저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

- 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건을 명확하게 나타내어야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer
Anionic Surfactant-mediated Mesoporous Silica Particles for Topical Delivery of Glaucoma Drug to the Eye

음이온 계면활성제 매개 메조포러스 실리카 입자를 이용한 녹내장 약물의 국소 점안 전달

2017년 8월

서울대학교 대학원
협동과정 바이오엔지니어링전공
고 송 아
Abstract

Anionic Surfactant-mediated Mesoporous Silica Particles for Topical Delivery of Glaucoma Drug to the Eye

Song Ah Ko
Interdisciplinary Program in Bioengineering,
College of Engineering,
The Graduate School
Seoul National University

An anionic surfactant-mediated mesoporous silica (AMS), a class of amine functionalized mesoporous silica, was prepared via the S^X-T mechanism without additional post modification processes in order to act as a carrier for brimonidine – a glaucoma drug - for the first time. Brimonidine (BRT) was used as a model drug for the topical drug delivery system to the eye to confirm the carrier effect of AMS particles. It was developed to resolve the low drug bioavailability of the glaucoma eye drop formulation caused by a very short drug residence time at the preocular surface due to the
physiological eye clearance system. The amine groups at the AMS particle surface not only enhanced the encapsulation of negatively charged BRT into the AMS inner pore, but also allowed a sustained BRT release. AMS spherical particles (~1µm) with high surface area (544.1 m²/g) were successfully synthesized and fully characterized. Afterwards, BRT was encapsulated into AMS (BRT-AMS) at a reasonable drug loading amount (41.73 µg/mg). I evaluated the in vitro drug release profile of BRT-AMS where there was an initial burst of 59% for the first 20 min, followed by a sustained drug release for 8 h. The cytotoxicity test showed no toxicity to human corneal epithelial cells. To confirm the mucoadhesive property of BRT-AMS particles, in vitro and in vivo mucoadhesion studies were carried out. Approximately 0.6 mg of the 1 mg mucin was adsorbed by 2 mg of BRT-AMS particles and the zeta potential value of BRT-AMS shifted towards that of mucin. Besides, 25% of the mucoadhesive BRT-AMS particles could reside on a rabbit eye even 4 h after administration. In vivo experiments determined efficacy by assessing the change in IOP and drug bioavailability through measuring the BRT concentration in the aqueous humor (AH) of a rabbit eye. The decreasing IOP periods were 12 and 6 h after administrating BRT-AMS and Alphagan P (the commercialized medication), respectively. In addition, the BRT concentrations in AH of Alphagan P and BRT-AMS were detected for 5 and 8 h, respectively, confirming the enhanced bioavailability of BRT-AMS. Thus, it is a suitable carrier for the ocular drug delivery.
Keywords: Glaucoma, Mesoporous silica, Mucoadhesion, Ocular Drug Delivery, Brimonidine

Student Number: 2015-22884
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>i</td>
</tr>
<tr>
<td>Contents</td>
<td>iv</td>
</tr>
<tr>
<td>List of Figures</td>
<td>vi</td>
</tr>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1. Glaucoma and the limitation of its treatment</td>
<td>1</td>
</tr>
<tr>
<td>1.2. Mucoadhesive carriers for glaucoma drug</td>
<td>1</td>
</tr>
<tr>
<td>1.3. Objective and strategy</td>
<td>2</td>
</tr>
<tr>
<td>II. Materials and Methods</td>
<td>4</td>
</tr>
<tr>
<td>2.1. Materials</td>
<td>4</td>
</tr>
<tr>
<td>2.2. Preparation of AMS and BRT-AMS particles</td>
<td>4</td>
</tr>
<tr>
<td>2.3. Characterization of AMS and BRT-AMS particles</td>
<td>5</td>
</tr>
<tr>
<td>2.4. In vitro drug release profile of BRT-AMS</td>
<td>6</td>
</tr>
<tr>
<td>2.5. In vitro mucoadhesion study</td>
<td>7</td>
</tr>
<tr>
<td>2.6. Cell cytotoxicity test</td>
<td>8</td>
</tr>
<tr>
<td>2.7. Animal experiments</td>
<td>8</td>
</tr>
<tr>
<td>2.8. Statistical analysis</td>
<td>10</td>
</tr>
<tr>
<td>III. Results</td>
<td>12</td>
</tr>
<tr>
<td>3.1. Characterization of AMS and BRT-AMS particles</td>
<td>12</td>
</tr>
<tr>
<td>3.2. In vitro drug release profile</td>
<td>20</td>
</tr>
</tbody>
</table>
3.3. *In vitro* mucoadhesion study .. 22
3.4. Cell cytotoxicity evaluation ... 27
3.5. *In vivo* mucoadhesion study ... 29
3.6. *In vivo* study of efficacy and drug bioavailability 31

IV. Discussion .. 34

V. Conclusion ... 38

VI. References ... 39

국문초록 .. 50
List of Figures

Figure 1. Schematic procedure for (A) synthesizing anionic surfactant-mediated mesoporous silica (AMS) and (B) encapsulating the drug into AMS to prepare BRT-AMS.

Figure 2. SEM images of (A) AMS and (B) BRT-AMS. The scale bars are 1 µm.

Figure 3. X-ray diffraction (XRD) patterns of (a) AMS before calcination, (b) AMS after calcination, and (c) BRT-AMS.

Figure 4. Thermogravimetric analysis (TGA) of (a) AMS before calcination, (b) AMS after calcination, and (c) BRT-AMS.

Figure 5. N₂ adsorption-desorption isotherms of (a) AMS and (b) BRT-AMS.
Figure 6. ... 18
Pore size distribution of AMS and BRT-AMS.

Figure 7. ... 19
Transmission Electron Microscopy (TEM) images of (A-B)
AMS and (C-D) BRT-AMS. The scale bars are 100 nm.

Figure 8. ... 21
In vitro brimonidine release profile of BRT-AMS. Error bars
represent standard deviation.

Figure 9. ... 24
Adsorption kinetics of mucin type III with AMS (black) and
BRT-AMS (grey). *BRT-AMS was statistically significantly
different from AMS (p < 0.05). Error bars represent standard
deviation.

Figure 10. ... 25
Zeta potential measurement of (a) mucin, (b) BRT-AMS, and
(c) BRT-AMS incubated with mucin.

Figure 11. ... 26
FTIR spectra of (a) BRT-AMS and (b) BRT-AMS with mucin.
Figure 12. ... 28
Cell viability assay of BRT-AMS with human corneal epithelial cells (HCECs). Error bars represent standard deviation.

Figure 13. ... 30
In vivo evaluation of preocular retention of BRT-AMS on the rabbit eye. Si weight of particles left on rabbit eye was measured at scheduled intervals after administration. Error bars represent standard deviation.

Figure 14. ... 32
Percent decrease in intraocular pressure (IOP) over time after administration of Alphagan P and BRT-AMS. *BRT-AMS was statistically significantly different from Alphagan P (p < 0.05). Error bars represent standard deviation.

Figure 15. ... 33
Brimonidine concentrations in the aqueous humor (AH) over time after administration of Alphagan P and BRT-AMS. *BRT-AMS was statistically significantly different from Alphagan P (p < 0.05). Error bars represent standard deviation.
I. Introduction

1.1. Glaucoma and the limitation of its treatment

Glaucoma is an eye disorder to damage the optic nerve, which has been reported to be the second leading cause of irreversible blindness (1, 2). This damage is often related to an abnormal increase in intraocular pressure (IOP) (3) and thus, for early treatment of glaucoma, eye drops of the drug lowering the IOP, such as brimonidine, are often prescribed in current clinical settings (4). However, eye drops are limited in low drug bioavailability (< 5%) due to poor drug retention at the preocular space caused by rapid tear clearance and blinking (5, 6). To resolve this, many systems have been proposed to increase its preocular retention property by employing particles, viscous media, in-situ gels and contact lenses as ophthalmic drug carriers (7-10).

1.2. Mucoadhesive carriers for glaucoma drug

Among them, mucoadhesive particles have drawn a great deal of interest as drug carriers for topical delivery to the eye (7, 11, 12). Mucoadhesive particles in nano- or micro-scale can adhere to the mucous layer at the eye surface to improve their retention at the preocular space. Therefore, when loaded with a glaucoma drug, the particles can stay longer at the preocular space and release drug in a sustained manner, hence enhanced ocular drug bioavailability. For this purpose, drug-loaded particles have been prepared for ocular delivery, using many different types of mucoadhesive materials, such as poly(acrylic acid), sodium carboxymethylcellulose, chitosan, and poly(ethylene glycol) (13). To be mucoadhesive, an anionic surface is considered one of the important characteristics (14). In addition, it would be more advantageous with the functional group on the surface that could form
a chemical bond or a hydrogen bond with carboxyl groups abundant in mucin to promote mucoadhesiveness (15).

1.3. **Objective and strategy**

In this aspect, therefore, I propose the anionic surfactant-mediated mesoporous silica particles (AMS) as carriers for topical delivery of a glaucoma drug, brimonidine. The AMS were first synthesized by Shunai che et al. in 2003, where the use of a co-structure directing agent, (3-aminopropyl)triethoxysilane, allows the amine groups to be formed in the mesoporous silica via a single step process, unlike the conventional post-synthetic grafting of aminopropylsilanes (16-21). Thus, the AMS would be mucoadhesive due to a hydrogen bond and a chemical bond between the amine groups in the particles and the carboxyl ones in the mucin. In addition, as the particle size and pore volume of the AMS could be relatively easily modulated, a therapeutic agent could be loaded and released in a controlled manner. Given those, I hypothesize that the AMS loaded with a glaucoma drug can be better retained at the preocular surface and release drug in a sustained manner to enhance ocular drug bioavailability.

In this work, I first assessed the AMS herein with X-ray powder diffraction (XRD), N\textsubscript{2} adsorption-desorption and thermogravimetric (TGA) analyses to confirm their successful fabrication. The morphology was examined via scanning electron microscopy (SEM) and transmission electron microscopy (TEM). To our knowledge, this is the first study to demonstrate the AMS as glaucoma drug carriers for topical delivery to the eye. For this, therefore, I loaded brimonidine (BRT), which has already been approved in clinical use for glaucoma treatment (22), in the AMS and evaluated the possibility of AMS as a mucoadhesive carrier. BRT was encapsulated into AMS and *in vitro* drug release profile of BRT-AMS was
evaluated. The mucoadhesive property of BRT-AMS was thoroughly assessed using various methods, including adsorbed mucin measurement, zeta potential shift, and quantitative analysis of remaining particles on the rabbit eye. Finally, *in vivo* efficacy and bioavailability tests of BRT-AMS were performed where BRT-AMS prolonged the period of intraocular pressure decrease, indicating its potential as a carrier for effective glaucoma treatment.
II. Materials and Methods

2.1. Materials

Sodium dodecyl sulfate (SDS, assay ≥ 99%), (3-aminopropyl)triethoxysilane (APTES, assay = 99%), tetraethyl orthosilicate (TEOS, assay = 98%), phosphate-buffered saline tablet (0.01 M phosphate buffer, pH 7.4), mucin type III (bound sialic acid 0.5-1.5%), Schiff’s fuchsin-sulfite reagent (suitable for detection of glycoproteins), periodic acid, and acetic acid were purchased from Sigma (Korea). Brimonidine tartrate (BRT, assay > 99.8%), proparacaine hydrochloride (Alcaine; 0.5% ophthalmic solution), ethanol (assay = 94.5%), and PVA spears were supplied by Nanjing Yuance Industry & Trade (Nanjing, China), Seoul National University Hospital Biomedical Research Institute (Seoul, Korea), Daejung (Korea) and Medimaru (Korea), respectively. Ketamine hydrochloride (Ketamine), xylazine (Rompun), and acepromazine maleate (Sedaject) were obtained by BK Pharm (Korea). Alphagan P (0.15% ophthalmic solution) was given as a gift from Samil Allergan (Korea).

2.2. Preparation of AMS and BRT-AMS particles

Anionic surfactant-mediated mesoporous silica (AMS) particles were synthesized following the procedure reported by Tatsumi et al. (23). Sodium dodecyl sulfate (SDS) 1.8 g was dissolved in 200 ml of deionized water and 76 ml of ethanol under stirring at 60 °C. After adding 5.5 g of (3-aminopropyl)triethoxysilane (APTES) to SDS dispersion, tetraethyl orthosilicate (TEOS) 7.9 g was fed dropwise into the aqueous solution as a silica source. Then, pH of the solution was adjusted to 10.0 to protonate the amino groups of APTES by using HCl and the reaction with stirring
continued for 2.5 h followed by aging at static state, 100 °C for 24 h. Molar ratio of the mixture was kept to APTES:TEOS:SDS:H₂O:EtOH = 0.4:0.6:0.1:180:20. The resulting white solid precipitate formed was filtered and washed with 50% ethanol solution before it was dried at 60 °C.

To load the drug of BRT into AMS, 600 mg of calcinated AMS particles were under vacuum at 100 °C to desorb the water and immersed in 20 ml of BRT solution (30 mg/ml). After 2 days, BRT-AMS particles were prepared by filtering with 0.2 µm PVDF filter paper, washing 3 times with ethanol, and drying at 80 °C.

2.3. Characterization of AMS and BRT-AMS particles

To examine the mesopores inside AMS, High resolution X-ray diffractometer (HR-XRD; SmartLab, Rigaku, Japan) and gas sorption analyzer (Autosorb-iQ 2ST/MP, Quantachrome Instruments, US) were used. XRD peaks of AMS before/after calcination and BRT-AMS were obtained using Cu Kβ radiation at 40 kV 30 mA over a range of 0.5° < 2θ < 6° with scan step size 0.02°.

After nitrogen adsorption and desorption, the nitrogen isotherms of AMS and BRT-AMS were analyzed. The surface area and the pore size distribution were measured by Brunauer-Emmett-Teller (BET) method and Barrett-Joyner-Halenda (BJH) method, respectively.

The thermograms of AMS before/after calcination and BRT-AMS were acquired by performing Thermogravimetric analyzer and differential scanning calorimeter (TGA-DSC; SDT Q600 V20.9 Build 20, TA Instruments, USA) with heating rate of 5 °C/min from room temperature to
700 °C under nitrogen flow rate 50 ml/min.

Samples of AMS and BRT-AMS were prepared by putting a drop of particle suspension in DI water on a small piece of silicon wafer and drying it at room temperature. The pieces of silicon wafer were attached on SEM mount with carbon tape and it was coated with platinum for 30 seconds at 20 mA (Sputter Coater 108auto, Cressington Scientific Instruments, UK) before imaging via Field emission scanning electron microscopy (FE-SEM; JSM-7800F Prime, JEOL Ltd, Japan).

The particle suspensions of AMS and BRT-AMS were made with methanol and a drop of the suspension was laid on copper grid and dried at room temperature before imaging through Transmission electron microscopy (TEM; JEM-2010, JEOL Ltd, Japan).

After fully extracting brimonidine from BRT-AMS particles for 2 days with sonification, the drug loading amount of BRT-AMS was measured via High performance liquid chromatography (HPLC; Agilent 1260 series, Agilent Technologies, USA) using Poroshell (120 EC-C18, 4.6 × 100 mm, 2.7 μm-pore, Agilent Technologies, USA). The mobile phase of HPLC measurement was the mixture of 20 mM phosphate buffered saline pH 2.5 and acetonitrile (v/v=87:13) with 1 ml/min of flow rate. The injection volume of samples was 20 µl and the measurement of UV absorbance was at 248 nm.

2.4. In vitro drug release profile of BRT-AMS

To assess the in vitro drug release profile of BRT-AMS, 10 mg of BRT-AMS was placed in 20 ml of 10 mM phosphate buffered saline pH 7.4 and
incubated in Shaking incubator (SI-600R, Jeio Tech, Korea) at 37 °C with 125 rpm. Then, 1 ml was acquired without loss of particles and the same volume of fresh buffer was added at the given time points. The samples containing the cumulative released BRT for scheduled intervals were filtered with syringe filter (pore size 200 nm, Whatman, UK) and measured with HPLC as the same protocol for analyzing the loading amount of BRT.

2.5. *In vitro* mucoadhesion study

To study the interaction between BRT-AMS and mucin, two different types of methods were assessed. First, the amount of adsorbed mucin by particles was measured via UV/VIS spectrophotometer (UV-1800 240 V, Shimadzu, Japan) (24, 25). 4 mg of AMS particles and BRT-AMS particles were each mixed with 2 ml of type III mucin solution (1 mg/ml), vortexed, and incubated at 37 °C for scheduled time points (0.5, 1, and 24 h). After certain time interval, the samples were centrifuged at 13500 rpm for 10 min and 1 ml of the supernatant containing free mucin was added by 100 μl periodic acid diluted with acetic acid before incubated for 2 h at 37 °C. Then, 100 μl of Schiff reagent was mixed to the solution at room temperature for 30 min followed by measuring the absorbance at 560 nm. The absorbance of mucin standard solutions (0.1, 0.25, 0.5, and 1 mg/ml) at 560 nm were also measured and a standard curve was obtained to calculate the amount of the free mucin with no adsorption to particles, which was subtracted from total mucin amount given initially to determine the amount of adsorbed mucin by particles. Second, zeta potential change was evaluated by zeta potential analyzer (ELS-2000ZS, Otsuka Electronics, Japan) after incubating 4 mg of particles with 2 ml of mucin solution (0.5 mg/ml) for 30 min (26, 27). To
confirm the chemical interaction between BRT-AMS and mucin, FTIR analysis (FT-IR Spectrometer; Vertex 70, Bruker, US) was performed.

2.6. Cell cytotoxicity test

The cytotoxicity of BRT-AMS was assessed on human primary corneal epithelial cells (HCECs; PCS-700-010, ATCC, USA) using EZ-Cytox cell viability assay kit (water-soluble tetrazolium salt, WST method). HCECs were cultured in corneal epithelial cell basal medium (PCS-700-030, ATCC, USA) with corneal epithelial cell growth kit (PCS-700-040, ATCC, USA) and maintained at 37 °C in a humidified 5% CO2. To test the cell cytotoxicity, 500 μl of HCECs suspension (1.0 x 10⁵ cells/ml) were seeded on a 24-well plate 24 h before adding BRT-AMS at various concentrations 0.02, 0.05, 0.1, 0.2, 0.5, and 1 mg/ml). After the addition of BRT-AMS to the cells, the plate was incubated at 37 °C for 24 h in a 5% CO2 humidified atmosphere. Then, 50 μl of WST reagent solution was added to each well and the plate was incubated at 37 °C for an hour to measure the absorbance at 450 and 600 nm by using a microplate reader (SpectraMax 190 Microplate Reader; Molecular devices, New Delhi, Sunnyvale, USA). The cell viability was calculated by the equation: cell viability (%) = [(absorbance at 450 nm of BRT-AMS - absorbance at 600 nm of BRT-AMS) / [(absorbance at 450 nm of untreated control - absorbance at 600 nm of untreated control) x 100] (28).

2.7. Animal experiments

To examine the mucoadhesive property of BRT-AMS, the in vivo evaluation on the amount of remaining particles at the eye surface was performed with
healthy and male New Zealand White rabbits (2.5–3.5 kg, Orient Bio Inc., Korea). It was under the approval of the Institutional Animal Care and Use Committee (IACUC No. 13-0101) at the Biomedical Research Institute of the Seoul National University Hospital. The experiment protocols were as same as the previous study by Park et al. that the 35 μl of BRT-AMS suspension (52.5 μg BRT/1.26 mg AMS suspended in 35 μl PBS) with 10 mM PBS pH 7.4 was administrated on the lower cul de-sac of the rabbit eye and the eye was wiped with a PVA surgical sponge at the scheduled intervals (0.5, 1, 2, 4, and 12 h after administration) (29, 30). 35 μl of a 0.5% proparacaine eye drop was administrated to locally anesthetize the rabbit’s eye before obtaining the remaining particles in the eye. The PVA surgical sponges stained with remaining particles were treated by acid solutions (HF:HNO3:H2O = 2:3:4) and microwave digestion to quantify the weight of Si which is main component of AMS by using inductively coupled plasma mass spectrometer (ICP-MS; Agilent 7800, US).

The evaluation of in vivo efficacy and drug bioavailability was conducted through measuring the change in intraocular pressure (IOP) and assessing the drug concentration in the aqueous humor (AH), respectively. In this study, Alphagan P, the approved eye drop of bimonidine which lowers IOP, was used as a comparison. To examine in vivo efficacy, normal IOP of rabbit eye was measured with a tonometer (Tono-Pen AVIA, Reichert, NY, USA) to get reference values on each rabbit after locally anesthetizing the eye with 35 μl of a 0.5% proparacaine eye drop. And then, 35 μl of Alphagan P 0.15% and 35 ul BRT-AMS suspension containing an equivalent to 52.5 μg of BRT were administrated on the lower cul de-sac of the rabbit eye. In both of them, IOP was measured at the scheduled time points after locally anesthetizing the eye with 35 μl of a 0.5% proparacaine eye drop (29, 31).
I also studied the actual drug content delivered into the eye from the administrated samples such as Alphagan P and BRT-AMS. The rabbits were anesthetized with subcutaneous injection of a concoction of 17.5 mg/kg ketamine, 5 mg/kg xylazine, and 0.2 mg/kg acepromazine about 20 min before obtaining approximately 100 μl of aqueous humor using insulin syringes at scheduled time points. After obtaining the liquid, the rabbits were applied with terramycin, ophthalmic ointment, to prevent infections. The concentration of drug on the samples were measured via high performance liquid chromatography (HPLC; Agilent 1260 series, Agilent Technologies, USA) using poroshell (120 EC-C18, 4.6 × 100 mm, 2.7 μm-pore, Agilent Technologies, USA). The mobile phase of HPLC measurement was the mixture of 20 mM phosphate buffered saline pH 2.5 and acetonitrile (v/v=95:5) with 1 ml/min of flow rate. The injection volume of samples was 100 μl and the measurement of UV absorbance was at 248 nm (29).

2.8. Statistical analysis

In the study of change profiles in IOP, drug concentration profiles in AH, and mucin amount adsorbed by particles, statistical significance of the differences between particles such as AMS or BRT-AMS and controls at each time was tested by a paired t-test at a level of p < 0.05.
Figure 1. Schematic procedure for (A) synthesizing anionic surfactant-mediated mesoporous silica (AMS) and (B) encapsulating the drug into AMS to prepare BRT-AMS.
III. Results

3.1. Characterization of AMS and BRT-AMS particles

The spherical shapes of AMS and BRT-AMS particles were observed to be approximately 1 µm in diameter, as shown in the SEM images (Figure 2). It seemed that the shapes and sizes of the AMS particles were not affected by the presence of the drug in mesopores inside the particles as well as the drug encapsulation process for 2 days in aqueous phase. To minimize irritation to the eye, the particles were synthesized to be less than 10 µm (32).

The as-synthesized AMS had a single broad peak in the range $2\theta = 0.5-1^\circ$ of the XRD pattern like other AMS particles synthesized by the Tatsumi group (23) (Figure 3), indicating disordered mesopores inside AMS particles. The XRD patterns of calcinated AMS and BRT-AMS were similar to that of as-synthesized AMS, which suggested that its mesostructure was well maintained during the calcination and drug encapsulation process.

The thermograms of as-synthesized AMS, calcinated AMS, and BRT-AMS were obtained by TGA (Figure 4). For the first step in temperatures lower than 120 °C range, washing solvents (i.e. water and ethanol) trapped inside particles were evaporated. And then, the surfactant was removed from 160 to 380 °C in accordance with the previous report by Ramimoghadam et al. (33). The decomposition of aminopropyl moieties and the dehydration of surface hydroxyl groups occurred over 250 °C as reported by Wiesner et al. (34). Thereby, the calcination was performed to remove the surfactant at 400 °C for 8h. A few changes were observed in the thermograms of calcinated AMS and BRT-AMS from room temperature to 700 °C due to the removal of residual parts such as aminopropyl moieties and moisture at the particle surface. Thus, the encapsulated drug was not the
only factor of the mass loss in the thermograms so that it was not precisely observed as 4.2%.

The BET surface area of AMS was 544.1 m2/g by using the nitrogen adsorption and desorption method. It was corresponded to other results by Tatsumi et al. (23) and AMS particles showed 12 times larger specific surface area than PLGA/PEG nanostructured microparticles (44.2 m2/g) prepared by Park et al. (29). This was attributed to the superior porosity of AMS particles considering that the size of AMS particles was not significantly different from that of the nanostructured PLGA/PEG microparticles (~1.7 µm). The isotherm exhibited a type IV pattern with the typical hysteresis loop (Figure 5) due to the capillary condensation, which is a sign of porosity (35-37). The average pore diameter was 3.8 nm using BJH method and total pore volume was 0.36 cm3/g, which featured the successful synthesis of AMS (Figure 6).

As shown in the TEM images (Figure 7 (A-B)), calcinated AMS exhibited a wormhole-like structure similar to earlier reports (23, 36) where mesopores inside particles were observed. The calcinated AMS particles were immersed in BRT solution for 2 days at static state to prepare BRT-AMS particles. The drug loading amount of BRT-AMS was 41.73 µg/mg when measuring via HPLC after fully extracting the encapsulated drug. As the mesopores inside AMS were filled with BRT, the mesoporosity of BRT-AMS seemed to decrease as shown in TEM images (Figure 7 (C-D)). Moreover, the BET surface area of BRT-AMS was reduced from 544.1 m2/g to 363.3 m2/g (Figure 5) due to the encapsulation of BRT into the particles.
Figure 2. SEM images of (A) AMS and (B) BRT-AMS. The scale bars are 1 µm.
Figure 3. X-ray diffraction (XRD) patterns of (a) AMS before calcination, (b) AMS after calcination, and (c) BRT-AMS.
Figure 4. Thermogravimetric analysis (TGA) of (a) AMS before calcination, (b) AMS after calcination, and (c) BRT-AMS.
Figure 5. N$_2$ adsorption-desorption isotherms of (a) AMS and (b) BRT-AMS.
Figure 6. Pore size distribution of AMS and BRT-AMS.
Figure 7. Transmission Electron Microscopy (TEM) images of (A-B) AMS and (C-D) BRT-AMS. The scale bars are 100 nm.
3.2. *In vitro* drug release profile

An *in vitro* drug release study was performed in 10 mM PBS pH 7.4 media with BRT-AMS particles according to the protocol mentioned above. The samples were cautiously obtained on the top of the solution at scheduled time points not to disturb the sunk particles at the bottom of the vials. As shown in Figure 8, a burst release of 59% for the first 20 min was observed due to high solubility in water of BRT (29.85 mg/ml) (38). After that, 90% of the total BRT loading amount was released for 2 h and the sustained release progressed to reach 100% after 8 h. This result indicated that BRT-AMS particles were suitable carriers to the eye because the loaded drug was almost completely released during their residence time on rabbit eye.
Figure 8. *In vitro* brimonidine release profile of BRT-AMS.

Error bars represent standard deviation.
3.3. *In vitro* mucoadhesion study

The amount of mucin adsorbed by the particles was quantitatively analyzed via a colorimetric method to assess the mucoadhesive property of BRT-AMS. Both AMS and BRT-AMS showed an increasing trend in the amount of adsorbed mucin over time and had statistical significance when compared at each time point (Figure 9). For 1 mg of mucin, 0.52, 0.55, and 0.59 mg of mucin and 0.61, 0.64, and 0.68 mg of mucin were adsorbed by AMS and BRT-AMS, respectively, at 0.5, 1, and 24 h after mixing mucin and particles. This showed that AMS had good mucoadhesive capability similar to well-known mucoadhesive chitosan microparticles (24, 25). Besides, the zeta potential of BRT-AMS (-63.50 mV) in KCl shifted towards that of the mucin solution (-27.56 mV) after incubation in BRT-AMS with mucin for 30 min, resulting in -43.61 mV (Figure 10) as explained by mucin stuck to the BRT-AMS particle surface.

To further verify the interaction between BRT-AMS particles and mucin, newly formed chemical bonds were confirmed. From the knowledge that mucin has carboxyl groups on sialic acids, amide groups were hypothesized to form when amine-functionalized AMS was administrated to the eye with a mucin layer. The newly formed amide groups between amine groups of AMS and carboxyl groups of mucin were confirmed via Fourier transform infrared spectrometer. The amide characteristic peak never found in FTIR spectra of BRT-AMS and mucin (data was not shown) was exhibited near 1275 cm\(^{-1}\) (Figure 11) after mixing BRT-AMS particles with mucin solution for 30 min (39). In addition, many peaks of -OH, -NH stretching, -NH bending, Si-O-Si asymmetric stretching, -Si-OH stretching, Si-O-Si symmetric stretching were observed at 3436 and 1636, 2959-2969, 2349, 1086, 946, and 805 cm\(^{-1}\), which indicated that BRT-AMS was well prepared
as other amine-functionalized mesoporous silica materials were (40, 41).
Figure 9. Adsorption kinetics of mucin type III with AMS (black) and BRT-AMS (grey). *BRT-AMS was statistically significantly different from AMS (p < 0.05). Error bars represent standard deviation.
Figure 10. Zeta potential measurement of (a) mucin, (b) BRT-AMS, and (c) BRT-AMS incubated with mucin.
Figure 11. FTIR spectra of (a) BRT-AMS and (b) BRT-AMS with mucin.
3.4. Cell cytotoxicity evaluation

As shown in Figure 12, the BRT-AMS had no toxicity for HCECs up to 1 mg/ml of BRT-AMS suspension when investigating the cell viability by the WST method described above. This result suggests that BRT-AMS particles are biocompatible and are promising ocular drug delivery carriers. The size of the human eye is similar to that of a 6-well plate (10 cm²) where 2 ml of media is suitable for each well. Thus, a dose of BRT-AMS (52.5 µg BRT/1.26 mg AMS) is considered when administrating to the eye at a concentration (1.26 mg BRT-AMS/2 ml media) in the range of BRT-AMS concentrations.
Figure 12. Cell viability assay of BRT-AMS with human corneal epithelial cells (HCECs). Error bars represent standard deviation.
3.5. **In vivo mucoadhesion study**

To examine the mucoadhesive properties in *in vivo*, the percentage of the remaining particles on the precoular surface was measured at the scheduled time point after administrating BRT-AMS particles. Among the initially administrated particles, 65 and 25% remained at 30 min and 4 h, respectively (Figure 13). It was the remarkable result considering that drug bioavailability of the eye drop is less than 5% due to the rapid turnover rate of tear, and that the nanostructured mucoadhesive PLGA/PEG microparticles developed in our previous studies showed less than 4% of particles remained on the eye 2 h after administration (42).
Figure 13. *In vivo* evaluation of preocular retention of BRT-AMS on the rabbit eye. Si weight of particles left on rabbit eye was measured at scheduled intervals after administration. Error bars represent standard deviation.
3.6. *In vivo* study of efficacy and drug bioavailability

The efficacy was evaluated by measuring the decrease in IOP level due to BRT and then comparing that of BRT-AMS with that of Alphagan P. The IOP lowering effect of BRT-AMS was twice as effective as that of Alphagan P considering the activity period (Figure 14). IOP had been reduced by Alphagan P for 6 h, but BRT-AMS reduced for 12 h.

The drug bioavailability of BRT-AMS was improved when comparing the drug concentrations in the aqueous humor (AH) of BRT-AMS and Alphagan P (Figure 15). The drug could be detectable for 8 and 5 h, with BRT-AMS and Alphagan P, respectively. In addition, the area under the curve (AUC) of BRT-AMS was 2.68 µg·h/ml and one of Alphagan P was 1.6 µg·h/ml, respectively. Although the peak drug concentrations (C_{max}) in both of them were not significantly different at the same time ($T_{max} = 1$ h), the drug concentrations of BRT-AMS were significantly different from those of Alphagan P at 0.25-6 h, except for 1h ($p < 0.05$). Until approximately 40 min, BRT-AMS had lower drug concentrations than Alphagan P due to sustained drug release, but after that this trend was reversed.
Figure 14. Percent decrease in intraocular pressure (IOP) over time after administration of Alphagan P and BRT-AMS. *BRT-AMS was statistically significantly different from Alphagan P (p < 0.05). Error bars represent standard deviation.
Figure 15. Brimonidine concentrations in the aqueous humor (AH) over time after administration of Alphagan P and BRT-AMS.
*BRT-AMS was statistically significantly different from Alphagan P (p < 0.05). Error bars represent standard deviation.
IV. Discussion

Since the discovery of mesoporous materials by Mobil Company (43, 44) and Kuroda et al. (45) in the early 1990s to broaden the range of applications for zeolites, they have received considerable attention due to the many advantages (high surface area, versatile surface modification, etc.) (46-52). The formation of mesoporous materials is fundamentally based on sol-gel chemistry, but their types are extremely diverse via adjusting the interaction between organic species like surfactants and inorganic species like silica oligomers. This means changing the kinds of surfactant (cationic-, non-ionic-, and anionic-) and controlling the pH of the reaction system (53-58). Therefore, many applications for mesoporous silica have been consistently developed in various fields including catalysis, adsorbent materials for separation or molecular sieving, sensing, and carriers for biomedicine (59-66). In particular, research on mesoporous silica as a drug delivery system has increased exponentially since the first report in 2001 due to the outstanding advantages of high drug loading amount, stimuli-responsive drug release profiles, biocompatibility, and easy multifunctionalization (48, 61, 65, 67-73). For effective drug loading and sustained drug release, many approaches have been employed, such as pore size control, surface modification, PEGylation, and so on (67, 73-83).

Among various types of mesoporous silica, AMS, which was first synthesized in 2003, has special characteristics like amine-functionalization in one step and better detergency than cationic surfactant-mediated mesoporous silica. The facile hydrothermal synthesis of AMS particles via S−X+I− mechanism is conducted as schematically represented in Scheme 1. Unlike other typical mesoporous silica particles mainly fabricated using a cationic surfactant, AMS was prepared by sodium dodecyl sulfate (SDS) as
an anionic surfactant. Therefore, a CSDA was needed to interact a negatively charged surfactant \((S^-) \) with negatively charged silica species \((I^-) \) under basic conditions \((\text{pH} > 1.2) \) considering that the isoelectric point \((\text{pI}) \) of silica is around 1.2. Among various CSDA candidates, such as amino silane or quarternary ammonium silane, APTES was used to form highly ordered mesostructures and its positively charged amine groups \((X^+) \) could interact electrostatically with negatively charged surfactant \((S^-) \). This can lead to co-condensing with tetraalkoxyxilsilane of TEOS, resulting in the silica framework formation.

Mucin, the primary component of mucus, has glycoprotein subunits with negative charge at physiological pH since it consists of a protein core and polysaccharide side chains, which mainly terminate in fucose or sialic acid \((\text{N-acetylneuraminic acid, pK}_a=2.6) \) \((13, 15, 84) \). Thus, the positively charged chitosan has been widely used for mucoadhesive systems as its amino groups can form electrostatic interactions with negatively charged mucin \((85-87) \). Furthermore, a number of studies on the thiolated modification of carriers have shown that they possess mucoadhesion by disulfide bonds with cysteine-rich mucin domains \((88-91) \). In this work, the mucoadhesive property of amine-functionalized AMS was studied with respect to making new bonds between AMS and mucin such as amide groups and hydrogen bonds, rather than the electrostatic interaction between positively charged amine groups and negatively charged mucus layer of the eye. This means that mucoadhesion of AMS is derived from newly formed amide groups through a condensation reaction between the amine group of AMS and carbonyl group of mucin. Thereby, a significant amount of mucin was adsorbed by AMS or BRT-AMS, which was revealed in the zeta potential shift of BRT-AMS toward mucin after mixing BRT-AMS and
mucin solution. In addition, BRT-AMS adsorbed more mucin than AMS as shown in Figure 9, because BRT has many unshared electrons on nitrogen and bromine. Therefore, BRT-AMS had stronger anionic charge than AMS, which was supported by the zeta potential values in DI water, -32.66 mV of BRT-AMS and -14.60 mV of AMS (data was not shown). A more apparent electron distortion could make BRT-AMS have more hydrogen bonds with mucin (14, 92-94).

Brimonidine (BRT) can be effectively encapsulated into AMS particles as attributed to the positively charged amine groups on AMS and large surface area of AMS. In other words, the negatively charged BRT is encapsulated into amine-functionalized AMS via electrostatic attraction as well as physical adsorption due to the large AMS surface area. Thus, the loading amount of BRT (41.73 µg/mg) was sufficient for BRT-AMS, so that a single dose of BRT, 52.5 µg, can be delivered with 1.26 mg of BRT-AMS particles. The loaded BRT was slowly released for 8 h, although the high-rate release of BRT existed at the beginning of the in vitro drug release profile test due to the hydrophilic drug, BRT (Figure 8).

Brimonidine [5-boromo-6-(2-imidazolidinylideneamino)quinoxaline L] has been used as an ocular hypotensive agent by decreasing aqueous humor production and increasing uveoscleral outflow (38, 95, 96). Thus, I evaluated the improved efficacy of BRT-AMS by measuring the decreased profiles in IOP and confirmed that the duration of drug action of BRT-AMS was twice as long as that of Alphagan P, the commercialized eye drop (Figure 14). This could be explained by the mucoadhesive property that prevented BRT-AMS particles from being washed away and the remained particles on the mucus layer that slowly released BRT (12, 29, 97) due to the mesopores inside AMS particles. For the in vivo drug bioavailability test, the
mucoadhesive property of BRT-AMS caused the drug bioavailability to be enhanced (Figure 15). Although its drug concentration in aqueous humor was lower than that of Alphagan P for 1h after administration, it was a reasonable result considering that BRT-AMS sustained the drug release (90, 98, 99).
V. Conclusion

A new ocular drug delivery system for glaucoma treatment by preparing BRT-AMS particles is presented in this paper. The spherical AMS particles can be successfully obtained with optimal size for administration to the eye. The amine-functionalized AMS particles form a new bond with the carboxyl groups of mucin, which work with a mechanism of mucoadhesion for AMS particles to better remain in the preocular surface. Furthermore, AMS with large surface area efficiently encapsulated the negatively charged BRT and released it in a controlled manner, while BRT-AMS was biocompatible in the cytotoxicity test of HCECs. Thereby, BRT-AMS exhibited improved efficacy and drug bioavailability. In conclusion, mucoadhesive AMS is a promising carrier as a glaucoma drug delivery system.
VI. References

21. Moschetta EG, Sakwa-Novak MA, Greenfield JL, Jones CW. Post-Grafting Amination of Alkyl Halide-Functionalized Silica for Applications in

hydrogels and hybrids for rMPB70 protein adsorption. Materials Research. 2006;9(2).
47. MSN_biofunctionality and biocompatibility. ACCOUNTS OF CHEMICAL RESEARCH 2012.

국문 초록

음이온 계면활성체 매개 메조포러스 실리카 입자를 이용한 녹내장 약물의 국소 점안 전달

본 연구에서는 녹내장 약물 전달체를 개발하였고, 효과적인 전달체가 되도록 전안부에서의 약물 거주시간을 증가시키기 위해 점막 부착성을 지니는 것을 목표로 하였다. 뿐만 아니라, 눈에 투여하는 입자량을 줄이고자 전달체가 높은 약물담지량을 갖도록 하였고, 담지된 약물은 전달체에서 서서히 방출되도록 하였다. 녹내장 약물은 안압을 낮추는 기능을 갖는 브리모니딘(BRT)을 사용했고, 전달체로는 별도의 후 처리 과정 없이 $S^-X^+-I^-$ 메커니즘을 통해 입자 합성 과정에서 입자 표면에 아미기가 결합되는 음이온 계면활성체 매개 메조포러스 실리카(AMS)를 사용하였다. 제작된 약 1 μm 크기의 AMS 구형 입자는 다른 메조포러스 실리카 물질과 같이 입자 내부에 무수히 많은 세공을 지니 넓은 비표면적(544.1 m²/g)을 보였고, 많은 양의 BRT 을 탑재(41.73 μg/mg)하였다. 또한 시험관 내 약물 방출 실험에서 확인한 결과, 입자의 세공을 통하여 입자 내 담지된 BRT 이 8 시간
동안 지속적으로 투여되었다. 본 연구의 가장 핵심적인 내용인 BRT 을 담지한 AMS (BRT-AMS) 입자의 점막 부착 특성을 평가하는 것은 크게 세 가지 방법으로 진행되었다. 첫 번째로 점막의 구성 성분인 뮤신 1 mg 중 약 0.6 mg 이 BRT-AMS 입자 2 mg 에 흡착 되었음을 확인하였고, 두 번째로 BRT-AMS 의 제타 전위 값이 뮤신과 흡착한 이후 뮤신의 제타 전위 값으로 이동하였음을 관찰하였다. 이러한 BRT-AMS 의 점막 부착성은 FTIR 을 통해 AMS 의 아미노기와 뮤신의 카르복실기 사이에 새로운 결합 형성된 아마이드 결합으로 인한 것으로 입증하였다. 세 번째 평가방법으로 토끼의 눈에 BRT-AMS 입자를 투여한 후 시간이 지남에 따라 전안부에 남아있는 입자의 양을 측정하여보았다. 이 때, 입자를 투여한 후 4 시간이 지나더라도 처음 투여한 입자량의 25%가 토끼 눈에 남아있음을 확인하였다. 또한 인간 각막 상피 세포를 이용한 세포 독성 시험에서 BRT-AMS 의 생체적합성을 확인하였다. 이처럼 점막 부착성과 생체적합성을 갖는 BRT-AMS 는 전안부에 오래 거주하여 녹내장의 상용화 약물인 알파간 피(Alphagan P)보다 두 배 더 긴 12 시간 동안 안압 하강 효과를 나타냈으며, 토끼 눈의 방수 내 BRT 농도 역시 알파간 피보다 높음을 보임으로써 약물생체이용도가 증가됨을 확인하였다. 이로써 본 연구에서는 BRT-AMS 를 제작하여 제형의 높은 약물 담지량 및 약물 서방출성, 점막 부착성으로 인해 향상된 약물 효과와 약물생체이용도를 확인하였다. 이를 통해 AMS 가 녹내장 약물 전달체로서 적합함을 증명하였고, 체내 점막으로 이루어진 기관으로의 약물 전달체로 이용 가능성을 발견하였다.
주 요 어: 녹내장, 메조포러스 실리카, 점막 부착성, 안구 약물 전달, 브리모니딘
학 번: 2015-22884