

4.4. Effect of SFE-W and SFE-M treatment on paw thickness in CAIA model

4.5. Effect of SFE-M and SFE-W treatment on arthritic score in CAIA model

4.6. Effect of SFE-M and SFE-W treatment on blood cell population in CAIA model

5. Discussion

VII. Overall Discussion

References

국문초록
List of Tables

Table 2.1 Milestones in the development of induced mutagenesis. 9
Table 2.2 The constituents and their effects of *P. frutescens* 17
Table 2.3 The several extraction methods from *P. frutescens* 19
Table 3.1 Primers sequences for Real Time-PCR analysis 42
Table 4.1 Histopathological scores of the groups 72
Table 5.1 Primers sequences for Real Time-PCR analysis 96
Table 5.2 Extraction yield and HPLC data of samples extracted with ethanol and SC-CO$_2$ from *P. frutescens* var. *crispa* leaves 100
Table 6.1 Histopathological scores of the groups 128
List of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Breeding process of radiation mutant P. frutescens var. crispa</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>The selection process of “Antisperill”, a radiation mutant P. frutescens var. crispa contained higher IK content</td>
<td>26</td>
</tr>
<tr>
<td>2.3</td>
<td>Putative model for the inhibition of NO production by IK in LPS-induced RAW264.7 cells</td>
<td>27</td>
</tr>
<tr>
<td>3.1</td>
<td>Isolation scheme for isoegomaketone</td>
<td>35</td>
</tr>
<tr>
<td>3.2</td>
<td>Purity of isoegomaketone measured by HPLC analysis</td>
<td>36</td>
</tr>
<tr>
<td>3.3</td>
<td>Chemical structure of isoegomaketone</td>
<td>37</td>
</tr>
<tr>
<td>3.4</td>
<td>The expression of HO-1 by IK treatment in RAW264.7 cells.</td>
<td>45</td>
</tr>
<tr>
<td>3.5</td>
<td>Effect of specific kinase inhibitors on cell viability.</td>
<td>47</td>
</tr>
<tr>
<td>3.6</td>
<td>Effect of specific kinase inhibitors on HO-1 expression in IK-treated RAW274.7 cells.</td>
<td>48</td>
</tr>
<tr>
<td>3.7</td>
<td>Effect of ROS scavengers on HO-1 expression in IK-treated RAW264.7 cells.</td>
<td>50</td>
</tr>
<tr>
<td>3.8</td>
<td>Effect of NAC and p38 MAPK inhibitor on Nrf2 activation in IK-treated RAW264.7 cells.</td>
<td>52</td>
</tr>
<tr>
<td>3.9</td>
<td>Effect of NAC on NO production in LPS-treated RAW264.7 cells.</td>
<td>54</td>
</tr>
<tr>
<td>3.10</td>
<td>Effect of ROS scavengers on the production of antioxidant enzymes in IK-treated RAW264.7 cells.</td>
<td>56</td>
</tr>
</tbody>
</table>
Figure 4.1 The scheme of induction of CAIA and sample treatment
Figure 4.2 Image of representative microscopic features of knee joint and mice joint.
Figure 4.3 Effect of IK and API on mean histopathological arthritis score in CAIA mice.
Figure 4.4 Effect of IK and API on paw volume in CAIA mice.
Figure 4.5 Effect of IK and API on paw thickness in CAIA mice.
Figure 4.6 Effect of IK and API on arthritic score in CAIA mice.
Figure 4.7 Effect of IK and API on neutrophil-to-lymphocyte ratio in CAIA mice.
Figure 5.1 HPLC chromatograms.
Figure 5.2 Effect of SFE and EE on cell viability.
Figure 5.3 Effect of SFE and EE on NO production and iNOS expression levels in RAW264.7 cells.
Figure 5.4 Effect of SFE and EE on the production of inflammatory mediators in RAW264.7 cells.
Figure 5.5 Effect of SFE and EE on IL-6 and MCP-1 expression levels in RAW264.7 cells.
Figure 6.1 The scheme of induction of CAIA and sample treatment
Figure 6.2 HPLC chromatograms
Figure 6.3 Image of representative microscopic features of knee joint and mice joint.
knee joint and mice joint.

Figure 6.4 Effects of SFE-M and SFE-W on mean histopathological arthritis score in CAIA mice.

Figure 6.5 Effect of SFE-M and SFE-W on weight in CAIA mice.

Figure 6.6 Effect of SFE-M and SFE-W on paw volume in CAIA mice.

Figure 6.7 Effect of SFE-M and SFE-W on paw thickness in CAIA mice.

Figure 6.8 Effect of SFE-M and SFE-W on arthritic score in CAIA mice.

Figure 6.9 Effect of SFE-M and SFE-W on neutrophil-to-lymphocyte ratio in CAIA mice.
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>API</td>
<td>Apigenin</td>
</tr>
<tr>
<td>ARE</td>
<td>antioxidant response element</td>
</tr>
<tr>
<td>CAIA</td>
<td>Collagen antibody-induced arthritis</td>
</tr>
<tr>
<td>CAT</td>
<td>Catalase</td>
</tr>
<tr>
<td>CIA</td>
<td>Collagen-induced arthritis</td>
</tr>
<tr>
<td>CO</td>
<td>Carbon monoxide</td>
</tr>
<tr>
<td>EE</td>
<td>Ethanol extract of Perilla leaf</td>
</tr>
<tr>
<td>EK</td>
<td>Egomaketone</td>
</tr>
<tr>
<td>GSH</td>
<td>Glutathione</td>
</tr>
<tr>
<td>GST</td>
<td>Glutathione S-transferase</td>
</tr>
<tr>
<td>HO-1</td>
<td>Heme oxygenase-1</td>
</tr>
<tr>
<td>IFN-β</td>
<td>Interferon-β</td>
</tr>
<tr>
<td>IK</td>
<td>Isoegomaketone</td>
</tr>
<tr>
<td>IL-1</td>
<td>Interleukin-1</td>
</tr>
<tr>
<td>IL-6</td>
<td>Interleukin-6</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>MCP-1</td>
<td>Monocyte chemoattractant protein-1</td>
</tr>
<tr>
<td>iNOS</td>
<td>Inducible nitric oxide synthase</td>
</tr>
<tr>
<td>NAC</td>
<td>N-acetyl-L-cysteine</td>
</tr>
<tr>
<td>LET</td>
<td>Linear energy transfer</td>
</tr>
<tr>
<td>NLR</td>
<td>Neutrophil to lymphocyte ratio</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric oxide</td>
</tr>
<tr>
<td>Nrf2</td>
<td>Nuclear factor E2-related factor 2</td>
</tr>
<tr>
<td>NSAID</td>
<td>Nonsteroidal anti-inflammatory drugs</td>
</tr>
<tr>
<td>NQO-1</td>
<td>NADH quinone oxidoreductase</td>
</tr>
<tr>
<td>PI3K</td>
<td>Phosphoinositide 3-kinase</td>
</tr>
<tr>
<td>PK</td>
<td>Perilla ketone</td>
</tr>
<tr>
<td>PKC</td>
<td>Protein kinase C</td>
</tr>
<tr>
<td>RA</td>
<td>Rheumatoid arthritis</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>SC-CO₂</td>
<td>Supercritical carbon dioxide extraction</td>
</tr>
<tr>
<td>SFE</td>
<td>Supercritical carbon dioxide extract</td>
</tr>
<tr>
<td>SFE-M</td>
<td>SC-CO₂ extract of radiation mutant P. frutescens</td>
</tr>
<tr>
<td>SFE-W</td>
<td>SC-CO₂ extract of wild type P. frutescens</td>
</tr>
<tr>
<td>TNFα</td>
<td>Tumor necrosis factor α</td>
</tr>
</tbody>
</table>
I. Introduction
1. Background

Perilla frutescens (L.) Britt. is an annual herbaceous plant in the Lamiaceae family. Its leaves are used as food in Asian cuisines and its seeds are used for the extraction of edible oil in Korea. In traditional medicine practices, *P. frutescens* is also used for treatment of various illnesses including cough, phlegm, back pain, and diabetes (Han *et al.*, 1994; Kim *et al.*, 2007). In previous studies, *P. frutescens* extracts were prepared using diverse methods to examine the pharmacological activities: the ethanol extract (Lee and Han, 2012) showed anti-inflammatory effect; the water and ethanol extracts had antioxidant effect (Cho *et al.*, 2011b); the methanol extract exerted a preventative action against Alzheimer’s disease (Choi *et al.*, 2004). Supercritical carbon dioxide (SC-CO$_2$) extraction has been used for seeds of *P. frutescens* (Jung *et al.*, 2012; Kim *et al.*, 1998), but SC-CO$_2$ extraction method has not been used for the extraction of isoegomaketone (IK) from *P. frutescens* leaves.

Induction of mutation and selection of mutants have been considered as powerful tools for plant breeding and researches for the past 80 years. X-ray, γ (gamma) ray irradiation, and chemical treatments have been used for breeding of mutants in a wide range of plants (Nakano *et al.*, 2010). Over the past 40 years, the use of γ rays for the induction of mutation has become
particularly prevalent, while the use of X-rays has been significantly decreased. Gamma rays is a type of ionizing radiation that interacts with atoms to induce free radicals in cells which damage or modify important components of plant cells such as chromosome.

IK, an oil component in *P. frutescens*, has been shown to have numerous biological activities. It has been shown to have inhibitory activity on NO production in LPS-treated RAW264.7 cells (Jin *et al.*, 2010). IK induced apoptosis in several cancer cells through caspase-dependent and -independent pathways (Cho *et al.*, 2011a; Kwon *et al.*, 2014a). Furthermore, IK has the potential for increasing the effectiveness of prostate cancer therapy with TRAIL (Lee *et al.*, 2014). Previously, it was shown that IK induced the HO-1 expression in RAW264.7 cells (Jin *et al.*, 2010), however, the detailed mechanism is yet to be elucidated.

SC-CO$_2$ extraction is a novel and powerful technique for extracting lipophilic components (Guan *et al.*, 2007; Sookwong *et al.*, 2016). SC-CO$_2$ extraction has several advantages over the use of organic solvents, because CO$_2$ is non-toxic, non-reactive, non-corrosive, and inexpensive.

Rheumatoid arthritis (RA) is a systemic autoimmune disease in which chronic joint inflammation leads to cartilage destruction and bone erosion (Scott *et al.*, 2010). About 1% of US population is affected by RA, and RA
increases the risk for cardiovascular disease, lymphoma, and death (Yang et al., 2013). Typically, RA is treated with steroidal/nonsteroidal anti-inflammatory drugs (NSAID) or biological modulators such as tumor necrosis factor alpha (TNF-α) inhibitors and interleukin-1 (IL-1) receptor antagonists (Smolen et al., 2014). Acetaminophen, a kind of NSAID, is frequently used in very high doses (4 g/day) (Dragos et al., 2017). However, the use of standard drugs in RA caused numerous side effects: infusion hypersensitivity reactions with the use of TNF-α inhibitors (Matucci et al., 2016); gastrointestinal ulcerations and hemorrhagic events triggered by NSAID (McAlindon et al., 2014); higher risk of infection due to the use of biological drugs (Cabral et al., 2016); etc. Therefore, the renewed interest in botanical origin remedies which lack severe side effects and have millennia-proven efficacy is growing (Umar et al., 2014). These remedies maybe have a beneficial effect not only on the symptoms but also on the development of the disease (Akhtar et al., 2011). Previously, it was reported that IK reduced NO production and iNOS protein levels in LPS-treated Balb/c mice (Jin et al., 2010). Although there is strong evidence that IK has anti-inflammatory effect, whether IK can exert a treatment effect on inflammatory disease such as RA has not been investigated. Furthermore, the studies using the extract containing IK will be needed to apply into functional food.
2. Objectives of the study

Hypotheses

It is hypothesized that (1) IK will induce HO-1 expression via ROS/MAPK/Nrf2 pathway in RAW 264.7 cells, (2) IK treatment will delay the development of the arthritis and alleviate the symptoms of arthritis, (3) SC-CO₂ extraction method will be more suitable method for acquiring extracts containing higher IK content from radiation mutant P. furtescens var. crispa, and (4) SFE-M treatment will delay the development of the arthritis and alleviate the symptoms of arthritis in CAIA model.

Specific aims

Study 1: To test the hypothesis, changes in HO-1 expression with the treatment of specific MAPK inhibitors and ROS scavengers were determined in IK-treated RAW 264.7 cells.

Study 2: To test the hypothesis, effects of IK treatment were determined in CAIA mouse model and arthritic score, paw volume, paw thickness, histopathological changes, and NLR were compared between the treatment and the control group.
Study 3: To test the hypothesis, two extracts prepared using SC-CO\textsubscript{2} extraction method and ethanol extraction method from \textit{P. frutescens} leaves were compared for IK concentration and anti-inflammatory activities.

Study 4: To test the hypothesis, effects of SFE-M treatment were determined in CAIA mouse model and arthritic score, paw volume, paw thickness, histopathological changes, and NLR were compared between the treatment and the control group.
II. Literature review
1. Radiation breeding

Plant breeding methods have contributed immensely to the development of genetically improved crop varieties. These methods continue to enrich the crop germplasm base by evolving genetically superior varieties for cultivation. Existing germplasm resources may not be adequate to meet the food needs of an ever-increasing human population, estimated to swell to nine billion by 2050 (Green et al., 2005). The use of induced mutations has played a key role in the improvement of superior plant varieties (Ahloowalia and Maluszynski, 2001). A large number of improved mutant varieties have been released for commercial cultivation in different crop species demonstrating economic value of the mutation breeding technology (Kharkwal and Shu, 2009). Induced mutations provide a viable option by generation of a novel source of resistance to biotic/abiotic stress factors whereby a new resistant variety can be developed. Since the very early part of the twentieth century, several experimental breakthroughs were made in the area of induced mutagenesis (Table 2.1).
Table 2.1. Milestones in the development of induced mutagenesis (Suprasanna et al., 2015)

<table>
<thead>
<tr>
<th>Year</th>
<th>Induced mutagenesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1901-1904</td>
<td>de Vries: radiation induced mutations in plants and animals</td>
</tr>
<tr>
<td>1927</td>
<td>Muller: Drosophila-proof of mutation induced by X-rays opened a new avenue in genetics and breeding</td>
</tr>
<tr>
<td>1928</td>
<td>Stadler: first report on induced mutation in crop plants-barley, maize, wheat and oat</td>
</tr>
<tr>
<td>1936</td>
<td>The first induced mutant variety released-tobacco var. ‘Chlorina’ using X-ryas</td>
</tr>
<tr>
<td>1942</td>
<td>First report of induced disease resistance in a crop plant; X-ray induced mildew resistance in barley</td>
</tr>
<tr>
<td>1944</td>
<td>The term ‘Mutation Breeding’ coined; First report of chemically induced mutation</td>
</tr>
<tr>
<td>1949</td>
<td>First plant mutation experiment using 60Co gamma ray installation; 60Co became a standard tool in mutation induction of crop plants</td>
</tr>
<tr>
<td>1964</td>
<td>The FAO/IAEA Joint Division was set up with a mandate to support and encourage the production of induced mutations for crop production particularly for food security issues in developing countries</td>
</tr>
<tr>
<td>1966</td>
<td>First chemically induced mutant variety, Luther of barley</td>
</tr>
<tr>
<td>1993</td>
<td>Register of plant mutant varieties set up by the FAO/IAEA, which became the mutant variety genetic stock database (http://mvgs.iaea.org) in 2008</td>
</tr>
<tr>
<td>2000-2009</td>
<td>Development of high-throughput genotyping and phenotyping using automated, robotic and computerized systems</td>
</tr>
</tbody>
</table>
Several types of mutagenic agents are used extensively to create genetic variation for use in genetics and/or crop improvement. Ionizing radiation can be divided into two classes according to differences in linear energy transfer (LET). Alpha particles, neutrons, and heavy ion beams have high LET, while gamma rays, X-rays, and electron beams have low LET. These radiation sources were used to produce mutant in several plants. Since the discovery in Drosophila (Muller, 1927) and in barley (Stadler, 1928) that X rays can induce mutations, radiation-induced mutants have been extensively studied and utilized in various ways, such as in the analysis of gene function and for mutation breeding. Over the past 40 years, the use of gamma rays in mutation induction has become prevalent, while the use of X-rays has been reduced. Recent study has shown that heavy ion beams, also classified as high LET radiation, tend to induce structural changes in the chromosomes (Shikazono et al., 2000). Among the physical mutagens, gamma rays are the most popular among mutation breeders because of the convenience of use and their ability to penetrate deep into a biological matter. Gamma rays induce nucleotide substitutions and small deletions of 2-16 bp and the mutation frequency is estimated to be one mutation/6.2 Mb (Sato et al., 2006). In previous reports, several mutant crops were acquired using gamma irradiation; a rice mutant with altered seed tocopherols (Hwang et al., 2014),
soybean mutant lines with a low lipoxygenase content (Lee et al., 2014), Perilla mutant with variation of leaf flavor components (Lee et al., 1999). The radiation mutant *P. frutescens* var. *crispa* was acquired using gamma ray irradiation. The seeds of *P. frutescens* var. *crispa* were irradiated with 200 Gy using gamma ray and then 2,000 seeds were gathered (M1 generation). Through sowing seeds every year, 165 seeds were acquired in M3 generation. And then 165 seeds were cultivated in the field every year for uniformity and stability (Figure 2.1).
<table>
<thead>
<tr>
<th>Year</th>
<th>'95</th>
<th>'96</th>
<th>'97</th>
<th>'98</th>
<th>'99</th>
<th>'00</th>
<th>'01</th>
<th>'02</th>
<th>'03</th>
<th>'04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generation</td>
<td>Irradiation of seeds</td>
<td>M1</td>
<td>M2</td>
<td>M3</td>
<td>M4</td>
<td>M5</td>
<td>M6</td>
<td>M7</td>
<td>M8</td>
<td>M9</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>CJ-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. Frutescens var. crispa</td>
<td>200 Gy irradiation</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>Confirm of uniformity and stability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,000</td>
<td>2,000</td>
<td>CJ-165</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2.1. Breeding process of radiation mutant P. frutescens var. crispa
2. Characteristics of *Perilla frutescens*

P. frutescens belongs to the annual herbaceous plant in the Lamiaceae family and is an edible plant frequently used in Asian countries including Korea, Japan and China. It has a pleasant flavor and taste and is used as a food ingredient. The herb is about 1 m high with small flowers, a gray-brown fruit, and glossy, downy-haired leaves. Cultivation of the crop is grown from seed and sown in May. Harvesting is usually between the end of September and beginning of October. The applicable parts of perilla plants are the leaves and seeds. There are two different leaf colors caused by their differing accumulation of anthocyanins (Gong *et al.*, 1997): a red-purple type (red perilla, *P. frutescens* var. *acuta* (Odash.) Kudo and *crispa* (Benth.) W. deane, Jasoyeop in Korea, Aka-jiso in Japanese) and a green-purple type (green perilla, *P. frutescens* f. *viridis* Makino, ‘Chungsoyeop’ in Korean, ‘Ao-jiso’ in Japanese).

2.1 Bioactivity

P. frutescens has been used as an oriental medicine for many years in Asia and has been passed on through generations by experience. Recent studies demonstrated the pharmacological activities of *P. frutescens*.
Long-term secondary diabetic complications are the main cause of morbidity and mortality in diabetic patients. The aldose reductase gene has been a drug target in the clinical management of diabetes, because it involved in diabetic complication. The EtOAc-soluble fractions of *P. frutescens* leaves showed strong inhibitory activity for aldose reductase (Paek et al., 2013). The inhibitory compounds from those fractions were identified as chlorogenic acid, rosmarinic acid, luteolin, and methyl rosmarinic acid (Paek et al., 2013). ROS are constantly produced and play a key role in the pathogenesis of a wide variety of acute and chronic neurodegenerative diseases. Hydrogen peroxide is one of the major ROS and excessive production is associated with pathological process of acute and chronic neuronal toxicity. The methanol extract of *P. frutescens* reduced cell damage and lipid peroxidation in C6 glial cells through the regulation of mRNA and protein expression of iNOS and COX-2 (Lee et al., 2016). Rosmarinic acid was the main component for neuro-protective effect.

Gastrointestinal discomfort is a common symptom in otherwise healthy adults. Approximately 20% of the population, particularly women suffer from gastrointestinal discomfort and this affects quality of life. However, those symptoms were significantly improved over time by *P. frutescens* water extract against placebo (Sybille et al., 2014).
Chronic high-fat diet feeding induced hepatic lipid overload and hepatocellular cholesterol metabolic imbalance. The perilla seed oil supplement rescued the HFD-induced steatosis and depressed hepatic inflammation (Chen et al., 2011). Perilla seed oil rich in α-linolenic aid can regulate the expression of multiple nuclear transcription factors, and it can be a potential dietary therapeutic tool (Chen et al., 2011). In another report, *P. frutescens* methanol extract promoted the induction of the ATP-binding cassette transporters and subsequently accelerated cholesterol efflux from the lipid-loaded macrophages (Park et al., 2015). α-asarone was isolated from methanol extract and characterized as a major component for those activity, but not β-asarone (Park et al, 2015).

House dust mite is a major causative factor for airway hypersensitiveness and asthma. Mite major allergen Der p 2 is known to trigger both pro-inflammatory and pro-allergic responses on respiratory epithelial cells. *P. frutescens* methanol extract diminished mRNA expression of pro-allergic cytokines as well as pro-inflammatory cytokines in BEAS-2B cells (Liu et al., 2013). And *P. frutescens* ethanol extract significantly suppressed Th2 responses and airway inflammation in allergic murine model of asthma (Chen et al., 2015b).
There are many previous reports about anti-inflammatory activities of *P. frutescens*: Inhibition of proinflammatory cytokine generation in lung inflammation by the leaves of *P. frutescens* (Lim *et al.*, 2014); Inhibition of N-formyl-Met-Leu-Phe-induced phosphorylation of the Src family kinases and decrease of intracellular Ca\(^{2+}\) level by *P. frutescens* ethanol extract (Chen *et al.*, 2015a).

The ethanol extract of *P. frutescens* leaves inhibited the growth, migration, and adhesion of human cancer cells (Kwak and Ju, 2015). The possible main components were luteolin, rosmarinic acid and isoegomaketone. And the methanol extract of *P. frutescens* leaves inhibited tumor proliferation of HCC via PI3K/AKT signal pathway (Wang *et al.*, 2013). Isoegomaketone was the main component that showed anti-cancer activity.

2.2 Active constituents

P. frutescens contains several components including rosmarinic acid, luteolin, perillaldehyde, perillyl alcohol, perilllic acid, and isoegomaketone. Recent studies demonstrated the pharmacological activities of those constituents of *P. frutescens* (Table 2.2).
Table 2.2. The constituents and their effects of *P. frutescens*

<table>
<thead>
<tr>
<th>Constituents</th>
<th>Effects</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perillaldehyde</td>
<td>Activation of the Nrf2-Keap1 system</td>
<td>Masutani et al., 2009</td>
</tr>
<tr>
<td></td>
<td>Promote the antioxidant activity of berries</td>
<td>Wang et al., 2008</td>
</tr>
<tr>
<td>Perillyl alcohol</td>
<td>Induce cell cycle arrest and cell death</td>
<td>Elegbede et al., 2003</td>
</tr>
<tr>
<td></td>
<td>Inhibitory effects on HCT116 cells</td>
<td>Bardon et al., 2002</td>
</tr>
<tr>
<td>Perillic acid</td>
<td>Inhibitory effects on cancer cells</td>
<td>Bardon et al., 2002</td>
</tr>
<tr>
<td>Rosmarinic acid</td>
<td>Inhibit seasonal allergic rhinoconjunctivitis</td>
<td>Takano et al., 2004</td>
</tr>
<tr>
<td></td>
<td>Anti-allergic effect</td>
<td>Oh et al., 2011</td>
</tr>
<tr>
<td></td>
<td>Anticarcinogenic effects in murine two-stage skin model</td>
<td>Osakabe et al., 2004</td>
</tr>
<tr>
<td></td>
<td>Inhibition of LPS-induced liver injury</td>
<td>Osakabe et al., 2002</td>
</tr>
<tr>
<td>Luteolin</td>
<td>Inhibit inflammation and allergic responses</td>
<td>Ueda et al., 2002</td>
</tr>
<tr>
<td>Isoegomaketone</td>
<td>Anti-inflammation and anti-cancer</td>
<td>Jin et al., 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cho et al., 2011</td>
</tr>
</tbody>
</table>
2.3 Extraction method

There have been many reports regarding extraction from perilla using organic solvents, supercritical carbon dioxide, and microwave-assisted techniques (Table 2.3). Generally, the water extraction method is used in the food industries, because it is an efficient and environmentally friendly technique for extracting various compounds from plants (Siti et al., 2016). Supercritical carbon dioxide (SC-CO$_2$) extraction is a novel and powerful technique for extraction lipophilic components (Guan et al., 2007). SC-CO$_2$ extraction has several advantages over the use of organic solvents, because CO$_2$ is non-toxic, non-reactive, non-corrosive, and inexpensive.
Table 2.3. The several extraction methods from *P. frutescens*

<table>
<thead>
<tr>
<th>Extraction</th>
<th>Region</th>
<th>Effect</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol</td>
<td>Leaf</td>
<td>Anti-microbial</td>
<td>Kang et al., 2011</td>
</tr>
<tr>
<td></td>
<td>Leaf</td>
<td>Remove cholesterol</td>
<td>Park et al., 2015</td>
</tr>
<tr>
<td></td>
<td>Leaf</td>
<td>Anti-cancer</td>
<td>Wang et al., 2013</td>
</tr>
<tr>
<td></td>
<td>Leaf</td>
<td>Anti-allergic, Anti-inflammatory</td>
<td>Liu et al., 2013</td>
</tr>
<tr>
<td></td>
<td>Leaf</td>
<td>Neuro-protective</td>
<td>Lee et al., 2016</td>
</tr>
<tr>
<td></td>
<td>Leaf</td>
<td>Anti-diabetic</td>
<td>Paek et al., 2013</td>
</tr>
<tr>
<td>Water</td>
<td>Leaf</td>
<td>Gastrointestinal discomfort</td>
<td>Sybille et al., 2014</td>
</tr>
<tr>
<td></td>
<td>Leaf</td>
<td>Anti-allergic, Anti-inflammatory</td>
<td>Chen et al., 2015</td>
</tr>
<tr>
<td>Ethanol</td>
<td>Leaf</td>
<td>Anti-cancer</td>
<td>Kwak and Ju, 2015</td>
</tr>
<tr>
<td></td>
<td>Leaf</td>
<td>Anti-inflammation</td>
<td>Lim et al., 2014</td>
</tr>
<tr>
<td></td>
<td>Leaf</td>
<td>Anti-inflammation</td>
<td>Chen et al., 2015</td>
</tr>
<tr>
<td>Supercritical</td>
<td>Seed</td>
<td>Anti-oxidant</td>
<td>Jung et al., 2012</td>
</tr>
<tr>
<td>carbon dioxide</td>
<td></td>
<td></td>
<td>Kim et al., 1998</td>
</tr>
<tr>
<td>Microwave</td>
<td>Leaf</td>
<td>Anti-oxidant</td>
<td>Shao et al., 2012</td>
</tr>
</tbody>
</table>
3. Pharmacological activities of isoegomaketone

Isoegomaketone (IK), an essential oil component in *P. frutescens*, has been shown to have several activities. IK is synthesized with perilla ketone directly from precursor egomaketone (Nishizawa *et al.*, 1989). And perilla ketone is not converted from IK. In LPS-induced RAW264.7 cells, IK inhibited NO production through the heme oxygenase-1 induction and suppression of the interferon-β-STAT-1 pathway (Jin *et al.*, 2010). To enhance anti-inflammatory activity of IK, its derivatives were synthesized as anti-inflammatory agents (Park *et al.*, 2011). There are several reports about anti-cancer effect of IK: Induction of apoptosis in human DLD1 cells through caspase-dependent and –independent pathways (Cho *et al.*, 2011); Induction of apoptosis in B16 melanoma cells mediated through ROS generation and mitochondrial-dependent, -independent pathway (Kwon *et al.*, 2014a); Induction of apoptosis in SK-MEL-2 human melanoma cells through mitochondrial apoptotic pathway (Kwon *et al.*, 2014b); Potentiating TRAIL-mediated apoptosis through up-regulation of death receptor 5 via a ROS-independent pathway (Lee *et al.*, 2014); Inhibition tumor proliferation of HCC via PI3K/Akt signal pathway (Wang *et al.*, 2013); Inhibition of the growth, migration, and adhesion of HCT116 and H1299 cells (Kwak and Ju, 2015).
4. Mouse models of rheumatoid arthritis

Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by synovitis that leads to cartilage and bone erosion by invading fibrovascular tissue. The pathogenesis of RA is complex and involves genetic predispositions as well as environmental components (Imboden, 2009). The main cause to the pathogenesis is the activation of macrophages by autoreactive T cells, resulting in the releases of pro-inflammatory mediators such as tumor necrosis factor α (TNF-α), interleukin 1 (IL-1), and interleukin-6 (IL-6). The induction to articular disease onset is unknown and factors that define chronicity of the responses are poorly understood. Autoreactive T cells providing help to B cells or releasing several pro-inflammatory cytokines are a crucial factor in the initiation and maintenance of lesions in RA as well as mouse model (Cordova et al., 2013). However, T cells are not required for the induction of collagen antibody-induced arthritis (Nandakumar et al., 2004). Antibodies to citrullinated antigens that are implicated in the pathogenesis of RA have been shown to be important in mouse models, including collagen-induced arthritis (Kidd et al., 2008). Antibody- and complement-mediated effects are important drivers in RA as well as mouse models. Neutrophils are abundant in murine autoimmune arthritis and contribute to the pathogenesis through the release of cytotoxic
products and immunoregulatory mediators. Cartilage and bone injury is driven by the formation of an inflammatory pannus that classically invades the joint from the capsular angle. Macrophages infiltrating the synovium are central in the pathogenesis of RA, serving IL-1β and TNF-α. Mouse models are an important tool for investigating disease mechanisms in vivo and have been used for many years.

4.1 Collagen-induced arthritis (CIA)

CIA shares many similarities with human RA. Two characteristics of the CIA model such as breach of tolerance and generation of auto-antibodies toward self and collagen make CIA the good standard in vivo model for RA studies. DBA/1 mice are most widely used in the CIA model. Clinical signs of disease typically develop 21-25 days after the initial inoculation and presents as a polyarthritis, which is most prominent in the limbs and characterized by synovial inflammatory infiltration, cartilage and bone erosion similar to human RA. The development of CIA is associated with both B- and T-cells responses with the production of anti-collagen type II antibodies and collagen-specific T cells. Disease severity is expected to peak at approximately day 35, after which DBA/1 mice enter remission, marked by
increased concentration of serum IL-10 and a subsequent decrease in pro-inflammatory Th1 cytokines (Mauri et al., 1996).

4.2 Collagen antibody-induced arthritis (CAIA)

RA is associated with auto-antibody production against self-type II collagen, citrullinated proteins (ACPA) and IgG. This demonstrates a role for humoral immunity in the development of arthritis in which type II collagen is thought to be the predominant epitope (Rowley et al., 2008). In addition, anti-collagen antibody cocktails have been shown to induce the development of arthritis (Holmdahl et al., 1986). Although the clinical development of arthritis is similar to that in CIA and RA, CAIA is characterized by macrophage and polymorphonuclear inflammatory cell infiltrate (Santos et al., 1997), but is not associated with a T- and B-cell response. Furthermore, as disease develops within 48 h of antibody injection with 100% penetrance and is inducible regardless of the MHC class II haplotype, CAIA is well-suited for studying the development of arthritis in genetically modified strains of mice.

4.3 Zymosan-induced arthritis
Zymosan is a polysaccharide from the cell wall of Saccharomyces cerevisiae with repeating glucose units connected by β-1,3-glycosidic linkage. It binds to TLR2 in macrophages leading to the induction of pro-inflammatory cytokines, arachidonate mobilization, and protein phosphorylation and also activates complement. Injection of zymosan intra-articularly into the knee joints of mice results in a proliferative inflammatory arthritis with mononuclear cell infiltration, synovial hypertrophy and pannus formation with the peak of disease at about day 3 and inflammation subsiding by day 7 (Keystone et al., 1977). The main limitation of this model is the monoarthritic nature of the disease and the technical skill required for an intra-articular injection in mice.

5. Previous study

In an effort to assess whether radiation mutants (165 species) of *P. frutescens* var. *crispa* have enhanced anti-inflammatory activity when compared to wild type, the inhibitory activity for nitric oxide production in LPS-stimulated RAW264.7 cells was measured using ethanol extracts of mutants. As a result, one mutant (named “Antisperill) showed stronger inhibitory activity than wild type. The reason for enhanced anti-inflammatory property of the mutant was due to increase of IK content according to HPLC and NMR analysis.
(Figure 2.2). Anti-inflammatory activities of IK were investigated in LPS-treated RAW264.7 cells (Jin et al., 2010). IK inhibited LPS-induced nitric oxide production by suppressing IFN-β-STAT-1 pathways as well as inducing of heme oxygenase-1 (Figure 2.3). However, the detailed mechanism for expression of HO-1 by IK treatment is not known yet.
Figure 2.2. The selection process of “Antisperill”, a radiation mutant *P. frutescens* var. *crispa* contained higher IK content.
Figure 2.3. Putative model for the inhibition of NO production by IK in LPS-induced RAW264.7 cells.
III. Study 1

Isoegomaketone upregulates heme oxygenase-1 in RAW264.7 cells via ROS/p38 MAPK/Nrf2 pathway*

(*The part of the results was published in Biomol. Ther. 2016, 24(5):510-516)
1. Abstract

Isoegomaketone (IK) was isolated from *Perilla frutescens* var. *crispa*, which has been widely used as a food in Asian cuisine, and evaluated for its biological activity. We have already confirmed that IK induced the HO-1 expression via nuclear factor E2-related factor 2 (Nrf2) activation in RAW264.7 cells. In this study, we investigated the effect of IK on the mechanism of HO-1 expression. IK upregulated HO-1 mRNA and protein expression in a dose dependent manner. The level of HO-1 mRNA peaked at 4 h after 15 μM IK treatment. To investigate the mechanisms of HO-1 expression modulation by IK, we used pharmacological inhibitors for the protein kinase C (PKC) family, PI3K, and p38 MAPK. IK-induced HO-1 mRNA expression was only suppressed by SB203580, a specific inhibitor of p38 MAPK. ROS scavengers (N-acetyl-L-cysteine, NAC, and glutathione, GSH) also blocked the IK-induced ROS production and HO-1 expression. Furthermore, both NAC and SB203580 suppressed the IK-induced Nrf2 activation. In addition, ROS scavengers suppressed other oxidative enzymes such as catalase (CAT), glutathione S-transferase (GST), and NADH quinone oxidoreductase (NQO-1) in IK-treated RAW264.7 cells. Taken together, it can be concluded that IK induced the HO-1 expression through the ROS/p38 MAPK/Nrf2 pathway in RAW264.7 cells.
2. Introduction

Heme oxygenase-1 (HO-1), the inducible isoform of heme oxygenase that catalyzes the degradation of heme into biliverdin, iron, and carbon monoxide (CO), is a stress-responsive protein. HO-1 has anti-inflammatory, antioxidant, and antiproliferative effects (Gabunia et al., 2012; Yamada et al., 2000). HO-1 is an antioxidant enzyme induced by oxidative stress. However, recent studies have demonstrated that overexpression of HO-1 prior to stimulation with LPS markedly inhibited the production of subsequent inflammatory mediators such as nitric oxide (NO), interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1) (Park et al., 2009a; Tsoyi et al., 2008; Jin et al., 2010). Moreover, the deficiency of HO-1 resulted in severe inflammation in mice (True et al., 2007). Therefore, based on previous findings, the regulation of HO-1 expression may be a potential target for the treatment of inflammatory disease.

Perilla frutescens (L.) Britt. is an annual herbaceous plant belonging to the Lamiaceae family. Its leaves are used as food in Asian cuisines, and its seeds are used to make edible oil in Korea. It is also used in traditional Chinese medicine. The pharmacological activities of *P. frutescens* have been investigated in many studies (Ueda and Yamzaki, 1997; Brochers et al., 1997). Several compounds, such as rosmarinic acid, luteolin, apigenin,
fefulic acid, (+)-catechin, caffeic acid, and isoegomaketone, have been isolated from *P. frutescens*. Anti-inflammatory activities of rosmarinic acid (Huang *et al.*, 2009), luteolin (Kim *et al.*, 2005), and apigenin (Zhang *et al.*, 2014) have been demonstrated in previous reports.

IK, an essential oil component in *P. frutescens*, has been shown to have numerous biological activities. It has been shown to have inhibitory activity on NO production in LPS-treated RAW264.7 cells (Jin *et al.*, 2010), and IK induced apoptosis in several cancer cells through caspase-dependent and -independent pathways (Cho *et al.*, 2011a; Kwon *et al.*, 2014a). Furthermore, IK has the potential for increasing the effectiveness of prostate cancer therapy with TRAIL (Lee *et al.*, 2014). Previously, our group has shown that IK induced the HO-1 expression in RAW264.7 cells (Jin *et al.*, 2010), however, the detailed mechanism was yet to be elucidated. In this study, we investigated the mechanisms of HO-1 induction by IK in RAW264.7 cells.
3. Materials and Methods

3.1. Reagents

DMEM and fetal bovine serum (FBS) were purchased from Hyclone (Logan, UT, USA). LPS, phenylmethanesulfonyl fluoride, sodium nitrite, DMSO, Griess reagent, Rottlerin, GF109203X, and a protease inhibitor cocktail were purchased from Sigma-Aldrich (St. Louise, MO, USA). Goat anti-rabbit IgG HRP-conjugated antibody and Lipofectamine 2000 were purchased from Invitrogen (Carlsbad, CA, USA). The RNeasy kit was purchased from QIAGEN (Valencia, CA, USA). The EZ-Cytox Cell Viability assay kit was purchased from DAEIL lab (Seoul, Korea). The Advantage RT-for-PCR kit was purchased from Clontech (Mountain view, CA, USA). SYBR premix was purchased from Takara Bio Inc (Shiga, Japan). NP40 cell lysis buffer was purchase from Biosource (San Jose, CA, USA). SB203580 was purchased from Cell Signaling Technology (Danvers, MA, USA). LY294002 and Go6976 were purchased from Calbiochem (La Jolla, CA, USA). Rabbit polyclonal antibodies against β-tubulin, HO-1, laminB, and Nrf2 were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA).

3.2. Isolation of IK
The radiation-induced mutant *P. frutescens* var. *crispa* was bred by the Korea Atomic Energy Research Institute (Daejeon, Korea). The leaves of radiation mutant *P. frutescens* var. *crispa* were dried and then ground to powder (1.2kg). The powder was extracted with 80% methanol (10 L) at room temperature for 24 h and filtered through filter paper (No.4 Whatman international, UK). The methanol extracts (200 g) were suspended with 1 L distilled water. Following extraction, the solution was fractionated in the order of N-hexane, chloroform, ethyl acetate, and N-butanol (1L and three times respectively). N-hexane soluble fraction (15 g) was fractionated into 10 fractions (PH1-PH10) with N-hexane:ethyl acetate (1:0-1:1) using silica gel column chromatography. IK was isolated from PH4 fraction (200 mg) and analyzed using HPLC (YMC, Seongnam, Korea).

The leaves of the mutant cultivar of *P. frutescens* var. *crispa* were collected by the radiation breeding research team of the Korea Atomic Energy Research Institute (Park *et al.*, 2009b). The leaves were air-dried, pulverized, and stored at 4°C before extraction. Dried leaves (1.2 kg) of the mutant cultivar of *P. frutescens* var. *crispa* were extracted twice with 80% methanol (10 L) at room temperature for 24 h, and the supernatant was evaporated under vacuum using an evaporator. The methanol extract (200 g) was dissolved in distilled water and partitioned three times using n-hexane,
chloroform, ethyl acetate, and n-butanol. Evaporation of the solvent of the appropriate fraction under reduced pressure yielded the n-hexane extract (30 g), which was further fractionated on a reverse-phase (RP) silica gel column (YMC Gel ODS-A, 12 nm, S-150 μm; YMC Co.) and eluted using 35% methanol to give 10 fractions (PH1–PH10). PH4 (200 mg) was fractionated on a HPLC and eluted using n-hexane:ethyl acetate (10:1) to yield isoegomaketone (IK) as a yellow oil (60 mg) (Figure 3.1). The purity evaluation of IK was determined by analytical HPLC (0 min, acetonitrile–water, 45:55; 30 min, 55:45; flow rate 1 mL/min, detector UV 254 nm). The tR of IK was 23.112 min, and its purity was 99.178% (Figure 3.2). Its structure was identified as IK by comparison of its 1H-NMR data with the published values (Nam et al., 2016) (Figure 3.3). 1H-NMR (CDCl3, 500 MHz): δ 8.03 (1H, s, H-2), 7.44 (1H, d, J = 1.5 Hz, H-5), 7.00 (1H, dd, J = 15.5, 1.5 Hz, H-8), 6.81 (1H, d, J = 1.5 Hz, H-4), 6.47 (1H, dd, J = 15.5, 1.5 Hz, H-7), 2.52 (1H, m, H-9), 1.10 (3H, s, H-10), 1.09 (3H, s, H-11).
Perilla frutescens var. crispa by Mutagenesis with Gamma-ray (1200 g)

Percolated with 80% Methanol (10 L \times 2)

Methanol ext. (200 g)

1. Suspend in water (1 L)
2. Partitioned with hexane (0.5 L \times 5)

Hexane fr. (30 g)

Aqueous layer

Partitioned with chloroform (0.5 L \times 5)

Chloroform fr. (17 g)

Aqueous layer

Partitioned with ethyl acetate (0.5 L \times 2)

Ethyl acetate fr. (5 g)

Aqueous layer

Partitioned with butanol (0.5 L \times 2)

Butyl alcohol fr. (9 g)

Aqueous fr.

Isoegomaketone (IK, 60 mg)

Figure 3.1. Isolation scheme for isoegomaketone
Figure 3.2. Purity of isoegomaketone measured by HPLC analysis.
Figure 3.3. Chemical structure of isoegomaketone
3.3. Cell culture

RAW 264.7 macrophage cells were cultured in DMEM supplemented with 10% FBS, penicillin (100 U/mL) and streptomycin (100 μg/mL) and incubated at 37°C with 5% carbon dioxide.

3.4. Cytotoxicity assay

To measure cell viability, the EZ-Cytox cell viability assay kit was used. The cells were cultured in a 96-well flat-bottom plate at a density of 2.0×10^5 cells/mL for 24 h. The cells were subsequently treated with various concentrations of kinase inhibitor for an additional 24 h. After the incubation period, EZ-Cytox 10 μL was added to each well and incubated for 4 h at 37°C and 5% CO$_2$. The index of cell viability was determined by measuring formazan production at an absorbance of 480 nm, using an ELISA reader. The reference wavelength was 650 nm.

3.5. Determination of NO concentration

Nitrite in the cellular media was measured by the Griess method (Khan et al., 2009). The cells were cultured in a 96-well plate and treated with LPS (1 μg/mL) for 18 h. At the end of the culture period, the cellular media was collected for the determination of nitrite production. Equal volumes of Griess
reagent and cellular supernatant were mixed, and the absorbance was measured at 540 nm. The concentration of nitrite (µM) was calculated using a standard curve produced from known concentration of sodium nitrite dissolved in DMEM. The results are presented as the means ± SD of four replicates of one representative experiment.

3.6. Preparation of cell extracts and western analysis

Cells were washed once with cold PBS and harvested by pipetting. For whole-cell extract preparation, the cells were lysed on ice, in a NP40-based cell lysis buffer containing a protease inhibitor cocktail (Sigma, St. Louis, MO, USA) and phenylmethylsulfonyl fluoride (Sigma) for 30 min. Nuclear and cytosolic extracts were prepared using nuclear and cytosolic extraction reagents (Thermo Scientific, Rockford, IL, USA). The protein concentration of the cell lysate was determined using the Bio-Rad Protein Assay (Bio-Rad, Hercules, CA, USA). Fifty µg of protein was loaded and electrophoresed on a 10% SDS-polyacrylamide gel, following which it was transferred onto a nitrocellulose membrane (Hybond ECL Nitrocellulose, GE Healthcare, Chandler, AZ, USA). The membranes were washed once with a wash buffer (PBS with 0.05% Tween 20) and blocked with a blocking buffer (PBS with 5% skim milk and 0.05% Tween 20) for 1 h. After blocking, the membranes
were incubated with the rabbit anti-HO-1 or anti-β-tubulin primary antibody overnight at 4°C. Rabbit anti-HO-1 polyclonal antibody was diluted at 1:1000, and the rabbit anti-β-tubulin polyclonal antibody was diluted at 1:200 in blocking buffer. After incubation, the membranes were washed and subsequently incubated for 1 h at room temperature with the goat anti-rabbit IgG HRP-conjugated secondary antibody diluted to 1:5000 in blocking buffer. The membranes were washed and the protein bands were detected by a chemiluminescence system (GE Healthcare, Chandler, AZ, USA).

3.7. Quantitative real-time PCR

The cells were cultured in a 100-mm petri dish for 24 h (2 × 10^5 cell/mL). Total RNA was isolated using the RNeasy Kit according to the manufacturer's instructions. The Advantage RT-for-PCR kit was used for reverse transcription according to the manufacturer's protocol. A Chromo4 real-time PCR detection system (Bio-Rad) and iTaq™ SYBR® Green Supermix (Bio-Rad) were used for the RT-PCR amplification of HO-1 and β-actin using the following conditions: 50 cycles at 94°C for 20 s, 60°C for 20 s and 72°C for 30 s. All the reactions were repeated independently at least three times to ensure the reproducibility of the results. Primers for HO-1 and
β-actin were purchased from Bioneer Corp (Daejeon, Korea). Primer sequences are shown in Table 3.1.
Table 3.1. Primers sequences for Real Time-PCR analysis

<table>
<thead>
<tr>
<th>Target gene</th>
<th>5' to 3' direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>HO-1</td>
<td></td>
</tr>
<tr>
<td>Forward</td>
<td>TTA CTTCCC CGAAC CATCGAC</td>
</tr>
<tr>
<td>Reverse</td>
<td>GCATAAATTCCCACTGCCAC</td>
</tr>
<tr>
<td>Beta actin</td>
<td></td>
</tr>
<tr>
<td>Forward</td>
<td>TGAGAGGGAAAACTCGTGCGTGAC</td>
</tr>
<tr>
<td>Reverse</td>
<td>GCTCGTTGCCAATAGTGATGACC</td>
</tr>
</tbody>
</table>
3.8. Statistical analysis

One-way analysis of variance (ANOVA) was used to determine overall differences among groups, followed by Fisher’s LSD test for individual group comparisons. The results from all comparisons were considered significant at $P < 0.05$. Data were reported as mean ± SD. All data were analyzed using the SPSS 21.0 program (SPSS Inc., IL, USA).
4. Results

4.1. Effect of IK on HO-1 expression in RAW264.7 cell

Induction of HO-1 expression by IK was examined in RAW264.7 cells. As shown in Figure 3.1A, IK treatment markedly increased the expression of HO-1 mRNA in a dose-dependent manner. The maximum induction of HO-1 mRNA was at 4 h after treatment with 15 μM IK and the maximum induction level was approximately 60 fold greater than the level at 0 h timepoint (Figure 3.4B). IK also induced the HO-1 protein expression in a dose-dependent manner (Figure 3.4C). The maximum level of HO-1 protein expression was reached at 8 h after treatment with 15 μM IK. The induction of HO-1 protein went back to the basal level at 24 h (Figure 3.4D).
Figure 3.4. The expression of HO-1 by IK treatment in RAW264.7 cells. (A) The expression levels of HO-1 mRNA were measured by RT-PCR. IK was treated for 4 h with several concentrations (5, 10, 15 μM). (B) The expression levels of HO-1 mRNA were measured by RT-PCR. IK was treated for 2, 4, 8, and 12 h with 15 μM. Data shown are the means ± SD (n = 4). *p < 0.05 vs the control group. (C) A representative western blot of HO-1 protein expression. IK was treated for 4 h with several concentrations (5, 10, 15 μM). (D) A representative western blot of HO-1 protein expression. IK was treated for 2, 4, 8, and 12 h with 15 μM.
4.2. Effect of kinase inhibitors on HO-1 expression by IK treatment

Previous studies have reported that the expression of HO-1 was mediated through activation of PKC, PI3K, Nrf2, and p38 MAPK (Shih et al., 2011; Lee 2012 et al., 2012). Previously, we have shown that IK increased the translocation of Nrf2 into the nucleus without affecting Nrf2 expression in RAW264.7 cells (Jin et al., 2010). We further examined whether the induction of HO-1 by IK treatment is mediated through activation of other kinases using relative specific inhibitors. Before the experiment, we determined the non-toxic concentration of kinase inhibitors in RAW264.7 cells via the cell viability assay (Figure 3.5). Based on the cytotoxicity result, RAW264.7 cells were treated with 15 μM IK, along with various specific kinase inhibitors. As shown in Figure 3.6, only SB203580, a specific p38 MAPK inhibitor, treatment suppressed the HO-1 induction in IK-treated RAW264.7 cells, whereas treatment with the other kinase inhibitors such as LY294002, Rottlerin, GF102903, and Go6976 had no effect on HO-1 expression. Therefore, p38 MAPK seemed to play an important role in HO-1 induction by IK treatment.
Figure 3.5. Effect of specific kinase inhibitors on cell viability. (A) Effect of LY, LY294002, on cell viability. (B) Effect of SB (SB203580), on cell viability. (C) Effect of RO (Rottlerin) on cell viability. (D) Effect of GF (GF109203X) on cell viability, (E) Effect of GO (GÖ6976) on cell viability. Cell viability was determined by the EZ-Cytox cell viability assay kit. Data shown are the means ± SD (n = 4). *p < 0.05 vs the control group.
Figure 3.6. Effect of specific kinase inhibitors on HO-1 expression in IK-treated RAW274.7 cells. (A) Effect of RO, GF, and GO on IK-induced HO-1 mRNA expression. (B) Effect of SB on IK-induced HO-1 mRNA expression. (C) Effect of LY on IK-induced HO-1 mRNA expression. IK was added with and without various concentrations of kinase inhibitors for 4 h. Total RNA was isolated, then the expression of HO-1 mRNA was measured by quantitative real-time PCR. Data shown are the means ± SD (n = 4). *p < 0.05 vs the control cells, and #p < 0.05 vs the cells treated with only IK. RO; Rottlerin, GF; GF102903, GO; Go6976, SB; SB203580, LY; LY294002.
4.3. Effect of ROS scavengers on HO-1 expression by IK treatment

In follow-up experiments, the upstream signaling pathway that stimulates HO-1 expression was investigated. Since reactive oxygen species (ROS) have been implicated in the activation of Nrf2 (Alam and Cook, 2003), the involvement of oxidative stress was examined. Addition of glutathione (GSH) or the glutathione donor N-acetyl-L-cysteine (NAC) suppressed the generation of reactive oxygen in cells. Cells were treated with GSH or NAC to test whether the expression of HO-1 mRNA by IK was mediated via ROS generation. As shown in Figure 3.7A, IK-induced expression of HO-1 mRNA was significantly reduced when NAC was added to the culture. The expression level of HO-1 protein was also reduced by GSH or NAC in IK-treated RAW264.7 cells (Figure 3.7B). Therefore, ROS generation might be involved in the IK-induced expression of HO-1 in RAW264.7 cells.
Figure 3.7. Effect of ROS scavengers on HO-1 expression in IK-treated RAW264.7 cells. (A) Total RNA was isolated, and the expression of HO-1 mRNA was measured by quantitative real-time PCR. Data shown are the means ± SD (n = 4). #p < 0.05 vs the control cells, and *p < 0.05 vs the cells treated with only IK. (B) A representative western blot of HO-1 protein expression.
4.4. Effect of ROS scavenger and p38 MAPK inhibitor on Nrf2 activation by IK treatment

Up to this point, we could not determine whether IK induces the HO-1 expression through two parallel pathways (p38 MAPK and ROS-Nrf2 pathway) or a single connected pathway, such as the ROS/p38 MAPK/Nrf2 pathway. To answer this question, we examined the effect of ROS scavenger (NAC) and specific p38 MAPK inhibitor (SB203580) on the subcellular localization of Nrf2 in IK-treated RAW264.7 cells. As shown in Figure 3.8, IK increased the Nrf2 protein levels in nuclear extracts. However, this increase was significantly reduced by NAC and SB203580 treatment, which suggested that IK induced the HO-1 expression through ROS/p38 MAPK/Nrf2 pathway.
Figure 3.8. Effect of NAC and p38 MAPK inhibitor on Nrf2 activation in IK-treated RAW264.7 cells. RAW264.7 cells were treated with IK for 2 h with NAC and SB. Nuclear extracts (30 µg) and the cytosolic fraction (50 µg) were used for Western blot analysis. SB; SB203580.
4.5. Effect of NAC on NO production in LPS-treated RAW264.7 cells

Previous studies have shown that HO-1 expression mediates the NO production in LPS-treated RAW264.7 cells (Park et al., 2009a; Kim et al., 2014). Therefore, whether HO-1 expression by IK treatment is involved in inhibition of NO production was examined in LPS-treated RAW264.7 cells using NAC. Cells were treated with LPS and IK in the presence of NAC, and the resultant NO levels were measured. As shown in Figure 3.9, NAC treatment restored the IK-mediated inhibition of NO production by 33%, while NAC treatment alone had no effect on LPS-stimulated NO production. Therefore, HO-1 induction plays an important role in the inhibitory effect of IK on LPS-induced NO production.
Figure 3.9. Effect of NAC on NO production in LPS-treated RAW264.7 cells. RAW264.7 cells were treated with IK for 2 h prior to LPS addition (1 µg/mL) and were incubated for an additional 18 h. Cellular media (100 µL) were mixed with equal volumes of Griess reagent. Nitrite level were measured as an indicator of NO production as described in the Materials and Methods. Data shown are the means ± SD (n = 4). *p < 0.05 vs the control cells, *p < 0.05 vs the cells treated with only LPS, and **p < 0.05 vs the cells treated with LPS and IK without NAC.
4.6. Effect of ROS scavengers on the production of antioxidant enzymes

Besides HO-1, the activation of Nrf2 is a major determinant of phase II enzyme induction, such as catalase (CAT), glutathione S-transferase (GST), and NADH quinone oxidoreductase (NQO-1) (Zhang et al., 2013). IK treatment induced the expression of HO-1 through ROS/Nrf2/p39 MAPK in RAW264.7 cells. Therefore, we examined whether IK could induce antioxidant enzymes CAT, GST, and NQO-1, and whether ROS scavengers could abolish the effects of IK on these enzymes. As shown in Figure 3.10, phase II enzymes were induced by IK treatment; however, the induction levels of these antioxidant enzymes were smaller than that of HO-1. The mRNA levels of CAT, GST, and NQO-1 in cells treated with IK were significantly reduced when cells were cultured in the presence of GSH or NAC.
Figure 3.10. Effect of ROS scavengers on the production of antioxidant enzymes in IK-treated RAW264.7 cells. (A) Effect of GSH and NAC on IK-induced catalase (CAT) expression. (B) Effect of GSH and NAC on IK-induced glutathione S-transferase (GST) expression. (C) Effect of GSH and NAC on IK-induced NADH quinone oxidoreductase (NQO-1) expression. Total RNA was isolated, and the expression level of HO-1 mRNA was measured by quantitative real-time PCR. Data shown are the means ± SD (n = 4). *p < 0.05 vs the control cells, and **p < 0.05 vs the cells treated with only IK.
5. Discussion

Previously, isoegomaketone (IK) was isolated from *Perilla frutescens* var. *crispa* (Antisperill). *Perilla frutescens* var. *crispa* was mutated by gamma radiation (Park et al., 2009b) as mutant *P. frutescens* var. *crispa*, and contained about 10 times more IK than wild type species. IK is biosynthesized from egomaketone (EK), and this reaction is inhibited by gene *I* in *P. frutescens* (Nishizawa et al., 1989). It is possible that gene *I* was affected by gamma radiation and consequently resulted in an increased IK content in the mutant. Recently, it was reported that IK induced the expression of HO-1 in RAW264.7 cells (Jin et al., 2010). However, the molecular mechanism underlying IK-induced HO-1 expression was not completely understood. In this study, the detailed mechanism of HO-1 expression by IK treatment in RAW264.7 cells was examined.

Quantitative real-time PCR of the cells with specific kinase inhibitors revealed that IK-induced HO-1 expression was mediated by activation of the p38 MAPK pathway. The western blot analysis of the cells treated with NAC and GSH suggested that IK-induced HO-1 expression was regulated through ROS generation. To our knowledge, our report is the first that describes the mechanism of HO-1 induction by IK in RAW264.7 cells.

HO-1 expression is induced in response to oxidative stress and
inflammatory stimuli in macrophages. HO-1 catalyzes the degradation of heme into equimolar amounts of carbon monoxide (CO), iron and biliverdin. Biliverdin is further converted to bilirubin, which is a potent endogenous anti-oxidant (Ryter et al., 2006). CO, one of the catabolic products of heme, exerts anti-inflammatory effects (Park et al., 2009a). Recent studies have demonstrated that HO-1 induction was mediated by the activation of PI3K, PKC, and p38 MAPK (Shih et al., 2011; Lee et al., 2012; Rojo et al., 2006). Signaling mechanisms of HO-1 expression may depend on cell types and inducers. Crotonaldehyde induces HO-1 expression in endothelial cells via PKC-δ and p38 MAPK activation (Lee et al., 2011). However, PKC-δ and p38 inhibitors did not affect the crotonaldehyde-induced HO-1 expression in RAW264.7 cells and A549 human lung epithelial cells. In this study, we investigated the contribution of PI3K, PKC, and p38 MAPK on IK-induced HO-1 expression using respective specific inhibitors. Among these inhibitors, only the specific p38 MAPK inhibitor attenuated HO-1 induction in IK-treated RAW264.7 cells. We have previously confirmed that IK increased the translocation of Nrf2 into the nucleus without affecting Nrf2 expression in RAW264.7 cells (Jin et al., 2010). The specific p38 MAPK inhibitor also suppressed the IK-induced translocation of Nrf2 into the nucleus. Therefore, our results show that the p38 pathway is required for IK-
stimulated expression of HO-1 and IK-induced translocation of Nrf2 into the nucleus. Until now, there have been no reports showing the activation of p38 pathway by IK.

Reactive oxygen species (ROS) have been implicated in the induction of HO-1 expression (Shih et al., 2011; Liu et al., 2011). Cigarette smoke extract upregulated the HO-1 induction via ROS production in mouse brain endothelial cells (Shih et al., 2011), and curcumin induced the HO-1 expression by generation of ROS in human hepatoma cells (McNally et al., 2007). According to these previous reports, ROS generation is upstream of p38 MAPK. HO-1 expression by IK also seemed to be dependent on oxidative stress. IK-mediated induction of HO-1 was markedly suppressed by co-treatment of GSH or NAC. Furthermore, IK-induced translocation of Nrf2 into the nucleus was inhibited by NAC. It has been reported that IK induced apoptosis in B16 melanoma cells was through ROS generation (Kwon et al., 2014a), in which ROS production by IK was measured by flow cytometry. However, the level of IK used for the treatment was 100 μM, which was high enough concentration to induce cytotoxicity in RAW264.7 cells (Jin et al., 2010). In this study, the level of IK was 15 μM, which was enough to induce ROS generation without toxicity. Even if NAC markedly suppressed the IK-mediated induction of HO-1, certain level of HO-1 protein
expression still remained, along with Nrf2 activation. Therefore, there may be another minor pathway involved, along with the ROS/p38 MAPK/Nrf2.

Upregulation of HO-1 is mediated by activation of Nrf2 (Otterbein and Choi, 2000). Under unstressed condition, Nrf2 remains inactive in the cytoplasm. Under oxidative stress, Nrf2 dissociates from Keap1, translocates into the nucleus and binds to the antioxidant response element (ARE) in the promoter region of phase II antioxidant enzymes such as HO-1, CAT, NQO-1, and GST (Kaspar et al., 2009). We observed that IK induces the translocation of Nrf2 into the nucleus in RAW264.7 cells (Jin et al., 2010). In the present study, we investigated and confirmed that IK also induced antioxidant enzymes other than HO-1, such as CAT, NQO-1, and GST. The expression levels of these enzymes were lesser than that of HO-1, and their expression was also blocked by the treatment with ROS scavengers. CAT and NQO-1 have been suggested to have anti-inflammatory activities (Turdi et al., 2012; Thapa et al., 2014). However, HO-1 is the most important enzyme for anti-inflammation among the phase II antioxidant enzymes. The expression level of HO-1 was much higher than that of CAT and NQO-1 in IK-treated RAW264.7 cell. Therefore, blocking HO-1 expression mainly resulted in decreased IK-mediated inhibition of NO production in LPS-treated RAW264.7 cells.
IV. Study 2

Isoegomaketone alleviates the development of collagen antibody-induced arthritis in male Balb/c mice*

(*The part of the results was accepted in Molecules 2017)
1. Abstract

In this study, we attempted to identify and assess the effects of isoegomaketone (IK) isolated from Perilla frutescens var. crispa on the development of rheumatoid arthritis (RA). RA was induced in male Balb/c mice by collagen antibody injection. Experimental animals were randomly divided into five groups: normal, CAIA, CAIA + IK (5 mg/kg/day), CAIA + IK (10 mg/kg/day), and CAIA + apigenin (16 mg/kg/day) and respective treatments were administered via oral gavage once per day for 4 days. Mice treated with IK (10 mg/kg/day) developed less severe arthritis than the control CAIA mice. Arthritic score, paw volume, and paw thickness were less significant compared to the control CAIA mice at day 7 (73%, 15%, and 14% lower, respectively). Furthermore, histopathological examination of ankle for inflammation showed that infiltration of inflammatory cells and edema formation were reduced by IK treatment. Similarly, neutrophil to lymphocyte ratio (NLR) in whole blood was lower in mice treated with IK (10 mg/kg/day) by 85% when compared to CAIA mice. Taken together, treatment with IK delays the onset of the arthritis and alleviates the manifestations of arthritis in CAIA mice.
2. Introduction

Rheumatoid arthritis (RA) is a systemic autoimmune disease in which chronic joint inflammation leads to cartilage destruction and bone erosion (Scott et al., 2010). In addition, about 1% of US population is affected by RA, and RA increases the risk for cardiovascular disease, lymphoma, and death (Yang et al., 2013). Typically, RA is treated with steroidal/nonsteroidal anti-inflammatory drugs (NSAID) or biological modulators such as tumor necrosis factor alpha (TNF-α) inhibitors and interleukin-1 (IL-1) receptor antagonists (Smolen et al., 2014). Acetaminophen, a kind of NSAID, is most frequently implemented and taken in very high doses (4 g/day) (Dragos et al., 2017). However, the use of standard drugs in RA is known to produce a variety of side effects: Infusion hypersensitivity reactions with the use of TNF-α inhibitors (Matucci et al., 2016); gastrointestinal ulcerations and hemorrhagic events triggered by NSAID (McAlindon et al., 2014); higher risk of infection due to the use of biological drugs (Cabral et al., 2016); etc. Therefore, the need for new cure in RA is still high.

Because RA arises from complex etiology, different animal models are implemented to assess the efficacy of new therapies. Collagen-induced arthritis (CIA) is widely used to study RA and shares many histopathological features of the human arthritis (Cho et al., 2007). However, the susceptibility
for CIA is low in Balb/c mice, and long period of time is required for the induction of arthritis. Collagen antibody-induced arthritis (CAIA) represents a relevant model for studying the efferent phase of RA, where leukocytes are attracted and respond to the focal immune complex in the joint (Nandakumar et al, 2003). In the case of CAIA, induction is rapid and results in a steady and controlled disease progression that exhibits histological similarities to the CIA model.

Previously, our group showed that IK reduced NO production and iNOS protein levels in LPS-treated Balb/c mice (Jin et al., 2010). Although there is strong evidence to suggest that that IK has anti-inflammatory properties, the efficacy of IK as a treatment option for inflammatory disease (such as RA) has not been explored or tested. Therefore, the purpose of the present study was to observe and evaluate the effect of IK on RA in CAIA animal model.
3. Materials and Methods

3.1. Animals

Animals were maintained in accordance with the guidelines of the Guide for the Care and Use of Laboratory Animals (Institute of Laboratory Animal Resources, KAERI(Korea Atomic Energy Research Institute)-IACUC-2016-017). Male Balb/c mice (4 weeks) were purchased from Orient Bio Inc. (Seongnam, Korea) and allowed to acclimate for 1 week prior to the beginning of the study. Mice were maintained in a room which controlled light/dark cycle (12h/12h), temperature (about 23 ± 2°C), and humidity (55 ± 10%).

3.2. Sample preparation

IK and apigenin (API) was diffused into sterile phosphate-buffered saline (PBS, pH 7.4) containing 0.5% Tween 20 by sonication.

3.3. Collagen antibody-induced arthritis

Mice were randomly divided into 5 groups; (1) PBS (n = 6), (2) CAIA (n = 6), (3) CAIA plus IK (5 mg/kg, n = 6), (4) CAIA plus IK (10 mg/kg, n = 6), (5) CAIA plus API (16 mg/kg, n = 6). A cocktail of four monoclonal antibodies to type II collagen (ArthritoMab; MD Bioscience, Saint Paul, MN,
USA; 2 mg/100 μL) was injected intravenously at day 0. Mice in PBS group were injected with equal volume of sterile PBS. At day 3, all animals except PBS group were intraperitoneally injected with LPS (Escherichia coli 055:B5; MD Biosciences; 50 μg/200 μL endotoxin-free water). And treatments (PBS, IK, and API) were administered by oral gavage once a day from day 3 through day 6. Mice were examined for the development of arthritis for 4 days after LPS injection (Figure 4.1).
Figure 4.1. The scheme of induction of CAIA and sample treatment
3.4. Assessment of clinical signs of inflammation

Paw volumes were measured using a Digital Plethysmometer (LE7500, Panlab, Spain) every day after LPS injection. The hind leg was soaked in the buffer calibrated with 1 mL standard sinker. The increased volume was measured. The average volume of both hind legs was used. Paw thickness was measured using a digital caliper (Mitutoyo, Andover, UK) every day after LPS injection. The average thickness of both hind legs was used. Arthritic score was done blindly by using a system based on the number of inflamed joints in front and hind paws, inflammation being defined by swelling and redness at the scale from 0 (no redness and swelling) to 3 (severe swelling with joint rigidity or deformity; maximal score for four paws, 12).

3.5. Histopathological assessment

Hind feet were removed after euthanization and fixed using 4.5% buffered formalin. Hind feet were decalcified in buffered formalin containing 5.5% EDTA. Upon decalcification, paws were embedded in paraffin wax blocks, sectioned, and stained with hematoxylin and eosin for microscopic evaluation, which was performed by an expert blinded to the treatments received. Each section was screened for infiltration of neutrophils to
synovium and every joint was scored as follows: 0, normal; 1, minimal; 2, mild; 3, moderate; and 4, marked.

3.6. Analysis of neutrophil and lymphocyte

Whole blood samples were collected by cardiac puncture. The blood was placed in Vacutainer TM tubes containing EDTA (BD science, Franklin Lakes, NJ, USA). Anti-coagulated blood was used for the determination of the blood cell population analysis including neutrophil and lymphocytes in a HEMAVET 950 (Drew Scientific Inc., Miami Lakes, FL, USA).

3.7. Statistical analysis

One-way analysis of variance (ANOVA) was used to determine overall differences among groups, followed by Fisher’s LSD test for individual group comparisons. The results from all comparisons were considered significant at $P < 0.05$. Data were reported as mean ± SD. All data were analyzed using the SPSS 21.0 program (SPSS Inc., IL, USA).
4. Results

4.1. Effect of IK treatment on the development of RA in CAIA model

First, in whether IK treatment by oral administration could serve to obviate inception of the disease in Balb/c mice with CAIA was investigated. IK-treated mice developed less severe arthritis in a dose-dependent manner (Figure 5.1). Both redness and swelling of joints were induced in CAIA group, but those arthritic symptoms were significantly attenuated in IK-treated group (10 mg/kg). Furthermore, IK-treated group (10 mg/kg) showed less severe redness and swelling than the API-treated group. API is one of the bioactive components in plant flavones containing anti-inflammatory activities (Li et al., 2016). Histopathological examinations also indicated that IK treatment reduced synovial hyperplasia, as well as the infiltration of inflammatory cells in the joint space (Figure 4.2). Mean histopathological arthritic score of CAIA-group, IK-treated group (10 mg/kg) and API-treated group were 3.67 ± 0.52, 1.17 ± 0.41, and 2.33 ± 0.82, respectively (Table 4.1 and Figure 4.3).
Figure 4.2. Image of representative microscopic features of knee joint and mice joint. IK and API were administered via oral gavage once per day for 4 days. Arrow indicates infiltration of neutrophils and arrowhead indicates the necrosis.
Table 4.1. Histopathological scores of the groups

<table>
<thead>
<tr>
<th>Organ</th>
<th>Group</th>
<th>PBS</th>
<th>CAIA</th>
<th>CAIA + IK 5 mg/kg</th>
<th>CAIA + IK 10 mg/kg</th>
<th>CAIA + IK 16 mg/kg</th>
<th>CAIA + API 16 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ankle joint</td>
<td>-Inflammation</td>
<td>-</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>±</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>++</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+++</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Grade- -: normal, ±: minimal, +: mild, ++: moderate, +++: marked

No. of examined: 6/group
Figure 4.3. Effect of IK and API on mean histopathological arthritis scores in CAIA mice. Results were expressed as a score (means ± SD) of six mice. *p<0.05 vs. PBS-group, *p<0.05 vs. CAIA-group, and **p<0.05 vs. CAIA + IK (10 mg/kg/day)-group. Every joint was scored as follows: 0, normal; 1, minimal; 2, mild; 3, moderate; and 4, marked.
4.2. Effect of IK treatment on paw volume in CAIA model

In an effort to assess any potential effect of IK on the progression of RA in CAIA model, male Balb/c mice were provided with the PBS with or without IK from day 3 through day 6. CAIA group showed a significant increase in the paw volume at the days 5, 6, and 7 (27.6%, 27.6% and 29.8%, respectively) compared to the PBS group (Figure 4.4). Paw volume was significantly lower in the IK-treated group (10 mg/kg), when compared with the control CAIA group on days 6 and 7 (17.4% and 13.7%, respectively). Therefore, oral administration of IK seems to attenuate the increase of paw volume in CAIA model. Furthermore, paw volume of IK-treated group (10 mg/kg) was lower compared with API-treated group at days 6 and 7 (7.0% and 5.0%, respectively). However, IK-treatment at 5 mg/kg didn’t result in any appreciable difference in paw volume, when the treated group was compared with the control CAIA group.
Figure 4.4. Effect of IK and API on paw volume in CAIA mice. Paw volume were measured using a Digital Plethysmometer every day after LPS injection and oral administration of treatments. The average volume of both hind legs were used. Data are presented as means ± SD (n = 6). *p<0.05 vs. PBS-group and *p<0.05 vs. CAIA-group.
4.3. Effect of IK treatment on paw thickness in CAIA model

In an effort to assess whether IK had any palpable effect on the progression of RA in CAIA model, paw thickness also was measured by digital caliper. CAIA group showed a significant increase in the paw thickness at days 6 and 7 (15.5% and 18.4%, respectively) compared to the PBS group (Figure 4.5). Paw thickness was significantly lower in the IK-treated group (10 mg/kg) compared with the control CAIA group at days 6 and 7 (15.8% and 14.2%, respectively). Therefore, oral administration of IK seemed to attenuate the increase of paw thickness in CAIA model. Furthermore, paw thickness of IK-treated group (10 mg/kg) was lower compared with API-treated group at days 6 and 7 (6.1% and 3.7%, respectively). However, IK-treatment at 5 mg/kg didn’t result in significant difference in paw thickness compared with the control CAIA group.
Figure 4.5. Effect of IK and API on paw thickness in CAIA mice. Paw thickness was measured using a digital caliper every day after LPS injection and oral administration of treatments. The average thickness of both hind legs was used. Data are presented as means ± SD (n = 6). #p<0.05 vs. PBS-group and *p<0.05 vs. CAIA-group.
4.4. Effect of IK treatment on arthritic score in CAIA model

Arthritic score was measured (blindly) by four different people in an effort to further determine whether IK suppressed RA progression in CAIA model. CAIA group showed a significant increase in arthritic score from days 4 through 7 compared with the PBS group (Figure 4.6). The normal group didn’t show any redness and swelling of joints until day 7, however, the control CAIA group showed arthritic symptoms in all joints from days 4 through 7. Those arthritic signs were significantly attenuated in IK-treated group (10 mg/kg) from days 5 through 7. Oral administration of IK alleviated the arthritic symptoms such as redness and swelling of joints in CAIA model. Furthermore, IK-treated group (10 mg/kg) showed delayed onset of the signs when the IK-treated group was compared with API-treated group. However, IK-treatment at 5 mg/kg didn’t show significant benefit with regard to the arthritic score, when compared to the control CAIA group.
Figure 4.6. Effect of IK and API on arthritic score in CAIA mice. Arthritic score was done blindly by using a system based on the number of inflamed joints in front and hind paws, inflammation being defined by swelling and redness at the scale from 0 (no redness and swelling) to 3 (severe swelling with joint rigidity or deformity; maximal score for four paws, 12). Data are presented as means ± SD (n = 6). *p<0.05 vs. PBS-group and *p<0.05 vs. CAIA-group.
4.5. Effect of IK treatment on blood cell population in CAIA model

The neutrophil-to-lymphocyte ratio (NLR) is defined as “the proportion of absolute neutrophil count to lymphocyte count in whole blood cells”. It is generally accepted that NLR is a useful marker for the evaluation of inflammatory activity in chronic inflammatory diseases such as ulcerative colitis (Torun et al., 2012), prostate cancer (Yin et al., 2016), and RA (Mercan et al., 2015). To further investigate whether IK affects blood cell population in CAIA model, NLR was measured from the whole blood sample. CAIA group showed a significant increase in NLR at day 7 compared to the PBS group (Figure 4.7). NLR level was lower in IK-treated group (10 mg/kg) than the control CAIA group by 51.9%. Furthermore, IK-treated group (10 mg/kg) showed lower NLR levels compared with the API-treated group. However, IK-treated group (5 mg/kg) didn’t show significant result compared with the CAIA group in NLR levels.
Figure 4.7. Effect of IK and API on neutrophil-to-lymphocyte ratio in CAIA mice. Whole blood samples were collected by cardiac puncture. Data are presented as means ± SD (n = 6). *p<0.05 vs. PBS-group and *p<0.05 vs. CAIA-group.
5. Discussion

In the present study, we evaluated the anti-arthritic effect of IK and compared with the effect of apigenin (API) on the development of CAIA model. The treatment with IK attenuated the infiltration of immune cells into joint synovium, paw edema, arthritic score, and NLR levels. Furthermore, IK treatment showed more effective anti-arthritic activity compared with API. At day 7 of CAIA, marked infiltration of inflammatory cells into the synovium and cartilage damage were observed. Immune complex in CAIA activates metalloproteinases that cleave collagen and, in turn, induces cartilage matrix loss. From day 3, paw edema manifest as volume and thickness increased in CAIA group. However, introduction of IK therapy markedly reduced clinical arthritic scores and the incidence of clinically evident signs and symptoms and additionally, the therapy seems to have blocked synovial inflammation and erosive joint destruction. The results indicate that IK treatment not only obviates the onset of CAIA, but may also decrease the signs and symptoms, the severity, of the disease.

RA is a chronic inflammatory autoimmune disease and normally treated by pharmacologic and non-pharmacologic therapies. The pharmacological treatment of RA aims to prevent further development of the disease by introducing anti-rheumatoid drugs in the early phase of the disease (Donahue
et al., 2008). However, significant side effects emanate from these treatments (in the later stages of the disease). Many previous studies suggest that nutrient supplementation has the potential for improving RA. These benefits are achieved by attenuating symptoms, and slowing the progression of the RA pathology, as well as obviating potential negative side effects arising from pharmacologic therapy (Rennie et al., 2003). The efficacy of nutrient supplementation is based on phytochemicals such as polyphenol, flavonoid, tannin, anthocyanin, and glycoside.

API, used as positive control in this study, is a dietary flavonoid found in fruits, vegetables, and herbs. Many studies have been reported that API has anti-arthritic properties: Suppression of the collagenase activity involved in RA (Lee et al., 2007); protection against CIA (Li et al., 2016); induction of apoptosis in rheumatoid fibroblast-like synoviocytes by ROS and activation of ERK1/2 (Shin et al., 2009). Unlike previous study (Li et al., 2016) which API was administered intraperitoneally (20 mg/kg), API was administered by oral gavage (16 mg/kg) in this study. Curcumin is the major curcuminooid of turmeric (Curcuma longa). It has been shown to inhibit acute and chronic joint inflammation (Funk et al., 2006), as well as suppress the nuclear factor kappa B (NF-κB) which is pivotal regulator in arthritic patient (Roshak et al., 2002). Epigallocatechin-3-gallate (EGCG) is the major active component of
green tea (*Camellia sinensis*) and is believed to ameliorate the signs and symptoms of collagen-induced arthritis in mice (Haqqi *et al*., 1999) and inhibit the IL-1β-induced iNOS and COX-2 in human chondrocytes derived from arthritic cartilage (Ahmed *et al*., 2002). Gallic acid is a natural polyphenolic acid found in gall nuts, sumac, oak bark, tea leaves, and grapes. Several findings suggest figuring out the anti-arthritic activity of gallic acid: inhibition the expression of several pro-inflammatory genes in TNF-α treated fibroblast from patients with rheumatoid arthritis (Chung *et al*., 2010); induction caspase-3 dependent apoptosis of rheumatoid arthritis fibroblast-like synoviocytes (Yoon *et al*., 2013). Resveratrol is a polyphenol present in grape skin, seed, and red wine. This substance has been shown to prevent synovial hyperplasia of human rheumatoid arthritis synovial cells (Shakibaei *et al*., 2008) and modulates collagen-induced arthritis by inhibiting Th17 and B-cell function (Leonarda *et al*., 2003).

IK is an essential oil component in *P. frutescens*. In previous reports, we already examined various pharmacological activities of IK: anti-inflammatory activities in RAW264.7 cells (Jin *et al*., 2010); anti-cancer activities in human DLD1 cells (Cho *et al*., 2011a); anti-obesity activities in 3T3-L1 cells and C57BL/6J mice (So *et al*., 2015); and anti-oxidant activities in RAW264.7 cells (Study 1). To our knowledge, this is the first
report to the effects that that IK has real, actual, material and palpable anti-arthritic effect in CAIA animal model. The results of this study encourage the therapeutic use of IK or *P. frutescens* var. *crispa* in the chronic inflammatory situation like RA.

Because RA is caused by complex etiology, different animal models are utilized to evaluate the efficacy of any new therapy. CIA has been widely used to study RA and shares many histopathological features of the human counterpart (Cho *et al.*, 2007). However, the susceptibility for CIA is low in Balb/c mice and induction needs long period. CAIA is a relevant model for studying the efferent phase of RA, where leukocytes are attracted and respond to the immune complex in the joint (Nandakumar *et al.*, 2003). And male mice generally developed stronger arthritic symptoms and had a higher incidence of arthritis development (Beckmann *et al.*, 2016). For these reasons, we induced RA in male Balb/c mice using CAIA for investigating anti-arthritic activity of IK.
V. Study 3:
Comparison of the anti-inflammatory activities of supercritical carbon dioxide versus ethanol extracts from leaves of radiation mutant *Perilla frutescens var. crispa* (*The part of the results was published in Molecules 2017, 22:311*)
1. Abstract

In this study, we aimed to compare supercritical carbon dioxide extraction and ethanol extraction for isoegomaketone (IK) content in perilla leaf extracts and to identify the optimal method for offering radiation mutant *P. frutescens* var. *crispa* to functional food. We measured the IK concentration using HPLC from the extracts and production of inflammatory mediators in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells treated with extracts. The IK concentration was 5-fold higher in perilla leaf extracts prepared by supercritical carbon dioxide extraction (SFE) compared with that in perilla leaf extracts prepared by ethanol extraction (EE). When the extracts were treated in LPS-induced RAW 264.7 cells at 25 µg/mL, the SFE inhibited the expression of inflammatory mediators such as nitric oxide (NO), monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6), interferon-β (IFN-β), and inducible nitric oxide synthase (iNOS) to a much greater extent compared with EE. Taken together, supercritical carbon dioxide extraction is considered optimal process for obtaining high concentration of IK and anti-inflammatory activities in leaf extracts from the radiation mutant *P. frutescens* var. *crispa*.
2. Introduction

Perilla frutescens (L.) Britt. is an annual herbaceous plant in the Lamiaceae family, which has been widely cultivated in India, China, Japan, and Korea. Its leaves are used in Asian cuisines, and its seeds are used to for extraction of edible oil in Korea. It is also commonly used in traditional Chinese medicine. *P. frutescens* contains several components including rosmarinic acid, luteolin, apigenin, ferulic acid, (+)-catechin, triterpenoids, and caffeic acid (Peng *et al*., 2005; Woo *et al*., 2014). Recent studies demonstrated the pharmacological activities of extracts from *P. frutescens*. Ethanol extracts from *P. frutescens* leaves were shown to possess anti-cancer (Kwak and Ju, 2015), anti-inflammatory (Lee and Han, 2012), and anti-bacterial (Kim *et al*., 2011) activities. In addition, methanol extracts from *P. frutescens* leaves showed anti-allergy, anti-inflammatory (Liu *et al*., 2013), and anti-cancer (Wang *et al*., 2013) activities. Water extracts from *P. frutescens* leaves improved gastrointestinal discomfort (Sybille *et al*., 2014) and suppressed tumor necrosis factor-alpha production in mice (Ueda and Yamazaki, 1997).

Previously, we identified a radiation mutant *P. frutescens* var. *crispa* with an approximately 10-fold greater isoegomaketone (IK) level than that of the wild-type (Park *et al*., 2009b). IK, an essential oil component in *P. frutescens*, exhibits several biological activities. It has been shown to suppress NO
production in LPS-treated RAW264.7 cells (Jin et al., 2010) and to induce apoptosis in several cancer cells through both caspase-dependent and caspase-independent pathways (Cho et al., 2011a; Kwon et al., 2014a).

Supercritical carbon dioxide (SC-CO₂) extraction is a novel and powerful technique for extracting lipophilic components (Guan et al., 2007; Sookwong et al., 2016). SC-CO₂ extraction has several advantages over the use of organic solvents, because CO₂ is non-toxic, non-reactive, non-corrosive, and inexpensive. SC-CO₂ extraction of P. frutescens seed has been performed previously (Jung et al., 2012; Kim et al., 1998), but SC-CO₂ extraction method has not been used for the extraction of IK from P. frutescens leaves. In the present study, we identified the optimal extraction method from the leaves of radiation mutant P. frutescens var. crispa for applying to functional food by comparing SFE with EE.
3. Materials and Methods

3.1. Materials

Leaves of the radiation mutant *P. frutescens* var. *crispa* were harvested at Advanced Radiation Technology Institute (Jeongeup, Korea). DMEM and fetal bovine serum (FBS) were purchased from Hyclone (Logan, UT, USA). LPS, phenylmethylsulfonyl fluoride, sodium nitrite, DMSO, Griess reagent, and protease inhibitor cocktail were purchased from Sigma-Aldrich (St. Louis, MO, USA). Goat anti-rabbit IgG HRP-conjugated antibody was purchased from Invitrogen (Carlsbad, CA, USA). The RNeasy kit was purchased from QIAGEN (Valencia, CA, USA). The EZ-Cytox Cell Viability assay kit was purchased from Daeil Lab Services (Seoul, Korea). The Advantage RT-for-PCR kit was purchased from Clontech (Mountain view, CA, USA). SYBR Premix was purchased from Takara Bio Inc (Shiga, Japan). NP40 cell lysis buffer was purchased from Biosource (San Jose, CA, USA). Rabbit polyclonal antibodies against β-tubulin and iNOS were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA).

3.2. Cell culture
RAW 264.7 cells were cultured in DMEM supplemented with 10% FBS, penicillin (100 U/mL), and streptomycin (100 μg/mL) and incubated at 37°C in an atmosphere of 5% CO₂.

3.3. Ethanol extraction

The dried leaves of *P. frutescens* var. *crispa* (10 g) were extracted with ethanol (100 mL) in a shaking incubator for 6 h at 60°C and filtered through filter paper (Whatman No. 4). Ethanol was of analytical grade (≥95.0%) and obtained from Duksan Co. (Seoul, Korea). The moisture content in dried sample was found to be 5.3 ± 1.4%. The solvent was evaporated in vacuo to afford the ethanol extract (0.9 g). Ethanol extraction was repeated three times.

3.4. SC-CO₂ extraction

A laboratory-scale supercritical fluid extraction system (Ilshin Autoclave Co., Daejeon, Korea) was used for SC-CO₂ extraction of perilla leaves. The dried perilla leaves were ground using a milling machine, and the powder (180 g) was transferred to an extraction column. The moisture content in the powder sample was found to be 5.3 ± 1.4%. The powder sample was held in place within the extraction column by glass wool mounted on both ends of the extractor. After the extractor reached the predetermined temperature (50°C)
and pressure (400 bar), the sample was allowed to stand for 10 min for temperature (50°C) and pressure (400 bar) equilibration. Then, the extraction was performed by passing the CO₂ (99.9%) through the column at a flow rate of 60 mL/min at 50°C and 400 bar for 3 h. The extracted oil was separated by pressure reduction and collected in the trap. The collected oils were stored in a refrigerator at 4°C. SC-CO₂ extraction was repeated two times.

3.5. HPLC analysis

HPLC analysis was conducted using the Agilent Technologies model 1100 instrument (Agilent Technologies, Santa Clara, CA, USA). The samples were analyzed by reverse phase (C18) HPLC analysis (YMC-Triart C18, 4.6 × 250 mm I.D, S-5 μm, flow rate 1 mL/min, UV detection: 254 nm) using acetonitrile:water (44:55 to 55:45, 30 min) as the gradient solvent. Solvents used in HPLC analysis were of analytical grade (≥99.9%) and obtained from Sigma Chemical Co. (St. Louis, MO, USA).

3.6. Cytotoxicity assay

To measure cell viability, we used the EZ-Cytox cell viability assay kit (Daeil Lab Service, Seoul, Korea). The cells were cultured in a 96-well flat-bottom plate at a density of 2.0 × 10⁵ cells/mL for 24 h. The cells were
subsequently treated with various concentrations of the extracts for an additional 24 h. After the incubation period, 10 μL EZ-Cytox were added to each well and incubated for 4 h at 37°C and 5% CO₂. Cell viability was determined by measuring formazan production using an ELISA reader at an absorbance of 480 nm with a reference wavelength of 650 nm.

3.7. Determination of NO concentration

Nitrite in the cellular media was measured by the Griess method (Khan et al., 2009). The cells were cultured in a 96-well plate and treated with LPS (1 μg/mL) for 18 h. The medium was collected at the end of the culture period for determination of nitrite production. Equal volumes of Griess reagent and cellular supernatant were mixed, and the absorbance was measured at 540 nm. The concentration of nitrite (μM) was calculated using a standard curve generated from known concentrations of sodium nitrite dissolved in DMEM. The results are presented as the means ± SD of four replicates in one representative experiment.

3.8. Preparation of cell extracts and western blot analysis

Cells were washed once with cold PBS and harvested by pipetting. For whole-cell extract preparation, the cells were lysed in NP40-based cell lysis
buffer containing protease inhibitor cocktail (Sigma, St. Louis, MO, USA) and phenylmethylsulfonyl fluoride (Sigma) for 30 min on ice. The protein concentration of the cell lysate was determined using the Bio-Rad Protein Assay (Bio-Rad, Hercules, CA, USA). Aliquots of 50 µg protein were loaded and electrophoresed on 10% SDS-polyacrylamide gels and then transferred to nitrocellulose membranes (Hybond ECL Nitrocellulose; GE Healthcare, Chandler, AZ, USA). The membranes were washed once with wash buffer consisting of PBS with 0.05% Tween 20 and blocked with blocking buffer consisting of PBS with 5% skim milk and 0.05% Tween 20 for 1 h. After blocking, the membranes were incubated with rabbit anti-HO-1 or anti-β-tubulin primary antibody overnight at 4°C. Rabbit anti-iNOS polyclonal antibody was diluted 1:1000, and rabbit anti-β-tubulin polyclonal antibody was diluted 1:200 in blocking buffer. After incubation, the membranes were washed and subsequently incubated for 1 h at room temperature with goat anti-rabbit IgG HRP-conjugated secondary antibody diluted 1:5000 in blocking buffer. The membranes were washed and the protein bands detected by chemiluminescence analysis (GE Healthcare).

3.9. Quantitative real-time PCR
The cells (2 × 10^5 cell/mL) were cultured in a 100-mm petri dish for 24 h. Total RNA was isolated using the RNeasy Kit according to the manufacturer’s instructions. The Advantage RT-for-PCR kit was used for reverse transcription according to the manufacturer’s protocol. The Chromo4 real-time PCR detection system (Bio-Rad) and iTaqTM SYBRR Green Supermix (Bio-Rad) were used for RT-PCR amplification of HO-1 and β-actin under the following conditions: 50 cycles of 94°C for 20 s, 60°C for 20 s and 72°C for 30 s. All of the reactions were repeated independently at least three times to ensure reproducibility of the results. Primers were purchased from Bioneer Corp (Daejeon, Korea). Primer sequences are shown in Table 4.1.
Table 5.1. Primers sequences for Real Time-PCR analysis

<table>
<thead>
<tr>
<th>Target gene</th>
<th>5' to 3' direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>iNOS</td>
<td></td>
</tr>
<tr>
<td>Forward</td>
<td>T G A G A G G G A A A T C G T G C G T G A C</td>
</tr>
<tr>
<td>Reverse</td>
<td>G C T C G T T G C C A A T A G T G A T G A C C</td>
</tr>
<tr>
<td>IL6</td>
<td></td>
</tr>
<tr>
<td>Forward</td>
<td>G T T C T C T G G G A A A T C G T G G A A</td>
</tr>
<tr>
<td>Reverse</td>
<td>G C A A G T G C A T C A T C G T T G T T C</td>
</tr>
<tr>
<td>MCP1</td>
<td></td>
</tr>
<tr>
<td>Forward</td>
<td>G C A T C T G C C C C T A A G G T C T T C A</td>
</tr>
<tr>
<td>Reverse</td>
<td>A A G T G C T T G A G G T G G T T G T G G</td>
</tr>
<tr>
<td>Beta actin</td>
<td></td>
</tr>
<tr>
<td>Forward</td>
<td>T C C T A C A C C A C A C A A A C T G T G T G C</td>
</tr>
<tr>
<td>Reverse</td>
<td>C T C C A A T C T C T G C C T A T C C G T C T C</td>
</tr>
</tbody>
</table>
3.10. Measurement of MCP-1, IFN-β, and IL-6 by ELISA

The levels of MCP-1, IFN-β, and IL-6 in the culture medium were measured using an ELISA kits (R&D Systems, Minneapolis, MN, USA) according to the manufacturers’ protocols.

3.11. Statistical analysis

One-way analysis of variance (ANOVA) was used to determine overall differences among groups, followed by Fisher’s LSD test for individual group comparisons. The results from all comparisons were considered significant at $P < 0.05$. Data were reported as mean ± SD. All data were analyzed using the SPSS 21.0 program (SPSS Inc., IL, USA).
4. Results

4.1. Yield and composition of SFE and EE

In this study, we obtained extracts from the radiation mutant *P. frutescens* var. *crispa* leaves using supercritical carbon dioxide extraction and ethanol extraction methods. To our knowledge, this is the first study to apply the SC-CO$_2$ extraction technique for perilla leaves. Generally, temperature and pressure influence the yield from SC-CO$_2$ extraction. In the case of perilla seed, when the pressure was above 340 bar, the yield was saturated with 3 kg CO$_2$ regardless of temperature and pressure (Kim *et al*., 1998). And the solubility of perilla oil at 400 bar in SC-CO$_2$ was constant at all temperatures (Kim *et al*., 1998). To obtain maximum SC-CO$_2$ extraction yield from perilla leaves, we used sufficient CO$_2$ at 400 bar. The extraction yields of SFE and EE were 5.0 ± 0.2% and 9.0 ± 0.2%, respectively (Table 5.2). Figure 5.1 shows the compositions of the two extracts. SFE contained three main oil components, including isoegomaketone (IK) and perilla ketone (PK), but EE contained numerous components, including polar and nonpolar substances. These differences in composition are due to the difference in solubility between ethanol and CO$_2$. IK content was 6.3 ± 0.2 mg/g and 63.8 ± 2.6 mg/g in EE and SFE, respectively. And PK content was 13.3 ± 0.3 mg/g and 146.9 ± 5.6 mg/g in EE and SFE, respectively. IK and PK contents were
approximately 5-fold higher in SFE compared with EE, given that extraction yield of SFE was 2-fold lower than that of EE. While the extraction yield from SC-CO₂ extraction method was lower than that from ethanol extraction method, SC-CO₂ extraction was more effective in obtaining an extract with higher IK content from the radiation mutant *P. frutescens* var. *crispa* leaves.
Table 5.2. Extraction yield and HPLC data of samples extracted with ethanol and SC-CO$_2$ from *P. frutescens* var. *crispa* leaves

<table>
<thead>
<tr>
<th>Extraction Method</th>
<th>Extraction Yield (%)</th>
<th>Isoegomaketone (IK)</th>
<th>Perillaketone (PK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol</td>
<td>10</td>
<td>6.3</td>
<td>13.3</td>
</tr>
<tr>
<td>SC-CO$_2$</td>
<td>5</td>
<td>63.8</td>
<td>146.9</td>
</tr>
</tbody>
</table>
Figure 5.1. HPLC chromatograms. (A) SFE (50°C, 400 bar, 3h, and CO₂ flow rate of 60 mL/min) and (B) EE (shaking incubation for 6 h at 60°C) at 254 nm.
4.2. Effect of SFE and EE on cell viability

To determine the cytotoxicity of SFE and EE, RAW 264.7 cells were treated with two extracts at concentrations of 5, 10, and 25 µg/mL for 24 h. As shown in Figure 5.2, neither extracts affected cell viability at the concentration lower than 25 µg/mL. Therefore, we performed all the experiments using treatment with extracts lower than 25 µg/mL.
Figure 5.2. Effects of SFE and EE on cell viability. Cell viability was determined using the EZ-Cytox cell viability assay kit. The cells were treated with various concentrations of SFE and EE for 24 h. After the incubation period, 10 μL of the kit solution were added to each well and incubated for an additional 4 h. Data are presented as means ± SD (n = 3).
4.3. Effect of SFE and EE on LPS-stimulated NO production in RAW264.7 cells

We first compared the anti-inflammatory effects of SFE and EE on nitric oxide (NO) production in LPS-treated RAW 264.7 cells. NO is a potentially toxic gas produced from the amino acid l-arginine via nitric oxide synthase (NOS) activity. Appropriate levels of NO are important for organ protection, but excessive NO production is associated with many diseases, including cancer, arthritis, and diabetes (Ruan, 2002; Tylor et al., 1997). RAW 264.7 cells were treated with SFE and EE for 2 h before the stimulation with 1 μg/mL LPS for 18 h. NO production increased significantly after incubation with LPS (Figure 5.3A). Both extracts decreased the levels of LPS-stimulated NO production in a dose dependent manner. However, SFE exerted 5-fold greater inhibitory activity on NO production compared with EE (Figure 5.3A). To determine whether suppression of NO production by SFE and EE was due to inhibition of iNOS expression, we measured protein and mRNA levels of iNOS. Western blot analyses showed that LPS-induced increase in iNOS levels were attenuated by treatment with SFE in a dose-dependent manner (Figure 5.3B). Furthermore, RT-PCR analyses showed that iNOS mRNA level was increased by LPS stimulation and this increase was significantly reduced by SFE treatment in a dose dependent manner.
(Figure 5.3C). While EE also decreased iNOS mRNA levels, its magnitude of inhibition was much lower than that of SFE. These results indicate that IK plays an important role in the anti-inflammatory activity of SFE and has greater anti-inflammatory activity than the polar components in EE.
Figure 5.3. Effects of SFE and EE on NO production and iNOS expression levels in RAW 264.7 cells. (A) Cellular media (100 µl) were mixed with equal volumes of Griess reagent. Nitrite levels were measured as an indicator of NO production as described in the Materials and Methods section. Data are presented as means ± SD (n = 4). (B) A representative western blot of iNOS protein expression. (C) Total RNA was isolated and used to measure the expression level of iNOS mRNA by quantitative real-time PCR. Data are presented as means ± SD (n = 3). #p<0.05 vs. the negative control, *p<0.05 vs. LPS alone-treated group, and **p<0.05 vs. the EE-treated group.
4.4. Effect of SFE and EE on production of inflammatory mediators in LPS-stimulated RAW264.7 cells

To determine the effects of SFE and EE treatment on the production of inflammatory mediators, RAW 264.7 cells were treated with SFE and EE for 2 h before the stimulation with 1 μg/mL LPS for 4 h and the levels of monocyte chemoattractant protein-1 (MCP-1), interferon-β (IFN-β), and interleukin-6 (IL-6) were measured. As shown in Figure 5.4, both SFE and EE treatments suppressed the production of MCP-1, IFN-β, and IL-6 in LPS-stimulated RAW 264.7 cells. However, SFE showed about 3-4 fold stronger inhibitory activity on the production of all inflammatory mediators compared with EE. Furthermore, SFE treatment lowered IL-6 and MCP-1 mRNA levels to a greater extent than EE (Figure 5.5).
Figure 5.4. Effects of SFE and EE on the production of inflammatory mediators in RAW 264.7 cells. RAW 264.7 cells were treated with each extract for 2 h prior to addition of LPS (1 µg/mL) and further incubated for 4 h. MCP-1 (A), IFN-β (B), and IL-6 (C) levels were measured in the cellular medium using an ELISA kit. Data are presented as means ± SD (n = 3). #p<0.05 vs. the negative control, *p<0.05 vs. LPS alone-treated group, and **p<0.05 vs. the EE-treated group.
Figure 5.5. Effects of SFE and EE on IL-6 and MCP-1 expression levels in RAW 264.7 cells. Total RNA was isolated and used to measure the expression levels of IL-6 (A) and MCP-1 (B) mRNA by quantitative real-time PCR. Data are presented as means ± SD (n = 3). *p<0.05 vs. the negative control, *p<0.05 vs. LPS alone-treated group, and **p<0.05 vs. the EE-treated group.
5. Discussion

Previously, a mutant *P. frutescens* var. *crispa* obtained by mutagenesis using gamma rays (Jin *et al*., 2010), which had much higher anti-inflammatory activity than the wild-type control, was identified. After HPLC analysis and assay-based purification of the mutant, we showed that the enhanced anti-inflammatory activity was due to a 10-fold increase in IK content in the leaves compared with wild-type (Park *et al*., 2009b). There have been many reports regarding extraction from perilla using organic solvents (Kwak and Ju, 2015; Lee and Han, 2012; Kim *et al*., 2011; Liu *et al*., 2013; Wang *et al*., 2013; Sybille *et al*., 2014; Ueda and Yamazaki, 1997), SC-CO₂ (Jung *et al*., 2012; Kim *et al*., 1998), and microwave-assisted techniques (Shao *et al*., 2012). In this study, we focused on the SC-CO₂ method because the mutant *P. frutescens* var. *crispa* has a high content of IK and SC-CO₂ method had never been used for obtaining extract from perilla leaves. Perilla oil is present mostly in the seeds; therefore, the SC-CO₂ technique has been used previously only on seeds and not on leaves. However, IK content was approximately 5-fold higher in leaves compared with seeds from the mutant *P. frutescens* var. *crispa* (data not shown). Generally, water extraction method is used in the food industries, because it is an efficient and environmentally friendly technique for extracting various compounds from
plants (Siti et al., 2016). And extracts prepared by water extraction method can be applied to various forms of food processing. However, it was not an effective method for extracting IK from perilla leaves. The extract from mutant perilla leaves using water extraction method did not contain IK. Extraction of IK from mutant perilla leaves had been accomplished by employing organic solvents such as methanol, ethanol, or hexane. However, when organic solvents are used for extraction, an additional process to evaporate these solvents from extracts is required. In addition, there is increasing public concern for the possibility of toxic solvent residues remaining in the final product. For the above reasons, we used SC-CO₂ method to extract IK from mutant perilla leaves.

In this study, we obtained extracts from the radiation mutant *P. frutescens* var. *crispa* leaves using supercritical carbon dioxide extraction and ethanol extraction. The extraction yields of SFE and EE were 5.0 ± 0.2% and 9.0 ± 0.2%, respectively. IK and PK contents were approximately 5-fold higher in SFE compared with EE, given that extraction yield of SFE was 2-fold lower than that of EE. Although the extraction yield from SC-CO₂ extraction method was lower than that from ethanol extraction method, SC-CO₂ extraction was more effective in obtaining an extract with higher IK content from the radiation mutant *P. frutescens* var. *crispa* leaves.
Furthermore, SFE showed much higher inhibitory activity on the production of all inflammatory mediators, such as NO, MCP-1, IFN-β, and IL-6, than did EE. The better anti-inflammatory activity of SFE can be explained by the higher IK content.

IK, an essential oil present in *P. frutescens*, exhibits several biological activities, including anti-inflammatory (Jin *et al.*, 2010) and anti-cancer effects (Cho *et al.*, 2011a; Kwon *et al.*, 2014a). While SFE had a higher IK content, EE contained several anti-inflammatory polar compounds, such as pomolic acid, tormentic acid, corosolic acid (Banno *et al.*, 2004), and rosmarinic acid methyl ester (So *et al.*, 2016). However, the concentration of these compounds in EE was too low to exert anti-inflammatory activities in LPS-stimulated RAW 264.7 cells. The superior anti-inflammatory activities of SFE seemed to result from the higher IK content. Furthermore, we tried to adopt SFE and EE into food processing. Unlike SFE, EE had disadvantage due to the mixture of both polar and nonpolar ingredients. Therefore, SC-CO$_2$ is a much more effective method of acquiring extract from mutant perilla leaves for the future development of functional foods.
VI. Study 4

Anti-arthritic activities of the supercritical carbon dioxide extract from radiation mutant *Perilla frutescens* var. *crispa* in collagen antibody-induced arthritis
1. Abstract

In this study, we determined the anti-arthritic effects of the radiation mutant *Perilla frutescens* var. *crispa* leaf extract (SFE-M) and wild type leaf extract (SFE-W), both prepared by supercritical carbon dioxide (SC-CO$_2$) extraction, on the development of collagen antibody-induced arthritis (CAIA) in Balb/c mice. Experimental animals were randomly divided into four groups: normal, CAIA, CAIA + SFE-M (100 mg/kg/day), and CAIA + SFE-W (100 mg/kg/day) and respective treatments were administered via oral gavage once per day for 4 days. Mice treated with SFE-M developed less severe arthritis than the control CAIA mice. They showed significantly improved arthritic score, paw volume, and paw thickness compared to the control CAIA mice from days 3 through 7. Furthermore, histopathological examination of ankle for inflammation showed that infiltration of inflammatory cells and edema formation were reduced by SFE-M treatment. Similarly, neutrophil to lymphocyte ratio (NLR) in whole blood was lower in mice treated with SFE-M by 37% compared to the control CAIA mice. However, SFE-W didn’t show any significant result compared to the control CAIA group. Taken together, SFE-M treatment delays the onset of the arthritis and alleviates the manifestations of arthritis in CAIA mice.
2. Introduction

Perilla frutescens (L.) Britt. is an annual herbaceous plant in the Lamiaceae family. Its leaves are used as food in Asian cuisines, and its seeds are used to make edible oil in Korea. In traditional medicine practices, *P. frutescens* is also used to treat a variety of illnesses including cough, phlegm, back pain, and diabetes (Han *et al*., 1994; Kim *et al*., 2007). In previous studies, extracts from *P. frutescens* var. *crispa* were acquired using various methods to examine the pharmacological activities: the ethanol extract (Lee and Han, 2012) and the supercritical carbon dioxide (SC-CO₂) extract showed anti-inflammatory effects; the water and ethanol extracts had antioxidant effects (Cho *et al*., 2011b); the methanol extract exerted a preventative action against Alzheimer’s disease (Choi *et al*., 2004).

SC-CO₂ extraction is a novel and powerful technique for extracting lipophilic components (Guan *et al*., 2007; Sookwong *et al*., 2016). SC-CO₂ extraction has several advantages over the use of organic solvents, because CO₂ is non-toxic, non-reactive, non-corrosive, and inexpensive. SC-CO₂ extraction of *P. frutescens* has been performed previously using seeds (Jung *et al*., 2012; Kim *et al*., 1998).

Rheumatoid arthritis (RA) is a systemic autoimmune disease in which chronic joint inflammation leads to cartilage destruction and bone erosion
(Scott et al., 2010). Typically, RA is treated by pharmacologic and non-pharmacologic therapies. The pharmacological treatment of RA aims to prevent further development of the disease using anti-rheumatic drugs in the early course of the disease (Donahue et al., 2008). However, the use of standard drugs in RA caused significant side effects from these treatments in the later stages of the disease. Therefore, the renewed interest in botanical origin remedies which lack severe side effects and have millennia-proven efficacy is growing (Umar et al., 2014). These remedies maybe have a beneficial effect not only on the symptoms but also on the development of the disease (Akhtar et al., 2011).

Mutation induction and selection of mutants have been powerful tools for plant breeding as well as for physiological and molecular studies for the past 80 years. X-ray, γ (gamma) ray irradiation, and chemical treatments have been used for mutation breeding in a wide range of plants (Nakano et al., 2010). Over the past 40 years, the use of γ rays in mutation induction has become particularly prevalent, while the use of X-rays has been significantly reduced. Gamma rays are a type of ionizing radiation which interacts with atoms to induce free radicals in cells which damage or modify important components of plant cells such as chromosome.
In the previous report, the radiation mutant *P. frutescens* var. *crispa*, which has enhanced anti-inflammatory activities compared to wild type, was found (Park *et al.*, 2009b). Furthermore, the extract from radiation mutant *P. frutescens* var. *crispa* (SFE-M) prepared by SC-CO$_2$ extraction had a higher anti-inflammatory activities compared to the extract from wild type (SFE-W) in RAW264.7 cells (Park *et al.*, 2016). Although there is strong evidence that SFE-M has anti-inflammatory effect, whether SFE-M can exert a treatment effect on inflammatory disease such as RA has not been investigated. Therefore, the present study was undertaken to determine the effect of SFE-M on RA in CAIA animal model.
3. Materials and Methods

3.1. Animals

Animals were maintained in accordance with the guidelines of the Guide for the Care and Use of Laboratory Animals (Institute of Laboratory Animal Resources, KAERI(Korea Atomic Energy Research Institute)-IACUC-2017-016). Male Balb/c mice (4 weeks) were purchased from Orient Bio Inc. (Seongnam, Korea) and allowed to acclimate for 1 week prior to the beginning of the study. Mice were maintained in a room which controlled light/dark cycle (12h/12h), temperature (about 23 ± 2°C), and humidity (55 ± 10%).

3.2. SC-CO\textsubscript{2} extraction

A laboratory-scale supercritical fluid extraction system (Ilshin Autoclave Co., Daejeon, Korea) was used for SC-CO\textsubscript{2} extraction of perilla leaves (radiation mutant and wild type). The dried perilla leaves were ground using a milling machine, and the powder (180 g) was transferred to an extraction column. The moisture content in the powder sample was found to be 5.3 ± 1.4%. The powder sample was held in place within the extraction column by glass wool mounted on both ends of the extractor. After the extractor reached the predetermined temperature (50°C) and pressure (400 bar), the sample was
allowed to stand for 10 min for temperature (50°C) and pressure (400 bar) equilibration. Then, the extraction was performed by passing the CO₂ (99.9%) through the column at a flow rate of 60 mL/min at 50°C and 400 bar for 3 h. The extracted oil was separated by pressure reduction and collected in the trap. The collected oils were stored in a refrigerator at 4°C. SC-CO₂ extraction was repeated two times.

3.3. HPLC analysis

HPLC analysis was conducted using the Agilent Technologies model 1100 instrument (Agilent Technologies, Santa Clara, CA, USA). The samples were analyzed by reverse phase (C18) HPLC analysis (YMC-Triart C18, 4.6 × 250 mm I.D, S-5 μm, flow rate 1 mL/min, UV detection: 254 nm) using acetonitrile:water (44:55 to 55:45, 30 min) as the gradient solvent. Solvents used in HPLC analysis were of analytical grade (≥99.9%) and obtained from Sigma Chemical Co. (St. Louis, MO, USA).

3.4. Sample preparation and treatment

SFE-M and SFE-W were suspended into corn oil with concentration of 20 mg/mL and were treated with 100 μL per mouse by oral administration. Mice were fasted at 7 p.m. and were fed at 10 a.m. after oral administration from
3.5. Collagen antibody-induced arthritis

Mice were randomly divided into 5 groups; (1) Corn oil only (n = 6), (2) CAIA (n = 6), (3) CAIA plus SFE-M (100 mg/kg, n = 6), (4) CAIA plus SFE-W (100 mg/kg, n = 6). A cocktail of four monoclonal antibodies to type II collagen (ArthritoMab; MD Bioscience, Saint Paul, MN, USA; 2 mg/100 μl) was injected intravenously at day 0. Mice in corn oil group were injected with equal volume of corn oil. At day 3, all animals except corn oil group were intraperitoneally injected with LPS (Escherichia coli 055:B5; MD Biosciences; 50 μg/200 μl endotoxin-free water). And treatments (corn oil, SFE-M, SFE-W) were administered by oral gavage once a day from day 3 to day 6. Mice were examined for the development of arthritis for 4 days after LPS injection (Figure 6.1).
Figure 6.1. The scheme of induction of CAIA and sample treatment
3.6. Assessment of clinical signs of inflammation

Paw volumes were measured using a Digital Plethysmometer (LE7500, Panlab, Spain) every day after LPS injection. The hind leg was soaked in the buffer calibrated with 1 mL standard sinker. The increased volume was measured. The average volume of both hind legs was used. Paw thickness was measured using a digital caliper (Mitutoyo, Andover, UK) every day after LPS injection. The average thickness of both hind legs was used. Arthritic score was done blindly by using a system based on the number of inflamed joints in front and hind paws, inflammation being defined by swelling and redness at the scale from 0 (no redness and swelling) to 3 (severe swelling with joint rigidity or deformity; maximal score for four paws, 12).

3.7. Histopathological assessment

Hind feet were removed after euthanization and fixed using 4.5% buffered formalin. Hind feet were decalcified in buffered formalin containing 5.5% EDTA. Upon decalcification, paws were embedded in paraffin wax blocks, sectioned, and stained with hematoxylin and eosin for microscopic evaluation, which was performed by an expert blinded to the treatments received. Each section was screened for infiltration of neutrophils to
synovium and every joint was scored as follows: 0, normal; 1, minimal; 2, mild; 3, moderate; and 4, marked.

3.8. Analysis of neutrophil and lymphocyte

Whole blood samples were collected by cardiac puncture. The blood was placed in Vacutainer TM tubes containing EDTA (BD science, Franklin Lakes, NJ, USA). Anti-coagulated blood was used for the determination of blood cell population analysis including neutrophil and lymphocytes in a HEMAVET 950 (Drew Scientific Inc., Miami Lakes, FL, USA).

3.9. Statistical analysis

One-way analysis of variance (ANOVA) was used to determine overall differences among groups, followed by Fisher’s LSD test for individual group comparisons. The results from all comparisons were considered significant at $P < 0.05$. Data were reported as mean ± SD. All data were analyzed using the SPSS 21.0 program (SPSS Inc., IL, USA).
4. Results

4.1. Composition of SFE-M and SFE-W

In this study, leaf extracts from radiation mutant *P. frutescens* var. *crispa* and wild type were acquired using SC-CO₂ method. Figure 6.2 shows the compositions of the two extracts. IK content was approximately 7-fold higher in SFE-M compared with SFE-W. IK content was 76.0 ± 0.7 mg/g and 10.8 ± 0.3 mg/g in SFE-M and SFE-W, respectively.
Figure 6.2. HPLC chromatograms. (A) SFE-M and (B) SFE-W
4.2. Effect of SFE-W and SFE-M treatment on the development of RA in CAIA model

At first, whether SFE-W treatment by oral administration prevented initiation of disease in Balb/c mice with CAIA was investigated. SFE-M-treated mice developed less severe arthritis (Figure 6.3). Both redness and swelling of joints were induced in the control CAIA group, but those arthritic symptoms were significantly attenuated in SFE-M-treated group (100 mg/kg). Histopathological examinations also indicated that SFE-M treatment reduced synovial hyperplasia and the infiltration of inflammatory cells in the joint space (Figure 6.3). Mean histopathological arthritic score of CAIA-group, SFE-M-treated group, and SFE-W-treated group were 2.33 ± 0.82, 0.00 ± 0.00, 1.00 ± 0.89, respectively (Table 6.1 and Figure 6.4). The weight of mice was reduced from days 3 through 6 in all CAIA-induced groups except the corn oil group (Figure 6.5).
Figure 6.3. Image of representative microscopic features of knee joint and mice joint. Samples were treated with a concentration of 100 mg/kg. SFE-M and SFE-W were administered via oral gavage once per day for 4 days.
Table 6.1. Histopathological scores of the groups

<table>
<thead>
<tr>
<th>Organ</th>
<th>Group</th>
<th>Corn oil</th>
<th>CAIA</th>
<th>CAIA + SFE-M</th>
<th>CAIA + SFE-W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ankle joint</td>
<td>-Inflammation</td>
<td>-</td>
<td>6</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>±</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>++</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>+++</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Grade- -: normal, ±: minimal, +: mild, ++: moderate, +++: marked

No. of examined: 6/group
Figure 6.4. Effect of SFE-M and SFE-W on mean histopathological arthritis score in CAIA mice. Samples were treated with a concentration of 100 mg/kg. Results were expressed as a score (means ± SD) of six mice.

*p<0.05 vs. Corn oil-group and *p<0.05 vs. CAIA-group. Every joint was scored as follows: 0, normal; 1, minimal; 2, mild; 3, moderate; and 4, marked.
Figure 6.5. Effect of SFE-M and SFE-W on weight in CAIA mice.
Samples were treated with a concentration of 100 mg/kg. Results were expressed as a score (means ± SD) of six mice.
4.3. Effect of SFE-W and SFE-M treatment on paw volume in CAIA model

To evaluate whether SFE-W and SFE-M had an effect on the progression of RA in CAIA model, male Balb/c mice were provided with the corn oil with or without SFE-M and SFE-W from day 3 through day 6. CAIA group showed a significant increase in the paw volume at the days 5, 6, and 7 (17.3%, 14.4% and 20.7%, respectively) compared to the corn oil group (Figure 6.6). Paw volume was significantly lower in SFE-M-treated group compared with the control CAIA group at days 5, 6, and 7 (17.4%, 22.8%, and 22.4%, respectively). Therefore, oral administration of SFE-M seems to attenuate the increase of paw volume in CAIA model. However, SFE-M treatment didn’t result in significant difference in paw volume compared with the control CAIA group.
Figure 6.6. Effect of SFE-M and SFE-W on paw volume in CAIA mice. Samples were treated with a concentration of 100 mg/kg. Paw volume were measured using a Digital Plethysmometer every day after LPS injection and oral administration of treatments. The average volume of both hind legs were used. Data are presented as means ± SD (n = 6).
*p<0.05 vs. Corn oil-group and *p<0.05 vs. CAIA-group.
4.4. Effect of SFE-W and SFE-M treatment on paw thickness in CAIA model

To evaluate whether SFE-W and SFE-M had an effect on the progression of RA in CAIA model, paw thickness was measured by digital caliper. CAIA group showed a significant increase in the paw thickness at days 6 and 7 (12.5% and 7.8%, respectively) compared to the corn oil group (Figure 6.7). Paw thickness was significantly lower in SFE-M-treated group compared with the control CAIA group at days 5, 6 and 7 (4.7%, 15.3%, and 15.9%, respectively). Therefore, oral administration of SFE-M seems to attenuate the increase of paw thickness in CAIA model. However, SFE-W-treatment didn’t result in significant difference in paw thickness compared with the control CAIA group.
Figure 6.7. Effect of SFE-M and SFE-W on paw thickness in CAIA mice. Samples were treated with a concentration of 100 mg/kg. Paw thickness was measured using a digital caliper every day after LPS injection and oral administration of treatments. The average thickness of both hind legs was used. Data are presented as means ± SD (n = 6). #p<0.05 vs. Corn oil-group and *p<0.05 vs. CAIA-group.
4.5. Effect of SFE-M and SFE-W treatment on arthritic score in CAIA model

Arthritic score was measured blindly by three persons to further determine whether SFE-M and SFE-W suppressed RA progression in CAIA model. CAIA group showed a significant increase in arthritic score from days 4 through 7 compared with the corn oil group (Figure 6.8). The corn oil group didn’t show any redness and swelling of joints until day 7, however the control CAIA group showed arthritic symptoms in all joints from days 4 through 7. Those arthritic symptoms were significantly attenuated in SFE-M-treated group from days 4 through 7. Therefore, oral administration of SFE-M seems to alleviate the arthritic symptoms such as redness and swelling of joints in CAIA model. However, SFE-W-treatment didn’t result in significant difference in arthritic score compared with the control CAIA group.
Figure 6.8. Effect of SFE-M and SFE-W on arthritic score in CAIA mice. Samples were treated with a concentration of 100 mg/kg. Arthritic score was done blindly by using a system based on the number of inflamed joints in front and hind paws, inflammation being defined by swelling and redness at the scale from 0 (no redness and swelling) to 3 (severe swelling with joint rigidity or deformity; maximal score for four paws, 12). Data are presented as means ± SD (n = 6). *p<0.05 vs. CAIA-group.
4.6. Effect of SFE-M and SFE-W treatment on blood cell population in CAIA model

Neutrophil-to-lymphocyte ratio (NLR) is the proportion of absolute neutrophil count to lymphocyte count in whole blood cells. It has been widely accepted that NLR is a useful marker for the evaluation of inflammatory activity in chronic inflammatory diseases such as ulcerative colitis (Torun et al., 2012), prostate cancer (Yin et al., 2016), and RA (Mercan et al., 2015). To further determine whether SFE-M and SFE-W affects blood cell population in CAIA model, NLR was measured from whole blood sample. CAIA group showed a significant increase in NLR at 7 day compared with the corn oil group (Figure 6.9). NLR level was lower in SFE-M-treated group compared with the control CAIA group by 37%. However, SFE-W-treatment didn’t result in significant difference in NLR levels compared with the control CAIA group.
Figure 6.9. Effect of SFE-M and SFE-W on neutrophil-to-lymphocyte ratio in CAIA mice. Samples were treated with a concentration of 100 mg/Kg. Whole blood samples were collected by cardiac puncture. Data are presented as means ± SD (n = 6). *p<0.05 vs. Corn oil-group and *p<0.05 vs. CAIA-group.
5. Discussion

In the present study, the anti-arthritic effect of the extract from radiation mutant *P. frutescens* var. *crispa* prepared by supercritical carbon dioxide extraction (SFE-M) on the development of arthritis in CAIA model was investigated. The efficacy of SFE-M was compared with supercritical carbon dioxide extract of wild type (SFE-W). The treatment with SFE-M alleviated the infiltration of immune cells into joint synovium, paw edema, arthritic score, and NLR levels. The treatment with SFE-W didn’t affect to the development of arthritis. In a previous report, SFE-M had higher anti-inflammatory activities than SFE-W in LPS-induced RAW264.7 cells (Park *et al*., 2016). The enhanced anti-inflammatory activities of SFE-M seemed to be due to the increase of isoegomaketone (IK) content about 7 times compared with SFE-W (Park *et al*., 2016). Like the preceding study, SFE-M was more effective on delaying the onset of arthritis in CAIA model compared with SFE-W.

Radiation-induced mutants have been extensively studied and utilized in mutation breeding after discovering that X ray can induce mutations in *Drosophila* (Muller, 1927) and barley (Stadler, 1928). Later, it was found that ionizing radiation causes DNA damage is a major contributing factor to mutations (Sachs *et al*., 2000). Radiation-induced mutation breeding was
focus on the crop improvement (Sangsiri C et al., 2005), enhancing resistance to abiotic and biotic stresses (Cho et al., 2012), and development of new flower varieties (Kim et al., 2015). However, there are no reports about increasing functional metabolites in radiation-induced plant mutants. This study carries an important meaning in that it contributes to enhancing therapeutic possibility for radiation-induced plant mutants by increasing functional phytochemical contents. One of the biggest problem in the investigation for functional food or phytomedicine using natural resources is that natural resources usually contain very small amount of functional components. In this study, possibility for selection of new resources contained higher functional constituents from radiation-induced plant mutants was confirmed. Radiation-induced mutant *P. frutescens* var. *crispa* used in this study was acquired using gamma rays. It contained about 7 times more IK than wild type species. IK is biosynthesized from egomaketone (EK), and this reaction is inhibited by gene *I* in *P. frutescens* (Nishizawa et al., 1989). Therefore, we guess gene *I* was affected by gamma radiation and consequently had lower activity compared with wild type. The correlation between gene variation and changing IK content is currently being studied.

Rheumatoid arthritis (RA) is a systemic autoimmune disease in which chronic joint inflammation leads to cartilage destruction and bone erosion.
(Scott et al., 2010). Generally, the use of standard drugs in RA caused numerous side effects (Matucci et al., 2016; McAlindon et al., 2014; Cabral et al., 2016). In these days, the renewed interest in medicines of botanical origin, which lack severe side effects and have millennia-proven efficacy, is growing (Umar et al., 2014). These remedies maybe have a beneficial effect not only on the symptoms but also on the development of the disease (Akhtar et al., 2011). There are many reports about anti-arthritic medicinal plants, which have been tested in animal and human studies: Arnica montana (Sharma et al., 2016), Boswellia spp. (Umar et al., 2014); Curcuma spp. (Kamarudin et al., 2012); Equisetum arvense (Farinon et al., 2014); Harpagophytum procumbens (Lanthers et al., 1992); and Salix spp.; Sesamum indicum (Sotnikova et al., 2009). Radiation-induced mutant P. frutescens var. crispa used in this study has higher anti-inflammatory activities and its extract prepared by supercritical carbon dioxide extraction also has a good potential as anti-arthritic medicinal plant source. To our knowledge, this is the first report that describes the radiation-induced plant mutants containing higher anti-arthritic properties compared to wild-type.
VII. Overall Discussion
In this thesis, isoegomaketone (IK) isolated from radiation mutant *P. frutescens* var. *crispa* showed anti-inflammatory properties due to the induction of heme oxygenase-1 (HO-1) via ROS/p38 MAPK/Nrf2 pathway in RAW264.7 cells. Recent studies have demonstrated that HO-1 induction was mediated by the activation of PI3K, PKC, and p38 MAPK (Shih et al., 2011; Lee et al., 2012; Rojo et al., 2006). According to the experiments using respective specific inhibitors, IK-induced HO-1 expression was suppressed only by p38 MAPK specific inhibitor. Although IK-induced ROS production was not measured in RAW264.7 cells, the relation between ROS and IK-induced HO-1 expression was confirmed using radical scavengers such as NAC and GSH. In addition, IK treatment palpably reduced clinical signs and symptoms of rheumatoid arthritis in collagen antibody-induced arthritis (CAIA) animal model. IK treatment showed more effective anti-arthritic activity compared with apigenin (API), a positive control, in mean histopathological score and arthritic score. Even if CAIA model characterized by macrophage and inflammatory cell infiltration is not associated with T and B cell response (Nandakumar et al., 2004) over collagen-induced arthritis (CIA) model, it include important features of human RA, such as inflammatory synovitis, formation of pannus (an
aggressive fibrovascular tissue that invades the joint), cartilage degradation, and bone remodeling (Caplazi et al., 2015).

Because application of IK itself as a functional food could be problematic, it is necessary to develop the methods to acquire extracts from P. frutescens var. crispa with high IK content and confirm the efficacy of the extract. Before investigating anti-arthritis effect using extracts, the optimal extraction method for higher IK content from P. frutescens var. crispa should be set up. Usually, water and ethanol extraction method is implemented for food processing. However, those are not suitable for acquiring extracts containing higher IK content because of hydrophobicity of IK. For this reason, the extracts were obtained from radiation mutant P. frutescens var. crispa using supercritical carbon dioxide extraction (SC-CO₂) method. The extracts acquired by SC-CO₂ method from radiation mutant P. frutescens var. crispa (SFE-M) included five times higher IK content than the extracts obtained by ethanol extraction method. And the elevated IK content of extracts actually had effect on anti-inflammatory activity in LPS-stimulated RAW264.7 cells. Furthermore, the treatment with SFE-M alleviated the infiltration of immune cells into joint synovium, paw edema, arthritic score, and NLR levels in CAIA animal model. 100 mg SFE-M contained about 6.38 mg IK. However, SFE-M treatment (100 mg/kg) showed more effective anti-arthritis activity
compared with IK treatment (10 mg/kg) in CAIA animal model. This probably due to other ingredients contained in the extracts except IK.

Radiation-induced mutation breeding was focused on the crop improvement (Sangsiri C et al., 2005), enhancing resistance to abiotic and biotic stresses (Cho et al., 2012), and development of new flower varieties (Kim et al., 2015). However, there are no reports about increasing functional metabolites in radiation-induced plant mutants. This study carries an important meaning in that it contributes to enhancing therapeutic possibility for radiation mutant resources comparing to previous studies that mainly concentrate on a higher production yield and climate change response. One of the biggest problem in the investigation for functional food or phytomedicine using natural resources is that natural resources usually contain very small amount of functional components. However, one advantage of using radiation mutant resource is that new resources containing higher functional constituents can be selected like radiation mutant *P. frutescens* var. *crispa* used in this study. Recently, ICT (information and communication technology)-based technology was applied and utilized in plant breeding, but it cannot be connected with metabolites until now. If this problem can be solved somehow, the potential value of radiation mutant resources is expected to increase.
Korea is now becoming an aging society rapidly, which suggests that the number of patients with aging-associated diseases such as Alzheimer’s disease, metabolic disease, and arthritis can be increasing. Rheumatoid arthritis (RA) and Osteoarthritis (OA) are common arthritis in adults, and leading causes of disability. In Korea, the prevalence of RA was decreased from 0.74% at 2011 to 0.68% at 2014. On the other hand, that of OA was increased from 7.96% at 2011 to 8.75% at 2014 (Moon, 2016). Annual direct medical costs per patient tended to increase in both RA and OA, but rate of increase was greater in RA. Korea relies mostly on imports for functional health ingredient for arthritis. New Zealand green lipped mussel oil is a typical example. Therefore, development of functional food or phytomedicine using domestic resources could contribute to alleviation of economic burden associated with several diseases. Radiation mutant *P. frutescens* var. *crispa* may have potential for giving a good example of domestic resources for person with mild arthritis.
References

Jung DM, Yoon SH, and Jung MY (2012) Chemical properties and oxidative stability of perilla oils obtained from roasted perilla seeds as affected by extraction methods. *J. Food Sci.* **77:** C1249−C1255

Masutani H, Otsuki R, and Yamaguchi Y (2009) Fragrant unsaturated aldehydes elicit activation of the keap1/Nrf2 system leading to the upregulation of thioredoxin expression and protection against oxidative stress. *Antioxid. Redox Signal.* 11: 949–962

방사선육종 차조기에서 분리한 이소에고마케톤의 항염증 효능

서울대학교 대학원 식품영양학과
진창현

방사선 육종 차조기 165종에 대해 항염증 효능을 탐색한 결과 RAW264.7세포에서 일산화질소 (nitric oxide, NO) 생성 저해 효능이 가장 우수한 품종 하나를 선별하였다. 선발된 돌연변이 차조기의 항염증 효능이 증가한 원인은 이소에고마케톤 성분 함량의 증가로 여겨진다. 이소에고마케톤은 차조기에 존재하는 지질 성분 중의 하나로서 항염증, 항암, 항비만 효능이 보고되었다. 이소에고마케톤이 RAW264.7 세포에서 항염증 효능을 보이는 이유 중의 하나는 항산화 효소인 HO-1 발현을 유도하기 때문이다. 하지만 이소에고마케톤이 어떤 기작을 통해 HO-1의 발현을 증가시키는지에 대한 연구는 미흡하다. 본 연구에서는 방사선육종 차조기에서 분리한 이소에고마케톤의 항염증 효능을 세포 실험 및 동물 모델에서 규명하였다. 또한, 방사선육종 차조기를 기능성 식품으로 활용하기 위한 기초 연구를 수행하였다.

연구 1에서는 RAW264.7 세포에서 이소에고마케톤에 의해 HO-1 효소가 발현되는 기작을 규명하기 위해 이소에고마케톤을 농도별 (5, 10, 15 μM)로 처리하였다.
그 결과 이소에고마케톤은 농도 의존적으로 HO-1 발현을 증가시켰다. 이소에고마케톤에 의한 HO-1 효소 발현과 Nrf2 활성화는 p38 MAPK의 특정 억제제 (SB203580)와 활성산소 제거제 (NAC, GSH)를 처리하였을 때 감소하였다.

연구 2에서는 이소에고마케톤이 동물 모델에서 항관절염 효능을 보이는지 알아보기 위해 콜라겐 항체를 수컷 Balb/c 생쥐에 주입하여 유도한 관절염 동물 모델에서 실험을 진행하였다. Balb/c 생쥐를 다섯 개의 그룹 (정상 그룹, 관절염 유발 그룹, 관절염 유발 뒤 이소에고마케톤을 농도별로 처리한 그룹 (5, 10 mg/kg/day), 관절염 유발 뒤 아피제닌 (16 mg/kg/day) 처리 그룹)으로 나누어 하루 한번 4일 동안 경구 투여하였다. 그 결과 이소에고마케톤을 경구 투여한 생쥐군 (10 mg/kg/day)에서 관절염 질환이 개선되었다. 관절염 유발 7일째에 이소에고마케톤을 경구 투여한 생쥐군이 관절염 수치(73%), 관절 부피(15%), 관절 두께(14%)가 관절염만 유발시킨 대조군에 비해 낮았다. 조직학적 관찰을 통해 이소에고마케톤을 경구 투여한 생쥐군에서 관절부위 염증 세포 침투 및 부종 발생이 감소하였다. 또한 림프구 대비 호중구의 비율 (NLR) 역시 이소에고마케톤을 경구 투여한 생쥐군에서 51.9% 낮았다.

연구 3에서는 방사선육종 차조기를 기능성 식품으로 개발하고자 할 때 최적의 추출방법을 결정하기 위해 초임계 유체 추출법과 주정 추출법을 이용해 추출물을 얻었다. 그 결과 초임계 유체 추출물이 주정 추출물에 비해 이소에고마케톤 함량이 5배 높았다. 또한 두 개의 추출물을 LPS로 자극한 RAW264.7 세포에 25 μg/mL 농도로 처리하였을 때 초임계 유체 추출물이 주정 추출물에 비해 염증 물질 (NO, MCP-1, IL-6, IFN-β, iNOS)의 발현을 효과적으로 억제하였다.
연구 4에서는 방사선육종 차조기의 초임계 유체 추출물이 동물모델에서도 효능을 보이는지 규명하기 위해 콜라겐 항체를 이용해 유도한 관절염 동물 모델을 사용하였다. 방사선육종 차조기와 야생 차조기 잎에서 초임계 유체 추출물을 획득하였다. 수컷 Balb/c 생쥐를 베 개의 그룹 (정상 그룹, 관절염 유발 그룹, 관절염 유발 후 야생 차조기 추출물 투여 그룹)으로 나누어 하루 한번 4일 동안 경구 투여하였다. 그 결과 방사선육종 차조기의 초임계 추출물을 경구 투여한 생쥐 그룹에서 관절염 수치, 관절 부피, 관절 두께가 관절염만 유발시킨 생쥐 그룹에 비해 개선되었다. 조직학적 관찰을 통해 이소에고마케톤을 경구 투여한 생쥐군에서 관절부위 염증 세포 침투 및 부종 발생이 감소하였다. 또한 림프구 대비 호중구의 비율 (NLR) 역시 방사선육종 차조기의 초임계 추출물을 경구 투여한 생쥐 그룹에서 37% 낮았다. 하지만 야생 차조기의 초임계 추출물을 투여한 생쥐 그룹은 관절염만 유발 시킨 생쥐 그룹과 비교해 유의적인 차이를 보이지 않았다.

이소에고마케톤은 RAW264.7 세포에서 ROS/p38 MAPK/Nrf2 경로를 통해 HO-1을 발현시킴으로써 항염 효과를 나타내었다. 또한 콜라겐 항체를 이용해 유도한 관절염 동물 모델에서 실제로 명확하게 관절염 중상을 개선하였다. 방사선육종 차조기를 기능성 식품으로 개발하고자 할 때 이소에고마케톤 함량이 높은 추출물을 획득할 수 있는 초임계 유체 추출 방법이 가장 적합한 방법이었다. 실제로 방사선육종 차조기의 초임계 추출물은 콜라겐 항체를 이용해 유도한 관절염 동물 모델에서 관절염 중상의 발생률을 떨어뜨렸다. 종합적으로, 이번 연구의 결과는 방사선육종 차조기의 초임계 유체 추출물의 관절염과 같은 만성 염증성 질환에 있어서 기능성 식품으로 활용할 가능성이 있음을 제시한다.
주요어: 이소에고마케톤, 항염증, 초임계 유체 추출, 방사선육종 차조기, 콜라겐 항체로 유발된 관절염
학번: 2011-31095