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Abstract

Computational Science Approach
for Design and Optimization of
Sustainable Process and Its

Industrial Applications

Jonggeol Na
School of Chemical & Biological Engineering

The Graduate School of Seoul National University

Recently, in the field of chemical engineering, many types of research based
on high-performance computing have been combined with computer-aided
process systems engineering. Therefore, various techniques of computational
science such as computational fluid dynamics, optimization methodology, and
machine learning have been applied to the problems of chemical reactor
modeling and process optimization. Notably, in this advance computational
science approach, the scope of research extends to non-traditional fields such

as reactive research according to the 3D shape of the reactor that has not been



easily solved in the past and surrogate model based optimization using machine
learning. In this thesis, various methods are proposed to obtain the maximum

profit with minimum cost by making a breakthrough design.

In parallel, there is a growing demand for sustainable chemical processes in
chemical engineering. Conventional chemical processes are highly dependent
on oil prices, and unless a diverse portfolio is designed, the sustainability of
their chemical industries can be violated because of the oil controlling from the
Middle East or US. In addition, these crude oil based chemical processes and
power plants generate a great deal of CO,. Therefore, it is not necessary to
capture these CO, and make only meaningless storage but to reproduce it as a
product that can be used and make it economical carbon capture, utilization,
and storage (CCUS) technology. To solve this series of processes, the Gas-to-
Liquid (GTL) process and CCUS are being researched and developed in various

ways.

In this thesis, [ will discuss the process modeling, optimizing, and designing
the reactor and process using CFD, mathematical programming, machine
learning, deep learning, and derivative-free optimization techniques in
computational science. First of all, the Fischer-Tropsch microchannel reactor
and 3-phase carbonation reactor, which are the key reactor of two most
important processes of the sustainable process, the gas-to-liquid process (GTL)

and the carbon capture, utilization, and storage (CCUS), are modeled by CFD.



Also, we propose an integration platform of CFD model and process simulator
and conduct research from the point of view of combining with existing process

engineering.

With these advanced reactor model, we propose a multi-objective
optimization methodology using a stochastic optimization algorithm, a genetic
algorithm (GA) with e-constraint method for simultaneously maximizing Cs-
productivity and minimizing the temperature rise of a Fischer-Tropsch
microchannel reactor. The main mixed integer nonlinear programming (MINLP)
optimization problem is decomposed into an external CFD reactor model
function and internal optimization constraints. The methodology is applied to
the catalyst packing zone division, which is divided and packed with a different
dilution ratio to distribute the heat of reaction evenly. The best solutions of the
proposed optimizer are reproducible with different crossover fractions and are
more efficient than other traditional non-convex constraint local solvers. Based
on the Pareto optimal solution of the final optimizer with 4 zones, discrete
dilution increases C5+ productivity to 22% and decreases ATmax to 63.2%
compared to the single zone catalyst packing case. Finally, several Pareto
optimal solutions and sub-optimal solutions are compared and the results are

documented in terms of C5+ productivity and maximum temperature increase.

In process scale optimization platform, a modified DIRECT algorithm with

a sub-dividing step for considering hidden constraints is proposed. The
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effectiveness of the algorithm is exemplified by its application to a cryogenic
mixed refrigerant process using a single mixed refrigerant for natural gas
liquefaction and its comparison with a well-known stochastic algorithm (GA,
PSO, SA), and model based search algorithm (SNOBFIT), local solver (GPS,
GSS, MADS, active-set, interior-point, SQP), and other hidden constraint
handling methods, including the barrier approach and the neighborhood
assignment strategy. Optimal solution calculated by the proposed algorithms
decreases the specific power required for natural gas liquefaction to 18.9%
compared to the base case. In the same chapter, heat exchanger network
synthesis (HENS) has progressed by using mathematical programming-based
simultaneous methodology. Although various considerations such as non-
isothermal mixing and bypass streams are applied to consider real world
alternatives in modeling phase, many challenges are faced because of its
properties within non-convex mixed-integer nonlinear programming (MINLP).
We propose a modified superstructure, which contains a utility substage for use
in considering multiple utilities in a simultaneous MINLP model. To improve
model size and convergence, fixed utility locations according to temperature
and series connections between utilities are suggested. The numbers of
constraints, discrete, and continuous variables show that overall model size
decreases compared with previous research. Thus, it is possible to expand the
feasible search area for reaching the nearest global solution. The model’s

effectiveness and applications are exemplified by several literature problems,



where it is used to deduce a network superior to that of any other reported

methodology.

In the case of plant-wide scale systems, a non-linear surrogate model based
on deep learning is proposed using a variational autoencoder with deep
convolutional layers and a deep neural network with batch normalization
(VAEDC-DNN) for real-time analysis of the probability of death (Pgcam).
VAEDC can extract representation features of the Py contour with
complicated urban geometry in the latent space, and DNN maps the variable
space into the latent space for the Pgan image data. The chlorine gas leak
accident in the Mipo complex (city of Ulsan, Republic of Korea) is used for
verification of the model. The proposed model predicts the Pyean image within
a mean squared error of 0.00246, and compared with other models, it exhibits
superior performance. Furthermore, through the smoothness of image transition
in the variable space, it is confirmed that image generation is not overfitting by

data memorization.

Finally, a pilot scale (1.0 BPD) compact GTL process comprising of
reforming section, CO; separating section and Fischer -Tropsch (FT) synthesis
section is presented. Systematic design procedure adopted for the design of a
modular 0.5 BPD microchannel FT reactor block design consisting of 528
process channels is described. On average 98.27% CH,4 conversion to syngas in

reforming section comprising of a pre-reformer unit and a tri-reformer unit,



CO; separation rate of 36.75 % along with CO/H; reduction from 2.67 to 2.08
in CO, membrane separation section comprising of three membrane separators,
for the entire plant operation duration of 450 hr demonstrated successful and
stable operation of pre-processing sections of the present pilot-scale compact
GTL process. Parallel operation of FT microchannel reactor and multitubular
fixed bed type FT reactor proved failure for latter due to reaction runaway,
while the former showed stable operation with high CO conversion of 83% and
successful temperature control (at 220 °C, 230 °C and at 240 °C during the 139
hr operation), which demonstrated the appreciable performance of KOGAS-
SNU novel microchannel FT reactor. Furthermore, a tank agitator carbonation
reactor in which the reaction between calcium oxide and carbon dioxide takes
place is studied to understanding that how 6 design variables (the number of
impeller, impeller type, D/T, clearance, speed, baffle) affect to the solid

dispersion using CFD simulation.

Keywords: Computational science; Computational fluid dynamics (CFD);
Optimization; Design; Gas-to-Liquid (GTL); Fischer-Tropsch (FT);
Microchannel reactor; Carbon capture, utilization, and storage (CCUS);

Machine learning; Deep learning
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CHAPTER 1. Introduction

1.1. Research motivation

Recently, in the field of chemical engineering, many types of research based
on high-performance computing have been combined with computer-aided
process systems engineering. Therefore, various techniques of computational
science such as computational fluid dynamics, optimization methodology, and
machine learning have been applied to the problems of chemical reactor
modeling and process optimization. Notably, in this advance computational
science approach, the scope of research extends to non-traditional fields such
as reactive research according to the 3D shape of the reactor that has not been
easily solved in the past and surrogate model based optimization using machine
learning. In this paper, various methods are proposed to obtain the maximum
profit with minimum cost by making a breakthrough design without performing

lab scale experiment and finding a stochastic optimal design of experiment set.

In parallel, there is a growing demand for sustainable chemical processes in
chemical engineering. Conventional chemical processes are highly dependent
on oil prices, and unless a diverse portfolio is designed, the sustainability of
their chemical industries can be violated because of the oil controlling from the
Middle East or US. In addition, these crude oil based chemical processes and
power plants generate a great deal of CO,. Therefore, it is not necessary to

capture these CO, and make only meaningless storage but to reproduce it as a
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product that can be used and make it economical carbon capture, utilization,
and storage (CCUS) technology. To solve this series of processes, the Gas-to-
Liquid (GTL) process and CCUS are being researched and developed in various

ways.

Therefore, it is critical to establish various methodologies to design and
optimize chemical process and reactor through the computational science
approach. Furthermore, an industrial application that designs sustainable
processes and its reactors using the proposed methodology and manages

optimization is significant.
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1.1.1. Chronological stages of development of process
design

Chronological stages of development of process design based on the
description by [1] are very important to understand the research trend and the
essential topic in process systems engineering. Until the 19th century, chemical
engineering has been studied very usefully in various fields such as purifying
metals, producing oil and extracting various materials from nature. However,
the research method up to this point was an apprenticeship-based incremental
evolutionary design, or it was applied to one side and then moved it to other
places. Thus, many researchers treated the chemical engineering as the art. In
the 20th century, a great change took place in the field of process design as the
approach of scientific thinking and methodology became more popular and
various problems were solved through its essence. First, unit operations
concepts such as distillation, absorption, and crystallization, and unit processes
such as hydrogenation, sulfonation, and carbonylation were developed and
established, leading to a new field of conceptual design. These were possible
through modeling using algebraic equations and development of various first
principle equations. In addition, as theoretical support for thermodynamics,
reaction kinetics, and physicochemical properties became available, a variety
of reactors capable of large-scale processing reactor and process scale-up were
developed. Since the 1930s, various mathematical models based on differential

equations have been developed, and process simulators such as ASPEN Plus
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and HYSYS have been developed, and computer-aided process systems
engineering has begun. The advancement of these technologies has led to the
development and construction of chemical processes faster and more accurately
and has resulted in a numerical interpretation of many optimization problems
that were previously difficult to solve. Due to these demands, scale-up through
various verification and theoretical back-up through computer simulation and
enterprise-wide optimization methodology beyond reactor and process scale are

being studied.
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1.1.2. Current status of process systems engineering
with computational science approach

As the high-performance computing and high fidelity measurements
developed in the 2000s, fundamental phenomena on fluid and molecular
dynamics began to be understood. In the field of reactor modeling and
simulation, kinetics studies in molecular systems and turbulence effects inside
the reactor are being studied at small eddy level. It is also possible to calculate
the effective time in an effective solver in a complicated flow field, and
effective analysis of the particle body with an inhomogeneous distribution such
as bubble and solid by the introduction of techniques such as population balance
model. The leading field in this computational science approach is
computational fluid dynamics (CFD). In addition to the existing aerospace
applications, various applications have begun to be applied in the field of

chemical engineering including multiphase and chemical reaction.

Also, in the process systems part, it is judged that the trend shift is taking
place in the sequential modular approach, which is a traditional process
simulation technique, to the equation oriented approach, which includes
gPROMS of PSE. The problems of existing initialization and problems caused
by computation load are constrained to commercialization, but
commercialization has become possible through several studies which have
dramatically solved them. Through this method, it is possible to analyze the

process with many loops easily and it is possible to apply general optimization
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algorithms quickly and accurately to process design. However, this too cannot
be regarded as meaningful because it is difficult to incorporate an external
function model and is within the scope of conventional interpretation. Most
recently, research has been actively conducted on data-driven modeling and
analysis using computational science techniques. Also, optimization problems,
such as optimization that considers uncertainty, have been proposed to obtain
robust results in various scenarios beyond the use of existing deterministic
variables. A variety of methodologies for global optimization without stopping
at local optimum have been proposed. In particular, derivative-free
optimization algorithms have been developed that can be interpreted in

conjunction with existing chemical engineering software.
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1.1.3. Introduction to the sustainable process

In this study, a series of processes, which can be called sustainable process,
are selected and used in the thesis. It is important to discuss sustainability in the
traditional fossil fuel based chemical engineering industry. Currently, the
chemical industry fluctuates greatly depending on the volatility of the oil price,
and the united nations framework convention, which can be represented by the
Paris Agreement, is regulating CO» emissions. Among these changes, the need
for the development of various chemical processes and their reactors has
emerged, and this thesis addresses two of the essential processes for sustainable

processes.

First, the existing crude oil based chemical process is susceptible to oil
prices and has many impurities, which is shown many things that are not
sustainable in many ways. Recently, gas-based power plants and various
processes have begun to be developed, starting with US shale gas, which shows
stronger ability at high oil prices. Especially, Gas-to-Liquid (GTL) process has
the greatest added value among natural gas process. It can synthesize high-
value product like high-quality diesel by synthesizing natural gas with synthetic
crude oil. Production of these products based on natural gas is a sustainable
process because it can reduce various byproducts and toxic chemicals generated
from refining crude oil. Especially, it is expected that it will be very efficient if

we use GTL-FPSO vessels for developing stranded gas field or mid-scale gas
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field, which exist in offshore. In this study, we tried to derive the miniaturization
of the Fischer-Tropsch reactor, which is the most crucial development for GTL-

FPSO ship development, through the concept of the microchannel reactor.

The synthetic crude oil thus produced is purified and processed through
various chemical processes. In this process, a lot of CO, is generated. Thus,
appropriate technology should be developed to capture this CO; adequately and
store it properly. In keeping with these expectations, carbon capture and storage
(CCS) technologies have evolved over the past few decades, but they are not
readily available due to economic problems. Recently, researchers are being
carried out to convert CO; into a product that can utilize CO; itself and to utilize
it for production of economical products, rather than merely storing CO» by
capturing meaningless storage. CO is used to make formic acid, or carbonation
reaction is used to make cement or concrete to be used as construction material.
In this study, we will look at the carbon capture, utilization, and storage (CCUS)
technologies in general and specifically focus on the multiphase carbonation

reactor design.
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1.2. Research objectives

In this thesis, we will discuss the process modeling, optimizing, and
designing the reactor and process using CFD, mathematical programming,
machine learning, deep learning, and derivative-free optimization techniques in
computational science. Especially, for the reactors, the GTL FT microchannel
reactor and the CCUS carbonation reactor are simulated through reactor
modeling using CFD to be used in reactor design. A computational science
approach that can be applied to optimization and analysis is to develop a
methodology suitable for the situation from reactor scale to plant-wide scale
systems. In the optimization methodology at the reactor level, multi-objective
optimization methodology using GA and &-constraint is used in combination
with CFD. At the process level, we developed global derivative-free
optimization algorithms that consider hidden constraints efficiently and
developed a simultaneous HENS method that considers multiple utilities and
developed a systematic approach to the MINLP problem. In the plant-wide
scale systems, we will discuss the toxic gas release real-time alarm system with
the deep variational autoencoder with convolutional layers and deep neural
network with batch normalization technique for finding latent space and non-
linear mapping. Finally, we will show how the computational science approach
in the sustainable process can be applied to industrial applications through the

case of 1 BPD compact GTL pilot plant and 40 tonCO»/day CCUS process.
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1.3. Outline of the thesis

From a modeling and technical perspective, the contribution of the thesis is
to solve a variety of problems in process systems engineering, which have not
been solved or efficiently interpreted by conventional methodologies, using
computational science techniques. In particular, in CHAPTER 2, advanced
reactor modeling and design using computational fluid dynamics (CFD) is
performed to expand the chemical reactors that are limited to the 0-d model.
Especially, by developing a CFD-process simulation platform, we propose a
methodology that can perform both reactor design and process design
simultaneously. We also propose an optimization framework that can be applied
to the whole system from the reactor to plant-wide system by developing
optimization and analysis method by integrating derivative-free optimization

algorithm and machine learning technique.

From the application perspective, we introduce the actual pilot plant project
case and the result which applied various reactor model and the optimization
and analysis method developed in this study to CHAPTER 4, and confirm that
this thesis can be applied to the real industry without stopping in theoretical

study. In detail, the thesis is structured as follows:

» CHAPTER 2 constitutes an introduction of the two key reactors for
the sustainable process, Gas-to-Liquid (GTL) Fischer-Tropsch (FT)

microchannel reactor and carbon capture, utilization, and storage (CCUS)
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carbonation reactor. 2D axisymmetric CFD model of FT microchannel
reactor with porous media zone with lumped FT kinetics and the 3D CFD
based FT microchannel reactor block model with external heat source
calculated by Aspen Plus is introduced. In the same chapter, rigorous
carbonation kinetics study with dynamics of the bubble and solid particle
regarding DAE is performed. Eulerian-granular multiphase carbonation
reactor is also modeled by CFD. Finally, extended CFD reactor model to
CFD-process simulator integrated platform for designing process and

reactor simultaneously is introduced.

e In CHAPTER 3, optimization, knowledge mining, and analysis
methodology through the unit to the plant-wide scale systems is developed.
CFD reactor model function is perfectly connected to GA based multi-
objective algorithm with the e-constraint method. Pareto optimal curve of
Cs+ productivity and ATmax is successfully solved. Lipschitz continuous
function based derivative-free optimization algorithm was introduced for
considering hidden constraint which is very important for optimizing
process systems scale simulation. In the same chapter, simultaneous
synthesis of a heat exchanger network with multiple utilities using utility
substages was explained. For plant-wide systems, a surrogate model for
real-time analysis of toxic gas release in overall plant system using deep

learning technology for reducing the data is proposed.
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« CHAPTER 4 has two examples of industrial applications. 1 BPD scale
compact GTL pilot plant constructed by KOGAS is tested with our FT
microchannel reactor. Moreover, industrial application of computer-aided
engineering reactor optimization procedure for 40 tonCO./day CCUS

carbonation reactor that will be constructed by Daewoo E&C.

e« CHAPTER 5 summarizes the key contributions of the thesis and

discusses ideas for future work.
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1.4. Associated publications

The work presented in Chapter 2.2.1 and Chapter 3.2 are based on [2]. The
work presented in Chapter 2.2.2 is introduced in [3]. The work presented in
Chapter 2.3.2 is based on [4] co-authored by myself and main discussion with
modified methodology is not presented in this thesis. The work presented in
Chapter 3.3.1 is introduced in [5]. The work presented in Chapter 3.3.2 is based
on [6]. The work presented in Chapter 3.4 has been submitted to Chemical
Engineering Journal with K. Jeon (joint first author). The work presented in
Chapter 4.1 has also been submitted to Chemical Engineering and Processing:
Process Intensification with KS. Kshetrimayum (joint first author). More
extended information of design procedure of Fischer-Tropsch microchannel
reactor is not discussed in this thesis because KS. Kshetrimayum used it. Finally,

the work presented in Chapter 4.2 is introduced in [4].
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CHAPTER 2. Study of the Novel Reactor
Models using Computational Science

2.1. Introduction

So far, in the field of process systems engineering, various methods have
been used to model the reactor. Complex reaction kinetics and thermodynamics
for each chemical species were selected, and the actual reactor was simulated
through validation and parameter estimation through experiments. This well-
modeled reactor was used to analyze the overall economics of the plant in
conjunction with a process simulator and was used to derive the correct
operating conditions. In particular, a reactor is a very important device that
needs to be accurately interpreted and optimized, as a principal device that
represents the characteristics of a particular chemical process than any other

device.

These various reactors can be largely divided into continuous stirred tank
reactor (CSTR), plug flow reactor (PFR), trickled bed reactor, moving bed
reactors, slurry loop reactors, fluidized bed reactors, jet reactors, air-lift reactors,
bubble column reactors, and bubble-slurry column reactors. Until the 20th
century, many types of research have been conducted to make a proper
calculation based on the characteristics of these reactors and to make a quick

calculation and an appropriate calculation through the 0-d model. However,
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recently, the influence of the geometry of the reactor and the flow analysis are

simultaneously required.

In keeping with the demands of this age, computational fluid dynamics
(CFD) technology has emerged as a key technology in reactor design for
chemical engineering. In addition to the flow analysis according to the structure
of the reactor, it is possible to analyze the phase separation and mixing effect
through the multiphase analysis and to analyze the complicated physical
phenomenon such as the reaction on the particle surface at one time. However,
CFD is usually based on the complicated partial differential equation, Navier-
Stokes equation, and it is necessary to model specific reactor for each research.
Thus, exact and precise CFD modeling of the specific reactor with validating
using experiment data set is very important. Also, since it is a simulation
method that takes much computational loads, interworking with a general

process simulator is still difficult.

In this study, the Fischer-Tropsch microchannel reactor and 3-phase
carbonation reactor, which are the key reactor of two most important processes
of the sustainable process, the gas-to-liquid process (GTL) and the carbon
capture, utilization, and storage (CCUS), are modeled by CFD. In addition, we
propose an integration platform of CFD model and process simulator and

research the point of view of combining with existing process engineering.
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2.2. Gas-to-Liquid (GTL) Fischer-Tropsch (FT)
reactor model

In recent years, gas-to-liquid (GTL) technology has received considerable
attention as a means to monetize natural gas resources at stranded gas fields and
associated gas at offshore facilities, which account for almost 40 % of the
world’s gas reserves. GTL technology converts natural gas to longer chain
hydrocarbons and eventually produces clean liquid synthetic crude oil [7].
Conventional GTL processes, especially those of onshore facilities, use a
circulating fluidized bed reactor, bubbling fluidized bed reactor, or slurry
bubble column for the Fischer-Tropsch (FT) synthesis [8]. However, when it
comes to the FT synthesis in floating systems at offshore facilities, conventional
FT reactors do not fit well as their typical tall column design is not suitable for
operation under possible frequent impacts of sea waves. Additionally, the
designed production capacities of conventional FT reactors are far larger than
the needs of small- to medium-sized gas fields. Accordingly, a novel type of
reactor that can stably operate under the frequent impacts of sea waves and has
production capacity suitable for FT synthesis applications at offshore facilities

is sought, such as microchannel reactors [9].

Microchannel reactors have emerged as a novel technology for FT synthesis
applications due to their short diffusion distance and low heat and mass transfer
resistances [10-12]. Reduced mass and heat transfer distances enhance process

intensification, making it suitable for a highly active FT catalyst [11].
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Additionally, the microchannel reactor is considered to be a highly integrated,
compact, portable, and safe technology [13], making it ideal for applications in
offshore and remote production facilities. Moreover, small-scale sources for
synthesis gas like municipal waste and biomass waste can also leverage the
advantages of small-scale microchannel technology for their waste and
biomass—to—liquid fuel conversion processes [14]. Several authors [10-13, 15]
have experimentally demonstrated the feasibility and effectiveness of

microchannel reactors for FT synthesis applications.

However, the use of highly active modern iron- and cobalt-based catalysts,
coupled with the high heat generation (165 kJ/mol CO) of FT synthesis, have
resulted in the problem of a high-temperature gradient along the channel length.
One method to address this problem is to use highly effective commercially
available thermal fluids such as Melotherm™ and saturated water as coolants,
as explored by Deshmukh et al. and Tonkovich et al. [14, 15] in their
experimental study, and Kshetrimayum et al. in their simulation study [16, 17].
However, thermal fluids can be expensive and saturated water can be difficult
to handle in actual operation compared to cheaper and single-phase coolant-like
subcooled water. Another method to avoid a high thermal gradient and maintain
a minimum thermal gradient along the channel is to divide the entire reactor
length into a number of discrete zones and load different amounts of catalyst in

each zone, a method at this moment called the method of discrete dilution.
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However, a non-optimized method of discrete dilution would not necessarily
guarantee an optimal reactor performance. On the other hand, an optimal
number of discrete zones, zone length, and dilution ratio are expected to prevent
abnormally high FT reactions and consequently undesirably high heat
generation at any region inside the reaction channel. For instance, applying an
optimized discrete dilution method can prevent the FT reaction temperatures
from becoming abnormally high near the channel inlet by distributing the
reaction rates, and consequently the heat generation, more uniformly to all
regions of the reaction channel. The method can be optimized to achieve
maximum overall reactant conversion and product selectivity at the reactor
channel exit. However, the optimization of discrete dilution is a very
challenging problem because it usually contains multiple objectives and non-

convex constraints.

The method of catalyst dilution to control reaction rates and prevent
excessively high-temperature peaks inside reactors has been considered in
existing works on a catalyst-packed tubular reactor [18-21] for other highly
exothermic reactions. For instance, Hwang and Smith [22] employed the
combined effect of catalyst dilution and feed-stream distribution to achieve
optimal control of the temperature profile inside their multi-bed multi-tubular

reactors for the hydrogenation of nitrobenzene and oxidation of ethylene.
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In the past few years, many authors have used computational fluid dynamics
(CFD) to simulate FT synthesis in microchannel reactors, to either supplement
or replace expensive and difficult experiments involving the FT synthesis [3,
17, 23-28]. Recently, Kshetrimayum et al. [16] evaluated the effect of coolant
type and wall boiling condition on the temperature profile of a low-temperature
FT synthesis in a microchannel reactor block based on CFD simulations. Jung
et al. [29] used CFD for their optimal design of guiding channel geometry in a
U-type coolant layer manifold for a large-scale microchannel reactor. Other
works that do not use CFD tools have appeared, too. For instance, Park et al.
[30, 31] proposed a cell decomposition method to model and simulated the FT
synthesis for a large scale microchannel reactor without having to employ a
rigorous CFD model and intensive computation. They evaluated the thermal
performances of various reactor configurations in microchannel reactor blocks.
However, these authors have not explored the application of the method of
discrete dilution in FT microchannel reactors for optimal operation of such a
reactor. An important criterion to evaluate the performance of such
microchannel reactors for FT synthesis is to measure its ability to optimize Cs:
while minimizing temperature gradient along the channel length. Accordingly,
in this context, to achieve multiple targets, a multi-objective optimization needs
to be formulated and solved. However, to our knowledge, such work has not

been presented.
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In this work, a CFD model of a single microchannel reactor for FT synthesis
is first built using the commercial CFD software ANSYS FLUENT, and the

simulation results are validated with experimental data from the literature.
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2.2.1. 2D axisymmetric computational fluid dynamics
(CFD) based Fischer-Tropsch microchannel
reactor single-channel model

In this section, we present model equations and parameters that were used

in constructing the rigorous CFD model of the microchannel FT reactor.
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2.2.1.1. FT catalyst and reaction Kinetics

To simulate the FT synthesis, the reaction kinetics of using the cobalt-based
catalyst of Oxford Catalyst, LTD (OCL) was employed. Kshetrimayum et al.,
Lee et al., and Park et al. [16, 24, 30] have also used the reaction kinetics in
their simulation works. The reaction kinetics consists of 6 reactions describing
the entire FT reaction pathway in a microchannel. To ensure the convergence
of the model within a reasonable amount of time, Cs and higher carbon chains
are lumped in Cs: (in reaction, Cs+ averaged to Ci4Hzo). Distribution profiles
for various chemical components inside the microchannel reactor can be
obtained, which is not possible with a single lumped reaction describing FT
synthesis [32]. In Table 2-1, the physical properties of the catalyst and reaction

kinetics are shown.
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Table 2-1. Physical properties and reaction kinetics of FT synthesis catalyst.

(a) Catalyst Physical Properties

Effective thermal conductivity (kes) 300 kW/mK
Mean particle diameter (D) 280 um

Bed void fraction (g)* 0.48

Bulk packing density (pbuik) 1054 kg/m3
Specific heat capacity 473 J/kg K

(b) Reaction Kinetics and Parameters in rate Expressions

Kinetic parameters

ID Reactions and Rate Expression kmoi(/,( l[(I:_t:altns)] E; (J/kmol)
3H, + CO = H,O + CH,4
1 E, 2.509 x 10° 1.30 x 108
Reu, = kyexp <— ﬁ) Cy
5H, +2CO - 2H,0 + CoHs
2 E, 3.469 x 107 1.25 x 108
Re,ug = kpexp ( ) Cu,
7H, +3CO - 3H,0 + C3Hg
3 E, 1.480 x 107 1.20 x 108
Reug, = ksexp ( RT) Cy
9H, + 5CO - 4H,0 + CsHio
4 E, 1.264 x 107 1.20 x 108
Re,Hy, k, exp( RT)C
H>O0 + CO 2 H, + CO;
5 Es 2.470 x 107 1.20 x 108
Reo, = ks exp <_ ﬁ) CcoChyo
29H, + 14CO - 14H,0 + C4H3o
3.165 x 10* 8.0 x 107
6 k6exp( )CH2 Cco
3 k,q = 63.5 E,q = 8.0 x 107
[1+kad exp ( ) Cco]

* Assuming uniform spheres with cubic packing
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2.2.1.2. FT microchannel reactor
A single channel FT microchannel reactor, modeled as an axisymmetric 2D

CFD model based on a finite volume method, was considered for the present
study. The catalyst-packed reaction channel was assumed to be a porous
medium, packed with the spherical catalyst of diameter 280 pm. The Ergun
Equation [2-1] was used to obtain the parameters of the porous medium for a

packed bed reactor [33].

150|u(1 Ecat)’ 1.75p (1—€car) 2
V V -
B Ve 1 PV, [2-1]

Equation [2-1] is a semi-empirical equation that can be applied to many
types of packing and over a wide range of Reynolds numbers. Because the bed
pipe Reynolds number obtained for the size of catalyst particle considered in
the present study falls in the range 10 — 100, the flow inside the reaction channel
is assumed laminar, and the Ergun equation can be safely applied.

To describe the 2D CFD model of the reactor, a 2D axisymmetric coordinate
is used where the x-direction is set as the symmetric axis. The 2D axisymmetric
coordinate expands the 2D geometry to 3D with the same quantity of angle
direction. Thus, it can calculate mass transfer, heat transfer, and other physical
phenomena in 3D. A critically different result comes out when physical
quantities such as temperature and flow velocity are critically different through
the angle direction. However, our reactor model, microchannel reactor, usually

does not need to consider that because the channel width and height are too
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short to cause asymmetric physical quantities through the angle direction. Since

the flow is laminar, turbulence effects are not considered, and the porous

resistance is independent of angle because we assume that the catalyst is packed

uniformly. Porous media resistance is modeled as a source term in the

momentum conservation equation, and the 2D axisymmetric momentum

conservation equation appears as force terms (Fy, and F;) in the axial and radial

directions respectively, as shown in Equation [2-2]

0 14 190 9
3t (PVR) + 13- (Xpvevi) + T (rpvevy) = — 0+
an avr aVr
T (@S 0)+ 1 (G4 50) +

0
3t (er) + - (rpVer) + - (I'erVr) = - a_p +

1a( (2%——(V ))+——( (avr avx)) 2|,lvl-

r or
—;(V-\_/’)+Fr

ox ar r

The continuity equation is given by Equation [2-3]

ot 3= (pv) +5 (V) + 55 =0

[2-2]

[2-3]

Syngas and products of the FT reaction are defined as mixture components

in the species transport equation with a volumetric reaction term. The species

transport equation with the finite-rate chemistry method of volumetric reaction

is given by Equation [2-4]
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i) —
a (ch) +V: (p‘_;Yc) =-V-Jc.+ R, [2'4]
Reaction rates of each chemical component are represented by Ri. Multi-

component diffusion of each component is represented by the diffusive mass

flux (J;) calculated using the Maxwell-Stefan equation [34].
The energy equation inside the reaction channel with homogeneous porous
medium is given by Equation [2-5],

i} -
3t (scatpfluEflu + (1 - scat)psolEsol) +V: (V(pfluEflu +
[2-5]

p)=V- (keffVT — (Zihdo) + @ ‘7)) + Stiu

Where index f means the fluid part and s means the solid part of the reactor;
€cacand kegr are the porosity and the effective thermal conductivity of the porous
medium inside the microchannel reactor. Source term (Sg,) of the energy
equation is the volumetric heat generation rate due to the exothermic FT
reaction, which is calculated using enthalpy values of the components at the
reactor’s operating temperature and pressure. The values of viscosity and
thermal conductivity of each component at operating temperature and pressure
were calculated using the Aspen HYSYS 8.8 physical property database, and
enthalpy data were calculated using the Peng-Robinson equation of state.

Using the Nusselt number equation of [35], the heat transfer coefficient in

the porous medium was calculated and thermal non-equilibrium in porous
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media was simulated to consider the exact heat flow between catalyst and

continuous flow, which is given in Equation [2-6].

Nu = 2 + 1. 1Re®¢Pr3 [2-6]

Capillary phenomenon and other micro-physics phenomena which are
driven by rarefied flow with high Knudsen number are ignored as the
microchannel reactor length scale in the present study are between 1-10 mm
and the pressure above 20 bar. This condition does not meet the condition for
rarefied flow. Furthermore, the turbulence effect on reaction rate and turbulence
viscous model is also ignored. The incompressible ideal gas law was used for
calculating the mixture fluid density.

We choose the base geometry of the single channel reactor as a long b type
reactor of [14] which has a width of 6 mm, a height of 1 mm, and a length of
616 mm. To apply axisymmetric modeling, the width and height were converted
to the hydraulic diameter, whose value is 1.7143 mm. The thickness of the
stainless reactor wall is 0.5 mm, and the outer cooling wall boundary condition
was set to a fixed wall temperature of 210°C, which is the same as the inlet
temperature (Figure 2-1). Although sudden pressure rise and flow deceleration
are expected at the beginning of catalyst packing, we assume that the CFD
reactor model just simulates the catalyst packing zone and the inlet condition is
already stabilized with constant velocity. Moreover, the Ergun Equation [2-1]

can predict the porous media resistances.
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The mesh quality was represented by minimum orthogonal quality 0.60983
and maximum orthogonal skewness 0.0.65823, the number of nodes is 88986,
and the number of cells is 82,919. The syngas consists of hydrogen, carbon
monoxide, and nitrogen, with an H»/CO molar ratio of 2.0. The molar fraction
of nitrogen in the feed gas is 16.5%. The feed gas inlet temperature is 210°C,
operating pressure 24 bar, and contact time 290 ms, based on the catalyst bed
volume. The inlet boundary condition is set as a velocity inlet (fixing the
superficial velocity of the syngas), and the outlet boundary condition is set as a
pressure outlet (fixing the outlet pressure as the operating pressure).

In the pressure-velocity coupling solver, the SIMPLE method is used for
pressure correction to ensure mass conservation. For spatial discretization of
the gradient, pressure, momentum, and species transport, the Green-Gauss
node-based, PRESTO!, second-order upwind, and second-order upwind

algorithms were used respectively.
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Packing Material : Co/Al,O4
Particle mean diameter: ~280 um
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< 616 mm

Figure 2-1. Validation CFD model geometry and boundary conditions.
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2.2.1.3. CFD model validation

Simulation is carried out using the commercial CFD software ANSYS
FLUENT 17.0 with parallel computing using 16 cores of Intel Xeon E5-2667v3
(3.2 GHz) processor. For model validation, we compared the simulation results
of the CFD reactor model with experimental data on CO conversion and CH4
selectivity of [14, 15] having the same operating conditions of GHSV, same

contact time, and inlet syngas temperature.

Figure 2-2 shows the trends of CO conversion and methane selectivity as
predicted by the developed CFD model over a range of temperatures considered.
CO conversion is predicted with high accuracy at almost all values of the
temperature range considered while the original experimental data from [15]
that we used changed the temperature from 206.6°C to ~263°C and GHSV to
maintain ~70% conversion. Thus, the fact that our model can predict ~70%
conversion through temperature verifies the model performance. Although
methane selectivity is overestimated at the lower temperature range, the model
predicted the methane selectivity reasonably well at higher temperatures. The
reasons why methane selectivity is apparently significantly different from the
empirical data at low inlet temperatures can be classified in three big reasons.
First, we assume that the coolant wall temperature does not change through the
axial direction and time. However, in a realistic reactor, the coolant channel

profile can be changed because of inefficient heat exchanger geometry or
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insufficient coolant capacity. Secondly, although we use the reaction kinetics
and experiment data from the same literature, the parameter estimation
procedure are not shown in the literature. Thus, the activation energy of reaction
ID 1 can be different for our reactor model. It is possible that we are forced to
increase activation energy to decrease the temperature dependency of methane
generation. Then, the slope of methane selectivity through temperature decrease
helps to fit our model data to experimental data. However, parameter estimation
is not within the scope of this paper, so we used the original kinetics. Finally,
some experiments were performed in a multichannel reactor with multiple
layered fins in the reactor channel. Thus, the temperature profile of each reactor
channel can be different. Despite the weak point of methane selectivity
estimation at low temperature, we think it is possible to use our model for this
study because the model can predict CO conversion with various temperature
and GHSV. Moreover, for optimization, the temperature dependence tendency
is more important than the actual value of methane selectivity. Experimental
data and our model show that methane selectivity follows a monotonic increase
function through temperature. Thus, we can conclude that a low-temperature
error does not affect to an optimal value and our model is sufficient to use for

the purpose of optimization.

Figure 2-2 also compares the reactor core temperature profile through the

axial direction. Our model can predict the maximum temperature and peak

47 3 -'i: [ '\-



position. Since patent data does not give exact model formulation and coolant
wall profile, it is hard to assume the coolant wall profile. Thus, we apply a non-
constant coolant wall temperature assuming a temperature profile, and we can
fit our model to the patent data successfully. However, it is not necessary to use
an imprecise non-constant coolant wall temperature profile for fitting the plot.
Firstly, for optimizing catalyst dilution zone divisions, the maximum
temperature and its location are more important than the exact temperature
profile and our model can predict those pretty well (maximum temperature:
239.6°C, peak position: 0.01 m). Furthermore, the error in CO conversion
between the constant coolant wall temperature model and patent data is about
2%. Secondly, it is impossible to get exact coolant wall temperature unless we
use a coolant channel model simultaneously which is not within the scope of

this paper.

Temperature, species molar concentration, reaction rates, CO conversion,
and CHsselectivity profiles at the centerline in the axial direction of the reaction
channel are shown in Figure 2-3. Since the Fischer-Tropsch reaction is highly
exothermic, the temperature of the inlet reactor region can increase to a very
high value developing a hot spot in the region. As a result, loss of selectivity of
Cs+, catalyst deactivation, and thermal runaway can occur [36]. The profile
indicates that our CFD reactor model can capture the temperature increase

effect due to high reaction rates at the inlet region of the reactor. Furthermore,

48 :'-'i: ._:_-;_ I.



unlike a 1-dimensional model [30], all physical variables are calculated at the
radial, and axial positions of the reactor and reaction kinetics are updated with
those variables. Thus, the developed CFD model can accurately predict reactor
performance and hence can be applied to the optimization problem to obtain
the optimum number of catalyst packing zones and the length of each zone to

maximize Cs: selectivity and minimize AT max.
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Figure 2-3. (a) Temperature profile, (b) species molar concentration, (c)
reaction rate, (d) CO conversion and CHj, selectivity at the center of the reaction
channel of the base case simulation.
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2.2.2.3D CFD based Fischer-Tropsch microchannel
reactor multi-channel model

Driven by both environmental and economic reasons, the development of
small to medium scale GTL(gas-to-liquid) process for offshore applications and
for utilizing other stranded or associated gas has recently been studied
increasingly. Microchannel GTL reactors have been preferred over the
conventional GTL reactors for such applications, due to its compactness, and
additional advantages of small heat and mass transfer distance desired for high
heat transfer performance and reactor conversion. In this work, the multi-
microchannel reactor was simulated by using commercial CFD code, ANSYS
FLUENT, to study the geometric effect of the microchannels on the heat
transfer phenomena. A heat generation curve was first calculated by modeling
a Fischer-Tropsch reaction in a single-microchannel reactor model using
Matlab-ASPEN integration platform. The calculated heat generation curve was
implemented to the CFD model. Four design variables based on the
microchannel geometry namely coolant channel width, coolant channel height,
coolant channel to process channel distance, and coolant channel to coolant
channel distance, were selected for calculating three dependent variables
namely, heat flux, the maximum temperature of coolant channel, and maximum
temperature of process channel. The simulation results were visualized to
understand the effects of the design variables on the dependent variables. Heat

flux and maximum temperature of cooling channel and process channel were
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found to be increasing when coolant channel width and height were decreased.
Coolant channel to process channel distance was found to not affect the heat
transfer phenomena. Finally, total heat flux was found to be increasing and
maximum coolant channel temperature to be decreasing when coolant channel
to coolant channel distance was decreased. Using the qualitative trend revealed
from the present study, an appropriate process channel and coolant channel
geometry along with the distance between the adjacent channels could be
recommended for a microchannel reactor that meets the desired reactor
performance on heat transfer phenomena and hence reactor conversion of a

Fischer-Tropsch microchannel reactor.
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2.2.2.1. Model description

In order to analyze the tendency of temperature and heat flux according to the
structural effect of the 3-D FT microchannel reactor, we use sequential
methodologies shown in Figure 2-4. First, the reaction rate equation of a
microchannel fixed bed reactor based on cobalt-based catalyst is expressed by
a mathematical modeling for a single channel, and the operation condition and
reactor structure to be analyzed by CFD are set as parameters. Thus, the heat of
reaction given in the longitudinal direction is obtained as an algebraic function.
Then, all the other structural variables are obtained by CFD with the fixed heat
of reaction, and the values of Tpmax, Temax, and Q are obtained while varying the
four design variables Cw, Cu, CCp, and CPp. This is to fix the variables related
to the reaction by fixing the reaction heat to increase the calculation speed and
tolerance of the flow analysis model and to only see the influence on the reactor
structure. Finally, the tendency of the results is visualized to conduct physical

analysis and suggest optimal geometric design variables.
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Kinetic Modeling for Fisher-
Tropsch Fixed Bed
Microchannel Reactor
(Matlab - HYSYS)

Computational Fluid
Dynamics for Calculating
Heat Transfer Phenomena
(FLUENT)

Analysis of Geometric Effect
of Microchannel Reactor for
Suggesting Optimal Design

Figure 2-4. Sequential methodology for understanding and suggesting the optimal design of FT microchannel reactor.
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- Single microchannel fixed bed reactor model

Since the FT reaction is a high exothermic reaction, a high reaction heat is
generated at the front end of the reactor. Therefore, it should not be assumed
that the heat of reaction is the same at any position of the reactor, and it should
be expressively expressed as a tendency of the heat of reaction in the
longitudinal direction of the reaction channel so that the temperature and heat
transfer analysis can be accurately performed. Thus, a linear regression model
is used as single channel heat of reaction profile. The single channel model is
formulated based on Knochem et al. [37] which consists of mass balance, heat
balance, and CoRe/y-Al,O3 1% order reaction kinetics. In general, empirical
equations are used to show that the Fischer-Tropsch reaction is proportional to
the H2 concentration when expressed by the 1% order rate equation. Activation
energy (Ea) is 120 kJ mol™! and heat of reaction is assumed as -170 kJ molco™!
[38].

—Teo = kCsy, [2-7]

k = koexp(—22) [2-8]

For numerically adopting molar bulk concentration, molar weight,
mixed gas thermal conductivity, and etc. which changing dynamically through
reaction, we use the integrated model to calculate the information based on the

Peng-Robinson equation of states, which is often used in GTL FT reactions, by

transferring the response information to HYSYS, and then transferring the
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calculated information to the Matlab model. Parameters and conditions are

given in Table 2-2 in detail.
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Table 2-2. Compositions of natural gas feed and refrigerant.

Width(Pw) : 1 mm

Process channel Height(Py) : 3 mm
geometry

Length(PL): 17 mm

Temperature(T) : 230 °C

Pressure(P) : 20 bar
Feed_o_peratlng Molar composition : H2:CO:N2=0.64:0.32:0.04
conditions

Velocity(uin) : 0.00281 m/s

WHSYV : 400 ml/hr-gcat

Particle thermal conductivity(kp) : 0.3 W/m'K
Particle mean diameter(Dy) : 250 um

Packed bed properties Bed void fraction(e) : 0.3630
Catalyst density(peat) :  1.232 x 103 kg/m?

Catalyst weight(mca) : 0.076 g
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- Multi-microchannel fixed bed reactor model

The commercial CFD program, ANSYS Fluent, is used for analyzing the
effect of reactor design variables with the fixed heat of reaction curve. The base
structure of the cubic style microchannel reactor is shown in Figure 2-5. There
are 2 reaction channel layers, and 10 channels exist at each layer. There are 3
cooling channel layers, and 8 channels exist at each layer. Since the reactor is
symmetrical with respect to the XZ plane when there is no biased disturbance,
a symmetrical plane is created and analyzed to facilitate calculation of the

simulation.

Governing equation of CFD model is set to simulate the fixed bed reactor
especially understanding the fluid dynamics in the reactor. At each reaction
channels, species transport with no reaction is used. SST k- model (This
model is similar to k-, but it is expressed by blended with k-g, where k-o is
used near the wall, and k-¢ is used for the rest) is used for turbulence model
because it gives relatively accurate heat transfer and shear stress calculation
simultaneously at the near wall region than other Reynolds-averaged Navier-
Stokes equation (RANS) [39]. Moreover, Peng-Robinson equation of state is
used which is usually used for FT reaction [40-42]. Coolant is set to
marlotherm® SH and u.i, of the base case is set to 0.1 m/s. Thus, the volumetric

flow rate of all coolant channel is fixed at that value. This is because the recycle
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unit of the refrigerant is operated in a state where the volumetric flow rate is

fixed.

The important governing equations are summarized in Table 2-3. In
momentum conservation equation, gravity acceleration (g) is 9.81 m/s2 through
the inlet direction of the reaction channel, +X. In the energy conservation
equation, heat source term (Sp) from the heat of reaction is set as the linear
function of reactor length for regressing the high reaction heat in the front stage
and less in the rear. For calculating the porous media by catalyst packing, Ergun
equation with a(permeability) and C2(inertial resistance factor) is used, and

equations are given by Equations [2-9] and [2-10]

_Dnp & [2-9]
® =150 (1-£)2

_351-¢ 2-10

CZ - D, £3 [ ]

Temax, Tpmax, and Q are obtained by varying the four variables of Cw, Cu, CPp,
and CCp through a total of 11 cases including the base case. Base case. Because
we fix the length of the reaction channel, the number of the coolant channel and
the total size of the reactor module can be changed with varying the geometry

of the coolant channel. Each case is summarized in Table 2-4.
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61



Table 2-3. Module and governing equations for CFD modeling.

Module name Governing equation Remarks
d
v (o) =0 Mass
at
dpv s R M
Conservation ¢ TV (VD) = —VP +pg omentum
& continuity Energy with
ag—f + V- (B(pE+P))=V- [keffvr - Z T, + 5|+, heat source
(Sn)
) m 1 Packed bed
Porous media Si = —(—vi + C, -—plvlvi)
a 2 reactor
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Table 2-4. Case specifications.

Case Base 1 2 3 4 5 6 7 8 9 10
Variables Cw Ch CPp CCo
CW (mm) = 1.000 2200 0.600 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
CH (mm) 1.000 1.000 1.000 2.000 0.500 1.000 1.000 1.000 1.000 1.000 1.000
CPD (mm) 1.000 @ 1.000 1.000 1.000 1.000 5.000 2.000 0500 1.000 1.000 1.000
CCD(mm) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 2.600 1571 0.636
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2.2.2.2. Result and discussion

Fixed heat of reaction curve with linear regression function in single FT
microchannel reactor is shown in Figure 2-6. Since the reaction rate is
proportional to the concentration of H, by [2-7], it can be expected that the
reaction will be faster at the front of the reactor, which can be observed linearly
as reaction heat. Conversion based on the CO is about 0.773, which is
appropriate for usual FT reaction. The reason why we use the linear function
for regression is a feasible computational time of the CFD with heat source Ss.

R? value is about 0.993, and it is sufficient to use for the surrogate model.
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Figure 2-6. The heat of reaction curve with a linear fit approximation.

65



The tendency of the multi microchannel reactor model analyzed by CFD is
analyzed for Q, Tpmax, and Temax. In the case of Q, the average heat flux over the
area through the area weighted average and the area-weighted integral are
absorbed into the cooling channel total heat flux is analyzed separately. This
model is implemented through steady-state analysis, and we try to minimize the

numerical error by equalizing the residual limits of each variable in all cases.

About the 4 design variables, total heat flux which flows to the coolant
channel and average heat flux is shown in Figure 2-7. It is found that shorter
the C,, the more average and total heat flux increased. This is because the
surface area does not change because the length of the reaction channel is fixed
even if the surface area of the cooling channel fluctuates. However, since the
volumetric flow rate is fixed, the flow velocity becomes faster as the area
forming the vertical vector of the flow velocity becomes smaller, and it makes
the flow velocity gradient between the wall and the center of the refrigerant
larger than when it is slow. It also increases the temperature gradient. Thus,
more heat can be removed. On the contrary, in the case of Cp, the shortening of
the surface area is disadvantageous to the heat removal due to the reduced
surface area, but it seems to be able to remove the high heat due to the effect on
the flow rate. All of them remove the higher heat of reaction when the channel
is small, which resulted in the effect of the flow rate and the small channel

causing a rapid mixing effect of the refrigerant to achieve high heat exchange.
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In CPp, the highest total heat flux is shifted in the base case, but it decreased as
the thickness increased. However, the CPp showed a decrease of 0.5 mm, and
the variation is much small compared to other parameters. In fact, it is observed
to have little effect. The heat transfer resistance due to the microchannel
structure assumed to be stainless steel do not have such a great influence when
it is predicted that the most critical resistance factor in the heat exchange
between the reaction channel and the cooling channel is the resistance caused
by the film produced by the fluid flow. On the other hand, the CCp shows a
tendency toward channel spacing, and the total heat flux and the average heat
flux are observed to show the opposite tendencies. Shortening the length
between cooling channels increases the surface area of the cooling channels per
unit length, which acts as a power to remove more total heat flux, but if the total
heat flux is not so large, it can be rather large because the amount of heat to be

removed per unit area increases.
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In Figure 2-8, the temperature of the highest fluid (Tcmax, Tpmax) Of the
cooling channel and the reaction channel, respectively, is plotted for each
variable to confirm the tendency of temperature fluctuation. In the case of Cw
and Cp, absolute temperature decreases and the temperature difference
increases when variables increase. Since the heat of reaction and the initial
inflow temperature are not changed during the simulation, it is considered that
the temperature should be lowered when the total flow rate is removed. In this
case, however, the result is opposite. This phenomenon is possible because,
even if more heat is removed, the temperature can be observed higher at a
specific part due to its position and structural effect. In the case of marlotherm®
SH used as a refrigerant, the heat capacity is 2.22 kJ/kg-m?. However, since
heat capacity of stainless steel is 0.5 kJ/kg-m?, if the ratio of the refrigerant to
the overall volume of the reactor is increased, the absolute temperature can be
lower even if the higher heat quantity is removed. Therefore, it is confirmed
that the maximum temperature of the channel is lowered when the variable
moves in the direction of increasing the volume of the cooling channel.
However, in the case of Cw, the proportion of the trade-off relation is not so
large, and it is considered that there is almost no change in temperature. In the
case of CPp, there is no structural change in the cooling channel, so only a large
amount of heat removal would result in lower maximum temperature, but the
maximum temperature is also found to be unchanged because of less effect of

total flow rate. In the case of CPp, as the cooling channel spacing is reduced,
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the total amount of heat is also removed, and the volume ratio of the refrigerant
to the entire reactor is also increased so that the maximum temperature also

decreases.
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In this study, only the structural parameters of the reactor are changed to
confirm the thermal flow tendency. However, as a result, it is confirmed that
the tendency may change depending on the external variables such as the
difference between the heat capacity of the reactor skeletal metal and the
refrigerant, and the degree of the reaction heat of the reaction channel. However,
it is expected that most of the fixed values will not escape the extreme tendency
because they are introduced by advanced companies such as Velocys® to the

same level as proposed in actual patents and papers.
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2.2.2.3. Conclusion

Parametric study of Q, Temax, and Tpmax through the multi FT microchannel
reactor design variables, Cw, Cu, CPp, and CCp is performed using the Matlab-
Aspen HYSYS integrated systems for understanding the heat of reaction curve
and the ANSYS Fluent for CFD. As a result of simulating the fixed bed reactor,
the following conclusions are obtained when the reaction channel and the

cooling channel flow through the cross flow.

- The tendency of the heat of reaction is high at the front end of the
reaction channel and almost linearly decreased toward the back, and

the conversion rate at a given condition is observed to be about 0.733.

- As the cooling channel width (Cw) and height (Cy) become shorter, the
total heat flux and the average heat flux become higher, and the
maximum cooling channel temperature (Tcmax) and the reaction

channel maximum temperature (Tpmax) also become higher.

- The gap between the cooling channel and the reaction channel (CPp)

has not been found to have a significant effect on heat transfer

- It is confirmed that the total heat flux and the average heat flux increase
as the distance between the cooling channel and the cooling channel

became shorter and that the maximum cooling channel temperature
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(Temax) and the maximum reaction channel temperature (Tpmax)

decrease.

Cw and Cy have a trade-off relation with the maximum temperature,
while a slight change has a great effect on the heat transfer. However,
in the case of the CCp, it does not give a rapid change as Cw and Ch,

It also has a design effect that reduces the maximum temperature.

In this study, it is suggested that Cw, Cu, and CCp could be proposed
for designing a multi microchannel reactor for Fischer-Tropsch
synthesis without any design limit and it is expected that it can be used

as a basic data of the reactor design optimization study in the future.
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2.3. Carbon Capture, Utilization, and Storage (CCUS)
multiphase carbonation reactor model

The national greenhouse gas emission target is set at 640 million ton in 2014
and 540 million ton in 2020. Although the target date for the national
greenhouse gas reduction target is 30% compared to BAU by 2020, the
development of CCS technology suitable for domestic conditions is not
completed. At present, a 10 MW CO» capture demonstration plant is operating
in Boryeong and Hadong, but CO, storage technology has not been developed,
and most of the captured CO, is released to the atmosphere. The existing
carbonation research focuses on the capture of CO» using the reaction, but it is
difficult to link it with the achievement of greenhouse gas reduction because of
limitations in storing the conversion product. In addition to collecting CO»
directly and finalizing the final storage, it is necessary to develop technologies
for mass capture and construction materials with a CO; storage potential of over

7,000,000 ton/yr CO;

In line with this, many companies around the world are doing their utmost
to develop this technology. In the case of Novacem in the UK, the development
and commercialization of carbon dioxide cement are underway. The CO»
production technology using cement produces 1.5 tons of CO; reduction effect
per ton of cement in the entire production process. In the case of Calera in the

US and Canada, the company is recovering carbon dioxide and developing a
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substitute for cement and has completed operation of 50 ton/day by-products.
Currently, a 10MW pilot plant is in operation. MCi (Mineral Carbonation
International) is in the process of researching the CO, capture and construction

material conversion technology pilot plant and is preparing to commercialize it.

In this study, the authors intend to design a 40 tonCO,/day CO, carbonation
reactor. The process required for reactor design was based on computer-aided
engineering (CAE). First, kinetics studies have been carried out for the analysis
of reaction systems. Secondly, CFD - based reactor models have been

developed to test the performance of the reactors under various conditions.
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2.3.1. Rigorous reaction kinetics for carbonation based
CCUS reactor

2.3.1.1. Introduction

The first thing to do to design a CCUS reactor is to identify the definite
kinetics and perform parameter estimation to predict the reactivity well under
various conditions. Ultimately, kinetics should be identified for specific drugs
such as waste. However, since all of the reactions are based on calcium
hydroxide (Ca(OH).,), the kinetics of the reaction of Ca(OH), with the exhaust
gas can be easily obtained. Therefore, in this study, the kinetics of CO, gas

reaction is investigated for Ca(OH), and sodium hydroxide (NaOH) solutions.

Several previous studies have attempted to investigate the kinetics of CO»
response to Ca(OH),-based solutions but did not simulate dynamic changes in
bubble and particle diameter [43]. Dynamic bubble and particle diameter
changes must be performed because mass transfer of CO, and dissolution of
Ca(OH); in water are among the most critical of the reaction. In addition, mass
transfer of CO, gas to water and simulation of the equilibrium state of acid
bases in aqueous solution must be rigorously performed so that reactor

simulations can be successfully carried out.



2.3.1.2. Model formulation & development

The CCUS reaction can be roughly divided into three parts. First, the
carbonation part is a reaction that produces various carbonate ions and
carboxylic acids while forming an acid-base equilibrium while the CO; is
dissolved in water. Since these reactions are strongly involved in pH, they need
to be calculated accurately. In the case of CO, bubbles, the size of the bubble
will decrease as it dissolves, which must have a great influence on mass transfer
and it should be calculated exactly. The next category is the reaction of
Ca(OH)2 and NaOH as an aqueous solution to make a reaction agent. This
reaction determines the pH of the initial solution and simulates the unreacted
solid particles to dynamically calculate the continuous dissolution as the pH
gradually drops. Finally, it is a series of reactions that occur as precipitation to
produce calcium carbonate (CaCOs). Since they remove ions and precipitate in

solid form, it is essential to remove ions from the system.

The solid particles and bubble disappear when they are completely dissolved.
To introduce this discrete event into an ordinary differential equation (ode) in
the form of hybrid systems, a differential algebraic equation (DAE) must be
used. In addition, we need to use a stiff solver because the difference in kinetic
parameter values between the several reactions is significantly different on the
108-10° scale (Refer to Table 2-5 and reference for more kinetic parameter

values and information). Therefore, kinetics is coded based on odelSs and



ode23s solver of MATLAB. Overview of the reaction mechanism is given in

Figure 2-9.
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Table 2-5. Reaction kinetics and related parameters with references.

# Class Reaction Parameter Reference
R1 Carbonate CO0,(aq) + OH™ 2 HCO3 Ki1,Ki2 [43]
R2 Carbonate HCO3 + OH™ 2 C0%™ + H,0 ka1, K22 [43]
R3 Carbonate OH™ 4+ H* 2 H,0 Ka1,Ka2 [43]
R4 Carbonate CO,(aq) + H,0 @ HCO3 + H* Ka1,Kaz [43]
R5 Mass transfer CO,(g) 2 CO,(aq) kia,E,H, do [44] [45]
R6 Base solution Ca(OH), 2 Ca®* + 20H™ ks, kb, A [46]
R7 Base solution CaOH* 2 Ca?* 4+ OH~ Kez, Kbz [46]
R8 Base solution NaOH 2 Na* + OH~ Krs, Kps

R9 Precipitation Ca?* + CO3~ 2 CaCO; Ks1, Ks2 [47]
R10 Precipitation Ca%?* + HCO3 2 CaCO5; + H* Ke1, Ke2 [47] [48]
R11 Carbonate H,CO, 2 H* + HCO3 Ka1, Ks2 [43]
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Equations [2-11]-[2-19] represent the time-dependent changes of all the ions
participating in the reaction in the form of differential equations. If this is the
only place to end here, you can interpret it as an ODE system. However, because
of Equation [2-20]-[2-27] which are activated only when bubble and solid
particle exist, and it contains the algebraic equation, it is interpreted as a DAE

system.

A28 = —kety [0, (ag)][OH] + [2-11]
k12[HCO3] — k41 [CO(aq)] + kaz [HCOZ][HT] +

kyaE (H %2RT[C0,(9)] — [CO, (aq)])

A0 — 1, aE (HEORTCO, (9)] - [2-12]

[CO;(aq)])
UM _ _ (€O, (aq)][OH™] + Ky, [HCOZ ] -

ky1[HCOZ1[OH™] + ky,[CO%7] — k3 [OHT][H*] + -1

kg + 2A(ks — kp[Ca?*][OH™]2€) +

ke [CaOH*] — kpo[Ca?t1[OH™] + ks —

kps[Na*][0H]

) _ it
- 31[OHT][H™] + k3p + k41[CO,(aq)] —

kaa[HCOT][HY] + kg1 [Ca?*][HCO5] — kep[H*] +
kg1[H,CO3] — kg [HT][HCOS]

[2-14]

% = ky1[CO;(aq)][OH™] - [HCO3] -

ko1 [HCOS1[OH™] + kpa[CO37] + k41 [CO4 (aq)] — [2-15]
kyz[HCOF|[H*] — key [Ca?*][HCO3 ]| + kep[H*] +
kg1 [H,CO3] — kgy[H*][HCO3]

O] = Jeyy [HCOF1[0H] ~ yalC037] [2-16]
ks, [Ca?t][CO%7] + ks,
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) = Ay — kp[ca?*[OH12f¢) -

ks1[Ca**1[CO37] + ksy + kpp[CaOH™] —
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All of the above expressions were coded in MATLAB R2016b based on
odel5s and ode23s, and a dynamic system was constructed. Since there is a
possibility that there is a gap between actual system and kinetics, validation and
parameter estimation were carried out through a 500 ml reactor. Experimental
set uses 16 experimental sets selected through the orthogonal array to use the
design of experiment to simultaneously reflect the influence of various
variables as much as possible. The parameters used in this experiment were
operating temperature, CO, vol%, Ca (OH2) wt%, NaOH wt%, GHSV (hr),
and CO; flow rate (L / min). Parameter estimation was performed by adjusting
the CO; outlet (vol%) and pH, and the mean squared error of the experimental
and model values was calculated. Solver algorithm was Dividing hyper-
RECTangle (DIRECT), and target parameters were gas hold up, bubble initial
diameter, mass transfer coefficient for the bubble, mass transfer coefficient for
solid, Ca(OH)2 dissolution factor, enhancement fact, and solid particle initial

diameter. The exact values for each experiment set are shown in Table 2-6.
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Table 2-6. Experiment set using an orthogonal array for the design of the

experiment.
Exp # Tem;ierature CO,; Ca(OH), NaOH GH%V ﬂo(\):v()r;te
C vol% wt% wt% hr L/min
1 25 2.00% 1.00% 0.00% 60 0.5
2 25 10.00%  1.50% 1.00% 120 1
3 25 20.00%  2.00% 2.00% 180 1.5
4 25 30.00%  3.00% 3.00% 240 2
5 40 2.00% 1.50% 2.00% 240 2
6 40 10.00%  1.00% 3.00% 180 1.5
7 40 20.00%  3.00% 0.00% 120 1
8 40 30.00%  2.00% 1.00% 60 0.5
9 55 2.00%  2.00% 3.00% 120 1
10 55 10.00%  3.00% 2.00% 60 0.5
11 55 20.00%  1.00% 1.00% 240 2
12 55 30.00%  1.50% 0.00% 180 1.5
13 70 2.00%  3.00% 1.00% 180 1.5
14 70 10.00%  2.00% 0.00% 240 2
15 70 20.00%  1.50% 3.00% 60 0.5
16 70 30.00%  1.00% 2.00% 120 1
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2.3.1.3. Result and Discussion

In Figure 2-10, we can see how the CO, removal rate is for various
experiments. It can be seen that the curves exhibit significantly different
tendencies under various conditions. In general, NaOH was dissolved in almost
all water, and high pH was obtained. It was found that the initial CO, removal
rate was high in the case of NaOH containing experiment. However, when the
effect of NaOH was over, and CO, was removed only by the basicity of
Ca(OH),, the CO» removal rate dropped sharply. Therefore, it was found that
the addition of NaOH is essential for obtaining a very high CO» removal rate

directly for a single reactor.
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Figure 2-10. CO, removal rate over different experiment set.
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The results of the parameter estimation for the 10th experiment are plotted
in Figure 2-11. The model determined by the parameters referring to several
documents at the beginning and arbitrarily inserted parameters seem to show a
great difference from the experiment. The results obtained with the optimized
parameter set through the DIRECT global NLP algorithm show that the
experiment is almost exactly matched. In the case of the conventional model,
the pH fitting was calculated to be very slowly dropped. However, for the

optimal model, we confirmed that the experiment curve follows almost exactly.

Finally, in order to find out what kind of changes are observed under various
conditions, we try to show the tendency of simulation by changing the operating
temperature of the reactor and the amount of the initial NaOH (Figure 2-12). It
can be seen that the CO; outlet volume fraction is formed at a higher level when
the temperature is first raised. It is not so sensitive to temperature until all of
the NaOH is consumed, but once consumed, the pH is determined by the
solubility of Ca(OH) ; and the CO, removal rate is determined accordingly.
However, when the temperature is high, it is confirmed that Ca(OH), is less
soluble and thus the CO, removal rate is lowered. Similarly, in the case of
NaOH, the CO; removal rate remained very high for more time, indicating that
the outlet volume reaction remained close to zero. The interesting thing is that

this curve does not just go up to the same slope, but shows that NaOH goes up
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more steeply. This is probably due to the effect of the product, which causes the

CO; to dissolve slightly more.
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2.3.2. Eulerian multiphase model for carbonation
reactor

2.3.2.1. Introduction

As can be seen in 2.3.1, since the reaction is a very fast acid-base reaction,
the rate of the overall reaction of this system is governed by the rate of mass
transfer, such as the rate of dissolution of the gas and solid reactants. Among
them, the dissolution process of the solid reactants is generally regarded as the
rate determining step [49]. Many studies have been conducted on chemical
factors such as additives, temperature, pressure, reaction conditions such as
concentration, particle size of solid reactants, etc., which can increase the
dissolution rate. However, there are research that the mass transfer rate has a
great influence not only on these chemical factors but also on physical factors
such as velocity fields, turbulence intensities, shear stress distributions, and
volume fraction of various phases [50]. Despite the fact that proper reactor
designs can improve physical factors to increase mass transfer rates, little

research has been done on reactors in this process.

It is very important to ensure that the reactant distribution within the reactor
is evenly distributed through appropriate reactor design. Uneven distribution of
reactants means that reactants and some of the reactors are not utilized properly,
which can lead to an increase in the cost of the process. Large-Scale reactors

are designed using empirical correlations or empirical laws based on laboratory
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experiments [51]. In the case of agitated reactors, there are correlations for
predicting solid suspension in solution using various solutions [52, 53].
However, there is a limitation that the shape of the reactor is not applicable as

the size or the deviation from the standard becomes larger.

In this study, we investigate the correlation between the dispersion of the
solid reactants and the internal design factors in pilot scale stirred tank reactors
capable of mineral carbonation of 40 tons of carbon dioxide per day and to
propose an appropriate internal structure of the reactor. Although all of the gas-
liquid (CO-solution) and solid-liquid (CaO-solution) transport in the target
process is involved, this paper deals only with solid-liquid mixing. This is
because the solubility rate of the solids is slower first, and secondly, the amount
of gas entering the reactor is very large (7000 Nm*/hr of gas must be introduced
to treat 40 tonnes of CO» per day based on exhaust gas containing 15 vol% CO,)
the reactor structure changes to a flooding regime that has little effect on gas
mixing [54]. In this study, CFD technique was used to analyze the flow of the
reactor. There have been many studies on the CFD analysis of agitated reactors
from the past, and their reliability has been acknowledged by comparison with
experimental results [55-58]. However, since the flow is always changed
depending on the shape and characteristics of the reactor, the results of the

existing studies cannot be applied to the present process. Therefore, in this
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paper, we tried to analyze the internal flow, especially solid dispersion, in

aqueous mineral carbonation reactor.
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2.3.2.2. Model description

The structure of the reactor is shown in Figure 2-1. It is a stirred tank reactor
in which three impellers are vertically arranged in the center of a cylindrical
tank having a diameter of 4 m and a height of 2.5 m. A gas distributor is
disposed between the bottom agitator and the intermediate agitator. In this study,
the gas is not discharged from the gas distributor because it does not deal with
the gas dispersion, but the structure is described in detail as much as possible
because the dispersing device itself can act as a flow obstacle of the liquid or
solid. In this study, the reactor modeling range was limited to the head height,
so the height of the reactor was considered to be 2.5 m, which is the height of

the head.

As a reaction material, a mixture of water and solid calcium oxide of 25 °C,
which is a liquid, was set. At this time, the calcium oxide mixture was assumed
to have a particle size of 200 mesh, a density of 3,366 kg / m3, and a viscosity
of 1.5 cP. In addition, the solid reactant occupies a volume fraction of 5 vol%

in the total solution.

Design variables such as the number, type, clearance, and diameter of the
impeller can have a large influence on the internal flow [59]. This value was
reduced to the D(impeller diameter)/T(reactor diameter) value, which was 0.33
and 0.5 in this study. The rpm representing the number of revolutions per

minute can be adjusted after the design and construction of the reactor is
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completed, but it is crucial to estimate the operation range in advance because
the specifications of the power equipment to be installed are determined
according to how to select the rpm range. In this study, 0, 30, 60, and 90 rpm
were verified. The type of agitator can be divided into an axial stirrer, which
makes a large axial flow, a radial stirrer, which makes a horizontal flow, and a
Pitched Blade Turbine (PBT), which produces a mixed flow of axial and
horizontal directions. In this study, only the Pitched Blade Turbine (PBT) was
discussed. The baffle is advantageous to install four equally spaced as possible
[18] if solid dispersion is required, and longer and thicker thicknesses are
considered better. However, as the baffle becomes larger and the structure
becomes more complicated, the power consumption increases together. The
detailed study of various variables and the application of the optimum design
theory to the 40 tonCO./day carbonation reactor are explained in detail in
Section 4.2, and the description in this chapter is focused on the description of

the model.

For the CFD modeling of this study, ANSYS® fluent 16.0 was used. The
governing equations and several model equations used in CFD modeling are
summarized in Table 2-7. A Euler-Granular multiphase model was used to
analyze multiphase flows involving liquids and solids. This model solves the
Navier-Stokes equations for coexisting and interpenetrating continuum phases,

respectively and that can consider together by including interphase momentum
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transfer or interphase mass transfer in the governing equations. There are
several types of forces interacting between the liquid and solid, through which
interphase momentum transfer is possible. The most important force among
them is the drag force, and it has been found by various studies that the
remaining interaction forces such as lift force, virtual mass force, and turbulent
dispersion terms do not significantly affect the overall flow of the agitating
reactor [56, 60, 61]. Therefore, in this paper, only the drag force is considered
as the force involved in interphase momentum transfer. As a turbulence model,
a realizable k-g turbulence model was used for the liquid phase. This was
determined by referring to the previous case study of solid dispersion in a stirred
reactor [62]. Multiple reference frame (MRF) method was used to model the
impeller rotation. No-slip condition boundary conditions were given to all wall
surfaces in the reactor such as tank walls, impeller blades, rotary shafts, and gas
injector surfaces, and the surface of the rotating shaft was set to rotate at the

same speed as the impeller.
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Figure 2-13. Reactor geometry with design variables.
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Table 2-7. Governing equations of the reactor model.

Governing equations/models Remarks
— 5 — =
Continuity = (@pp) + V- (@pprtiy) = 0 K=phases(l,s)
] _ _

Momentum o @rprct) + V- (e prlixty) =

—ap VP + V- T + Y2 1(Rys + miys +

W) + Fy

Interphase Ris = K5 (0, — uy) Kls: Gisdaspaw
momentum law [23]
exchange
Turbulence Realizable k-& model
Model
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2.3.2.3. Result and discussion

In this study, we made a model for the design of the reactor and proceeded
to the point where we simply looked at the tendency to differentiate the flow
and solid suspension according to impeller speed and D / T. Since we wanted
to cover more details in Section 4.2, we will look at some cases of how the
velocity vector field, the solid volume fraction, and the solid volume fraction

of the continuous phase in the reactor change with reactor height.

Figure 2-14 shows velocity vector field according to impeller speed.
Obviously, as the impeller speed increases, a stronger vector field appears. It
can be seen that a circulation loop is formed between the impeller layer, and a
sufficient circulation loop is formed at 60 rpm. The top view shows that the
impellers of the three stages are rotating at the same speed so that the speed
difference does not seem to be so great. The analysis of this vector field is
directly related to the solid suspension ability in Figure 2-15. At 30 rpm, we
found that there was insufficient vector field, which resulted in the solid
particles not being able to spread throughout the reactor but sinking below. At
60 rpm, we can see that solid particles are spread well enough to be considered
as well suspension. However, it was confirmed that when the D / T decreased
to 0.33, the suspension ability was lowered. Particularly, it is confirmed that

solid particles are pushed toward the outer wall of the reactor, and then the static
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force is lowered. However, since the length and the effective area of the

impeller are reduced, low energy is used, and trade-off relationship is formed.

Figure 2-16 shows a little more clearly, depending on the height of the
reactor, the solid volume fraction is obviously more evenly distributed as the
impeller velocity increases. In this Eulerian multiphase model, it is expected
that various analyzes can be made because it is easy to see how the solid
particles change in response to other reactor geometry changes or operating

conditions changes.

101 T



0 rpm, D/T: 0.5 30 rpm, DIT: 0.5 60 rpm, D/T: 0.5

[m s?-1]

Solution.Velocity in Stn Frame

Vector 1
%

90 rpm, D/T: 0.5

Figure 2-14. Velocity vector field of each case.

. [ A=l 8t



Figure 2-15. Solid phase volume fraction for different impeller speed.
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2.4. CFD-Process integrated platform for
simultaneous process and reactor design

2.4.1. Introduction

In this section, CFD based Fischer-Tropsch multitubular reactor model is
integrated with process simulator, especially Aspen Plus, reactor model for
implanting the rigorous reactor model to the process simulator and analyzing
the reactor performance efficiently. In process systems engineering, there are
several steps for designing overall process. Especially, conceptual design step
should be performed primarily because it is easy to solve overall design
problem when its complexity decreases by dividing the overall problem into
sequential sub-problems. However, in detailed design step which is roughly
next step of conceptual design, there are no opportunities to change the
conceptual design of process and this limitation can block some combinations
of process design and detailed design. In this study, we integrated process
simulator used for conceptual designing and computation fluid dynamics used
for detailed designing simultaneously and applied to multitubular packed bed
Fischer-Tropsch Reactor. Several studies tried to develop this kind of reactor or

unit modeling such as AML:FBCR with fluent for gPROMS.
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2.4.2. Model formulation

In this integrated platform between CFD section and process systems section,
ANSYS FLUENT and Aspen Plus that are acknowledged software are used. In
CFD section, exact fluid dynamic simulation and rigorous physics phenomena
such as multiphase, mass transfer in complex geometry field, non-ideal mixing
effect, etc. can be performed effectively which is impossible in process
simulator. Moreover, 3D graphics analysis and unit geometry considering can
help us to analyze the unit performance more explicitly. Process systems,
however, also have advantages targeted at analyzing process systems. Simple
1-d reaction model and thermodynamic calculation with experimental data
from NIST and DIPPR help the user to understand and solve the chemical
equilibria exactly. Furthermore, systematic approach to overall process systems
is possible, unlike CFD section. Hence, these advantages of each section are

integrated into the proposed integrated platform which is shown in Figure 2-17.

CFD simulation transfers the information of detailed geometry, fluid
dynamics, heat transfer, velocity vector filed to the process simulator for
considering various parameters. Then, process simulator can calculate the exact
value of essential parameters such as heat transfer coefficient as function profile.
With exact calculated multi-dimension parameters, process simulator can
calculate the rigorous kinetics with its commercial reactor model for obtaining

heat of reaction and material properties. These values are transferred to the CFD
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simulator to calculate heat transfer and viscosity calculation once again and
iterate this calculation until simulation is converged. Therefore, reaction, unit
geometry, turbulence effect, non-ideal mixing, and the other physical
phenomena are perfectly considered in detailed designing of reaction and

systems design simultaneously.
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In this study, we implant this methodology into the FT multitubular fixed
bed reactor shown in Figure 2-18. The reactor has a total of 25 single channel
reactor tubes. The coolant enters the shell side as water and conducts heat
exchange with the reaction channel through two baffles. The kinetics used in
the reaction are the same as in Table 2-1. The calculation process is as follows.
First, estimate the heat of reaction curve using the 1-d reactor model in Aspen
Plus. The calculated heat of reaction curve is treated with the source term in
Fluent's reactor tube to generate heat and the heat exchange capacity is tested
through fluid flow. Once the calculations converge to the steady state, the heat
transfer coefficient and wall temperature of each tube are extracted and brought
to Aspen Plus. In Aspen Plus, the modified heat transfer coefficient and wall
temperature values for each tube are entered as profiles, and the heat of reaction
is calculated differently for each tube. The source of the heat of reaction curve,
which is different from the initial guess, is simulated by Fluent CFD simulation
and the process is repeated to the satisfaction level. Detail algorithm is shown

in Figure 2-19.
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Figure 2-18. Geometry of FT multitubular fixed bed reactor.
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Figure 2-19. CFD-Process systems integration algorithm.
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2.4.3. Result and discussion

In the conventional model, even if it is multitubular, the heat exchange
capacity of each tube cannot be simulated depending on the flow of the shell
side fluid or the shape of the reactor. However, the proposed model showed that

this is possible.

The coolant velocity profile clearly shows that the flux is higher at the inlet
and outlet, which are small in area, and that it is the same in the region where
the flow path is narrowed due to the baftle. In case of the rear side of the first
baffle, the cooling effect is negligible because there is almost no movement of
the fluid at the rear part. In the second baffle, it seems that the outlet is on the
side, thus cooling effect exists (Figure 2-20). The front view shows the tendency
to vary the convective heat transfer depending on the location of the tube. In
case of the tube which is in charge of the coolant inlet, it seems that it is cooled
well by obtaining a sufficient coolant flow rate, whereas in the side tube, the

coolant is not sufficiently distributed and the flow rate is slow.

This effect can be more clearly seen in the temperature profile. Since the FT
reaction is a highly exothermic reaction, it can be seen that there is a
considerably high heat generation in the front reactor through the side view and
arise in temperature. It can be seen that the temperature goes higher toward the
lower tube, which is more distant from the inlet part. It is thought that this

phenomenon occurs because the coolant cannot go down to the bottom and is



passed after the baffle. As you can see from the front view, it can be
distinguished. As shown in the front coolant velocity profile, the side tube is

not sufficiently cooled, and the reactor temperature is rapidly increased.

In Figure 2-21, wall function heat transfer coefficient of each reaction tube
is plotted through reactor length. At first, the wall function heat transfer
coefficient of all reaction tubes was given the same as the initial guess heat
transfer coefficient. This value does not affect the reactor length, and in fact, it
does not have to be arbitrarily determined since it may be some time to design
the reactor at first. However, the proposed model can be used to estimate the
exact wall function heat transfer coefficient through reactor length. In addition,
a revolutionary design methodology has developed because it obtains the
reaction kinetics by Aspen Plus and the precise degree of change of reactants
by separately calculating the wall function heat transfer coefficient according

to the geometry of the tube.

As aresult, the proposed integrated platform can be used for process design
by analyzing the entire process systems including CFD 3D reactor analysis and

reaction kinetics of process simulator.
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Figure 2-20. Coolant velocity profile and temperature profile of the
multitubular reactor; side and front view.
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2.4.4. Conclusion

In this study, we developed an integration platform that can be used in a
design by connecting the chemical reaction formulas calculated in CFD reactor
model and process simulator. This enables simultaneous execution of basic
design methodologies that sequential process of conceptual process design and
detailed unit design. Therefore, it is possible to study the results that can be
changed in the detailed design at the conceptual design stage and to find the

optimum point at the same time.
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CHAPTER 3. Optimization for the Unit,
Process, and Plant-wide Systems

3.1. Introduction

What we would like to achieve ultimately on various simulation platforms
obtained through advanced modeling as described in CHAPTER 2 is the
optimal solution for unit, process, and plant systems. In CHAPTER 3,
mathematical programming, derivative-free optimization algorithm, and deep
learning, which are used in modern computational science, are combined with
CFD and process simulator to propose an optimization strategy for a specific
purpose. In particular, by proposing an optimization platform that gradually
expands the range of reactor systems, process systems, and plant systems,

introduce the optimization methodology for specific applications.

Section 3.2 proposes an optimization methodology on the reactor scale level.
For CFD-modeled reactor models, multi-objective optimization was performed
to optimize both maximum productivity and minimum ATmax simultaneously.
The contribution of this research is the development of an algorithm that can
effectively perform multi-objective optimization for a costly function called

CFD and derive the concept of optimum packing division zone.

Section 3.3 discusses optimization methodologies at the level of process
systems. Section 3.3.1 discusses the modified Dividing hyper-Rectangle

(DIRECT) algorithm, which enables global optimization while effectively
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handling hidden constraints that are seriously considered in the generic process
simulator. Section 3.3.2 proposes the HENS methodology to analyze how many
heat exchangers present in this sustainable process are most economical to
construct in any combination of networks. We develop multiple utilities based
simultaneous HENS using sub-stage in sustainable process which is multiple

utilities system from the various refrigerant to heat source.

Finally, in Section 3.4, we have developed a technology to help safety
analysis in a plant-wide system by using data reduction using variational
autoencoder with deep convolutional layers. Then, we are developing a real-
time leak alarm system by replacing the gas leak simulation of a complex and
huge scale plant with a deep neural network based non-linear surrogate model

that can perform the real-time calculation.
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3.2. Reactor systems scale optimization

3.2.1. Multi-objective optimization of microchannel
reactor for Fischer-Tropsch synthesis using
computational fluid dynamics and genetic
algorithm

Optimization of microchannel reactor is a challenging problem because non-
convex functions including differential equations are involved in the model.
Typically, derivatives of these equations are very expensive to compute or often
impossible to obtain [63]. Thus, derivative-free methods are considered
attractive options for problems when numbers of non-convex functions are
included in the model. One way to deal with such a complex problem is problem
decomposition. In the decomposition method, the original problems are
decomposed into the simulation and optimization parts, and the simulation part
is externally calculated using a simulator. The optimization is usually carried
out using a stochastic solver due to the fact that stochastic solvers are based on
function evaluations. Leboreiro and Acevedo [64] used a genetic algorithm with
the decomposition approach for optimizing distillation column sequencing.
Javaloyes-Anton et al. [65] used a particle swarm algorithm interfaced with
Aspen Hysys to optimize a rigorous tray-by-tray distillation column model.
Recently, Lee et al. [66] decomposed the MINLP problem to optimize a
superstructure for a rigorous rate-based reactive distillation model for capturing

CO; from flue gas. Alternatively, a surrogate model has also been used for
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optimizing microchannel reactors. For instance, Jung et al. [29] used a surrogate
model constructed based on an artificial neural network to optimize the guiding
channel geometry in a U-Type coolant layer manifold for a large-scale
microchannel FT reactor. They used the commercial CFD software ANSYS
CFX to generate the flow field data required to construct the surrogate model
and used the MATLAB fmincon solver, which is based on sequential quadrating

programming, for optimizing the surrogate model.

In this work, a CFD model of a single microchannel reactor for FT synthesis
is first built using the commercial CFD software ANSYS FLUENT and the
simulation results are validated with experimental data from the literature. Then,
we employed the concept of discrete dilution zones in our catalyst-filled
microchannel FT reactor and performed a multi-objective optimization study
using an e-constraint method and genetic algorithm to determine optimal
dilution ratios and zone length that maximize Cs+ productivity and minimize

ATmax simultaneously.
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3.2.1.1. Modeling and optimization
The Fischer-Tropsch microchannel reactor design optimization problem can

be formulated as a multi-objective MINLP (Equation [3-1]):

min (fl(X, Y)le(X; Y))
subject to gixy) <0, i=1,23,..,p
h;(x,y) =0, j=1,23,..,q [3-1]
X € X c R, y EN"

where x and y are vectors consisting of n continuous and integer variables.
Continuous variables represent the dilution ratio, and integer variables
represent the packing length. In order to avoid technical difficulty with packing
the catalyst in different and continuous volume sizes, we assume the packing
length has integer values. We discretized the reactor length into 10 zones of
equal length allowing us to set the length variable as an integer variable. f(x,y),
g(x,y), and h(x,y) represent the objective function, inequality, and equality
constraints, respectively. The FT microchannel reactor design involves a large
number of equality constraints with differential terms that are used to describe
reaction kinetics, heat, and mass and momentum balance equations resulting in
a challenging MINLP problem. The resulting MINLP, thus, finds it difficult to
find a feasible solution using a deterministic optimization solver because
obtaining the gradient is computationally very expensive and it is often

impossible to find one.



Herein, we decompose the original MINLP. The decomposition divides the
original MINLP problem into sets of sub-problems and explicitly calculates the
subsets of constraints. Consequently, the optimization is carried out in the
reduced search space. The equality constraints, h(x,y), are decomposed as
h(x,y) and h,(x,y). hg(x,y) includes equations related to reactor design and
h,(x,y) includes those of optimization. With the decomposition, the MINLP
model can be reformulated as Equation [3-2]

min f; (x,y)

fZ (Xr Y) <e

ho(xy) =0

gixy) <0 [3-2]

XEM, yeM

with M = {(x,y):hg(x,y) =0 for some x €XcR", ycC

N}

For considering f; (Cs: productivity) and f, (ATmax) simultaneously, an &-
constraint method introduced by Haimes et al. [67] can be applied for f, where
Cs+ represents FT hydrocarbon products with 5 or more carbons and ATmax is
the difference between the inlet temperature and peak temperature inside the
reaction channel. If an objective function f; and a user-defined ATmax-
controlled scalar & exist in dimension M such that x* and y* are optimal
solutions to the problem (2), then x* and y* are weak Pareto optimum points as
per the general result of Miettinen [68]. This method has an advantage when

the number of objectives is two, and the shape of the Pareto optimal curve is

non-convex [69]. The MINLP problem is solved using a stochastic solver

122 o



integrated with the CFD model. Stochastic solvers are powerful tools for
finding the optimal solution when integrated with an external simulation tool
as they do not require a priori mathematical information or gradients of

functions.
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3.2.1.2. MINLP formulation using stochastic solver

The MINLP optimization is carried out using a genetic algorithm (GA) [70].
The objective function of the original problem is defined using Equation [3-3].

max Cs productivity(l;, x;) + P * (abs(ATpax (i, X;) — €) —

[3-3]
(ATmax (i, x;) — €))

Herein, the Cs: productivity is maximized, and ATmax is minimized. AT max
is bounded by the &-constraint in Equation [3-4]. For obtaining the Pareto
optimal curve, we find the maximum value of Cs: productivity with different ¢
values.

AT < € [3-4]

The e-constraint is the hidden constraint in this problem whose feasibility
cannot be realized before calculating the CFD sub-problem. Therefore, we
deactivate the point that does not adjust to the e-constraint, using scalarization
of ATmax With a large penalty factor P. However, this method is not the weighted-

sum or scalarization technique as the difference between ATm.and & does not

affect the objective function.

In Figure 3-1, the FT single-channel reactor length was divided into 10 zones
of 50 mm each, where each zone can have different catalyst dilution ratios.
Hence, during optimization, the packing length (1;) and dilution ratio (x;) are set

as design variables while operating conditions such as the gas hourly space
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velocity (GHSV) of syngas and inlet temperature were fixed. Index # is the

number of catalyst packing zones.

l; is the integer variable that tells how to divide the 10 zones of the reactor
into n packing zones. To illustrate, if n is 2, I; is 3, and 1, is 7, then the catalyst
packing zone will be divided into 2 zones of 3 unit zone length and 7 unit zone
length, that is 150 mm and 350 mm. Accordingly, the equality constraint that
expresses the sum of i should equal 10 as given in Equation [3-5]. The
stochastic solver generates the combinations of |; randomly within the variable

bounds defined by Equation [3-6].

Yt i =10 [3-5]

1<<10 [3-6]

Because the FT reaction is fast and highly exothermic, the temperature in
the immediate region of the reactor inlet, front zone in this case, tends to go
undesirably high. Therefore, it is necessary to strategically apply different
dilution ratios over the entire catalyst packing zone; for instance, higher dilution
ratios in the front zones and lower dilution ratios in the rear zones. This way,
the reaction rate in the front zones, especially in the region of the reactor inlet,
can be allowed to limit to a desirable level while still allowing a desirable level
of catalyst activity in the middle and rear zones of the reactor. By limiting the
reaction rates to the desired level and hence the heat generation rate in the front

zones, ATmax along the channel length can be minimized. The dilution ratio
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inequality constraint is given by Equation [3-7] with variable bounds of dilution
ratios 0 (all catalyst) to 1 (all diluent) [3-8].
Xi < Xj—1 [3_7]

0< X < 1 [3-8]
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Packing Material : Co/Al,O;
Particle mean diameter: ~280 um Wall temperature: 210 °C

Zone 2 Zone 10

Axisymmetric axis

Syngas
210 °C >

Pressure
" outlet

17143 mm 0.5 mm

50 mm : 50 mm L 50 mm

Figure 3-1. Superstructure of 500 mm FTS single microchannel reactor for dividing catalyst packing zone optimization.
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We built an integrated interface between MATLAB and the commercial
CFD software FLUENT, called the GA-CFD optimizer. In this study, the CFD
reactor model has inputs of d; and x;, and outputs of ATmaxand Cs+ productivity.
The GA algorithm in MATLAB calls FLUENT using ActiveX server
communication. With this connection, the input variables of FLUENT can be
received from MATLAB, and the output of FLUENT can be sent back to
MATLAB, as shown in Figure 3-2. Initially, the input parameters and reaction
kinetics data are set, and the CFD reactor model runs with those settings. After
that, the GA algorithm generates a population within variable bounds. Each
individual in the population is sent to FLUENT through the ActiveX server.
Once the output of FLUENT is received in MATLAB, the objective function
value is calculated and checked for termination criteria. The maximum
population size and six consecutive stall generations are used for the
termination criteria. If the termination criteria are not satisfied, a new
population is generated through three characteristic steps: selection, mutation,
and recombination. The GA solver does not provide a guarantee of optimality.
In fact, the convergence rates are different between integer variables and
continuous variables. Thus the global solution of a MINLP problem can seldom
be found from a stochastic solver. Several studies indicate that stochastic
solvers do not allow continuous variables to converge while discrete variables

correspond to a global optimum solution [71-73].
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Figure 3-2. Block diagram of GA-CFD optimizer algorithm.
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Herein, we optimized the MINLP problem in two stages. Several studies
used multi-stage optimization of MINLP, either to reduce the complexity or to
improve convergence [74-76]. In the first stage optimization, the MINLP
problem is solved multiple times with different crossover fractions (0.4, 0.6,
and 0.8) until the integer variables have the same solution for all values of the
crossover fraction. If the values of integer variables are different in each run,
the population size of the problem is increased, and the calculation is repeated.
The original MINLP problem is reduced to NLP in the second stage using the
integer variable solution found in the first stage. In the second stage GA-CFD,
the reduced NLP has optimized once again with the GA. The 2™ stage
optimization still does not guarantee the global optimum solution; an improved
solution can be found in the 2™ stage optimization in many cases within a
reasonable computation time. Herein, a maximum of 50 generations and 20 x »
individuals for a population are used. Single point crossovers with crossover
fractions of 0.4, 0.6, and 0.8, two elite populations, and Gaussian mutation are
used in the GA solver. The tournament selection method is used to choose
parents for the next generation. Note that we adopt the GA parameters from

[77].

We compare the effectiveness of the GA-CFD optimizer with grid search
when the number of zones is relatively small. If the number of zones is one and

we divide the continuous variable with 0.1 scales, then the near optimum
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solution can be calculated within 10 CFD executions. If the number of zones is
2, 3, or 4, the number of function evaluations increases to 405, 4320, and 17640,
respectively. Considering that the average function evaluation time is about 1
minute, we did a grid search only for cases having one and two zones and

compared the result with the GA-CFD optimizer.
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3.2.1.3. Optimization result

In Figure 3-3, the results of a grid search, dividing x; as 0.1 scales and
considering all possible combinations of I, with 1 zone and 2 zones are
compared with results from the 1% stage GA-CFD optimizer with 2 zones and
3 zones. € was changed to different ATmax values such as 1, 1.5, 2, 3, and 5 for
obtaining the Pareto optimal curve. The meaning of the curve is the correlation
between ATma, which represents the safety factor, and maximum Cs;
productivity, which represents the efficiency of the reactor, at fixed ATmax.
When 7 equals 2 and 3, all optimal points calculated by the GA-CFD optimizer
through all the temperature ranges are advantageous compared to 1 zone
catalyst packing. Optimization results indicate that the discrete dilution method
allows distribution of the overall heat of the FT reaction in the most strategic
manner to different catalyst packing zones. The 3 zones 1 stage GA-CFD
optimizer gives the best solution except when € =1, compared to the solution
from a 2 zone total grid search. Although the 2 zones 1% stage GA-CFD
optimizer gives the same optimal solution as the total grid search in the high
ATmax region, only sub-optimal solutions are obtained in the low ATmax region.
The feasible searching area decreases at low € because the e-constraint tightens
the boundary of the feasible searching area. In order to confirm the
reproducibility of the GA-CFD results, Table 3-1 that shows multiple execution

results of the optimization problem is included. Although a pseudo-random
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initialization of the initial population is carried out, the best-found solutions are
very close to different numbers of zones and € constraints. Even though the
reproducibility of the MINLP GA-CFD optimizer is appropriate to this
optimization problem, it is true that the best-found solution cannot be
guaranteed to be the optimal solution. Thus, 2™ stage NLP GA-CFD

optimization is performed to increase the quality of the solution.
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—e— Total search (n=1)
3.4 1 + + Total search (n=2)
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Figure 3-3. Pareto optimal curve between ATmax and 1/Cs: productivity of
total search and GA-CFD optimizer through n=1, 2, and 3.
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Table 3-1. Multiple execution results of the GA-CFD with various crossover fraction.

2 zones 3 zones 4 zones
Crossover ATrmax 1/Cs. productivity ATmax 1/Cs+ productivity ATmax 1/Cs. productivity
fraction (°C) (m?-s'mol?) (°C) (m?-s'mol?) (°C) (m?-s'mol?)
0.4 3.985 1.667 1.945 1.798 1.996 2.007
0.6 3.818 1.633 1.928 1.812 1.966 1.919
0.8 3.854 1.623 1.984 1.798 1.921 1.869
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When the number of catalyst packing zones increases, the performance of
the 1* stage GA-CFD optimizer decreases. Unlike 2 zone results, the 4 zone 1%
stage GA-CFD optimizer gives high performance at low ATm.x and low
performance at high ATmax. To illustrate, 4 zone optimal points are better than
2 or 3 zones at low AT although this is not the case at high ATmax. A higher
number of catalyst packing zones can describe the optimal solution more
sensitively than a lower number of catalyst packing zones because with the
former the searching area can be expanded. However, the 1% stage GA-CFD
optimizer has low performance due to the handling method of integer variables
and constraints in the GA algorithm. It makes #*20 children in a population
with a random combination of each I; in its boundary condition without
considering the summation constraint (11). For children whose 1; combination
is infeasible, the optimizer gives a penalty value to the objective function and
does not evaluate the CFD reactor model function. This algorithm helps the
randomness of integer variable combinations but decreases the number of
children in a population, and in some cases, it is too low to proceed with the
optimization. At 4 zones and further, we observed that there are few feasible
children in the population and the optimizer stops iterating at an early stage; the
optimizer cannot find a good solution before stall generation. Simply changing
the crossover fraction and stall generation were not enough to find a high-
quality solution; so a 2" stage GA-CFD was executed. Figure 3-4 shows the

absolute advantage, indicated by Pareto optimal curve, of a 4 zone 2™ stage
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GA-CFD optimization compared to a 3 zone 1% stage GA-CFD optimization,
which the 4 zone 1% stage GA-CFD optimization failed to achieve. The number
of function evaluations was 1930, about a 90 % reduction from that of the 4
zone grid search (17640). Information of the best found Pareto optimal curve
calculated by the 4 zone 2™ stage GA-CFD optimization is given in Figure 3-5.
Firstly, all temperature profiles through the position of the axial direction of the
reactor are bounded under the temperature constraint successfully. Front
sections of each zone show a sudden temperature rise because of the higher
catalyst loading, and 4 discrete sections are shown. The reason why the
temperature distribution at the high temperature constraint value is less uniform
than the low temperature constraint value is that CO and H; are already reacted
at the front of the reactor, and it is not enough to increase the temperature at the
rear section of the reactor. Thus, it does not imply that the optimal solution is
not efficient. Although the CO conversion at higher € value is higher than at
lower € value because of the possibility of high temperature which accelerates
the reaction rate, CHy selectivity is lower because methane selectivity increases
when the reactor temperature is higher, decreasing the Cs: productivity.
However, the operator does not need to consider this value because each point
of the Pareto-optimal curve is maximized for Cs; productivity solution at that

temperature constraint.
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Figure 3-5. Profile of AT, CO conversion, and CH,4 selectivity of the best
found Pareto optimal curve calculated by the 4 zone 2™ stage GA-CFD.
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In order to clarify the effectiveness of the proposed GA-CFD method, the
same objective functions were solved by other traditional non-convex
constraint local optimization algorithms such as active-set, interior-point, and
sequential quadratic programming (SQP). Integer variables were processed by
the bound method. Each sub-optimal result with three different zones (2, 3, and
4) and five different temperature constraints as e-constraints (1, 1.5, 2, 3, 4) is
given in Figure 3-6. The GA-CFD optimizer gives a better solution than a local
optimization algorithm. Especially, the result of the 2™ stage GA-CFD
optimizer with 4 zones is always better than any of the other methods. Active-
set, SQP, and SQP-legacy algorithms return sub-optimal solutions while the
interior-point method cannot find optimal solutions in most trials. Although
several local optimization solvers sometimes return a better solution than the
1* stage GA-CFD optimizer at the point where the e-constraint equals 1, we
strongly believe that the GA-CFD optimizer locates on the dominant position
because the convergence rate of the local solver is too low to use generally and
the GA-CFD optimizer is developed for derivative-free MINLP, which is not

supported in traditional non-convex constraint local optimization algorithms.
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The input parameters and the optimal solutions for several points are given
in Table 3-2. The key factor in the decrease in computation cost of GA-CFD
optimization is the decrease in the number of function evaluations of the CFD
reactor sub-problem, as the CFD reactor sub-problem requires high
computational time to solve. In the case of 1% stage GA-CFD optimization, the
number of function evaluations in most cases was less than 1000 cycles.
Although this value is larger than the 2 zone total grid search (405), it is much

smaller than the 3 and 4 zone total grid searches (4320 and 17640, respectively).
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Table 3-2. Result of several optimal points given by GA-CFD optimizer.

1 2 3 4 5 6 7 8

Objective function

1/C5+ productivity (m?s-mol) 1.62 1.62 1.60 2.11 1.89 1.80 1.87 1.73

dTmax (K) 5.35 3.85 3.59 1.93 1.99 1.95 1.92 1.97
Variables

1 10 1 1 10 4 2 2

I 9 2 6 1 2 2

I3 7 3 3

l4 3 3

X| 0.000 0.366 0.723 0.600 0.595 0.604 0.724 0.674

X2 0.123 0.367 0.419 0.256 0.667 0.487

X3 0.103 0.052 0.48 0.364

X4 0.157 0.001
£ 4 4 2 2 2 2
n 1 2 3 1 2 3 4 4
Crossover fraction 0.8 0.6 0.8 0.4 0.8 0.4
CPU time (min) 905 570 246 81 78 1428
Number of generation 50 50 24 16 19 30
Function evaluation 1400 686 275 88 94 1930
Stopping criterion® 0 2 2 0 1 1 1 2
GA-CFD stage 1 1 1 1 1 2

¢ Stopping criterion 0: grid search does not need stopping criterion, 1: maximum stall generation has been reached (5),
2: maximum number generation has been reached (50) for point 1-7 and (30) for point 8
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Analyzing the points that are on the Pareto optimal curve, we realize that the
difference in catalyst dilution ratio between the zones is not extreme. It means
that a gradual change of dilution ratio is better than a sudden change because a
sudden change cannot distribute the reaction rate effectively over the entire
catalyst packed zones of the reactor. If the dilution ratios in the front zone are
much lower than in the rear zones, most of the reaction occurs at the rear zones
and the problem of hot spots appears again, this time at the rear zones.
Furthermore, the method of dividing the catalyst packing zone has no advantage
when ¢ is high because, at high ¢, the decreasing effect for Cs. productivity is
much larger than the decreasing effect for ATmax. Hence, this method is most
appropriate when safety issues are critical or specific chemical components are

highly sensitive to temperature change.

To discuss the difference between pre- and post-optimization performance,
a summarized bar graph is shown in Figure 3-7. ATmax of the best solutions from
GA-CFD and the local solvers are lower than the base case (which does not
apply the catalyst zone division method) with similar Cs: productivity. GA-
CFD can find a better solution than the local solver. Unlike AT.x, the best
found 1/Cs; productivity with a similar ATmax from the local solver does not
decrease. The interior-point method cannot find a feasible solution for that
search region. However, GA-CFD can decrease the objective function, and we

can conclude that GA-CFD had a high advantage over other optimizers. For
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analyzing the detail of the reactor interior, two sets of optimal points are
selected. In Table 3-2, the first case compares ATmax among points 1-3 and 8,
where 1/Cs; productivity is similar (1.60-1.73 m?-s-mol ') for different numbers
of zones (1, 2, 3, and 4, respectively). The second case compares Cs:
productivity among points 4-6 and 8, where ATmay is similar (1.93 — 1.99 °C)

for different numbers of the zone (1, 2, 3, and 4, respectively).

145 .



AT, (°C), 1/Cs, productivity (m?2 s/mol)

Base (no division)
GA-CFD optimizer
Active-set
Interior-point

SQP

SQP-legacy

UG

Base GA-CFD local s?)lver

Base GA-CFD local solver

ATpax (°C)
* with similar C5+ productivity (1.62 — 1.73)

1/Cs, productivity (m2 s/mol)

* with similar AT,,,,,(1.90 - 1.97)

Interior-point method fail to converge

Figure 3-7. Summarized result graph of ATmax and Cs+ productivity through
single zone packing, GA-CFD, and various local solver.
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In Figure 3-8, polar contour graphs of the reactor’s AT profile are given for
case 1 where the angle direction is the reactor length, and the radial direction is
the reactor radius. Optimal catalyst packing of the 4 zone type reactor results in
a 63.2% decrease in ATmax compared to the optimal catalyst packing of the 1
zone type reactor, for similar 1/Cs: productivity (1.60-1.73 m?-s'mol™). In the
front zones, reaction rates are lowered and the remaining reactants, thus,
manage to react at rear zones under a higher dilution ratio. It is obvious that the
Pareto optimal solution calculated by the 2™ stage GA-CFD result has an
advantage over the sub-optimal points calculated by other methods such as the
local solver and even the 1% stage GA-CFD by Figure 3-6. Moreover, Figure
3-8 visualizes a better temperature distribution of the Pareto optimal solution.
Although the rear position temperature of the 2™ stage GA-CFD solution is
higher than the other solutions, it reduces the front temperature from rising,
which is the main problem of highly exothermic reactors such as the FT reactor.
Since the heat of reaction and heat transfer to coolant channel together
determine the reactor temperature, mere redistribution of the heat of reaction,
using optimal catalyst packing, does not guarantee a good distribution of
temperature. Thus, for the proposed GA-CFD optimizer which set the e-
constraint as ATmax, no heat of reaction is proper to optimize the reactor
efficiency and safety simultaneously. Finally, we can find points that have
similar or even higher Cs:+ productivity than the points with high averaged

catalyst dilution ratio. To illustrate, comparing the point 2 (n=2) in Table 3-2



which has the 0.147 averaged catalyst dilution ratio and 1.66 m?*s-mol™! 1/Cs
productivity with the point (n=1) which has the same dilution ratio, the 1/Cs+
productivity of the 1 zone point is higher (1.66 m2-s-mol™) than the 2 zones
point. Therefore, it can be concluded that the temperature profile and
component distribution affect the reaction kinetics simultaneously and not only
the low dilution ratio, but the dilution zone combination together guarantee the

efficiency of the reactor.

148 3 3 ty .



AT (°C)

0.0008 -

0.0002 -

0.0004 -

0.0006 -

Position of radial direction (™)

0.0006 -

0.0004 -

0.0002 -

0.0000 -

0.0008

0.4

04

03

e

0.2

%=0.000 =

00 *— ;0723

a)

%,=0.367

X,=0.001

0.0 ¥ x=0366

03

\

/

%,=0.123

00 *-

x,=0.674

%,=0.364

%,=0.487

0z d)

Figure 3-8. Polar contour graph of AT profile under similar Cs+ productivity
of a) single zone catalyst full packing, b) two zone GA-CFD result, c) three
zone GA-CFD result, d) four zone 2,4 stage GA-CFD result.

*radial direction is reactor width and angle direction is reaction length.
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In Figure 3-9, although ATnax is similar, it is possible to get more Cs+ by
high CO conversion and reaction control using catalyst packing zone division.
The Cs+ productivity of the optimal solution reactor with 4 zones is 22 % higher
than that of the 1 zone reactor. A strategy that decreases the reaction rate in the
front zones for controlling ATmax and increases in the middle and rear zones for
producing the Cs. at the reactor exit is shown on the Pareto optimal curve. In
the case of the 2™ stage GA-CFD 4 zone, although the dilution ratio of the front-
most zone is higher than the other cases, the dilution ratio of the middle and
rear zones are lower for similar values of ATmax achieved. Finally, CO
conversion of the 2™ stage GA-CFD 4 zone is 5.8 %, 17.1 %, and 40.7 % higher

than the 3 zone, 2 zone, and 1 zone results, respectively for a similar ATmax.
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Figure 3-9. a) CO conversion and CH4 selectivity and b) Cs. reaction (ID=6) rate under the similar ATmax point of single
zone catalyst packing, two zone GA-CFD result, three zone GA-CFD result, and four zone 2-stage GA-CFD result.
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3.3. Process systems scale optimization

3.3.1. A modified DIRECT algorithm for hidden
constraints optimization problem

3.3.1.1. Introduction

The chemical process systems are troublesome problems to optimize them
because of its essential attributes. They have a number of equality constraints
such as mass balance and energy balance, and it makes hard to find a feasible
solution. Not only the objective function but also the feasible region are
generally non-linear, and numerous local optimums exist. To solve these
problems, various kinds of optimization algorithms have been developed and
applied to the industrial applications [78-85]. Derivative-free optimization,
which can optimize the function for which derivative information is unavailable,
unreliable, or impractical to obtain because of being expensive to calculate or
noisy [86], is the key technique for this purpose. The reason why this kind of
technique is important is that many analyzing methodologies used in
engineering and science problems are black-box models for which a user cannot
get the equations and other specific information being used from either the
software or the analyzing machine. Especially, commercial software usually
does not give exact equations and derivative information because of calculation
methodology or their intellectual property rights. To solve this problem, many
researchers have studied derivative-free optimization to optimize their specific

engineering or science problems [87-91]. Derivative-free optimization
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algorithms can be classified by two types of criteria, which are optimizing
directly or indirectly and locally or globally. The direct search method uses the
objective function directly for optimization whereas models based on an
indirect search method regress the original function into an accurate surrogate
model. Specifically, nature-inspired metaheuristic stochastic global search
algorithms such as a genetic algorithm (GA), simulated annealing (SA), and
particle swarm algorithms (PSO) are different from deterministic algorithm
because they involve randomness which does not exist in the deterministic
algorithm. Furthermore, algorithms are different depending on whether their
target is local or global. A brief classification of derivative-free optimization
algorithms originally provided from [86] are listed in Table 3-3 and see [86] for

more details.
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Table 3-3. Classification of derivative-free optimization.

Local Search

Global Search

Deterministic
algorithm

Direct search
method

Model-based
search
method

Nelder-Mead simplex algorithm
Generalized pattern search (GPS)
Generating set search (GSS)

Mesh adaptive direct search (MADS)
Pattern search methods using

simplex gradient

Trust-region methods
Implicit filtering

Lipschitzian-based partitioning techniques
- Dlvide a hyper-RECTangle(DIRECT)

- Branch-and-Bound(BB] search

Multilevel coordinate search (MCS)

Response surface methods (RSMs)

- Kriging

- Analysis of computer experiments (DACE)
stochastic model

- Efficient global optimization (EGO)

- Radial basis functions

- Sequential design for optimization (SDO)
Surrogate management framework (SMF)
Optimization by branch-and-fit

Stochastic
algorithm

Hit-and-run algorithms
Simulated annealing (SA)
Genetic algorithms (GA)
Particle swarm algorithms (PSO)
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In the case of the chemical engineering industry, commercial process
simulators for designing process systems such as Aspen Plus, Aspen HYSYS,
and SimSci PRO/II can be classified as black-box models in general. Since they
are sequential modular-based simulators, it is hard to get derivative information
of the target variables. Furthermore, an optimization tool given by a program
usually shows low performance. Hence, for optimizing the process simulator
function, an appropriate derivative-free optimization algorithm is necessary.
For this reason, much research has been conducted for designing optimal
process models with high-performance, derivative-free optimization algorithms
by integrating commercial simulators and optimization algorithms. Lee et al.
[92] integrated Aspen Plus and a gradient-based optimization method with
MATLAB code for maximizing the exergy efficiency of the multi-component
organic Rankine cycle (ORC) by changing component composition. Also, Lee
et al. [77, 93] used GA for decomposing the MINLP problem to optimize a
superstructure of a rigorous rate-based reactive distillation model and green-
field post-combustion CO» capture process. For optimizing a rigorous tray-by-
tray distillation column model, Javaloyes-Anton et al. [94] implanted a particle
swarm algorithm into a process model simulated by Aspen HYSYS. Cozad et
al. [95] developed the automated learning of algebraic models for optimization
(ALAMO) to make a surrogate model of the given derivative-free function, and
it can be used for a simulation of model-based derivative-free optimization [96].

Shi and You [97] proposed a novel adaptive surrogate modeling-based
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algorithm to solve the integrated scheduling and dynamic optimization problem
for sequential batch processes. Quirante et al. [98] used kriging interpolation,
one of the response surface methods (RSMs), for rigorous designing of
distillation columns where original model is formulated by Aspen HYSY'S. Not
only that, but also various researchers have tried to optimize the process
systems using commercial simulator with external optimization algorithms [99-
105].

Especially, liquefied natural gas (LNG), which is a widely used energy
source for the remote transportation due to its environmental friendly attributes
[106, 107], is the key area for this type of optimization. The liquefaction process
for natural gas (NG) is an energy intensive process and therefore many
researchers have widely studied about the process design and optimization of a
liquefaction process [108-110]. Among the liquefaction technologies, single
mixed refrigerant (SMR) liquefaction process is a traditional but still effective
process for many projects with small-scale LNG production capacity [111-113].
It uses only single cycle of mixed refrigerant (MR) and therefore its efficiency
is limited compared to the advanced processes such as the propane precooled
mixed refrigerant (C3MR) or dual mixed refrigerant liquefaction process.
However, it has the advantage of simple configuration, which makes the
process easy to operate it with lower capital investment. Also, the efficiency of
SMR can be improved with proper modification and optimization, and

therefore many researchers have studied the SMR process optimization
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problems. Shirazi and Mowla modeled optimized the PRICO SMR process by
using GA [114]. Xu et al. modeled and optimized the PRICO SMR with Aspen
Plus and GA [115]. Khan et al. modeled an SMR liquefaction process with a
commercial simulator Honeywell UniSim Design and optimized it with the
nonlinear programming [116], particle swarm paradigm [117] and sequential
coordinate random search (modeled by Aspen HYSYS) [118]. Moein et al.
modeled the APCI SMR process with Aspen HYSYS and optimized it with GA
when the ambient temperature is changed [119]. Morosuk et al. modeled
PRICO SMR with Aspen Plus and discussed about the evaluation and
optimization for improvement [120]. Mehrpooya and Ansarinasab modeled and
compared Linde and APCI liquefaction process based on exergy and cost
analysis with Aspen HYSYS [121]. Park et al. modeled and optimized SMR
using Aspen HYSYS and particle swarm algorithm with varying ambient
temperature [122].

Previous optimization methods for a process simulator usually used a
stochastic solver and surrogate model-based optimization because their
implementation is simple compared to deterministic algorithms. Especially,
nature-inspired metaheuristic algorithms were applied to the general purpose of
a significant number of process systems studies, and they gave fine best-found
solution in general [93, 115, 123-130]. However, when optimizing a process
with a methodology that has been traditionally used, the following problems

may arise. In the case of stochastic solvers, the algorithms highly depend on
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tuning parameters, and the convergence rate of the objective function is slower
with improper parameters. In addition, because these parameters are so
numerous, finding an appropriate parameter set can be another problem. If the
objective function has a high computation cost, it can be very inefficient
because additional evaluation must be applied. Moreover, because of the
features of the stochastic solver, randomness, even if the same initial conditions
such as population for GA and swarm for PSO are set the same, it can be
optimized along with other trajectories, thus causing reproducibility problems.
There is also a problem because the initial population itself can have a large
impact on optimization and does not guarantee that solvers converge into a
global optimal solution. Moreover, although model-based search methods have
been developed by machine learning technology, it is difficult to consider
hidden constraints, especially complicated shape constraints that should be
calculated in a process simulator. In fact, in order to solve these problems, stable
noisy optimization by branch-and-fit (SNOBFIT) which can solve the hidden
constraints in a robust way have been developed [131]. It is necessary to
develop a handling method because it is hard to consider the possibility of
hidden constraint when forming surrogate with a conventional regression
model. Although several studies were performed with systematic optimization
using the explicit function of liquefaction process [132-135], explicit process
modeling makes lots of works, and complicated mathematical expression such

as differential algebraic equation for kinetics can decrease the convergence rate.
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Conclusively, most compatible optimization algorithms for process
modeling should need a global search algorithm, hidden constraints handling,
robustness, and a consistent result. As can be seen in Table 3-3, typical
algorithms that satisfy these properties are Lipschitzian-based partitioning
techniques. Among these, DIRECT-type algorithm is an appropriate algorithm
for solving general engineering problems [136-143]. It is proved by Jones and
Finkel and Kelley [144, 145] that if objective function is a deterministic and
Lipschitzian continuous, then convergence to the global optimum is guaranteed.
Since DIRECT does not require a Lipschitzian constant, there is no need to
predict or compute it, so the parameter is actually only a Jones factor, and even
this value has found an appropriate value [144]. Thus, deterministic and robust
optimization can be performed. However, several improvements should be
performed to apply the DIRECT algorithm to the process optimization. The
DIRECT algorithm does not have a specific interpretation for handling hidden
constraints [146]. Thus, if we want to integrate a derivative-free optimization
scheme effectively with an unknown infeasible region with hidden constraints
of the process simulator function, then we should develop an effective hidden
constraint-handling algorithm. Therefore, in this study, we developed a sub-
dividing step as a hidden constraint handling method to apply the DIRECT
algorithm to process systems optimization. By applying this method to the SMR
liquefaction process modeled by Aspen HYSYS, the performance of the

algorithm was validated.
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The paper is organized as follows. A brief introduction to the original
DIRECT method is described. The proposed modified DIRECT algorithm that
has a sub-dividing step to handle hidden constraints is explained and compared
with the previous methods of the barrier approach and neighborhood
assignment strategy (NAS) [138]. To test the performance of the modified
DIRECT algorithm with a sub-dividing step, a simple single mixed refrigerant
(SMR) process for natural gas liquefaction with 3 hidden constraints modeled
by Aspen HYSYS V8.8 is utilized. Finally, the optimized process is compared
with the conventional DIRECT algorithms (barrier approach, neighborhood
assignment strategy), the stochastic global search algorithms (GA, PSO, SA),
the model based global search algorithm (SNOBFIT), and the several local

search methods (GPS, GSS, MADS, SQP, active-set, interior-point)
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3.3.1.2. DIRECT Algorithm with Hidden Constraints

The DIRECT algorithm is based on Lipschitzian-based partitioning
techniques, and it can handle non-linear and non-convex functions globally [86].
Since many functions of process systems engineering in chemical engineering
are calculated by commercial software assumed to be black-box models for
users, and as the equations are highly non-linear and non-convex, a
deterministic derivative-free global optimization algorithm is appropriate.
Moreover, after they evaluate the simulation, commercial process simulators
give error messages because of convergence errors or a physically infeasible
region. Thus, we should consider hidden constraints that do not give
information of infeasibility before evaluating a function. In this research, we
suggest a modified DIRECT algorithm to handle hidden constraints by using a

sub-dividing step based on the original DIRECT algorithm.
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3.3.1.3. Basic Ideas of the Original DIRECT algorithm

The mathematical description of the original DIRECT algorithm was
developed by Jones et al. [144]. Two critical ideas were implemented in
Shubert’s algorithm for applying it to derivative-free optimization problems
without the Lipschitz constant. First, hyper-rectangular partitions based on N-
dimensional trisection are suggested. This can decrease the computational cost
by evaluating the function at the center of the hyper-rectangle and not at all
extreme points. Since the center point solution of the hyper-rectangle is
conserved, unnecessary overlapped function calculations are not performed
after partitioning. Second, the decision criteria regarding which hyper-
rectangles should be divided are decided based on the concept of potentially
optimal hyper-rectangles. At the iteration step, all hyper-rectangles are
identified that are potentially optimal and only potentially optimal hyper-
rectangles will be divided before passing to the next iteration. The brief
description of the potentially optimal condition based on [144] is given in

Definition 1.

Definition 1 Let i and j be the index of the hyper-rectangle and c; and c; be
the center of hyper-rectangles i and j, respectively. d; is a measure for this hyper-
rectangle such as the distance from the center of hyper-rectangle i to its vertices.

Let € called Jones factor be a positive constant and let fiuin be the minimum
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function value so far iteration. A hyper-rectangle j is called potentially optimal
if positive K exists such that
f(¢))—Kdy < f(c;) — Kd; for VI [3-9]
fle)) —Kdj < frnin — &lfiminl [3-10]
The step of identifying hyper-rectangles is performed at every iteration
repeatedly. Thus, resolution of the searching area near the locally or globally
optimal solution increases sequentially. A brief description of the DIRECT

algorithm is shown in Algorithm 1.
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Algorithm 1 DIRECT (upper and lower bound of variables, f, ¢,
termination criteria)

Normalize the searching space to be the unit hyper-rectangle.
Evaluate the function at the center of hyper-rectangle (c1) and fmin=F(c1).
while termination conditions such as reaching the number of max
iteration and function evaluation are activated
Identify which hyper-rectangles are the potentially optimal hyper-
rectangles.
Divide all potentially optimal hyper-rectangles.
Evaluate the function value at the center of new hyper-rectangles.
Update fmin.
end while
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3.3.1.4. Modified DIRECT Algorithm for Hidden
Constraints

The DIRECT algorithm does not have a constraint-handling mechanism,
and its searching area consists of the upper and the lower bound of each variable.
However, a constraint-handling mechanism should be needed to solve
engineering application problems. Three constraint- handling methods were
proposed which are the barrier approach, L1 penalty function [147], and the
neighborhood assignment strategy (NAS) [138]. However, the L1 penalty
function approach is not appropriate for hidden constraints because it requires
a predefined explicit constraint. If a commercial process simulator diverges at
an infeasible point, then it is impossible to use the L1 penalty function because
it has no function value. Furthermore, although the barrier approach can handle
the hidden constraint, it was not an appropriate method with DIRECT with
hyper-rectangles with a large feasible area, but an infeasible center [148]. Thus,
the function should be evaluated by checking whether the point is either in the
hidden constraint or not and whether it can be effectively handled by NAS.
NAS sets the enlarged rectangle whose center is an infeasible point and
determines the surrogate value from the already evaluated feasible points. Thus,
it does not need a penalty parameter or constraint function value. However,
because NAS does not use information of constraints such as the shape of the
constraint or constraint violations, its performance can decrease greatly when

the shape of the constraints is highly non-convex [149].
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To solve this problem, we suggest a sub-dividing step for infeasible hyper-
rectangles that do not satisfy the hidden constraints. If the points are identified
as infeasible points, then the function assigns a penalty value like the barrier
approach. In the sub-dividing step, all infeasible hyper-rectangles are divided
after dividing potentially optimal hyper-rectangles, and the center values of the
new hyper-rectangles generated by the sub-dividing step are calculated. After
the sub-dividing step, the new minimum function value is updated and goes
back to the next iteration. A brief introduction of this algorithm is shown in

Algorithm 2.
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Algorithm 2 modified-DIRECT (upper and lower bound of variables, f,
&, termination criteria)

Normalize the searching space to be the unit hyper-rectangle.
Evaluate the function at the center of the hyper-rectangle (c1).
if f(cy) is feasible
fmin=Ff(C1).
else
Divide the first hyper-rectangle.
end if
while termination conditions such as reaching the number of max
iterations and function evaluations are activated
Identify which hyper-rectangles are the potentially optimal hyper-
rectangles.
if the sub-dividing step is activated
Identify which hyper-rectangles have an infeasible function
value
end if
Divide all potentially optimal hyper-rectangles
Evaluate the function value at the center of the new hyper-
rectangles.
if the sub-dividing step is activated
Divide all infeasible hyper-rectangles
Evaluate the function value at the center of the new hyper-
rectangles.
end if
Update frin
end while
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To illustrate the sub-dividing algorithm, Figure 3-10 shows a geometric
graph of the DIRECT algorithm with a sub-dividing step at the third main
iteration. Unlike the barrier approach, the sub-dividing step can decompose the
edge of the hidden constraints and expand the feasible searching area. Thus, it
is possible to consider complicated shape constraints with high skewness such
as a non-convex shape. Although the calculation cost is higher than the original
DIRECT algorithm because of the sub-dividing step, if sub-dividing steps are
performed at the proper iteration, then performance can be increased effectively
within computational limitations. For validating the performance of a simple
problem with a hidden constraint, the Goldstein-Price test function, which is
given by the Equation [3-11], is used [150].

f(x1,%5) = [1+ (X + %, + 1)%(19 — 14x; + 3x7 — 14x, +

6x1X, + 3x3)][30 + (2x; — 3x,)%(18 — 32x; + 12x7 + [3-11]
48x, — 36X1X, + 27x2)], {X1, 2} © D N Dpigaen

where the pre-defined feasible region D and hidden constraint Dhigaen are
defined as Equation [3-12] and [3-13].

D={(xyx2) | (=2,-2) < (x1,%2) < (2,2)} [3-12]

Dhidden = {(x1,%2) | [(x4 +1)* + (xz +1)* 2 1.1] n

[3-13]
[(x1 = 1% + (x; — 1)* 2 0.9}
We assume that we do not know the value of Dyigden, thus only the function

can determine that the point is feasible or in[feasible and the optimization
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problem is min f(x1,x5). The sub-dividing step is activated at
X1,X2EDNDhidden

iterations 5 and 15. The barrier approach and NAS are also evaluated with a
limited function evaluation number set to 2000 for comparing the algorithm

performance in the same manner.
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Figure 3-10. Geometric interpretation of potentially optimal point and
infeasible point using DIRECT with sub-dividing step algorithm on two
dimension hidden constraints problem at a) the first iteration, b) the second
iteration, c) the third iteration with the first sub-dividing step, d) the fourth
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The objective function values versus function evaluation are illustrated in
Figure 3-11. Convergence speed of the barrier approach, NAS, and the sub-
dividing step are similar at the early stage, but the optimal values are different.
The final optimal values are 14.4, 4.3, and 3.5, respectively. Moreover, NAS
shows a second decreasing phase at about the 1700 function evaluation number
point. It seems that NAS finds the feasible points in the enlarged rectangle with
a surrogate model at that stage. In Figure 3-12, the barrier approach and NAS
show convergence values of feasible points at (0.22, -0.87) which is far from
the infeasible circle hidden constraints while the sub-dividing step has
convergent points at (0.049, -0.99) which is almost at the edge of the hidden
constraints. Although NAS has a second set of convergent points at (0.074, -
0.97), it is also farther from the hidden constraints than the sub-dividing step.
The reason for the inefficiency of the barrier approach is that the barrier
approach deactivates the infeasible hyper-rectangle and that rectangle cannot
be divided until optimization is over. Thus, the resolution of feasible rectangles
near the hidden constraint is very low, and we can see a rectangle barrier in
Figure 3-12. There is a possibility that NAS gives a low performance when
NAS fails to consider the shape of the hidden constraint and estimates the

function value of an infeasible point from the surrogate model.
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3.3.1.5. SMR Liquefaction Process for Natural Gas

The single mixed refrigerant (SMR) liquefaction process is one of the
famous cryogenic mixed refrigerant processes because of its simplicity. The
basic structure of the SMR process consists of a single stage cold box, a Joule-
Thomson valve, and 4 series compressors with after-cooling. Although SMR
processes are theoretically inefficient in exergy compared to advanced
liquefaction processes, such as the dual mixed refrigerant (DMR) cycle and the
propane pre-cooled mixed refrigerant (C3MR) cycle [133], they have been used
because of their simple structure and network connections, which guarantee
easy control, operation, and low capital cost. In this study, the base case of the
SMR process was selected from [151] which consists of two multi-stream heat
exchangers, a phase separator, three compressors, and after-cooling heat

exchangers.
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3.3.1.6. Process Model and Design Variables

The process is modeled by Aspen HYSYS V8.8, which is a qualified
commercial process simulator in the LNG industry. The process flow diagram
and the name of each unit and stream are given in Figure 3-13. Table 3-4 lists
the simulation basis and feed conditions in the SMR process. The base
operating condition and assumptions are provided from the literature, and the
readers should refer to [34]. The mixed refrigerant consists of nitrogen, methane,
ethane, propane, and n-butane, and the composition of NG is nitrogen, methane,
ethane, propane, i-butane, n-butane, and i-pentane. Peng-Robinson EOS is used
for calculating thermodynamic properties. The production rate of NG and the
minimum temperature approach (MTA) were fixed as 26.38 kg/h and 3+0.15K,
respectively. In fact, liquefaction process performance should be evaluated by
not only exergy and compressor shaft work but also by capital cost. However,
it is difficult to scalarize the operating cost and the capital cost in the same
dimension such as cost. Thus, we bound MTA as +5% of 3K for keeping off
the catastrophe, infinite area of the heat exchanger and set the minimum MTA
of LNG-100 and LNG-101 of the base case as 2.85 K for comparison purposes.
Centrifugal compression energy is calculated by the Schultz polytrophic
method with 80% adiabatic efficiency. The pressure drop across the heat
exchanger, flash drum, and mixer is ignored. Table 3-5 lists the 9 design

variables, which are 4 types of pressure variables and 5 types of refrigerant
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composition, and their bounds. LP, MP1, MP2, and HP are the pressure of
stream 1-start, 2a, 2c, and 2, respectively, which are connected to the
compressors. Especially, LP is connected to the after stream of the Joule-
Thomson valve, VLV-101, which directly affects exergy efficiency and the
MTA of the cold box. Although LP can be changed to the temperature of stream
7 as in previous research [117], we selected this pressure variable for preserving
the consistency of variable type. Although the mixed refrigerant is mixed with
5 pure chemical compounds, compositions of 4 of the compounds are enough
to set the optimization problem because of the composition constraint, which
limits the sum of composition equal to 100%. Previous researches [117, 118]
usually selected the bounds based on the preceding process knowledge, process
designer experience, and sensitivity analysis of variables. However, that
method is not efficient for the general purpose of optimization for various
processes. Because the proposed optimization method can handle predefined
constraints and hidden constraints simultaneously, the user does not need to find
the nice bounds. In this research paper, the upper and lower bound of each

variable is set to £90% of the base set of the design variables.
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Table 3-4. Base operating condition of SMR process and NG feed
composition.

Property State

NG feed

Temperature (K) 300

Operating pressure (bar) 65

Flow rate (kg/h) 26.38
Nitrogen 4.0
Methane 87.5

.. Ethane 5.5

Composition

(mol%) Propane 2.1
1-Butane 0.3
n-Butane 0.5
i-Pentane 0.1

Minimum temperature approach at LNG-

100 and LNG-101 (K) 2.85
Intercooler outlet temperature (K) 305
Compressor adiabatic efficiency (%) 80
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Table 3-5. The lower and upper bounds of design variables.

Property Lower bounds  Upper bounds
Pressure variables (bar)

LP 0.300 5.700
MP1 0.750 14.250
MP2 1.875 35.625
HP 4.675 88.825
Composition variables (%)

Nitrogen 0.859 16.321
Methane 2.597 49.343
Ethane 2.541 48.279
Propane 3.911 74.309
n-Butane dependent
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Table 3-6. Base operating condition of SMR process and NG feed
composition.

Property State
NG feed
Temperature (K) 300
Operating pressure (bar) 65
Flow rate (kg/h) 26.38
Nitrogen 4.0
Methane 87.5
.. Ethane 5.5
Composition
(mol%) Propane 2.1
1-Butane 0.3
n-Butane 0.5
i-Pentane 0.1
Minimum temperature approach at LNG-100 and 785
LNG-101 (K) '
Intercooler outlet temperature (K) 305
Compressor adiabatic efficiency (%) 80
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For automating the connection between Aspen HYSYS V8.8 and the
MATLAB optimization algorithm, the Aspen HYSYS SMR process case is set
by objective function and ActiveX server communication technology is used
and block diagram of combined algorithm and process simulation function is
shown in Figure 3-14. Therefore, we can manage the process simulation as the
function of MATLAB. Overall optimization algorithm is coded in the
MATLAB and hidden constraints feasibility is also checked by external in-
house code. Because of technical problems with the software, composition is
changed by controlling the molar flow rate of pure component streams and the
molar flow rate is determined by matching the temperature of 1-start and 1-end
using the adjustment unit ADJ-1 with the secant method. Aspen HYSYS SMR
process model, MATLAB-Aspen HYSYS ActiveX server interaction structure,

and in-house objective function are provided at supplementary.
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3.3.1.7. Optimization Formulation

There are three types of constraints for process systems equations which are
defined by the process simulator (hy(x)), predefined constraints (gi(x), hj(x))
and hidden constraints (sk(x)). We should distinguish those constraints for

different considerations. Brief optimization problem is given in Equation [3-14].

in f) +yp(x)

Rlxn
subject to
gix)<0 i=1,2,3
hpy(x) =0 p=123,..,m [3-14]
p(x)

(0 if sp(x) =0 and gix) <0 and h;(x) = 0k = 1,2
|1 if sk #0 or gy >0 or hi(x)#0 k=12,
LB<x<UB

First, hy(x) such as the mass and heat balance equation, several
thermodynamics equations, and other numerical equation systems are already
defined by the process simulator. Thus, at the optimization platform, users do
not need to consider those type equations precisely. Since the second type of
constraints is predefined, it is possible to do not evaluate the function at out of
constraints. Thus, if the variables set do not fit gi(x) and hj(x) which are linear
constraints, a penalty function (p(x)) will be activated in the objective function
and penalty parameter (y) which is usually large value as barrier increases
objective function. Thus, the process simulation function does not need to be
evaluated. Predefined inequality constraints, gi(x), mean that the series

connection of compressors should increase the pressure of each of the streams
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which is given in Equation [3-15]. Predefined equality constraint, hj(x) means
that the mole fraction (mx) summation of overall chemical components mole
fraction should be equal to 100% because of its definition Equation [3-16]

PLp < Pup1 < Pupz < Pup [3-15]

>my, = 100%, k € all chemicals in SMR [3-16]

In this SMR process, there are three types of physically infeasible regions,
which are 1) a case with no solution (divergent system), 2) a case with a
temperature crossing point at LNG-100 and LNG-101, or MTA is not in
3+40.15°C, and 3) a case that the liquid stream enters the compressors. However,
it is impossible to know which design variable sets are in the infeasible regions
before running the process simulator, which are also called hidden constraints.
Thus, we judge this region as an infeasible hyper-rectangle for evaluating the
process simulator function. With these three types of constraints, we integrated
the process simulator with the modified DIRECT algorithm and the sub-
dividing step using Aspen HYSYS and MATLAB. If the variable sets do not
satisfy the pre-defined constraints and the hidden constraints, those points will
be divided at the sub-dividing step. As in gi(x) and hj(x), p(x) is activated, and
the penalty parameter is added to the objective function value. The objective
function, f(x) is the specific power required for NG liquefaction (kJ/kg-LNG)
which is the total energy consumption of the compressor over the LNG product

mass flow rate in stream 17. Since LNG should not be obtained as a multiphase
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form and vapor fraction of LNG must equal to 0, stream 17 after V-100 to
measure the mass flow for liquid phase through flash calculation is selected
For validating the performance of the proposed algorithm, the algorithms
given in Table 3-7 are tested. There are three types of the stochastic global
search algorithm, GA, PSO, and SA, which are the most famous nature-inspired
metaheuristic algorithm. For a fair comparison, population size for GA, swarm
size for PSO, and reannecal interval for SA are set to 40. SNOBFIT is
deterministic but model-based search method, and it has been known as robust
and flexible for hidden constraints. GPS, GSS, and MADS are deterministic
and direct search method but local search method based on pattern search.
Finally, conventional constrained non-convex local optimization solver, active-
set, interior-point, and SQP are tested with default option in MATLAB. In order
to compare with the DIRECT algorithm under the same conditions, we tried to
compare the values at the same computation cost based on the function
evaluation. However, in the case of the local solver, the operation is stopped
with the terminal criterion when the local optimum is lost and the operation is
no longer meaningful. In the case of the DIRECT algorithm, barrier approach
and the NAS for hidden constraint handling method are also calculated to
compare the performance of the proposed method, the sub-dividing step. In
order to compare the experiments under the same conditions, we try to compare
the values at the same computation cost based on the function evaluation.

However, in the case of the local solver, the operation is stopped with the

185 3 -l'i )



terminal criterion when solver fall into the local optimum, and the operation is

no longer meaningful.
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Table 3-7. List of Algorithms for comparing the performance.

Solver Global/Local Deterministic / Stochastic Constraints Options
'PopulationSize'={40}
GA Global Stochastic Yes 'CrossoverFraction'={0.5}
'EliteCount'={2}
PSO Global Stochastic Yes 'SwarmSize'={40}
'AcceptanceFen'=@modified BoltzmannPr
SA Global Stochastic No obabilityDensity
'Reanneallnterval'={40}
SNOBFIT Global Deterministic Yes Default
C 'PolIMethod'="GPSPositiveBasisNp1'
GPS Local Deterministic Yes 'SearchMethod'=@GPSPositiveBasisNp1
C 'PolIMethod'="M ADSPositiveBasisNp1'
GSS Local Deterministic Yes 'SearchMethod'=@GSSPositiveBasisNp1
'PolIMethod'="M ADSPositiveBasisNp1'
MADS Local Deterministic Yes 'SearchMethod'=@
MADSPositiveBasisNp1
Active-set Local Deterministic Yes
;I;tifll;mr- Local Deterministic Yes Default (fmincon option)
SQP Local Deterministic Yes
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3.3.1.8. Optimization Result and Discussion

The optimization results of the SMR process are listed in Table 3-8. Since
the objective function we have taken is the specific power required for NG
liquefaction, results can be compared based on this value, and see how close
the objective value approaches the constraint by looking at the MTA values of
LNG-100 and LNG-101. For comparing each algorithm fairly, in the case of
global search algorithm, the maximum number of iterations of the process
simulator function is limited to 20,000 times. Meanwhile, the maximum
number of iterations for local search algorithm is also limited to 20,000 times,
but all of them stop before it because of falling into the local optima. From the
conclusion, the DIRECT algorithm with sub-dividing step successes in
obtaining the most optimal value in the determined computation cost. This
value is an energy saving effect of 18.9% for the base case, and 13% on average
in comparison with other algorithms. Objective function value versus function

evaluation of each algorithm is given in Figure 3-15.



Table 3-8. Optimization result of SMR process.

Base DIRECT DIRECT DIRECT Active  Interior
Property case sub-dividing step barrier NAS GA PSO SA SNOBFIT GPS GSS MADS -set -point ser
Total compression power (kW) 8.27 6.71 6.82 7.39 8.03 7.67 7.41 6.77 8.25 791 7.97 8.27 8.27 8.27
Specific power required for NG 1170 949 965 1045 1136 1085 1048 958 167 1118 1128 1170 1170 1170
liquefaction (kJ/kg-LNG)
Minimum temperature approach at
LNG-100 (K) 3.01 3.00 3.02 3.00 3.05 3.00 2.99 3.00 3.01 3.00 3.00 3.01 3.01 3.01
Minimum temperature approach at
LNG-101 (K) 2.85 2.85 2.96 3.27 2.87 2.93 3.53 2.88 2.85 2.88 2.85 2.85 2.85 2.85
Design variables
LP 3.12 3.87 3.07 3.00 3.58 2.87 4.39 5.70 3.12 3.44 3.41 3.12 3.12 3.12
Pressure (bar) MP1 7.50 7.27 6.50 4.50 11.22 8.56 10.22 9.40 8.88 9.87 8.41 7.50 7.50 7.50
MP2 18.75 13.10 9.17 7.50 24.35 19.82 17.08 16.07 22.75 23.26 17.88 18.75 18.75 18.75
HP 46.75 28.05 24.93 18.70 47.15 37.99 39.85 38.32 46.75 47.10 47.32 46.75 46.75 46.75
Nitrogen 8.59 8.58 7.83 8.59 8.91 6.93 11.25 11.93 8.59 8.68 8.63 8.59 8.59 8.59
Methane 25.97 25.78 24.24 25.97 26.62 25.66 25.03 2591 25.97 26.42 26.35 25.97 25.97 25.97
Composition (mol%) Ethane 25.41 30.68 30.49 25.41 27.12 26.29 32.21 35.09 25.41 29.46 29.57 25.41 25.41 25.41
Propane 39.11 15.64 15.64 15.64 34.21 34.40 19.03 10.47 39.11 29.86 30.11 39.11 39.11 39.11
n-Butane 0.92 19.32 21.80 24.39 3.13 6.72 12.49 16.60 0.92 5.58 5.34 0.92 0.92 0.92
Computation cost
(the number of process simulator - 20000 336 811 438 51 47 103

function evaluation)
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First of all, in case of DIRECT type solver, the specific power required for
NG liquefaction from the sub-dividing step optimal solution is 1.7% and 9.2%
lower DIRECT with the barrier approach, and NAS, respectively. Surprisingly,
the result of the barrier approach is better than NAS. In Figure 3-15, a graph of
the barrier approach and NAS shows similar movement at the early stage; NAS
cannot find a much better solution within the limited function evaluation
whereas the barrier approach finds a better solution. It seems that the hidden
constraint handling method of NAS is not appropriate for highly non-convex
constraints or functions because its surrogate model assumes the neighborhood
function value linearly, such as F+0|F|, where F is the low function value in the
neighborhood around the infeasible center c. Since a physically feasible process,
condition is very sensitive to design variables with non-convex hidden
constraints, many populations and many iterations are needed to achieve a
better solution. However, the solution fails when limited by the computational
cost. Thus, the performance of NAS for an SMR process function is low and
rather the barrier approach and DIRECT with the sub-dividing step is better.
Obviously, the sub-dividing step shows better performance than the barrier
approach because sub-dividing step divide the edge of the hidden constraints
and solution can approach closer to the edge.

In case of stochastic solver, GA, PSO, and SA, best-found solutions are
16.4%, 12.5%, 9.4% higher than DIRECT with sub dividing step respectively.

First, GA does not produce better results than expected. This seems to be due
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to the fact that the initial population selection has a great influence in the
process of finding solutions. In the SMR process, the range of hidden
constraints is quite wide, so if there is no initial procedure such as enumeration
and the initial population is given randomly, there is a case where there is no
feasible solution in the generation. This confirms the problem that most of
calculations occur within an infeasible region even after significant generation.
A total of 20,000 operations are performed five times and two initial population
failure are detected. Among the others, the best performance trial is shown in
Figure 3-15. Although improved optimal solution can be found by changing
various GA parameters such as crossover fraction, It is a disadvantage to do
such additional operations. Similarly, in case of PSO, if all the swarms of the
initial particles exist only in the infeasible region, the problem seems to occur
because the direction or velocity of the particles cannot be calculated properly.
However, unlike GA, 2 times are infeasible during 4 times, but 2 are better than
GA. In case of giving several points which converged in DIRECT with initial
swarm, it is about 4% better than DIRECT. However, this is another problem
that determines what the initial swarm is given. Also, because there is a
randomness tendency, it is not always possible to reproduce the solution in the
same way. Therefore, it is can be said that the higher computation cost is needed.
In case of SA, the Boltzmann probability density function, which is the default
acceptance function, is used and since the penalty factor is increased, the

temperature of the algorithm is drastically lowered and reannealing is prevented.
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Hence, we modify the algorithm to make the reannealing forcibly if the
temperature is too low and continue the constant iteration at one point. The
results show that SA shows similar performance to the DIRECT with NAS
method. Overall, it seems that the stochastic solvers do not perform well in this
optimization problem. Sometimes, however, solver can show nice solution with
several trials because of their randomness characteristics and if initial procedure
is well performed then solver can calculate the great solution. Despite
probability of the great solution, it is impossible to guarantee that stochastic
solver gives the best optimal solution deterministically. Thus, if the objective
function is the case of high cost function, it is very inefficient and risky.
SNOBFIT, a deterministic and global solver, is a model based search method,
but it is known to be an algorithm designed to handle hidden constraints very
well. SNOBFIT gives the second best optimal solution following the DIRECT
with sub-dividing step. However, because error between quadratic subproblem
of SNOBFIT and original SMR process simulation function is relatively high
up to about 5000 function evaluation, convergence rate is relatively slow than
other algorithms. Even though SNOBFIT shows better optimal value at short
interval, 12,000-16,000, DIRECT with sub-dividing step gives better optimal
solution at the other intervals and has better early stage convergence speed.
Local solver gives a very bad solution overall. Even though the function
evaluation is forced to 20,000, it fall into the local optimum, and the further

operation became meaningless and stopped. Base case is given for initial point
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of local solver, which is the main factor of difference between the pattern search
(GPS, GSS, MADS) and conventional constrained non-convex solver (active-
set, interior-point, SQP). Since the base case itself is precisely adjacent to the
MTA hidden constraint (=2.85 °C), if the LP rises even a little, the penalty
function is activated because MTA of LNG-101 decreases. Because
conventional constrained non-convex solvers change the main problem to the
subproblem for handling the constraint effectively using the gradient
information, they have tried to move through the gradient but they fail to find
the better solution because of the discontinuity of hidden constraints. Thus, the
final solutions of three solver are just same as base case. Unlike conventional
constrained non-convex solvers, GPS, GSS, and MADS try to investigate the
pattern of larger searching area and success to find better solution than base
case. However, their solutions are 18.7%, 15.1%, and 15.9% higher than
DIRECT with sub-dividing step respectively, which is terrible performance
compared to global search algorithm. Herein, some reasons why solution might
be considered as local optimum are explained. The results of the high-
performance solvers in the global solver show that the n-butane content is
significantly increased (more than 15%) and the HP pressure is significantly
reduced (less than 40 bar) compared to the base case, which decrease the
compressor power. However, if the change is continuously simulated on the

simulator, it is impossible to converge continuously which means there are
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some discontinuous hidden constraints. In the case of the local solvers, they
fails to pass the hidden constraints barrier during iteration and stops.

The optimal design of an SMR process has lower HP pressure and propane
composition and higher n-butane composition than the base case. In fact, the
process simulator convergence of LNG-100 and LNG-101 highly depends on
the composition of refrigerant, LP, and HP. Thus, the DIRECT with hidden
constraint handling method can the point to where low HP pressure decreases
the total compressor work ensuring convergence by changing the refrigerant
composition. In Figure 3-16, the hot and cold composite curve of LNG-100 and
LNG-101 shows that the composite curve of the optimal case from DIRECT
with the sub-dividing step adjoin closer to each other than the base case. Thus,
we can conclude that exergy efficiency, which represents the efficiency of the
overall liquefaction process, of the optimal case is better than the base case.
Furthermore, in Figure 3-17, the overall AT profile of the optimal case is lower
on average than the base case and the maximum AT of the optimal case is 24.8
K while the base case is 46.9 K. Thus, although the minimum temperature
approach of the two cases is the same, the optimal solution can have high
efficiency. Finally, the heat exchanger separation line, which is the discrete heat
flow line between LNG-100 and LNG-101, moves to the right in the optimal
solution. The overall heat flow quantity of the optimal solution increases and
most of that quantity is allocated to LNG-100 because the AT profile of LNG-

100 is better than for LNG-101.
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3.3.1.9. Conclusion

The modified DIRECT algorithm using sub-dividing steps is suggested as a
means to handle hidden constraints. Unlike conventional methods such as the
barrier approach and NAS, the sub-dividing step method can consider non-
convex shape hidden constraints efficiently by partitioning the edge of the
constraints. Thus, the DIRECT algorithm can search an expanded feasible
searching area better than other methods. The DIRECT with sub-dividing step
optimization decreases HP and increases n-butane content for lower
compression specific power demands compared to the base case. To illustrate,
the SMR NG liquefaction process with a commercial process simulator is
optimized and provided a 18.9% better solution than the base case. In
comparison with GA, PSO and SA, the proposed algorithm solves the problems
of reproducibility and initial procedure of stochastic solver based on
deterministic characteristics and efficiency of algorithm itself and DIRECT
with sub dividing step provides 16.4%, 12.5%, 9.4% better solution
respectively. The result is even 1.7% and 9.2% better than the DIRECT
algorithm with other hidden constraint handling methods, the barrier approach
and NAS, respectively. We strongly believe that the proposed algorithm has
advantages for optimizing chemical processes, not only SMR process, but also
many processes developed in a commercial simulator such as the Aspen

HYSYS because of its non-linearity and non-convexity with a large hidden
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constraints area. However, significant improvements on the original DIRECT
algorithm and DIRECT with a sub-dividing step are required for a numerically
robust and reliable solution. The proposed methodology cannot guarantee that
which iterations are the best for the sub-dividing step. Moreover, not all
infeasible hyper-rectangles but rather selected hyper-rectangles located in the
edge of the hidden constraints should decrease the computation cost. Finally, if
the DIRECT algorithm is modified for considering integer variables, then it can
be applied for mixed integer non-linear programming (MINLP) problems such
as mixed refrigerant selection, superstructure optimization of process design,

and heat exchanger network synthesis (HENS).
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3.3.2. Simultaneous synthesis of a heat exchanger
network with multiple utilities wusing utility
substages

3.3.2.1. Introduction

In the last half-century, optimization of process synthesis with process
integration has been applied in most important fields of research and industry
for increasing price competitiveness. In particular, there has been a focus on
heat exchanger network synthesis (HENS) designed for energy integration of
utilities and process streams. A significant portion of annualized cost, which
includes capital cost and operating cost, can be minimized by HENS. One of
the main approaches with HENS is the sequential method, which applies
heuristics or physical intuitions for dividing a problem into subproblems; this
is represented by pinch technology. The other is the simultaneous method,
which solves the problem using mathematical programming techniques such as
mixed-integer non-linear programming (MINLP) without dividing a problem
[152]. Recently, HENS has developed to the point of achieving global optimal
solutions not only mathematically but also in reality; for instance, addressing
uncertainty, non-isothermal mixing, and bypass streams [153, 154]. Thus, the
research trend is focused on generalizing and expanding HENS models, which
combine the optimization of simultaneous methods with the heuristics and
realistic factors of sequential methods while reaching the global optimum in a

feasible amount of computing time.
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In general processes, multiple utilities should be considered for generating
optimal networks. To illustrate this, a steam cycle with a CO» post-combustion
capture process can use various low-pressure, medium-pressure, and high-
pressure (LP, MP, and HP) utilities as heat sources for stripping columns,
decrease reboiler stream cost relative to using just a single utility. Furthermore,
using various working fluids in an organic Rankine cycle can reduce
irreversibilities, decreasing compressor operating costs. However, most
conventional HENS algorithms cannot synthesize networks with multiple

utilities because they consider a single utility when composing the HEN [155].

HENS that consider multiple utilities were allegedly developed in several
projects related to graphical techniques in the sequential method and
mathematical techniques in the simultaneous method. In the sequential method
field, Shenoy et al. [156] proposed a multiple-utility model based on the pinch
method. Total annual cost (TAC) is minimized by calculating the optimal
minimum approach temperature and utility combination. Other graphical
technique research considers stream temperature versus enthalpy plot
supertargeting (STEPS) for optimizing the minimum approach temperature
[157]. For utility targeting in the sequential method, a non-graphical procedure
using rigorously calculated process stream thermodynamic properties was
suggested [158] in order to consider realistic situations. These kinds of

sequential models have the advantages of simple calculations, intuitive
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graphical visualization, and industrial feasibility. However, they contain the
critical limitations inherent to sequential methods: inability to consider heat
flows cross the pinch point and lack of a guarantee of a globally optimal

network.

In the simultaneous methods field, Isafiade and Fraser [159] suggested an
interval-based MINLP model with multiple utilities, but the assumption of fixed
utility end site superstructure could not be surmounted. Moreover, by
expanding stagewise superstructure, the modified model could place utilities
anywhere else [160]. The proposed superstructure has new splitting streams,
which involve multiple utilities in each conventional stage. Although modified
HENS implements optimization with multiple utilities, it is hard to converge in
many stages and analyzing a structure that contains subsequently arranged
utilities is difficult because of inefficient superstructure geometry. Huang and
Karimi [161] introduced generalized stagewise superstructure with cross flows
and the model could nearly calculate a globally optimal network. However,
even with the four utility simplification constraints, the problem had numerous
discrete variables and constraints, which hampered calculations. Thus, in some
examples, they set the time limitation on a solver related to global solver

concepts such as BARON.

In this work, a new methodology is presented for solving HENS considering

multiple utilities by using utility substages. The most important problems in
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previous methods, namely a search area too large to find an optimal solution in
a feasible amount of computing time and inefficient superstructure network,
can be solved by using a modified superstructure. Using the utility substage
concept, series connection of multiple utilities can be taken into account in one
stage. Also, fixing positions of utilities heuristically in order of temperature in
the modified superstructure can decrease the number of discrete variables. A
reduced model size results and can enhance solution quality in the same number

of stages or less compared to previous models.
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3.3.2.2. Utility substage superstructure

The overall problem statement is similar to those of previous simultaneous
HENS methods: finding the optimized structure of a heat exchanger network
by using Ny hot streams and N¢ cold streams along with possible combinations
of input temperatures and heat capacity flow rates [ 155]. Basic assumptions and
constraints for the superstructure such as constant heat capacity and flow rates,
infeasible combinations of the same set of streams (NH, NC), and isothermal
mixing are derived from conventional HENS problems considering multiple
utilities. Several new sets and constraints related to utility substages are added
to the model formulation because the model should describe the geometrical
connection of a modified utility substage superstructure with multiple utilities.
Five indices, namely i, j, m, n, and k, representing hot streams, cold streams,
hot utilities, cold utilities, and stages, respectively, are imposed on the model
description to formulate the model effectively. Moreover, the superstructure
properties, number of stages (NOK), number of hot utilities (NOM), and
number of cold utilities (NON), are defined as scalar parameters and are fixed

before solving a problem. Based on this discussion, each set is defined as:
HP = {i|i is a hot process stream}
CP = {j|j is a cold process stream}

HU = {m|m is a hot utility, m = 1,...NOM}
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CU = {njn is a cold utility, n=1,...NON}
ST = {k|k is a stage in the superstructure, k = 1,...NOK}
ST' = {k|k is a stage in the superstructure, k = 1,...NOK+1}

To illustrate the modified superstructure, Figure 3-18 that contains a 2 by 2
stream system and m by n utility stream with 2 stages is shown. Existing
between each conventional stage, the utility substage is the core idea of this
modified superstructure. Series connection of multiple utilities via utility
substages can easily consider the continuous connection of utilities and
provides an opportunity to rapidly approach the global optimal solution.
Although thermodynamic efficiency between the utility-stream heat
exchanging system, which accounts indirectly for network preference owing to
low heat exchanger area cost, is better than stream- stream heat exchanger
systems, stream- stream heat exchangers should be considered because of the
trade-off between utility cost and heat exchanger investment cost. Thus, vague
situations, such as splitting one stream into two streams and designating one for
stream/stream heat exchanger and another for stream/utility heat exchanger,
have only a marginal chance of reaching an optimized solution. Therefore, it is
better to expand the feasible search area to consider a large number of stages
than to resort to conventional algorithms through deleting ambiguous network
structure and adding high-probability structure. Even if the number of utilities

increases, the number of stages would not increase because of the utility
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substage. Moreover, the increasing number of variables and constraints is linear
in the present approach, while previous research necessitated increasing the

number of stages for considering utilities connected in series [160].
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Each of the multiple utilities that are connected by utility substages has a
fixed location according to the order of its temperature. This heuristic structure
is based on preceding research that suggested low-quality utilities be used prior
to high-quality utilities to increase thermodynamic efficiency with decreasing
operating cost [156]. Therefore, in the case of a hot utility, a low-temperature
utility such as a low-pressure steam should be located before a high-temperature
utility such as a high-pressure steam. On the contrary, in the case of a cold utility,
a high-temperature utility such as hot oil should be located first, followed by a
low-temperature utility such as chilled water. Hence, the series connection
property of utility substages does not have a random combination, as it
decreases the number of constraints and variables considered. Furthermore, it
is possible to use the existing stage temperature variables thix, and tcjxm,
instead of using new variables for the utility substage, which only adds linear

constraints (except for the heat exchanger area function).
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3.3.2.3. Model formulation

Since utility substages are added to established conventional superstructure,
the model formulation is also changed. Indices such as m and n are added to
each variable of constraint to describe the utility substage. Moreover, binary
variables, which express the existence of various utilities and heat exchangers,
should be changed to three-dimensional variables involving the type of stream,
stage number, and type of utility. The series connection property of utility
substages presents linear constraints of added temperature variables except for

the heat exchanger area function, which contains non-convexity.

- Overall heat balance for each stream

(TINi'TOUTi)Fi: Zj =CP Zke ST qi,j,k + Zkes'rv ZnECU qcui’k’n iEHP [3'17]

(TINJ'TOUTJ) Fi=Xicup Ziest Qijp ™ LhesT Lmenu qhuj,k,m jeCp [3-18]
Overall heat balance is calculated by Equations [3-17] and [3-18] by
multiplying the heat capacity flow rate, assuming constant temperature
difference between inlet and outlet streams and constant total sum of heat being
exchanged through all heat exchangers in the superstructure. It should be noted
that additional terms of heat exchange between multiple utilities and stream

(qhujxm, qcuixn) are linear.
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- Heat balance at each stage

(thi,k,NONH 'thi,kﬂ,l ) Fi: Zj =CP qi,j,k = HP’ kEST [3'19]

(tejnom1tCiae 11 )= Bicpp G JSCP KEST [3-20]

A utility substage and a conventional stage can be connected by the
temperature th;y , between utility substage n-1 and n of the cold utility at stage
k and the temperature tc;xm between utility substage m-1 and m of the hot utility
at stage k. Thus, Equations [3-19] and [3-20] can describe temperature balance
on the overall superstructure continuously even if a conventional stage and
utility substage are disconnected at a certain point, for instance, because of
geometry. In other words, the last temperature of stage k equals the first
temperature of utility substage k, and the last temperature of utility substage k

equals the first temperature of stage k+1.
(thign-thign+1) Fi=qcu;, .  iSHP,k&ST,n&CU [3-21]
(t6; k1) km+1) Fi=ghu,, .~ j&CP,k&ST, m&HU [3-22]
In the utility substage, the location of the utility is fixed in order of
temperature, which is represented by the order of indices m and n. When the
index number is higher, operating temperature of a utility is lower. Furthermore,
heat balance can be simply formulated by Equations [3-21] and [3-22]. The

temperature difference because of series connection property and model does

not need additional hot and cold utility load constraints.
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- Assignment of superstructure temperatures and feasibility of
temperatures

thi,; =TIN; iEHP [3-23]
tc;;; =TOUT,  jECP [3-24]
thi Nok+1,von+1 = TOUT;  i€HP [3-25]
te; Nok+1, Nom+1 = TIN;  JECP [3-26]

Inlet temperatures and outlet temperatures of streams are interlocked with
the superstructure end site temperature in Equations [3-23]-[3-26]. Unlike
previous single-utility superstructure, which has the asymmetric structure
property, it is not necessary to add an end-site utility temperature constraint

(Yee and Grossmann, 1990).

thi,k,n > thi,k,n+1 IEHP, ke ST', neCU [3-27]
tCikm 2t m1 JECP, KEST, mEHU [3-28]
thiy o > thijyy;  1EHP, KEST [3-29]
tCikm = tCj k411 JECP, KEST [3-30]

Temperature order at the utility substage can be described by the ordering of
m and n with inequality constraints. Conventional stage temperature order is
easily described by the ordering of k. Equations [3-27]-[3-30] describe the

feasibility of temperatures.
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- Logical constraints

QM 74,0 iEHP,jECP, kEST [3-31]
qeu,, -M zeu;, ;<0 i€HP,kEST, nECU [3-32]
qeu,, -M zcu; , <0 i€EHP,kEST, nECU [3-33]

The binary variable z;;x denotes existence of a heat exchanger between hot
stream i and cold stream j at stage k. If the value of z;jy is zero, then qijx will
also be zero because a heat exchanger does not exist. When z;;« is unity, the
“big M” constraint will be activated for calculating q;;x within the upper bound,
M. To shrink the search area as much as possible during consideration of the

feasible search area containing the optimal point, the value of M is defined as
min ((TINi-TOUTi) F;, (TINj-TOUTj) Fj). Therefore, qijx can be calculated

within the physical maximum heat exchange rate between hot stream i and cold
stream j; this is represented in Equation [3-31]

Additionally, zhu;xm and zcuix . are the binary variables, which denote the
existence of hot and cold utilities, respectively. The value of zero indicates that
the hot or cold utility does not exist, and when the value is unity, the solver
searches for the optimal ghujxm and qcuix» within the upper bound constraint.
In the utility case, it is assumed that there is no limitation of the heat exchange

rate on utilities. Hence, it is possible to fix the upper bound constraint as
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(TIN;-TOUT;) F; and (TIN;-TOUT;) F;. In this feasible search area, qhujim
and qcuiy, are calculated by Equations [3-32] and [3-33].

Y cnu necy ZUikns Zhuj =0  iEHP,jECP, kEST [3-34]

Optionally, it is possible to accelerate calculation speed by restricting the
maximum number of multiple utilities to 0. If the number of opportunities to
connect the utility in series is low, Equation [3-34] can be implemented to

construct multiple utilities practically.

- Calculation of approach temperatures

dtlijic < thig non+1 -t nom 1 HY; (1-zj5) iEHP,jECP,kEST [3-35]
dtri’j,k < thi,k+1,1_tcj,k+1,1+Yij*(I'Zi,j,k) IEHP,JECP, keST [3'36]
dthu; g < TINBUG-te] gy, * (1-zhujy ) JECP, KEST, mEHU [3-37]
dthuj,k,m+] < TOUThum _tcj,k,m+l +’YJ m * ( 1 -Zhlquk’m) [3 38]
jECP, kEST, mEHU

dtcui’k,n < thi,k,n'TOUTcun+Yi n* ( 1 -Zcui’k,n) [3 39]
iEHP, kEST, nECU

dteujy iy < thjy e -TINcu,+y, * ( 1 -zcui’k’n) [3-40]
iEHP, kEST, nECU

dtli,j,ka dtri,j’k, dthuj’k,m, dtcui,k,n > EMAT [3‘41]

For defining the temperature driving force of heat exchangers, each

approach temperature can be formulated using Equations [3-35]-[3-41].
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Because of the discontinuous network of a conventional stage, the approach
temperature of a stream/stream heat exchanger should be modified as the
approach temperature on the left and right sides in Equations [3-35] and [3-36].
As with other mixed-integer constraints, the upper bound method is used to
activate and deactivate each constraint. y, which denotes M in the upper bound
constraint method, represents the maximum approach temperature between two
streams including the multiple utilities, which constitute the heat exchanger.
Thus, the model can efficiently cover all of the feasible search area. Moreover,
the exchanger minimum approach temperature (EMAT) can be set by Equation
[3-41] when the user wants to define the approach temperature boundary. An
important note is that even when a user-set EMAT is provided for some value,
the optimal solution EMAT might not have been exactly the value that the user
set initially, but rather some value that optimizes the objective functions. Inlet
and outlet approach temperatures for each utility are set separately and can be

formulated continuously because of the series connection with fixed positions.
- Objective function and heat exchanger area function

Chen’s approximation, which is one of the most popular logarithmic mean
approximations in the HENS area, is used for comparing efficiency of the
present model with that of previous algorithms [162]. This log mean
temperature difference (LMTD) has been used for describing heat exchanger

area function in recent simultaneous HENS models involving multiple utilities.
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1
LMTDi,j’k: [(dtli,j,k) (dtri,j’k) (m)r [3-42]

1,1
ijk (hi h; [3_43]
LMTD;j

Ajji=
Heat exchanger area can be calculated by Equations [3-42] and [3-43] using
a constant heat transfer coefficient for each stream, constant rate of heat
exchange between the two streams, and LMTD. The area of hot and cold utility
heat exchangers can be calculated in the same way as for stream heat

exchangers. Therefore, the objective function, also called total annualized cost,

is expressed by summation of utility cost and investment cost as in Equation

[3-44]:
min Z Z Z CCU, q;, +Z Z z CHU, q,
HEQH 1,k,n H,k,m
iEHP kEST nECU JECPKEST mEHU
/Z Z Z CFi,jZi,j,k+ Z Z Z CFCi’n Zcui’k’n\
L | iSHPiSCPkeST iEHP kEST' nECU
k + Z Z z CFHJ’m Zhlquk’m ) [3'44]
JECPKEST' mEHU
/ Z Z Z CyAl, + Z Z Z CCi’nAcui’E’m\
iEHP jECPLEST iEHP kEST' nECU
Bhu
k £ > cHy, Andl
JECP KEST' mEHU
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3.3.2.4. Numerical application

Since the suggested model in this paper presents a non-convex MINLP
considering multiple utilities, model size is bigger than in the conventional,
single-utility SYNHEAT model. However, the utility substage model can
provide a better result with fewer continuous variables, discrete variables, and
constraints than the other simultaneous multiple-utility models presented by
Ponce-Ortega et al. [160] and Haung and Karimi [161]. Although some cases
yield larger TAC than in the non-isothermal mixing model because the present
model is based on isothermal mixing and stream splitting, this model has
several advantages; for instance, its small model size expands the feasible
search area, especially in cases of numerous utilities and scenario analysis for
various conditions. To validate the efficiency of the utility substage model,
several examples are presented. In terms of mathematical programming,
BARON/GAMS and LINDOglobl/GAMS, which are deterministic global
algorithms based on branch-and-bound methods, and DICOPT/GAMS, which
divides the MINLP problem into NLP-MIP subproblems using outer
approximation, are used as solvers. The programming language used is GAMS
24.2.1 and MINLP subsolvers are CONOPT 3 (NLP solver) and Cplex 12.6

(MIP and LP solver).
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Example 1

This is a classical problem from Shenoy et al. [156] and other researchers
who invented the modified HENS model considering multiple utilities and has
been used to validate their respective models. In this example, two hot streams,
one cold stream, a hot utility for HP, MP, and LP steam, and chilled water for a
cold utility should be combined to make an optimal network system. Table 3-9
summarizes stream information and parameters for example 1 and Figure 3-19
shows the optimized HEN. The obtained TAC is $96,076, which is a lower cost
than in any previous literature. The main factor of this result comes out from
considering many stages with small model size, helping to expand the search
area. Comparing model size with the result in Table 3-12, the number of
constraints and variables are reduced by 45% and 70%, respectively, compared
with results in recent literature. In fact, part of the utility cost is reduced further
compared with the solution of Ponce-Ortega et al. [160] because they use two
types of hot utility while this model uses three types of hot utility, distributing
heat duty more efficiently. Moreover, comparing this model with model of
Huang and Karimi [163], considering a number of stages with feasible model
size can easily expand the network connecting heat exchangers with utilities.
Thus, right side of network is totally different and it decreases more utility cost
with little increasing of investment cost by efficient heat load distribution. From

the efficiency of the utility sub stage super-structure in considering many stages,
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it is evident that small model size helps to converge the solution near to the

global optimum.
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Table 3-9. Stream information and cost function for example 1.

Stream TIN TOUT F h Cost
(0C) (0C) (kWK-1)  (kWm2K-1) ($ kW-1 yr-1)
Hl1 105 25 10 0.5 -
H2 185 35 5 0.5 -
Cl 25 185 7.5 0.5 -
HP Steam 210 209 - 5.0 160
MP Steam 160 159 - 5.0 110
LP Steam 130 129 - 5.0 50
Chilled 5 6 - 2.6 10
water

Exchanger capital cost = 800 (area)
Annualization factor = 0.298
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H1 105°C :@76.8°C 25°C
H2 185°C :@ 165.6°C @ 135.6°C @1043%76.9%: 35°C

185°C158.4°C14545°C@138.0°C@118.0°C@101.7°C 813 le————5°c C1

Heat load (kW) 199.3 97.1 56.1 150.7 122.0

1535 282.4 139.5 517.6

209.7
Area (m?) 12.7 16.8 7.0 27.1 14.4 216 314 15.5 30.8
10.5

Annualized Cost [Utilities: 51,424 $/yr Investment: 44,652 $/yr Total: 96,076 $/yr]

Figure 3-19. Optimized HEN with heat load, heat exchanger area, and annualized cost data for example 1.
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Example 2

Like example 1, this example is also a representative problem from Shenoy
et al. [156] and has been solved in various projects related to multiple-utility
HENS. The solution depends strongly on the efficiency of the model related to
superstructure because the model size of problem is quite large, consisting of
two hot streams, three cold streams, three types of hot utility (HP, MP, and LP
steam), and two types of cold utility (chilled water and air cooling). Table 3-10
summarizes stream information and parameters for example 2. The model can
expand its search area to consider non-isothermal mixing and to expand the
number of stages. Although, the utility substage model assumes isothermal
mixing for stream splitting, because of its heuristically efficient superstructure,
series connection of multiple utilities, and temperature-order fixed position, the
model can consider a large number of stages with few variables and constraints.
For global-search solvers such as BARON/GAMS and LINDOglobal/GAMS,
convergence of MINLP problems depends strongly on model size and
convexity; the present model has characteristics that accelerate for the case of
equal upper and lower bounds. Figure 3-20 describes the optimized HEN of
example 2. Table 3-12 compares this model, with which the minimum TAC is
obtained, with other isothermal mixing multiple-utility HENS models. Even
though the competing models are based on non-isothermal mixing, such as the

work by Huang and Karimi [164], the utility substage model gives a better
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solution than when the model is solved with commercial solvers such as
BARON, DICOP, and SBB. Only the non-isothermal mixing models produce
slightly better TAC when they use modified solvers with the newly proposed

outer approximation algorithm.
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Table 3-10. Stream information and cost function for example 2.

Stream TIN TOUT F h Cost
(0C) (0C) KWK-1)  (kWm2K-1)  ($kW-1yr-1)

H1 155 85 150 0.5 -

H2 230 40 85 0.5 -

Cl1 115 210 140 0.5 -

C2 50 180 55 0.5 -

C3 60 175 60 0.5 -
HP Steam 255 254 - 0.5 70
MP Steam 205 204 - 0.5 50
LP Steam 150 149 - 0.5 20
Cold water 30 40 - 0.5 10

Air cooling 40 65 - 0.5 5

Exchanger capital cost = 13000 + 1000 (area)?83
Annualization factor = 0.322
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Annualized Cost [Utilities: 544,340 $/yr Investment: 576,279 $/yr Total: 1,120,619 $/yr]

Figure 3-20. Optimized HEN with heat load, heat exchanger area, and
annualized cost data for example 3.

224



- Example 3

Example 3 is a newly proposed problem in this paper for illustrating how
direct series connection of multiple utilities can help to reach the optimum. In
fact, the utility substage superstructure has the power to present series
connection of utilities because of its geometric characteristics. Thus, this
example emphasizes the advantages of using the utility substage superstructure.
Table 3-11 describes the stream information and the cost function. Imagining
the composite curve, expensive HP or MP steam should be replaced by cheap
LP steam or hot oil. Moreover, if the number of hot utilities increases and fixed
costs of heat exchangers decrease, then series connection of the hot utilities will
be attractive. To verify this alter-native, we compared with the conventional
simultaneous method, SYNHEAT, and modified a multiple-utility models,
which considers only one utility at one stage, similar to the previous model,
with the utility substage model proposed in this paper. In this example,
Paterson’s LMTD approximation described in Equation [3-45] is substituted
into the objective function [165]. The reason for using this LMTD is that Huang
et al. [153] found Paterson’s LMTD to be the best, it is used by and recent

simultaneous models.

1
LMTDP; = [ (dtljyc + ditrjpc) + = ((dtlyj) (dtrygo) ) | [3-45]
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As a result in Figure 3-21, TAC is reduced by 45.6% compared with the
result from SYNHEAT and by 21.0% compared with one utility in the one-stage
model under the same calculation conditions (e.g., using three stages) on the
GAMS/BARON solver. This phenomenon occurs when utility cost is the major
cost in the TAC and various utilities can be used as alternatives. Since the utility
substage model is optimized for considering series connection of utilities, it is
possible to obtain very effective solutions even considering small stages. If a
cheap but low-quality utility and an expensive but thermally effective utility
were interlaced with a trade-off relation, it is difficult to analyze using only the
composite curve. However, the simultaneous multiple-utility model can
consider all combinations with a wide search area for reaching the optimal
solution. An optimal utility system is constructed, dividing the heat duty of HP
steam and LP steam to less expensive MP steam and hot oil, respectively and it
is easily seemed in Figure 3-22. Although the utility substage model synthesizes
a network in which heat duty of cold utilities is higher than in other networks,
it is possible for it to reach the lowest annualized cost because this example is
ahot-utility-dominated case. Theoretically, it is possible to construct an optimal
structure (Figure 3-21¢) with two stages by using the utility substage model.
However, previous models such as Ponce-Ortegaet al. [160] need at least seven
stages to synthesize the same optimal structure. Because of MINLP problem

characteristics, it is difficult to converge within a feasible computation time.
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Table 3-11. Stream information and cost function for example 3.

Stream TIN TOUT F h Cost
69 (O kWKH KWm’KYH ($kW!yr')
Hl1 600 450 5 0.5 -
H2 250 30 30 0.5 -
Cl1 50 650 30 0.5 -
HP Steam 680 680 - 5 200
MP Steam 630 630 - 5 150
LP Steam 400 400 - 5 45
Hot Oil 330 300 - 5 10
Chilled water 20 25 - 1 20

Stream exchanger capital cost = 500 (area)
Cold utility exchanger capital cost = 500 (area)
Hot utility exchanger capital cost = 100 (area)
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Table 3-12. Solution comparison for examples 1-3 regarding total annualized cost and model size.

Example TAC ($) Model size
(equations, continuous variables, discrete variables)
This work Literature This work Literature

1 96,076 96,9372 (291, 184, 48) (511, 501, 120)°
97.079°
97,211°
98,263¢

2 1,120,619 1,115,705¢ (827, 475, 114) (2236, 889,38)¢
1,120,271¢ (320, 174, 25)¢
1,120,711° (1391, 1442, 360)°
1,135,773¢
1,121,175¢
1,150,460°
1,158,500

3 1,567,144 - (253, 151, 30) -

a: [163], b: [160], c: [159], d: [156], e: [164]
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Figure 3-21. Optimized HEN with heat load, heat exchanger area, and
annualized cost data for example 4 calculated by a) SYNHEAT, b) restricting
series connection of utility, and ¢) utility substage superstructure.

229 o ;};x_‘| __"~_?-T_ ]_” '{j}



a)

Temperature (°C)

b)
700 -
600
500
' 15
400 - ke
1 E
300 P
Q
§
200 e
100 -
1/
01 cw
T ¥ T ¥ T
10000 20000

Heat load (kW)

700 - HP 700 - HP
] MP
600 600 -
500 | 500
o :
400 - S~ 4004 LB
o AL
1 3 Hot Oil;
300 S 300 —7
Q.
5
200 = 200
100 100
= i
04 cw 04 cw
T s T L T T & T L T L4
0 10000 20000 0 10000 20000

Heat load (kW)

Heat load (kW)

Figure 3-22. Composite curve for example 4 calculated by a) SYNHEAT, b) restricting series connection of utility, and c)
utility substage superstructure.
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3.3.2.5. Conclusion

Developing an effective simultaneous model with multiple utilities for
application to various process syntheses is a highly challenging area of process
integration research. In previous literature, there have been several limitations
to synthesis of multiple-utility HEN, including pinch method limitations,
single-utility simultaneous model, and very large size of multiple-utility
simultaneous models. In this work, the utility substage superstructure, which
features temperature-order fixed position of multiple utilities with series
connection, is suggested. The new algorithm obtains even smaller model size
than in previous algorithms and a better heat exchanger network solution. From
assessing the TAC and the number of variables and constraints, it is verified
that the heuristics and modified factors of the utility substage superstructure are
effective. Furthermore, it is verified in the case of existing various utilities and
low fixed cost that series connection of multiple utilities can be effective for
decreasing TAC, especially utility operating cost; our algorithm is optimized
for solving problems of this kind. Considering the same number of stages, TAC
is reduced by 45.6% compared with the SYNHEAT model result and 21.0%

compared with the single utility result in the single-stage model.

Although several problems remain, which preclude a guarantee of the global
optimum in cases requiring consideration of stream bypassing and non-

isothermal mixing, the present research demonstrates the significant power of
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the utility substage algorithm in treating multiple utilities effectively with small

model size, which is the most important issue for multiple-utility problems.
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3.4. Plant-wide systems scale modeling and
optimization

3.4.1. Toxic gas release modeling for real-time analysis
using variational autoencoder with convolution

neural networks
As the chemical engineering industry grows steadily, concerns about

catastrophic accidents in chemical plants have increased. Among the various
types of accidents in chemical processes, toxic gas leaks are particularly critical
owing to the wide range of the risks involved. When toxic gas dispersion occurs,
a toxic gas cloud is generated and remains in the accident area. If the
concentration of the toxic gas is above a certain level, the local population is
subjected to serious health hazards. When an accident occurs in a densely
populated area, e.g., an urban area, the risk becomes even higher. On December
3, 1984, for example, a methyl isocyanate gas leak accident caused at least 3800
deaths and about 100,000 permanently disabled in Bhopal, India [166].
Therefore, methods for predicting gas dispersion in accidents in urban areas are
essential. However, toxic gas dispersion experiments are difficult to implement

owing to cost, risk, and technical requirements.

To resolve this, computer simulation has been developed to model gas
dispersion. There are two-dimensional integral models, viz. the Box model and
Gaussian dispersion models, [167] and simulators (ALOHA and PHAST),

which can be used in emergency owing to their short computation time. They
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are fairly accurate in the case of flat terrain without three-dimensional obstacles.
However, they have low accuracy in the case of three-dimensional obstacles,
such as mountains and buildings, as these obstacles are ignored. Moreover, they
do not change dynamically, as they are based on the steady state Thus, it is

difficult to use these tools in actual emergency situations [168, 169].

Computational fluid dynamics (CFD) is widely used to accurately simulate
the dispersion of toxic chemicals in urban areas. CFD has the highest accuracy
because it takes into account geographic information and gas characteristics.
The CFD model in urban areas has been developed in various studies. Hanna et
al. [170] described and compared five CFD models using gas dispersion
experimental data from Madison Square Garden in Manhattan (MSGO05).
Hanna et al. [171] simulated a hypothetical chlorine railcar accident in the
Chicago urban area using FLACS and compared the results with those obtained
by simpler models, such as SLAB, HGSYSTEM, and ALOHA.. Likewise, Long
et al. [172] compared a gas dispersion CFD model (AcuSolve) and the Urban
Dispersion Model (HPAC) in regions with large obstacles. Xie et al. [173]

modeled gas flow and dispersion in London using large eddy simulation.

However, CFD-based simulation models have a critical disadvantage, i.e.,
computation cost. Most accident scenarios require more than 1 h for simulation
in CFD-based tools, such as FLACS, Fluent, and OpenFOAM [171, 174, 175].

When a toxic gas spill occurs, the simulation time must be at least less than the

234 3



golden time, also known as golden hour, to effectively predict the extent of the
accident and evacuate the population. However, there are currently no CFD-
based tools for simulating accidents faster than the golden time. Hence, these
tools cannot practically be used in real-time alarm systems. Therefore, there is
a need for computationally efficient methods that are as accurate as CFD.
Therefore, research on surrogate or meta-models has been conducted to
simplify complex models and shorten computation time. Palmer and Realff
[176] and Caballero and Grossmann [177, 178] used surrogate models based on
kriging functions to optimize flowsheet simulation. Gomes et al. [179] used
kriging models for real-time process optimization. Chen et al. [180] applied
meta-models of complex process simulations with time-space-dependent
output adopting Gaussian process regression. Moreover, Wang et al. [181]
achieved data reduction using segPCT-PCA and Gaussian process regression
(GPR) meta-models. Loy et al. [182] developed and compared two surrogate
models for consequence analysis based on CFD, i.e. a non-linear global
surrogate model (least squares support vector machine) and a linear piece-wise
surrogate model (linear nearest neighbor interpolation). Research for
developing a meta-model has been steadily progressing, and methods such as
kriging (Gaussian process model) and support vector machines have been
primarily used. In addition, Kajero et al. [183] has reviewed other methods for

this meta-modeling.
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Three steps are required for designing a surrogate model based on large
amounts of data: data reduction, data regression, and data reconstruction. In
most of the studies mentioned above, since data reduction uses a linear method
such as PCA, it is often difficult to distinguish nonlinear manifolds or to store
image information with complex nonlinearities. Therefore, a training technique
for the representation of an unlabeled data set through an autoencoder has been
developed. An autoencoder is a learning system based on artificial neural
networks that can efficiently learn and compress input information.
Autoencoders are composed of an encoder (recognition network), a decoder
(generative network), and hidden layers (internal representation). Since
autoencoders are based on neural networks and can operate in various
combinations, they achieve sufficient dimensionality reduction even for data
sets with strong nonlinearity. Moreover, when combined with a convolutional
neural network (CNN), they can perform powerful feature detection, which is
a significant performance improvement [184]. Finally, a variational
autoencoder that extends to a generative model based on the latent space
generated by features of the training set has been developed as a powerful
model that can generate images by extracting definite features and changing
their values [185]. Therefore, it would be a powerful meta-modeling, with the
addition of the regression process that performs the mapping between the
important variable and the encoded data or the latent space from the

autoencoder.
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In regard to regression, various methods are used, such as linear regression
and artificial neural networks. Recently, various methods have been introduced
to deep neural networks (DNN) and resolved the issues of vanishing gradient,
excessively low learning speed, and overfitting the training set [186]. For
example, initialization methods have been introduced [187, 188]. Moreover, the
ReL U activation function, which exhibits better performance than the sigmoid
activation function, and the Mother Nature activation function appeared in the
theory of deep networks. In addition, non-saturating activation functions, such
as the leaky ReLU, ELU, and SeL U, were introduced, improving performance.
It is obvious that these methods can reduce the vanishing and exploding
gradient problems at the beginning of training state; however, these may occur
during the learning state. To resolve this, zero-centering and normalization of
the input are required before the activation function through the Batch
Normalization (BN) method proposed by [189] and subsequent scaling and
shifting of the results. Moreover, techniques such as momentum optimization,
Nesterov Accelerated Gradient, AdaGrad, RMSProp, and Adam optimization
have been developed to optimize machine learning. Adam (Adaptive
Momentum Estimation) optimization is performed by combining Momentum
optimization and the RMSProp algorithm [190]. Therefore, it is highly likely to
develop high-performance surrogate models using this state-of-the-art deep

learning technique for data reduction with high-quality feature extraction, data
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regression of highly non-linear manifold, and generation or reconstruction of

the image data by means of generative models.

In this study, a gas leak model of industrial-scale was developed for the
Mipo complex in the city of Ulsan, Republic of Korea, using FLACS. Moreover,
a surrogate model was constructed for real-time applications, namely, a real-
time alarm system within golden time. Initially, for the scenario where three
variables (wind speed, wind direction, release rate) were randomly applied, the
data was obtained by CFD and the probability of death factor (Pgcan) was
expressed as a 2D image. Subsequently, using a variational autoencoder with
deep convolutional layers, the resulting data of dimension 30,400 was
compressed into a 32-dimensional latent space. Through the deep neural
network architecture designed by the authors, the variable space was mapped
into the latent space to predict the 32-dimensional latent space with 3 variables.
Finally, a surrogate model was constructed that can generate the predicted
contour of Pgean through three variables only. The effectiveness and
applicability of the model was demonstrated by comparison with several other
methods of regression. It was shown that the model does not merely memorize

the Pycan contour but rather extracts features and smoothly generates the image.
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3.4.1.1. Toxic gas dispersion model

In this study, FLACS (Flame Acceleration Simulator) is utilized as a gas
dispersion CFD tool. The version of FLACS used is v10.4 released in July 27th,
2015 and developed by Gexcon. FLACS was originally developed for
explosion simulation. However, FLACS may also simulate gas dispersion and
fire models. A number of studies have been conducted to verify the accuracy of
the atmospheric dispersion model of FLACS used in this study. Hanna [171]
modeled an actual chlorine leakage accident in an urban area and compared the
results with the accident data. In addition, Yang et al. [175] compared the
hydrogen fluoride leakage accidents in the Gumi area in Korea with the FLACS
simulation results. In addition, several studies have been carried out to validate
gas diffusion experiments performed under various conditions, not actual

accidents, with FLACS [174, 191-193]

Model description
The Mipo complex in the city of Ulsan, Republic of Korea, has a large

number of industrial plants as well as a residential area nearby. Thus, this region
has a high potential of not only gas leakage accidents but also considerable
damage in case of such an accident. Therefore, it was selected as a virtual gas
leakage accident site. In the model, seen on the left side of Figure 3-23, flat

terrain with thousands of buildings was assumed. The size of the entire domain
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is about 4,000 m in the x-direction, 3,000 m in the y-direction, and 80 m in the
z-direction (from ground level). The CAD image inside FLACS can be seen on
the right side of Figure 3-23. As more than 500 simulation data points are
required, a uniform grid resolution of 20 m x 20 m % 20 m was used to reduce

computation cost.
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(b)

Release Point

Figure 3-23. (a) The geometry of Mipo complex in Ulsan, (b) top view of CAD image, and (c) 3D view of CAD image in
FLACS.
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As liquefied chlorine is used on a large scale in this area for industrial
purposes, chlorine was chosen as the material of the hypothetical release
scenario. To generate distinct simulation samples, three main variables were
randomly selected within a certain boundary. Wind direction was chosen within
0 - 2=, wind speed within 0.5~5 m/s, and release rate within 10~100 kg/s. All
other variables were fixed, including release duration (60 s), release point,
release material, and temperature (20° C). The entire simulation time in all
cases was set to 1000 s. The conditions of the simulation are summarized in

Table 3-13.
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Table 3-13. Scenario conditions

Variable Unit Value
Ambient temperature °C 20
Ambient pressure Bar 1

Wind direction rad 0-2xn
Wind speed m/s 05-5
Discharge rate ko/s 10-100
Discharge direction - +Y
Release duration S 60

Total simulation time S 1000
Pasquill class - None
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Mathematical formulation

FLACS calculates the compressible fluid flow using conservation equations
for mass, energy, and momentum. It solves the three-dimensional Reynolds-
averaged Naiver—Stokes (3D RANS) equations, which are widely used in CFD,
based on the k-¢ turbulence model [194] on a non-uniform Cartesian mesh. The
k-¢ model is an eddy viscosity model with turbulent kinetic energy transport
and dissipation of the turbulent kinetic energy equation. In particular, FLACS
uses distributed porosity concepts [195] to efficiently calculate the effect of
obstacles smaller than the sub-grid on fluid flow. This approach not only
considers small obstacles but also reduces computational cost. In this study, two
governing equations for compressible fluid flow are used: conservation of mass

and momentum equation. The conservation of mass equation can be written as

5 Bop)+ = (Biow) = [3-46]

where B, denotes volume porosity and f8; area porosity in the j-direction.

Here, j is any of the directions determined by the Cartesian coordinates x, y,

and z. The momentum equation can be written as

9 9 op 9
Koo s L= bSO

Fo,i + Bvo,i + ﬁv(p - Po)gi:
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where F,; is the flow resistance created by sub-grid obstacles, F,,; is the flow
resistance created by the walls, and o;; is the stress tensor. Here, F,; and o;;

are defined by

d
Foi= —p |5| il [3-48]

ou; ou; 2 ou
Oij = Heff (6_x] 6_xf> = 30 (Pk + Uerr a_x:) [3-49]

where p,rs is the effective viscosity, defined as follows:

kZ
berr = B+ pCu— [3-50]

where k is the turbulent kinetic energy and ¢ its dissipation. The second term

is the turbulent viscosity or eddy viscosity.

- Lethality calculation

Chlorine is a highly toxic material. There are a number of indicators that can
be used to assess the risk of exposure to toxic gases. Among these, AEGLs
(Acute Exposure Guideline Levels), ERPGs (Emergency Response Planning
Guidelines), and TEELs (Temporary Emergency Exposure Limits) are widely
used. Moreover, there is a method from Withers and Lees [196, 197] to

quantitatively calculate the probability of death using the probit function. This
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method is a vulnerability model for describing the average fatal effects due to

chlorine release. The equation of this method can be written as
Pr=a+bln [ c"dt [3-51]

Pdeath = 05 + (1 + —erf(PT—S))

= [3-52]

where Pr is the probit, ¢ is the concentration by volume (in ppm), and a, b,
n are constants. In the case of chlorine, a is -0.829, b is 0.92, and n is 2
[198]. In this study, the probit value is integrated up to 10 minutes after the
onset of the leak. As the toxic gas flows into the residential area for about 10

min during the pre-simulation stage, 10 min is considered the golden time.

Numerical setup

FLACS solves the conservation equations for each cell of a 3D Cartesian
grid using the finite volume method. The numerical time step algorithm that is
used in FLACS is based on the implicit first-order backward Euler method.
Time steps in transient simulations should be set so that the solution evolves
smoothly and stably in time. The Courant-Friedrich-Levy (CFL) number
provides a solver-specific criterion for the maximum time step that yields a
stable solution in the compressible solver of FLACS. Two CFL numbers are

used to determine the maximum time steps: CFLV and CFLC. CFLV is based
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on fluid velocity, whereas CFLC is based on sound velocity. The CFD solver

chooses the minimum value between CFLV and CFLC.

CFLV
At, = R -
ty maX(A_le-) [3 53]
_ CFLC
Atc - max(Ain) [3'54]
At = min(At,, At,) [3-55]

where Ax; represents the length of the cell in i-direction and At denotes
the time step. In this study, CFLV is fixed at 1.0 and CFLC is fixed at 10, which
are common values in dispersion simulations. Each simulation is performed by
parallel computing with 12 CPU threads. The computer used in this study has

a 24-core Intel Xeon E5-2697v2 (2.7 GHz) processor and 256 GB DDR3 RAM.

- Data sampling and preprocessing

To create a surrogate model using a neural network, hundreds of sample data
points are required for training. However, it is costly to manually acquire large
amounts of data; thus, an automated process is used to generate them. This is
carried out by linking Python code with FLACS. Moreover, it is difficult to

directly use the results obtained from FLACS in surrogate model training.
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Therefore, it is necessary to preprocess them. The flow chart for this process

can be seen in Figure 3-24.

e 2 A 21



Input Variable Setting
Wind_speed,
Wind_Direction, Leak_rate

A 4

Input File Generation
CS(scenario), CL(leak
profile)

Run FLACS

A 4

Result Transformation
r3(Binary) > a3(ASCII)

Pdeath Calculation

2D Result Data

Figure 3-24. Data sampling and preprocessing flow chart
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Initially, among the input variables applied to each sample, three variables
(wind speed, wind direction, and release rate) are randomly selected within a
certain range. Using these selected variables, the cs and cl files are created. To
initiate the FLACS calculation, the cs (scenario), cl (leak), co (geometry), cg
(grid), and cp (porosity) files are required. Among them, the co, cg, and cp files
are fixed because the simulation is performed with a single geometry. As the
variables in the cs and cl files only are changed, they are generated for each
sample. Once the FLACS simulation is complete, the resulting r3 file (binary
form) can be converted to an a3 file (ASCII form) using the FLACS utility. The
result thus obtained is four-dimensional data (x, y, z, and time). Subsequently,
Pcann 1s calculated by integrating over time up to 10 min. Only the data at the
point z =2 m, which is the height directly affecting the population, is extracted
from the reduced 3D data and becomes 2D data (150 x 200), which is the Pgcatn
value corresponding to the x and y coordinates. 550 samples are thereby

generated.
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3.4.1.2. VAEDC-DNN surrogate model

Most of the previous studies on the reduced-order model for chemical
engineering problems, such as reactor modeling, gas dispersion modeling, and
process data monitoring, used principal component analysis (PCA) for data
reduction and feature extraction [199-205]. However, as deep autoencoders
exhibit superior performance in nonlinear data reduction compared with PCA
and shallow autoencoders [206], well configured deep autoencoder are be
employed in the present case. Even though PCA can effectively reduce linearly
correlated data in certain cases, and there are several applications of PCA, such
as kernel-PCA for nonlinear dimensionality reduction or manifold learning, an
autoencoder is the nonlinear generalized version of PCA. Furthermore,
autoencoders can be applied to the generative model owing to their theoretical
relationship with the latent variable model [207]. Pgcan images generated from
CFD gas dispersion models are highly nonlinear owing to complicated
geometric factors (buildings, mountains, and loads), and it is considerably
difficult to extract features from them. Thus, a surrogate model based on a
variational autoencoder [185] is introduced for compressing the output image
data x € R152%200 t the latent space z € RNz, where N. is the number of

latent variables, using a probabilistic encoder (qg(z|x)) and a probabilistic

decoder as generator (pg(x|z)) by means of variational Bayes that let the prior

over the latent variables be the centered isotropic multivariate Gaussian
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(W' (z; 0,1)). Finally, the latent space z is mapped by the variable space v €

R1*3 for reconstructing the image with v only.

For developing the surrogate model (f*(v)) of the CFD gas release model
( f(v)) employed by FLACS, a variational autoencoder with deep
convolutional layer (VAEDC) and a fully connected deep neural network (DNN)
involving batch normalization layers are used. The input of the original CFD
model and the VAEDC-DNN surrogate model is represented by v € R*3, that
is, wind velocity (m/s), wind direction (rad), and gas release rate (kg/s). The
output of the models is represented by x € R1°2%200 which is the contour
image of Pgean. Thus, the problem can be defined as developing a high
performance, minimum mean squared error, surrogate model f*(v): R3 -
R152%200 of the original CFD model f(v): R — R152%200 yging the pre-
calculated data set of f(v). 500 data points are used as training set
(vtrain xtrainy and validation set (vvalidation yvalidationy 50 gata points are

test

used for testing (v*St, x'€5Y) the final metric (mean squared error) between the

test

generated image data of (xggn ) and x5,
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Model architecture

The proposed surrogate model, VAEDC-DNN, consists of two parts. The
first part constructs the encoder and decoder using a variational autoencoder
with deep convolutional layers (VAEDC). The second part maps the variable
space (v) to the latent space (z) using deep neural networks. This two-stage
method enables the proposed model to efficiently regress the Pgcan image (x)

with the variable (v).

The detailed VAEDC architecture of the encoder and decoder for the
surrogate model is shown in Figure 3-25. Three convolutional layers with a
kernel size of (3,3), stride of 1, He initialization, ReLU activation function, and
padding of the same dimension are used. After each convolutional layer, a max
pooling layer with (2,2) filters and stride 2 is used for dimension reduction.
Subsequently, the input layer dimension (152 % 200) is reduced to 19 x 25,
which is one-fourth of the width and height of the image. Then, the 19 x 25 x
8 (number of filters) layer is reshaped into 1 x 3800 vectors for constructing a
3800-128-64 fully connected dense layer with the ReLU activation function.
The u and log(c?) layers in parallel represent the mean and log of variance,
respectively, of the latent variables. Thus, the dimension of the u layer,
log(c?) layer, and z layer is 1 x N, where N, is the number of the latent
variables. After the encoding process is finished, the decoding process is started,

which is the inverse of the encoding process. Finally, the loss function, which
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train

is represented by the variational lower bound, is calculated using x and

train Tati
Xgen  at the variational layer.

The detailed DNN configuration for mapping the latent space from VAEDC
and the variable space (wind velocity, wind direction, and gas release rate) is
shown in Figure 3-26. A 5-layer fully connected deep neural network with batch
normalization, ReLU activation function, and He initialization is used for
mapping the variable space into the latent space. In the training phase, the

network is trained using 400 resampled training sets (x'T20’, »tain"y and 100

validation sets (x"a“datio“’,v"a”da”"”'). The mean of the latent variables
designated as output in this supervised learning is extracted using the encoder
part of the VAEDC that has already been trained. The variable set vtrainl,
mapped in one-to-one correspondence, is used as input. Finally, in the
generating phase, the model uses a test set that was not used as training or
validation set in both VAEDC and DNN. z%St is predicted by v*St and the
trained DNN, and xég‘;t is generated by the decoder of the trained VAEDC.
Performance can be assessed by comparing the mean squared errors between

test

test
Xgen and x .
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Figure 3-25. VAEDC architecture
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- Latent space and variational lower bound estimator

The loss function is one of the most important settings for constructing
efficient autoencoders. In this study, the variational lower bound on the
marginal likelihood proposed by [185] is used. The lower bound is given by the

following equation:

L(8, ;xP) = =Die1. (44 (21x)|pg (2)) + Eq iz [logpe (xP[2)]  [3-56]

where Dxk; denotes Kullback—Leibler divergence, pg(x|z) is the
probabilistic decoder with generative parameter 6, and qg(z|x) is the
probabilistic encoder with variational parameter ¢ . Training consists in
maximizing the variational lower bound on the marginal likelihood of the data
point i through the variational parameter ¢ and generative parameter 6. To use
this statistical approach in a neural network framework, the loss function is
defined as l(@,d);x(i)) =— L(G,qb;x(i)) for converting the maximization
problem to a minimization problem. Furthermore, to generate samples from
qe(z]x) and reparametrize ¢ as a multivariate Gaussian with diagonal
covariance structure with mean (u) and standard deviation (o) of the

approximate posterior, the following equation is applied to sampling.

zO =p® + 60Oe and e~N(0,1). [3-57]

This sampling is performed at the z layer which is located after the u and

log(c?) layers in Fig. 3. Previous studies [185] proved that the KL divergence
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can be calculated and differentiated without estimation, and the second term of
the variational lower bound can be treated as a binary crossentropy loss function.
Finally, the proposed loss function for VAEDC and the data point x@ s given

by

1(6,;xV) = —%Z?’il(l + log ((aj(i))z) - (MED)Z - (Uj(i))z) +

152x200 Zliv:t;ain(x(i) - —log pe(x@|2) + (1 = xD) - —log (1 - [3-58]

Ntrain

po(:012)))

Performance evaluation and numerical setting

It is very important to evaluate the performance of the proposed surrogate
model correctly. Evaluating the performance using the value of the loss function
of VAEDC or DNN is inappropriate. The purpose of the surrogate model is to
predict the Pacan image correctly using the variable space, rather than merely
encode and decode the image data or map the variable space into the latent
space. Therefore, it is necessary to determine whether the latent space
accurately reflects the features representing the Pgcan image and whether the
variable space and the generated image data are in one-to-one correspondence.
That is, it should be ensured that the image data is not simply memorized in the
latent space or overfitting. Thus, the performance of the surrogate model is not

evaluated by each loss function of VAEDC and DNN but rather using the mean



test

squared error between xgey and xst

, where the test set was not used as
training or validation set in both VAEDC and DNN. Furthermore, for
comparing the model performance with other types of surrogate models based
on autoencoder neural networks, a neural network with one hidden layer (NN)
without autoencoder, a deep neural network with three hidden layers and batch
normalization (DNN) without autoencoder, NN with simple autoencoder (AE-
NN), NN and DNN with deep autoencoder (DAE-NN, DAE-DNN), NN and
DNN with deep convolutional autoencoder (DCAE-NN, DCAE-DNN), DNN
with simple variational autoencoder (VAE-DNN), and DNN with variational
autoencdoer with deep convolutional layers (VAEDC-DNN) are compared
using the same hyperparameters (Table 3-14). Detailed architectures and

summaries are provided in the supplementary file.

To compare the models fairly, the number of epochs of both the autoencoder
and neural network was set to 1,500, and the size of the latent space (/V:) was
set to 32 for all models. The size of the variable space (V,) was set to 3, i.e.,
wind velocity (m/s), wind direction (rad), and release rate (kg/s). The Adam
optimizer [190] was used for optimizing loss functions. All models were coded
using the Python deep learning library Keras with the Tensorflow backend.

Training was carried out using NVIDIA GeForce GTX 1070 with 8 GB GDDRS.
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Table 3-14. Summary of various models for comparison (architecture, loss
function, number of parameters); detailed descriptions are shown in the

supplementary file.

DAE- DAE- DCAE- DCA  yup i
DNN AE-NN NN DNN NN E- DNN VAEDC-DNN Falill
DNN ;
p——
5 fully 9 fully connected e
oo::noﬁa 6 dense hidden layers, 7
One fully hidden layers, 7 lavers 2D convolutional
Descrintion ) connecte 5 fully connected 2D ) msvw a layers, 3 max
= p d dense hidden layers convolutional variation pooling layers, 3
g layer _mv\ﬂ.m“ 3 max al laver up-sampling
g pooling layers, Y layers, and a
m and 3 up- variational layers
= samnling. lavers
<
Loss function - binary cross entropy - variational lower bound
o
Q
Parameters - 1,976,032 7,833,696 1,001,881 15,620,352 1,003,961
Three
fully
Description connecte NN NN DNN NN  DNN  DNN DNN
g d hidden
2 layers
me with BN
2
Z
Loss function mean squared error
Parameters 3,933,056 1,184 1,184 3,680 1,184 3,680 3,680 3,680




3.4.1.3. Results and discussion

Various training aspects of the models will be examined through the change
of each loss function concerning the epoch (Figure 3-27). The maximum epoch
for all training is set to 1500. If this number does not fit, the training may be
underfitting or overfitting. This can be determined by comparing the loss
function of the validation set with the loss function of the test set. As the number
1500 is set through trial and error, the entire training process is considered
appropriate for all models. In the case of NN, a significantly unstable training
process manifests itself as the epoch rises over 70. The prediction of a higher
dimension from a considerably lower dimension in a fully connected dense
hidden layer results in an unstable training process because the number of
parameters (30,434,400) is excessively large and no additional normalization
process is added. However, it may be used for comparison because the process
appears to stabilize to some extent as the epoch exceeds 800. Considering DNN,
which has three hidden layers and batch normalization applied after each layer
to alleviate the vanishing gradient problem of deep networks, the training
process is more stable, without overfitting, and exhibits fast convergence.
Regarding AE-NN, the autoencoder part and the NN or DNN parts should be
considered separately. In the autoencoder training process, represented by the
blue line, overfitting occurs slightly after the epoch 100 only in the case of DAE.

However, in AE, DCAE, VAE, and VAEDC, the value of the loss function at
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the end of training is highly satisfactory. NN, represented by the red line,
exhibits a highly stable training process, unlike NN without autoencoder.
Moreover, there is no difference between the training error and the validation
error. Therefore, there is no overfitting. In the case of DNN, there is a slight
vibration in the second half. Nevertheless, it appears to be well trained because
it exhibits a monotonically decreasing training process, and there is almost no
difference between the validation error and the test error. However, the lower

validation error compared with the training error is attributed to the fact that the

. . i 1 ' i i ! :
randomly extracted validation sets, xValdation” gnq gvalidation’ = contain g

predictable subset.
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Figure 3-27. Comparison of epoch vs. loss function graphs for NN, DNN, AE-NN, DAE-NN, DAE-DNN, DCAE-NN,
DCAE-DNN, VAE-NN, and VAEDC-DNN models.

263



In Figure 3-28, the mean squared error between xgen and x'*S* for each of

test ptesty is shown. The mean and

the 50 newly extracted test data sets (x
standard deviation for all test data sets with Gaussian distribution fitting is also
provided. The surrogate model constructed using the proposed VAEDC-DNN
exhibits the highest performance. The mean value is the lowest, at 0.00246, and
the standard deviation of 50 test data sets is considered the narrowest. That is,
VAEDC-DNN does not merely memorize the Pdeath image information
obtained from the training set, but rather has the ability to extract features in
the most suitable form for the latent space and to map it explicitly to the variable
space. When NN is used, it can be seen that regardless of the effectiveness of
the autoencoder compression, performance drops considerably. It can be seen
that the relationship between the latent space and the variable space is not
captured clearly. However, performance increases when encoding is such that
each variable stored in the latent space clearly exhibits nonlinear correlation
with the variable space. It can be confirmed that performance is improved even
when NN is used in the order of VAE, DCAE, DAE, and AE. In conclusion, the
best performance is achieved when VAE-based autoencoder and convolutional
layers are used. In the case of NN without autoencoder, the number of
parameters is 30,434,400, whereas in VAEDC-DNN it is 1,007,641, which is
3.31% of the former. The superior performance may be attributed to efficient

training and feature extraction with a small number of parameters.
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It should be noted that in terms of the mean squared error, NN and DNN
without autoencoder appear to perform better compared with several

combinations of autoencoders and NN. However, if xégit is drawn directly in

the contour graph, NN and DNN without autoencoder are shown to exhibit

severe noise. To visualize this, a contour graph of five randomly selected xg,g;t

generated from FLACS (CFD), which is the ground zero result, NN, AE-NN,
DAE-DNN, ACAE-DNN, and VAEDC-DNN are shown in Figure 3-29. If NN
or DNN without autoencoder are used, severe noise appears. This is because it
is difficult to efficiently extract only the features of the image during the
training process. Hence, other training data images are memorized and reflected
in the results. Moreover, owing to the characteristics of highly nonlinear images,
it is difficult to predict the entire image using the variable space only. Thus, the
result is quite misleading in some cases, such as the 1%, 3", and 5" columns in
Fig. 7. The noise disappears from the prediction after data compression by the
autoencoder. However, failure to extract features by the autoencoder and map
the variable space into the latent space by NN results in deterioration of the
surrogate model performance. Such phenomena can be observed directly in AE-
NN. The disappearance of noise is important; however, only the approximate
trends are predictable. In the case of the 2™ column data, prediction is
considerably inaccurate, whereas in the 5" column data it is highly accurate. At

this point, it becomes apparent that the introduction of the DNN model with

266 ] O 11 &



batch normalization model is necessary for improving overall performance.
Feature extraction should be activated through the deep convolutional layer and
image compression should be accurately performed with the latent space by
predicting the posterior distribution through the variational autoencoder.
Between the two best-performing models, i.e., VAEDC-DNN and DCAE-DNN,
VAEDC-DNN provides superior prediction compared with FLACS (CFD). In
the 1% column, Pgcatn spreads out slightly to the upper side; it cannot be detected
by DCAE-DNN, whereas VAEDC-DNN detects it. In the 3™ column, VAEDC-
DNN is nearly matched although the other models cannot clearly predict width
and size. In 4™ and 5™ column data, superior feature extraction is exhibited even
though the shape is complex with many cracking features. Finally, it can be

seen that a cracked, non-convex, complex image is predicted as well.
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DCAE-DNN DAE-DNN AE-NN DNN FLACS (CFD)

VAEDC-DNN

Pdeath

Figure 3-29. Comparison of generated Pgean image (xgen'™") using v'**' with
FLACS (CFD), which is ground truth, DNN, AE-NN, DAE-DNN, DCAE-

DNN, and VAEDC-DNN.
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As can be seen by the sentence “walking in the latent space” from [208],
understanding the landscape of the latent space is highly important because it
is possible to detect memorization through walking in the latent space. If there
is sharp image transition, which implies that the latent space is collapsed, the
model fails to learn relevant and interesting representations. In this study, as the
variable space has already been mapped into the latent space, “walking in the
variable space” is suitable for determining whether the manifold is learned. The

results are shown in Figure 3-30.
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Wind velocity, 0.5-5 (m/s)

Wind direction, 0-27 (rad)

Figure 3-30. “Walking in the variable space” of a VAEDC-DNN.
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As the variable space (v) is three-dimensional, the toxic gas release rate
(discharge rate) is fixed at 50 kg/s, and Pgcanr is visualized as a linear series of
10 points in wind velocity and wind direction. Smooth transitions in all
directions are observed. Paeam spreads wider as wind velocity increases, and the
diffusion direction of Pgean varies smoothly with wind direction, and the
topography and obstacles of the region are reflected by the asymmetrical
movement. Fig. 8 shows that VAEDC-DNN accurately extracts the Pacan
features, as it is trained not to merely interpolate and symmetrically rotate the

wind direction.

Comparison of computational time, storage space for saving the model, and
use in real-time alarm systems between the CFD model and VAEDC-DNN is
given in Table 3-15. In the case of real-time alarm systems, if a chemical release
accident occurs, then wind velocity, wind direction, and release rate are
provided to the alarm system from external sensors. Subsequently, Pgean OF
concentration of toxic chemicals should be calculated. When using the CFD
model for calculating Pgean, CPU time is over 700 s using 16 cores of the Intel
Xeon E5-2667v3 (3.2 GHz) processor; thus, it is impossible to obtain this
information before golden time (10 min). Moreover, it is difficult to pre-
calculate all scenarios in advance because the storage requirement for saving
CFD data is on the GB scale per case, and results are usually non-linear via the

variable space, owing to the complexity of the geometry. Thus, VAEDC-DNN



is particularly helpful for developing the surrogate model with a minimum
amount of pre-calculated CFD data. After training, up to 1 s of CPU time with
a single core is required. As mentioned above, the non-linear correlation
between the Pgean distribution and the geometry effect via the variable space is
achieved by the variational autoencoder. Hence, with hundreds of pre-
calculated CFD results, VAEDC-DNN successfully predicts the Pacanm contour

via any variable space.
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Table 3-15. CPU computational time, storage space for saving the model, and use in real-time alarm systems.

CPU time Storage Use in real-time alarm systems
) Thousands of cases are required for predicting all
CFD model ~700 s with 16 cores GB scale )
variables.
With hundreds of cases, the surrogate model can predict
VAEDC-DNN <1 s with single core KB scale

all variables.
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3.4.1.4. Conclusions

In this study, the CFD model was reduced, and regression was introduced
through a surrogate model for fast calculation. A variational autoencoder with
deep convolutional layers was used to extract only key features without noise
from high-dimensional image data. Thereby, the CFD result data was reduced,
and features were extracted into the latent space z. Moreover, a surrogate model
for mapping the variable space v to z using a deep neural network with batch
normalization was designed. The integrated model, a variational autoencoder
with deep convolution layers interconnected with a deep neural network
(VAEDC-DNN), was finally proposed, and the results were remarkable. To
verify the performance of the proposed surrogate model, a toxic gas release
scenario in the Mipo complex in the city of Ulsan, Republic of Korea, modeled
by the commercial CFD software application FALCS was used. CFD modeling
was based on CAD, reflecting the complex geometry of real industrial
complexes, and the distribution of the probability of death (Pacan) Was obtained
as a 2D contour graph by varying v. 500 randomly sampled training sets, and
100 validation sets were used for training. Furthermore, 50 randomly sampled
test sets, which were not used for training, were used for performance
evaluation by comparing the results of the ground truth CFD and those of the
proposed surrogate model via the mean squared error of Pycam. For objectivity,

NN without autoencoder, DNN without autoencoder, AE-NN, DAE-NN, DAE-
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DNN, DCAE-NN, DCAE-DNN VAE-DNN, and VAEDC-DNN were
compared using the same hyperparameters. The mse of VAEDC-DNN was
0.00246, which is on average 47.7% as low as that of the other models.
Moreover, the model yields a fairly accurate prediction of the nonlinearity of
image cracks and topography. Finally, it is confirmed that image generation is
not overfitting by data memorization through the smoothness of image

transition in the variable space.

The proposed regression methodology has considerable advantages for
developing the surrogate model when the dimension of the training data is very
large, which may result in problems related to noise or feature extraction.
Furthermore, it leads to high-quality surrogate models when the computational
cost of the original model, such as a CFD-based model, is overly high for real-
time analysis. Therefore, when constructing an early warning system for
chemical accidents, or when the dynamics of a virtual plant is required at real
time in the form of a 2D or 3D contour image of the concentration of chemicals
or temperature profile, compressing the pre-calculated CFD results and
developing a surrogate model using VAEDC-DNN is expected to have a
considerable effect. In future work, it is expected that state-of-the-art generative
models, such as boundary equilibrium generative adversarial networks
(BEGAN), will be used for generating images with sharp edges for more

complex features.
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CHAPTER 4. Industrial Applications

4.1. Optimal Design and Operation of Fischer-Tropsch
Microchannel Reactor for Pilot Scale Compact Gas-to-
Liquid Process

A pilot scale (1.0 BDP) compact GTL process comprising of reforming
section, CO, separating section and Fischer -Tropsch (FT) synthesis section is
presented. Systematic design procedure adopted for the design of a modular 0.5
BPD microchannel FT reactor block design consisting of 528 process channels
is described. On average 98.27% CH4 conversion to syngas in reforming section
comprising of a pre-reformer unit and a tri-reformer unit, CO, separation rate
of 36.75 % along with CO/H; reduction from 2.67 to 2.08 in CO, membrane
separation section comprising of three membrane separators, for the entire plant
operation duration of 450 hr demonstrated successful and stable operation of
pre-processing sections of the present pilot-scale compact GTL process.
Parallel operation of FT microchannel reactor and multitubular fixed bed type
FT reactor proved failure for latter due to reaction runaway, while the former
showed stable operation with high CO conversion of 83% and successful
temperature control (at 220 °C, 230 °C, and 240 °C during the 139 hr operation),
which demonstrated the appreciable performance of KOGAS-SNU novel

microchannel FT reactor.
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4.1.1. Pilot scale compact GTL process

The present KOGAS-SNU collaboration project "GTL Pilot Plant Operation
and Technology Enhancement Project" works on technology development for
compact GTL process mainly targeting for offshore and small to mid-scale gas
field application. The process consists of syn-gas reformer units, CO-
membrane separator units, NG supply tanks (supplied from LNG storage tank
in Incheon, South Korea), and an integrated FT reactor that produces synthetic
crude oil through FT reaction. FT reactor being at the core of GTL process, the
main focus of the work was on the design of modular FT microchannel reactor
block suitable for small- to medium-sized gas fields where one reactor module
can produce FT product up to 0.5 BPD. Accordingly, a novel modular
microchannel FT block reactor was developed in-house following a rigorous
deign procedure. The microchannel block reactor is expected to miniaturize FT
synthesis with nearly 100 times heat exchange capacity compared to the
conventional fixed bed type FT reactor, as supported by several literatures [12-
14, 209]. Like Velocys®, the pioneer company for microchannel FT reactor
based small-scale GTL process, the capacity of present pilot scale compact GTL
process can be scaled up by numbering up the the block reactor modules. This
allows microchannel reactors to have flexibility in their desired production
capacity. Additionally, block-type micro-channel reactors are also effective for

reactor scale-up in offshore environments where ocean wave motion can affect
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the reaction performance [9]. The tri-reformer section in the present compact
GTL process however used a vessel type reformer, but since the total height is
designed to be within ~ 3 m, the tri-reformer unit does not nullify the
advantageous feature of block-type microchannel reactors in the context of

offshore application.
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Figure 4-1. Overview of KOGAS compact GTL pilot plant (1
membrane separation section, and c) FT reactor section.
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Overview of the KOGAS GTL pilot plant is shown in Figure 4-1 and Figure
4-2 shows the process flow diagram of the overall compact GTL process. The
process can be divided into three processing sections, namely, reforming
section, CO, separating section, and FT reaction section. Boiler feed water,
natural gas, CO,, and O, are the feed materials. These feed materials are
converted to syngas (mixture of CO and H,) by the reforming section which is
then passed as feed to the FT reaction section after removing CO; in the CO,
membrane separator section. The reforming section consists of pre-processing
units (B-1, B-2, B-3, T-1, T-2, T-3, E-1, E-2, E-3) to heat up, mix and pressurize
the feed natural gas, and a pre-reformer and a tri-reformer unit to convert feed
natural gas to syn-gas (mixture of CO and H,). First. boiler feed water (BFW)
is received by a make-up tank (T-1) which is then pumped (by P-1) to the steam
generator (E-1) where it subsequently becomes steam after passing through a
waste heat boiler located at the bottom of the tri-reformer. Natural gas is
supplied from an LNG storage tank located outside the pilot plant facility at
KOGAS and is mixed with steam at the upstream of pre-reformer. CO- and O;
supplied to the reformer section requires booster (B-2, B-3) to increase flow
pressure to that of feed gas stream to tri-reformer in order to mix with the feed
gas stream before entering the tri-reformer. O, supply in this case does not
require an electric heater as it exchanges heat in heat exchanger (E-6) with the
hot stream coming out from tri-reformer. Equations [4-1]-[4-3] show the

reactions in the conventional process of steam reforming of methane (SRM),
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the carbon dioxide reforming of methane (CDR), and the partial oxidation of

methane (POM), respectively.

CH, + H,0 & CO + 3H, AH%9g = 206.3 kJ/mol [4-1]
CH, + CO, & 2CO + 2H, AHS9g = 247.3 kJ/mol [4-2]
CH, + %02 & CO+2H, AH%g = —35.6 kJ/mol [4-3]

The tri-reforming process of methane (TRM) proposed by Song and Pan
[210] is considered suitable for GTL process, because in their case, the three
reforming reactions occur simultaneously making it easier to control syngas
ratio (H,/CO) in tri-reformer product. Inappropriate H»/CO ratio is the main
factor for coke formation that can occur in processes that use syngas as feed,
such as dimethyl ether (DME) production, GTL, biomass-to-liquid (BTL) and
coal-to-liquid (CTL) [210-213]. In the present compact GTL process, boiler
feed water converted to steam along with natural gas, CO, and O, are reacted
in the pre-reformer with ReforMax 100 (Sud-Chemie catalyst) and the tri-
reformer with KDN-1 (Ni-Mg/Ce-ZrO2/y-Al1203 based tri-reformer catalyst)
developed by KOGAS to produce the syngas. The reaction temperature of the
pre-reformer was maintained between 400-420 ° C and the temperature of the
heterogeneous zone of the tri-reformer was maintained between 900-1000 ° C.
High-temperature of the tri-reformer product is reduced to a much lower
temperature (~25 oC) suitable for CO, membrane separating section by first
exchanging heat with O2 supply to reforming section and then subsequent

cooling using chilled water.
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In the tri-reformer, in addition to SMR, CDR and POM reactions, methane
combustion also occur at the high reaction temperature of tri-reformer. This

lead to excess CO; in the tri-reformer product stream.

CHy + 20, © CO, + 2H,0  AHSoq = —880—~L [4-4]

mol

However, in the FT reaction, excessive CO; act as an inert gas, like N» in
the CO/Al,O3 based catalyst, and the reaction conversion gets dominated by
undesired methanation reaction [209]. Syngas feed to the FT reactor along with
excess CO; would require reactor size to increase drastically, in addition to
promoting undesired methanation reaction. Therefore, CO, membrane
separator section is introduced to lower the CO, concentration to less than 10
mol%. Three membrane units (M-1, M-2 and M-3) are connected in tree fashion
so that the permeate of M-1 is transferred to M-3 andthe retentate is transferred
to M-2.The permeate of M-3 which contains excess CO; gas is vented out.
Alternatively, the permeate of M-3 can be recycled to the tri-reformer unit by
combining with the main CO, feed stream to tri-reformer. The retentate of M-3
and the permeate of M-2 are combined and recycled to M-1 using the gas
compressor to minimize H2 and CO losses. Finally, the retentate of M-2 showed
a CO; removal efficiency of the CO, membrane separation section upto 36.8-
39.4% leaving the syngas stream composition with an average CO; content of
~ 10%. The syngas purified using the CO, membrane separation section of the
pilot plant has H»/CO ratio ~2, which is a necessary condition for high FT

reaction conversion and desired selectivity [214]. The purified syngas enters
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the FT reaction section of the pilot plant comprising of a microchannel block
FT reactor and a multitubular fixed bed type FT reactor connected in parallel
for performance comparison. Both microchannel FT reactor block and a
multitubular fixed bed type FT reactor were maintained at the same operating
conditions of 20bar, 220 °C and GHSV = 2500 hr -'. A hydrogen (H,) gas
cylinder is connected to reaction system to reduce the FT catalyst needed for
FT reaction. A nitrogen (N,) gas cylinder is also connected to the reaction
system to act a diluent and to be used in the calculation of CO conversion and
CHjs selectivity by gas chromatography later. Both H, and N are heated to the
FT reactor operating temperature through a gas heater (E-8). Cobalt based
catalyst with alumina support (12 wt% Co / y-Al 2 O 3), developed by KOGAS,
was used for the FT reaction along with alumina ball as inert packing material.
In lab-scale experiment, incipient wetness impregnation (IWI) was performed
to produce the catalyst in gram scale (detail information of catalyst with
reaction kinetics is reported in [31]). However in pilot scale operation,
because of necessity of industrial scale production, spray coating method was
used for producing the catalyst in kilogram scale. Products of the FT reaction
were collected as light oil, wax and gas after passing through 1% and 2™ decanter
(T-10 and T-11 for light oil and gas) and wax-receiving drum (T-12 for wax).
The gas is then sent to GC analyzer for analyzing the gaseous products.

In addition to the development of an integrated and compact GTL process,

present work also includes the design of a corrugated fin-type microchannel FT
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reactor block suitable for the process. Therefore, the present GTL technology
development requires consideration of both process and reactor design along
with the analysis for optimal operating conditions for the reactor. Furthermore,
to our knowledge, literature on combined work for design, fabrication and
operation of pilot scale microchannel reactors is limited. Therefore, it is
imperative to organize the sequence of studies conducted in the design process.
In the next section, we explain the design procedure followed in the present
study to achieve the final design of microchannel FT reactor block used in the

pilot plant demonstration.
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4.1.2. Microchannel FT reactor design

The work presented in Chapter 4.1.2 has been submitted to Chemical
Engineering and Processing: Process Intensification with KS. Kshetrimayum
(joint first author). Furthermore, this section was used in Ph.D. thesis of KS.
Kshetrimayum (“Modeling, Simulation, and Design Procedure Development of
Micro-channel FT Reactor using Computational Fluid Dynamics”). Thus, I
exclude this Chapter in my thesis. Especially, specific data (Figure 4-5 and

Figure 4-6) are shared with him under his consent.
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4.1.3. Pilot plant experiment

- Pilot plant setup

The pilot scale GTL process experiment was performed through three
operating sections reformer section, CO, membrane separation section, and FT
Synthesis section. Tri-reformer for the reformer section was made by stainless
steel with shell side and jacket side. Al,O3 ball was packed on the top of the
reactor, KDN-1 (Ni-Mg/Ce-ZrO2/y-Al203 based tri-reformer catalyst
developed by KOGAS) was packed in the middle of the reactor, and Al,O3 ball
was packed at the outlet region of the reactor. Operation temperature and
pressure were set to 900-1000°C and 25 bar respectively. Average pressure drop
was 25 kPa through the overall Tri-reformer section. In case of pre-reformer,
Al,Os ball was packed on the top of the reactor, ReforMax 100 (Sud-Chemie)
was packed on the middle of the reactor, and Al,O3 ball was packed on the
bottom of the reactor. Operation temperature and pressure were set to 400-
420°C and 27 bar respectively. Total operation time of reformer section,
including the reformer ignition start up time, was 450 hr. At the ignition
condition, GHSV was about 1567 hr™!, mass flow rate of steam was 9.8 kg/hr,
and volumetric flow rate of natural gas and oxygen were 4.8 and 4.5 Nm?®/hr

respectively.

In the case of CO, membrane separation section, total operation time was

188 hr for microchannel reactor and 134 hr for multitubular packed bed reactor.
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Average pressure of M-1 rententate, M-2 permeate, M-3 retentate, and M-3 CO»
exhaust were 22.5 bar, 6.0 bar, 6.5-7.0 bar, and 0-0.1 bar respectively. For
increasing the CO, removal efficiency, recycle loop with gas hold up tank (T-
8), gas compressor (C-2), and gas cushion tank (T-9) was designed and stream
was merged into the inlet stream of M-1. Target syngas ratio after membrane

section was set to about 2.0.

Two FT reactor, microchannel (FT-2) and multitubular fixed bed type (FT-
1), were installed in parallel for comparing the performances. Microchannel FT
reactor core was made by 316L stainless steel with 285x295x460 mm. There
were 528 reaction channels in total, and the specification of each channel was
5 mm in height, 10 mm in width and 460 mm in length. Both the inlet and outlet
region (about 30 mm on both sides) of the reactor was filled with Al,Oj3 balls,
and GL-3000S (12 wt% cobalt catalyst supported on 1 mm y-Al203 developed
by KOGAS) was prepared for packing 400 mm of reaction channel.
Multitubular fixed bed FT reactor core was made by stainless steel for shell side
and high pressure steel pipe for tube side. Diameter of the reactor core was 300
mm and total length was 1815 mm. Diameter of each tube was 33.4 mm and
length was 1200 mm and the number of the tube was 33. The inlet and outlet
region of the reactor was filled with Al,Os balls, and GL-3000S was prepared
for packing at the middle of the reactor. Target operating temperature and

pressure were set as 220-240°C and 20 bar respectively. For the cooling system,
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silicon based cooling oil, Syltherm 800®, was circulated at the flow rate of 200
L/min with non-seal hot oil circulating pump (P-2). Hot oil receiver with 9 kW
heater (E-9) and 9 kW hot oil 2™ heater heated up the coolant. Gas
chromatography (YoungLin YL6100GC) with the 45/60 molecular sieve 13X,
80/100 PORAPAK N 10 ftx1/8 in, thermal conductivity detector (TCD) and
flame ionization detector (FID) was installed after the 2™ decanter (T-11) for
analyzing the gaseous components (CO, N,, CHy, and CO) of the FT reaction
products. Locations of the thermocouples installed in the microchannel FT
reactor for sensing the local temperature inside the reactor are indicated in the
front view of the reactor, as shown in Figure 4-3. For reducing and rinsing the
catalyst, H, and N, were supplied from a H» cylinder and a N, cylinder kept
near the reactor set-up. Downstream end section of the compact GTL process

consisted of decanter (T-10, T-11) and wax receiving drum (T-12)
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1 cCoolant inlet
(2' Coolant outlet
5 Syngas outlet

6 Syngas inlet

Figure 4-3. Location and index of the thermocouples (TC-(1-7)) in the front

view of the reactor.
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4.1.4. Result and discussion

First, the composition of the syngas stream coming out from reformer
section and passing through CO, membrane separation section is checked
before feeding to the FT reaction section. The temperature data from three
thermocouples (TC-RE1, TC-RE2, and TC-RE3) located in the heterogeneous
zone of the tri-reformer is shown in Figure 4-4. It can be seen that after the auto
ignition reaction (AIR) was successfully performed and stabilized, the
thermocouple located in the heterogeneous zone of tri-reformer shows
temperature between 900-1000 °C. From the composition data of tri-reformer
exit, it can be seen that an average of 98.27% CHj is converted to syngas
(mixture of H, and CO) with syngas ratio (H,/CO) as 2.67 on average. In fact,
H,/CO ratio in the initial AIR reaction is 9.34, but once the tri-reforming
process is stabilized (after 24 hr operation), the H»/CO ratio decreases to an
average value of 2.67 and remain static for rest of the operating hours, as can
be seen in Figure 4-4. The average CO, molar composition at the tri-reforming
exit is 16.44%. This percentage of CO; in the syngas stream is unsuitable for
FT reaction and should be removed through the CO, membrane separation
section. The average CO, molar composition in the exit stream from CO;
membrane separation section is 10.58%, showing a CO, removal rate of about
36.75%. In this particular CO, separation process, non-polar CO; is removed

by the selective permeability of the membrane. However, non-polar H, also gets
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removed at the same time through a small portion of the membrane, thereby
reducing the overall H»/CO ratio to an average value of 2.08, which is
appropriate value for low-temperature FT reaction. And, as can be seen from
Figure 4-4, the reforming section and the CO; separation section, which are the
pre-processing sections for the FT reaction section, were operated stability till
280 hr without large variations while FT reaction section was operated from
140 hr to 270 hr. This clarifies the fact that syngas supply to the FT reaction

unit was stable during the entire duration of FT reactor operation.
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To compare the performance of the two types of FT reactors based on the
thermal control , data from thermocouples installed inside the microchannel
reactor (TC- (1-7)) as indicated in Figure 4-3 and data from the thermocouples
installed inside the central tube of the multitubular fixed bed reactor (TC-FB1
and TC-FB2 located at the 2nd and 3rd segments of the 10 segments divided
along the longitudinal direction of the tube) are compared, as shown in Figure
4-5. First, the temperature of the microchannel reactor was increased to 220 °C,
followed by step increase to 230 °C and 240 °C in order to determine whether
the runaway reaction occurred or not. Even though the syngas inlet temperature
(TC-6) is higher than the target reactor temperature (by more than 10 °C), the
enhanced heat transfer capability of the microchannel reactor system can easily
bring down the syngas temperature to the target reactor temperature before
entering the reactor core. It is noteworthy that because TC-3, TC-4, and TC-7
are installed at the entrance of the reactor, reactor area is large since it is a pilot
scale, uniform gas inlet distribution fails, and with the highly exothermic nature
of FT reaction, it is possible that temperature fluctuation could occur with large
heat generation, but temperature shows fluctuation within 1 °C. The syngas
outlet (TC-5) temperature profile is similar to that of other temperature sensors
and is much lower than the syngas inlet, which is an evidence that there was no
undesired heterogeneous heating phenomena near the position of the
thermocouples. Moreover, no runaway reaction occurred even when the

operating temperature was increased to 240 °C and inlet syngas temperature to
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250 °C, which indicates that developed microchannel FT reactor is robust even
at high temperature operation. However, in the multitubular fixed bed FT
reactor, unlike microchannel FT reactor, hot spot at the front region of the
reactor was observed, as shown by the thermocouple (TC-FB1) data in Figure
4-5, indicating a condition of runaway reaction. When the operating
temperature was increased from 220°C to 230°C, TC-FB1 showed rapid rise in
temperature to about 395°C indicating a surge in exothermic reaction at that
condition. Even when the temperature of the coolant supplied to the
multitubular fixed bed reactor was kept much lower compared to that of coolant
supplied microchannel reactor, the low heat removal efficiency of multitubular
fixed bed reactor system could not prevent the runaway reaction from appearing.
During the runaway reaction, the catalyst inside the multitubular fixed bed
reactor got deactivated resulting to the eventual disappearance of FT reaction
in the reactor. Accordingly, multitubular fixed bed reactor was shut down for

safety and economic reason.
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Therefore, it can be understood that temperature data from multitubular
fixed bed reactor suggest that smaller tube diameter (smaller than 5mm
diameter of the present tube) may provide higher heat removal capacity needed
to control reactor temperature of multitubular type FT reactor. Also, in the
coolant oil circulation system of the present FT reaction section, there is no
cooling facility in the hot oil return line. This can prove to be a disaster in the
reactor operation should the temperature of the catalyst layer rises rapidly due
to a rapid exothermic reaction as the reaction heat cannot be removed abruptly.
Therefore, it is necessary to provide additional cooling facility in the hot oil
return line or dilute the catalyst loading to avoid excessively high reaction rate.
On the other hand, temperature data from microchannel reactor operation
showed safe and stable operation, adequate control of reactor temperature,
while still achieving high CO conversion for the entire duration of reaction
operation (140 hr to 270 hr), as shown in Figure 4-6. Microchannel FT reactor,
therefore, proved to be more advantageous compared to multitubular fixed bed
FT reactor in terms of FT reactor performance. Accordingly, a microchannel FT
reactor may be used to achieve efficient and safer operation of small scale
compact GTL plant. Additionally, although not conducted, in the present pilot
scale demonstration set-up, since both microchannel FT reactor and multiubular
fixed bed type reactor are installed in parallel, replacing the latter with second
module of the former should make the productivity of 1 BPD (two 0.5 BPD

modular microchannel reactor in parallel).
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Figure 4-6. CO conversion and CHj4 selectivity of compact GTL pilot plant
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Finally, we evaluate the performance of the microchannel FT reactor based
on CO conversion and CH4 selectivity. The CO conversion is calculated by
indirect measurement of the absolute molar composition of CO at the inlet and
outlet of the reactor given by the GC analyzer and using inert N, gas from the
GC data as the baseline. The average CO conversion is estimated to be about
83.54%. Although temperature affects the CO conversion [2, 16, 24, 215], in
the present pilot plant operation, it is difficult to notice the effect of operating
temperature change on CO conversion as there are no clear cut shift in the value
of CO conversion time series data. There are several peaks with low conversion,
but the reason for the existence of these peaks is believed to be due to the
fluctuations in flow and conversion rates in the reformer section. However, the
conversion rate in the present pilot plant operation (83.54 %) is higher than the
values (65 - 78 %) reported from both commercial and lab scale FT synthesis
operation. This higher value of CO conversion achieved in the present pilot
plant operation may be due to the fact that the syngas injection rate into the
reactor (GHSV = 2500 hr ') was much lower than the GHSV value of 4000
ml/gcat - h used in the simulation [31]. Experiments using the same catalyst
showed a conversion rate of 42.00% at 4000 ml / gcat - hr at 220 °C on a lab
scale [31]. However, in the KOGAS compact GTL pilot plant, due to the
efficiency and design limitations of the reformer and the CO, membrane section,
the space velocity set to 2500 ml / gcat - hr. This GHSV is low but the

conversion is overwhelmingly high. Consequently, heat produced by the
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exothermic reaction would be higher. Assuming that the total enthalpy change
is directly proportional to the mole of CO converted, rate of heat produced for

the GHSV used in the present pilot plant operation can be obtained as 7n¢g X

N

Xco X 165 —1 00

[14] which gives around 15 kW. But because heat removal

performance of the in-house designed microchannel FT reactor is efficient, the
reactor temperature control was excellent in the pilot plant experiment.
Although operation with higher values of GHSV was not conducted due to high
operation cost (approximately 100,000 USD per run), we expect that there will
be no heat removal problem with the present microchannel FT reactor block
even if FT synthesis operation were carried out with increased value of GHSV.
However, it is possible to have an argument for the unchanged conversion
although thermocouple indicated increased temperature because there can be
uncontrolled reactions at any location inside the reactor. Even though all
thermocouples show no high temperature that indicates hot spot or run away
reaction, hot spots or runaway reaction can develop somewhere inside the
reactor which is likely to be missed by the thermocouples installed at the front
region of the reactor. Moreover imperfect distribution of inlet syngas can
accelerate the uncontrolled kinetics because we did not performed the optimal
design simulation of the inlet part of the reactor. Thus, in the future research,

penetrated method for sensing the temperature of the reaction channel and the
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method or simulation for checking the gas distribution performance should be

performed.

In the case of CHy4 selectivity, the average selectivity is 50.13% much higher
than value of 10-20% obtained in our lab scale experiments [31]. Compared
with lab scale, the higher CH4 selectivity can be obtained on a normal pilot scale,
but the CHa selectivity obtained in this experiment is undesirably high and
needs to be lowered. Multiple reasons exist for the CHasselectivity in the present
pilot-scale experiment to be undesirably higher than that of our lab scale
experiments. One obvious reason is the fact that the residence time for the
syngas flow in the present pilot plant operation was much lower compared to
the our lab-scale experiment. If the residence time is insufficient, the CH4
selectivity is expected to increases as there is no sufficient time for the carbon
chain growth [216]. Second reason could be the fact that in our lab scale
experiment, incipient wetness impregnation (IWI) was used for producing the
catalyst in gram scale. However, in pilot scale, because of necessity of industrial
scale production, spray coating method was used for producing the catalyst in
kilogram scale. And the third reason could be that Al,Os support diameter of
pilot scale operation was about 1 mm, which is much bigger than the dimeter
of Al,Os support used in our lab scale (100 um scale). This difference in catalyst
support diameter can make approximately 10 times difference in the catalyst

surface area per unit volume, thereby reducing the catalyst activity significantly.
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Additionally, the bigger catalyst support size does not allow Co particles to
sufficiently penetrate into the support pores. Therefore, due to low effective
residence time of syngas, less effective method of catalyst material coating and
bigger catalyst support size, much higher value of CH4 selectivity was obtained
although nearly constant value of GHSV and CO mass fraction was maintained
during the entire operating hours. Yet another reason could be the fact that the
plant was operated at conditions corresponding to high CO conversion. As
commonly known with FT reaction, CO conversion and the product selectivity
are strongly related to the process operating conditions. In the present pilot plant
operation, operating time at 220 °C was relatively low compared to that of 230
°C and 240 °C, thereby making overall CO conversion unreasonably high. And
it is generally agreed that high CH4 selectivity is generated for high CO

conversion [217] .

The final reason for obtaining undesirably high CHs4 selectivity in the
present pilot plant operation is expected to be the improper method of catalyst
reduction. In the present pilot plant experiment, the catalyst was reduced at 300
°C using only H,. However, D.B. Bukur et al. [218] identified with their Fe-
based FT catalyst that more CH4 and gaseous hydrocarbons are obtained if the
catalyst is reduced only with H, reduced compared to that of carbon monoxide
or syngas reduced catalysts. In Co-based FT catalyst too, it is reported that

lower CH,4 selectivity, and good catalyst stability can be achieved by using
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syngas rather than pure H, for catalyst reduction prior to actual FT reaction
[219]. Moreover, it is also reported that low catalyst reduction temperature
cannot reduce catalyst sufficiently. In our present pilot plant experiment, to
avoid excessive vaporization and subsequent increase in pressure over 20bar of
the coolant medium, temperature was not increased over 300 °C during the
catalyst reduction process. Therefore, assuming that all the reasons discussed
are applicable to the present method of catalyst preparation, catalyst pre-
processing and reactor operation in order to reduce high CHs selectivity
following practices are recommended; 1) reducing the catalyst with syngas, 2)
increasing the reduction temperature above 300 °C, 3) producing the catalyst
with IWI method, and 4) operating with moderate value (below 80 %) of CO

conversion.
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4.1.5. Conclusion

A pilot scale compact GTL process is operated using an in-house designed
microchannel reactor block as the FT synthesis unit. Process description of the
present pilot scale compact GTL process comprising of reforming section, CO»
separating section and FT synthesis section are presented. Systematic computer
aided engineering design procedure adopted for a modular 0.5 BPD
microchannel FT reactor block design (285 mm X 295 mm X 460 mm)
consisting of 528 process channels is described in the form of design procedure
flow-chart. Reforming section comprising of a pre-reformer unit followed by a
tri-reformer unit achieved an average value of 98.27% CH4 conversion to
syngas. CO; membrane separation section comprising of three membrane
separators achieved separation rate of 36.75% along with successful reduction
of CO/H; ratio from 2.67 to 2.08, a value desired in low temperature FT
synthesis. Temperature data from thermocouples installed inside both 0.5 BPD
modular microchannel and packed bed type FT reactors operated in parallel
showed stable temperature control for microchannel FT reactor for the entire
plant operation up to 270 hr, while the multitubular fixed bed type FT reactor
operation failed due to reaction runaway. From the modular microchannel FT
reactor operation, although undesirably high value of CH4 selectivity (50.13%)
was obtained from the plant operation, high CO conversion of 83% and stable

temperature control at 220 °C, 230 °C and at 240 °C during the entire pilot plant
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operation (140 hr to 270 hr ) demonstrated the appreciable performance of
KOGAS-SNU novel microchannel FT reactor. Reasons for undesirably high
value of CH4 selectivity are mostly reactor operation related rather than the
design related. Accordingly, following practices are recommended to achieve
appreciable CO conversion with low CHj selectivity: reducing the catalyst with
syngas, increasing the reduction temperature above 300 °C, producing the
catalyst with IWI method, and operating with moderate value (below 80%) of
CO conversion. Furthermore, penetrated thermocouple for sensing reactor
inside temperature should be developed for microchannel reactor for
understanding precise temperature profile and further study related to distribute
inlet syngas uniformly which can be related to uniform packing of catalyst must
be performed for more controllable reactor. Further, the compact GTL process
described, the systematic modular microchannel reactor design procedure and
pilot plant operation data presented in the present paper may serve as a general
guideline in similar future works on pilot scale reactor model development,

design and operation.
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4.2. Industrial scale (40 tonCO»/day) CCUS
carbonation reactor geometry design optimization

Using the reactor modeling in Section 2.3, the design of the CCUS direct
carbonation reactor, a 40 tonCQO»/day class, was carried out with Daewoo E&C.
It is aimed to find the optimal reactor structure design and operating condition
by analyzing the base case for reactor designed with approximate heuristic
through various computer-aided engineering techniques. The design
specifications sought by the reactor must first satisfy the inlet gas flow rate of
7000 Nm?® / hr and the temperature inside the reactor to 80 °C. Also, the CO,
concentration is 15 mol%, which is higher than the general incinerator and
seems to be about the average of coal-fired power plants. The solid
concentration before the reaction is 28.7 wt% of the total reaction agent, and
after the reaction is completed, including the amount of precipitated calcium
carbonate, solid concentration is increased to 36.1 wt%. The resulting solution
is an opaque white liquid with a density expected to be about ~ 1.3 tonnes / m®.
We tried to find the maximum value of the solid suspension by fixing these
external conditions and taking into consideration various variables such as the
speed, position, number and baffle of the stirrer, and addition of the slope

structure under the reactor.

To evaluate the degree of solid suspension, which is the primary purpose of

this paper, it is necessary to measure quantitatively the solid suspension degree.
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As a measure of these, just-suspension speed (Njs), solid distribution, and cloud
height are often used [220]. Njs is the impeller's speed (rpm) that ensures that
all solids stay on the floor for a second or more. However, even though there
are no settled solid particles, further analysis of the solid distribution is
necessary because the distribution throughout the reactor may be uneven. Also,
because the height at which a solid can be maximally floated is limited, its
height is expressed as cloud height (H.). Cloud height is defined as the point at
which the liquid-solid mixture is separated from the clean liquid. As a concrete
value, the average height is calculated as the maximum height of the isosurface
where the average solid fraction is achieved [55]. If the cloud height is
explicitly present, the cloud height is maximized, and the efficiency of the
reaction can be increased since it is the dead space above which no reaction
occurs. In this study, Njs, which cannot be directly measured using normal-state
CFD calculations, was not analyzed, but solids distribution and cloud height
were directly measured and analyzed. First, we set 50 height points (0 m to 2.45
m at 0.05 m intervals) in a 2.5 m height reactor, calculate the average solid
fraction at each height point, and calculate the standard deviation (STD) for
quantifying the solid distribution. If the deviation of the solid fraction along the
height direction is large, the STD value becomes large. For example, in Figure
2-16, the STD value decreases as the solid volume fraction changes with reactor

height. Also, the cloud height was determined by measuring the highest height
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of the isosurface (Figure 4-7), which achieved 5% of the total solid volume

fraction throughout the reactor.
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Figure 4-7. Visualization of cloud height of solid-liquid multiphase reactor

309 . ”tﬂ < EH

SECHIL MATIOMAL

'.;' _101-

-rtr ST



4.2.1. Design procedure and simulation set-up

To optimize the design of the reactor, the method used in this study is
computer-aided engineering, the 3D geometry is computerized, meshing is
performed, and the reactor is analyzed by CFD model. In this process, reactors
of various structures and conditions can be tested, and the reactor with the best
performance can be selected. In this research, solid suspension, bubble
dispersion, and bubble residence time are the most important design objectives.
All of these values must be high enough for the reactor to have maximum

Ca(OH); dissolution and CO; mass transfer.

In order to accomplish this, we tried to find the optimal combination by
conducting the screening work for the second time. First, we analyze the
influence of the overall design variables on the 22 cases of the first order, select
the conditions that showed the best performance among them, and make a new

combination to perform the second design analysis.

The core design variables are 1) impeller geometry involving axial type
which gives vertical flow, radial type which gives horizontal flow, and pitched
blade type which gives horizontal and vertical flow at the same time. 2) The D
/ T ratio, which is the diameter ratio of the stirrer to the diameter of the reactor,
is also one of the most important design parameters. 3) The number of the
impeller layer is also very important. The number of impellers involved has a

great influence on the back mixing and affects the retention of the reactants.
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Also, 4) the spacing between the impeller layers is also important. If the spacing
is too long, the effect of the multi-layer impeller is significantly deteriorated. If
the spacing is too short, the mixing loop is broken, and the flow becomes
ineffective. 5) The impeller angular velocity is the most important value that
can be overestimated without too much emphasis. 6) Finally, the presence of
the baffle and the length are important, and they must be analyzed because the
internal reactor flow forces them to have a rising fluid flow that affects the
ability of solid particles to rise upwards. The combination of each variable is

shown in Table 4-1.

The Eulerian-granular multiphase model (2.3.2) was used for the solid-

liquid model and the Eulerian multiphase model for the gas-liquid model.
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Table 4-1. Variables specification.

Impeller
Type # Clearance DIT Rpm Baffle
Radial Triple* Low? Small® 30* Base**
Mix 60 Longf
PBT* Dual Base* Base*d 90 Long & Wide?

*indicates the values constituting the base case, 2C1=0.46T, C,=0.21T, °C1=0.54T, C,=0.29T, °D=0.33T, ‘D=0.5T,
h=1.95 m, d=100 mm, 'h=2.5 m, d=100 mm, °h=2.5 m, d=250 mm, all variables are describe in Figure 2-13
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4.2.2. Result and Discussion

The results are introduced first in the 1st design case and then in a way to
explain the new 2nd design case selected. Table 4-2 shows the results of all 1

design cases.

First, the analysis results of gas-liquid fluid dynamics are as follows. Eight
models with changes in RPM (0 rpm, 30 rpm, 90 rpm), impeller type change
(PBT, Radial impeller), impeller diameter change (D / T = 0.33, 0.5), impeller
clearance change did not have a meaningful effect on residence time. Turning
the RPM to 60 rpm or more causes surface vortex, which reduces the residence
time and also the gas dispersion inside the reactor. If we lower the clearance,
decrease the D / T to 0.33, or change it to a radial impeller, the surface vortex
disappears, but the residence time or gas dispersion is worse than the 0, 30rpm
model. When the power consumption, residence time, and gas dispersion were
taken into consideration, the model with the rpm reduced to 30 rpm in the base

case and the model with the D/ T reduced from 0.5 to 0.33 were most suitable.

Overall, gas-liquid systems do not seem to need special consideration in the
2nd design case because there is no phenomenon that the impeller speed is so
fast that the vortex phenomenon does not occur and that the gas dispersion does

not change significantly due to other factors.
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Table 4-2. 1*' Design result of each case.

Impeller Diffuser Baffle Solid suspension Bubble characteristics Impeller Power
width Cloud Dispersion residence  Surface  (top, mid, bot) ~ Sum
pm DIT type # clearance position length (mm) top mid bot STD H(erlng)ht (STD) time (s) Vortex kW) kW)
'3::: 60 05 PBT 3 base base base 100 | 6% 9%  10% 0008 1078 0.1183 2 0 @ra60L76) 2137
1 0 0.5 PBT 3 base base base 100 0% 7% 100% 0.114 0.452 0.095 2.27 X (0,0,0) 0
2 30 0.5 PBT 3 base base base 100 5% 8% 13% 0.014 1.037 0.102 2.28 X (132,096, 1.13) 3.41
3 60 0.5 PBT 3 base base base 100 6% 9% 10% 0.008 1.078 0.1183 2 (0] (7.74,6.01, 7.62) 21.37
4 90 0.5 PBT 3 base base base 100 % 8% 9% 0.005 0.954 0.149 1.59 o (20.7,20.1,17.5) 58.3
5 60 0.33 PBT 3 base base base 100 5% 8% 13% 0.016 1.142 0.104 2.29 X (1.66,1.28, 1.82) 4.76
6 90 0.33 PBT 3 base base base 100 7% 8% 11% 0.008 1.062
7 30 0.5 PBT 3 base base long 100 5% 8% 13% 0.014 1.081
8 30 0.5 PBT 3 base base long 250 6% 8% 11% 0.01 1.134
9 60 0.5 PBT 3 base base base 400 0.112 1.97 o (10.1,6.26, 7.52) 23.88
10 30 0.5 PBT 3 low base base 100 6% 9% 10% 0.009 1.239
11 60 0.5 radial 3 base base base 100 6% 8% 11% 0.009 1.127 0.113 2.22 X (3.43,3.06, 4.14) 10.63
12 30 0.5 radial 3 base base base 100 5% 8% 17% 0.019 0.839
13 30 0.5 radial 3 base base long 100 5% 8% 17% 0.021 0.872
14 30 0.5 radial 3 base base long 250 5% 8% 16% 0.018 0.964
15 60 0.5 radial 3 base base base 400
16 30 0.5 PBT 2 base base base 100 16% 8% 5% 0.001 1.303
17 30 0.5 radial 2 base base base 100 6% 7% 13% 0.015 0.838
18 30 0.5 radial 2 low base base 100
19 30 0.5 mix 2 base base base 100 8% 8% 9% 0.001 1.266
20 30 0.5 mix 2 low base base 100 6% 8% 13% 0.015 1.016
21 30 0.5 mix 3 base base base 100 5% 8% 16% 0.017 0.889
22 60 0.5 PBT 3 low base base 100 0.1105 2.07 X (9.78, 5.60, 8.18) 23.56
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The degree of dispersion of solid particles is very important in this reactor.
The rate of dissolution of the solid drug, which is the rate-determining step of
the reaction, is greatly influenced by how uniformly the solid drug particles are
dispersed. Therefore, it is important to select a model in which the volume
fraction distribution of the solid particles is maximally uniform, and the cloud

height is maximized.

Part of the graph that can be analyzed is the particle volume fraction gradient
(denoted by gradient contour), cloud height (denoted by the dense isosurface
portion of the reactor, rather than the perfect suspension), and velocity vector
field. The result of changing the impeller rotation speed at 0, 30, 60, and 90 rpm
in the 3 layer impeller with pitched blade turbine (PBT) as the base case is show
in Figure 4-8. The particle volume fraction was found to be 60 and 90 rpm,
which is well mixed (volume fraction is uniform throughout). However, at 30
rpm, the solid concentration is high on both sides and at the bottom of the
impeller. This part is a part that does not contact with the gas, and provides a
room for reducing the reactivity. However, we tried to design a structure that
can be appropriately suspended at 30 rpm as the power usage is proportional to
the cube root of impeller speed. As a result of analyzing the flow field of the
internal liquid, it can be seen that the impeller has three separate flow loops in
three-layer impeller. In the case of the top impeller at the top, there is not

enough space above and below, and the circulation loop of the liquid is distorted.
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This suggests that energy is not being used efficiently. In addition, the structure
of the diffuser located at the bottom prevents the bottom impeller from

generating a flow, which is a bad shape that generates only a weak upward flow.
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Figure 4-8. Particle volume fraction and velocity vector field of different
impeller speed.
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We also wanted to see if there is sufficient suspension effect at high rpm (60,
90) even when the impeller diameter is reduced (Figure 4-9). As the D/ T
decreases, the solid suspension is not good because the force and energy that
make the flow as a whole decrease. However, it was confirmed that when D/ T
= 0.33 when the speed was increased up to 90 rpm, the suspension shape was
almost similar to D / T = 0.5 of 60 rpm. In other words, it was confirmed that
the change of D/ T =0.5 - D/ T = 0.33 was equivalent exchange by raising
about 30 rpm when hit by rpm. As discussed above, since the outermost angular
velocity decreases as the D/T decreases, the energy transfer force decreases,

and the velocity vector field weakens as a whole.
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60 rpom, D/T=0.5 60 rpm, D/T=0.33

90 rpm, D/T=0.5 90 rpm, D/T=0.33

60 rpm, D/T=0.5 60 rpm, D/T=0.33

90 rpm, D/T=0.5 90 rpm, D/T=0.33

Figure 4-9. Particle volume fraction and velocity vector field of different D/T
factor.
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In the analysis of the change according to the impeller type (Figure 4-10), it
was confirmed that the radial impeller (width = 100mm) has bad performance
in terms of the solid suspension than the PBT. This basically supports the
previous findings that axial velocity has a significant effect on the solid
suspension. Also, our system shows that the rising edge of both side edges is
important. However, at 60 rpm, it can be confirmed that the suspension is

sufficiently performed even with the radial impeller.

Radial impellers, however, must be installed with sufficient width and length
of the baffle to work properly. The baffle of the base case used in this model is
very thin with a width of 100 mm and is not installed at the bottom of the reactor.
Therefore, it seems necessary to separately analyze the effect of the radial

impeller when supplementing the baffle.

Radial impellers do not form an axial velocity vector near the impeller, but
rather push it radially. It is important to note that the spacing between the
impellers is not sufficient and the intermediate circulation loops are not
properly generated and interfere with each other. Therefore, baffle installation

and clearance change are necessary.
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30 rpm, PBT 30 rpm, radial

60 rpm, radial

30 rpm, PBT 30 rpm, radial

30 rpm, mixed 60 rpm, radial

Figure 4-10. Particle volume fraction and velocity vector field of different
Impeller type.
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An analysis of the changes in the baffle (Figure 4-11) shows that when the
baffle is simply lengthened (extending to the bottom of the reactor), it is better
than without. And if the width increases to 250 mm, we can see that it gets better.
In addition, even when the baffle is installed long and wide, it is still the same
that the radial impeller is not as solid as the PBT. If the baffle is strengthened
even at the same impeller rpm, the velocity vector in the ascending direction
becomes stronger, and the circulating loop flow between the impellers becomes
thicker. This is because the fluid moves out of the simple rotating motion and
the baffle forces axial flow. This phenomenon is observed because the longer

and wider the baffle makes the axial flow better.
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Particles.Volume Fraction
Contour 2

30 rpm, PBT, long, 100 mm 30 rpm, PBT, long, 250 mm

30 rpm, radial, long, 100 mm 30 rpm, radial, long, 250 mm
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30 rpm, PBT, long, 100 mm 30 rpm, PBT, long, 250 mm

30 rpm, radial, long, 100 mm 30 rpm, radial, long, 250 mm

Figure 4-11. Particle volume fraction and velocity vector field of different
baffle.
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Clearance and dual impeller analysis are show in Figure 4-12 and Figure
4-13. Overall, it is assumed that the position of the impeller is inefficiently
positioned to produce an appropriate velocity field. Thus, two changes have
been applied. First, we lowered the clearance of the middle and bottom

impellers by about 350 mm to help the rise of the solid particles.

Also, the top impeller seemed to interfere with the flow of the middle
impeller, thus eliminating the top impeller. As a result, the best suspension of
all primary designs and the highest averaged cloud height. However, dual radial
impeller showed poor results, so when using a two-layer impeller, both PBT

types should be used.

When we checked the speed field, I could see why the dual impeller is the
best for solid suspension. Usually, a solid flow is generated through a portion
of the diffuser structure. In the case of a dual impeller, the top side of the
diffuser is precisely struck to form a rising solid flow. Furthermore, it is
sufficient for the flow to rise to the top without stopping by the top impeller.
Thus, the design should be PBT dual impeller or mixed dual impeller
(PBT+radial). However, if the median impeller is radial, the radial velocity
created by the current rpm is too slow to allow the fluid to move to the wall
quickly enough. It is not a good design because it does not show the collision
effect (the baffle and the transformation into the axial flow from that part after

the collision with the wall).
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Finally, the height of the upper impeller of dual impeller increases 250 mm
to simulate because the height is too low. From the result, installing the impeller
in upper side gives the worse result. The velocity field shows why the impeller
is not as good as when it is installed at a high altitude. It has been observed that
the 2-stage impeller is too high to produce a circulating loop that reaches the
bottom at a slower speed of 30 rpm. Therefore, it is considered that the structure
that removes only the upper impeller from the clearance of the original design

shows the best solid suspension.
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30 rpm, PBT, clearance down

30 rpm, mixed, dual
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Figure 4-12. Particle volume fraction and velocity vector field of different
clearance and dual impeller 1.
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Particles.Volume Fraction
Contour 2
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30 rpm, mixed, dual, clearance up

30 rpm, mixed, dual 30 rpm, mixed, dual, clearance up

Figure 4-13. Particle volume fraction and velocity vector field of different
clearance and dual impeller II.
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Based on the 1* Design case, design variables are changed appropriately for
performing the 2™ optimal design case study. Gas-liquid CFD simulation is not
carried out because bubble characteristics are not that depended on the design

variables. The result is organized in Table 4-3.
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Table 4-3. 2" Design result of each case.

Impeller Diffuser Baffle Solid suspension
- width : Cloud
rpm DIT type # clearance position length (mm) top mid bot STD Height (m)

30 05 PBT
30 05 PBT
30 033 PBT
30 05 mix

base base long 250 8% 8% 9% 0.001  1.133631
slope base long 250 8% 8% % 0.001  1.114928
slope base long 250 0% 5% 31% 0.134 0.728325
base base long 250 8% 8% % 0.001  1.115463
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First, when D/T = 0.33, it can be seen that even if another good design is
introduced, the solid does not rise properly. It is confirmed that this is caused
by the inability to make a good upflow by a small impeller. It is obvious with
looking the vector field that follows. In the remaining 3 cases, we could see the
almost similar flow, and it would be better to use anyone, but in practice, it is
best to use 30 rpm, PBT, D/T = 0.5, dual, baffle (250 mm) and slope. Although
could height can be lower than previous one, it does not have big meaning for

overall solid suspension.

Finally, about the vector field, in the case of D/T=0.33, impeller is not
sufficient to generate up flow of the solid particles where the others are
sufficient. If reactor applies the slope structure in the bottom, rising flow is

easily generated.

Therefore, it is recommended to change the triple impeller layer, which is a
base case design, with a dual layer and use a long wide type baffle. Also,
impeller velocity is best to drive at 30-60 rpm, and slop structure is good for
rising flow, but not too bad even not exist so that it can be optional. With this
change, the cloud height of 1.037 m would be 1.2 m, the suspension STD of
0.0141 would fall to 0.001, and the vortex and bypass possibilities would

disappear.
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Particles.Volume Fraction
Contour 2

30 rpm, PBT, D/T=0.33, dual, baffle(250 mm), slope

-;1

30 rpm, PBT, D/T=0.5 dual, baffle(250 mm), slope

Particles.Velocity in Stn Frame

Vector 1 [ms™1]

(%} o < It
CE R S
H -1

30 rpm, PBT, D/T=0.33, dual, baffle(250 mm), slope

!!;1

30 rpm, PBT, D/T=0.5 dual, baffle(250 mm), slope

=

30 rpm, mixed, D/T=0.5 dual, baffle(250 mm), slope

30 rpm, PBT, D/T=0.5 dual, baffle(250 mm)

o

30 rpm, mixed, D/T=0.5 dual, baffle(250 mm), slope

S

30 rpm, PBT, D/T=0.5 dual, baffle(250 mm)

Figure 4-14. Particle volume fraction and velocity vector field of 2™ design

result.
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4.2.3. Conclusion

A tank agitator carbonation reactor in which the reaction between calcium
oxide and carbon dioxide takes place is studied to understanding that how 6
design variables (the number of the impeller, impeller type, D/T, clearance,

speed, baffle) affect to the solid dispersion using CFD simulation.

The number of the impeller has the greatest effect on solid suspension. 2
layer impeller has much better performance than 3 layer impeller because the
first impeller acts as an obstacle to circular loop flow. Impeller types also have
a big impact, with PBT much better than radial. Radial impellers are
advantageous for gas dispersion, but they do not provide a uniform distribution

of solids, even when the number of revolutions and baffle is increased.

In the case of impeller clearance, the solid suspension degree is not
significantly influenced within the scope of this study, but the solid suspension
degree is slightly improved when the clearance is slightly lower than the
reference setting. The larger the diameter and the number of revolutions of the
impeller are, the more the solid suspension is improved. Especially, if the
number of revolution of the impeller increases, solid is well suspended even
with the inefficient design because the effect of the other design variables
decreases. However, since the number of revolutions and the diameter of the
agitator is closely related to the power consumption of the impeller, the

unnecessary excessive design should be avoided.
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In the case of baffles, the longer and wider the shape, the higher the degree
of solid dispersion, but the effect is not greater than the other variables. Among

the length and width, the improvement is wider when the width is wider.

The analytical results obtained in this study show how the internal design
parameters of the reactor affect the dispersion of the solid reactants. At the same
time, an internal design combination was derived that evenly distributes the
solid reactants. Equal distribution of solid reactants is critical to increasing the
rate of dissolution of calcium oxide, which is the rate-determining step in a
mineral carbonation reactor, and is a prerequisite for improving mass transfer
rates and thus reaction rates. We will further examine the simulation results
through further experiments and investigate the solid dispersion phenomenon

that will vary when gas is introduced.
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CHAPTER 5. Concluding Remarks

5.1. Summary of Contributions

This thesis considered the application of computational science approach
such as computational fluid dynamics (CFD), mathematical programming,
derivative-free optimization, and machine learning technology to the process
systems engineering topics. Especially, advanced modeling of reactor and
process for Gas-to-Liquid (GTL) process and carbon capture, utilization, and
storage (CCUS) process were performed. Moreover, optimization and analysis
platform was developed for the unit, process, and plant-wide scale systems for
various objectives. This chapter summarized the key contributions and

conclusion of this thesis.

e Chapter 2.2 provided the 2D axisymmetric CFD model of FT
microchannel reactor with porous media zone with lumped FT kinetics. In
the same chapter, the 3D CFD based FT microchannel reactor block model

with external heat source calculated by Aspen Plus was introduced.

* In Chapter 2.3, rigorous carbonation kinetics study with dynamics of
the bubble and solid particle regarding DAE was performed. In the same
chapter, Eulerian-granular multiphase carbonation reactor was modeled by

CFD.



e Chapter 2.4 extended CFD reactor model to CFD-process simulator
integrated platform for designing process and reactor simultaneously. The
result of simulation shows CFD reactor modeling result, and process
simulator (Aspen Plus) result perfectly exchange data and be designed

automatically and simultaneously.

 Chapter 3.2 provided reactor scale systems optimization methodology.
CFD reactor model function is perfectly connected to GA based multi-
objective algorithm with the e-constraint method. Pareto optimal curve of

Cs; productivity and ATmax is successfully solved.

* In Chapter 3.3, Lipschitz continuous function based derivative-free
optimization algorithm was introduced for considering hidden constraint
which is very important for optimizing process systems scale simulation.
LNG liquefaction process is introduced to exemplify the performance of
the algorithm, and 18.9% of operating cost is reduced than base case. In
the same chapter, simultaneous synthesis of a heat exchanger network with
multiple utilities using utility substages was explained. Thus, HEN of the
sustainable process can be optimized with this systematic approach with

various utilities.

* Chapter 3.4 provided a surrogate model for real-time analysis of toxic

gas release in an overall plant system. Deep learning technology is used
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for constructing the surrogate model and possibility of real-time

calculation can help to apply this method to safety sustainable process.

e In Chapter 4.1, industrial application of proposed methodology
presented in CHAPTER 2 and CHAPTER 3 for compact GTL process was
provided. 1 BPD scale compact GTL pilot plant was constructed and tested

with our FT microchannel reactor.

e Chapter 4.2 provided industrial application of computer-aided
engineering reactor optimization procedure for 40 tonCO,/day CCUS
carbonation reactor. Various designs of the reactor were analyzed, and

optimal design will be applied by CCUS reactor of Daewoo E&C.
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5.2. Future Work

It is believed that the recommended future work path is to explore the
connection between the limitations of the various methodologies proposed in
this study and other fields of computational science such as molecular dynamics
and deep learning which are now rapidly developing. Considering multiphase
and complicated reaction kinetics at the same time, reactor model with high
convergence is very difficult to formulate, so it would be very valuable to study
this part. Also, in the case of the integration framework in Section 2.4, it is
necessary to consider a methodology that can be applied to more diverse
reactors such as stirred tank reactors beyond simple packed bed reactors. Also,
it is necessary to extend the various optimization algorithms presented to show
high efficiency even under various conditions. In this thesis, only the
autoencoder is included in the PSE field during deep learning, but it is expected
that various deep learning techniques such as LSTM, GAN, and reinforcement

learning can be applied to the PSE field.

Reactor modeling. CFD modeling has been carried out on packed bed
reactors and stirred reactor type reactors, which are considered to be the most
important in chemical reactions, but there are many other reactors used in
chemical engineering. Therefore, it is necessary to study the CFD reactor
modeling platform which can generally be used for various reactor modeling.

In this study, lumped reaction kinetics or external kinetics calculation was used

337 3 -l'i )



because of the high computational cost of CFD. However, this would need to
be addressed for more accurate modeling of the reactor, since this would show
a much lower convergence and accuracy than simultaneous calculation in CFD

at once.

CFD-PSE integration framework. The currently developed CFD-process
simulation platform is simply a form in which the CFD model and the process
simulator model exchange data at the same time. In practice, however, efficient
data fabrication ideas are needed to apply this to more forms of sensitivity
analysis. We also believe that this methodology, which is currently applied only
to packed bed reactors, can be used in commercial parts as well as in

combination with more diverse reactor types and process types.

Improving the algorithms. The modified DIRECT algorithm is designed
to divide all hidden constraints. This may be good for solving a general non-
convex searching space, but it has inefficiencies in normal process simulations.

Therefore, additional research is needed to improve the algorithmic inefficiency.

Deep learning. We have seen through this thesis that data reduction through
autoencoder can be used very effectively in the PSE field, but I have not thought
about how other deep learning techniques could be able to graft the
conventional PSE area. Therefore, CNN, which has strong ability to process
image data, LSTM, which shows strong ability to voice processing or time

series data, and GAN, which generates new data by appropriately processing
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various data mixing, are very exciting to suggest ways to replace techniques
used in existing PSE techniques. Also, we can expect a significant performance
improvement using Bayesian optimization based method such as Gaussian
process, which may be inefficient when using existing GA or deterministic

algorithm in optimizing CFD.

Applications. Finally, we have applied GTL and CCUS to two commercial
processes as industrial applications. In the future, however, we can see more
diverse results by applying the computational science approach for design and

optimization. It will be great future work.
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Nomenclature

Acronyms & Abbreviations

AEGLs
Adam
AE
AIR
ALAMO
BFW
BN
BPD
BTL
C3MR
CAE
CCUS
CDR
CFD
CFL
CNN
CTL
DAEin3.4
DAE
DCAE
DIRECT
DME
DMR
DNN
ERPGs
FID
FPSO
FT

GA

GC
GHSV
GPS
GSS
GTL
HENS
HP

IWI
KOGAS
LNG
LP
LPM
MADS
MINLP
MP

acute exposure guideline levels
adaptive momentum estimation
autoencoder

auto ignition reaction

algebraic models for optimization
Boiler feed water

batch normalization

Barrel per day

Biomass to liquid

propane precooled mixed refrigerant
computer-aided engineering

carbon capture, utilization, and storage
carbon dioxide reforming of methane
computational fluid dynamics
courant-Friedrich-Levy
convolutional neural network

coal to liquid

deep autoencder

differential algebraic equation

deep convolutional autoencdoer
divide a hyper-rectangle

dimethyl ether

dual mixed refrigerant

deep neural network

emergency response planning guidelines
flame ionization detector

floating production storage and offloading
Fischer-Tropsch

genetic algorithm

gas chromatography

gas hourly space velocity
generalized pattern search
generating set search

gas-to-liquid

heat exchanger network synthesis
high pressure

incipient wetness impregnation
Korea gas corporation

liquefied natural gas

low pressure

liter per minute

mesh adaptive direct search

mixed integer non-linear programming
middle pressure
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MRF multiple reference frame

MTA minimum temperature approach

NAS neighborhood assignment strategy

NG natural gas

NN neural network

Nu Nusselt number

ORC organic Rankine cycle

PBT pitched blade turbine

PCA principal component analysis

POM partial oxidation of methane

Pr Prandtl number

PSO particle swarm optimization

RANS Reynolds-averaged Naiver-Stokes

Re Reynolds number

RSMs response surface methods

SA simulated annealing

segPCT segmented principal component transform-principal component
analysis

SMR single mixed refrigerant

SNOBFIT stable noisy optimization by branch and fit

SNU Seoul national university

SQP sequential quadratic programming

SRM steam reforming of methane

TCD thermal conductivity detector

TEELs temporary emergency exposure limits

TRM tri-reforming process of methane

VAE variational autoencoder

VAEDC variational autoencoder with deep convolutional layers

CHAPTER 2

2.2 Gas-to-Liquid (GTL) Fischer-Tropsch (FT) reactor model

T; diffusion flux of species j [mol/m?s]

Cs H, hydrogen concentration on the surface of catalyst [mol/m?]

A area of Ca(OH), [m?]

C inertial resistance factor [m™']

Cu height of coolant channel [m]

Cw width of coolant channel [m]

CCp distance between coolant channel and coolant channel [m]

CPp distance between coolant channel and process channel [m]

D, mean diameter of catalyst particle [m]

D, catalyst particle mean diameter (m)

E energy (J)

F force (N)

g gravitational acceleration [m/s?]

h heat transfer coefficient [W/m?-K]

J diffusive mass flux [mol/m?-s]
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Tcmax

Tpmax

Teff

effective thermal conductivity [W/m-K]
thermal conductivity of catalyst particle [W/m-K]
reactor length [m]

zone length [m)

catalyst mass in the reactor [kg]

static pressure [Pa]

penalty factor

height of process channel [m]

length of process channel [m]

width of process channel [m]

heat flux [W/m?]

reaction rate [kg/m>-s]

heat source term [W/m?]

temperature [°C]

maximum temperature of coolant channel [K]
maximum temperature of process channel [K]
coolant inlet velocity [m/s]

reactant inlet velocity [m/s]

velocity [m/s]

superficial velocity [m/s]

zone dilution ratio

mass fraction

permeability [m?]

g-constraint

catalyst porosity

viscosity [kg/m-s]

density [kg/m?]

viscous dissipation [m?/s?]

Subscripts and superscripts

u

v = o = m=Hmo

sol
X

2.3 Carbon Capture, Utilization, and Storage (CCUS) multiphase

Chemical species
Fluid

Zone position
Optimization
Radial direction
Simulation

Solid

Direction of X

carbonation reactor model

A
a
d
E
Hw
n

area of Ca(OH), [m?]

area of bubble [m?]

diameter of bubble [m]
enhancement factor

Henry's coefficient [mol/m?-Pa]
mole number of chemicals
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R
Ve
Vparticle

CHAPTER 3

gas constant [kJ/K-mol]
volume of gas [m?]
volume of solid particle [m?]

3.2 Reactor systems scale optimization

Same as 2.2

3.3 Process systems scale optimization

ACui_,m
Ahuj,k,m
Aijk
c
Cci,n
CCU,
CFCin
CFH;nm
CF;;
CHjm
CHU,,
OF
CpP
CuU
d
D
Dhidden
dtcui,k,n
stage k
dthu; xm
stage k
dtlijx
dtrijx
EMAT
Fi
Fj
h;
h
hpy
hy,
HP
HU
K
LMTD;
LMTDP;;

min3.3.1
M

heat exchanger area of cold utility n and hot stream i at stage k
heat exchanger area of hot utility m and cold stream j at stage k
heat exchanger area of hot stream i and cold stream j at stage k
center of hyper-rectangle

area cost coefficient of cold utility

per unit cost of cold utility

fixed cost of cold utility heat exchanger

fixed cost of hot utility heat exchanger

fixed cost of process stream heat exchanger

area cost coefficient of hot utility

per unit cost of hot utility

area cost coefficient of heat exchanger

set of cold process stream

set of cold utilities

measure for hyper-rectangle

predefined constraints

hidden constraints

temperature approach for matching hot stream i and cold utility at

temperature approach for matching hot utility and cold stream j at

left temperature approach for matching stream i and j at stage k
right temperature approach for matching stream i and j at stage k
minimum approach temperature

heat capacity flow rate of hot stream

heat capacity flow rate of cold stream

heat transfer coefficient for hot stream i

heat transfer coefficient for cold stream j

heat transfer coefficient for hot utility m

heat transfer coefficient for cold utility n

set of hot process stream

set of hot utilities

potential optimal index

Chen’s log-mean temperature difference

Paterson’s log-mean temperature difference

mole fraction in percentage

total heat contents of stream
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NOK number of stages

NOM number of hot utilities

NON number of cold utilities

qcUikn heat exchanged between hot utility and cold stream j at stage k

ghu; km heat exchanged between hot stream i and cold utility at stage k

Qijik heat exchanged between process stream i and j at stage k

ST set of stages in the superstructure

ST expanded set of stages in the superstructure

tCikm temperature of hot stream j at stage k and utility substage m

thikn temperature of hot stream i at stage k and utility substage n

TINcup inlet temperature of cold utility

TINhu, inlet temperature of hot utility

TIN; inlet temperature of hot stream

TIN; inlet temperature of cold stream

TOUTcum outlet temperature of cold utility

TOUThu, outlet temperature of hot utility

TOUT; outlet temperature of hot stream

TOUT; outlet temperature of cold stream

ZCUjjn binary variable denoting existence of heat exchanger between
stream i and cold utility n

zhUjxm binary variable denoting existence of heat exchanger between
stream j and hot utility m

Zijik binary variable denoting existence of heat exchanger between
stream i and j

B exponent for heat exchanger area cost

Acu exponent for heat exchanger area cost for cold utility

A hu exponent for heat exchanger area cost for hot utility

Y penalty factor

Y upper bound for temperature difference

0 positive constant for NAS

e Jones factor

% the maximum number of multiple utilities

Subscripts and superscripts

iin 3.3.1 index of hyper-rectangle
1in 3.3.2 hot stream
jin3.3.1 index of hyper-rectangle
jin3.3.2 cold stream
kin3.3.1 index of chemicals
kin3.3.2 subscripts for the stages
m hot utility
n cold utility
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3.4 Plant-wide systems scale modeling and optimization

P death

By
p
Bi

o< 3s

Fw,i

po(x[2)
qo(z[x)

v

f'(v)

f(v)
£(8,p;x®)
DxkL

1(6, ; xD)
Ntrain

Nv

Probability of death

volume porosity

density [kg/m?]

area porosity in the j th direction [m/s)

mean velocity (j th component, vector) [m/s]
mass rate or release rate [kg/s)

volume [m?]

gauge pressure, overpressure [Pa]

stress tensor [N/m?]

flow resistance created by sub-grid obstacles [N]
flow resistance created by walls [N]

density of sub grid object [kg/m?]
gravitational acceleration in the i th direction [m/s’]
Kronecker delta function

effective viscosity [Pa's]

turbulent viscosity [Pa-s]

constant in the k-g equation; typically C,=0.09
dissipation of turbulent kinetic energy [m?/s’]
turbulent kinetic energy [m?/s?]

probit

concentration in ppm by volume

Pdeath contour data

latent space

the number of latent variables

probabilistic decoder as generator with parameter 6
probabilistic encoder with parameter ¢
variable space

surrogate model function

CFD model function

variational lower bound

Kullback-Leibler divergence

loss function

the number of training data set

the number of variables

Subscripts and superscripts

gen generated data
test test set

train training set
validation validation set
CHAPTER 4

Same as CHAPTER 2
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