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Abstract

The effects of combined treatment with epidermal 

growth factor receptor-tyrosine kinase inhibitor 

and selective cyclooxygenase-2 inhibitor 

on lung cancer cells

Hye-Ryoun Kim

Department of Internal Medicine

Seoul National University College of Medicine

Introduction: To overcome the acquired resistance to epidermal growth 

factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), various strategies 

have been explored in preclinical and clinical setting. Cyclooxygenase 

(COX)-2 inhibitors have been reported to suppress cell growth and to 

lead to apoptosis of various cancer cells by EGFR down-regulation. In 

the present study, we assessed whether the combination of celecoxib, a 

COX-2 inhibitor, and EGFR-TKIs could overcome the acquired 

resistance in lung cancer cells. 

Materials and Methods: The EGFR-mutated lung cancer cell lines 

(HCC827 and PC-9) and drug-resistant cell lines (HCC827/GR, 

HCC827/ER, PC-9/GR and PC-9/ER) were used. Celecoxib and COX-2 

siRNA were used as COX-2 inhibitor. Reversible EGFR-TKIs, gefitinib 
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and erlotinib, and EGFR siRNA were used as EGFR inhibitor. Western 

blotting was employed to investigate the expression of proteins involved 

with EGFR signaling. 

Results: Addition of celecoxib treatment enhances sensitivity to 

EGFR-TKIs in parental HCC827 and PC-9 cells harboring with EGFR 

activating mutation. Combined celecoxib and gefitinib treatment 

overcame gefitinib resistance via the inhibition of the phosphorylation 

of MET, EGFR and Akt in HCC827/GR cells. In HCC827/ER cells, 

combination treatment with erlotinib and celecoxib inhibited the 

expression of AXL, p-Akt and Erk. We evaluated the ability of 

combination treatment with gefitinib or erlotinib, and celecoxib to 

inhibit the proliferation of PC-9 cells with an EGFR T790M mutation. 

These combinations showed an additive growth inhibition in PC-9/GR 

cells and a synergistic growth inhibition in PC-9/ER cells through the 

suppression of EGFR and Akt activities. 

Conclusions: The combination of EGFR-TKIs and celecoxib may be a 

new strategy to overcome the acquired resistance to EGFR-TKIs in 

lung cancer. 

Keywords: lung cancer, epidermal growth factor receptor mutation, 

epidermal growth factor receptor-tyrosine kinase inhibitor, selective 

cyclooxygenase-2 inhibitor

Student number: 2010-30516
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Introduction

Lung cancer is the leading cause of cancer-related mortality, with an 

estimated 1.4 million deaths in 2008 globally [1]. Traditional 

chemotherapy provides the limited gains as it prolongs overall survival 

(OS) by only a few months in advanced non-small cell lung cancer 

(NSCLC) patients compared with supportive care [2]. In order to 

overcome this problem, recent research efforts have focused on the 

development of targeted agents for the treatment of advanced NSCLC. 

Given the importance of epidermal growth factor receptor (EGFR) in 

the development and progression of NSCLC [3, 4], EGFR-targeted 

agents have been developed, including the small molecules, selective 

and reversible EGFR-tyrosine kinase inhibitors (TKIs), gefitinib 

(IRESSA, AstraZeneca) and erlotinib (TARCEVA, Roche). EGFR-TKIs 

have been widely used for patients with NSCLC, especially whose with 

EGFR-mutant NSCLC. Activating EGFR mutations, such as deletions in 

exon 19 and point mutations in exon 21, are considered the most 

reliable predictive factors of outcome after the treatment of NSCLC 

with EGFR-TKIs [5, 6]. 

However, despite the treatment of EGFR-TKI leads to a significant 

clinical benefit in patients with EGFR-mutant NSCLC, most of them 

will inevitably develop the acquired resistance after a progression-free 

survival (PFS) of about 10 months [7, 8]. Several mechanisms of the 

acquired resistance to EGFR-TKIs have been identified as follows: (i) 

the secondary mutation in the EGFR kinase domain (T790M, 50-60%); 
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(ii) activation of alternative pathways such as MET, HER2, fibroblast 

growth factor receptor (FGFR), and AXL (1-25%); and (iii) histologic 

transformation to mesenchymal cell or small cell features (5-10%) [9, 

10]. Various strategies to overcome the acquired resistance to 

EGFR-TKIs have been explored in preclinical and clinical settings, 

including "next generation" EGFR-TKIs and rational combinations of 

targeted agents [9]. Among them, the third-generation EGFR-TKIs have 

now been developed and have yielded promising results for patients 

harboring T790M [9, 10]. However, to date, there are no effective 

therapies for patients with acquired resistance that does not involve 

EGFR T790M. One reasonable strategy for overcoming the acquired 

resistance in patients without T790M is an EGFR-TKIs based 

combination therapy. 

 Cyclooxygenase (COX) is a rate-limiting enzyme that converts 

arachidonic acid to prostaglandin (PG) [11]. There are two isoforms of 

COX: COX-1, a constitutive enzyme expressed in many normal tissue 

types, and COX-2, an inducible enzyme that is overexpressed in 

inflammatory and many neoplastic tissues [12-14]. COX-2 is involved 

in various aspects of cancer formation and progression, primarily 

through PG synthesis [15-18]. COX-2 is frequently expressed in tissue 

samples from NSCLC, and some in vitro studies have suggested that 

selective COX-2 inhibitors inhibit cancer cell growth and induce 

apoptosis in NSCLC [19-21]. 

 Preclinical evidence suggests that there is a direct interaction between 
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EGFR signaling and COX-2 activity. In colon cancer models, activation 

of EGFR signaling leads to increased transcription of COX-2 and 

enhanced synthesis of PG, whereas prostaglandin E2 (PGE2), one of 

the major products of COX-2, can activate EGFR signaling [22-24]. In 

vitro studies have shown that simultaneously targeting both EGFR and 

COX-2 produces a synergistic effect in colon, head and neck, and 

breast cancer [25-28]. In addition, recent studies have found that the 

efficacy of combined COX-2 inhibitor and EGFR-TKIs is significantly 

greater in NSCLC cells with EGFR mutations [29, 30]. However, there 

are insufficient data on whether the acquired resistance to EGFR-TKI in 

NSCLC could be overcome by dual blockade of COX-2 and EGFR.   

This study aimed to assess the combined effect of COX-2 inhibitor 

and EGFR-TKIs in NSCLC cells with acquired resistance to 

EGFR-TKIs.
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Materials and Methods

Cell lines and reagents

The EGFR-mutated NSCLC cell lines HCC827 and PC-9 were used. 

Both HCC827 cells and PC-9 cells are known to contain a deletion in 

exon 19 (delE746-A750) of EGFR and be highly sensitive to gefitinib 

and erlotinib. HCC827 cells were purchased from the American Type 

Culture Collection (Rockville, MD), and PC-9 cells were a gift from F. 

Koizumi and K. Nishio (National Cancer Center Hospital, Tokyo, 

Japan). Cells were cultured in RPMI 1640 containing 10% fetal bovine 

serum (FBS) and 1% penicillin- streptomycin at 37°C in an 

atmosphere of 5% CO2. All the cell culture materials were 

obtained from WelGENE (Daegu, Korea). Gefitinib, erlotinib, and 

selective COX-2 inhibitor, celecoxib were purchased from Selleck 

Chemicals (California, USA). Drugs were dissolved in DMSO at 50 

mM and stored at −20°C. The final DMSO concentration in all 

experiments was <0.1% in medium. 

Establishment of gefitinib- and erlotinib-resistant cell 

lines
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Gefitinib- and erlotinib-resistant cells were developed by chronic, 

repeated drug exposure. Briefly, both HCC827 cells and PC-9 cells 

were exposed to 10 nmol/L of gefitinib or erlotinib for 48 hours in 

medium containing 10% FBS. They were then washed and cultured in 

drug-free medium until surviving cells were 80% confluent. These cells 

were then re-exposed to increasing concentrations of gefitinib or 

erlotinib. Cells that were able to grow in 1 μmol/L gefitinib or 

erlotinib were obtained over an 8 month period after initial exposure. 

The established resistant cell lines were maintained in medium 

containing 1 μmol/L of gefitinib or erlotinib. Gefitinib- and 

erlotinib-resistant HCC827 cells are referred to as HCC827/GR and 

HCC827/ER cells, respectively. Also, gefitinib- and erlotinib-resistant 

PC-9 cells are referred to as PC-9/GR and PC-9/ER cells, respectively. 

For all in vitro studies, resistant cells were maintained in drug-free 

medium for at least 1 week before experiments, to eliminate the effects 

of the drugs. 

Cell viability assay

To perform the MTT assay, cells (0.5 × 104/well) were plated in 

96-well sterile plastic plates and allowed to attach overnight. Cells were 

exposed to varying doses of gefitinib, erlotinib, and celecoxib in 

medium containing 1% FBS. After 72 hours, 15 μL of MTT solution 

(0.5 mg/mL) was added to each well and plates were incubated for 4 
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hours. After the culture medium was aspirated off and 200 L DMSO 

was added to each well. Absorbance at 595nm was read 

spectrophotometrically using a microplate reader. The combination effect 

was evaluated by MTT assay. Combination index (CI) values were 

processed using the CalcuSyn software version 2.1 (Biosoft, Cambridge, 

UK). CI values <1, =1, and >1 indicated synergism, additive effect, 

and antagonism, respectively.

Western blot

Cell lysates were resolved by 10% SDS-PAGE and transferred to 

nitrocellulose membranes. The membranes were blocked with 5% skim 

milk–PBS–0.1% Tween 20 for 1 hour at room temperature before being 

incubated overnight with primary antibodies diluted 1:1,000 in 5% skim 

milk–PBS–0.1% Tween 20. The membranes were then washed three 

times in PBS–0.1% Tween 20 and incubated with horseradish 

peroxidase-conjugated secondary antibodies diluted 1:1,000 in 5% skim 

milk for 1 hour. After successive washes, the membranes were 

developed using an ECL kit and analyzed by the ImageQuant™ LAS 

4000 image analysis system (GE Healthcare, Uppsala, Sweden). 

Antibodies specific for p-EGFR (Tyr1173), MET and AXL were 

obtained from Santa Cruz Biotechnology; those for EGFR, COX-2, 

p-MET (Tyr1234/1235), Akt, p-Akt (Ser473), Erk, p-Erk 

(Thr202/Tyr204), and GAPDH were purchased from Cell Signaling 
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Technology; and those for p-AXL were purchased from R&D system. 

RNA interference

Silencer-validated small interfering RNAs (siRNAs) for EGFR 

(sc-29301), COX-2 (sc-29279), and control (sc-37007) were purchased 

from Santa Cruz Biotech (Santa Cruz, CA, USA). HCC827 cells and 

PC-9 cells were seeded into 60 mm dishes and allowed to attach 

overnight. Transfection of siRNAs was carried out using the 

Oligofectamine™ reagent (Invitrogen Life Technologies, Carlsbad, CA) 

according to the manufacturer's specifications. After transfection, the 

suppression of targeted proteins was determined by Western blotting. 

The viability of cells was determined by MTT assay.

HCC827 cells and PC-9 cells were transfected with siRNA specific for 

EGFR and COX-2 following manufacturer’s instructions. One day prior 

to transfection, HCC827 cells and PC-9 cells were cultivated in RPMI 

1640 with 10 % FBS. Cells were then incubated with a complex 

formed by siRNA (10 nM), transfection reagent (Lipofectamine 2000, 

Gibco) and transfection medium (Opti-MEM 1, Gibco) for 72 hours at 

37 °C. Scrambled siRNA sequence was used as a control. Transfection 

efficiency was confirmed by western blot. 
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Statistical analysis

All cell viability experiments were repeated at least three times. Cell 

viability data are presented as mean ± standard deviation as a percentage 

of control. The Mann–Whitney U-test was used for comparisons, and a 

p value of <0.05 was considered statistically significant.
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Results 

Addition of celecoxib treatment enhances sensitivity to 

EGFR-TKIs in cells with EGFR activating mutations

The proliferation of NSCLC cell lines HCC827 and PC-9 was inhibited 

by gefitinib, erlotinib and celecoxib, and the effect was dose-dependent 

(Figure 1 and 2). The median inhibitory concentration (IC50) of 

gefitinib, erlotinib and celecoxib in the HCC827 and PC-9 cells were 

13.4 nmol/L, 36.8 nmol/L and 38.3 μmol/L, respectively, and 3.7 

nmol/L, 26.0 nmol/L and 15.1 μmol/L, respectively. The combined 

effect was evaluated on the basis of the CI. The combination of 

celecoxib and gefitinib or erlotinib manifested a synergistic effect on 

the viability of HCC827 and PC-9 cells in most combination 

concentrations (Figure 3 and 4).

 We performed immunoblotting to determine changes in EGFR 

down-signaling protein expression in HCC827 and PC-9 cells after 

treatment with gefitinib, erlotinib, celecoxib, or an each combination 

(Figure 5). In HCC827 cells, a significant decrease in the expression 

levels of COX-2, p-EGFR, and p-Akt proteins was observed after 

treatment with any of the single EGFR-TKI agents (10 nmol/L) or 

combinations with celecoxib (30 μmol/L). Single drug treatment with 

celecoxib did not affect the expression levels of COX-2 and p-EGFR. 
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No significant changes in the expression levels of COX-2, p-EGFR, and 

p-Akt proteins were observed after treatment with any of the 

single-agent concentrations (EGFR-TKI 1 nmol/L and celecoxib 20 μ

mol/L) tested in PC-9 cell line. However, combined gefitinib or 

erlotinib with celecoxib treatment significantly inhibited the 

phosphorylation of EGFR and Akt, as well as the expression of 

COX-2.

 Interestingly, there was significant down-regulation of EGFR and 

COX-2 in both cell lines following combined treatment with EGFR-TKI 

and celecoxib compared to that following treatment with either drug 

alone. To identify the cross-activity of EGFR-TKI and celecoxib, we 

transfected both HCC827 and PC-9 cells with EGFR or COX-2 siRNAs 

(Figure 6). COX-2 expression was markedly suppressed when both 

HCC827 and PC-9 cells were transfected with EGFR siRNA. In 

addition, immunoblotting revealed that COX-2 siRNA effectively 

suppressed the EGFR gene. 

 These results indicate that the combination of EGFR-TKI and 

celecoxib has a synergistic effect on the viability of EGFR-mutated 

NSCLC cells, and that this effect is mediated through the inhibition of 

the EGFR downstream pathway.

Combined treatment with celecoxib and gefitinib 

overcomes the drug resistance caused by MET gene 
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amplification

A gefitinib-resistant subline that was derived from the parental 

drug-sensitive HCC827 cell line was established by continuous exposure 

of cells to gefitinib more than a period of 8 months. The resistant 

subline was designated HCC827/GR and exhibited a 1,000-fold higher 

resistance to gefitinib than the parental cells (gefitinib IC50, <0.01 μ

mol/L in HCC827 cells and >10 μmol/L in HCC827/GR cells; Figure 

7). Also, HCC827/GR cells showed a 2-fold higher resistance to 

celecoxib than the parental cells (celecoxib IC50, <40 μmol/L in 

HCC827 cells and >80 μmol/L in HCC827/GR cells; Figure 7). 

Consistent with a prior study, we observed increased the 

phosphorylation of MET and gene amplification in HCC827/GR cells 

(data not shown). 

 When HCC827/GR cells were treated with gefitinib and celecoxib, 

celecoxib restored sensitivity to gefitinib (Figure 8). A similar 

synergistic effect was observed across the full range of doses tested. 

 In immunoblotting, high dose gefitinib (1 μmol/L) inhibited the 

phosphorylation of MET, EGFR and Akt in HCC827/GR cells, but no 

significant change of protein expression was observed when low-dose 

gefitinib (0.01 μmol/L) was used. Combined celecoxib (30 μmol/L) and 

low dose gefitinib (0.01 μmol/L) treatment overcame gefitinib resistance 

via the inhibition of the phosphorylation of MET, EGFR and Akt, 

which was maintained in the presence of gefitinib alone (Figure 9). 



12

Combined treatment with celecoxib and erlotinib 

overcomes the AXL-mediated drug resistance 

A previous study reported that increased activation of AXL led to 

EGFR-TKI resistance in HCC827/ER cells (31). Erlotinib resistant 

subline exhibited IC50 values for erlotinib that were more than 

1,000-fold larger than those of the parental HCC827 cells (erlotinib 

IC50, <0.01 μmol/L in HCC827 cells and >10 μmol/L in HCC827/ER 

cells; Figure 10). Also, HCC827/ER cells showed markedly higher 

resistance to celecoxib than the parental cells (celecoxib IC50, <20 μ

mol/L in HCC827 cells and >100 μmol/L in HCC827/ER cells; Figure 

10). The combination of erlotinib and celecoxib effectively inhibited the 

growth of HCC827/ER cells, where as neither of the agents alone led 

to growth inhibition (Figure 11). These combinations showed a 

synergistic growth inhibition.

 In HCC827/ER cells, high dose erlotinib (1 μmol/L) inhibited the 

phosphorylation of Akt and Erk in HCC827/ER cells and the protein 

expression of AXL, but no significant change of protein expression was 

observed when low-dose erlotinib (0.01 μmol/L) was used. Combination 

treatment with low dose erlotinib (0.01 μmol/L) and celecoxib (30 μ

mol/L) inhibited the expression of AXL, p-Akt and Erk (Figure 12). 
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Celecoxib treatment enhances sensitivity to EGFR-TKIs 

in T790M-mediated resistant cells

As previously reported, PC-9/GR and PC-9/ER cells were generated by 

stepwise selection using increasing doses of gefitinib or erlotinib over a 

period of 8 months. These resistant cells acquired the T790M mutation 

(32). These resistant sublines presented IC50 values for EGFR-TKIs that 

were more than 1,000-fold larger than those of the parental PC-9 cells 

(Figure 13 and 14). We evaluated the ability of combination treatment 

with gefitinib or erlotinib, and celecoxib to inhibit the proliferation of 

NSCLC cells with an EGFR T790M mutation. The addition of 

celecoxib enhanced the ability of EGFR-TKIs to induce growth 

inhibition (Figure 15 and 16). These combinations showed an additive 

growth inhibition in PC-9/GR cells and a synergistic growth inhibition 

in PC-9/ER cells. 

 To investigate the mechanism by which celecoxib enhanced the 

antitumor activities of the EGFR-TKIs, the activities of EGFR and its 

downstream molecules were examined. The inhibitory effect of single 

treatment with celecoxib (20 μmol/L), gefitinib (0.001 μmol/L), or 

erlotinib (0.001 μmol/L) on EGFR and Akt activities was modest, 

whereas the combination of celecoxib and gefitinib or erlotinib 

substantially suppressed EGFR and Akt activities (Figure 17 and 18).
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Discussion

In present study, we showed that the addition of celecoxib could 

overcome the acquired resistance to EGFR-TKIs. Several resistance 

mechanisms to EGFR-TKIs were observed in gefitinib- or 

erlotinib-resistant cell lines, such as secondary mutation (T790M) and 

bypass signaling (MET or AXL). Our results demonstrated that 

combination treatment with celecoxib and EGFR-TKI has a synergistic 

effect in NSCLC cells with resistance to EGFR-TKIs via the bypass 

signals of MET or AXL, as well as secondary T790M mutation.  

Previous studies reported that celecoxib could inhibit EGFR activity in 

lung cancer cells [29, 30, 33]. Chen et al. indicated that celecoxib 

combined with gefitinib led to stronger inhibition of EGFR signal 

transduction in NSCLC [33]. Recent two studies showed that the 

efficacy of the addition of celecoxib to EGFR-TKI is significantly 

greater in NSCLC cells with EGFR mutations than in NSCLC cells 

with wild-type EGFR [29, 30]. Consistent with previous studies, 

combined treatment of celecoxib with EGFR-TKI showed additive or 

synergistic growth inhibitions in NSCLC cells harboring EGFR 

mutations, but not in A549 cells with wild-type EGFR in our study 

(data not shown). Different combined effect among lung cancer cells 

with various EGFR mutational status might be related to the basal 

status of EGFR activity and cellular dependency to EGFR signaling. 

Mutations in the EGFR gene activate the EGFR signaling pathway and 

promote the cellular dependency on EGFR-derived proliferation and 
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survival. Therefore, the addition of celecoxib to EGFR-TKIs leading to 

more complete inhibition of EGFR signals could cause significant 

anti-proliferative and pro-apoptotic effects to cells with mutant EGFR. 

MET is a transmembrane tyrosine kinase receptor which are involved 

in the regulation of cell proliferation, migration, invasion, and 

angiogenesis [34]. Amplification of MET has been reported in 

approximately 5%–22% of NSCLC with acquired resistance to 

EGFR-TKIs. MET mediates the resistance to EGFR inhibitors through 

downstream activation of the phosphoinositide 3-kinase (PI3K)/AKT 

pathway by heterodimerization with ERBB3. Engelman et al. described 

that gefitinib-resistant HCC827 cells maintain the phosphorylation of 

ERBB3 and AKT in the presence of gefitinib [35]. However, gefitinib 

plus PHA665752, a selective small molecule inhibitor of c-Met, or 

MET-specific short hairpin RNA suppressed the phosphorylation of 

ERBB3 and AKT, and restored sensitivity to gefitinib. Also, another 

study using animal models of EGFR TKI-resistant NSCLC showed that 

dual inhibition of MET and EGFR significantly attenuates Akt 

phosphorylation and results in tumor regression, whereas treatment of 

either agent alone did not [36]. 

We produced a gefitinib-resistant HCC827 cell line (HCC827/GR), 

which is similar to those established by Engelman and colleagues [35]. 

In our study, HCC827/GR cell line expressed a high level of MET 

activity through the amplification of MET, and its growth was 

significantly inhibited by the combined treatment with gefitinib and 
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celecoxib. These findings suggest that celecoxib has potential 

effectiveness to overcome the resistance mediated by the MET bypass 

signal. Several earlier studies also suggested that selective COX-2 

inhibitor inhibits c-MET induction in benign or tumorous conditions 

[37-40]. Tuynman et al. reported that selective COX-2 inhibition 

significantly decreases both COX-2 and MET expression levels and 

results in anti-proliferative and pro-apoptotic effects in vitro and in 

patients with esophageal adenocarcinoma [38]. Celecoxib also effectively 

suppressed the in vivo tumor growth in an orthotopic liver cancer 

model through the inhibition of c-MET expression [40]. 

AXL belongs to the TAM (Tyro-Axl-Mer) family of receptor tyrosine 

kinase (RTK) [41]. AXL receptor homodimerization or 

heterodimerization with other RTKs, such as EGFR, leads to increased 

cell motility and survival via the activation of downstream effectors. 

Recently, several study groups reported that activation of AXL could 

mediate drug resistance to EGFR-targeted therapy in lung cancer [31, 

42-43]. In these studies, combined inhibition of AXL and EGFR 

restored therapeutic efficacy. Previously, we established an 

erlotinib-resistant HCC827 cell line (HCC827/ER), which expressed a 

high level of AXL activity [31, 44]. Our current results presented that 

celecoxib treatment inhibits both AXL and EGFR in HCC827/ER cells. 

Although AXL-mediated signaling is correlated with acquired resistance 

to erlotinib, both EGFR- and AXL-signals may involve in cell survival 

and proliferation. Therefore, the addition of celecoxib to erlotinib 
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synergistically suppressed cell proliferation in HCC827/ER. To our 

knowledge, our study is the first to demonstrate that celecoxib can 

reduce the activity of AXL in AXL-mediated resistant lung cancer cell 

line. 

Threonine 790 is a gatekeeper for the ATP-binding pocket in EGFR. 

The T790M mutation results in drug resistance by reduced affinity for 

EGFR-TKIs or enhanced ATP binding affinity. In clinical setting, the 

EGFR T790M mutation was present in approximately 50 to 60 % of 

resistant cases [47]. In previous study, we found that the acquisition of 

the EGFR T790M mutation leads to resistance to both gefitinib and 

erlotinib in PC-9 cells [45]. Regales et al. suggested that dual targeting 

of EGFR by the combination of cetuximab and BIBW-2992 could 

overcome T790M-mediated drug resistance through efficient depletion of 

both phosphorylated and total EGFR [46]. Our study also evaluated the 

efficacy of dual targeting by the combination of celecoxib and gefitinib 

or erlotinib in PC-9 cells harboring T790M mutation. Interestingly, this 

combination strategy showed a synergistic or an additive efficacy in 

drug-resistant PC-9 cell lines. This phenomenon may be explained from 

preclinical data that tyrosine kinase activity is maintained although the 

EGFR T790M can substantially suppress the efficacy of 

ATP-competitive reversible inhibitors, gefitinib and erlotinib [48]. Our 

results suggest that dual EGFR targeting may be resonable. 

In summary, celecoxib enhances the efficacy of EGFR-TKIs to 

overcome drug resistance by suppression of bypass signals as well as 
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EGFR signals. This combination leads to more complete inhibition of 

EGFR and Akt signals that may not be achievable by treatment of 

EGFR-TKI alone in cancer cells with drug resistance. Present study 

supports that the combination treatment with celecoxib and EGFR-TKI 

may be one of the strategies for treating patients with acquired 

resistance to EGFR-TKIs via various mechanisms.
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Figure 1. Effects of EGFR-TKI and celecoxib in parental HCC827 

cells. Cells were treated with the indicated doses of gefitinib (A), 

erlotinib (B), or celecoxib (C) for 72 hours in medium containing 1% 

FBS. Cell viability was determined using the MTT assay. 
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Figure 2. Effects of EGFR-TKI and celecoxib in parental PC-9 cells. 

Cells were treated with the indicated doses of gefitinib (A), erlotinib 

(B), or celecoxib (C) for 72 hours in medium containing 1% FBS. Cell 

viability was determined using the MTT assay. 
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Figure 3. Combination effects of EGFR-TKI and celecoxib in parental 

HCC827 cells. Cells were treated with the indicated doses of gefitinib 

(A) or erlotinib (B), and the fixed dose of celecoxib (30 μmol/L) for 

72 hours in medium containing 1% FBS. Cell viability was determined 

using the MTT assay. 
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Figure 4. Combination effects of EGFR-TKI and celecoxib in parental 

PC-9 cells. Cells were treated with the indicated doses of gefitinib (A) 

or erlotinib (B), and the fixed dose of celecoxib (20 μmol/L) for 72 

hours in medium containing 1% FBS. Cell viability was determined 

using the MTT assay. 
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Figure 5. Protein expression of EGFR and downstream molecules in 

parental HCC827 (A) and PC-9 (B) cells. 
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Figure 6. Transfection of EGFR and COX-2 specific-siRNAs in parental 

HCC827 and PC9 cells. Cells were transfected with the indicated 

siRNA and gene knockdown was confirmed by Western blotting. 
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Figure 7. Effects of gefitinib and celecoxib in HCC827/GR cells. Cells 

were treated with the indicated doses of gefitinib (A), or celecoxib (B) 

for 72 hours in medium containing 1% FBS. Cell viability was 

determined using the MTT assay. 
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Figure 8. Combination effects of gefitinib and celecoxib in HCC827/GR 

cells. Cells were treated with the indicated doses of gefitinib, and the 

fixed dose of celecoxib (30 μmol/L) for 72 hours in medium containing 

1% FBS. Cell viability was determined using the MTT assay. 
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Figure 9. Protein expression of EGFR and downstream molecules in 

HCC827/GR cells. 
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Figure 10. Effects of erlotinib and celecoxib in HCC827/ER cells. Cells 

were treated with the indicated doses of erlotinib (A), or celecoxib (B) 

for 72 hours in medium containing 1% FBS. Cell viability was 

determined using the MTT assay. 
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Figure 11. Combination effects of erlotinib and celecoxib in 

HCC827/ER cells. Cells were treated with the indicated doses of 

erlotinib, and the fixed dose of celecoxib (30 μmol/L) for 72 hours in 

medium containing 1% FBS. Cell viability was determined using the 

MTT assay. 
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Figure 12. Protein expression of EGFR and downstream molecules in 

HCC827/ER cells. 
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Figure 13. Effects of gefitinib and celecoxib in PC-9/GR cells. Cells 

were treated with the indicated doses of gefitinib (A), or celecoxib (B) 

for 72 hours in medium containing 1% FBS. Cell viability was 

determined using the MTT assay. 
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Figure 14. Effects of erlotinib and celecoxib in PC-9/ER cells. Cells 

were treated with the indicated doses of erlotinib (A), or celecoxib (B) 

for 72 hours in medium containing 1% FBS. Cell viability was 

determined using the MTT assay. 
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Figure 15. Combination effects of gefitinib and celecoxib in PC-9/GR 

cells. Cells were treated with the indicated doses of gefitinib, and the 

fixed dose of celecoxib (20 μmol/L) for 72 hours in medium containing 

1% FBS. Cell viability was determined using the MTT assay. 
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Figure 16. Combination effects of erlotinib and celecoxib in PC-9/ER 

cells. Cells were treated with the indicated doses of erlotinib, and the 

fixed dose of celecoxib (20 μmol/L) for 72 hours in medium containing 

1% FBS. Cell viability was determined using the MTT assay. 
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Figure 17. Protein expression of EGFR and downstream molecules in 

PC-9/GR cells. 
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Figure 18. Protein expression of EGFR and downstream molecules in 

PC-9/ER cells. 
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국문초록

목적: 폐암에서 표피성장인자 수용체-티로신 키나아제 억제제에 대

한 획득내성을 극복하기 위한 다양한 치료전략들이 전임상과 임상

단계에서 연구되고 있다. 선택적인 사이클로옥시게나제-2 억제제는 

표피성장인자 수용체를 억제함으로써 다양한 암세포들의 성장을 억

제하고 세포사멸을 유도하는 것으로 보고되고 있다. 본 연구에서는 

폐암세포를 이용하여 표피성장인자 수용체-티로신 키나아제 억제제

와 선택적인 사이클로옥시게나제-2 억제제의 병합치료가 표피성장

인자 수용체-티로신 키나아제 억제제에 대한 획득내성을 극복할 수 

있는지 알아보고자 하였다. 

실험 방법: 표피성장인자 수용체-티로신 키나아제 억제제에 감수성

이 있다고 알려진 표피성장인자 수용체 엑손 19 결손 돌연변이를 

가지고 있는 폐암 세포주인  HCC827 세포와 PC-9 세포, 그리고 표

피성장인자 수용체-티로신 키나아제 억제제인 게피티니브와 얼로티

니브에 노출시켜 각각의 약제에 내성을 갖게 된 HCC827/GR, 

HCC827/ER, PC-9/GR, PC-9/ER 세포를 배양 후 표피성장인자 수용

체-티로신 키나아제 억제제인 게피티니브 또는 얼로티니브, 그리고 

선택적인 사이클로옥시게나제-2 억제제인 세레콕시브를 단독 혹은 

병합 처리하고 72시간 뒤 세포생존율을 구하고 병합치료의 효과를 

평가하였다. 그리고 표피성장인자 수용체의 신호전달경로에 관여하

는 단백질 발현의 변화를 관찰하였다. 

결과: 표피성장인자 수용체-티로신 키나아제 억제제에 감수성이 있

는 HCC827 세포와 PC-9 세포의 경우 표피성장인자 수용체-티로신 
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키나아제 억제제와 사이클로옥시게나제-2를 병합했을 때 상승효과

가 있음을 확인하였다. 표피성장인자 수용체-티로신 키나아제 억제

제의 일종인 게피티니브에 획득내성을 가지는 HCC827/GR 세포에서 

게피티니브와 세레콕시브의 병합치료는 p-MET, p-EGFR 그리고 

p-Akt의 발현을 감소시킴으로써 게피티니브에 대한 내성을 극복할 

수 있었다. 얼로티니브에 획득내성을 가지는 HCC827/ER 세포의 경

우 얼로티니브와 세레콕시브의 병합치료는 AXL, p-Akt 그리고 Erk

의 발현을 감소시킴으로써 상승효과를 나타내었다. 게피티니브와 얼

로티니브에 노출시켜 각각의 약제에 내성을 갖게 된 PC-9/GR, 

PC-9/ER 세포의 경우 획득내성 기전으로 이차 돌연변이 T790M을 

갖고 있음을 확인하였다. 게피티니브 또는 얼로티니브, 그리고 세레

콕시브의 병합치료는 EGFR과 Akt의 활성을 억제함으로써 PC-9/GR 

세포의 경우 부가효과를 나타내었고, PC-9/ER 세포의 경우 상승효

과를 나타내었다. 

결론: 폐암에서 표피성장인자 수용체-티로신 키나아제 억제제와 선

택적인 사이클로옥시게나제-2 억제제의 병합치료는 표피성장인자 

수용체-티로신 키나아제 억제제에 대한 획득내성을 극복할 수 있는 

새로운 치료전략으로서 가능성이 있다. 

주요어: 폐암, 표피성장인자 수용체 돌연변이, 표피성장인자 수용체-

티로신 키나아제 억제제, 사이클로옥시게나제-2 억제제
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