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ABSTRACT 

 

Molecular profiling of adenocarcinoma of gastroesophageal 

junction compared to esophageal and gastric adenocarcinoma 

 

Yun-Suhk Suh 
Department of Surgery 

The Graduate School 
Seoul National University 

 

Introduction: Biologic understanding of adenocarcinoma of 

gastroesophageal junction (AGEJ) and similarity to gastric or 

esophageal adenocarcinoma has been long standing controversial 

issue. The purpose of our study is to evaluate molecular characteristics 

of AGEJ compared to esophageal (EAC) or gastric adenocarcinoma 

using next generation sequencing NGS data of the Cancer Genome 

Atlas (TCGA) and Seoul National University (SNU) cohorts. 

Methods: We retrieved NGS data of esophageal adenocarcinoma (EAC, 

n=78), adenocarcinoma of gastroesophageal junction or cardia 

(GEJ/cardia, n=48) and gastric adenocarcinoma located at fundus or 

body of the stomach (GCFB, n=102) from TCGA cohort. For SNU cohort, 

whole exome and transcriptome sequencing were carried out for each 

pair of tumor and corresponding normal gastric mucosae of AGEJ II 

(n=16 pairs), AGEJ III (n=16 pairs) and upper third gastric 

adenocarcinoma (UT, n=14 pairs). Class prediction model was 

developed using Bayesian compound covariate predictor (BCCP) with 

Leave-one-out cross validation between EAC and GCFB of TCGA 

cohort, and tested for GEJ/cardia tumors from TCGA and all tumors from 
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SNU cohort. 

Results: The class prediction model using 400 differentially expressed 

classifier genes (90.2% of sensitivity and 89.7% of specificity) showed a 

spectral transition of clusters between EAC-like and GCFB-like group 

without any entirely distinguishable cluster. Using 0.4535 of BCCP score 

as a cut-off value, 68.8% of GEJ/Cardia of TCGA cohort and AGEJ II of 

SNU cohort were identified as GCFB-like group. AGEJ III of SNU cohort 

consisted of 93.7% of GCFB-like adenocarcinoma, and there was no 

significant relationship between involvement of GEJ and molecular 

classification of AGEJ III. EAC-like group was significantly related to 

differentiated and intestinal type, and showed significantly amplified 

copy number of ERBB2 compared to GCFB group. Reverse phase 

protein array and tissue microarray revealed significant overexpression 

of EGFR and ERBB2 in EAC-like than GCFB-like group. Drug response 

analysis of lapatinib from Cancer Cell Line Encyclopedia database 

demonstrated significantly lower half maximal inhibitory concentration 

for EAC-like than GCFB-like. 

Conclusions: Molecular classification of AGEJ using BCCP with 400 

classifier genes demonstrated that GEJ/cardia in TCGA cohort and 

AGEJ II in SNU cohort were a combination of 31.2% of EAC-like group 

and 68.8% of GCFB-like group. EAC-like group was significantly related 

to differentiated, intestinal type and shows significant copy number 

amplification of ERBB2 and overexpression of ERBB2 and EGFR. EAC-

like group can be a promising target for EGFR and ERBB2 tyrosine 
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kinase inhibitor. 
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INTRODUCTION 

Adenocarcinoma of gastroesophageal junction (AGEJ) has long-lasting 

controversial issues for its classification or treatment strategy compared 

to esophageal or gastric adenocarcinoma(1-5). For classification, the 

Siewert classification, one of the most common clinical classification, 

has classified AGEJ as distal esophageal, true cardia, and subcardia 

cancers, but the other famous classifications, latest AJCC TNM 

classification or Japanese classification of gastric carcinoma, classified 

AGEJ with different criteria(1, 6, 7). The 8th edition of AJCC TNM 

classification regarded AGEJ as esophageal adenocarcinoma or gastric 

adenocarcinoma based on only distance between tumor epicenter and 

gastroesophageal junction (GEJ)(7). However, latest Japanese 

classification of gastric carcinoma used both distance criteria between 

tumor epicenter and GEJ and how much portion of tumor involved 

esophagus or stomach, which have great influence on treatment 

strategy(6). Our previous study proposed that, in terms of postoperative 

prognosis, AEJ arisen with the stomach should be considered as a part 

of gastric cancer irrespective of GEJ involvement(5). There have also a 

series of controversial issues regarding appropriate treatment for AGEJ. 

Because of the location of AGEJ between chest and abdomen, AGEJ 

has been in the middle of discussion about which approach between 

transthoracic approach or transhiatal approach would be more 

appropriate. Previous well-designed phase III clinical trials reported that , 

for Siewert type I, extended transthoracic approach which was usually 
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considered for esophageal cancer showed an ongoing trend towards 

better 5-year survival, but, for patients with Siewert II or III, transthoracic 

approach did not improve survival and led to increased morbidity 

compared with transhiatal approach which was usually considered for 

gastric cancer (4, 8-10) However, for Siewert II, still there have been 

endless debates about the extent of mediastinal/supradiaphragmatic or 

other extended lymphadenectomy(11-14). Considering complete 

mediastinal lymphadenectomy requires transthoracic approach like 

esophageal cancer, it is also difficult to answer for debate whether AGEJ 

should be managed as a part of esophageal or gastric cancer in the field 

of surgical treatment for AGEJ, even after several clinical trials. In terms 

of adjuvant chemotherapy, well-designed clinical trials have reported 

survival benefit of surgery plus adjuvant chemotherapy (S-1 only or 

Capecitabine plus Oxaliplatin) compared to surgery alone(15, 16). 

Considering total gastrectomy has been usually performed for advanced 

AGEJ, deterioration in nutritional status and functional deficit after 

surgery may lead to inadequate dose or cycles of postoperative adjuvant 

chemotherapy. However, in previous famous clinical trials including 

those two pivotal trials, subgroup analysis for AGEJ was not reported, 

and it is also difficult to predict drug response of AGEJ because tumor 

biology has not been comprehensively explained compared to 

esophageal or gastric adenocarcinoma yet(17, 18).  

Consequently, more fundamental questions of biologic entity have been 

continuously raised, especially about whether AGEJ should be 
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understood as a part of esophageal adenocarcinoma or gastric 

adenocarcinoma. However, a few previous studies for biologic entity of 

AGEJ used to describe ambiguous location information of cardia cancer 

or be evaluated without appropriate comparative analysis, which still led 

to inconclusive debate of AGEJ (19-21). In the past, the incidence of 

esophageal or gastric adenocarcinoma as a control group showed large 

epidemiologic difference between the West and the East (high incidence 

of esophageal with low incidence of gastric adenocarcinoma in the West, 

and low incidence of esophageal with high incidence of gastric 

adenocarcinoma in the East), even though that of AGEJ now shows 

worldwide rapid increasing incidence pattern also in eastern countries 

(22-25). This epidemiologic difference makes comparative analysis 

among AGEJ, esophageal and gastric adenocarcinoma more difficult as 

we reported previously(18). There is also another conflicting issue about 

different characteristics for AGEJ itself between the East and the West. 

According to the traditional Siewert classification, AGEJ in the East has 

been known to have extremely low prevalence of Siewert type I and 

much more common type III than that in the West, which means that 

tumor involvement of distal esophagus by AGEJ was expected to be 

much less in the East(26-28). Therefore, it becomes much more difficult 

to perform detailed clinicopathologic analysis of each subtype of AGEJ 

compared to esophageal and gastric adenocarcinoma(29, 30). 

 In the era of molecular biology, molecular characteristics by gene 

expression pattern was successfully introduced for not only understating 
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disease entity but also new molecular classification and related 

treatment strategy (31-34). Regarding AGEJ, several comparative 

biologic investigations using conventional laboratory experiments 

including mutation analysis, amplification, or immunohistochemistry also 

have reported that AGEJ might have distinct pathological entities from 

gastric/esophageal adenocarcinoma and be linked to multiple genetic 

alterations (35-37). However, those results are still inconsistent to 

understand biologic similarities or differences of AGEJ compared gastric 

or esophageal adenocarcinoma using only one or a few molecular 

factors. Since 2011, molecular classification using genomic technology 

has been introduced in gastric cancer to distinguish epidemiologic or 

histologic distinction by gene expression data(32). For AGEJ, limited 

studies reported several differentially expressed gene expression 

between cardia and noncardia cancer,  but not enough to understand 

biologic characteristics compared to esophageal or gastric 

adenocarcinoma (38, 39). Even in a study using targeted deep 

sequencing, there was a limitation not to compare AGEJ to both gastric 

and esophageal adenocarcinoma simultaneously, and any clinical 

significance was not introduced after comparison(40). Recently, the 

Cancer Genome Atlas (TCGA) reported comprehensive molecular 

classification for gastric cancer and esophageal adenocarcinoma (41, 

42). Unfortunately, these world-wide large molecular analysis also do 

not have detailed location information or traditional clinical classification 

of AGEJ or cardia cancer, and study population is largely deviated to 
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Western society (about 25.7% of East Asian samples) even though 

there was significant epidemiologic difference between the East and 

West. Therefore, it is still unclear to investigate similarity or difference of 

AGEJ compared to gastric or esophageal adenocarcinoma with 

significant clinical relevance. However, if Eastern data including detailed 

location information of AGEJ will be integrated, we may expect that this 

large comprehensive next-generation sequencing database could be 

more useful supportive source to overcome several long-standing 

hurdles for analysis among AGEJ, esophageal and gastric 

adenocarcinoma.  

In this study, we hypothesized that AGEJ may 1) have entirely similar 

characteristics to esophageal or gastric adenocarcinoma, 2) be a certain 

combination of esophageal or gastric adenocarcinoma, or 3) have 

entirely unique molecular biologic characteristics distinct from 

esophageal or gastric adenocarcinoma. The purpose of our study is to 

reveal molecular characteristics of AGEJ compared to esophageal and 

gastric adenocarcinoma using next-generation sequencing data of 

TCGA and Seoul National University (SNU) cohort. 
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MATERIALS AND METHODS 

 

1. Study population of TCGA cohort 

For TCGA cohort, we reviewed database of the Cancer Genome Atlas 

(TCGA) (https://tcga-data.nci.nih.gov/tcga/), and retrieved data of 

mRNA expression, somatic mutation, insertion/deletions, copy number 

alteration, and reverse phase protein array (RPPA) of pure esophageal 

adenocarcinoma (EAC), adenocarcinoma of gastroesophageal junction 

or cardia (GEJ/cardia) and pure gastric adenocarcinoma located at 

fundus or body of the stomach (GCFB) (Figure 1).  

 

 

Figure 1. Anatomical distribution of study population from TCGA cohort  
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2. Study population of SNU cohort 

For SNU cohort, we reviewed fresh frozen tissue repository database 

including clinicopathologic information for AGEJ and adenocarcinoma of 

upper third of the stomach between 1999 and 2015 at lab of gastric 

cancer biology, cancer research institute, SNU (Figure 2). 

 

Figure 2. Anatomical distribution of study population from SNU cohort. 

 

 This fresh tissue repository was approved by the Institutional Review 

Board of SNU Hospital (IRB No: H-0806-072-248). Patients who had 

other primary malignancy, recurrent adenocarcinoma or remnant gastric 

cancer at the time of initial diagnosis were excluded. AGEJ and 

adenocarcinoma of upper third of the stomach in SNU cohort were 

classified using a distance criteria from the gastroesophageal junction; 

5	cm

1	cm

2	cm

5	cm

Siewert	I

AGEJ	II

AGEJ	III UT	

SNU	Cohort
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AGEJ II was defined as tumor with an epicenter located within 1 cm oral 

and 2 cm aboral from the gastroesophageal junction, which is the same 

as traditional definition of Siewert type II cancer (1). AGEJ III was 

defined as tumors with an epicenter located within 2-5 cm aboral from 

the gastroesophageal junction irrespective of the involvement of 

gastroesophageal junction. The remaining upper one-third gastric 

adenocarcinoma except for AGEJ II or AGEJ III was defined as UT. All 

available tumors classified as AGEJ II were reviewed and prepared for 

next-generation sequencing. In terms of AGEJ III and UT, the same 

number of samples were reviewed out of the latest samples. Pathologic 

stage was diagnosed by the 7th AJCC TNM classification (43). For 

pathologic analysis, papillary, well-differentiated and moderately-

differentiated types were classified as a differentiated group, and poorly-

differentiated, mucinous, poorly cohesive cell types were classified as 

an undifferentiated group (44). Regarding microsatellite instability in 

SNU cohort, fragment analysis was used for which tumor and normal 

tissue were compared at 5 point of basepair after polymerase chain 

reaction using following 2 primers. Primer No.1 consisted of BAT26 

(116bp) and BAT25 (148bp), and primer No.2 consisted of D5S346 (96-

122bp), D17S250 (146-165bp) and D2S123 (144-174bp). 

This study protocol was approved by the Institutional Review Board of 

Seoul National University Hospital (IRB No: H-1501-027-639). 
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3. Nucleic acid processing, qualification of SNU cohort 

Each fresh frozen tumor and corresponding normal gastric mucosa was 

retrieved by about 2 x 2 x 1 mm3 from fresh tissue repository of SNU 

cohort. DNA was extracted using Qiagen DNA extraction kit with Spin-

Column protocol (Qiagen, Venlo, Netherlands). Extracted DNA was 

quantified of a minimum A260/280�1.7 and amount of dsDNA �3.0ug 

using the QUBIT HS dsDNA assay (Life Technologies Gaithersburg, MD, 

USA). The isolation of RNA was performed in Eppendorf Tubes 5.0 mL 

in accordance with the protocol provided by the manufacturer of TRIzol 

[User manual TRIzol® Reagent (www.invitrogen.com)]. For lysis, 1 mL 

of TRIzol was added for every 4 mm3 of fresh tissue. The transfer of 1 

mL of the starting material into each tube was followed by the addition 

into each tube of 200 μL of chloroform, according to the TRIzol protocol. 

For precipitation of RNA from the aqueous phase 0.5 mL of isopropanol 

and for the following wash step 1 mL of ethanol (75 %) were used. The 

RNA precipitation and wash steps were carried out at 12,000 x g in the 

5.0 mL tubes. The resulting RNA pellet was then resuspended in 50 μL 

of DEPC-treated water. Using NanoDropTM 1000 (Thermo Scientific), 

OD was taken at 260 nm and 280 nm to determine sample concentration 

and purity. Use of degraded RNA can result in low yield, 

overrepresentation of the 5' ends of the RNA molecules, or failure of the 

whole transcriptome sequencing library preparation. Total RNA integrity 

was checked following isolation using an Agilent Technologies 2100 

Bioanalyzer with an RNA Integrity Number (RIN) value greater than 7.0. 
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RNA was quantified with rRNA ratio�1.5, amount of RNA�1.2ug and 

RIN>5.0. Ideal RIN of most RNA samples was >7.0, but if repeated 

samples cannot reach 7.0 of RIN, 5.0 of RIN was used as marginal cut-

off. Extraction of high-quality RNA and preparation of library was 

rigorously repeated until every RNA sample meets all above quality 

criteria as the starting material. 

 

4. Whole transcriptome sequencing of SNU cohort 

For SNU cohort, all tumor samples from SNU cohort were prepared to 

whole transcriptome library using Illumina Truseq RNA library 

preparation kit (Ribo-Zero rRNA Removal Kit). All libraries were 

sequenced on Illumina HiSeq2000 platform using one sample per lane, 

with a paired-end 2 x 101 bp read length. Tumor RNA and its 

corresponding normal RNA were usually loaded on the same flow cell.  

At least 10 gigabytes of RAW data per each sample were generated and 

were converted to the FASTQ format. Read alignment and processing 

were performed using STAR aligner and Picard at the Broad Institute 

(http://broadinstitute.github.io/picard/) as GATK best practice 

recommendation (45). Expression of mRNA was quantified using de-

duplicated BAM files by FPKM (fragments per kilobase of exon per 

million mapped reads) using HTSeq-count based on the Homo Sapiens 

GRCh37 Ensemble v65 (46). 
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5. Whole exome sequencing of SNU cohort 

For SNU cohort, whole-exome sequencing of at least 3 ug of dsDNA 

from tumor and its corresponding normal gastric mucosa samples was 

performed using Agilent SureSelect Human All Exon V5 + UTR region 

kit. A paired-end 2 x 101 bp reads were sequenced on Illumina 

HiSeq2000 platform. On target depth of sequencing was planned as at 

least 100x for both tumors and normal mucosa (ideally 200x for tumors) . 

Read alignment and processing were performed using the Burrows-

Wheeler Aligner (BWA)-mem and Picard at the Broad Institute as GATK 

best practice recommendation (47, 48).  

 

6. Predictive classification algorithms using transcriptome 

sequencing  

We used BRB Array Tools for analysis gene expression data(49). RNA-

sequencing data from TCGA and SNU cohorts were analyzed together 

to identify differentially expressed genes (DEG) and construct prediction 

model. Firstly, DEGs between EAC and GCFB in TCGA cohort were 

identified by Student’s t test (P<0.001), and further selected according 

to top and bottom fold change rank. For construction of prediction model, 

we used previously established Bayesian Compound Covariate 

Predictor (BCCP) algorithm with use of the leave-one-out cross 

validation (LOOCV) approach (50, 51) (Figure 3). 
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Figure 3. Class prediction model with Bayesian compound covariate 

predictor. 

 

Sensitivity and specificity of trained model was evaluated by the 

Receiver Operating Characteristics (ROC) curve. Optimal cut-off value 

between EAC and GCFB was determined using Youden index. External 

validation for prediction model with cut-off value was performed using 

independent RNA microarray data of gastric and esophageal 

adenocarcinoma cell lines from Cancer Cell Line Encyclopedia (CCLE) 

database (http://www.broadinstitute.org/ccle). According to likelihood of 

BCCP model, GEJ/cardia tumors of TCGA cohort and all tumors of SNU 

cohort were reclassified in genomic subtypes (EAC-like or GCFB-like 

groups). Difference between genomic subtypes in clinical and molecular 

level were later assessed by analyzing clinicopathologic data, mutations, 

copy number alteration. Pathway analysis was carried out by using the 

Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis tool 

(http://www.kegg.jp/)(52). Potential surrogate markers associated with 

genomic subtypes were validated by reverse-phase protein assay for 
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TCGA cohort and tissue microarray for SNU cohort. Target drug 

responsiveness of those surrogate markers were compared using IC50 

of gastric and esophageal adenocarcinoma cell lines from CCLE 

database. 

 

7. Identification of somatic mutations and insertion/deletions 

For TCGA cohort, somatic mutation including insertion/deletions were 

analyzed using previously reported method (41, 42). 

For SNU cohort, the BAM files for whole exome sequencing were used 

for somatic mutation calling using Mutect and IndelGenotyper (53). 

Variants with 1) exonic and splicing variants based on the reference 

sequence or variants with 2) more than 8 read depths and more than 4 

alternate allele depths were selected. Variants with common variants of 

dbSNP142 or with population frequencies of > 0.01 in The Exome 

Aggregation Consortium, 1000 Genomes Project and NHLBI ESP6500 

were excluded (54-56). Functional annotation of mutations was 

performed with ANNOVAR. Significantly recurrently mutated genes 

were identified using the MutSigCV2.0 algorithm (57). We compared 

somatic mutation and insertion/deletions between EAC-like and GCFB-

like subgroup in each TCGA and SNU cohort. 

 

8. Somatic copy number analysis 

For TCGA cohort, copy-number alterations (CNAs) data from single-

nucleotide polymorphism (SNP) array were analyzed using previously 
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reported method (41, 42). For SNU cohort, CNAs were analyzed using 

whole exome data based on the RPKM (Read Per Kilobase per Million 

mapped reads) value from CONIFER (58).  Analysis of somatic CNAs 

was performed with the GISTIC 2.0 algorithm for both TCGA and SNU 

cohort. Among genes with focal copy number amplification using 

GISTIC algorithm, we selected candidate genes with log2 copy number 

ratio of tumor over corresponding normal gastric mucosa �1 in at least 

one paired sample. We compared copy number of those candidate 

genes between EAC-like and GCFB-like subgroup using Student’s t test. 

 

9. Reverse-phase protein array of TCGA cohort 

Reverse-phase protein array (RPPA) data of 132 out of 180 cases 

(comprised of 44 EAC and 88 GCFB) were retrieved in database of the 

Cancer Genome Atlas (TCGA). Clustering analysis was performed after 

re-centered normalization. 

 

10. Tissue microarray of SNU cohort 

Tissue microarray (TMA) was assembled according to the following 

procedure: Core tissue biopsies (diameter 2 mm) were obtained from 

individual paraffin-embedded gastric tumors (donor blocks) and 

arranged in new recipient paraffin blocks (tissue array blocks) using a 

trephine apparatus (Superbiochips Laboratories, Seoul, Korea). 

Considering the possible diversity of histological components or 

molecular abnormality of advanced cancer, we developed 3 sets of TMA 
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for each sample. The tissue array blocks contained up to 46 cores on 3 

arrays, for a total of 138 cases for immunohistochemistry (IHC) staining. 

Tumors occupying more than 10% of the core area were considered 

adequate. Each paraffin block contained internal controls, which 

consisted of non-neoplastic gastric mucosa from the body and antrum 

as well as intestinal metaplasia. IHC was performed using an automatic 

immunostainer (BenchMark XT, Ventana Medical Systems, Tucson, AZ, 

USA), as described by the manufacturer’s protocol. After tissues were 

sampled from in each core, staining intensity were scored as 0 (no 

membrane staining, negative), 1+ (faint/barely perceptible partial 

staining, weakly positive), 2+ (weak-to-moderate staining, moderately 

positive) and 3+ (Strong staining, strongly positive). All 

immunohistochemical staining and silver in situ hybridization (SISH) for 

each TMA core was assessed and scored by one expert pathologist 

unaware of any clinical information. Staining status for all proteins 

except for ERBB2 were analyzed using complex H-score by multiplying 

the staining intensity by the percentage of cells stained and the sum of 

individual H-scores for each intensity level (59). To decrease possible 

tumor heterogeneity inside each tumor, 3 TMA cores from each sample 

were regarded as tentatively different samples, and average complex H-

score between triplicated EAC-like and GCFB-like groups was 

compared as using Student’s t test. Staining status of ERBB2 was 

regarded as positive as the highest stain intensity score when � 10% 

of cells were stained as that intensity in at least one TMA core. Final 
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interpretation using the results of IHC and SISH was conducted as 

previously reported method (60-62). Expression of ERBB2 was 

dichotomized into positive as IHC 3+ or IHC2+ and black/red ratio of 

SISH �2.0, and negative as IHC<2+, or IHC 2+ and black/red ratio of 

SISH <2.0. Target drug response was evaluated using IC50 data of 

CCLE database for gastric and esophageal adenocarcinoma cell lines. 

 

11. Statistical analysis 

Student’s t test and a chi-squared test were used for comparative 

analysis. Survival analysis was conducted using the Kaplan-Meier 

method and the log rank test. Multivariate analysis to identify risk factors 

for protein expression was conducted using binary logistic regression or 

linear regression analysis with method of backward. All tests were 2-

sided and performed at a significance level of 5% using SPSS version 

21.0 (SPSS, Inc., Chicago, IL, USA). 
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RESULTS 

Figure 4 demonstrated detailed study population according to analysis 

scheme. We analyzed 228 tumors of pure esophageal adenocarcinoma, 

pure gastric adenocarcinoma at fundus/body, adenocarcinoma at 

GEJ/cardia from TCGA cohort, and 46-paired (92 samples) tumors-

corresponding normal mucosa of AGEJ II, AGEJ III, and UT from SNU 

cohort. 

 

 
Figure 4. Detailed study population according to analysis scheme. 
 
 
For SNU cohort, after repeated extraction of nucleic acid from fresh 

frozen tissue and library preparation with meticulous quality control, we 

successfully retrieved raw sequencing data from all planned samples 

except for 2 UT samples (Table 1).  
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(TCGA,	n=78)

Pure	Gastric	adenocarcinoma	at	
fundus	&	body	(TCGA,	n=102)

Development	of	Prediction	model	
using		Signature	Gene	expression	(RNA)

by	Bayesian	Compound	Covariate	Predictor	

DNA	-Mutation,	Copy	number
GEJ/Cardia	(DNA,	TCGA,	n=48)
GEJ,	GEJIII,	UT		(DNA,	SNU,	n=46)

Protein
RPPA	(TCGA,	n=132)

TMA	(SNU,	n=46	x	3	set)

RNA	- Pathway	analysis
Signature	Gene	expression	

Predictive	molecular	classification:
GEJ/Cardia	(RNA,	TCGA,	n=48)
GEJ,	GEJIII,	UT		(RNA,	SNU,	n=46)

External	validation

Target	Drug	 response

AGEJ	II,	AGEJ	III,	UT

AGEJ	II,	AGEJ	III,	UT	(DNA,	SNU,	n=46)
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Table 1. Quality of sequencing data for whole transcriptome and exome. 
    Transcriptome  Exome  

  serial 
Total number of 

bases 

sequenced 

Total number 

of reads 

sequenced 

GC 

content 

(%) 

Ratio of reads 

that have phred 

quality score of 

over 20 (%) 

Ratio of reads 

that have phred 

quality score of 

over 30 (%) 

Mean 

coverage 

Coverag

e >100x 

(%) 

AGEJ 

II 

AGEJII1N 10,716,808,616 106,107,016 53.258 96.447 93.157 112.08 50.7 

 AGEJII1T 11,155,658,666 110,452,066 48.719 96.508 93.269 107.3 48.3 

 AGEJII2N 10,854,630,388 107,471,588 52.094 96.44 93.172 106.21 47.4 

 AGEJII2T 11,428,892,956 113,157,356 48.167 96.188 92.944 101.37 44.8 

 AGEJII3N 12,032,274,834 119,131,434 52.634 96.008 92.474 101.98 44.7 

 AGEJII3T 11,887,353,772 117,696,572 51.953 96.663 93.454 141.61 65.2 
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AGEJII4N 11,521,509,552 114,074,352 50.383 96.362 93.066 113.78 50.1 

 AGEJII4T 11,264,305,780 111,527,780 49.08 94.78 90.40 83.1 28.7 

 AGEJII5N 10,117,392,806 100,172,206 50.21 95.16 91.10 113.65 51.8 

 AGEJII5T 12,638,081,924 125,129,524 50.983 95.55 91.711 115.93 52.1 

 AGEJII6N 12,148,675,516 120,283,916 51.155 96.449 93.15 112.49 52.2 

 AGEJII6T 12,371,802,292 122,493,092 49.601 96.568 93.411 114.03 52.2 

 AGEJII7N 10,673,791,302 105,681,102 53.027 96.772 93.693 53.11 13.2 

 AGEJII7T 10,463,644,238 103,600,438 52.364 96.852 93.83 67.21 21 

 AGEJII8N 10,049,880,568 99,503,768 51.85 96.097 92.547 127.37 52.2 

 AGEJII8T 12,244,691,772 121,234,572 50.141 96.404 93.1 240.75 79.3 
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AGEJII9N 12,074,532,830 119,549,830 51.842 96.392 93.057 135.26 53.1 

 AGEJII9T 10,268,023,398 101,663,598 48.74 95.35 91.29 236.58 69.7 

 AGEJII10N 11,182,880,388 110,721,588 52.539 96.411 93.078 129.91 48.2 

 AGEJII10T 11,824,151,204 117,070,804 50.592 96.146 92.921 214.39 83.5 

 AGEJII11N 10,152,334,766 100,518,166 53.99 95.901 95.901 131.36 53.4 

 AGEJII11T 11,316,389,662 112,043,462 49.541 96.408 93.122 269.2 82.2 

 AGEJII12N 11,020,593,184 109,114,784 49.83 95.50 91.74 130.61 54.3 

 AGEJII12T 10,036,132,246 99,367,646 49.41 95.44 91.59 267.87 83.3 

 AGEJII13N 10,445,388,690 103,419,690 51.84 95.33 91.17 114.12 47.2 

 AGEJII13T 10,084,313,690 99,844,690 51.46 95.18 90.95 248.06 84 
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AGEJII14N 10,167,142,578 100,664,778 51.24 95.06 91.45 126.17 51.9 

 AGEJII14T 10,806,255,226 106,992,626 49.03 95.58 91.70 244.06 77.7 

 AGEJII15N 10,459,037,426 103,554,826 50.37 95.38 91.32 116.37 48.1 

 AGEJII15T 11,730,982,138 116,148,338 50.27 95.40 91.67 287.81 82 

 AGEJII16N 10,714,711,048 106,086,248 51.45 95.03 90.76 143.14 56.2 

 AGEJII16T 10,286,269,856 101,844,256 49.0 95.19 91.15 258.48 82.9 

AGEJ 

III 

AGEJIII01N 14,452,581,668 143,094,868 49.55 95.93 91.90 85.18 33 

 AGEJIII01T 15,890,118,304 157,327,904 49.36 96.04 92.18 110.01 45.8 

 AGEJIII02N 13,656,118,292 135,209,092 51.08 95.94 91.93 78.11 27.7 
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AGEJIII02T 14,656,213,424 145,111,024 49.58 96.10 92.25 74.67 25.4 

 AGEJIII03N 13,705,105,716 135,694,116 50.47 95.52 91.18 72.2 24.4 

 AGEJIII03T 14,652,128,580 145,070,580 50.10 97.15 95.19 39.91 3.2 

 AGEJIII04N 11,978,208,524 118,596,124 51.50 95.73 91.54 131.65 59 

 AGEJIII04T 21,175,946,032 209,662,832 50.39 96.94 94.82 110.98 47.2 

 AGEJIII05N 11,861,906,418 117,444,618 49.90 95.87 91.84 128.65 51.7 

 AGEJIII05T 12,628,785,278 125,037,478 49.69 95.97 92.02 267.31 80.2 

 AGEJIII06N 12,637,132,322 125,120,122 52.11 96.02 92.10 156.43 58.6 

 AGEJIII06T 13,409,600,522 132,768,322 49.27 96.01 92.16 243.23 80.4 

 AGEJIII07N 13,727,712,748 135,917,948 49.35 95.98 92.11 144 55.8 
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AGEJIII07T 13,977,555,640 138,391,640 50.04 96.98 94.91 236.65 76.7 

 AGEJIII08N 13,147,619,652 130,174,452 52.41 97.08 95.05 128.87 51.9 

 AGEJIII08T 12,446,576,632 123,233,432 51.33 95.76 91.66 250.74 80.1 

 AGEJIII09N 13,540,072,524 134,060,124 50.22 96.0 92.15 143.6 54.8 

 AGEJIII09T 15,704,037,520 155,485,520 50.21 96.98 94.91 217.69 79.1 

 AGEJIII10N 12,636,106,364 125,109,964 50.77 95.97 92.04 145.65 54.5 

 AGEJIII10T 12,706,649,612 125,808,412 50.46 96.0 92.12 232.68 80.5 

 AGEJIII11N 13,395,876,440 132,632,440 52.67 95.69 91.44 140.36 55.3 

 AGEJIII11T 13,446,510,972 133,133,772 50.71 97.02 94.97 241.49 80.6 

 AGEJIII12N 11,766,698,768 116,501,968 49.66 96.65 94.36 119.96 46.5 
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AGEJIII12T 16,130,073,700 159,703,700 50.20 96.93 94.82 224.48 78.6 

 AGEJIII13N 12,861,840,960 127,344,960 49.77 95.90 91.93 144.11 53.3 

 AGEJIII13T 12,400,576,788 122,777,988 50.49 95.96 92.04 251.97 79.4 

 AGEJIII14N 13,221,249,662 130,903,462 51.32 95.78 91.68 120.71 47.1 

 AGEJIII14T 14,678,176,682 145,328,482 49.36 96.05 92.19 235.55 73.8 

 AGEJIII15N 12,190,985,224 120,702,824 51.03 95.49 91.15 133.64 55 

 AGEJIII15T 13,726,808,798 135,908,998 50.44 95.86 91.84 225.27 75.5 

 AGEJIII16N 12,607,774,854 124,829,454 50.08 95.98 92.06 126.16 52.6 

 AGEJIII16T 12,653,613,502 125,283,302 50.72 95.67 91.50 238.89 76.3 

UT UT1N 10,736,253,540 106,299,540 49.59 94.55 89.86 47.05 6.7 
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UT1T 12,551,428,166 124,271,566 49.50 94.56 89.89 37.05 2.3 

 UT2N 12,221,573,680 121,005,680 51.39 94.17 89.14 114.49 52 

 UT2T 11,964,286,078 118,458,278 50.91 94.28 89.35 93.41 39.7 

 UT3N 14,273,222,232 141,319,032 50.38 95.97 92.03 73.73 25.2 

 UT3T 11,586,835,342 114,721,142 50.01 94.58 89.87 37.12 3.8 

 UT4N 13,119,098,060 129,892,060 50.27 94.51 89.79 40.58 3.4 

 UT4T 12,372,752,500 122,502,500 50.54 94.57 89.91 36.4 2.1 

 UT5N 13,125,537,214 129,955,814 50.23 94.40 89.65 122.08 54.7 

 UT5T 12,061,402,628 119,419,828 51.23 94.49 89.79 113.67 48.5 

 UT6N 12,930,285,630 128,022,630 51.53 94.11 89.05 100.02 41.3 



 26 

 

UT6T 11,749,007,002 116,326,802 50.42 94.52 89.76 78.62 24.7 

 UT7N 13,125,709,318 129,957,518 50.12 94.55 89.89 90.66 35.9 

 UT7T 11,994,315,600 118,755,600 51.25 94.37 89.56 191.73 70.3 

 UT9N 11,669,452,736 115,539,136 49.28 96.26 91.56 92.1 39.1 

 UT9T 11,533,054,256 114,188,656 48.07 96.48 92.07 90.2 36.9 

 UT10N 12,370,758,962 122,482,762 51.91 94.77 90.13 117.09 49.9 

 UT10T 13,422,684,264 132,897,864 48.92 95.92 91.96 189.53 75.8 

 UT11N 14,929,673,752 147,818,552 52.30 95.94 91.90 125.2 55 

 UT11T 13,875,930,854 137,385,454 49.67 95.90 91.92 212.5 80.1 

 UT12N 14,259,757,316 141,185,716 49.40 95.95 91.99 136.87 60.7 
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UT12T 14,852,647,314 147,055,914 52.32 97.07 95.05 192.81 76.4 

 UT13N 12,287,157,424 121,655,024 49.33 95.95 92.02 129.41 57 

 UT13T 12,502,802,120 123,790,120 50.11 96.02 92.11 196.09 78.4 

 UT14N 12,132,667,420 120,125,420 51.61 95.84 91.73 122.64 53 

 UT14T 12,102,652,846 119,828,246 51.07 95.89 91.85 205.25 81.1 

 UT15N 12,371,734,218 122,492,418 50.90 95.59 91.24 130.24 56.9 

  UT15T 12,283,873,712 121,622,512 50.79 95.51 91.10 186.12 75.9 
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Clinicopathologic characteristics 

In TCGA cohort, we identified 78 EAC, 48 GEJ/Cardia and 102 GCFB 

samples available for exome and transcriptome data (Table 2).  

 

Table 2. Clinicopathologic characteristics of TCGA cohort.  

  

EAC 

(n=78) 

GEJ/Cardia 

(n=48) 

GCFB 

(n=102) 

P 

value 

Gender (Male : Female) 69:9 37:11 57:45 <0.001 

Age (years) 66.8±12.0 66.9±9.2 66.6±9.3 0.985 

Location 

Esophagus, 

mid 

2 (2.6%) 0 0 <0.001 

 

Esophagus, 

mid-distal 

1 (1.3%) 0 0  

 

Esophagus, 

distal 

75 (96.2%) 0 0  

 GEJ/cardia 0 48 (100%) 0  

 Fundus/Body 0 0 102 (100%)  

WHO Papillary 0 4 (8.3%) 12 (11.8%)  

 Tubular 0 23 (47.9%) 49 (48.0%)  

 

Poorly 

Cohesive 

0 9 (18.8%) 19 (18.6%)  

 Mucinous 0 3 (6.3%) 4 (3.9%)  

 Mixed 0 6 (12.5%) 6 (5.9%)  

 not available 78 (100%) 3 (6.3%) 12 (11.8%)  

Lauren Intestinal 0 32 (66.7%) 70 (68.6%)  
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 Diffuse 0 9 (18.8%) 19 (18.6%)  

 

Mixed 0 6 (12.5%) 6 (5.9%)  

 not available 78 (100%) 1 (2.1%) 7 (6.9%)  

T stage T1 20 (25.6%) 1 (2.1%) 7 (6.9%)  

 T2 10 (12.8%) 18 (37.5%) 17 (16.7%)  

 T3 34 (43.6%) 24 (50.0%) 53 (52.0%)  

 T4 0 2 (4.2%) 0  

 T4a 0 1 (2.1%) 19 (18.6%)  

 T4b 0 1 (2.1%) 6 (5.9%)  

 TX 14 (17.9%) 1 (2.1%) 0  

N stage N0 19 (24.4%) 15 (31.3%) 41 (40.2%)  

 N1 36 (46.2%) 16 (33.3%) 17 (16.7%)  

 N2 5 (6.4%) 6 (12.5%) 14 (13.7%)  

 N3 4 (5.1%) 9 (18.8%) 25 (24.5%)  

 NX 14 (17.9%) 2 (4.2%) 5 (4.9%)  

M stage M0 44 (56.4%) 41 (85.4%) 95 (93.1%)  

 M1 5 (6.4%) 3 (6.3%) 5 (4.9%)  

 MX 29 (37.2%) 4 (8.3%) 2 (2.0%)  

Country Australia 1 (1.3%) 0 0 <0.001 

 Brazil 2 (2.6%) 0 0  

 Canada 8 (10.3%) 2 (4.2%) 0  

 Germany 0 8 (16.7%) 12 (11.8%)  

 Korea South 0 1 (2.1%) 8 (7.8%)  

 Netherlands 9 (11.5%) 0 0  

 Poland 0 6 (12.5%) 14 (13.7%)  

 Russia 0 7 (14.6%) 49 (48.0%)  
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 Ukraine 1 (1.3%) 9 (18.8%) 11 (10.8%)  

 

United 

Kingdom 

1 (1.3%) 0 0  

 United States 56 (71.8%) 11 (22.9%) 3 (2.9%)  

 Vietnam 0 4 (8.3%) 5 (4.9%)  

 

Race of samples were significantly different among each 3 group. The 

proportion of East Asian countries including Korea and Vietnam in 

overall samples was 18/228 (7.9%), and that in GEJ/Cardia was 5/48 

(10.4%). There was no sample from East Asian countries in EAC group. 

In SNU cohort, we collected 16 AGEJ II, 16 AGEJ III and 14 UT tumor 

samples and its corresponding normal gastric mucosa (Table 3).  

 

Table 3. Clinicopathologic characteristics of SNU cohort. 

 

 

AGEJ II 

(n=16) 

AGEJ III 

(n=16) 

UT 

(n=14) 

P value 

Gender (M:F) 
 13:3 12:4 11:3 0.912 

Age (years) 
 58.5±10.4 66.5±9.4 63.5±8.1 0.062 

WHO 

classification 

Differentiated 7 (43.8%) 7 (43.8%) 7 (50.0%) 0.919 

 
Undifferentiated 7 (43.8%) 8 (50.0%) 5 (35.7%)  
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Undetermined 2 (12.5%) 1 (6.3%) 2 (14.3%)  

Lauren 

classification 

Intestinal 5 (31.3%) 6 (37.5%) 7 (50.0%) 0.526 

 
Diffuse 7 (43.8%) 5 (31.3%) 6 (41.9%)  

 
Mixed 4 (25.0%) 5 (31.3%) 1 (7.1%)  

Lymphatic 

invasion 

 12 (75.0%) 9 (56.3%) 9 (64.3%) 0.600 

Venous 

invasion 

 4 (25.0%) 3 (18.8%) 4 (28.6%) 0.873 

Perineural 

invasion 

 10 (62.5%) 13 (81.3%) 8 (57.1%) 0.326 

Tumor size 

(cm) 

 4.9±1.5 7.6±3.8 6.4±2.9 0.035 

T stage 
T1 1 (6.3%) 0 0 0.311 

 
T2 3 (18.8%) 1 (6.3%) 4 (33.3%)  

 
T3 8 (50.0%) 6 (37.5%) 4 (33.3%)  

 
T4a 4 (25.0%) 7 (43.8%) 4 (33.3%)  

 
T4b 0 2 (12.5%) 0  
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N stage 
N0 2 (12.5%) 4 (25.0%) 4 (28.6%) 0.138 

 
N1 2 (12.5%) 0 4 (28.6%)  

 
N2 3 (18.8%) 5 (31.3%) 4 (28.6%)  

 
N3 9 (56.3%) 7 (43.8%) 2 (14.2%)  

M stage 
M0 15 (93.8%) 14 (87.5%) 13 (92.9%) 0.390 

 
M1 1 (6.3%) 2 (12.5%) 1 (7.1%)  

TNM stage 
I 1 (6.3%) 1 (6.3%) 2 (14.3%) 0.549 

 
II 3 (18.8%) 3 (18.8%) 5 (35.7%)  

 
III 11 (68.8%) 10 (62.5%) 6 (42.9%)  

 
IV 1 (6.3%) 2 (12.5%) 1 (7.1%)  

Neoadjuvant 

chemotherapy 
 1 (6.3%) 1 (6.3%) 0 0.633 

Microsatellite 

instability 

MSS 

12 

(75.0%)* 

12 (75.0%) 11 (78.6%) 0.381 

 
MSI-Low 2 (12.5%) 3 (18.8%) 0  

 
MSI-high 0 0 2 (14.3%)  
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Not available 2 (12.5%) 1 (6.3%) 1 (7.1%)  

* 2 patients; only BAT26 (-) available  

 

Race of all samples was Asian (Korean). Proportion of differentiation or 

Lauren classification was not significantly different among each 3 group. 

Average tumor size of AGEJ III is significantly larger than that of AGEJ 

II (P=0.014), but not different from that of UT (P=0.326). Regarding 

proportion of stage, stage I is 6.3% for AGEJ II or AGEJ III, and 14.3% 

for UT. There was no MSI-high in AGEJ II or AGEJ III. 

 

Clustering analysis of SNU cohort based on anatomic subgroup 

Unsupervised clustering of whole transcriptome data of SNU cohort 

showed clear separation between tumor and normal, but no distinctive 

separation pattern according to anatomic subgroup (Figure 5).  
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Figure 5. Unsupervised hierarchical clustering of AGEJ II, AGEJ III, and 

UT in SNU cohort between tumor and normal samples 

Tumors
Normal
AGEJ II
AGEJ III
UT
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When we clustered tumors only of SNU cohort, two molecular 

subgroups were clustered but failed to show any significant separation 

based on anatomic subgroups (Figure 6). 

 

Figure 6. Unsupervised hierarchical clustering of tumors only in AGEJ II, 

AGEJ III, and UT in SNU cohort. 

AGEJ II
AGEJ III
UT

Cluster A
Cluster B
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When previous 4 molecular subgroups of TCGA were applied for 

clustering, there was no definitive correlation according to anatomic 

subgroups(41) (Figure 7). 

 

Figure 7. Unsupervised hierarchical clustering of tumors in AGEJ II, 

AGEJ III, and UT in SNU cohort according to TCGA 4 subgroups. 

AGEJ II
AGEJ III
UT
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Development of predictive classification model  

Unsupervised hierarchical clustering of EAC and GCFB in TCGA cohort 

revealed 5,520 genes with P<0.001 (Figure 8).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Unsupervised clustering with 5,520 genes between 

esophageal adenocarcinoma and gastric cancer at fundus or body in 

TCGA cohort. 
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According to fold change rank, each top 200 and bottom 200 genes were 

selected as 400 signature gene classifiers. We performed unsupervised 

hierarchical clustering of EAC and GCFB in TCGA cohort using these 

400 signature gene classifiers and identified clear separation of clusters 

between EAC and GCFB (Figure 9).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Heatmap between esophageal adenocarcinoma and gastric 
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cancer at fundus or body from TCGA training cohort using 400 signature 

classifier genes. 

  

Predictive classification model was developed based on BCCP with 400 

signature gene classifiers and trained by LOOCV. ROC curve using 

BCCP scores revealed 0.957 of area under curve (95% confidence 

interval=0.93-0.98), and 0.4535 of Youden index as a cut-off value 

between EAC and GCFB (Figure 10).  

 

 

Figure 10. ROC curve after cross validation using Leave-one-out cross 

validation. 

 

Youden index
=0.4535	(Cut-off	value)
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That cut-off value demonstrated 90.2% of sensitivity and 89.7% of 

specificity to predict EAC. For those 400 signature genes, pathway 

analysis was conducted using KEGG pathway analysis. Among several 

cancer-related pathways with 5 or more genes involved, we identified 

PI3K-AKT signaling pathway related to GCFB in which CHRM2, COMP, 

FGF14, IGF1, PPP2R2B, RELN, THBS4 out of overexpressed 200 

genes for GCFB were involved. Consequently, PI3K and AKT were 

considered for protein validation using RPPA of TCGA cohort and tissue 

microarray of SNU cohort. 

 

Test of predictive classification model with somatic mutation 

analysis 

Using BCCP scores with 0.4535 as a cut-off value, we tested clustering 

for GEJ/cardia of TCGA cohort (Figure 11).  
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Figure 11. Hierarchical clustering of GEJ/Cardia in TCGA cohort using 

Bayesian compound covariate predictor. 

 

Hierarchical clustering of GEJ/cardia of TCGA cohort shows spectral 

transition of clusters between EAC-like and GCFB-like group without 

any entirely distinguishable cluster. GEJ/cardia of TCGA cohort 

predicted as EAC was 15/48 (31.2%) and that predicted as GCFB was 

33/48 (68.8%). In terms of somatic mutation, there was no significant 

difference of TP 53, PIK3CA, RHOA, KRAS, and ARID1A between EAC-

like and GCFB-like group. When we tested clustering for AGEJ II, AGEJ 

III, UT of SNU cohort, SNU cohort also demonstrated similar spectral 
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transition of clusters between EAC-like and GCFB–like group, which is 

similar to TCGA cohort (Figure 12).  

 

 

Figure 12. Hierarchical clustering of adenocarcinoma of 

gastroesophageal junction or upper third gastric cancer in SNU cohort 

Bayesian compound covariate predictor. 

 

AGEJ II of SNU cohort was classified as 5/16 (31.2%) of EAC-like group 

and 11/16 (68.8%) of GCFB-like group. Especially, 15/16 (93.7%) of 

AGEJ III was classified as GCFB-like. Taken together with AGEJ II and 

III of SNU cohort, EAC-like and GCFB like was 6/32 (18.8%) and 26/32 

AGEJ	II
AGEJ	III
UT
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(81.2%). There was also no significant difference of somatic mutation in 

genes including TP53, PIK3CA, ROHA, KRAS, ARID1A between EAC-

like and GCFB-like in SNU cohort. Especially, any somatic mutation of 

RHOA, KRAS and PIK3CA was not found in EAC-group of both TCGA 

and SNU cohort. 

 

Clinicopathologic analysis between EAC-like and GCFB-like group 

Pathologic characteristics analysis of SNU cohort revealed that all AGEJ 

III involving GEJ and 80.0% (4/5) of AGEJ III without involving GEJ 

classified as GCFB-like group (Table 4).  

 

Table 4. Pathologic characteristics between EAC-like and GCFB-like in 

SNU cohort. 

  

EAC-like 

(n=10) 

GCFB-like 

(n=36) 

P 

value 

Location AGEJ II 5 (31.3%) 11 (68.8%) 0.231 

 AGEJ III involving GEJ 0 11 (100%)  

 

AGEJ III without involving 

GEJ 

1 (20.0%) 4 (80.0%)  

 UT 4 (28.6%) 10 (71.4%)  
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WHO Differentiated 8 (80.0%) 13 (36.1%) 0.043 

 Undifferentiated 2 (20.0%) 18 (50.0%)  

 undetermined 0 5 (13.9%)  

Lauren Intestinal 8 (80.0%) 10 (27.8%) 0.009 

 diffuse 2 (20.0%) 16 (44.4%)  

 mixed 0 10 (27.8%)  

Lymphatic 

invasion 

 4 (40.0%) 26 (72.2%) 0.107 

Venous 

invasion 

 4 (40.0%) 7 (19.4%) 0.336 

Perineural 

invasion 

 3 (30.0%) 28 (77.8%) 0.008 

TNM I 2 (20.0%) 2 (5.6%) 0.501 

 II 3 (30.0%) 8 (22.2%)  
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 II 5 (50.0%) 22 (61.1%)  

 IV 0 4 (11.1%)  

MSI MSS 9 (90.0%) 24 (66.7%) 0.332 

 MSI-L 0 4 (11.1%)  

 MSI-H 0 3 (8.3%)  

 N/A 1 (10.0%) 5 (13.9%)  

 

 

The distribution of EAC-like and GCFB-like was not significantly different 

among AGEJ II, AGEJ III and UT. However, EAC-like group shows 

significantly higher proportion of differentiated and intestinal type 

whereas GCFB-like group has significantly higher proportion of 

undifferentiated and diffuse type. There was no significant difference of 

TNM stage between EAC-like and GCFB-like groups. Postoperative 

overall survival as well as recurrence-free survival between both EAC-

like and GCFB-like groups was not significantly different (Figure 13). 
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Figure 13. Postoperative survival between EAC-like and GCFB-like 

group in SNU cohort. (A) Overall survival in SNU cohort. (B) 

Recurrence-free survival in SNU cohort. 

 

Copy number analysis between EAC-like and GCFC-like group 

We performed genome-wide copy number analysis In TCGA cohort and 
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identified 435 amplified genes with significantly different copy number (≥ 

2-fold change and P<0.05) between EAC-like and GCFB-like by the 

GISTIC algorithm. Filtration for those 435  genes by human Cancer 

Gene Census revealed 6 cancer-related genes including COX6C in 

8q22.2 with translocation, HNRNPA2B1 in 7p15.2 with translocation, 

NDRG1 in 8q24.22 with translocation, RECQL4 in 8q24.3 with 

nonsense/frameshift/splice, TCEA1 in 8q11.23 with translocation, and 

TFEB in 6p21.1 with translocation 

(http://www.sanger.ac.uk/science/data/cancer-gene-census)(63) 

(Figure 14).  

 

Figure 14. Copy number variation between EAC-like and GCFB-like in 

TCGA cohort. 

 

In SNU cohort, after comparing putative genes with focal amplification 

by the GISTIC algorithm between EAC-like and GCFB-like, we identified 

37 genes with significantly different copy number (P<0.05) (Table 5).  
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Table 5. Genes with significantly different copy number between EAC 

and GCFB in SNU cohort (P<0.05). 

 

Average Log2CopyNumber in 

EAC-like 

Average 

Log2CopyNumber 

in GCFB-like 

BOP1 0.332 0.026 

C19orf12 0.279 0.039 

DUSP8 0.267 0.002 

EGFR 0.460 0.119 

ERBB2 1.185 0.227 

FOXP4 0.303 0.052 

GRB7 0.826 0.219 

GSTA1 0.252 0.001 

GSTA2 0.320 -0.021 

GSTA3 0.273 0.030 

GSTA5 0.275 0.012 

HIST1H1B 0.228 -0.051 

HIST1H2AI 0.245 0.009 

HIST1H2AK 0.234 -0.016 

HIST1H2AL 0.282 -0.027 

HIST1H2AM 0.281 -0.043 

HIST1H2BM 0.215 -0.007 

HIST1H2BN 0.230 -0.007 

HIST1H2BO 0.239 -0.023 



 49 

HIST1H3H 0.266 0.019 

HIST1H3J 0.303 0.005 

HIST1H4J 0.254 0.017 

LILRA3 0.276 -0.123 

LOC100287704 0.399 -0.011 

LY86 0.236 -0.045 

MDFI 0.381 0.047 

MIEN1 1.178 0.205 

OR2B2 0.209 -0.019 

PI4KAP1 0.284 -0.010 

PLEKHF1 0.343 0.048 

POP4 0.289 0.053 

SSR1 0.216 -0.002 

TFEB 0.431 0.075 

TMEM191B 0.381 -0.013 

TRAM2 0.293 0.041 

UGT2B17 0.263 -0.049 

VSTM2B 0.270 0.069 

ZNF439 -0.242 0.023 

 

Out of those 37 genes, filtration using human Cancer Gene Census 

revealed that 2 genes, ERBB2 in 17q12 with amplification and TFEB in 

6p21.1 with translocation, were selected as cancer related genes 

(Figure 15). 
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Figure 15. Copy number variation between EAC-like and GCFB-like in 

SNU cohort.  

 

ERBB1 (EGFR) in 7p11.2 was focal amplified gene in both EAC-like and 

GCFB-like group simultaneously, but copy number of EGFR was not 

significantly different between 2 groups in SNU cohort. Because 

annotated mutation pattern of COX6C, HNRNPA2B1, NDRG1, RECQL4, 

TCEA1, and TFEB from both cohorts were inconsistent to copy number 

amplification, ERBB2 and ERRB1 as its possible heterodimer were 

validated using RPPA of TCGA cohort and tissue microarray of SNU 

cohort.  

 

Protein expression of Reverse phase protein array and tissue 

microarray 

Through supervised analysis of RPPA data comprised of 44 EAC and 

88GCFB in TCGA cohort, we observed clearly separated clusters of 

expression with 81 proteins between EAC and GCFB proteins (Fig 16).  
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Figure 16. Heatmap using reverse phase protein assay of TCGA cohort. 

 

Out of these 81 proteins, PIK3CA and AKT1 from pathway analysis of 

400 signature genes, ERBB2 and EGFR from copy number analysis 

showed significantly different protein expression of RPPA between EAC 

and GCFB. For external validation, we analyzed different expression of 

these 4 proteins using 3 sets of TMA of SNU cohort with commercially 

available antibodies (Table 6).  

 

Table 6. Information of antibodies for tissue microarray 

Antibody Clonality Dilution Detection 

kit 

source Cat. 

no 

      

EGFR Mouse Ready OptiView Roche 790-

EAC GCFB
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monoclonal to use polymer 

(Ventana) 

2988 

ERBB2 Rabbit 

monoclonal 

Ready 

to use 

OptiView 

polymer 

(Ventana) 

Ventana 

medical 

systems 

790-

2991 

PI3Kinase

p110alpha 

Rabbit 

monoclonal 

1:100 OptiView 

polymer 

(Ventana) 

Cell 

signaling 

#424

9 

AKT1 Rabbit 

monoclonal 

1:50 OptiView 

polymer 

(Ventana) 

Abcam ab32

505 

 

The staining patterns of EGFR, ERBB2, PI3Kinasep110alpha, AKT1 in 

TMA are shown in Figure 17.  

 

Figure 17. Protein expression using immunohistochemical staining of 
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tissue microarray (200x). EGFR, ERBB2, PI3Kinase showed staining of 

3+ positivity and AKT1 showed up to 2+ positivity. 

 

We calculated complex H score of EGFR, PI3Kinasep110alpha, AKT1 

using expression results for each 3-different set of TMAs. Average H 

score of EGFR was significantly increased in EAC-like than in GCFB-

like (160.7 ± 108.8 in EAC-like vs. 105.6 ± 81.6 in GCFB-like, P=0.014, 

Fig 18).  

 

Figure 18. Complex H score of tissue microarray between EAC-like 

(n=10 x 3 sets) and GCFB-like (n=36 x sets) of SNU cohort. 

 



 54 

However, there was no significant expression difference of PI3Kinase 

and AKT1. Staining results of IHC for ERBB2 revealed that ERBB2-

positivity showed higher score tendency in EAC-like than GCFB-like 

(Table 7). 

 

Table 7. Immunohistochemistry (IHC) and silver in situ hybridization 

(SISH) of ERBB2).  

 

 

EAC-like  

(n=10) 

GCFB-like 

(n=36) 

P value 

IHC 0 3 (30.0%) 17 (47.2%) 

0.081 

 1+ 2 (20.0%) 14 (38.9%) 

 2+ 1 (10.0%) 2 (5.6%) 

 3+ 4 (40.0%) 3 (8.3%) 

IHC and 

SISH 

IHC<2+, or IHC 2+ 

and black/red 

ratio<2.0 

5 (50.0%) 32 (88.9%) 

0.015 

 

IHC 3+, or IHC 2+ and 

black/red ratio�2.0 

5 (50.0%) 4 (11.1%) 

 

 Considering IHC and SISH together, EAC-like group shows 

significantly higher positivity (IHC 3+, or IHC 2+ and black/red ratio of 

SISH�2.0) of ERBB2 compared to GCFB-like group (50.0% of EAC-
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like vs. 11.1% of GCFB-like, P=0.015). All significant variables from 

univariate analysis in Table 3 were analyzed by multivariate analysis to 

identify risk factors for expression of EGFR and ERBB2. For 

overexpression of EGFR, prediction type (EAC-like or GCFB-like) was 

the only independent risk factor with 0.78 of adjusted R
2
(P=0.034)(Table 

8). 

 

Table 8. Multivariate analysis for overexpression of EGFR. 

Variable 

Unstandardized 

coefficients 

B±standard 

error 

Standardized 

coefficients β 
t 

P 

value 

95% 

Confiden

ce 

Interval 

for B 

WHO  

classification 
1.822±5.722 0.053 0.318 0.752 

-9.733-

13.378 

Lauren 

classification  
26.389±16.886 0.244 1.563 0.125 

-7.665-

60.443 

Peri-neural 

invasion 
-38.504±27.032 -0.220 -1.424 0.162 

-93.057-

16.049 

Prediction 

type 
62.500±28.509 0.314 2.192 0.034 

5.044-

19.956 

  

For ERBB2 positivity, prediction type and WHO classification were 

independent risk factors (P=0.049 for prediction type and P=0.029 for 
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differentiated type)(Table 9).  

 

Table 9. Multivariate analysis for ERRB2 positivity. 

Variable  

P 

value 

Odds 

ratio 

95% 

Confidence 

Interval for 

odds ratio 

WHO 

classification 

(vs. 

undetermined) 

differentiated 0.029 0.223 0.058-0.856 

undifferentiated 0.002 0.036 0.004-0.309 

Lauren 

classification 

(vs. mixed) 

intestinal 0.387 4.156 

0.165-

105.009 

diffuse 0.734 0.581 0.025-13.322 

Perineural 

invasion  

(vs. invasion) 

Non-invasion 0.576 0.532 0.058-4.870 

Prediction type 

(vs.GCFB-like) 

EAC-like 0.049 6.179 

1.1011-

37.752 

 

External validation using CCLE database  

We identified esophageal (n=3)  and gastric (n=38) adenocarcinoma 
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cell lines with expression microarray data, SNP array data, and half 

maximal inhibitory concentration (IC50) for lapatinib, the dual EGFR and 

HER2 tyrosine kinase inhibitor, from CCEL database. Available data for 

each sample is presented in Table 10.
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Table 10. Information of cell lines for esophageal and gastric adenocarcinoma from CCLE database. 

Cell line Organ BCCP Score prediction Copy number of ERBB2* Copy number of EGFR* IC50† 

OE33 Esophageal  0.546 EAC-like amplification 0 3.538  

OE19 Esophageal  0.402 GCFB-like amplification 0 N/A 

JHESOAD1 Esophageal  0.484 EAC-like N/A N/A N/A 

FU97 Gastric  0.109 GCFB-like deletion 0 8.000  

NUGC3 Gastric  0.37 GCFB-like 0 0 2.411  

IM95 Gastric  0.318 GCFB-like 0 0 8.000  

AGS Gastric  0.19 GCFB-like 0 0 N/A 

KATOIII Gastric  0.536 EAC-like 0 0 N/A 

SNU16 Gastric  0.351 GCFB-like 0 0 6.698  

NCIN87 Gastric  0.753 EAC-like amplification 0 0.066  

OCUM1 Gastric  0.347 GCFB-like 0 0 8.000  

SNU5 Gastric  0.291 GCFB-like 0 0 N/A 

GCIY Gastric  0.169 GCFB-like 0 0 7.255  
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SH10TC Gastric  0.152 GCFB-like 0 0 8.000  

MKN1 Gastric  0.341 GCFB-like 0 0 N/A 

MKN74 Gastric  0.36 GCFB-like 0 amplification 4.690  

KE39 Gastric  0.211 GCFB-like amplification 0 4.056  

HGC27 Gastric  0.062 GCFB-like 0 0 8.000  

HUG1N Gastric  0.315 GCFB-like 0 0 N/A 

NUGC4 Gastric  0.313 GCFB-like amplification amplification 0.172  

RERFGC1B Gastric  0.365 GCFB-like 0 0 8.000  

HS746T Gastric  0.143 GCFB-like 0 0 8.000  

NUGC2 Gastric  0.531 EAC-like 0 0 N/A 

SNU1 Gastric  0.176 GCFB-like 0 0 8.000  

MKN45 Gastric  0.341 GCFB-like 0 amplification 8.000  

X2313287 Gastric  0.509 EAC-like N/A N/A N/A 

MKN7 Gastric  0.272 GCFB-like amplification 0 8.000  

SNU216 Gastric  0.37 GCFB-like amplification 0 N/A 
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AZ521 Gastric  0.097 GCFB-like 0 0 1.660  

LMSU Gastric  0.129 GCFB-like 0 0 N/A 

ECC10 Gastric  0.153 GCFB-like 0 0 N/A 

TGBC11TKB Gastric  0.326 GCFB-like 0 0 N/A 

SNU520 Gastric  0.297 GCFB-like 0 0 N/A 

GSS Gastric  0.223 GCFB-like 0 amplification N/A 

SNU620 Gastric  0.322 GCFB-like 0 0 N/A 

ECC12 Gastric  0.074 GCFB-like 0 0 N/A 

GSU Gastric  0.388 GCFB-like 0 0 N/A 

SNU601 Gastric  0.507 EAC-like 0 0 N/A 

SNU668 Gastric  0.144 GCFB-like 0 0 N/A 

NCCSTCK140 Gastric  0.816 EAC-like 0 0 N/A 

SNU719 Gastric  0.305 GCFB-like 0 amplification N/A 

 

*0 designates not-altered copy number and N/A not available. 

†IC50 designates half maximal inhibitory concentration for lapatinib.
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Using those cell lines, external validation using RNA microarray data of 

CCLE database showed significant difference of BCCP score between 

esophageal and gastric adenocarcinoma cell lines using Wilcoxon Rank 

Sum test (P=0.031)(Figure 19).  

 

Figure 19. External validation of prediction model using CCLE database 

 

Hierarchical clustering of CCLE database revealed that there was no 

P = 0.031



 62 

significant difference of tissue origin (Esophageal or gastric), ERBB2 

amplification, or EGFR amplification between EAC-like and GCFB-like 

types using BCCP score (Figure 20).  

 

Figure 20. Hierarchical clustering of CCLE database between EAC-like 

and GCFB-like group 

 

Target drug response of lapatinib, a dual EGFR and HER2 tyrosine 

kinase inhibitor, was evaluated using IC50 data of CCLE database 

between EAC-like (n=2) and GCFB-like groups (n=17)(Figure 21).  

  

0.4535
▼
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Figure 21. Drug response of lapatinib using half maximal inhibitory 

concentration (IC50) data of CCLE database between EAC-like and 

GCFB-like group 

 

Analysis of IC50 demonstrated significantly lower IC50 for EAC-like than 

GCFB-like group using Wilcoxon Rank Sum test (P=0.044).  

 

P = 0.044
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DISCUSSION 

In this study, we successfully demonstrated molecular characteristics of 

AGEJ using next generation sequencing compared to pure esophageal 

or gastric adenocarcinoma, which presented a spectral transition of RNA 

expression between EAC-like and GCFB-like groups without any 

entirely distinguishable cluster. In addition, the same major proportion of 

AGEJ both in the East and the West, 68.8% of GEJ/Cardia in the West 

and of AGEJ II in the East, was classified as GCFB-like group. 

Interestingly, this geographic proportion of AGEJ (about 1/3 of EAC-like 

and 2/3 of GCFB-like) is similar to the proportion of the distance to oral 

(1cm) and aboral direction (2cm) between tumor epicenter and the 

gastroesophageal junction in conventional Siewert type II cancer(1, 64). 

This finding presumably represents that molecular classification from 

our study using the state-of-the-art analysis technique is consistent with 

that traditional geographic classification. For classification of AGEJ, 

especially Siewert type III, involvement of gastroesophageal junction by 

tumor has been an important criteria in traditional Siewert classification 

as well as AJCC TNM classification (1, 43). However, our previous study 

proposed that involvement of gastroesophageal junction be considered 

as a result of tumor progression and not related to an independent factor 

for classification of AGEJ in terms of postoperative prognosis(5). The 

current study also demonstrated that all AGEJ III involving 

gastroesophageal junction and most of AGEJ III without involving 

gastroesophageal junction were classified as GCFB-like group. Taken 



 65 

together with our previous and current study, we could suggest that 

involvement of gastroesophageal junction is not a determinable factor 

to classify AGEJ III in terms of prognosis as well as molecular biology. 

Tumor biology and geographic disparity of AGEJ has been well-known 

long-standing controversy between Eastern and Western institution. 

Traditionally, Siewert type I AGEJ is likely to have intestinal metaplasia 

or Barrett’s esophagus, and gastroesophageal reflux or Barrett’s 

mucosa has been known to be strong risk factors(65-67). Consequently, 

Siewert type I was usually considered and managed as a part of distal 

esophageal adenocarcinoma(3, 9). Siewert type III AGEJ is likely to 

show diffuse growth pattern with undifferentiated carcinoma and H. 

pylori infection could be significantly related to carcinogenesis, but 

possible inverse relationship to esophageal adenocarcinoma or Siewert 

type I cancer(65, 68, 69). As a result, Siewert type III was usually 

considered as a part of upper third gastric adenocarcinoma(4, 5, 65). 

However, the biologic relationship of both gastroesophageal reflux or H. 

pylori infection to Siewert type II, called as true GEJ cancer, was 

controversial (66, 68). Even there were a few studies proposing tumor 

biology of AGEJ as unique disease entity in terms of molecular 

analysis(35, 40, 70). Against this long-standing question, our study can 

propose that AGEJ is a certain biologic combination (approximately 1:2 

proportion) of esophageal and gastric adenocarcinoma irrespective of 

the East or the West, not entirely similar to such one type of 

adenocarcinoma nor a completely distinctive entity.  
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Pathologically, previous studies suggested that there might be 

dichotomized carcinogenesis pathways of AGEJ consisted of intestinal 

metaplasia related pathway or non-intestinal pathway, but genetic 

relationship has not been proved (17, 71). In this study, we 

demonstrated that there was significant relationship of EAC-like group 

to intestinal type and GCFB-like group to diffuse type of previous studies. 

We expect that this consistent finding to previous pathologic reports will 

be promising supportive data for molecular analysis of intestinal 

metaplasia.  

In this study, EAC group shows significantly increased copy number and 

protein overexpression of ERBB2. Anti-ERBB2 (HER2) monoclonal 

antibody, Trastuzumab, plus chemotherapy has been known to improve 

median overall survival significantly in patients with ERBB2-positive 

gastric/AGEJ cancer compared with chemotherapy alone(60). The 

positivity rate of ERBB2 was known as 22.1 % in gastric or 

gastroesophageal junction adenocarcinoma (61). Especially this 

positive rate was significantly higher in intestinal type (31.8 %) and 

gastroesophageal junction cancer (32.2 %) compared to diffuse type or 

other gastric cancer. Our data about EAC-like group was also 

significantly related to intestinal type and showed 50.0% of ERBB2 

positivity which is much higher than previous report. On the other hands, 

GCFB-like group showed only 11.1% of ERBB2 positivity which is much 

lower than known positive rate of ERBB2 in usual gastric cancer or 

AGEJ. Considering this high positive rate of EAC-like group, we may 



 67 

suggest that EAC-like adenocarcinoma by our molecular classification 

could be better indication for Trastuzumab treatment than usual gastric 

cancer or AGEJ. Interestingly, no ligand has been identified for ERRBB2 

receptor which should dimerize (homo or hetero) with ligand-bound 

other members of ErbB receptor family for signal activation(72). 

 Epidermal growth factor receptor, or human epidermal growth factor 

receptor (HER1), is a member of the ErbB family of receptors that also 

includes HER2, HER3, and HER4 and a major partner for ERBB2 

activation(73). EGFR ligand binding triggers the activation of 

downstream signaling tyrosine kinase pathways which control cell 

proliferation, survival, migration and also have a pivotal role during 

epithelial cell development in several organs(74-76). Regarding 

epithelial development, previous studies reported that elevated levels of 

EGFR have been identified in non-dysplastic intestinal metaplasia and 

may be involved in early event of the Barrett esophagus metaplasia, 

dysplasia, esophageal adenocarcinoma sequence (77-79). There 

previous studies are consistent with our results that EAC-like group in 

this study is significantly related to intestinal type and overexpression of 

EGFR. In the era of target therapy for cancer, recent several phase III 

randomized clinical trials reported that addition of most anti-EGFR 

antibodies including lapatinib, cetuximab, efitinib, or gefitnib to 

conventional chemotherapy failed to provide significant additional 

benefit for esophageal, gastric or AGEJ including Siewert type I and II 

adenocarcinoma (80-83). However, subgroup analysis of another 
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randomized clinical trial revealed that gefitinib could have advantage for 

selected esophageal adenocarcinoma or Siewert type I and II 

adenocarcinoma with EGFR amplification(84). According to the results 

of our study, about two-third or more of gastric adenocarcinoma or AGEJ 

II/III which were classified as GCFB-like group had significantly low 

protein expression of EGFR, and might become one possible 

explanation to show poor response to anti-EGFR antibodies in most 

previous clinical trials. On the contrary, we can expect that EAC-like 

group with significant amplification of ERBB2 and overexpression of 

EGFR would be a promising target for this new molecular treatment as 

a precision medicine. Moreover, because genes of most AGEJ and 

gastric cancer investigated in this study were found to be wild type, our 

molecular classification model is expected to be more promising tool not 

only for drug target of EAC-like adenocarcinoma but also designing new 

ERBB2 and EGFR-related clinical trial including EAC, AGEJ, and UT 

(85). Our study indirectly showed possibility of significantly different 

efficacy of lapatinib, a dual EGFR and HER2 tyrosine kinase inhibitor,  

according to genomic classification. Recently, novel pan-HER inhibitor, 

RB200, a bispecific (EGFR/HER3) ligand binding trap, was developed 

for a pan-HER therapy in human cancer(86). This pan-HER inhibitor 

inhibits phosphorylation of receptors in the HER family which results in 

several downstream signaling pathways, and also blocks EGFR/HER2, 

HER2/HER3, and HER3/HER4 heterodimer formation (87). In addition 

to ongoing phase III clinical trial for gastroesophageal cancer for 
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lapatinib, our data and future in-vivo validation based on genomic 

classification will be a promising evidence for novel target treatment for 

a subgroup of AGEJ (88). 

We found similar expression of PI3Kinase and AKT between EAC-like 

and GCFB-like groups. This expression pattern of PI3Kinase and AKT 

was not consistent with pathway analysis using transcriptome 

expression which suggested PI3K-AKT pathway could be related to 

GCFB-like group. In EAC-like group, ligand binding of ERBB family has 

been known to trigger the activation of downstream signaling tyrosine 

kinase pathways including PI3K-AKT pathway also(73, 76). Therefore, 

we postulated that PI3K-AKT pathway could be controlled by both 

downstream activation of ERBB family in EAC-like group or 

overexpression of RNA clusters in GCFB-like group, which may 

eventually result in inconsistent protein expression pattern. 

 In conclusion, molecular profiling of AGEJ reveals that AGEJ consists 

of a combination of EAC-like and GCFB-like types characterized by 400 

signature gene expression. Our newly developed predictive 

classification model demonstrated that GEJ/cardia in TCGA cohort and 

AGEJ II in SNU cohort were a combination of 31.2% of EAC-like group 

and 68.8% of GCFB-like group, not entirely similar to such one type of 

adenocarcinoma nor a completely distinctive entity. AGEJ III consisted 

of 93.7% of GCFB-like adenocarcinoma and there was no significant 

relationship between involvement of GEJ and molecular classification of 

AGEJ III. EAC-like group is significantly related to histological 
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differentiated and intestinal type, and GCFB-like group to 

undifferentiated and diffuse type, respectively. Compared to GCFB 

group, EAC group shows significantly increased copy number of ERBB2 

and protein overexpression of ERBB2 and EGFR. We expect that our 

predictive model from comparable database of TCGA and SNU cohort 

could be useful classification system for esophageal, AGEJ and upper 

third gastric adenocarcinoma irrespective of epidemiologic difference in 

the future. 
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국문 초록 
 

서론: 위식도경계부선암의 생물학적인 이해 및 위선암 혹은 식도선암

과의 분자생물학적 특징의 비교에 대해 끊임 없는 논란이 지속되어 

왔다. 본 연구의 목적은 the Cancer Genome Atlas (TCGA) 와 서울대

학교 코호트에 대한 차세대염기서열분석 유전체 데이터를 이용하여, 

위식도경계부선암의 분자생물학적 특징을 식도선암 및 위선암과 비

교 연구하고자 한다.  

방법: TCGA 코호트로부터 식도선암(7 례), 위식도경계부/분문부 선암

(48 례), 위저부/체부 선암(102 례)의 차세대염기서열분석 유전체 데이

터를 추출하였다. 서울대학교 코호트로부터 위식도경계부선암 II 형

(16 례), 위식도경계부선암 III 형(16 례), 상부위암(14 례)에 대해 종양 

및 같은 환자의 정상 위점막 조직을 짝을 이루어(총 92 례) 전체 엑

솜 및 전체 전사체 서열분석을 시행하였다. TCGA 코호트의 식도선

암과 위저부/체부 선암 간의 전사체 데이터로부터 생성된 Bayesian 

compound covariate predictor (BCCP) 및 Leave-one-out cross 

validation 을 이용하여 분자생물학적 분류 예측 모델을 구축하고,  

TCGA 코호트의 위식도경계부/분문부 선암과 서울대학교 코호트의 

전체 암종을 테스트하였다. 

결과: 전사체 발현 차이를 보이는 400 개 유전자를 기반으로 분자생

물학적 분류 예측 모델을 구축하여 적용 결과, TCGA 코호트의 위식
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도경계부/분문부 선암 및 서울대학교 코호트의 위식도경계부선암 II

형의 68.8%는 BCCP 점수 0.4535 를 기준으로 위저부/체부양 선암 

으로 분류되었다(민감도 90.2%, 특이도 89.7%). 서울대학교 코호트

의 위식도경계부선암 III 형의 93.7%는 위저부/체부양 선암으로 분류

되었으며, 위식도경계부선암 III 형의 위식도경계부의 침범여부와 분

자생물학적 분류 간에 유의한 연관성은 없었다. 위저부/체부양 선암

에 비해 식도양 선암은 분화암 및 장형암과의 연관성이 유의하게 높

았으며, ERBB2 의 유전자복제수변이도 유의하게 증폭되어 있었었다. 

Reverse phase protein array 와 조직미세배열법 결과, 식도양 선암에

서 ERBB2 와 EGFR 의 단백질 발현이 유의하게 증가되어 있었다. 

Cancer Cell Line Encyclopedia 데이터베이스를 이용하여, EGFR 과 

ERBB2 의 이중티로신키나제억제제인 lapatinib 에 대한 약물 반응성  

분석 결과 위저부/체부양 선암에 비해 식도양 선암에서 유의하게 낮

은 IC50 수치를 확인하였다.  

결론: 400 개 유전자를 기반으로 분자생물학적 분류 예측 모델을 구

축하여 적용한 결과, TCGA 코호트의 위식도경계부/분문부 선암 및 

서울대학교 코호트의 위식도경계부선암 II 형은 31.2%의 식도양 선

암과 68.8%의 위저부/체부양 선암의 조합으로 이루어져 있었다. 식

도양 선암은 분화암 및 장형암과의 연관성이 유의하게 높았으며, 

ERBB2 의 유전자복제수변이가 유의하게 증폭되어 있고, ERBB2 및 

EGFR 의 단백질 발현이 유의하게 증가되어 있었다. 식도양선암은 
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ERBB2 및 EGFR 티로신키나제억제제에 대한 유망한 표적이 될 수 

있을 것으로 기대된다. 
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