저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

- 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건을 명확하게 나타내어야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer
연속 주조 시 주형 코팅에 따른 주편과 주형의 열전달 유한요소해석

Numerical Analysis of Heat Transfer of Slab and Mold with Mold Coating in Continuous Casting Process

2017년 7월

서울대학교 대학원 재료공학부
서 인 교
Numerical Analysis of Heat Transfer of Slab and Mold with Mold Coating in Continuous Casting Process

지도교수 오 규 환

이 논문을 공학석사 학위논문으로 제출함

2017년 7월

서울대학교 대학원
재료공학부
서 인 교

서인교의 석사학위논문을 인준함

2017년 7월

위원 장 한 흥 남 (인)
부위원장 오 규 환 (인)
위원 선 정 윤 (인)
초록

용강의 주입, 주조, 절단, 압연 등의 공정이 연속적으로 진행되는 연속 주조 공정은 실수율과 에너지 효율면에서 우수한 장점으로 현재 세계의 철강 산업에서 연속 주조를 통한 생산이 대부분을 차지하고 있다. 연속 주조 공정 시 강의 응고과정에서 주편에 균열이 발생하게 되면 최종제품의 영향을 주는 문제점을 가지고 있다. 따라서 이러한 균열이 발생할 가능성을 예측하는 연구가 활발히 진행되고 있다. 연속주조법은 주편 품질에 미치는 공정변수가 매우 다양하고 서로 복합적으로 작용하여 실험적으로 각각의 공정변수를 이해하고 제어하기 어렵기 때문에 유한요소법을 통한 수치해석적모사가 활발히 이루어지고 있다. 하지만 주형과 주편 사이의 열전달을 조절하기 위한 주형 코팅의 열적특성에 따른 열전달에 관한 연구는 많은 진행이 되지 않았다. 따라서 본 연구에서는 주형 코팅의 열적특성에 따른 주형과 주편 사이의 열전달을 수치해석적으로 계산하는 연구를 수행하였다.

주요어 : 연속 주조, 응고, 균열, 유한요소법, 열전달, 주형 코팅, 수치해석
목차

초록... I

목차 .. II

Figure list.. IV

Table list .. VI

1. 서론 .. 1
 1.1 연속주조법.. 1
 1.2 주형에서의 냉각 및 열전달............................. 4
 1.3 코팅의 목적 및 방법...................................... 5
 1.4 연구방향.. 7

2. 이론적 배경... 9
 2.1 미소판석 해석... 9
 2.1.1 미소판석 해석 모델................................. 10
 2.1.2 연속 주조에서 강의 미소판석 해석................ 14
 2.2 열탄소성 연결해석...................................... 16
 2.2.1 구성방정식... 16
 2.2.2 유한요소 수식화..................................... 19
 2.3 열전달 기본방정식...................................... 22

3. 연속 주조에 대한 유한요소법 적용..................... 23
 3.1 열전달 계산 모델....................................... 23
 3.1.1 2D Slice 모델....................................... 24
 3.1.2 부분 3D 모델.. 29
 3.2 열전달해석... 31
 3.2.1 열전달 해석의 경계조건.......................... 31
 3.2.2 열전달 해석의 가정............................... 37
 3.3 강의 고온물성 결정...................................... 39
3.4 주형 코팅층의 형상과 열저항 41

4. 주형 코팅의 예비 연구 ... 43

4.1 주형 코팅 예비 연구 모델 43

4.2 주형 코팅층 사례 연구 46

4.2.1 코팅층 두께에 따른 주형 온도 46

4.2.2 열유속 곡선 개형에 따른 주형 온도 50

4.2.3 상부 열유속에 따른 주형 온도 53

4.2.4 코팅층 열전도도에 따른 주형 온도 56

4.3 사례 연구 요약 ... 59

4.4 사례 연구 해석해 검증 60

5. 해석결과 .. 64

5.1 열유속 해석 ... 64

5.2 주편 온도 해석 .. 67

5.3 냉각 속도 해석 ... 71

5.4 주형 온도 해석 ... 73

5.5 주조 속도에 따른 열전달 해석 76

5.5.1 주조 속도에 따른 열유속 해석 78

5.5.2 주조 속도에 따른 셀 두께 해석 83

5.5.3 주조 속도에 따른 주편 표면 온도 해석 85

5.5.4 주조 속도에 따른 주형 온도 해석 88

6. 결론 ... 92
Figure list

그림 3.1 연속 주조 공정의 1차 냉각대와 2D Slice 모델로 나타낸 주형과 주편

그림 3.2 2D Slice 모델의 FEM Mesh

그림 3.3 계산에 사용된 주형과 냉각슬릿의 차수 및 형상

그림 3.4 부분 3D 모델 및 계산에 이용된 차수

그림 3.5 연속 주조 과정 중 주형, 주형 코팅, 주편사이의 열저항

그림 3.6 계산에 이용한 5가지 코팅층 형상

그림 3.7 코팅층 형상에 따른 주조 전반에서 코팅층의 열저항

그림 4.1 예비 연구의 계산 모델 및 형상

그림 4.2 주형 내부의 열전다 위치

그림 4.3 코팅 두께에 따른 주형 온도 계산 모식도와 입력 열유속

그림 4.4 코팅 두께에 따른 주형 온도 분포

그림 4.5 열유속 개형에 따른 주형 온도 계산 모식도와 입력 열유속

그림 4.6 입력 열유속에 따른 주형 온도 분포

그림 4.7 상부 열유속에 따른 주형 온도 계산 모식도와 입력 열유속

그림 4.8 상부 열유속 차이에 따른 주형 온도 분포

그림 4.9 2D Slice 모델에서 얻은 코팅 유무에 따른 열유속 결과 값을

그림 4.10 코팅 열전도도에 따른 주형 온도 계산 모식도와 입력 열유속

그림 4.11 코팅 열전도도에 따른 주형 온도 분포

그림 4.12 열전도 지점의 온도의 해석해와 수치해
그림 5.1 단변 주형 중앙부의 코팅층 따라 주조거리에 따른 열유속의 변화

그림 5.2 단변 주형 중앙부의 코팅층 따라 셀의 성장

그림 5.3 단변 주형 중앙부의 코팅층 따라 주조거리에 따른 표면 온도

그림 5.4 주조 출구에서 주편의 장변 및 단변 경로에 따른 표면 온도

그림 5.5 코팅층마다의 1100 ~ 1200 ℃ 에서의 주조시간에 따른 표면 온도 변화

그림 5.6 코팅층마다 주형의 온도 분포

그림 5.7 주조 시간에 따른 코팅층마다의 열저항 변화

그림 5.8 w/o Coat, Coat 1, Coat 2 의 주조속도에 따른 열유속을 (a) 주조 길이 및 (b) 주조 시간에 따라 나타내 비교

그림 5.9 Coat 3, Coat 4 의 주조속도에 따른 열유속을 (a) 주조 길이 및 (b) 주조 시간에 따라 나타내 비교

그림 5.10 (a) 0.6 mpm 과 (b) 0.8 mpm 의 1100 ~ 1200 ℃ 구간의 주형 단변 중앙의 주조 시간에 따른 주편 표면 온도 변화
Table list

표 3.1 냉각수의 물성 값
표 3.2 계산에 사용된 열적 특성 값
표 3.3 온도 변화에 따른 주형과 주형용제 사이의 열전달 계수
표 4.1 예비 연구에 사용된 계산 조건
표 4.2 해석해로 얻은 온도 값과 수치해로 얻은 온도 값 비교
표 5.1 코팅층마다 전체 평균 열유속과 출구에서의 셀 두께
표 5.2 코팅층마다의 장변, 단변, 코너의 출구 표면 온도
표 5.3 표면 온도를 통해 본 코팅층마다의 냉각 속도
표 5.4 코팅층마다의 주형 최대 온도와 열전달 지점 온도
표 5.5 각 코팅층마다 주속에 따른 평균 열유속
표 5.6 (a) 0.6 ppm 과 (b) 0.8 ppm 에서의 평균 열유속, 총 전달 에너지, 출구 셀 두께
표 5.7 주조 속도에 따른 1100~1200 °C 구간에서 코팅층마다의 냉각속도
표 5.8 주조 속도에 따른 코팅층마다 주형의 (a) 최대표면온도 및 (b) 열전달 온도
1. 서론

1.1 연속주조법

연속주조 공정은 용융 금속을 주형에 연속적으로 주입하고 응고시켜 철강제품의 중간 생산품인 슬래브, 블룸, 빌렛 등을 생산하는 공정이다. 용강의 주입, 주조, 절단, 압연 등의 공정이 연속적으로 진행되며 실수율과 에너지 효율면에서 우수한 장점을 현재 세계의 조강생산에서 연속 주조를 통한 생산이 대부분을 차지하고 있다. 조업공정의 생략과 전 공정의 자동화를 통해 생산량을 크게 증대시켰으며 작업이 용이하고 자동화를 통한 연속적인 생산으로 원가를 절감할 수 있다. 또한 연속 주조 공정은 재질이 균일한 제품을 생산할 수 있으며 길이 방향으로의 폐식과 수축공이 없다. 최종제품과 비슷한 형상의 중간제품을 얻는 공정으로 가공 중 발생할 수 있는 균열을 가급적 억제할 수 있는 장점이 있다. 하지만 강은 냉각이 되면서 열수축을 하며 이로 인해 제품에 결함이 발생할 수 있다. 결함이 발생하면 최종제품에도 남아 있어 제품의 품질에 영향이 미치므로 이를 억제하려는 연구가 활발히 진행되고 있다.

강의 연속주조법은 1840 년에 미국의 Seller 가 연속주조장치를 고안하여 특허를 획득하였고 1933 년 Junghans 가 주형 진동 장치를 개발함에 따라 연속주조법은 실용화가 가능하여 2 차 세계대전 이후 공업화에 성공하였다.[3] 1960 년 대를 전후하여 기존의 수직연주기를 대체하는 만곡형 연속주조기가 출현하여 공장의 높이를 절반 이상으로 낮추었고 생산성이 향상되었다. 이러한 양적 성장과 동시에 연속 주조
기술은 현재까지 개발이 진행되고 있으며 제품의 결함 발생을 억제하고 고품질의 제품을 대량으로 생산하기 위한 주형진동기술, 연연주 기술, 전자교반, 고속주조, 적정 주형경사, 경압하, 주형 코팅 등의 새로운 설비와 기술들이 대량으로 개발되고 있다.

주편의 냉각중 표면 개제물이 조대화 되어 주편의 균열이 감소한다는 보고가 있다. 표면 개제물의 조대화를 위해 특정 온도 구간에서 주편을 완냉할 목적이 있는데 주형에 단열 코팅층을 엽혀 공정 변수를 제어한다. 앞서 말한듯이 연속 주조 공정에 관한 많은 기술들이 대량으로 개발되고 있지만 단열 코팅층으로 인해 주편과 주형 사이에 전달되는 열량, 온도분포 등에 대한 기초 연구는 부실한 편이며 선행연구도 많이 진행되어 있지 않았다. 따라서 본 연구에서 단열 코팅층의 합리적인 모사와 완냉에 필요한 주형 코팅층의 열적특성을 제시하였다. 단열 코팅층의 열적특성으로 인해 주형과 주편사이의 열전달에는 어떤 영향을 미치는지 알아보았으며 주편의 온도, 주형의 온도, 열유속 등을 해석하여 연속 주조 공정에서 주형 코팅층의 영향을 알아보았다.
1.2 주형에서의 냉각 및 열전달

액체 상태인 용강을 냉각하여 고체 상태의 제품을 생산하는 연속 주조법은 고온의 용강으로 인하여 공정이 고온환경에서 이루어진다. 용강이 주입되는 1차냉각대에서 주형 외부에는 냉각수가 흘러 고온의 용강에서 저온의 주형으로 온도차이가 발생하여 열이 흘러 주편이 냉각된다. 주형과 주편사이에는 주형 용제 및 공기틈이 존재하여 열저항으로 작용하여 주형과 주편사이의 열전달을 방해한다. 주형 용제는 주편과 주편사이의 마찰을 줄이기 위해 참가하며 공기틈은 주편의 수축을 주형경사가 보상하지 못하여 주형과 주편사이에 틈이 발생하며 공기가 퍼져 공기틈이 된다. 주형용제 및 공기틈은 열저항으로 작용하여 주형과 주편사이의 열전달을 방해하는 동시에 열전달을 제어하는 기능을 한다. 또한 냉각수, 고온환경으로 인해 용융된 주형용제, 공기틈의 유체 거동으로 인해 주형용제와 공기틈의 두께로 인한 열저항 이외에도 계면 열저항이 작용하여 영향을 미친다.

1.3 코팅의 목적 및 방법

고급 강재 생산시 주변은 냉각중에 표면 개재물이 석출되며 개재물이 조밀화됨에 따라 주변의 균열 발생을 억제한다는 보고가 있다. 주변의 완만한 냉각을 목적으로 주형 코팅층을 적용하여 열전달을 제어한다. 본 연구에서는 주형 코팅층으로 인해 주형과 주변사이의 열전달에 어떠한 영향을 미치는지 알아보기 위한 목적으로 진행되었다. 주형과 주변사이의 열유속, 주변의 온도 및 고체 셀 두께, 주형의 온도를 통해 열전달을 평가하였고 주형 코팅층의 유무 및 형상에 따른 열전달 기준을 제시하였다.

주형에 코팅층을 입히는 방법은 레이저 클래딩 공법을 이용한다. 레이저 클래딩이란 레이저를 이용해 서로 다른 두 금속을 결합하는 공정으로 보통 면 형태의 금속 기판에 다른 금속으로 표면처리하는 기술이다. 금속 모재 표면에 입혀지기 위한 코팅층 재료는 파우더 형태로 노즐에 주입되며 노즐을 통해 공급된다. 레이저로 인해 노즐에서 공급된 금속 파우더가 반응하게 되면 용융되어 용융지(melt pool)를 형성한다. 기판이 이동하면서 형성된 용융지는 기판 위에서 모재와 결합하고 고성화 된다. 레이저 클래딩 공정은 현재 자동화 되어 기판의 움직임 및 기판의 움직이는 속도, 공급되는 파우더 양, 레이저 출력 등 레이저 클래딩 공법의 공정변수들이 자동적으로 제어되어 많은 발전이 이루어졌다. 레이저 클래딩은 모재의 기본 물리적 성질을 유지하면서 동시에 표면에 코팅층을 형성하면서 내마모성, 내식, 내열 등의 우수한
성질을 향상시키는 장점이 있으며 특히 본 연구에서는 주형 보다 낮은 열전도도를 가진 코팅재료로 열전달 제어에 목적이 있다.[9]
1.4 연구방향

본 연구에서는 연속 주조 공정의 1차 냉각대의 주형코팅층에 따른 주형과 주편사이의 열전달 및 주형의 온도, 주편의 온도 등을 알아보려고 한다. 연속 주조 공정은 고온환경이며 주편 품질에 미치는 공정변수가 매우 다양하고 서로 복합적으로 작용하기 때문에 각각의 공정변수를 이해하고 제어하기 어렵다. 따라서 유한요소법을 통한 수치해석적 모사를 통해 연구를 진행하려 한다.

구조해석법에는 크게 구조물을 연속체 모델로 사용하는 방법과 분할 모델로 사용하는 수치해석적 방법이 있다. 연속모델에는 비선형 기동의 경우 해를 구하기 어렵기 때문에 수치해석적방법을 이용한다. 수치해석적 방법에서도 해석 대상을 유한 개의 요소로 분할하여 영역을 대표하는 점들을 정한 후 점들의 방정식을 근사시켜 푸는 방법인 유한요소법을 이용한다. 연속 주조 공정의 1차 냉각대의 대상물은 개별화되고 연결된 다수의 유한요소로 표현하며 응력해석에 있어 소성변형 구간은 비선형적 기동을 나타내므로 비선형 수치해석과 같은 방법을 사용하여 방정식 해결을 통해 근사값을 얻을 수 있다. 일반적으로 기계적 대상물이나 시스템에서 응력과 변위를 결정하는데 열전달에도 사용될 수 있어 다양한 응용이 가능한 장점이 있다.

구조해석에 있어 유한요소법을 적용하는 단계는 크게 세가지로 이루어진다. 우선 컴퓨터가 해석을 할 수 있도록 구조물을 모델링하고 유한요소를 나누며 여러 조건을 부여하는 Pre-processing 작업이 이루어진다. 이후 유한요소 툴 프로그램에 계산을하는 Analysis Solver.
작업이 이루어지며 계산이 수렴하여 완료된 후 프로그램이 시뮬레이션을 통해 얻은 결과를 확인하고 해석하는 Post-processing 단계가 이루어진다. 본 연구에서는 유한요소 해석을 위해 사용 유한요소 툴인 Abaqus 6.10을 이용했다.

유한 요소법을 이용한 연속 주조 공정 해석이 신뢰성을 얻기 위해서는 연속 주조 공정의 복잡한 공정변수들과 강의 응고 현상을 이해하여야 한다. 1차 냉각대의 주형과 주편의 모사를 위한 합리적인 모델을 세워 적용하였고 열전달에 필요한 경계조건을 수립하였다. 또한 고온 환경에서 용강의 합리적인 물성을 결정하기 위한 근거를 제시하였다. 이 과정은 Pre-processing 단계에서 이루어졌으며 전처리 작업을 통해 부여한 조건을 Analysis Solver 단계에서 프로그램이 계산을 하였다. 이후 프로그램을 통해 얻은 결과를 해석하여 연속 주조 공정 시 주형 코팅에 따른 열전달 영향도를 알아보았다.
2. 이론적 배경

2.1 미소편석 해석

강은 원재료인 철광석으로부터 여러 공정을 거치며 환원 과정 및 청정화 작업이 이루어진다. 철광석에는 철 원소 이외에도 탄소, 규소, 망간, 황, 인 등의 많은 원소가 포함되어 있다. 철광석으로부터 환원된 철은 이러한 불순물이 많이 포함되어 있으며 제강 공정을 통해 탈탄, 탈산, 탈황, 탈인 등의 과정을 거쳐 점점 불순물의 농도가 낮아지며 원하는 조성까지 청정화 과정이 이루어진다. 제강 과정에서 강에 포함된 불순물은 열역학적인 이유로 완전 제어에 한계가 있으며 강에 남아 영향을 미치게 된다. 또한 이러한 불순물들은 제조 되는 강의 목적에 맞게 불순물의 농도를 제어하기도 한다. 예를 들어 탄소는 철강의 대표적인 불순물 원소로 조성을 제어하여 강의 강도 및 경도 등 기계적 물성에 기여한다. 이와 같이 불순물은 주로 공정에서 주조 되는 공정에 따라 불순물 원소가 포함되어 있으며 주조되는 강의 조성에 따른 물리적 성질을 합리적으로 예측해서 계산에 적용해야 한다. 이번장에서는 조성에 따른 이원계 합금의 가동을 알아보았고 연속 주조 시 강의 냉각 과정의 성질에 따른 적절한 해석법을 제시하였다.
2.1.1 미소편석 해석 모델

응고 과정에서 합금은 응고가 진행되면서 용질 원자가 고상에서 액상으로 재분배 되면서 진행한다. 이때 재분배는 평형분배계수를 따르며 응고가 진행됨에 따라 고상과 액상의 농도차이가 발생한다. 이때 국부적으로 발생하는 용질원소의 농도차를 미소편석 (microsegregation)이라고 한다. 평형분배계수는 합금의 평형상태에서 고상의 용질농도와 액상의 용질농도의 비로 정의하며 \(k \)로 나타낸다.

\[
k = \frac{C_S}{C_L} \tag{2.1}
\]

여기서 \(C_S \) 는 고상에서의 용질농도이고 \(C_L \) 는 액상에서의 용질농도이다. 미소편석 모델 중 가장 기본적인 것은 평형 상태에서의 응고모델이며 이는 응고가 충분히 느려 고상상태의 완전한 확산을 가정한 모델이다. 이때 용질재분배는 질량보존법칙에 따라 저울대 법칙(lever rule)으로 나타낼 수 있다.

\[
C_S = \frac{kC_0}{f_s(k - 1) + 1} \tag{2.2}
\]

\[
f_s = \frac{1}{1 - k} \left(\frac{T_L - T}{T_f - T} \right) \tag{2.3}
\]

여기서 \(C_0 \)는 초기용질농도, \(f_s \)는 고상분율, \(T_f \)는 순금속의 용점이다. 평형 응고 모델은 고상과 액상 모두 응고과정에서 항상 내부적으로 평형상태이므로 두 상내에서 완전한 확산을 가정하고 있다. 하지만 실제 응고에서는 고상내 용질확산은 액상의 용질확산에 비해 매우 적기

\[C_S = kC_0(1 - f_S)^{k-1} \] \hspace{1cm} (2.4)

\[f_S = 1 - \left(\frac{T_L - T}{T_f - T} \right)^{\frac{1}{k-1}} \] \hspace{1cm} (2.5)

Scheil의 완전 비평형 응고모델은 고상내 용질확산이 전혀 없다고 가정하였고 실제 응고에서는 어느 정도의 고상확산이 있기 때문에 응고속도가 매우 빠른 경우에만 이 모델을 적용할 수 있다. Brody와 Flemings는 이를 보완하기 위해 고상내의 용질 확산을 고려하였고 수지상 형태를 판형태로 가정하여 해석하였다.[12,13]

\[C_S = kC_0\left(1 - (1 - 2\alpha k)f_S\right)^{\frac{k-1}{1-2\alpha k}} \] \hspace{1cm} (2.6)

\[f_S = \frac{1}{1 - 2\alpha k} \left\{ 1 - \left(\frac{T_L - T}{T_f - T} \right)^{\frac{1-2\alpha k}{k-1}} \right\} \] \hspace{1cm} (2.7)

\[\alpha = \frac{4D_S t_f}{\lambda^2} \] \hspace{1cm} (2.8)

여기서 \(D_S \)는 고상에서의 용질확산계수, \(t_f \)는 국부응고시간, \(\lambda \)는 수지상 팔간격이다. 이 모델에서 고상 내 확산이 거의 없다고 가정하는 경우 \(D_S \)는 0이며 이는 Scheil식과 일치한다. \(\alpha \)값이 0.5인 경우는 완전 평형 모델이며 \(\alpha \)가 작은 경우 실험결과와 잘 일치해 미소편석 예측에 용이하다. 하지만 \(\alpha \)가 0.5 이상이 되는 높은 확산계수의 경우 이
모델로는 표현이 불가능한 한계가 있다. 이를 해결하고자 Clyne 과 Kruz[4]는 새로운 파라미터인 \(\Omega \)를 도입하여 문제점을 보완하였다.

\[
\Omega = \alpha \left[1 - \exp\left(-\frac{1}{\alpha}\right) \right] - 0.5\exp\left(-\frac{1}{2\alpha}\right)
\]

(2.9)

\(\Omega \)는 \(\alpha \)의 함수로서 \(\alpha \) 값이 0인 경우 0이 되며, \(\alpha \) 값이 \(\infty \)로 되면 0.5가 되는 개량인자이며 물리적인 의미를 갖지는 않는다. Ohnaka[5]는 고상내의 농도 식을 조정해서 시간의 함수가 아닌 경우의 해석해를 구하였다. 이는 Body-Flemings 식에서 \(1 - 2\alpha k \) 를 \(\Gamma \)로 대체한 식이다.

\[
C_S = a + by + cy^2
\]

(2.10)

\[
C_S = kC_0\left\{ 1 - \Gamma_s \right\}^{\frac{k-1}{\Gamma}}
\]

(2.11)

\[
\Gamma = 1 - 2\alpha k(1 + 2\alpha)
\]

(2.12)

위와 같이 응고 과정시 미소편석을 해석하려는 많은 연구자들의 시도가 있었다. 그러나 도출된 식에는 많은 가정들이 포함되어 있으며 그 가정을 실제 응고상태와 근접하게 설정하기에는 매우 어렵다. 또한 강의 응고시, 강은 냉각 과정에서 포정반응과 \(\delta/\gamma \) 변태를 수반하는 경우가 많아 해석이 더욱 복잡해진다. 또한 연속 주조 시 생산하는 강에는 탄소 이외에도 망간, 규소, 인, 황 등의 여러가지 불순물 원소가 첨가 되어 있다. 위의 해석적 모델은 2 원계 합금의 냉각 과정을 해석한 것이므로 여러가지 불순물 원소가 첨가 되어 있는 강의 연속 주조에는 적용하기 어렵다. 따라서 해석적인 모델을 통한 미소편석 현상을
예측하기에는 한계가 있으며 위와 같은 해석적 모델들은 간단한 2 원계 공정 합금에 적용하는 것이 합당하다.
2.1.2 연속 주조에서 강의 미소편석 해석

강의 응고는 탄소함량에 따라 액상에서 고상으로 \(\delta\) 상 또는 \(\gamma\) 상으로 초정상이 정출한다. 특히 \(\delta\) 상과 액상이 반응하여 \(\gamma\) 상을 형성하는 포정 반응을 포함하는 조성도 있다. \(\text{Fe-C 2}\) 원계 합금의 평형상태도를 보면 포정점의 조성은 0.18 wt%C 이다. 평형 응고를 가정하면 0.1 wt%C 이하의 조성에서 응고시 \(\delta\) 상만이 정출하며 응고가 다 완료된 후에 \(\delta/\gamma\) 변태가 진행된다. 0.1 ~ 0.5 wt% C 사이의 탄소강은 \(\delta\) 상으로 응고하기 시작하며 응고 과정에서 액상과 \(\delta\) 상이 반응하여 \(\gamma\) 상이 정출하는 포정반응이 이루어진다. 0.5 wt% C 이상의 조성에서는 강은 포정반응을 하지 않으며 \(\gamma\) 상으로 응고한다. 이렇듯 연속 주조 공정에서 강은 냉각 과정에서 상변태를 수반하며 각 상에서의 물리적 성질도 상이하므로 해석이 더욱 복잡해진다. 또한 강은 편평적으로 탄소 이외의 불순물 원소를 포함하고 있어 편석에 영향을 미치므로 더욱 해석이 어려워진다. 이와 같은 영향으로 인해 미소편석 모델을 통한 강의 응고 해석은 한계가 있으며 많은 연구자들이 이를 해결하려는 연구들이 진행되었다.

2.2 열탄소성 연결 해석

상용 유한 요소 프로그램인 Abaqus 6.10은 Fully coupled thermal-stress analysis를 제공한다. 응력을 해석하는 방식에서 관성효과를 무시하기 때문에 Abaqus에서 제공하는 툴을 사용했으며 과도상태의 열전달 방식을 풀게된다. 이를 사용함에 있어 기계적 거동과 열적 거동의 해가 밀접하게 연결되고 동시에 계산을 수행한다는 이점이 있다. 또한 온도변화에 따라 강의 물리적 성질이 변화하는데 이에 대해서 능동적으로 대처가 가능하다.

2.2.1 구성방정식

온도에 의한 열변형률과 재료의 유동응력 차이로 인해 열과 탄소성을 연결 해석할 경우 일반적인 재료의 응력과 변형률 관계와는 다른 양상을 보인다. 열탄소성 연결 해석 시 미소 총 변형률은 열에 의한 열변형률, 탄성변형률, 소성변형률의 합이라는 가정에서 시작한다. 이 때 미소 총 변형률은 다음과 같이 나타낼 수 있다.

\[\varepsilon = \varepsilon_{Th} + \varepsilon^E + \varepsilon^P \] (2.13)

\(\varepsilon \)은 미소 총 변형률이며 \(\varepsilon_{Th} \)은 열변형률, \(\varepsilon^E \)은 탄성변형률, \(\varepsilon^P \)은 소성변형률이다. 여기서 탄성 변형률과 응력간의 관계는 선형적인 관계가 성립한다.

\[\varepsilon^E = \varepsilon - \varepsilon_{Th} - \varepsilon^P \] (2.14)
\[\sigma_{ij} = C_{ijkl}(\varepsilon_{kl} - \varepsilon_{kl}^{Th} - \varepsilon_{kl}^{p}) \] \hspace{1cm} (2.15)

여기서 \(\sigma_{ij} \)는 응력 행렬이며 \(C_{ijkl} \)은 \(\sigma_{ij} \)와 \(\varepsilon_{kl} \)의 관계를 연결하는 탄성 구성 행렬이다. 이를 증분형태로 나타내면 다음과 같다.

\[d\sigma_{ij} = C_{ijkl}(d\varepsilon_{kl} - d\varepsilon_{kl}^{Th} - d\varepsilon_{kl}^{p}) + g_{ij}dT \] \hspace{1cm} (2.16)

\[g_{ij} = \frac{dC_{ijkl}}{dT}C_{klmn}^{-1}\sigma_{mn} \] \hspace{1cm} (2.17)

von Mises 항복식과 조합 유동 법칙을 이용하여 식(2.15)의 소성 변형률 증분항을 제거하면 다음식으로 표시된다.

\[d\sigma_{ij} = C_{ijkl}^{tan}(d\varepsilon_{kl} - d\varepsilon_{kl}^{Th}) + \left\{ g_{ij} - \frac{C_{ijkl}^{s}(s_{mn}^{g}g_{mn} + r)}{s_{ij}C_{ijkl}^{s}g_{mn}^{s}} \right\}dT \] \hspace{1cm} (2.18)

\[r = -\frac{2}{3}\overline{S}\sigma d\overline{S} = -\frac{2}{3}\left(\frac{d\sigma}{dT} + \frac{dE_{\text{tan}}^{p}}{dT}\overline{\varepsilon}^{p}\right) \] \hspace{1cm} (2.19)

\[C_{ijkl}^{tan} = C_{ijkl} - \frac{C_{ijkl}^{s}s_{pq}c_{pqkl}}{s_{rs}c_{rstu}^{s}c_{tu}^{s} - \frac{2}{3}\overline{S}\sigma} \] \hspace{1cm} (2.20)

\[\overline{\sigma} = \sigma_{0}(T) + E_{\text{tan}}^{p}(T)\overline{\varepsilon}^{p} \] \hspace{1cm} (2.21)

\[S = -\frac{2}{3}\overline{S}E_{\text{tan}}^{p} \] \hspace{1cm} (2.22)

여기서 \(s_{ij} \)는 편차응력, \(\overline{\sigma} \)는 유효유동응력, \(\sigma_{0} \)는 초기 항복응력, \(E_{\text{tan}}^{p} \)는 소성계수이다. 열변형률 증분은 다음과 같이 계산된다.

\[d\varepsilon_{ij}^{Th} = \left[\frac{d\alpha}{dT}(T - T_{\text{ref}}) + \alpha dT \right]\delta_{ij} \] \hspace{1cm} (2.23)
여기서 α 는 열팽창계수, T 는 온도, T_{ref} 는 기준온도, δ_{ij} 는 크로녜커델타이다. 강의 연속 주조에서는 냉각중에 δ/γ 변태가 수반되므로 δ/γ 변태구간에서는 미소면적 모델에서 예측한 f_δ와 f_γ의 변화로부터 상변태 수축을 계산하여 순간열팽창계수로 보정하여 사용하였다.
2.2.2 유한요소 수식화

변위장이 주어진 경계에서 0 이 되는 임의의 변위의 변분 δw 에 대해서 변위장 u 를 구하기 위한 weak form 은 다음과 같다.[9]

$$
\int_V \delta \varepsilon_{ij} \sigma_{ij} dV - \int_V \delta w_i f_{ij} dV - \int_{S_t} \delta w_i t_i dS - \int_{S_c} \delta w_i \sigma_i dS = 0 \quad (2.24)
$$

또한 f_i 와 t_i 는 각각 체적력 성분과 표면력 성분을 나타낸다. 다음과 같이 유한요소 내의 변위 및 가중함수를 보간함수를 이용하여 근사화한다.

$$
u = NU \quad (2.25)$$
$$w = NW \quad (2.26)$$

여기서 N 은 요소 내에서 변위를 근사하는 보간함수를 포함하는 행렬이고 U 와 W 는 변위와 가중함수의 점점 값을 나타내는 벡터이다. 응력텐서 σ_{ij} 와 변형률텐서 ε_{ij} 는 6×1 행렬로 나타내어 각각 σ 와 ε 으로 유한요소 수식화에 활용한다. 변형률 증분은 식(2.25)을 이용하여 다음 식으로 나타낼 수 있다.

$$d\varepsilon = \frac{\partial N}{\partial u} U = BU \quad (2.27)$$

탄소성 해석에서 응력증분 $\Delta \sigma$ 는 다음 형태로 주어진다.

$$d\sigma = C^{ep} d\varepsilon \quad (2.28)$$

여기서 C^{ep} 는 4 차 텐서인 C^{ep} 의 차수를 2 차로 낮추어 사용하였다.

식(2.24)은 다음과 같이 정리된다.
\[
\int_V \delta \varepsilon^T \tilde{\sigma} dV - \int_V \delta w^T f dV - \int_{S_t} \delta w^T t dS - \int_{S_c} \delta w_t \tilde{\sigma}_t dS = 0 \quad (2.29)
\]

탄소성해석에서는 비선형성을 고려하기 위하여 여러 개의 계산중분으로 나누어서 순차적으로 계산하여야 한다. 시간 \(t_n \)에서 해가 구해졌을 때 시간 \(t_{n+1} \)에서 해를 구하기 위하여 시간중분 \(\Delta t = t_{n+1} - t_n \) 구간에서의 변형에 대하여 식(2.29)에 식(2.28)을 적용하여 다음 식을 얻을 수 있다.

\[
\int_V \delta \varepsilon^T (\tilde{\sigma}_n + C^{ep} \delta \varepsilon) dV - \int_V \delta w^T f dV - \int_{S_t} \delta w^T t dS - \int_{S_c} \delta w_t \tilde{\sigma}_t dS = 0 \quad (2.30)
\]

위의 식들을 정리하고 입의의 \(\delta W \)에 대하여 성립해야 하므로 다음 식을 얻는다.

\[
\int_V B^T (\tilde{\sigma}_n + C^{ep} B U) dV - \int_V N^T f dV - \int_{S_t} N^T t dS - \int_{S_c} N^T \tilde{\sigma}_t dS = 0 \quad (2.31)
\]

식 (2.31)을 정리하면 다음 유한요소방정식을 얻는다.

\[
[K] \{U\} + \{F^n\} - \{F^{ext}\} = 0 \quad (2.32)
\]

\[
[K] = \int_V B^T C^{ep} B dV \quad (2.33)
\]

\[
F^{ext} = \int_V N^T f dV + \int_{S_t} N^T t dS + \int_{S_c} N^T \tilde{\sigma}_t dS \quad (2.34)
\]
금속성형해석은 여러 가지의 비선형성으로 인해 식(2.32)을 만족시키는 해를 Newton-Raphson 법을 적용하여 구한다.
2.3 열 전달 기본방정식

강의 응고를 수반하는 비정상 열전달 방정식과 초기조건 및 경계조건은 다음과 같다. [29]

\[
\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \rho L \frac{\partial f_s}{\partial t} = \rho C_p \frac{\partial T}{\partial t} \tag{2.36}
\]

\[T = T_0 \tag{2.37}\]

\[k_n \frac{\partial T}{\partial n} = q^S \tag{2.38}\]

여기서 \(T\)는 주편온도, \(T_0\)는 용강 주입온도, \(k\)는 열전도도, \(C_p\)는 비열, \(\rho\)는 밀도, \(t\)는 시간, \(L\)은 응고잠열, \(f_s\)는 고상분율, \(n\)은 주편 표면에 수직인 방향, \(q^S\)는 표면에서의 열유속이다. 열 전달 방정식과 경계조건들을 변분식으로 표시하면 다음과 같다.

\[
\frac{1}{2} \int_V K T_i \delta T_i dV + \int_V C \dot{T} \delta T dV - \int_V Q^g \delta T dV - \int_S q_n \delta T dS = 0 \tag{2.39}
\]

식 (2.39)을 이산화하여 선형화시키면 다음과 같은 행렬식으로 표시할 수 있다.

\[
K \Delta T^{(i)} = Q^{(i-1)} \tag{2.40}
\]
3. 연속 주조에 대한 유한요소법 적용

3.1 열전달 계산 모델

연속 주조 공정은 공정에 미치는 변수가 다양한 복합적으로 작용하기 때문에 이를 모사하기 위한 합리적인 모델을 제시하고 이를 해석하는 것이 합당하다. 이번장에서는 연속 주조 공정의 주형과 주편의 열전달 모사를 위한 모델을 제시하였다. 주형의 냉각은 시간에 따라 다른 온도 분포를 보이므로 비정상 상태를 해석하여야 한다. 이를 모사하기 위한 2D Slice 모델을 제시하였다. 한편 주형은 주편과는 달리 주형 위치에 따른 열전달량이 시간에 따라 변하지 않는다고 가정하므로 정상 상태의 온도분포를 보인다. 따라서 주형의 온도분포는 2D Slice 모델로는 모사가 적절하지 않아 3 차원 형태의 주형을 모델링하여 주형의 온도분포를 해석하였다. 주형의 온도 특성상 계산 시간과 장/단면 위치에 따른 주형의 온도 분포 경향은 비슷하므로 주형의 일부분만 따로 해석하는 부분 3D 모델을 적용하였다.
3.1.1 2D Slice 모델

연속 주조 공정의 1 차생각대에서 주형과 주편을 모사하고 해석하기 위해 2D Slice 모델을 이용하였다. 2D Slice 모델은 3 차원 형태의 주형과 주편을 주조 길이 방향의 수직인 단면을 시간에 따라 해석하는 모델로서 3 차원 형태를 2 차원 단면으로 모사한 모델이다. 2D Slice 모델의 해석방법은 그림 3.1 으로 나타내었다. 연속 주조 공정에서는 주형과 주편사이의 열전달은 주형 냉각 슬릿의 강제 냉각으로 인해 주조 방향의 수직인 방향으로 온도구배가 발생하며 이는 주조 방향의 온도구배보다 지배적이다. 따라서 주조 방향으로의 온도구배는 무시할 수 있어 2D Slice 모델로 모사가 가능하다. 2D Slice 모델은 주조 방향으로의 열전달은 모사를 하지 않으며 주조 방향으로의 수직 방향의 온도 구배로 인한 열전달을 모사한다. 또한 2D Slice 모델은 3 차원 형태의 모사에 비해 계산 시간을 단축할 수 있는 이점이 있다. 주형과 주편 형상의 대칭적인 특징으로 인해 대칭면이 존재하므로 계산시간 절감을 위해 1/4 만 모사하여 해석하였다. 연속 주조 공정의 유한 요소망은 하나의 요소 당 8 개의 점점을 가지는 2 차 사면체 요소를 이용하여 유한 요소 망을 구성하였다. 계산에 사용된 주형과 주편의 FEM mesh 는 그림 3.2 에 나타내었다.

연속 주조 공정의 해석을 위한 2D Slice 모델의 주편 및 주형의 크기와 주조 조건은 다음과 같다. 주편의 크기는 단변 폭 240 mm 장변 폭 1800 mm 을 기본으로 하였고 형상은 슬래브 형상이다. 이 크기는 탑면에서의 주편의 형상이다. 강은 용고시 상변화 및 열팽창에 따라
수축을 하므로 이를 보상하기 위한 주형에 경사가 존재한다. 단변폭에 비해 장변폭의 수축으로 인한 길이변화가 크므로 장변폭에만 주형 경사를 도입하였다. 주형 경사의 정의는 다음과 같다.

$$\text{주형경사}(%/m) = \frac{W_{\text{top}} - W_{\text{bottom}}}{W_{\text{bottom}} \times L} \times 100$$ \hspace{1cm} (3.1)

여기서 W_{top}은 탕면에서의 주편 폭, W_{bottom}은 주형 출구에서의 주편 폭, L은 주조 길이를 나타낸다. 주형 경사는 1.0 %/m 로 부과하였다. 주형의 길이는 주형 상부에서부터 주형 끝 하부까지 900 mm 이다. 보통 용접의 주입은 주형 전체를 채우지 않고 탕면의 유동을 고려하여 상부 100 mm 정도의 여유를 주므로 전체 주조 길이는 800 mm 이다. 1/4 반 해석하였으므로 계산에 이용한 것은 실제 치수의 절반에 해당하는 값이다.

주형에는 냉각을 위한 냉각 슬릿이 있다. 주형 장변에는 냉각 슬릿의 개수가 196개이며 단변에는 24개이다. 냉각수량은 장변 1250 L/min, 장변 150 L/min 이며 냉각수 주입 온도는 25 °C 로 시간에 따라 일정하다고 가정하였다. 계산에 사용된 주형의 치수 및 냉각슬릿의 형상은 그림 3.3에 나타내었다.

주조 속도는 0.8 mpm 으로 계산하였으며 주속에 따른 열전달 영향도를 보기 위해 0.6 mpm 도 추가로 계산하여 비교 해석 하였다.
그림 3.1 연속 주조 공정의 1차 냉각대와 2D Slice 모델로 나타낸 주형과 주편
그림 3.2 2D Slice 모델의 FEM Mesh
그림 3.3 계산에 사용된 주형과 냉각슬릿의 차수 및 형상
3.1.2 부분 3D 모델

연속 주조 공정에서의 주형은 주편과는 달리 주형 위치에 따른 열전달량이 주조 시간에 따라 변하지 않는다고 가정한다. 따라서 주형의 온도분포는 정상상태의 기동을 따른다. 이는 2D Slice 모델에서 얻은 주형의 온도분포는 합당하지 않음을 의미한다. 2D Slice 모델에서 얻은 주형의 온도가 합리적이지 않지만 주형과 주편사이의 열전달의 열유속 양은 실제 조업과 비교하여 큰 차이가 없다. 그렇기 때문에 2D Slice 모델에서 계산된 열유속을 3D 주형에 적용시켜 정상상태에서 주형의 온도값을 구해낼 수 있다.

주형의 온도를 고려할 때 주형의 온도는 주형과 주편사이의 열전달의 열유속에 영향을 받는다. 열유속은 주형 위치에 따라 경향성이 크게 다르지 않으므로 주형 전체의 온도를 계산하고 해석하는 것은 효율적이지 않다. 따라서 주형 일부분만을 해석한 부분 3D 모델을 제시하고 계산하였다. 부분 3D 모델 및 계산에 이용된 차수를 그림 3.4에 나타내었다.
그림 3.4 부분 3D 모델 및 계산에 이용된 치수
3.2 열전달 해석

3.2.1 열전달 해석의 경계 조건

연속 주조 시 주형과 주편사이에는 온도차로 인해 열전달이 발생하며 그 사이의 열유속은 다음과 같다.

\[q = \frac{T_{\text{steel}} - T_{\text{water}}}{R_T} \] \hspace{1cm} (3.2)

여기서 \(q \) 는 주편과 주형 냉각수 사이의 열유속, \(T_{\text{steel}} \) 은 주편 표면온도, \(T_{\text{water}} \) 은 냉각수 온도, \(R_T \) 은 주형과 주편 사이의 열전달에 대한 총 열저항이다. 주형과 주편사이에는 주형용제 및 공기틈으로 인해 열저항이 발생하며 주형의 코팅층으로 인한 열저항도 발생한다. 이를 모식하여 그림 3.5에 나타내었다. 주형과 주편 사이의 주형용제, 공기틈, 코팅층은 각각의 열저항으로 인해 전체 총 열저항이 발생하며 열전달에 대한 총 열저항 \(R_T \) 는 각각의 열저항의 합으로 표현된다.

\[R_T = \frac{1}{R_1 + R_2 + R_3 + R_4 + R_5 + R_6 + R_7} + \frac{1}{R_{\text{rad}}} \] \hspace{1cm} (3.3)

각각의 열저항은 다음과 같이 계산하였다.

1) 주형과 냉각수 사이의 열저항 : \(R_1 = \frac{1}{h_1} \)

주형 냉각수 슬릿이 단면적이 일정한 경우에 냉각수가 슬릿을 일정한 속도로 통과할 때 무차원식을 이용하여 완전히 발달된 \(h_1 \)을 계산하였다.

[6]
\[\frac{h_1 D}{k_w} = 0.023 \left(\frac{\rho_w u_w D}{\mu_w} \right)^{0.8} \left(\frac{C_{pw} h_w}{k_w} \right)^{0.4} \] \hspace{1cm} (3.4)

여기서 \(D \) 는 냉각 슬릿의 형태에 따른 지름, \(\rho_w \) 는 냉각수의 밀도, \(u_w \) 는 냉각수의 유속, \(\mu_w \) 는 냉각수의 점도, \(C_{pw} \) 는 냉각수의 비열, \(k_w \) 는 냉각수의 열전도도, \(h_1 \) 은 주형과 냉각수 사이의 열전달 계수이다. 표에 \(h_1 \)을 구하기 위한 물의 물성치를 나타내었다.

2) 주형의 열저항 : \(R_2 = \frac{1}{h_2} = \frac{d_2}{k_2} \)

주형의 열저항은 주형 두께 \(d_2 \)와 주형의 열전도도 \(k_2 \)로 계산하였다.

3) 주형과 주형용제 사이의 열저항 : \(R_3 = \frac{1}{h_3} \)

여기서 \(h_3 \)는 주형 표면에서의 열전달계수이며 Storkman[22]이 사용한 값인 3000 \(\text{W/m}^2\text{K} \)를 사용하였다.

4) 공기틈의 열저항 : \(R_4 = \frac{1}{h_4} = \frac{d_4}{k_4} \)

공기틈의 열저항 \(R_4 \)는 공기틈의 두께 \(d_4 \)와 공기의 열전도도 \(k_4 \)로부터 계산된다. 주형과 주편 사이의 공기틈의 두께는 열탄소성 응력해석에서 주편 표면과의 변위로부터 구하였다.

5) 주형용제의 열저항 : \(R_5 = \frac{1}{h_5} = \frac{d_5}{k_5} \)
주형용제를 통한 전도에 의한 열저항은 주형 용제의 두께 \(d_5\) 와 주형용제의 열전도도 \(k_5\) 로 계산하였다.\[7,8\] 이때 두께는 100 \(\mu m\) 로 소모량과 밀도로 계산하여 근사하였다.

6) 주형용제와 주편 사이의 열저항 : \(R_6 = \frac{1}{h_6}\)

주편 표면 온도변화에 따라 주형용제가 결정화 되므로 주편 표면 온도에 따라 주형용제와 주편 사이의 열전달은 크게 영향을 받는다. 주형용제는 온도가 감소하면 점도가 증가하고 결정화 되면서 계면저항이 급격히 커진다. 이에 따라 사용한 물성치를 표 3.3에 나타내었다.

7) 코팅층의 열저항 : \(R_7 = \frac{1}{h_7} = \frac{d_7}{k_7}\)

코팅층으로 인한 열저항은 코팅층의 두께 \(d_7\) 과 코팅층의 열전도도 \(k_7\) 으로 계산하였다. 코팅층의 열전도도는 29 \(\text{kW/mK}\) 로 Wang[10]이 실험적으로 측정한 값이다. 코팅층의 재료는 Ni 과 50%Cr\(_3\)C\(_2\) 의 복합재료이다. 이론적으로 계산한 Ni + 50%Cr\(_3\)C\(_2\) 의 열전도도는 실험적으로 계산한 열전도도와 다른데 이는 레이저 클래딩 공정 도중 코팅층에 발생한 여러 결함에 의한 것이다. 코팅층의 두께는 코팅층의 형상으로 인한 열전달의 영향도를 알아보기 위해 다양한 형상으로 계산하였고 이후의 항에 나타내었다.

8) 열복사 저항 : \(R_{\text{rad}} = \frac{1}{h_{\text{rad}}}\)
공기틈이 발생하면 주형과 주형용제 사이에 열복사 저항이 발생하며
열전달 계수 h_{rad}는 다음과 같다.

$$h_{rad} = \sigma \varepsilon (T_{steel} + T_{mold})(T_{steel}^2 + T_{mold}^2)$$ \hspace{1cm} (3.5)

여기서 σ는 stefan-Boltzmann 상수, ε는 주형표면과 주편 표면 사이의 평균 emissivity이다.
그림 3.5 연속 주조 과정 중 주형, 주형 코팅, 주변사이의 열저항
Property of Cooling Water

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>유량, u_w (wide/narrow)</td>
<td>6.16 / 6.30 m/s</td>
</tr>
<tr>
<td>비열, C_{Pw}</td>
<td>4178 J/kg(^0)C</td>
</tr>
<tr>
<td>밀도, ρ_w</td>
<td>998.2 kg/m(^3)</td>
</tr>
<tr>
<td>열전도도, k_w</td>
<td>0.614 W/m(^0)C</td>
</tr>
<tr>
<td>점도, μ_w</td>
<td>792 x 10(^{-6}) Ns/m(^2)</td>
</tr>
<tr>
<td>슬릿 형상, D (wide/narrow)</td>
<td>0.010308 / 0.009776 m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Property</th>
<th>h_3</th>
<th>k_4</th>
<th>k_5</th>
<th>d_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>3000 W/m(^2)K</td>
<td>0.1 W/mK</td>
<td>1.0 W/mK</td>
<td>100 µm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature description</th>
<th>h_6, W/mK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mold flux crystalline temperature</td>
<td>1000</td>
</tr>
<tr>
<td>Mold flux softening temperature</td>
<td>2000</td>
</tr>
<tr>
<td>Metal solidus temperature</td>
<td>10000</td>
</tr>
<tr>
<td>Metal liquidus temperature</td>
<td>20000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>표 3.1 냉각수의 물성 값</td>
<td></td>
</tr>
<tr>
<td>표 3.2 계산에 사용된 열적 특성 값</td>
<td></td>
</tr>
<tr>
<td>표 3.3 온도 변화에 따른 주형과 주형용제 사이의 열전달 계수</td>
<td></td>
</tr>
</tbody>
</table>
3.2.2 열전달 해석의 가정

열전도 방정식을 계산하는데 있어서 주변에 대하여 다음과 같은 가정을 하였다.

1) 주조방향으로의 열전달은 무시한다.

금속의 경우 열전도도가 상대적으로 작아 열전달이 주로 온도구배가 큰 쪽으로 이루어진다. 연속 주조의 경우 주조방향과 수직인 방향으로 온도구배가 크므로 강도 마찬가지로 주조방향으로의 열전달은 무시할 수 있다. 실제 연속 주조 공정에서 생성되는 강의 조직을 보면 수지상이 주조 방향에 수직하게 나타난다[23].

2) 용강의 대류는 유효 열전도도 k_{eff}를 사용하였다.

\[k_{\text{eff}} = k[1 + 6(1 - f_s)^2] \quad (3.6) \]

3) 연주기 곡률의 영향은 무시하였다.
만곡형 연주기는 연주기의 곡률이 있어 수직형 연주기와는 응고양상이 다를 수 있지만 적분 운과법에 의한 계산결과에 의하면 곡률이 응고양상의 대칭성에 미치는 영향은 무시할 정도로 작다는 것이 알려져있다.[26] 또한 이 연구의 계산영역은 1 차 냉각대인 주형이므로 연주기 곡률의 영향은 없다.

4) 응고범위에서 고상분율은 미소편석 해석을 통해 계산한 고상분율과 온도 관계를 따른다.

강의 고상분율과 온도 사이의 관계는 \(\delta/\gamma \) 변화를 수반하게 되므로 간단한 2 원계 합금에서의 미소편석 해석 모델과 같은 간단한 수식으로 나타낼 수 없다. 따라서 이 연구에서는 여러 가지 불순물 원소를 함유하고 있는 각각의 강종에 대하여 미소편석 해석을 통해 고상분율과 온도 사이의 관계를 계산하고 열전달 계산에 사용하였다.

5) 고상과 액상의 밀도는 동일하며, 주형의 응축에 의한 형상의 변화는 무시한다.
3.3 강의 고온물성 결정

연속 주조 공정에서 응고과정을 겪는 강은 1500 ℃ 정도의 고온환경으로 물리적 성질을 실험적으로 얻는 것은 어렵다. 해석에 사용한 물성은 Kelly [27] 등이 사용한 값을 참고하였으며 이 값들은 Wray [28]가 실험을 통해 1200 ℃ 까지 얻은 물성을 이용하여 얻은 값이다. 또한 강은 연속 주조 과정에서 액상에서 고상으로 또는 δ상에서 γ상으로의 상변태가 일어나므로 강은 여러 상이 혼합이 되어 있다.

2 장의 미소편석 해석 모델로부터 강의 고상분율 및 δ상과 γ상의 분율을 온도의 함수로 구하였으며 이를 물성을 결정하는데에 이용하였다.

강의 비열은 탄소강의 엔탈피를 미분하여 얻었으며 각 상의 엔탈피는 ChunSheng Li [30]이 제시한 식을 사용하였다. 총엔탈피는 각 상의 엔탈피와 분율의 혼합법칙을 이용하였다.

\[H = H_l f_l + H_\delta f_\delta + H_\gamma f_\gamma \] (3.7)

열팽창계수는 상변화에 따른 밀도 변화를 이용하여 구하였다. 강은 응고과정에서 δ/γ 변태를 거치며 열팽창계수에 영향을 미치게 된다. 상변태 동안 순간 열팽창계수는 최대값에서 감소하고 완전한 γ 상으로 변태하면 낮은 상수값을 갖는다. 사용한 식은 다음과 같다.

\[\alpha = \frac{TLE(T_{ref}) - TLE(T)}{T_{ref} - T} \] (3.8)

\[TLE = \sqrt[3]{\frac{\rho(T_{ref})}{\rho(T)}} - 1 \] (3.9)
기준온도인 \(T_{\text{ref}} \) 는 1475 \(^{\circ} \text{C} \) 를 사용했으며 TLE 는 Thermal Linear Expansion 으로 온도변화에 따른 선형장계수이다. 밀도 값은 Jimbo and Cramb[35]가 이용한 식을 사용하였으며 이는 각 상의 밀도를 탄소강의 탄소 조성과 온도에 대한 함수로 나타낸 식이며 밀도 또한 각 상의 분율을 이용한 혼합법칙으로 구한 전체 밀도를 적용하였다.

강의 열전도도는 Harste[36]이 이용한 식이며 탄소강의 탄소 조성과 온도의 함수로 나타낸 식이다.

\[
K = K_f f_f + K_\delta f_\delta + K_\gamma f_\gamma
\]
(3.10)

\[
K_\gamma = 21.6 - 8.35 \times 10^{-3} T
\]
(3.11)

\[
K_\delta = (20.14 - 9.313 \times 10^{-3} T)(1 - a_1 \text{(pctC)}^a)
\]
(3.12)

열전도도 또한 각 상의 분율을 이용한 혼합법칙으로 구하였으며 앞장에서의 가정과 마찬가지로 강의 열전도도를 크게 주어 용강의 대류를 적용하였다.
3.4 주형 코팅층의 형상과 열저항

코팅층은 Ni 과 Cr3C2 50%의 복합재료로 열전도도는 29 W/mK 이다.
본 연구에서 계산을 진행한 코팅층의 형상은 w/o Coat, Coat 1, Coat 2, Coat 3, Coat 4 로 5 가지이다. w/o Coat 는 코팅층이 없는 주형이고, Coat 1 은 코팅층이 주형입구에서 출구까지 3 mm 로 일정하고, Coat 2 은 코팅층이 주형입구에서 출구까지 5 mm 로 일정하고, Coat 3 은 코팅층이 주형입구에서 1 mm 출구에서 5 mm 로 선형적으로 증가하는 형태이고, Coat 4 은 코팅층이 주형 입구에서 5 mm 출구에서 1 mm 로 선형적으로 감소하는 형태이다. 각 주형과 코팅층의 모식도는 그림 3.6과 같다.
주편에서 주형으로 열이 전달될 때 코팅층은 열저항으로 작용하며 주조 전반의 코팅층으로 인한 열저항을 주조길이에 따라 나타내면 다음 그림 3.7과 같다.
그림 3.6 계산에 이용한 5 가지 코팅층 형상

그림 3.7 코팅층 형상에 따른 주조 전반에서 코팅층의 열저항
4. 주형 코팅의 예비연구

본 연구에 앞서 주형의 코팅이 주형과 주편 사이의 열전달에 어떤 영향을 미치는지 알아보기 위하여 예비 연구를 진행하였다. 예비 연구는 몇가지 사례 연구로 진행하였고 코팅층의 두께, 코팅층의 열전도도, 코팅층에 입력한 열유속을 변수로 하여 각 요인이 주형과 주편사이의 열전달 및 주형 온도에 어떠한 영향을 미치는지 해석해보았다.

4.1 주형 코팅 예비 연구 모델

예비연구의 계산 모델은 주형 일부분을 단순히 모사하여 진행하였으며 모델의 형상은 그림 4.1과 같다. 그림 4.1과 같이 코팅층에는 열유속을 입력하였고 주형 바깥 부분은 냉각 조건을 입력하여 주형의 열전달을 모사하였다. 코팅층에는 사례연구의 변수를 제외한 이외의 계산 조건을 표 4.1로 정리하여 나타내었다. 연속 주조 공정에서는 주형에 열전대가 있어 온도를 측정하는데 이 열전대 위치를 Meniscus로부터 100 mm, 주형/코팅 경계면으로부터 22 mm 지점으로 하였고 이를 바탕으로 주형 온도를 측정하고 해석하였다. 주형에 위치한 열전대는 그림 4.2과 같다.
그림 4.1 예비 연구의 계산 모델 및 형상

그림 4.2 주형 내부의 열전대 위치
<table>
<thead>
<tr>
<th>계산 조건</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>주행 길이</td>
<td>900 mm</td>
</tr>
<tr>
<td>주조 길이</td>
<td>800 mm</td>
</tr>
<tr>
<td>냉각수 열전달 계수</td>
<td>25000 W/m²K</td>
</tr>
<tr>
<td>주행 열전도도</td>
<td>350 W/mK</td>
</tr>
</tbody>
</table>

표 4.1 예비 연구에 사용된 계산 조건
4.2 주형 코팅층 사례 연구

사례 연구는 코팅 두께, 열유속 곡선 개형, 상부 전열량, 코팅의 열전도도를 변수로한 네가지 사례연구를 진행하였다.

4.2.1 코팅 두께에 따른 주형 온도 변화 계산

이 사례에서는 코팅층의 두께에 따라 주형 온도가 어떻게 변화하는지를 알아보았다. 코팅 두께를 각각 0.5 mm, 3 mm 두 사례로 설정하여 계산하였다. 코팅층의 두께의 영향을 알아보기 위함이므로 두 코팅층 모두 같은 열전도도와 같은 열유속을 입력하였다. 연속 주조 공정에서 주조 상단부는 응고 초기에 응고층이 거의 형성되지 않기 때문에 열저항이 작아 열유속이 높다. 응고가 진행됨에 따라 응고층이 발달하게 되므로 열저항이 증가하여 지속적으로 열유속이 감소한다.[29] Lait[37]등은 여러 연주기 조업결과로부터 주편이 주형내에 머물러 있는 시간과 전체에 걸친 평균 열유속의 관계를 다음식으로 표현하였다.

\[Q = 267.78 - 22.18\sqrt{t}, \text{ (W/cm}^2\text{)} \]

(4.1)

윗 식은 넓은 범위의 작업조건에서 광범위하게 적용되는 식이다. 이러한 식을 이용하여 열유속이 \(\sqrt{t} \) 형태로 감소하는 형태의 열유속을 계산에 적용하였다. 코팅층의 열전도도는 90 W/mK, 상부 열유속은 2000 KW/m², 전체 평균 열유속은 1000 KW/m² 으로 입력하여 계산하였다. 주형과 코팅층의 모식도와 입력한 열유속의 개형은 그림 4.3과 같다.

코팅 두께에 따라 코팅층 표면의 온도 차이는 있지만 열전도 지점의 온도는 차이는 0.5 mm, 3 mm 각각 116.4 °C, 116.2 °C 로 차이가 거의 없다.
코팅층의 두께는 열전대 지점의 주형 온도에 거의 영향을 미치지 않는 것으로 볼 수 있다. 주형 온도 분포 및 열전대 지점의 온도는 그림 4.4 과 같다.
그림 4.3 코팅 두께에 따른 주형 온도 계산 모식도와 입력 열유속
그림 4.4 코팅 두께에 따른 주형 온도 분포
4.2.2 전열량 곡선 개형에 대한 주형 온도 변화 계산

이 사례에서는 전열량 곡선 개형 차이에 대한 주형 온도 변화를 보기위한 계산을 진행하였다. 같은 두께와 열전도도의 코팅층에 평균 열유속은 같지만 곡선 개형이 다른 세가지 열유속 (Heat Flux 1, 2, 3)을 입력하였다. 코팅층의 열전도도는 90 W/mK, 두께는 3 mm 로 계산하였으며 세가지 전열량 모두 평균 열유속 값은 1000 KW/m², 상부 열유속값은 Heat Flux 1, 2, 3 각각 2000 KW/m², 1800 KW/m², 1500 KW/m² 를 입력하였다. 주형과 코팅층의 모식도와 입력한 전열량의 개형은 그림 4.5과 같다.

계산 결과 열전대 지점의 온도는 Heat Flux 1, 2, 3 의 순서대로 116.1 °C, 110.3 °C, 101.5 °C 이며 각각 입력한 열유속에 따라 온도차이가 있음을 알 수 있다. 이는 열전대 지점인 Meniscus 로부터 100 mm 지점에서의 전열량 순서와 일치하며 Meniscus 로부터 해당 거리의 전열량에 따라 열전대 지점의 온도가 영향을 받는 것을 알 수 있다. 주형 온도 분포 및 열전대 지점의 온도는 그림 4.6 과 같다.
그림 4.5 열유속 개형에 따른 주형 온도 계산 모식도와 입력 열유속
그림 4.6 입력 열유속에 따른 주형 온도 분포
4.2.3 상부 열유속에 따른 주형 온도

이 사례는 상부 열유속이 200 KW/m² 정도 차이가 나며 하단부에는 전열량 차이가 거의 없는 두가지 열유속 (Heat Flux ①, ②)을 입력하였다. 코팅층의 열전도도는 90 W/mK, 두께는 3 mm로 계산하였으며 평균 열유속은 Heat Flux ①, ② 각각 1000 KW/m², 930 KW/m²를 입력하였고 상부 열유속값은 Heat Flux ①, ② 각각 2000 KW/m², 1800 KW/m²를 입력하였다. 주형과 코팅층의 모식도와 입력한 열유속의 개행은 그림 4.7과 같다.

계산 결과 열전대 지점의 온도는 Heat Flux ①, ②의 순서대로 116.1°C, 108.2°C이며 각각 입력한 열유속에 따라 온도차이가 있음을 알 수 있다. 이는 4.2.2 사례에서 마찬가지로 열전대 지점인 Meniscus로부터 100 mm 지점에서의 열유속 순서와 일치하며 Meniscus로부터 해당 거리의 열유속에 따라 열전대 지점의 온도가 영향을 받는 것을 알 수 있다. 주형 온도 분포 및 열전대 지점의 온도는 그림 4.8과 같다.

열저항을 두가지 코팅 층 (Coating 0 mm, 3mm)을 입력하여 수정해 계산한 2D Slice Model에서의 열유속 결과 값은 그림 4.9과 같다. 결과를 보면 전열량의 개행은 이 사례에 입력한 Heat Flux ①, ② 열유속 곡선 개행과 유사하다. 이는 코팅층으로 인하여 열유속의 개행이 변화한다는 것을 알 수 있다.
그림 4.7 상부 열유속에 따른 주형 온도 계산 모식도와 입력 열유속
그림 4.8 상부 열유속 차이에 따른 주형 온도 분포

그림 4.9 2D Slice 모델에서 얻은 코팅 유무에 따른 열유속 결과 값
4.2.4 코팅 열전도도에 따른 주형 온도

이 사례에서는 코팅층의 열전도도에 따라 주형 온도가 어떻게 변화하는지를 알아보았다. 코팅층은 두가지(Coating 1, 2)로 열전도도는 각각 90 W/mK, 30 W/mK 이다. 두 코팅층 모두 두께가 3 mm 로 같으며 같은 열유속을 입력하였다. 상부 열유속은 2000 KW/m², 전체 평균 열유속은 1000 KW/m² 으로 입력하여 계산하였다. 주형과 코팅층의 모식도와 입력한 전열량의 개형은 그림 4.10 과 같다.

계산 결과 열전도 지점의 온도는 Coating 1, 2 각각 116.1 °C, 116.3 °C 로 거의 차이가 없음을 알 수 있다. 주형 온도 분포를 보면 열전도 지점의 온도차이는 거의 없지만 코팅층의 표면 온도는 차이가 큰 것을 알 수 있다. 주형 온도 분포 및 열전도 지점의 온도는 그림 4.11 과 같다.
그림 4.10 코팅 열전도도에 따른 주형 온도 계산 모식도와 입력

열유속
그림 4.11 코팅 열전도도에 따른 주형 온도 분포
4.3 사례 연구 요약

4 장 2 절에 코팅층의 두께, 코팅층의 열전도도, 코팅층에 입력한 열유속에 따른 열전달 계산을 통해 결과를 알아보았다.

4 장 2 절 1 항에서 코팅층 두께에 대해 열전대 지점 온도가 일정하였고 코팅층 두께가 두꺼울수록 코팅층 자체의 온도는 상승하였다.

4 장 2 절 2 항에서 전열량의 곡선 차이에 따라 열전대 지점의 온도가 상이하였고 Meniscus 로부터 해당거리의 열유속에 따라 열전대 지점의 온도가 다름을 알 수 있었다.

4 장 2 절 3 항에서 코팅층의 열전도도에 따라 열전대 지점의 온도가 일정하였고 코팅층의 열전도도가 작을수록 코팅층 자체의 온도가 상승하였다.

4 장 2 절 2 항과 4 장 2 절 3 항에서 보아 코팅층으로 인하여 주형과 주변사이의 열유속 개행이 변화하는 것을 알 수 있다.

4 장 2 절의 내용을 종합적으로 요약을 하면 코팅층으로 인해 열유속의 개행이 변화하며 따라서 열전대 지점에 입력되는 열유속의 크기가 다르다. 이로 인하여 열전대 지점의 온도가 다르게 되며 주형온도는 해당지점의 열유속에 따라 영향을 받다는 결론을 낼 수 있다.
4.4 사례 연구 해석해 검증

사례 연구를 통해 코팅층으로 인해 주형과 주편사이의 열전달이 변하여 주형의 온도분포에 영향이 미치는 것을 알 수 있었다. 이 점에서는 해석해를 통해 이를 검증하려 한다.

주형에는 열유속이 입력되며 정상상태에 도달하게 된다. 주형과 코팅층 내 열전달은 Fourier’s Law 를 따라 열이 전도되며 주형과 냉각수 사이에는 뉴턴의 냉각법칙에 따라 열이 전달된다. 이 점에서 입력 열유속은 상부 열유속이 2000 KW/m², 전체 평균 열유속이 1000 KW/m²이다. 입력한 열유속에 따르면 TC 지점인 Meniscus 로부터 100 mm 지점에 열유속은 1470 kW/m² 이며 정상 상태에 도달하게 되면 열유속의 변화가 없으므로 TC 지점의 열전달 거리에 따른 열유속의 변화는 0 이다. 또한 시간에 따라 온도변화가 없다.

\[
\frac{dq}{dx} = 0 \quad (4.2)
\]

\[
\frac{\partial T}{\partial t} = 0 \quad (4.3)
\]

Fourier’s Law 로부터의 열확산 방정식에 따르면 시간에 따른 온도 변화가 없으므로 열전달 거리에 따른 온도 구배는 선형적이 된다.

\[
\frac{\partial T}{\partial t} = \frac{k}{c_p \rho} \frac{\partial^2 T}{\partial x^2} = 0 \quad (4.4)
\]

\(K \) 는 열전도도 이며 \(c_p \) 는 비열, \(\rho \) 는 밀도이다. 주형과 냉각수 사이의 열전달에 의한 주형 끝단의 온도는 다음 식으로 결정된다.
\[q = h(T_{\text{end}} - T_{\text{sink}}) \quad (4.5) \]

\[T_{\text{end}} = T_{\text{sink}} + \frac{q}{h} \quad (4.6) \]

Here, \(T_{\text{end}} \) is the final temperature, \(T_{\text{sink}} \) is the temperature of the cold water at 25 \(^\circ\text{C}\), and \(h \) is the heat transfer coefficient at 25 kW/m\(^2\)K. The heat transfer follows Fourier's Law as follows.

\[q = -k \frac{\partial T}{\partial x} \quad (4.7) \]

The temperature gradients in the mold and coating are given by the following equations:

\[\left(\frac{\partial T}{\partial x} \right)_{\text{mold}} = -\frac{q}{k_{\text{mold}}} \quad (4.8) \]

\[\left(\frac{\partial T}{\partial x} \right)_{\text{coating}} = -\frac{q}{k_{\text{coating}}} \quad (4.9) \]

Here, \(k_{\text{mold}} \) is the heat transfer coefficient of the mold, and \(k_{\text{coating}} \) is the heat transfer coefficient of the coating. In steady state, the temperature gradients remain constant, and the temperature at the mold/coating interface and the coating surface can be expressed as follows:

\[\frac{T_{\text{end}} - T_{\text{interf}}}{L_{\text{mold}}} = -\frac{q}{k_{\text{mold}}} \quad (4.10) \]

\[\frac{T_{\text{interf}} - T_{\text{surf}}}{L_{\text{coating}}} = -\frac{q}{k_{\text{coating}}} \quad (4.11) \]

\(T_{\text{interf}} \) and \(T_{\text{surf}} \) are the temperatures at the mold/coating interface and the coating surface, respectively. \(L_{\text{mold}} \) and \(L_{\text{coating}} \) are the lengths of the mold and coating, respectively.
식을 통해 얻은 온도 값과 수치해로 얻은 온도값을 표 4.2 로 나타내었고 해석해와 수치해를 비교하여 그림 4.12 으로 나타내었다.

4 장에서의 연구결과에 따르면 TC 지점의 온도는 코팅층의 두께나 열전도도에 영향을 받지 않으며 입력된 전열량에 영향을 받는다. 정상상태에서는 코팅층의 두께와 열전도도에 상관 없이 열전달 거리에 따라 전열량이 변하지 않는다. 또한 TC 지점의 위치는 주형 내 위치하므로 같은 주형내에서는 코팅층의 유무에 상관없이 같은 전열량이 입력되면 TC 지점의 온도는 같은음을 알 수 있다.
그림 4.12 열전대 지점의 온도의 해석해와 수치해

<table>
<thead>
<tr>
<th>Temperature</th>
<th>해석해</th>
<th>수치해</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{end}</td>
<td>$83.8 , ^{\circ}\text{C}$</td>
<td>$83.0 , ^{\circ}\text{C}$</td>
</tr>
<tr>
<td>T_{interf}</td>
<td>$209.8 , ^{\circ}\text{C}$</td>
<td>$208.1 , ^{\circ}\text{C}$</td>
</tr>
<tr>
<td>T_{surf}</td>
<td>$258.7 , ^{\circ}\text{C}$</td>
<td>$257.1 , ^{\circ}\text{C}$</td>
</tr>
<tr>
<td>T_{TC}</td>
<td>$117.4 , ^{\circ}\text{C}$</td>
<td>$116.2 , ^{\circ}\text{C}$</td>
</tr>
</tbody>
</table>

표 4.2 해석해로 얻은 온도 값과 수치해로 얻은 온도 값 비교
5. 결과 해석

5.1 열유속 해석

그림 5.1은 코팅층마다 주조거리에 따른 열유속의 변화를 나타내었고 열유속 측정 위치는 단변 주형의 중앙이다. 상부 열유속은 코팅층의 두께에 따라 차이가 있으며 코팅층이 얇을수록 상부 열유속은 크다. 하단부의 열유속 또한 코팅층마다 차이가 있는데 상부 열유속의 차이만큼 크지는 않다. 그 이유는 주조 하단부는 형성된 셀이 코팅층보다 더 큰 열저항으로 작용하여 코팅층으로 인한 열저항의 영향이 셀보다 작아지기 때문이다. 그림 5.2은 코팅층마다 주조 거리에 따른 셀의 성장을 나타내었다. 위치는 단변 주형의 중앙이다. 셀의 기준은 강도가 나타나기 시작하는 온도인 ZST로 1502 °C 이하의 온도를 고체 셀로 보았다. 코팅층마다 전체 평균 열유속과 출구에서의 셀 두께를 표 5.1로 나타내었다. 주형과 주면사이의 열전달로 에너지가 이동하여 주면의 온도가 감소하는데 주면의 셀두께는 총 이동한 에너지에 비례한다고 볼 수 있다. 총 이동한 에너지는 평균 열유속에 주조시간을 곱하여 알 수 있으며 같은 주속에서는 셀 두께를 평균 열유속으로 비교가 가능하다. 표 5.1을 보면 알 수 있듯이 평균 열유속이 클수록 셀 두께가 두껍다는 것을 알 수 있다.
그림 5.1 단변 주형 중앙부의 코팅층마다 주조거리에 따른 열유속의 변화

그림 5.2 단변 주형 중앙부의 코팅층마다 쉐일의 성장
<table>
<thead>
<tr>
<th>코팅층</th>
<th>평균 열유속 (KW/m²)</th>
<th>출구 쉐ル 두께 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>w/o Coat</td>
<td>1188.4</td>
<td>22.7</td>
</tr>
<tr>
<td>Coat 1</td>
<td>1133.1</td>
<td>22</td>
</tr>
<tr>
<td>Coat 2</td>
<td>1097.9</td>
<td>21.6</td>
</tr>
<tr>
<td>Coat 3</td>
<td>1136.6</td>
<td>22.2</td>
</tr>
<tr>
<td>Coat 4</td>
<td>1130.3</td>
<td>21.9</td>
</tr>
</tbody>
</table>

표 5.1 코팅층마다 전체 평균 열유속과 출구에서의 쉐ル 두께
5.2 주편 온도 해석

코팅층마다 단변 주형 중앙부 주편 표면의 온도변화를 주조길이에 따라 나타내었다. 그림 5.3 에 각 코팅층마다 주조길이에 따른 온도변화가 나타나 있으며 이를 통해 각 코팅층마다 절대적인 온도 값의 차이 및 주조 길이에 따른 온도변화율을 확인 할 수 있다.

코팅이 없는 경우가 주조 길이에 따른 온도변화율이 제일 크다. 따라서 출구 온도도 가장 낮다. Coat 1, 2 의 경우 코팅이 없는 경우와 비교하여 초반 온도변화율이 작아 코팅의 유무 및 두께에 따라 절대적인 온도차이가 크다. 주조 길이에 따른 온도 변화율을 살펴보면 주조 초반부에는 코팅의 유무 및 두께에 따라 온도변화율의 차이가 크지만 주조 후반부에는 세 경우 모두 온도변화율에 큰 차이가 없다. 이는 주조 초반부에 코팅층의 열저항의 영향이 우세하지만 후반부에는 주형용제 및 고체화 된 쉘의 열저항의 영향이 우세하기 때문이다.

Coat 3 및 Coat 4 또한 주조 초반부는 코팅층에 따른 온도변화율 차이가 있지만 후반부에는 코팅층에 따른 온도변화율의 차이가 크지는 않다. 주목할 점은 탕면으로부터 550 mm 부근에서 Coat 3 와 Coat 4 의 온도변화율 및 온도차이가 역전을 보인다. 이는 Coat 3 와 Coat 4 가 시간에 따라 코팅층의 열저항이 변하기 때문이다.

그림 5.4 온 주조 출구에서 주편의 장변 및 단변 경로에 따른 표면온도 변화이다. 각 코팅층마다 주편 코너를 제외한 장변과 단변의 출구 표면온도는 거의 같다. 코너의 경우 급격한 온도 감소를 보이는데
주변 코너부는 장변 주형과 단변 주형 모두에서 열이 전달되기 때문이다.

각 코팅층마다 주변 위치의 출구 표면 온도를 표 5.2에 나타내었다.
그림 5.3 단변 주형 중앙부의 코팅층 마다 주조거리에 따른 표면 온도

그림 5.4 주조 출구에서 주편의 장변 및 단변 경로에 따른 표면 온도
<table>
<thead>
<tr>
<th>코팅층</th>
<th>장변 출구 온도 (°C)</th>
<th>단변 출구 온도 (°C)</th>
<th>코너 온도 (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>w/o Coat</td>
<td>1065.6</td>
<td>1065.5</td>
<td>759.5</td>
</tr>
<tr>
<td>Coat 1</td>
<td>1091.5</td>
<td>1091.6</td>
<td>790.9</td>
</tr>
<tr>
<td>Coat 2</td>
<td>1108.3</td>
<td>1108.4</td>
<td>810.6</td>
</tr>
<tr>
<td>Coat 3</td>
<td>1099.3</td>
<td>1099.2</td>
<td>789.2</td>
</tr>
<tr>
<td>Coat 4</td>
<td>1083.2</td>
<td>1083.3</td>
<td>782.8</td>
</tr>
</tbody>
</table>

표 5.2 코팅층마다의 장변, 단변, 코너의 출구 표면 온도
5.3 냉각 속도 해석

주형 코팅은 주편의 냉각 속도를 제어하여 주편을 완냉하는 목적이다. 주편이 완냉하게 되면 주편내의 석출물이 성장할 시간이 주어져 조대화 된다. 석출물이 조대화 되는 온도 구간은 1100 ~ 1200 °C 이다. 이 온도구간에서 주편의 냉각속도를 보기 위해 그림 5.3의 주편 표면의 온도변화를 1100 ~ 1200 °C 구간만 나타내어 그림 5.5에 나타내었다. 그림 5.3은 주조길이에 따른 온도변화를 나타내었지만 그림 5.5은 냉각속도를 보기 위함이므로 주조 길이를 주조 시간으로 환산하여 나타내었다. 주조 길이 800 mm를 주조속도 0.8 mpm에 환산하면 주조시간은 60 초이다. 각 코팅층마다의 1100 ~ 1200 °C 구간의 평균 냉각속도의 절댓값을 표 5.3에 나타내었다. 냉각속도의 절댓값을 비교해보면 코팅층이 없는 경우 가장 절댓값이 컸으며 Coat 3의 경우 제일 낮았다. 코팅층이 없는 경우와 비교하여 Coat 3의 냉각속도는 26% 정도 감소효과를 보였다. Coat 3은 주조 시간에 따라 열저항이 점차 증가하기 때문에 주조 하단부인 1100 ~ 1200 °C 구간에서의 완냉 효과가 큰 것으로 보인다.
그림 5.5 코팅층마다의 1100 ~ 1200 °C 에서의 주조시간에 따른 표면 온도 변화

<table>
<thead>
<tr>
<th></th>
<th>w/o Coat</th>
<th>Coat 1</th>
<th>Coat 2</th>
<th>Coat 3</th>
<th>Coat 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>냉각 속도</td>
<td>3.79</td>
<td>3.22</td>
<td>2.98</td>
<td>2.82</td>
<td>3.62</td>
</tr>
<tr>
<td>$\frac{\Delta T}{\Delta t}$</td>
<td>(°C/sec)</td>
<td>(°C/sec)</td>
<td>(°C/sec)</td>
<td>(°C/sec)</td>
<td>(°C/sec)</td>
</tr>
</tbody>
</table>

표 5.3 표면 온도를 통해 본 코팅층마다의 냉각 속도
5.4 주형 온도 해석

주조가 진행됨에 따라 주편에서 주형으로 열이 전달되며 이 열로 인해 주형의 온도는 상승하게 된다. 주형의 온도가 과도하게 상승하게 되면 주형에 열응력 및 열충격이 발생하여 주형 수명에 좋지 않은 영향을 미친다. 따라서 주형의 온도해석 또한 중요하다.

코팅층으로 인한 주형의 열전달 및 온도변화는 4 장에서 자세히 다루었다. 주형에 코팅층이 존재하면 코팅층은 낮은 열전도도로 인하여 주형으로의 열전달을 방해한다. 따라서 코팅층 표면에 열이 점점 쌓이게 되고 정상상태에 도달할 때까지 표면 온도가 증가하게 된다. 코팅층의 낮은 열전도도는 높은 온도구배를 야기하므로 같은 열유속이더라도 코팅층의 열전도도가 낮을수록, 두께가 두꺼울 수록 코팅층 자체의 온도가 상승한다. 따라서 주형과 코팅층의 온도를 제어하기 위해 코팅층의 열전도도 및 형태에 따른 적절한 열저항의 제어가 필요하다.

주형의 온도는 4 장의 예비 연구를 통하여 주형의 온도는 주형에 전달된 열유속에 영향을 받는다는 것을 알 수 있었다. 2D Slice 모델에서 각 코팅층마다 주형에 전달된 열유속 데이터를 계산할 수 있었으며 이 열유속 데이터를 3D 부분 주형에 입력하여 주형의 온도를 계산하였다. 입력한 열유속은 그림 5.1에 나타나있다.

그림 5.6은 각 코팅층마다의 주형의 온도분포도이다. 최대 온도 500°C, 최소 온도 0°C로 Legend를 설정하여 각 코팅층마다 주형온도를 비교하였다. 또한 코팅층의 유무 및 두께에 상관 없이 주형 상단부에
가장 큰 열유속이 입력되므로 주형 상단부의 표면 온도가 가장 높다. 따라서 주형의 온도해석은 주형 상단부에 중점을 두었다.

코팅층이 없는 경우 가장 큰 열유속이 입력되었지만 주형의 열전달을 방해하는 코팅층이 없어 최대 표면 온도가 가장 낮으며 온도분포가 가장 고르다. Coat 2는 상단부 열유속이 제일 작은데 비해 코팅층이 가장 두꺼워 최대 표면 온도가 가장 높다. Coat 3은 다른 코팅층에 비해 최대 표면 온도가 가장 낮은데 이는 다른 코팅층에 비해 주형 상단부의 코팅층이 약 1mm로 가장 얇기 때문이다.

표 5.4에 각 코팅층마다의 주형 최대 표면 온도와 열전대 지점의 온도를 나타내었다. 코팅층의 최대 표면 온도는 입력된 열유속, 코팅층의 두께에 가장 많은 영향을 받으므로 코팅이 없는 경우가 최대 표면 온도가 가장 낮으며 Coat 2가 최대 표면온도가 가장 높다. 열전대 지점의 온도는 탕면으로부터 100 mm에서 입력된 열유속에 가장 많은 영향을 받는다. 그림 5.1을 보면 탕면으로부터 100 mm 지점의 열유속의 크기 순서와 표 5.4의 열전대 지점의 온도 순서가 일치함을 알 수 있다.
그림 5.6 코팅층마다 주형의 온도 분포

<table>
<thead>
<tr>
<th>코팅층</th>
<th>주형 최대 온도 (°C)</th>
<th>TC 지점 온도 (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>w/o Coat</td>
<td>252.7</td>
<td>131.9</td>
</tr>
<tr>
<td>Coat 1</td>
<td>409.5</td>
<td>124.6</td>
</tr>
<tr>
<td>Coat 2</td>
<td>497.9</td>
<td>119.6</td>
</tr>
<tr>
<td>Coat 3</td>
<td>324.0</td>
<td>128.1</td>
</tr>
<tr>
<td>Coat 4</td>
<td>492.3</td>
<td>120.9</td>
</tr>
</tbody>
</table>

표 5.4 코팅층마다의 주형 최대 온도와 열전달 지점 온도
5.5 주조 속도에 따른 열전달 해석

연속 주조 시 주형의 코팅층은 주편과 주형의 열전달을 제어하여 주편을 완냉시키는 데에 목적이 있다. 코팅층은 주형과 주편사이의 열전달을 방해하므로 주조속도가 높은 경우 주편은 충분한 션 두께를 확보할 수 없다. 션이 충분히 성장하지 못하면 주형 출구에서 주편이 철저히 걷지 못하고 터지게 되는 응고층 터짐 현상이 발생할 가능성이 있다. 따라서 코팅층을 적용한 연속 주조 공정에서는 주조속도를 낮추어 충분한 션 두께를 확보하려 하기 목적이 있다. 이 점에서는 0.6 mppm의 주조속도를 적용해 계산한 결과를 0.8 mppm로 계산한 결과와 비교하여 주조속도가 열전달에 어떠한 영향을 미치는지 알아보도록 한다.

주조 시간은 주조건이를 주조속도에 따라 환산하여 계산할 수 있다. 주조 길이 800 mm 를 0.6 mppm, 0.8 mppm 으로 환산하면 주조시간은 각각 80 초와 60 초이다. 그림 5.7 에 주조속도를 낮춤으로써 주조시간에 따라 열저항이 어떻게 변화하는지 나타내었다. 코팅층이 없는 경우와 Coat 1, Coat 2 는 시간에 따라 열저항이 변화하지 않으며 Coat 3 와 Coat 4 는 시간에 따라 열저항이 변화하는 양상이 0.6 mppm 과 0.8 mppm 이 다르다.
그림 5.7 주조 시간에 따른 코팅층마다의 열저항 변화
5.5.1 주조 속도에 따른 열유속 해석

그림 5.8 은 w/o Coat, Coat 1, Coat 2 를 주조속도 0.6 mpm 과 0.8 mpm 로 계산하여 얻은 열유속이다. 그림 5.8(a) 는 주조길이에 따른 열유속을 나타내었고, 그림 5.8(b) 는 주조시간에 따른 열유속을 나타내었다. w/o Coat, Coat 1, Coat 2 이 세가지 경우는 주조시간 및 주조길이에 따라 코팅층의 열저항이 일정하므로 이 세가지 경우를 먼저 비교 해석하였다. 그림 5.8 를 보면 주조시간에 따른 열유속의 변화는 w/o Coat, Coat 1, Coat 2 이 세가지 경우 모두 주속에 관계 없이 60 초까지는 동일하다. 0.6 mpm 에서 이후 20 초는 하단부 열유속이 그대로 이어지며 감소한다. 그림 a 를 보면 주속에 관계없이 열유속의 최댓값은 같으며 0.6 mpm 의 경우 주변이 주형에 오래 머물며 열저항이 오래 작용하므로 평균 열유속은 0.8 mpm 보다 작다. 그림 5.8(a) 에서 주조시간에 따른 열유속을 보면 0.6 mpm 의 경우 하단부의 낮은 열유속이 60초 이후 20초 동안 지속되므로 평균 열유속을 보면 0.8 mpm 보다 낮다.

그림 5.9 은 Coat 3 와 Coat 4 를 주조속도 0.6 mpm 과 0.8 mpm 로 계산하여 얻은 열유속이다. 그림 5.9(a) 는 주조길이에 따른 열유속을 나타내었고, 그림 5.9(b) 는 주조시간에 따른 열유속을 나타내었다. Coat 3 와 Coat 4 는 주조 시간에 따라 코팅층의 열저항이 변화하므로 그림 5.9(b) 는 그림 5.8(b) 와는 다르게 60 초까지 열유속이 동일하지 않다는 차이점이 있다. Coat 3 와 Coat 4 도 마찬가지로 0.6 mpm 의 열유속은 60초 이후 20초 동안 하단부의 낮은 열유속이 지속되므로 평균 열유속은 0.8 mpm 이 더 높다.
각 코팅층마다의 평균 열유속을 주속에 따라 표 5.5 로 정리하여 나타내었다.
(a) w/o Coat, Coat 1, Coat 2 주조 길이에 따른 열유속

그림 5.8 w/o Coat, Coat 1, Coat 2의 주조속도에 따른 열유속을 (a) 주조 길이 및 (b) 주조 시간에 따라 나타내 비교

(b) w/o Coat, Coat 1, Coat 2 주조 시간에 따른 열유속
(a) Coat 3, Coat 4 주조 길이에 따른 열유속

(b) Coat 3, Coat 4 주조 시간에 따른 열유속

그림 5.9 Coat 3, Coat 4의 주조속도에 따른 열유속을 (a) 주조 길이 및 (b) 주조 시간에 따라 나타내 비교
<table>
<thead>
<tr>
<th>코팅층</th>
<th>0.6 mpm 평균 열유속 (kW/m²)</th>
<th>0.8 mpm 평균 열유속 (kW/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>w/o Coat</td>
<td>1098.5</td>
<td>1188.4</td>
</tr>
<tr>
<td>Coat 1</td>
<td>1050.6</td>
<td>1133.1</td>
</tr>
<tr>
<td>Coat 2</td>
<td>1020.4</td>
<td>1097.9</td>
</tr>
<tr>
<td>Coat 3</td>
<td>1053.4</td>
<td>1136.6</td>
</tr>
<tr>
<td>Coat 4</td>
<td>1048.3</td>
<td>1130.3</td>
</tr>
</tbody>
</table>

표 5.5 각 코팅층마다 주속에 따른 평균 열유속
5.5.2 주조 속도에 따른 셀 두께 해석

각 코팅층마다 주속별로 평균열유속, 주변에서 주형으로 총 이동한
에너지, 출구에서의 셀 두께를 표 5.6 에 정리하여 나타내었다. 표 5.6(a)
는 0.6mpm 에서 계산하여 얻은 결과이며 표 5.6(b) 는 0.8 mpm 에서
계산하여 얻은 결과이다.

앞 절에서 보았듯이 0.6 mpm 의 경우 60 초 이후 20 초 동안 하단부의
낮은 열유속이 이어지며 감소하므로 평균 열유속이 0.8 mpm 보다 낮다.
하지만 주변에서 주형으로 이동한 총 에너지는 평균 열유속에 주조
시간을 곱한 값이므로 총 이동한 에너지는 0.6 mpm 이 더 높다. 셀은
강이 강도를 갖기 시작하는 온도인 ZST(1502 °C)로 삼았다. 셀의 성장은
강의 비열, 잠열 등 재료가 가지고 있는 에너지와 관계가 있으므로 셀
두께는 주변에서 주형으로 총 이동한 에너지에 비례한다. 같은
주속에서는 셀 두께를 평균 열유속으로 비교가 가능하지만 주속이 다를
경우 총 이동한 에너지로 비교하는 것이 타당하다. 낮은 주속에서는
주변이 더 오래 냉각 되므로 총 이동한 에너지가 높다. 따라서
출구에서의 셀 두께가 더 두껍다. 0.8 mpm 과 비교하여 0.6 mmp 는 20 초
동안 추가적인 냉각이 지속되며 이 냉각으로 인해 셀 두께는 0.8mpm 의
셀 두께보다 약 20 % 증가하게 된다.
<table>
<thead>
<tr>
<th></th>
<th>평균 열유속 (kW/m²)</th>
<th>총 전달 에너지 (kJ/m²)</th>
<th>출구 쉘 두께 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>w/o Coat</td>
<td>1098.5</td>
<td>87880</td>
<td>27.2</td>
</tr>
<tr>
<td>Coat 1</td>
<td>1050.6</td>
<td>84048</td>
<td>26.5</td>
</tr>
<tr>
<td>Coat 2</td>
<td>1020.4</td>
<td>81632</td>
<td>26.0</td>
</tr>
<tr>
<td>Coat 3</td>
<td>1053.4</td>
<td>84272</td>
<td>26.7</td>
</tr>
<tr>
<td>Coat 4</td>
<td>1048.3</td>
<td>83864</td>
<td>26.3</td>
</tr>
</tbody>
</table>

(a) 0.6 mpm 에서의 평균 열유속, 총 전달 에너지, 출구 쉘 두께

<table>
<thead>
<tr>
<th></th>
<th>평균 열유속 (kW/m²)</th>
<th>총 전달 에너지 (kJ/m²)</th>
<th>출구 쉘 두께 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>w/o Coat</td>
<td>1188.4</td>
<td>71304</td>
<td>22.7</td>
</tr>
<tr>
<td>Coat 1</td>
<td>1133.1</td>
<td>67986</td>
<td>22.0</td>
</tr>
<tr>
<td>Coat 2</td>
<td>1097.9</td>
<td>65874</td>
<td>21.6</td>
</tr>
<tr>
<td>Coat 3</td>
<td>1136.6</td>
<td>68196</td>
<td>22.2</td>
</tr>
<tr>
<td>Coat 4</td>
<td>1130.3</td>
<td>67818</td>
<td>21.9</td>
</tr>
</tbody>
</table>

(b) 0.8 mpm 에서의 평균 열유속, 총 전달 에너지, 출구 쉘 두께

표 5.6 (a) 0.6 mpm 과 (b) 0.8 mpm 에서의 평균 열유속, 총 전달 에너지, 출구 쉘 두께
5.5.3 주조 속도에 따른 주편 표면 온도 해석

주속 변화가 냉각속도에 어떤 영향을 미치는지 보기 위하여 1100 ~ 1200 ºC 구간에서의 주편 표면 온도변화를 그림 5.10 에 나타내었다. 코팅층마다 온도 변화율 및 온도 순서는 0.8 mpm 과 같고 출구 온도는 0.8 mpm 과 비교하여 약 40 ºC 정도 더 냉각 되었다.

열저항이 주조시간에 따라 변하지 않는 w/o Coat, Coat 1, Coat 2 의 경우 60 초까지 0.8 mpm 과 온도 변화가 동일하다. Coat 2 의 경우 0.8 mpm 주속에서 1100 ºC 까지 냉각되지 않지만 0.6 mpm 주속에서는 1100 ºC 이하로 냉각된다. 열저항이 주조시간에 따라 변하는 Coat 3 와 Coat 4 를 비교해보면 0.6 mpm 의 경우 Coat 3 와 Coat 4 의 온도 순서가 바뀌는 시점이 0.8 mpm 보다 늦게 나타난다. 냉각 속도를 보면 Coat 3 는 0.8 mpm 에서 냉각 속도의 절대값이 더 낮은 반면 Coat 4 는 0.6 mpm 에서 냉각 속도의 절대값이 더 낮다. 그 이유는 그림 3.7 을 보면 알 수 있도록 해당 온도구간에서의 열저항이 Coat 3 는 0.8 mpm 에서 더 낮으며 Coat 4 는 0.6 mpm 에서 더 낮기 때문이다. 표 5.7 에 각 코팅층의 주조속도에 따른 1100 ~ 1200 ºC 구간에서의 냉각속도의 절대값을 정리하여 나타내었다. w/o Coat, Coat 1, Coat 2 의 경우 주속에 관계없이 냉각속도는 동일하다. 0.8 mpm 의 경우 Coat 3 가 가장 완냉 효과를 보는 반면 0.6 mpm 은 Coat 2 가 가장 완냉 효과를 보인다.
(a) 0.6 mpm의 1100 ~ 1200 °C 구간의 주편 표면 온도

(b) 0.8 mpm의 1100 ~ 1200 °C 구간의 주편 표면 온도

그림 5.10 (a) 0.6 mpm과 (b) 0.8 mpm의 1100 ~ 1200 °C 구간의 주행 단변

중앙의 주조 시간에 따른 주편 표면 온도 변화
<table>
<thead>
<tr>
<th>(\frac{\Delta T}{\Delta t})</th>
<th>w/o Coat</th>
<th>Coat 1</th>
<th>Coat 2</th>
<th>Coat 3</th>
<th>Coat 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6 mpm</td>
<td>3.79</td>
<td>3.22</td>
<td>2.98</td>
<td>2.82</td>
<td>3.62</td>
</tr>
<tr>
<td>(^{0}\text{C/sec})</td>
<td>(^{0}\text{C/sec})</td>
<td>(^{0}\text{C/sec})</td>
<td>(^{0}\text{C/sec})</td>
<td>(^{0}\text{C/sec})</td>
<td></td>
</tr>
<tr>
<td>0.8 mpm</td>
<td>3.79</td>
<td>3.22</td>
<td>2.98</td>
<td>2.82</td>
<td>3.62</td>
</tr>
<tr>
<td>(^{0}\text{C/sec})</td>
<td>(^{0}\text{C/sec})</td>
<td>(^{0}\text{C/sec})</td>
<td>(^{0}\text{C/sec})</td>
<td>(^{0}\text{C/sec})</td>
<td></td>
</tr>
</tbody>
</table>

표 5.7 주조 속도에 따른 1100 ~ 1200 \(^{0}\text{C}\) 구간에서 코팅층마다의 냉각속도
5.5.4 주조 속도에 따른 주형 온도 해석

0.6 mpm 주속에서 얻은 열유속 값으로부터 주형의 온도를 계산하였다. 그림 5.11 은 0.6 mpm 주속일 때의 주형의 온도 분포이다. 최대 온도 500 \(^{\circ}C\), 최소 온도 0 \(^{\circ}C\) 로 Legend를 설정하여 각 코팅층마다 주형온도를 비교하였다. 0.6 mpm 주속에서의 온도 결과는 0.8 mpm 주속에서의 온도결과와 같은 경향을 보인다. 코팅층마다 표면 최대 온도 및 열전대 지점의 온도 경향은 주속에 관계 없이 같다. 0.6 mpm 주속의 온도 결과 역시 상단부의 높은 열유속으로 인해 상단부 온도가 가장 높았다. 코팅층마다 주형의 온도를 비교해보면 코팅층이 없는 경우 상대적으로 가장 높은 열유속이지만 코팅층이 없어 표면온도가 제일 낮았으며 다른 코팅층에 비해 상대적으로 낮은 열유속이지만 코팅층이 가장 두꺼운 Coat 2 가 가장 표면 온도가 높았다. 코팅층이 있는 경우 중에 Coat 3 가 얇은 코팅층으로 인해 상단 표면온도가 가장 낮았다.

주형의 온도에 주속이 미치는 영향을 보기 위해 0.6 mpm 과 0.8 mpm의 주형 온도를 표 5.8 로 정리하여 나타내었다. 표 5.8(a) 은 주형의 최대 표면온도를 비교하여 나타내었고 표 5.8(b) 은 탕면으로부터 100 mm 지점에 위치하는 열전대의 온도를 비교하여 나타내었다. 표면온도를 비교하면 주속에 관계 없이 코팅층마다의 온도 경향은 같다. 다만 최대 표면온도의 절댓값은 다르다. 0.6 mpm 주속에서 주형온도가 0.8 mpm 주속의 주형온도보다 약 10 \(^{\circ}C\) 정도 낮은 것을 볼 수 있다. 열전대 지점의 온도도 마찬가지로 주속에 관계 없이 코팅층마다의 온도 경향은 같으며 0.6 mpm 주속에서 열전대 온도가 0.8 mpm 주속에서의 열전대에 icon
온도보다 약 7 °C 정도 낮은 것을 볼 수 있다. 이를 해석하기 위해 그림 5.8(a) 과 그림 5.9(a) 을 보면 4 장에서 알 수 있듯이 주형에 전달된 열유속은 주형의 온도에 많은 영향을 미친다. 그림 5.8(a) 과 그림 5.9(a) 상단부의 열유속은 0.8 mpm 주속이 0.6 mpm 주속보다 크며 열전달 지점 또한 0.8 mpm 주속이 0.6 mpm 의 주속보다 큰 것을 알 수 있다. 주형에 전달된 열유속을 탕면으로부터 거리로 나타낼 경우 각 지점에 전달된 열유속의 차이로 인해 주형의 온도에 영향이 미치게 된다.
그림 5.11 0.6 mpm 일때의 코팅층마다 주행의 온도 분포
<table>
<thead>
<tr>
<th>코팅층</th>
<th>0.6 mpm 최대 온도 (°C)</th>
<th>0.8 mpm 최대 온도 (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>w/o Coat</td>
<td>241.1</td>
<td>252.7</td>
</tr>
<tr>
<td>Coat 1</td>
<td>399</td>
<td>409.5</td>
</tr>
<tr>
<td>Coat 2</td>
<td>484.2</td>
<td>497.9</td>
</tr>
<tr>
<td>Coat 3</td>
<td>309.7</td>
<td>324.0</td>
</tr>
<tr>
<td>Coat 4</td>
<td>479.6</td>
<td>492.3</td>
</tr>
</tbody>
</table>

(a) 주조 속도에 따른 코팅층마다 주형의 최대 표면 온도

<table>
<thead>
<tr>
<th>코팅층</th>
<th>0.6 mpm 열전대 온도</th>
<th>0.8 mpm 열전대 온도</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(°C)</td>
<td>(°C)</td>
</tr>
<tr>
<td>w/o Coat</td>
<td>123.6</td>
<td>131.9</td>
</tr>
<tr>
<td>Coat 1</td>
<td>118.4</td>
<td>124.6</td>
</tr>
<tr>
<td>Coat 2</td>
<td>114.6</td>
<td>119.6</td>
</tr>
<tr>
<td>Coat 3</td>
<td>121.1</td>
<td>128.1</td>
</tr>
<tr>
<td>Coat 4</td>
<td>115.7</td>
<td>120.9</td>
</tr>
</tbody>
</table>

(b) 주조 속도에 따른 코팅층마다 열전대 온도

표 5.8 주조 속도에 따른 코팅층마다 주형의 (a) 최대표면온도 및 (b) 열전대 온도
6. 결론

주편의 완냉과 석출물 조대화를 통해 주편의 균열 발생 억제를 위한 코팅층 적용 시 열유속 조절에 대한 계산 진행 결과 다음과 같은 결론을 얻었다.

- 코팅층의 열전달 영향도

예비 연구를 통해 코팅층의 열전달 영향도를 알아보았다. 주형의 온도에는 주편과 주형사이에 전달되는 열유속이 제일 영향을 미친 것을 알 수 있었다. 코팅층의 존재로 인해 주형과 주편 사이의 열유속이 감소되며 이는 주형 및 코팅층의 온도에 영향을 미쳤다.

- 코팅층의 열전도도 및 두께 계산

코팅층으로 인해 주형과 주편사이에 전달되는 열유속은 큰 영향이 있으며 특히 초기 열유속이 영향을 많이 받는다.

- 코팅층의 사례 계산

다섯 가지 형상의 코팅층을 계산해 본 결과 코팅층의 형태는 주형 하단부로 갑수록 두터워지는 모양이 목표구간 내 주편의 완냉을 위해 좋은 형태라고 판단된다. 이는 주로 초기 얇은 코팅층으로 인해 높은 열유속이 전달되므로 셀 두께를 확보할 수 있다. 또한 얇은 코팅층으로 인해 주형의 상단 온도가 제일 낮았다. 해당 코팅층으로 인해 주어지는 주편의 완냉은 기존대비 약 30 % 완냉효과를 보였다.
주속에 따른 계산

0.6 mpm의 경우 0.8 mpm에 비해 평균 열유속이 적으나 총 이동한 에너지 전열량은 많으므로 셀두께를 확보할 수 있었다. 코팅 형태에 따른 열유속 및 주형의 온도 경향은 0.6 mpm과 0.8 mpm이 같은 경향성을 보인다.

주형 및 코팅층의 온도 계산

코팅층으로 인해 주형의 온도는 크게 상승하지 않지만 코팅층의 낮은 열전도도로 인해 코팅층의 표면 온도가 크게 상승한다. 고온으로 인해 발생 가능성 있는 열응력 및 열충격에 대한 실험 및 이론적 해석이 필요하다.
참고 문헌

[29] 원영목: 슬래브 연속주조시 주편의 균열해석 및 주형의 마멸해석, 박사학위논문, 서울대학교, 1999

[33] 이중의: 빔블랭크 연속주조공정에서 유동-열-응력의 연결해석, 박사학위논문, 서울대학교, 1997

