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Recently, in the field of chemical engineering, many types of research based 

on high-performance computing have been combined with computer-aided 

process systems engineering. Therefore, various techniques of computational 

science such as computational fluid dynamics, optimization methodology, and 

machine learning have been applied to the problems of chemical reactor 

modeling and process optimization. Notably, in this advance computational 

science approach, the scope of research extends to non-traditional fields such 

as reactive research according to the 3D shape of the reactor that has not been 
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easily solved in the past and surrogate model based optimization using machine 

learning. In this thesis, various methods are proposed to obtain the maximum 

profit with minimum cost by making a breakthrough design. 

In parallel, there is a growing demand for sustainable chemical processes in 

chemical engineering. Conventional chemical processes are highly dependent 

on oil prices, and unless a diverse portfolio is designed, the sustainability of 

their chemical industries can be violated because of the oil controlling from the 

Middle East or US. In addition, these crude oil based chemical processes and 

power plants generate a great deal of CO2. Therefore, it is not necessary to 

capture these CO2 and make only meaningless storage but to reproduce it as a 

product that can be used and make it economical carbon capture, utilization, 

and storage (CCUS) technology. To solve this series of processes, the Gas-to-

Liquid (GTL) process and CCUS are being researched and developed in various 

ways. 

In this thesis, I will discuss the process modeling, optimizing, and designing 

the reactor and process using CFD, mathematical programming, machine 

learning, deep learning, and derivative-free optimization techniques in 

computational science. First of all, the Fischer-Tropsch microchannel reactor 

and 3-phase carbonation reactor, which are the key reactor of two most 

important processes of the sustainable process, the gas-to-liquid process (GTL) 

and the carbon capture, utilization, and storage (CCUS), are modeled by CFD. 
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Also, we propose an integration platform of CFD model and process simulator 

and conduct research from the point of view of combining with existing process 

engineering. 

With these advanced reactor model, we propose a multi-objective 

optimization methodology using a stochastic optimization algorithm, a genetic 

algorithm (GA) with e-constraint method for simultaneously maximizing C5+ 

productivity and minimizing the temperature rise of a Fischer-Tropsch 

microchannel reactor. The main mixed integer nonlinear programming (MINLP) 

optimization problem is decomposed into an external CFD reactor model 

function and internal optimization constraints. The methodology is applied to 

the catalyst packing zone division, which is divided and packed with a different 

dilution ratio to distribute the heat of reaction evenly. The best solutions of the 

proposed optimizer are reproducible with different crossover fractions and are 

more efficient than other traditional non-convex constraint local solvers. Based 

on the Pareto optimal solution of the final optimizer with 4 zones, discrete 

dilution increases C5+ productivity to 22% and decreases ∆Tmax to 63.2% 

compared to the single zone catalyst packing case. Finally, several Pareto 

optimal solutions and sub-optimal solutions are compared and the results are 

documented in terms of C5+ productivity and maximum temperature increase. 

In process scale optimization platform, a modified DIRECT algorithm with 

a sub-dividing step for considering hidden constraints is proposed. The 
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effectiveness of the algorithm is exemplified by its application to a cryogenic 

mixed refrigerant process using a single mixed refrigerant for natural gas 

liquefaction and its comparison with a well-known stochastic algorithm (GA, 

PSO, SA), and model based search algorithm (SNOBFIT), local solver (GPS, 

GSS, MADS, active-set, interior-point, SQP), and other hidden constraint 

handling methods, including the barrier approach and the neighborhood 

assignment strategy. Optimal solution calculated by the proposed algorithms 

decreases the specific power required for natural gas liquefaction to 18.9% 

compared to the base case. In the same chapter, heat exchanger network 

synthesis (HENS) has progressed by using mathematical programming-based 

simultaneous methodology. Although various considerations such as non-

isothermal mixing and bypass streams are applied to consider real world 

alternatives in modeling phase, many challenges are faced because of its 

properties within non-convex mixed-integer nonlinear programming (MINLP). 

We propose a modified superstructure, which contains a utility substage for use 

in considering multiple utilities in a simultaneous MINLP model. To improve 

model size and convergence, fixed utility locations according to temperature 

and series connections between utilities are suggested. The numbers of 

constraints, discrete, and continuous variables show that overall model size 

decreases compared with previous research. Thus, it is possible to expand the 

feasible search area for reaching the nearest global solution. The model’s 

effectiveness and applications are exemplified by several literature problems, 
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where it is used to deduce a network superior to that of any other reported 

methodology. 

In the case of plant-wide scale systems, a non-linear surrogate model based 

on deep learning is proposed using a variational autoencoder with deep 

convolutional layers and a deep neural network with batch normalization 

(VAEDC-DNN) for real-time analysis of the probability of death (Pdeath). 

VAEDC can extract representation features of the Pdeath contour with 

complicated urban geometry in the latent space, and DNN maps the variable 

space into the latent space for the Pdeath image data. The chlorine gas leak 

accident in the Mipo complex (city of Ulsan, Republic of Korea) is used for 

verification of the model. The proposed model predicts the Pdeath image within 

a mean squared error of 0.00246, and compared with other models, it exhibits 

superior performance. Furthermore, through the smoothness of image transition 

in the variable space, it is confirmed that image generation is not overfitting by 

data memorization. 

Finally, a pilot scale (1.0 BPD) compact GTL process comprising of 

reforming section, CO2 separating section and Fischer -Tropsch (FT) synthesis 

section is presented. Systematic design procedure adopted for the design of a 

modular 0.5 BPD microchannel FT reactor block design consisting of 528 

process channels is described. On average 98.27% CH4 conversion to syngas in 

reforming section comprising of a pre-reformer unit and a tri-reformer unit, 
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CO2 separation rate of 36.75 % along with CO/H2 reduction from 2.67 to 2.08 

in CO2 membrane separation section comprising of three membrane separators, 

for the entire plant operation duration of 450 hr demonstrated successful and 

stable operation of pre-processing sections of the present pilot-scale compact 

GTL process. Parallel operation of FT microchannel reactor and multitubular 

fixed bed type FT reactor proved failure for latter due to reaction runaway, 

while the former showed stable operation with high CO conversion of 83% and 

successful temperature control (at 220 oC, 230 oC and at 240 oC during the 139 

hr operation), which demonstrated the appreciable performance of KOGAS-

SNU novel microchannel FT reactor. Furthermore, a tank agitator carbonation 

reactor in which the reaction between calcium oxide and carbon dioxide takes 

place is studied to understanding that how 6 design variables (the number of 

impeller, impeller type, D/T, clearance, speed, baffle) affect to the solid 

dispersion using CFD simulation. 

 

Keywords: Computational science; Computational fluid dynamics (CFD); 

Optimization; Design; Gas-to-Liquid (GTL); Fischer-Tropsch (FT); 

Microchannel reactor; Carbon capture, utilization, and storage (CCUS); 

Machine learning; Deep learning 
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 Introduction 

1.1. Research motivation 

Recently, in the field of chemical engineering, many types of research based 

on high-performance computing have been combined with computer-aided 

process systems engineering. Therefore, various techniques of computational 

science such as computational fluid dynamics, optimization methodology, and 

machine learning have been applied to the problems of chemical reactor 

modeling and process optimization. Notably, in this advance computational 

science approach, the scope of research extends to non-traditional fields such 

as reactive research according to the 3D shape of the reactor that has not been 

easily solved in the past and surrogate model based optimization using machine 

learning. In this paper, various methods are proposed to obtain the maximum 

profit with minimum cost by making a breakthrough design without performing 

lab scale experiment and finding a stochastic optimal design of experiment set. 

In parallel, there is a growing demand for sustainable chemical processes in 

chemical engineering. Conventional chemical processes are highly dependent 

on oil prices, and unless a diverse portfolio is designed, the sustainability of 

their chemical industries can be violated because of the oil controlling from the 

Middle East or US. In addition, these crude oil based chemical processes and 

power plants generate a great deal of CO2. Therefore, it is not necessary to 

capture these CO2 and make only meaningless storage but to reproduce it as a 
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product that can be used and make it economical carbon capture, utilization, 

and storage (CCUS) technology. To solve this series of processes, the Gas-to-

Liquid (GTL) process and CCUS are being researched and developed in various 

ways. 

Therefore, it is critical to establish various methodologies to design and 

optimize chemical process and reactor through the computational science 

approach. Furthermore, an industrial application that designs sustainable 

processes and its reactors using the proposed methodology and manages 

optimization is significant.  
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1.1.1. Chronological stages of development of process 

design 

Chronological stages of development of process design based on the 

description by [1] are very important to understand the research trend and the 

essential topic in process systems engineering. Until the 19th century, chemical 

engineering has been studied very usefully in various fields such as purifying 

metals, producing oil and extracting various materials from nature. However, 

the research method up to this point was an apprenticeship-based incremental 

evolutionary design, or it was applied to one side and then moved it to other 

places. Thus, many researchers treated the chemical engineering as the art. In 

the 20th century, a great change took place in the field of process design as the 

approach of scientific thinking and methodology became more popular and 

various problems were solved through its essence. First, unit operations 

concepts such as distillation, absorption, and crystallization, and unit processes 

such as hydrogenation, sulfonation, and carbonylation were developed and 

established, leading to a new field of conceptual design. These were possible 

through modeling using algebraic equations and development of various first 

principle equations. In addition, as theoretical support for thermodynamics, 

reaction kinetics, and physicochemical properties became available, a variety 

of reactors capable of large-scale processing reactor and process scale-up were 

developed. Since the 1930s, various mathematical models based on differential 

equations have been developed, and process simulators such as ASPEN Plus 
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and HYSYS have been developed, and computer-aided process systems 

engineering has begun. The advancement of these technologies has led to the 

development and construction of chemical processes faster and more accurately 

and has resulted in a numerical interpretation of many optimization problems 

that were previously difficult to solve. Due to these demands, scale-up through 

various verification and theoretical back-up through computer simulation and 

enterprise-wide optimization methodology beyond reactor and process scale are 

being studied.  
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1.1.2. Current status of process systems engineering 

with computational science approach 

As the high-performance computing and high fidelity measurements 

developed in the 2000s, fundamental phenomena on fluid and molecular 

dynamics began to be understood. In the field of reactor modeling and 

simulation, kinetics studies in molecular systems and turbulence effects inside 

the reactor are being studied at small eddy level. It is also possible to calculate 

the effective time in an effective solver in a complicated flow field, and 

effective analysis of the particle body with an inhomogeneous distribution such 

as bubble and solid by the introduction of techniques such as population balance 

model. The leading field in this computational science approach is 

computational fluid dynamics (CFD). In addition to the existing aerospace 

applications, various applications have begun to be applied in the field of 

chemical engineering including multiphase and chemical reaction. 

Also, in the process systems part, it is judged that the trend shift is taking 

place in the sequential modular approach, which is a traditional process 

simulation technique, to the equation oriented approach, which includes 

gPROMS of PSE. The problems of existing initialization and problems caused 

by computation load are constrained to commercialization, but 

commercialization has become possible through several studies which have 

dramatically solved them. Through this method, it is possible to analyze the 

process with many loops easily and it is possible to apply general optimization 
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algorithms quickly and accurately to process design. However, this too cannot 

be regarded as meaningful because it is difficult to incorporate an external 

function model and is within the scope of conventional interpretation. Most 

recently, research has been actively conducted on data-driven modeling and 

analysis using computational science techniques. Also, optimization problems, 

such as optimization that considers uncertainty, have been proposed to obtain 

robust results in various scenarios beyond the use of existing deterministic 

variables. A variety of methodologies for global optimization without stopping 

at local optimum have been proposed. In particular, derivative-free 

optimization algorithms have been developed that can be interpreted in 

conjunction with existing chemical engineering software. 
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1.1.3. Introduction to the sustainable process 

In this study, a series of processes, which can be called sustainable process, 

are selected and used in the thesis. It is important to discuss sustainability in the 

traditional fossil fuel based chemical engineering industry. Currently, the 

chemical industry fluctuates greatly depending on the volatility of the oil price, 

and the united nations framework convention, which can be represented by the 

Paris Agreement, is regulating CO2 emissions. Among these changes, the need 

for the development of various chemical processes and their reactors has 

emerged, and this thesis addresses two of the essential processes for sustainable 

processes. 

First, the existing crude oil based chemical process is susceptible to oil 

prices and has many impurities, which is shown many things that are not 

sustainable in many ways. Recently, gas-based power plants and various 

processes have begun to be developed, starting with US shale gas, which shows 

stronger ability at high oil prices. Especially, Gas-to-Liquid (GTL) process has 

the greatest added value among natural gas process. It can synthesize high-

value product like high-quality diesel by synthesizing natural gas with synthetic 

crude oil. Production of these products based on natural gas is a sustainable 

process because it can reduce various byproducts and toxic chemicals generated 

from refining crude oil. Especially, it is expected that it will be very efficient if 

we use GTL-FPSO vessels for developing stranded gas field or mid-scale gas 
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field, which exist in offshore. In this study, we tried to derive the miniaturization 

of the Fischer-Tropsch reactor, which is the most crucial development for GTL-

FPSO ship development, through the concept of the microchannel reactor. 

The synthetic crude oil thus produced is purified and processed through 

various chemical processes. In this process, a lot of CO2 is generated. Thus, 

appropriate technology should be developed to capture this CO2 adequately and 

store it properly. In keeping with these expectations, carbon capture and storage 

(CCS) technologies have evolved over the past few decades, but they are not 

readily available due to economic problems. Recently, researchers are being 

carried out to convert CO2 into a product that can utilize CO2 itself and to utilize 

it for production of economical products, rather than merely storing CO2 by 

capturing meaningless storage. CO2 is used to make formic acid, or carbonation 

reaction is used to make cement or concrete to be used as construction material. 

In this study, we will look at the carbon capture, utilization, and storage (CCUS) 

technologies in general and specifically focus on the multiphase carbonation 

reactor design.  
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1.2. Research objectives 

In this thesis, we will discuss the process modeling, optimizing, and 

designing the reactor and process using CFD, mathematical programming, 

machine learning, deep learning, and derivative-free optimization techniques in 

computational science. Especially, for the reactors, the GTL FT microchannel 

reactor and the CCUS carbonation reactor are simulated through reactor 

modeling using CFD to be used in reactor design. A computational science 

approach that can be applied to optimization and analysis is to develop a 

methodology suitable for the situation from reactor scale to plant-wide scale 

systems. In the optimization methodology at the reactor level, multi-objective 

optimization methodology using GA and ε-constraint is used in combination 

with CFD. At the process level, we developed global derivative-free 

optimization algorithms that consider hidden constraints efficiently and 

developed a simultaneous HENS method that considers multiple utilities and 

developed a systematic approach to the MINLP problem. In the plant-wide 

scale systems, we will discuss the toxic gas release real-time alarm system with 

the deep variational autoencoder with convolutional layers and deep neural 

network with batch normalization technique for finding latent space and non-

linear mapping. Finally, we will show how the computational science approach 

in the sustainable process can be applied to industrial applications through the 

case of 1 BPD compact GTL pilot plant and 40 tonCO2/day CCUS process.  
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1.3. Outline of the thesis 

From a modeling and technical perspective, the contribution of the thesis is 

to solve a variety of problems in process systems engineering, which have not 

been solved or efficiently interpreted by conventional methodologies, using 

computational science techniques. In particular, in CHAPTER 2, advanced 

reactor modeling and design using computational fluid dynamics (CFD) is 

performed to expand the chemical reactors that are limited to the 0-d model. 

Especially, by developing a CFD-process simulation platform, we propose a 

methodology that can perform both reactor design and process design 

simultaneously. We also propose an optimization framework that can be applied 

to the whole system from the reactor to plant-wide system by developing 

optimization and analysis method by integrating derivative-free optimization 

algorithm and machine learning technique.  

From the application perspective, we introduce the actual pilot plant project 

case and the result which applied various reactor model and the optimization 

and analysis method developed in this study to CHAPTER 4, and confirm that 

this thesis can be applied to the real industry without stopping in theoretical 

study. In detail, the thesis is structured as follows: 

• CHAPTER 2 constitutes an introduction of the two key reactors for 

the sustainable process, Gas-to-Liquid (GTL) Fischer-Tropsch (FT) 

microchannel reactor and carbon capture, utilization, and storage (CCUS) 
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carbonation reactor. 2D axisymmetric CFD model of FT microchannel 

reactor with porous media zone with lumped FT kinetics and the 3D CFD 

based FT microchannel reactor block model with external heat source 

calculated by Aspen Plus is introduced. In the same chapter, rigorous 

carbonation kinetics study with dynamics of the bubble and solid particle 

regarding DAE is performed. Eulerian-granular multiphase carbonation 

reactor is also modeled by CFD. Finally, extended CFD reactor model to 

CFD-process simulator integrated platform for designing process and 

reactor simultaneously is introduced. 

• In CHAPTER 3, optimization, knowledge mining, and analysis 

methodology through the unit to the plant-wide scale systems is developed. 

CFD reactor model function is perfectly connected to GA based multi-

objective algorithm with the ε-constraint method. Pareto optimal curve of 

C5+ productivity and ∆Tmax is successfully solved. Lipschitz continuous 

function based derivative-free optimization algorithm was introduced for 

considering hidden constraint which is very important for optimizing 

process systems scale simulation. In the same chapter, simultaneous 

synthesis of a heat exchanger network with multiple utilities using utility 

substages was explained. For plant-wide systems, a surrogate model for 

real-time analysis of toxic gas release in overall plant system using deep 

learning technology for reducing the data is proposed.  
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• CHAPTER 4 has two examples of industrial applications. 1 BPD scale 

compact GTL pilot plant constructed by KOGAS is tested with our FT 

microchannel reactor. Moreover, industrial application of computer-aided 

engineering reactor optimization procedure for 40 tonCO2/day CCUS 

carbonation reactor that will be constructed by Daewoo E&C. 

• CHAPTER 5 summarizes the key contributions of the thesis and 

discusses ideas for future work. 
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1.4. Associated publications 

The work presented in Chapter 2.2.1 and Chapter 3.2 are based on [2]. The 

work presented in Chapter 2.2.2 is introduced in [3]. The work presented in 

Chapter 2.3.2 is based on [4] co-authored by myself and main discussion with 

modified methodology is not presented in this thesis. The work presented in 

Chapter 3.3.1 is introduced in [5]. The work presented in Chapter 3.3.2 is based 

on [6]. The work presented in Chapter 3.4 has been submitted to Chemical 

Engineering Journal with K. Jeon (joint first author). The work presented in 

Chapter 4.1 has also been submitted to Chemical Engineering and Processing: 

Process Intensification with KS. Kshetrimayum (joint first author). More 

extended information of design procedure of Fischer-Tropsch microchannel 

reactor is not discussed in this thesis because KS. Kshetrimayum used it. Finally, 

the work presented in Chapter 4.2 is introduced in [4]. 
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 Study of the Novel Reactor 

Models using Computational Science 

2.1. Introduction 

So far, in the field of process systems engineering, various methods have 

been used to model the reactor. Complex reaction kinetics and thermodynamics 

for each chemical species were selected, and the actual reactor was simulated 

through validation and parameter estimation through experiments. This well-

modeled reactor was used to analyze the overall economics of the plant in 

conjunction with a process simulator and was used to derive the correct 

operating conditions. In particular, a reactor is a very important device that 

needs to be accurately interpreted and optimized, as a principal device that 

represents the characteristics of a particular chemical process than any other 

device. 

These various reactors can be largely divided into continuous stirred tank 

reactor (CSTR), plug flow reactor (PFR), trickled bed reactor, moving bed 

reactors, slurry loop reactors, fluidized bed reactors, jet reactors, air-lift reactors, 

bubble column reactors, and bubble-slurry column reactors. Until the 20th 

century, many types of research have been conducted to make a proper 

calculation based on the characteristics of these reactors and to make a quick 

calculation and an appropriate calculation through the 0-d model. However, 
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recently, the influence of the geometry of the reactor and the flow analysis are 

simultaneously required. 

In keeping with the demands of this age, computational fluid dynamics 

(CFD) technology has emerged as a key technology in reactor design for 

chemical engineering. In addition to the flow analysis according to the structure 

of the reactor, it is possible to analyze the phase separation and mixing effect 

through the multiphase analysis and to analyze the complicated physical 

phenomenon such as the reaction on the particle surface at one time. However, 

CFD is usually based on the complicated partial differential equation, Navier-

Stokes equation, and it is necessary to model specific reactor for each research. 

Thus, exact and precise CFD modeling of the specific reactor with validating 

using experiment data set is very important. Also, since it is a simulation 

method that takes much computational loads, interworking with a general 

process simulator is still difficult. 

In this study, the Fischer-Tropsch microchannel reactor and 3-phase 

carbonation reactor, which are the key reactor of two most important processes 

of the sustainable process, the gas-to-liquid process (GTL) and the carbon 

capture, utilization, and storage (CCUS), are modeled by CFD. In addition, we 

propose an integration platform of CFD model and process simulator and 

research the point of view of combining with existing process engineering.  
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2.2. Gas-to-Liquid (GTL) Fischer-Tropsch (FT) 

reactor model 

In recent years, gas-to-liquid (GTL) technology has received considerable 

attention as a means to monetize natural gas resources at stranded gas fields and 

associated gas at offshore facilities, which account for almost 40 % of the 

world’s gas reserves. GTL technology converts natural gas to longer chain 

hydrocarbons and eventually produces clean liquid synthetic crude oil [7]. 

Conventional GTL processes, especially those of onshore facilities, use a 

circulating fluidized bed reactor, bubbling fluidized bed reactor, or slurry 

bubble column for the Fischer-Tropsch (FT) synthesis [8]. However, when it 

comes to the FT synthesis in floating systems at offshore facilities, conventional 

FT reactors do not fit well as their typical tall column design is not suitable for 

operation under possible frequent impacts of sea waves. Additionally, the 

designed production capacities of conventional FT reactors are far larger than 

the needs of small- to medium-sized gas fields. Accordingly, a novel type of 

reactor that can stably operate under the frequent impacts of sea waves and has 

production capacity suitable for FT synthesis applications at offshore facilities 

is sought, such as microchannel reactors [9]. 

Microchannel reactors have emerged as a novel technology for FT synthesis 

applications due to their short diffusion distance and low heat and mass transfer 

resistances [10-12]. Reduced mass and heat transfer distances enhance process 

intensification, making it suitable for a highly active FT catalyst [11]. 
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Additionally, the microchannel reactor is considered to be a highly integrated, 

compact, portable, and safe technology [13], making it ideal for applications in 

offshore and remote production facilities. Moreover, small-scale sources for 

synthesis gas like municipal waste and biomass waste can also leverage the 

advantages of small-scale microchannel technology for their waste and 

biomass–to–liquid fuel conversion processes [14]. Several authors [10-13, 15]  

have experimentally demonstrated the feasibility and effectiveness of 

microchannel reactors for FT synthesis applications. 

However, the use of highly active modern iron- and cobalt-based catalysts, 

coupled with the high heat generation (165 kJ/mol CO) of FT synthesis, have 

resulted in the problem of a high-temperature gradient along the channel length. 

One method to address this problem is to use highly effective commercially 

available thermal fluids such as MelothermTM and saturated water as coolants, 

as explored by Deshmukh et al. and Tonkovich et al. [14, 15] in their 

experimental study, and Kshetrimayum et al. in their simulation study [16, 17]. 

However, thermal fluids can be expensive and saturated water can be difficult 

to handle in actual operation compared to cheaper and single-phase coolant-like 

subcooled water. Another method to avoid a high thermal gradient and maintain 

a minimum thermal gradient along the channel is to divide the entire reactor 

length into a number of discrete zones and load different amounts of catalyst in 

each zone, a method at this moment called the method of discrete dilution. 
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However, a non-optimized method of discrete dilution would not necessarily 

guarantee an optimal reactor performance. On the other hand, an optimal 

number of discrete zones, zone length, and dilution ratio are expected to prevent 

abnormally high FT reactions and consequently undesirably high heat 

generation at any region inside the reaction channel. For instance, applying an 

optimized discrete dilution method can prevent the FT reaction temperatures 

from becoming abnormally high near the channel inlet by distributing the 

reaction rates, and consequently the heat generation, more uniformly to all 

regions of the reaction channel. The method can be optimized to achieve 

maximum overall reactant conversion and product selectivity at the reactor 

channel exit. However, the optimization of discrete dilution is a very 

challenging problem because it usually contains multiple objectives and non-

convex constraints.  

The method of catalyst dilution to control reaction rates and prevent 

excessively high-temperature peaks inside reactors has been considered in 

existing works on a catalyst-packed tubular reactor [18-21] for other highly 

exothermic reactions. For instance, Hwang and Smith [22] employed the 

combined effect of catalyst dilution and feed-stream distribution to achieve 

optimal control of the temperature profile inside their multi-bed multi-tubular 

reactors for the hydrogenation of nitrobenzene and oxidation of ethylene.  
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In the past few years, many authors have used computational fluid dynamics 

(CFD) to simulate FT synthesis in microchannel reactors, to either supplement 

or replace expensive and difficult experiments involving the FT synthesis [3, 

17, 23-28]. Recently, Kshetrimayum et al. [16] evaluated the effect of coolant 

type and wall boiling condition on the temperature profile of a low-temperature 

FT synthesis in a microchannel reactor block based on CFD simulations. Jung 

et al. [29] used CFD for their optimal design of guiding channel geometry in a 

U-type coolant layer manifold for a large-scale microchannel reactor. Other 

works that do not use CFD tools have appeared, too. For instance, Park et al. 

[30, 31] proposed a cell decomposition method to model and simulated the FT 

synthesis for a large scale microchannel reactor without having to employ a 

rigorous CFD model and intensive computation. They evaluated the thermal 

performances of various reactor configurations in microchannel reactor blocks. 

However, these authors have not explored the application of the method of 

discrete dilution in FT microchannel reactors for optimal operation of such a 

reactor. An important criterion to evaluate the performance of such 

microchannel reactors for FT synthesis is to measure its ability to optimize C5+ 

while minimizing temperature gradient along the channel length. Accordingly, 

in this context, to achieve multiple targets, a multi-objective optimization needs 

to be formulated and solved. However, to our knowledge, such work has not 

been presented.  
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In this work, a CFD model of a single microchannel reactor for FT synthesis 

is first built using the commercial CFD software ANSYS FLUENT, and the 

simulation results are validated with experimental data from the literature. 
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2.2.1. 2D axisymmetric computational fluid dynamics 

(CFD) based Fischer-Tropsch microchannel 

reactor single-channel model 

In this section, we present model equations and parameters that were used 

in constructing the rigorous CFD model of the microchannel FT reactor.  
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2.2.1.1.  FT catalyst and reaction kinetics 

To simulate the FT synthesis, the reaction kinetics of using the cobalt-based 

catalyst of Oxford Catalyst, LTD (OCL) was employed. Kshetrimayum et al., 

Lee et al., and Park et al. [16, 24, 30] have also used the reaction kinetics in 

their simulation works. The reaction kinetics consists of 6 reactions describing 

the entire FT reaction pathway in a microchannel. To ensure the convergence 

of the model within a reasonable amount of time, C5 and higher carbon chains 

are lumped in C5+ (in reaction, C5+ averaged to C14H30). Distribution profiles 

for various chemical components inside the microchannel reactor can be 

obtained, which is not possible with a single lumped reaction describing FT 

synthesis [32]. In Table 2-1, the physical properties of the catalyst and reaction 

kinetics are shown. 
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Table 2-1. Physical properties and reaction kinetics of FT synthesis catalyst. 

 (a) Catalyst Physical Properties  

Effective thermal conductivity (keff) 300 kW/mK 

Mean particle diameter (Dp) 280 um 

Bed void fraction (ε)* 0.48 

Bulk packing density (ρbulk) 1054 kg/m3 

Specific heat capacity 473 J/kg K 

 (b) Reaction Kinetics and Parameters in rate Expressions  

ID Reactions and Rate Expression 
Kinetic parameters 

ki [rate in 

kmol/(kg-cat s)] 
Ei (J/kmol) 

1 

3H2 + CO  H2O + CH4 

RCH4  =  k1 exp (−
E1
𝑅𝑇
)𝐶𝐻2 

2.509 × 109 1.30 × 108 

2 

5H2 + 2CO  2H2O + C2H6 

RC2H6  =  k2 exp (−
E2
𝑅𝑇
)𝐶𝐻2 

3.469 × 107 1.25 × 108 

3 

7H2 + 3CO  3H2O + C3H8 

RC3H8  =  k3 exp (−
E3
𝑅𝑇
)𝐶𝐻2 

1.480 × 107 1.20 × 108 

4 

9H2 + 5CO  4H2O + C4H10 

RC4H10  =  k4 exp (−
E4
𝑅𝑇
)𝐶𝐻2 

1.264 × 107 1.20 × 108 

5 

H2O + CO  H2 + CO2 

R𝐶𝑂2 = 𝑘5 exp (−
𝐸5
𝑅𝑇
)𝐶𝐶𝑂𝐶𝐻2𝑂 

2.470 × 107 1.20 × 108 

6 

29H2 + 14CO  14H2O + C14H30 

RFT = k6exp (-
E6

RT
)CH2

CCO

[1+kad exp (-
Ead

RT
)CCO]

2
 

3.165 × 104 

kad = 63.5 

8.0 × 107 

Ead = 8.0 × 10
7 

* Assuming uniform spheres with cubic packing 
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2.2.1.2.  FT microchannel reactor 
A single channel FT microchannel reactor, modeled as an axisymmetric 2D 

CFD model based on a finite volume method, was considered for the present 

study. The catalyst-packed reaction channel was assumed to be a porous 

medium, packed with the spherical catalyst of diameter 280 μm. The Ergun 

Equation [2-1] was used to obtain the parameters of the porous medium for a 

packed bed reactor [33]. 

|
∆𝐩

𝐋
| =

𝟏𝟓𝟎𝛍

𝐃𝐩
𝟐

(𝟏−𝛆𝐜𝐚𝐭)
𝟐

𝛆𝐩𝟑
𝐯∞ +

𝟏.𝟕𝟓𝛒

𝐃𝐩

(𝟏−𝛆𝒄𝒂𝒕)

𝛆𝐩𝟑
𝐯∞
𝟐                        [2-1] 

Equation [2-1] is a semi-empirical equation that can be applied to many 

types of packing and over a wide range of Reynolds numbers. Because the bed 

pipe Reynolds number obtained for the size of catalyst particle considered in 

the present study falls in the range 10 – 100, the flow inside the reaction channel 

is assumed laminar, and the Ergun equation can be safely applied.  

To describe the 2D CFD model of the reactor, a 2D axisymmetric coordinate 

is used where the x-direction is set as the symmetric axis. The 2D axisymmetric 

coordinate expands the 2D geometry to 3D with the same quantity of angle 

direction. Thus, it can calculate mass transfer, heat transfer, and other physical 

phenomena in 3D. A critically different result comes out when physical 

quantities such as temperature and flow velocity are critically different through 

the angle direction. However, our reactor model, microchannel reactor, usually 

does not need to consider that because the channel width and height are too 



 

 41 

short to cause asymmetric physical quantities through the angle direction. Since 

the flow is laminar, turbulence effects are not considered, and the porous 

resistance is independent of angle because we assume that the catalyst is packed 

uniformly. Porous media resistance is modeled as a source term in the 

momentum conservation equation, and the 2D axisymmetric momentum 

conservation equation appears as force terms (Fx, and Fr) in the axial and radial 

directions respectively, as shown in Equation [2-2] 

𝛛

𝛛𝐭
(𝛒𝐯𝐱) +

𝟏

𝐫

𝛛

𝛛𝐱
(𝐫𝛒𝐯𝐱𝐯𝐱) +

𝟏

𝐫

𝛛

𝛛𝐫
(𝐫𝛒𝐯𝐫𝐯𝐱) = −

𝛛𝐩

𝛛𝐱
+

𝟏

𝐫

𝛛

𝛛𝐱
(𝐫𝛍(𝟐

𝛛𝐯𝐱

𝛛𝐱
−
𝟐

𝟑
(𝛁 ∙ 𝐯⃗ )) +

𝟏

𝐫

𝛛

𝛛𝐫
(𝐫𝛍 (

𝛛𝐯𝐫

𝛛𝐫
+
𝛛𝐯𝐫

𝛛𝐱
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𝛛

𝛛𝐭
(𝛒𝐯𝐫) +

𝟏

𝐫

𝛛

𝛛𝐱
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𝟏

𝐫

𝛛
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𝛛𝐱
+
𝛛𝐯𝐫

𝛛𝐫
+
𝐯𝐫

𝐫
  

 

[2-2] 

The continuity equation is given by Equation [2-3] 

𝛛𝛒

𝛛𝐭
+

𝛛

𝛛𝐱
(𝛒𝐯𝐱) +

𝛛

𝛛𝐫
(𝛒𝐯𝐫) +

𝛒𝐯𝐫

𝐫
= 𝟎                    [2-3] 

Syngas and products of the FT reaction are defined as mixture components 

in the species transport equation with a volumetric reaction term. The species 

transport equation with the finite-rate chemistry method of volumetric reaction 

is given by Equation [2-4] 
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𝛛

𝛛𝐭
(𝛒𝐘𝐜) + 𝛁 ∙ (𝛒𝐯⃗ 𝐘𝐜) = −𝛁 ∙ 𝐉𝐜⃗⃗  + 𝐑𝐜  [2-4] 

Reaction rates of each chemical component are represented by Ri. Multi-

component diffusion of each component is represented by the diffusive mass 

flux (Ji) calculated using the Maxwell-Stefan equation [34]. 

The energy equation inside the reaction channel with homogeneous porous 

medium is given by Equation [2-5], 

𝛛

𝛛𝐭
(𝛆𝐜𝐚𝐭𝛒𝐟𝐥𝐮𝐄𝐟𝐥𝐮 + (𝟏 − 𝛆𝐜𝐚𝐭)𝛒𝐬𝐨𝐥𝐄𝐬𝐨𝐥) + 𝛁 ∙ (𝐯⃗ (𝛒𝐟𝐥𝐮𝐄𝐟𝐥𝐮 +

𝐩)) = 𝛁 ∙ (𝐤𝐞𝐟𝐟𝛁𝐓− (∑ 𝐡𝐜𝐉𝐜⃗⃗  𝐢 ) + (𝛕̿ ∙ 𝐯⃗ )) + 𝐒𝐟𝐥𝐮                                                              

[2-5] 

Where index f means the fluid part and s means the solid part of the reactor; 

εcat and keff are the porosity and the effective thermal conductivity of the porous 

medium inside the microchannel reactor. Source term (Sflu ) of the energy 

equation is the volumetric heat generation rate due to the exothermic FT 

reaction, which is calculated using enthalpy values of the components at the 

reactor’s operating temperature and pressure. The values of viscosity and 

thermal conductivity of each component at operating temperature and pressure 

were calculated using the Aspen HYSYS 8.8 physical property database, and 

enthalpy data were calculated using the Peng-Robinson equation of state. 

Using the Nusselt number equation of [35], the heat transfer coefficient in 

the porous medium was calculated and thermal non-equilibrium in porous 
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media was simulated to consider the exact heat flow between catalyst and 

continuous flow, which is given in Equation [2-6]. 

𝐍𝐮 = 𝟐 + 𝟏. 𝟏𝐑𝐞𝟎.𝟔𝐏𝐫
𝟏

𝟑  [2-6] 

Capillary phenomenon and other micro-physics phenomena which are 

driven by rarefied flow with high Knudsen number are ignored as the 

microchannel reactor length scale in the present study are between 1-10 mm 

and the pressure above 20 bar. This condition does not meet the condition for 

rarefied flow. Furthermore, the turbulence effect on reaction rate and turbulence 

viscous model is also ignored. The incompressible ideal gas law was used for 

calculating the mixture fluid density. 

We choose the base geometry of the single channel reactor as a long b type 

reactor of [14] which has a width of 6 mm, a height of 1 mm, and a length of 

616 mm. To apply axisymmetric modeling, the width and height were converted 

to the hydraulic diameter, whose value is 1.7143 mm. The thickness of the 

stainless reactor wall is 0.5 mm, and the outer cooling wall boundary condition 

was set to a fixed wall temperature of 210°C, which is the same as the inlet 

temperature (Figure 2-1). Although sudden pressure rise and flow deceleration 

are expected at the beginning of catalyst packing, we assume that the CFD 

reactor model just simulates the catalyst packing zone and the inlet condition is 

already stabilized with constant velocity. Moreover, the Ergun Equation [2-1] 

can predict the porous media resistances. 
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The mesh quality was represented by minimum orthogonal quality 0.60983 

and maximum orthogonal skewness 0.0.65823, the number of nodes is 88986, 

and the number of cells is 82,919. The syngas consists of hydrogen, carbon 

monoxide, and nitrogen, with an H2/CO molar ratio of 2.0. The molar fraction 

of nitrogen in the feed gas is 16.5%. The feed gas inlet temperature is 210°C, 

operating pressure 24 bar, and contact time 290 ms, based on the catalyst bed 

volume. The inlet boundary condition is set as a velocity inlet (fixing the 

superficial velocity of the syngas), and the outlet boundary condition is set as a 

pressure outlet (fixing the outlet pressure as the operating pressure). 

In the pressure-velocity coupling solver, the SIMPLE method is used for 

pressure correction to ensure mass conservation. For spatial discretization of 

the gradient, pressure, momentum, and species transport, the Green-Gauss 

node-based, PRESTO!, second-order upwind, and second-order upwind 

algorithms were used respectively. 
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Figure 2-1. Validation CFD model geometry and boundary conditions. 
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2.2.1.3. CFD model validation 

Simulation is carried out using the commercial CFD software ANSYS 

FLUENT 17.0 with parallel computing using 16 cores of Intel Xeon E5-2667v3 

(3.2 GHz) processor. For model validation, we compared the simulation results 

of the CFD reactor model with experimental data on CO conversion and CH4 

selectivity of [14, 15] having the same operating conditions of GHSV, same 

contact time, and inlet syngas temperature. 

Figure 2-2 shows the trends of CO conversion and methane selectivity as 

predicted by the developed CFD model over a range of temperatures considered. 

CO conversion is predicted with high accuracy at almost all values of the 

temperature range considered while the original experimental data from [15] 

that we used changed the temperature from 206.6°C to ~263°C and GHSV to 

maintain ~70% conversion. Thus, the fact that our model can predict ~70% 

conversion through temperature verifies the model performance. Although 

methane selectivity is overestimated at the lower temperature range, the model 

predicted the methane selectivity reasonably well at higher temperatures. The 

reasons why methane selectivity is apparently significantly different from the 

empirical data at low inlet temperatures can be classified in three big reasons. 

First, we assume that the coolant wall temperature does not change through the 

axial direction and time. However, in a realistic reactor, the coolant channel 

profile can be changed because of inefficient heat exchanger geometry or 
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insufficient coolant capacity. Secondly, although we use the reaction kinetics 

and experiment data from the same literature, the parameter estimation 

procedure are not shown in the literature. Thus, the activation energy of reaction 

ID 1 can be different for our reactor model. It is possible that we are forced to 

increase activation energy to decrease the temperature dependency of methane 

generation. Then, the slope of methane selectivity through temperature decrease 

helps to fit our model data to experimental data. However, parameter estimation 

is not within the scope of this paper, so we used the original kinetics. Finally, 

some experiments were performed in a multichannel reactor with multiple 

layered fins in the reactor channel. Thus, the temperature profile of each reactor 

channel can be different. Despite the weak point of methane selectivity 

estimation at low temperature, we think it is possible to use our model for this 

study because the model can predict CO conversion with various temperature 

and GHSV. Moreover, for optimization, the temperature dependence tendency 

is more important than the actual value of methane selectivity. Experimental 

data and our model show that methane selectivity follows a monotonic increase 

function through temperature. Thus, we can conclude that a low-temperature 

error does not affect to an optimal value and our model is sufficient to use for 

the purpose of optimization. 

Figure 2-2 also compares the reactor core temperature profile through the 

axial direction. Our model can predict the maximum temperature and peak 
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position. Since patent data does not give exact model formulation and coolant 

wall profile, it is hard to assume the coolant wall profile. Thus, we apply a non-

constant coolant wall temperature assuming a temperature profile, and we can 

fit our model to the patent data successfully. However, it is not necessary to use 

an imprecise non-constant coolant wall temperature profile for fitting the plot. 

Firstly, for optimizing catalyst dilution zone divisions, the maximum 

temperature and its location are more important than the exact temperature 

profile and our model can predict those pretty well (maximum temperature: 

239.6°C, peak position: 0.01 m). Furthermore, the error in CO conversion 

between the constant coolant wall temperature model and patent data is about 

2%. Secondly, it is impossible to get exact coolant wall temperature unless we 

use a coolant channel model simultaneously which is not within the scope of 

this paper. 

Temperature, species molar concentration, reaction rates, CO conversion, 

and CH4 selectivity profiles at the centerline in the axial direction of the reaction 

channel are shown in Figure 2-3. Since the Fischer-Tropsch reaction is highly 

exothermic, the temperature of the inlet reactor region can increase to a very 

high value developing a hot spot in the region. As a result, loss of selectivity of 

C5+, catalyst deactivation, and thermal runaway can occur [36]. The profile 

indicates that our CFD reactor model can capture the temperature increase 

effect due to high reaction rates at the inlet region of the reactor. Furthermore, 
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unlike a 1-dimensional model [30], all physical variables are calculated at the 

radial, and axial positions of the reactor and reaction kinetics are updated with 

those variables. Thus, the developed CFD model can accurately predict reactor 

performance and hence can be applied to the optimization problem to obtain 

the optimum number of catalyst packing zones and the length of each zone to 

maximize C5+ selectivity and minimize ΔTmax. 

 



 

 50 

 

Figure 2-2. Graph of model validation with a)comparing CO conversion and CH4 selectivity between the experimental 

data and FTS microchannel reactor models and b)comparing temperature profile of reaction channel between Velocys model 

data [15] and proposed CFD reactor model with non-constant coolant wall temperature. 
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Figure 2-3. (a) Temperature profile, (b) species molar concentration, (c) 

reaction rate, (d) CO conversion and CH4 selectivity at the center of the reaction 

channel of the base case simulation. 
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2.2.2. 3D CFD based Fischer-Tropsch microchannel 

reactor multi-channel model 

Driven by both environmental and economic reasons, the development of 

small to medium scale GTL(gas-to-liquid) process for offshore applications and 

for utilizing other stranded or associated gas has recently been studied 

increasingly. Microchannel GTL reactors have been preferred over the 

conventional GTL reactors for such applications, due to its compactness, and 

additional advantages of small heat and mass transfer distance desired for high 

heat transfer performance and reactor conversion. In this work, the multi-

microchannel reactor was simulated by using commercial CFD code, ANSYS 

FLUENT, to study the geometric effect of the microchannels on the heat 

transfer phenomena.  A heat generation curve was first calculated by modeling 

a Fischer-Tropsch reaction in a single-microchannel reactor model using 

Matlab-ASPEN integration platform. The calculated heat generation curve was 

implemented to the CFD model. Four design variables based on the 

microchannel geometry namely coolant channel width, coolant channel height, 

coolant channel to process channel distance, and coolant channel to coolant 

channel distance, were selected for calculating three dependent variables 

namely, heat flux, the maximum temperature of coolant channel, and maximum 

temperature of process channel. The simulation results were visualized to 

understand the effects of the design variables on the dependent variables. Heat 

flux and maximum temperature of cooling channel and process channel were 
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found to be increasing when coolant channel width and height were decreased. 

Coolant channel to process channel distance was found to not affect the heat 

transfer phenomena. Finally, total heat flux was found to be increasing and 

maximum coolant channel temperature to be decreasing when coolant channel 

to coolant channel distance was decreased. Using the qualitative trend revealed 

from the present study, an appropriate process channel and coolant channel 

geometry along with the distance between the adjacent channels could be 

recommended for a microchannel reactor that meets the desired reactor 

performance on heat transfer phenomena and hence reactor conversion of a 

Fischer-Tropsch microchannel reactor. 
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2.2.2.1. Model description 

In order to analyze the tendency of temperature and heat flux according to the 

structural effect of the 3-D FT microchannel reactor, we use sequential 

methodologies shown in Figure 2-4. First, the reaction rate equation of a 

microchannel fixed bed reactor based on cobalt-based catalyst is expressed by 

a mathematical modeling for a single channel, and the operation condition and 

reactor structure to be analyzed by CFD are set as parameters. Thus, the heat of 

reaction given in the longitudinal direction is obtained as an algebraic function. 

Then, all the other structural variables are obtained by CFD with the fixed heat 

of reaction, and the values of Tpmax, Tcmax, and Q are obtained while varying the 

four design variables CW, CH, CCD, and CPD. This is to fix the variables related 

to the reaction by fixing the reaction heat to increase the calculation speed and 

tolerance of the flow analysis model and to only see the influence on the reactor 

structure. Finally, the tendency of the results is visualized to conduct physical 

analysis and suggest optimal geometric design variables.
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Figure 2-4. Sequential methodology for understanding and suggesting the optimal design of FT microchannel reactor. 
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- Single microchannel fixed bed reactor model 

Since the FT reaction is a high exothermic reaction, a high reaction heat is 

generated at the front end of the reactor. Therefore, it should not be assumed 

that the heat of reaction is the same at any position of the reactor, and it should 

be expressively expressed as a tendency of the heat of reaction in the 

longitudinal direction of the reaction channel so that the temperature and heat 

transfer analysis can be accurately performed. Thus, a linear regression model 

is used as single channel heat of reaction profile. The single channel model is 

formulated based on Knochem et al. [37] which consists of mass balance, heat 

balance, and CoRe/γ-Al2O3 1st order reaction kinetics. In general, empirical 

equations are used to show that the Fischer-Tropsch reaction is proportional to 

the H2 concentration when expressed by the 1st order rate equation. Activation 

energy (EA) is 120 kJ mol-1 and heat of reaction is assumed as -170 kJ molCO
-1  

[38]. 

−𝐫𝐂𝐎 = 𝒌𝑪𝑺𝑯𝟐
  [2-7] 

𝐤 = 𝐤𝟎𝐞𝐱𝐩 (−
𝑬𝑨

𝑹𝑻
)  [2-8] 

 For numerically adopting molar bulk concentration, molar weight, 

mixed gas thermal conductivity, and etc. which changing dynamically through 

reaction, we use the integrated model to calculate the information based on the 

Peng-Robinson equation of states, which is often used in GTL FT reactions, by 

transferring the response information to HYSYS, and then transferring the 
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calculated information to the Matlab model. Parameters and conditions are 

given in Table 2-2 in detail. 
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Table 2-2. Compositions of natural gas feed and refrigerant. 

Process channel 

geometry 

Width(PW) : 1 mm 

Height(PH) : 3 mm 

Length(PL): 17 mm 

Feed operating 

conditions 

Temperature(T) : 230 ⁰C 

Pressure(P) : 20 bar 

Molar composition : H2:CO:N2=0.64:0.32:0.04 

Velocity(uin) : 0.00281 m/s 

WHSV : 400 ml/hr∙gcat 

Packed bed properties 

Particle thermal conductivity(kp) : 0.3 W/m∙K 

Particle mean diameter(Dp) : 250 μm 

Bed void fraction(ε) : 0.3630 

Catalyst density(ρcat) :  1.232 x 103 kg/m3 

Catalyst weight(mcat) : 0.076 g 
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- Multi-microchannel fixed bed reactor model 

The commercial CFD program, ANSYS Fluent, is used for analyzing the 

effect of reactor design variables with the fixed heat of reaction curve. The base 

structure of the cubic style microchannel reactor is shown in Figure 2-5. There 

are 2 reaction channel layers, and 10 channels exist at each layer. There are 3 

cooling channel layers, and 8 channels exist at each layer. Since the reactor is 

symmetrical with respect to the XZ plane when there is no biased disturbance, 

a symmetrical plane is created and analyzed to facilitate calculation of the 

simulation. 

Governing equation of CFD model is set to simulate the fixed bed reactor 

especially understanding the fluid dynamics in the reactor. At each reaction 

channels, species transport with no reaction is used. SST k-ω model (This 

model is similar to k-ω, but it is expressed by blended with k-ε, where k-ω is 

used near the wall, and k-ε is used for the rest) is used for turbulence model 

because it gives relatively accurate heat transfer and shear stress calculation 

simultaneously at the near wall region than other Reynolds-averaged Navier-

Stokes equation (RANS) [39]. Moreover, Peng-Robinson equation of state is 

used which is usually used for FT reaction [40-42]. Coolant is set to 

marlotherm® SH and ucin of the base case is set to 0.1 m/s. Thus, the volumetric 

flow rate of all coolant channel is fixed at that value. This is because the recycle 
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unit of the refrigerant is operated in a state where the volumetric flow rate is 

fixed.  

The important governing equations are summarized in Table 2-3. In 

momentum conservation equation, gravity acceleration (g⃗ ) is 9.81 m/s2 through 

the inlet direction of the reaction channel, +x⃗  . In the energy conservation 

equation, heat source term (Sh) from the heat of reaction is set as the linear 

function of reactor length for regressing the high reaction heat in the front stage 

and less in the rear. For calculating the porous media by catalyst packing, Ergun 

equation with α(permeability) and C2(inertial resistance factor) is used, and 

equations are given by Equations [2-9] and [2-10] 

𝛂 =
𝑫𝒑
𝟐

𝟏𝟓𝟎

𝜺𝟑

(𝟏−𝜺)𝟐
  

[2-9] 

𝐂𝟐 =
𝟑.𝟓

𝑫𝒑

𝟏−𝜺

𝜺𝟑
  [2-10] 

Tcmax, Tpmax, and Q are obtained by varying the four variables of CW, CH, CPD, 

and CCD through a total of 11 cases including the base case. Base case. Because 

we fix the length of the reaction channel, the number of the coolant channel and 

the total size of the reactor module can be changed with varying the geometry 

of the coolant channel. Each case is summarized in Table 2-4. 
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Figure 2-5. General geometry of microchannel reactor with variables identification. 
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Table 2-3. Module and governing equations for CFD modeling. 

Module name Governing equation Remarks 

Conservation 

& continuity 

𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝑣 ) = 0 Mass 

𝜕𝜌𝑣 

𝜕𝑡
+ ∇ ∙ (𝜌𝑣 𝑣 ) = −∇𝑃 + 𝜌𝑔  Momentum 

𝜕𝜌𝐸

𝜕𝑡
+ ∇ ∙ (𝑣 (𝜌𝐸 + 𝑃)) = ∇ ∙ [𝑘𝑒𝑓𝑓∇𝑇 −∑ℎ𝑗𝐽𝑗⃗⃗ 

𝑗

+ 𝜏̅𝑒𝑓𝑓𝑣 ] + 𝑆ℎ 

Energy with 

heat source 

(Sh) 

Porous media Si = −(
𝜇

𝛼
𝑣𝑖 + 𝐶2 ∙

1

2
𝜌|𝑣|𝑣𝑖) 

Packed bed 

reactor 
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Table 2-4. Case specifications. 

Case Base 1 2 3 4 5 6 7 8 9 10 

Variables  CW CH CPD CCD 

CW (mm) 1.000 2.200 0.600 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

CH (mm) 1.000 1.000 1.000 2.000 0.500 1.000 1.000 1.000 1.000 1.000 1.000 

CPD (mm) 1.000 1.000 1.000 1.000 1.000 5.000 2.000 0.500 1.000 1.000 1.000 

CCD (mm) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 2.600 1.571 0.636 
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2.2.2.2. Result and discussion 

Fixed heat of reaction curve with linear regression function in single FT 

microchannel reactor is shown in Figure 2-6. Since the reaction rate is 

proportional to the concentration of H2 by [2-7], it can be expected that the 

reaction will be faster at the front of the reactor, which can be observed linearly 

as reaction heat. Conversion based on the CO is about 0.773, which is 

appropriate for usual FT reaction. The reason why we use the linear function 

for regression is a feasible computational time of the CFD with heat source Sh. 

R2 value is about 0.993, and it is sufficient to use for the surrogate model. 
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Figure 2-6. The heat of reaction curve with a linear fit approximation. 
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The tendency of the multi microchannel reactor model analyzed by CFD is 

analyzed for Q, Tpmax, and Tcmax. In the case of Q, the average heat flux over the 

area through the area weighted average and the area-weighted integral are 

absorbed into the cooling channel total heat flux is analyzed separately. This 

model is implemented through steady-state analysis, and we try to minimize the 

numerical error by equalizing the residual limits of each variable in all cases. 

About the 4 design variables, total heat flux which flows to the coolant 

channel and average heat flux is shown in Figure 2-7. It is found that shorter 

the Cw, the more average and total heat flux increased. This is because the 

surface area does not change because the length of the reaction channel is fixed 

even if the surface area of the cooling channel fluctuates. However, since the 

volumetric flow rate is fixed, the flow velocity becomes faster as the area 

forming the vertical vector of the flow velocity becomes smaller, and it makes 

the flow velocity gradient between the wall and the center of the refrigerant 

larger than when it is slow. It also increases the temperature gradient. Thus, 

more heat can be removed. On the contrary, in the case of CH, the shortening of 

the surface area is disadvantageous to the heat removal due to the reduced 

surface area, but it seems to be able to remove the high heat due to the effect on 

the flow rate. All of them remove the higher heat of reaction when the channel 

is small, which resulted in the effect of the flow rate and the small channel 

causing a rapid mixing effect of the refrigerant to achieve high heat exchange. 
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In CPD, the highest total heat flux is shifted in the base case, but it decreased as 

the thickness increased. However, the CPD showed a decrease of 0.5 mm, and 

the variation is much small compared to other parameters. In fact, it is observed 

to have little effect. The heat transfer resistance due to the microchannel 

structure assumed to be stainless steel do not have such a great influence when 

it is predicted that the most critical resistance factor in the heat exchange 

between the reaction channel and the cooling channel is the resistance caused 

by the film produced by the fluid flow. On the other hand, the CCD shows a 

tendency toward channel spacing, and the total heat flux and the average heat 

flux are observed to show the opposite tendencies. Shortening the length 

between cooling channels increases the surface area of the cooling channels per 

unit length, which acts as a power to remove more total heat flux, but if the total 

heat flux is not so large, it can be rather large because the amount of heat to be 

removed per unit area increases. 
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Figure 2-7. Overall coolant wall heat flux trends with a) CW, b)CH, c)CPD, 

d)CCD. 
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In Figure 2-8, the temperature of the highest fluid (Tcmax, Tpmax) of the 

cooling channel and the reaction channel, respectively, is plotted for each 

variable to confirm the tendency of temperature fluctuation. In the case of CW 

and CH, absolute temperature decreases and the temperature difference 

increases when variables increase. Since the heat of reaction and the initial 

inflow temperature are not changed during the simulation, it is considered that 

the temperature should be lowered when the total flow rate is removed. In this 

case, however, the result is opposite. This phenomenon is possible because, 

even if more heat is removed, the temperature can be observed higher at a 

specific part due to its position and structural effect. In the case of marlotherm® 

SH used as a refrigerant, the heat capacity is 2.22 kJ/kg·m3. However, since 

heat capacity of stainless steel is 0.5 kJ/kg·m3, if the ratio of the refrigerant to 

the overall volume of the reactor is increased, the absolute temperature can be 

lower even if the higher heat quantity is removed. Therefore, it is confirmed 

that the maximum temperature of the channel is lowered when the variable 

moves in the direction of increasing the volume of the cooling channel. 

However, in the case of CW, the proportion of the trade-off relation is not so 

large, and it is considered that there is almost no change in temperature. In the 

case of CPD, there is no structural change in the cooling channel, so only a large 

amount of heat removal would result in lower maximum temperature, but the 

maximum temperature is also found to be unchanged because of less effect of 

total flow rate. In the case of CPD, as the cooling channel spacing is reduced, 
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the total amount of heat is also removed, and the volume ratio of the refrigerant 

to the entire reactor is also increased so that the maximum temperature also 

decreases. 
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Figure 2-8. Maximum temperature trend with a) CW, b)CH, c)CPD, d)CCD. 
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In this study, only the structural parameters of the reactor are changed to 

confirm the thermal flow tendency. However, as a result, it is confirmed that 

the tendency may change depending on the external variables such as the 

difference between the heat capacity of the reactor skeletal metal and the 

refrigerant, and the degree of the reaction heat of the reaction channel. However, 

it is expected that most of the fixed values will not escape the extreme tendency 

because they are introduced by advanced companies such as Velocys® to the 

same level as proposed in actual patents and papers. 
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2.2.2.3. Conclusion 

Parametric study of Q, Tcmax, and Tpmax through the multi FT microchannel 

reactor design variables, CW, CH, CPD, and CCD is performed using the Matlab-

Aspen HYSYS integrated systems for understanding the heat of reaction curve 

and the ANSYS Fluent for CFD. As a result of simulating the fixed bed reactor, 

the following conclusions are obtained when the reaction channel and the 

cooling channel flow through the cross flow. 

- The tendency of the heat of reaction is high at the front end of the 

reaction channel and almost linearly decreased toward the back, and 

the conversion rate at a given condition is observed to be about 0.733. 

- As the cooling channel width (CW) and height (CH) become shorter, the 

total heat flux and the average heat flux become higher, and the 

maximum cooling channel temperature (Tcmax) and the reaction 

channel maximum temperature (Tpmax) also become higher. 

- The gap between the cooling channel and the reaction channel (CPD) 

has not been found to have a significant effect on heat transfer 

- It is confirmed that the total heat flux and the average heat flux increase 

as the distance between the cooling channel and the cooling channel 

became shorter and that the maximum cooling channel temperature 
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(Tcmax) and the maximum reaction channel temperature (Tpmax) 

decrease. 

- CW and CH have a trade-off relation with the maximum temperature, 

while a slight change has a great effect on the heat transfer. However, 

in the case of the CCD, it does not give a rapid change as CW and CH, 

It also has a design effect that reduces the maximum temperature.  

- In this study, it is suggested that CW, CH, and CCD could be proposed 

for designing a multi microchannel reactor for Fischer-Tropsch 

synthesis without any design limit and it is expected that it can be used 

as a basic data of the reactor design optimization study in the future. 
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2.3. Carbon Capture, Utilization, and Storage (CCUS) 

multiphase carbonation reactor model 

The national greenhouse gas emission target is set at 640 million ton in 2014 

and 540 million ton in 2020. Although the target date for the national 

greenhouse gas reduction target is 30% compared to BAU by 2020, the 

development of CCS technology suitable for domestic conditions is not 

completed. At present, a 10 MW CO2 capture demonstration plant is operating 

in Boryeong and Hadong, but CO2 storage technology has not been developed, 

and most of the captured CO2 is released to the atmosphere. The existing 

carbonation research focuses on the capture of CO2 using the reaction, but it is 

difficult to link it with the achievement of greenhouse gas reduction because of 

limitations in storing the conversion product. In addition to collecting CO2 

directly and finalizing the final storage, it is necessary to develop technologies 

for mass capture and construction materials with a CO2 storage potential of over 

7,000,000 ton/yr CO2 

In line with this, many companies around the world are doing their utmost 

to develop this technology. In the case of Novacem in the UK, the development 

and commercialization of carbon dioxide cement are underway. The CO2 

production technology using cement produces 1.5 tons of CO2 reduction effect 

per ton of cement in the entire production process. In the case of Calera in the 

US and Canada, the company is recovering carbon dioxide and developing a 
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substitute for cement and has completed operation of 50 ton/day by-products. 

Currently, a 10MW pilot plant is in operation. MCi (Mineral Carbonation 

International) is in the process of researching the CO2 capture and construction 

material conversion technology pilot plant and is preparing to commercialize it. 

In this study, the authors intend to design a 40 tonCO2/day CO2 carbonation 

reactor. The process required for reactor design was based on computer-aided 

engineering (CAE). First, kinetics studies have been carried out for the analysis 

of reaction systems. Secondly, CFD - based reactor models have been 

developed to test the performance of the reactors under various conditions. 
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2.3.1. Rigorous reaction kinetics for carbonation based 

CCUS reactor 

2.3.1.1. Introduction 

The first thing to do to design a CCUS reactor is to identify the definite 

kinetics and perform parameter estimation to predict the reactivity well under 

various conditions. Ultimately, kinetics should be identified for specific drugs 

such as waste. However, since all of the reactions are based on calcium 

hydroxide (Ca(OH)2), the kinetics of the reaction of Ca(OH)2 with the exhaust 

gas can be easily obtained. Therefore, in this study, the kinetics of CO2 gas 

reaction is investigated for Ca(OH)2 and sodium hydroxide (NaOH) solutions. 

Several previous studies have attempted to investigate the kinetics of CO2 

response to Ca(OH)2-based solutions but did not simulate dynamic changes in 

bubble and particle diameter [43]. Dynamic bubble and particle diameter 

changes must be performed because mass transfer of CO2 and dissolution of 

Ca(OH)2 in water are among the most critical of the reaction. In addition, mass 

transfer of CO2 gas to water and simulation of the equilibrium state of acid 

bases in aqueous solution must be rigorously performed so that reactor 

simulations can be successfully carried out.  
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2.3.1.2. Model formulation & development 

The CCUS reaction can be roughly divided into three parts. First, the 

carbonation part is a reaction that produces various carbonate ions and 

carboxylic acids while forming an acid-base equilibrium while the CO2 is 

dissolved in water. Since these reactions are strongly involved in pH, they need 

to be calculated accurately. In the case of CO2 bubbles, the size of the bubble 

will decrease as it dissolves, which must have a great influence on mass transfer 

and it should be calculated exactly. The next category is the reaction of 

Ca(OH)2 and NaOH as an aqueous solution to make a reaction agent. This 

reaction determines the pH of the initial solution and simulates the unreacted 

solid particles to dynamically calculate the continuous dissolution as the pH 

gradually drops. Finally, it is a series of reactions that occur as precipitation to 

produce calcium carbonate (CaCO3). Since they remove ions and precipitate in 

solid form, it is essential to remove ions from the system. 

The solid particles and bubble disappear when they are completely dissolved. 

To introduce this discrete event into an ordinary differential equation (ode) in 

the form of hybrid systems, a differential algebraic equation (DAE) must be 

used. In addition, we need to use a stiff solver because the difference in kinetic 

parameter values between the several reactions is significantly different on the 

108-109 scale (Refer to Table 2-5 and reference for more kinetic parameter 

values and information). Therefore, kinetics is coded based on ode15s and 
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ode23s solver of MATLAB. Overview of the reaction mechanism is given in 

Figure 2-9.  
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Figure 2-9. Overview of reaction mechanism for carbonation reaction in CCUS reactor. 
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Table 2-5. Reaction kinetics and related parameters with references. 

# Class Reaction Parameter Reference 

R1 Carbonate CO2(aq) + OH
− ⇄ HCO3

− k11,k12 [43] 

R2 Carbonate HCO3
− + OH− ⇄ CO3

2− + H2O k21,k22 [43] 

R3 Carbonate OH− + H+ ⇄ H2O k31,k32 [43] 

R4 Carbonate CO2(aq) + H2O ⇄ HCO3
− + H+ k41,k42 [43] 

R5 Mass transfer CO2(g) ⇄ CO2(aq) kla,E,H, db [44] [45] 

R6 Base solution Ca(OH)2 ⇄ Ca
2+ + 2OH− kf, kb, A [46] 

R7 Base solution CaOH+ ⇄ Ca2+ +OH− kf2, kb2 [46] 

R8 Base solution NaOH ⇄ Na+ + OH− kf3, kb3  

R9 Precipitation Ca2+ + CO3
2− ⇄ CaCO3 k51, k52 [47] 

R10 Precipitation Ca2+ +HCO3
− ⇄ CaCO3 + H

+ k61, k62 [47] [48] 

R11 Carbonate H2CO3 ⇄ H
+ + HCO3

− k81, k82 [43] 
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Equations [2-11]-[2-19] represent the time-dependent changes of all the ions 

participating in the reaction in the form of differential equations. If this is the 

only place to end here, you can interpret it as an ODE system. However, because 

of Equation [2-20]-[2-27] which are activated only when bubble and solid 

particle exist, and it contains the algebraic equation, it is interpreted as a DAE 

system. 

d[CO2(𝑎𝑞)]

𝑑𝑡
= −𝑘11[𝐶𝑂2(𝑎𝑞)][OH

−] +

𝑘12[𝐻𝐶𝑂3
−] − 𝑘41[𝐶𝑂2(𝑎𝑞)] + 𝑘42[𝐻𝐶𝑂3

−][𝐻+] +
𝑘𝑙𝑎𝐸(𝐻

𝐶𝑂2𝑅𝑇[𝐶𝑂2(𝑔)] − [𝐶𝑂2(𝑎𝑞)])  

[2-11] 

d[CO2(𝑔)]

𝑑𝑡
= −𝑘𝑙𝑎𝐸(𝐻

𝐶𝑂2𝑅𝑇[𝐶𝑂2(𝑔)] −

[𝐶𝑂2(𝑎𝑞)])  

[2-12] 

𝑑[𝑂𝐻−]

𝑑𝑡
= −𝑘11[𝐶𝑂2(𝑎𝑞)][OH

−] + 𝑘12[𝐻𝐶𝑂3
−] −

𝑘21[𝐻𝐶𝑂3
−][𝑂𝐻−] + 𝑘22[𝐶𝑂3

2−] − 𝑘31[𝑂𝐻
−][𝐻+] +

𝑘32 + 2𝐴(𝑘𝑓 − 𝑘𝑏[𝐶𝑎
2+][𝑂𝐻−]2𝑓6) +

𝑘𝑓2[𝐶𝑎𝑂𝐻
+] − 𝑘𝑏2[𝐶𝑎

2+][𝑂𝐻−] + 𝑘𝑓3 −

𝑘𝑏3[𝑁𝑎
+][𝑂𝐻−]  

[2-13] 

d[H+]

𝑑𝑡
= −𝑘31[𝑂𝐻

−][𝐻+] + 𝑘32 + 𝑘41[𝐶𝑂2(𝑎𝑞)] −

𝑘42[𝐻𝐶𝑂3
−][𝐻+] + 𝑘61[𝐶𝑎

2+][𝐻𝐶𝑂3
−] − 𝑘62[𝐻

+] +
𝑘81[𝐻2𝐶𝑂3] − 𝑘82[𝐻

+][𝐻𝐶𝑂3
−]  

[2-14] 

d[HCO3
−]

𝑑𝑡
= 𝑘11[𝐶𝑂2(𝑎𝑞)][OH

−] − [𝐻𝐶𝑂3
−] −

𝑘21[𝐻𝐶𝑂3
−][𝑂𝐻−] + 𝑘22[𝐶𝑂3

2−] + 𝑘41[𝐶𝑂2(𝑎𝑞)] −
𝑘42[𝐻𝐶𝑂3

−][𝐻+] − 𝑘61[𝐶𝑎
2+][𝐻𝐶𝑂3

−] + 𝑘62[𝐻
+] +

𝑘81[𝐻2𝐶𝑂3] − 𝑘82[𝐻
+][𝐻𝐶𝑂3

−]  

[2-15] 

d[CO3
2−]

𝑑𝑡
= 𝑘21[𝐻𝐶𝑂3

−][𝑂𝐻−] − 𝑘22[𝐶𝑂3
2−] −

𝑘51[𝐶𝑎
2+][𝐶𝑂3

2−] + 𝑘52  

[2-16] 
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d[Ca2+]

𝑑𝑡
= 𝐴(𝑘𝑓 − 𝑘𝑏[𝐶𝑎

2+][𝑂𝐻−]2𝑓6) −

𝑘51[𝐶𝑎
2+][𝐶𝑂3

2−] + 𝑘52 + 𝑘𝑓2[𝐶𝑎𝑂𝐻
+] −

𝑘𝑏2[𝐶𝑎
2+][𝑂𝐻−] − 𝑘61[𝐶𝑎

2+][𝐻𝐶𝑂3
−] + 𝑘62[𝐻

+]  

[2-17] 

d[CaOH+]

𝑑𝑡
= 𝑘𝑏2[𝐶𝑎

2+][𝑂𝐻−] − 𝑘𝑓2[𝐶𝑎𝑂𝐻
+]  [2-18] 

d[Na+]

𝑑𝑡
= 𝑘𝑓3 − 𝑘𝑏3[𝑁𝑎

+][𝑂𝐻−]  [2-19] 

𝑟𝑚𝑎𝑠𝑠 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 𝑘𝑙 (
6𝑛𝐵

𝑑𝐵
)𝐸 (𝐻𝑤𝑅𝑇 [

𝑛𝐶𝑂2
𝑉𝑔
] −

[𝐶𝑂2(𝑎𝑞)])  

[2-20] 

𝑉𝑔 =
(𝑛𝑐𝑜2+𝑛𝑁2)𝑅𝑇

𝑃
  

[2-21] 

𝑛𝐵 =
𝑉𝑔
0

4

3
𝜋(

𝑑𝐵
0

2
)

3  [2-22] 

𝑑𝐵 = 2(
𝑉𝑔

4

3
𝜋𝑛𝐵
)

1

3

  
[2-23] 

𝑟𝑠𝑜𝑙𝑖𝑑 𝑑𝑖𝑠𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝐴(𝑘𝑓 − 𝑘𝑏[𝐶𝑎
2+][𝑂𝐻−]2𝑓6)  [2-24] 

𝑉𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 =
𝑉𝐶𝑎(𝑂𝐻)2
𝑛𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒

  [2-25] 

𝑑𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 = 2(
3𝑉𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒

4𝜋
)

1

3
  

[2-26] 

𝐴 = 𝑛𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒(4𝜋) (
𝑑𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒

2
)
2

  
[2-27] 
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All of the above expressions were coded in MATLAB R2016b based on 

ode15s and ode23s, and a dynamic system was constructed. Since there is a 

possibility that there is a gap between actual system and kinetics, validation and 

parameter estimation were carried out through a 500 ml reactor. Experimental 

set uses 16 experimental sets selected through the orthogonal array to use the 

design of experiment to simultaneously reflect the influence of various 

variables as much as possible. The parameters used in this experiment were 

operating temperature, CO2 vol%, Ca (OH2) wt%, NaOH wt%, GHSV (hr-1), 

and CO2 flow rate (L / min). Parameter estimation was performed by adjusting 

the CO2 outlet (vol%) and pH, and the mean squared error of the experimental 

and model values was calculated. Solver algorithm was Dividing hyper-

RECTangle (DIRECT), and target parameters were gas hold up, bubble initial 

diameter, mass transfer coefficient for the bubble, mass transfer coefficient for 

solid, Ca(OH)2 dissolution factor, enhancement fact, and solid particle initial 

diameter. The exact values for each experiment set are shown in Table 2-6.  
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Table 2-6. Experiment set using an orthogonal array for the design of the 

experiment. 

Exp # 
Temperature 

oC 

CO2 

vol% 

Ca(OH) 2 

wt% 

NaOH 

wt% 

GHSV 

hr-1 

CO2  

flow rate 

 L/min 

1 25 2.00% 1.00% 0.00% 60 0.5 

2 25 10.00% 1.50% 1.00% 120 1 

3 25 20.00% 2.00% 2.00% 180 1.5 

4 25 30.00% 3.00% 3.00% 240 2 

5 40 2.00% 1.50% 2.00% 240 2 

6 40 10.00% 1.00% 3.00% 180 1.5 

7 40 20.00% 3.00% 0.00% 120 1 

8 40 30.00% 2.00% 1.00% 60 0.5 

9 55 2.00% 2.00% 3.00% 120 1 

10 55 10.00% 3.00% 2.00% 60 0.5 

11 55 20.00% 1.00% 1.00% 240 2 

12 55 30.00% 1.50% 0.00% 180 1.5 

13 70 2.00% 3.00% 1.00% 180 1.5 

14 70 10.00% 2.00% 0.00% 240 2 

15 70 20.00% 1.50% 3.00% 60 0.5 

16 70 30.00% 1.00% 2.00% 120 1 
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2.3.1.3. Result and Discussion 

In Figure 2-10, we can see how the CO2 removal rate is for various 

experiments. It can be seen that the curves exhibit significantly different 

tendencies under various conditions. In general, NaOH was dissolved in almost 

all water, and high pH was obtained. It was found that the initial CO2 removal 

rate was high in the case of NaOH containing experiment. However, when the 

effect of NaOH was over, and CO2 was removed only by the basicity of 

Ca(OH)2, the CO2 removal rate dropped sharply. Therefore, it was found that 

the addition of NaOH is essential for obtaining a very high CO2 removal rate 

directly for a single reactor. 
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Figure 2-10. CO2 removal rate over different experiment set.
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The results of the parameter estimation for the 10th experiment are plotted 

in Figure 2-11. The model determined by the parameters referring to several 

documents at the beginning and arbitrarily inserted parameters seem to show a 

great difference from the experiment. The results obtained with the optimized 

parameter set through the DIRECT global NLP algorithm show that the 

experiment is almost exactly matched. In the case of the conventional model, 

the pH fitting was calculated to be very slowly dropped. However, for the 

optimal model, we confirmed that the experiment curve follows almost exactly.  

Finally, in order to find out what kind of changes are observed under various 

conditions, we try to show the tendency of simulation by changing the operating 

temperature of the reactor and the amount of the initial NaOH (Figure 2-12). It 

can be seen that the CO2 outlet volume fraction is formed at a higher level when 

the temperature is first raised. It is not so sensitive to temperature until all of 

the NaOH is consumed, but once consumed, the pH is determined by the 

solubility of Ca(OH) 2 and the CO2 removal rate is determined accordingly. 

However, when the temperature is high, it is confirmed that Ca(OH)2 is less 

soluble and thus the CO2 removal rate is lowered. Similarly, in the case of 

NaOH, the CO2 removal rate remained very high for more time, indicating that 

the outlet volume reaction remained close to zero. The interesting thing is that 

this curve does not just go up to the same slope, but shows that NaOH goes up 
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more steeply. This is probably due to the effect of the product, which causes the 

CO2 to dissolve slightly more.  
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Figure 2-11. The result of parameter estimation. 
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Figure 2-12. Sensitivity analysis for CO2 outlet volume fraction with a) temperature fluctuation and b) NaOH weight 

fluctuation.
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2.3.2. Eulerian multiphase model for carbonation 

reactor 

2.3.2.1. Introduction 

As can be seen in 2.3.1, since the reaction is a very fast acid-base reaction, 

the rate of the overall reaction of this system is governed by the rate of mass 

transfer, such as the rate of dissolution of the gas and solid reactants. Among 

them, the dissolution process of the solid reactants is generally regarded as the 

rate determining step [49]. Many studies have been conducted on chemical 

factors such as additives, temperature, pressure, reaction conditions such as 

concentration, particle size of solid reactants, etc., which can increase the 

dissolution rate. However, there are research that the mass transfer rate has a 

great influence not only on these chemical factors but also on physical factors 

such as velocity fields, turbulence intensities, shear stress distributions, and 

volume fraction of various phases [50]. Despite the fact that proper reactor 

designs can improve physical factors to increase mass transfer rates, little 

research has been done on reactors in this process. 

It is very important to ensure that the reactant distribution within the reactor 

is evenly distributed through appropriate reactor design. Uneven distribution of 

reactants means that reactants and some of the reactors are not utilized properly, 

which can lead to an increase in the cost of the process. Large-Scale reactors 

are designed using empirical correlations or empirical laws based on laboratory 
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experiments [51]. In the case of agitated reactors, there are correlations for 

predicting solid suspension in solution using various solutions [52, 53]. 

However, there is a limitation that the shape of the reactor is not applicable as 

the size or the deviation from the standard becomes larger. 

In this study, we investigate the correlation between the dispersion of the 

solid reactants and the internal design factors in pilot scale stirred tank reactors 

capable of mineral carbonation of 40 tons of carbon dioxide per day and to 

propose an appropriate internal structure of the reactor. Although all of the gas-

liquid (CO2-solution) and solid-liquid (CaO-solution) transport in the target 

process is involved, this paper deals only with solid-liquid mixing. This is 

because the solubility rate of the solids is slower first, and secondly, the amount 

of gas entering the reactor is very large (7000 Nm3/hr of gas must be introduced 

to treat 40 tonnes of CO2 per day based on exhaust gas containing 15 vol% CO2) 

the reactor structure changes to a flooding regime that has little effect on gas 

mixing [54]. In this study, CFD technique was used to analyze the flow of the 

reactor. There have been many studies on the CFD analysis of agitated reactors 

from the past, and their reliability has been acknowledged by comparison with 

experimental results [55-58]. However, since the flow is always changed 

depending on the shape and characteristics of the reactor, the results of the 

existing studies cannot be applied to the present process. Therefore, in this 
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paper, we tried to analyze the internal flow, especially solid dispersion, in 

aqueous mineral carbonation reactor.  
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2.3.2.2. Model description 

The structure of the reactor is shown in Figure 2-1. It is a stirred tank reactor 

in which three impellers are vertically arranged in the center of a cylindrical 

tank having a diameter of 4 m and a height of 2.5 m. A gas distributor is 

disposed between the bottom agitator and the intermediate agitator. In this study, 

the gas is not discharged from the gas distributor because it does not deal with 

the gas dispersion, but the structure is described in detail as much as possible 

because the dispersing device itself can act as a flow obstacle of the liquid or 

solid. In this study, the reactor modeling range was limited to the head height, 

so the height of the reactor was considered to be 2.5 m, which is the height of 

the head.  

As a reaction material, a mixture of water and solid calcium oxide of 25 oC, 

which is a liquid, was set. At this time, the calcium oxide mixture was assumed 

to have a particle size of 200 mesh, a density of 3,366 kg / m3, and a viscosity 

of 1.5 cP. In addition, the solid reactant occupies a volume fraction of 5 vol% 

in the total solution. 

Design variables such as the number, type, clearance, and diameter of the 

impeller can have a large influence on the internal flow [59]. This value was 

reduced to the D(impeller diameter)/T(reactor diameter) value, which was 0.33 

and 0.5 in this study. The rpm representing the number of revolutions per 

minute can be adjusted after the design and construction of the reactor is 
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completed, but it is crucial to estimate the operation range in advance because 

the specifications of the power equipment to be installed are determined 

according to how to select the rpm range. In this study, 0, 30, 60, and 90 rpm 

were verified. The type of agitator can be divided into an axial stirrer, which 

makes a large axial flow, a radial stirrer, which makes a horizontal flow, and a 

Pitched Blade Turbine (PBT), which produces a mixed flow of axial and 

horizontal directions. In this study, only the Pitched Blade Turbine (PBT) was 

discussed. The baffle is advantageous to install four equally spaced as possible 

[18] if solid dispersion is required, and longer and thicker thicknesses are 

considered better. However, as the baffle becomes larger and the structure 

becomes more complicated, the power consumption increases together. The 

detailed study of various variables and the application of the optimum design 

theory to the 40 tonCO2/day carbonation reactor are explained in detail in 

Section 4.2, and the description in this chapter is focused on the description of 

the model.  

For the CFD modeling of this study, ANSYS® fluent 16.0 was used. The 

governing equations and several model equations used in CFD modeling are 

summarized in Table 2-7. A Euler-Granular multiphase model was used to 

analyze multiphase flows involving liquids and solids. This model solves the 

Navier-Stokes equations for coexisting and interpenetrating continuum phases, 

respectively and that can consider together by including interphase momentum 
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transfer or interphase mass transfer in the governing equations. There are 

several types of forces interacting between the liquid and solid, through which 

interphase momentum transfer is possible. The most important force among 

them is the drag force, and it has been found by various studies that the 

remaining interaction forces such as lift force, virtual mass force, and turbulent 

dispersion terms do not significantly affect the overall flow of the agitating 

reactor [56, 60, 61]. Therefore, in this paper, only the drag force is considered 

as the force involved in interphase momentum transfer.  As a turbulence model, 

a realizable k-ε turbulence model was used for the liquid phase. This was 

determined by referring to the previous case study of solid dispersion in a stirred 

reactor [62]. Multiple reference frame (MRF) method was used to model the 

impeller rotation. No-slip condition boundary conditions were given to all wall 

surfaces in the reactor such as tank walls, impeller blades, rotary shafts, and gas 

injector surfaces, and the surface of the rotating shaft was set to rotate at the 

same speed as the impeller. 
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Figure 2-13. Reactor geometry with design variables. 
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Table 2-7. Governing equations of the reactor model. 

 Governing equations/models Remarks 

Continuity ∂

∂t
(𝛼𝑘𝜌𝑘) + ∇ ∙ (𝛼𝑘𝜌𝑘𝑢̅𝑘) = 0  K=phases(l,s) 

Momentum ∂

∂t
(𝛼𝑘𝜌𝑘𝑢̅𝑘) + ∇ ∙ (𝛼𝑘𝜌𝑘𝑢̅𝑘𝑢̅𝑘) =

−𝛼𝑘∇𝑃 + ∇ ∙ 𝜏̅𝑘 + ∑ (𝑅𝑙𝑠 + 𝑚̇𝑙𝑠 +
2
𝑘=1

𝑢̅𝑙𝑠) + 𝐹 𝑘  

 

Interphase 

momentum 

exchange 

Rls = 𝐾𝑙𝑠(𝑢̅𝑙 − 𝑢̅𝑠)  Kls: Gisdaspaw 

law [23] 

Turbulence 

Model 

Realizable k-ε model  
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2.3.2.3. Result and discussion 

In this study, we made a model for the design of the reactor and proceeded 

to the point where we simply looked at the tendency to differentiate the flow 

and solid suspension according to impeller speed and D / T. Since we wanted 

to cover more details in Section 4.2, we will look at some cases of how the 

velocity vector field, the solid volume fraction, and the solid volume fraction 

of the continuous phase in the reactor change with reactor height.  

Figure 2-14 shows velocity vector field according to impeller speed. 

Obviously, as the impeller speed increases, a stronger vector field appears. It 

can be seen that a circulation loop is formed between the impeller layer, and a 

sufficient circulation loop is formed at 60 rpm. The top view shows that the 

impellers of the three stages are rotating at the same speed so that the speed 

difference does not seem to be so great. The analysis of this vector field is 

directly related to the solid suspension ability in Figure 2-15. At 30 rpm, we 

found that there was insufficient vector field, which resulted in the solid 

particles not being able to spread throughout the reactor but sinking below. At 

60 rpm, we can see that solid particles are spread well enough to be considered 

as well suspension. However, it was confirmed that when the D / T decreased 

to 0.33, the suspension ability was lowered. Particularly, it is confirmed that 

solid particles are pushed toward the outer wall of the reactor, and then the static 
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force is lowered. However, since the length and the effective area of the 

impeller are reduced, low energy is used, and trade-off relationship is formed. 

Figure 2-16 shows a little more clearly, depending on the height of the 

reactor, the solid volume fraction is obviously more evenly distributed as the 

impeller velocity increases. In this Eulerian multiphase model, it is expected 

that various analyzes can be made because it is easy to see how the solid 

particles change in response to other reactor geometry changes or operating 

conditions changes.
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Figure 2-14. Velocity vector field of each case.
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Figure 2-15. Solid phase volume fraction for different impeller speed. 
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Figure 2-16. Solid particle volume fraction plot through reactor height. 
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2.4. CFD-Process integrated platform for 

simultaneous process and reactor design 

2.4.1. Introduction 

In this section, CFD based Fischer-Tropsch multitubular reactor model is 

integrated with process simulator, especially Aspen Plus, reactor model for 

implanting the rigorous reactor model to the process simulator and analyzing 

the reactor performance efficiently. In process systems engineering, there are 

several steps for designing overall process. Especially, conceptual design step 

should be performed primarily because it is easy to solve overall design 

problem when its complexity decreases by dividing the overall problem into 

sequential sub-problems. However, in detailed design step which is roughly 

next step of conceptual design, there are no opportunities to change the 

conceptual design of process and this limitation can block some combinations 

of process design and detailed design. In this study, we integrated process 

simulator used for conceptual designing and computation fluid dynamics used 

for detailed designing simultaneously and applied to multitubular packed bed 

Fischer-Tropsch Reactor. Several studies tried to develop this kind of reactor or 

unit modeling such as AML:FBCR with fluent for gPROMS. 
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2.4.2. Model formulation 

In this integrated platform between CFD section and process systems section, 

ANSYS FLUENT and Aspen Plus that are acknowledged software are used. In 

CFD section, exact fluid dynamic simulation and rigorous physics phenomena 

such as multiphase, mass transfer in complex geometry field, non-ideal mixing 

effect, etc. can be performed effectively which is impossible in process 

simulator. Moreover, 3D graphics analysis and unit geometry considering can 

help us to analyze the unit performance more explicitly. Process systems, 

however, also have advantages targeted at analyzing process systems. Simple 

1-d reaction model and thermodynamic calculation with experimental data 

from NIST and DIPPR help the user to understand and solve the chemical 

equilibria exactly. Furthermore, systematic approach to overall process systems 

is possible, unlike CFD section. Hence, these advantages of each section are 

integrated into the proposed integrated platform which is shown in Figure 2-17. 

CFD simulation transfers the information of detailed geometry, fluid 

dynamics, heat transfer, velocity vector filed to the process simulator for 

considering various parameters. Then, process simulator can calculate the exact 

value of essential parameters such as heat transfer coefficient as function profile. 

With exact calculated multi-dimension parameters, process simulator can 

calculate the rigorous kinetics with its commercial reactor model for obtaining 

heat of reaction and material properties. These values are transferred to the CFD 
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simulator to calculate heat transfer and viscosity calculation once again and 

iterate this calculation until simulation is converged. Therefore, reaction, unit 

geometry, turbulence effect, non-ideal mixing, and the other physical 

phenomena are perfectly considered in detailed designing of reaction and 

systems design simultaneously.
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Figure 2-17. Diagram of CFD-Process systems integration platform.
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In this study, we implant this methodology into the FT multitubular fixed 

bed reactor shown in Figure 2-18. The reactor has a total of 25 single channel 

reactor tubes. The coolant enters the shell side as water and conducts heat 

exchange with the reaction channel through two baffles. The kinetics used in 

the reaction are the same as in Table 2-1. The calculation process is as follows. 

First, estimate the heat of reaction curve using the 1-d reactor model in Aspen 

Plus. The calculated heat of reaction curve is treated with the source term in 

Fluent's reactor tube to generate heat and the heat exchange capacity is tested 

through fluid flow. Once the calculations converge to the steady state, the heat 

transfer coefficient and wall temperature of each tube are extracted and brought 

to Aspen Plus. In Aspen Plus, the modified heat transfer coefficient and wall 

temperature values for each tube are entered as profiles, and the heat of reaction 

is calculated differently for each tube. The source of the heat of reaction curve, 

which is different from the initial guess, is simulated by Fluent CFD simulation 

and the process is repeated to the satisfaction level. Detail algorithm is shown 

in Figure 2-19. 
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Figure 2-18. Geometry of FT multitubular fixed bed reactor. 
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Figure 2-19. CFD-Process systems integration algorithm. 
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2.4.3. Result and discussion 

In the conventional model, even if it is multitubular, the heat exchange 

capacity of each tube cannot be simulated depending on the flow of the shell 

side fluid or the shape of the reactor. However, the proposed model showed that 

this is possible.  

The coolant velocity profile clearly shows that the flux is higher at the inlet 

and outlet, which are small in area, and that it is the same in the region where 

the flow path is narrowed due to the baffle. In case of the rear side of the first 

baffle, the cooling effect is negligible because there is almost no movement of 

the fluid at the rear part. In the second baffle, it seems that the outlet is on the 

side, thus cooling effect exists (Figure 2-20). The front view shows the tendency 

to vary the convective heat transfer depending on the location of the tube. In 

case of the tube which is in charge of the coolant inlet, it seems that it is cooled 

well by obtaining a sufficient coolant flow rate, whereas in the side tube, the 

coolant is not sufficiently distributed and the flow rate is slow. 

This effect can be more clearly seen in the temperature profile. Since the FT 

reaction is a highly exothermic reaction, it can be seen that there is a 

considerably high heat generation in the front reactor through the side view and 

a rise in temperature. It can be seen that the temperature goes higher toward the 

lower tube, which is more distant from the inlet part. It is thought that this 

phenomenon occurs because the coolant cannot go down to the bottom and is 
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passed after the baffle. As you can see from the front view, it can be 

distinguished. As shown in the front coolant velocity profile, the side tube is 

not sufficiently cooled, and the reactor temperature is rapidly increased. 

In Figure 2-21, wall function heat transfer coefficient of each reaction tube 

is plotted through reactor length. At first, the wall function heat transfer 

coefficient of all reaction tubes was given the same as the initial guess heat 

transfer coefficient. This value does not affect the reactor length, and in fact, it 

does not have to be arbitrarily determined since it may be some time to design 

the reactor at first. However, the proposed model can be used to estimate the 

exact wall function heat transfer coefficient through reactor length. In addition, 

a revolutionary design methodology has developed because it obtains the 

reaction kinetics by Aspen Plus and the precise degree of change of reactants 

by separately calculating the wall function heat transfer coefficient according 

to the geometry of the tube.  

As a result, the proposed integrated platform can be used for process design 

by analyzing the entire process systems including CFD 3D reactor analysis and 

reaction kinetics of process simulator.  
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Figure 2-20. Coolant velocity profile and temperature profile of the 

multitubular reactor; side and front view. 
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Figure 2-21. Wall function heat transfer coefficient for each reaction tube at 

final converged state. 
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2.4.4. Conclusion 

In this study, we developed an integration platform that can be used in a 

design by connecting the chemical reaction formulas calculated in CFD reactor 

model and process simulator. This enables simultaneous execution of basic 

design methodologies that sequential process of conceptual process design and 

detailed unit design. Therefore, it is possible to study the results that can be 

changed in the detailed design at the conceptual design stage and to find the 

optimum point at the same time.  
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 Optimization for the Unit, 

Process, and Plant-wide Systems 

3.1. Introduction 

What we would like to achieve ultimately on various simulation platforms 

obtained through advanced modeling as described in CHAPTER 2 is the 

optimal solution for unit, process, and plant systems. In CHAPTER 3, 

mathematical programming, derivative-free optimization algorithm, and deep 

learning, which are used in modern computational science, are combined with 

CFD and process simulator to propose an optimization strategy for a specific 

purpose. In particular, by proposing an optimization platform that gradually 

expands the range of reactor systems, process systems, and plant systems, 

introduce the optimization methodology for specific applications. 

Section 3.2 proposes an optimization methodology on the reactor scale level. 

For CFD-modeled reactor models, multi-objective optimization was performed 

to optimize both maximum productivity and minimum ∆Tmax simultaneously. 

The contribution of this research is the development of an algorithm that can 

effectively perform multi-objective optimization for a costly function called 

CFD and derive the concept of optimum packing division zone. 

Section 3.3 discusses optimization methodologies at the level of process 

systems. Section 3.3.1 discusses the modified Dividing hyper-Rectangle 

(DIRECT) algorithm, which enables global optimization while effectively 
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handling hidden constraints that are seriously considered in the generic process 

simulator. Section 3.3.2 proposes the HENS methodology to analyze how many 

heat exchangers present in this sustainable process are most economical to 

construct in any combination of networks. We develop multiple utilities based 

simultaneous HENS using sub-stage in sustainable process which is multiple 

utilities system from the various refrigerant to heat source. 

Finally, in Section 3.4, we have developed a technology to help safety 

analysis in a plant-wide system by using data reduction using variational 

autoencoder with deep convolutional layers. Then, we are developing a real-

time leak alarm system by replacing the gas leak simulation of a complex and 

huge scale plant with a deep neural network based non-linear surrogate model 

that can perform the real-time calculation. 
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3.2. Reactor systems scale optimization 

3.2.1. Multi-objective optimization of microchannel 

reactor for Fischer-Tropsch synthesis using 

computational fluid dynamics and genetic 

algorithm 

Optimization of microchannel reactor is a challenging problem because non-

convex functions including differential equations are involved in the model. 

Typically, derivatives of these equations are very expensive to compute or often 

impossible to obtain [63]. Thus, derivative-free methods are considered 

attractive options for problems when numbers of non-convex functions are 

included in the model. One way to deal with such a complex problem is problem 

decomposition. In the decomposition method, the original problems are 

decomposed into the simulation and optimization parts, and the simulation part 

is externally calculated using a simulator. The optimization is usually carried 

out using a stochastic solver due to the fact that stochastic solvers are based on 

function evaluations. Leboreiro and Acevedo [64] used a genetic algorithm with 

the decomposition approach for optimizing distillation column sequencing. 

Javaloyes-Antón et al. [65] used a particle swarm algorithm interfaced with 

Aspen Hysys to optimize a rigorous tray-by-tray distillation column model. 

Recently, Lee et al. [66] decomposed the MINLP problem to optimize a 

superstructure for a rigorous rate-based reactive distillation model for capturing 

CO2 from flue gas. Alternatively, a surrogate model has also been used for 
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optimizing microchannel reactors. For instance, Jung et al. [29] used a surrogate 

model constructed based on an artificial neural network to optimize the guiding 

channel geometry in a U-Type coolant layer manifold for a large-scale 

microchannel FT reactor. They used the commercial CFD software ANSYS 

CFX to generate the flow field data required to construct the surrogate model 

and used the MATLAB fmincon solver, which is based on sequential quadrating 

programming, for optimizing the surrogate model.  

In this work, a CFD model of a single microchannel reactor for FT synthesis 

is first built using the commercial CFD software ANSYS FLUENT and the 

simulation results are validated with experimental data from the literature. Then, 

we employed the concept of discrete dilution zones in our catalyst-filled 

microchannel FT reactor and performed a multi-objective optimization study 

using an ε-constraint method and genetic algorithm to determine optimal 

dilution ratios and zone length that maximize C5+ productivity and minimize 

ΔTmax simultaneously.  
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3.2.1.1. Modeling and optimization  

The Fischer-Tropsch microchannel reactor design optimization problem can 

be formulated as a multi-objective MINLP (Equation [3-1]): 

𝐦𝐢𝐧 (𝐟𝟏(𝐱, 𝐲), 𝐟𝟐(𝐱, 𝐲))   

𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨   𝐠𝐢(𝐱, 𝐲) ≤ 𝟎,    𝐢 = 𝟏, 𝟐, 𝟑, … , 𝐩  

𝐡𝐣(𝐱, 𝐲) = 𝟎,    𝐣 = 𝟏, 𝟐, 𝟑, … , 𝐪  

𝐱 ∈ 𝐗 ⊂ 𝐑𝐧,   𝐲 ∈ 𝐍𝐧    

  

[3-1] 

where x and y are vectors consisting of n continuous and integer variables. 

Continuous variables represent the dilution ratio, and integer variables 

represent the packing length. In order to avoid technical difficulty with packing 

the catalyst in different and continuous volume sizes, we assume the packing 

length has integer values. We discretized the reactor length into 10 zones of 

equal length allowing us to set the length variable as an integer variable. f(x, y), 

g(x, y), and h(x, y) represent the objective function, inequality, and equality 

constraints, respectively. The FT microchannel reactor design involves a large 

number of equality constraints with differential terms that are used to describe 

reaction kinetics, heat, and mass and momentum balance equations resulting in 

a challenging MINLP problem. The resulting MINLP, thus, finds it difficult to 

find a feasible solution using a deterministic optimization solver because 

obtaining the gradient is computationally very expensive and it is often 

impossible to find one.  
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Herein, we decompose the original MINLP. The decomposition divides the 

original MINLP problem into sets of sub-problems and explicitly calculates the 

subsets of constraints. Consequently, the optimization is carried out in the 

reduced search space. The equality constraints , h(x, y) , are decomposed as 

hs(x, y) and ho(x, y). hs(x, y) includes equations related to reactor design and 

ho(x, y) includes those of optimization. With the decomposition, the MINLP 

model can be reformulated as Equation [3-2] 

min f1(x, y)  

f2(x, y) ≤ ε  

ho(x, y) = 0  

gi(x, y) ≤ 0   

x∈M, y∈M  

with M = {(x, y): hs(x, y) = 0  for some x ∈ X ⊂ R
n, y ⊂

Nn} 
 

[3-2] 

For considering f1 (C5+ productivity) and f2 (ΔTmax) simultaneously, an ε-

constraint method introduced by Haimes et al. [67] can be applied for f2 where 

C5+ represents FT hydrocarbon products with 5 or more carbons and ΔTmax is 

the difference between the inlet temperature and peak temperature inside the 

reaction channel. If an objective function f1  and a user-defined ΔTmax-

controlled scalar ε exist in dimension M such that x* and y* are optimal 

solutions to the problem (2), then x* and y* are weak Pareto optimum points as 

per the general result of Miettinen [68]. This method has an advantage when 

the number of objectives is two, and the shape of the Pareto optimal curve is 

non-convex [69]. The MINLP problem is solved using a stochastic solver 
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integrated with the CFD model. Stochastic solvers are powerful tools for 

finding the optimal solution when integrated with an external simulation tool 

as they do not require a priori mathematical information or gradients of 

functions.  
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3.2.1.2. MINLP formulation using stochastic solver  

The MINLP optimization is carried out using a genetic algorithm (GA) [70]. 

The objective function of the original problem is defined using Equation [3-3]. 

maxC5+productivity(li, xi) + P ∗ (abs(∆Tmax(li, xi) − ε) −

(∆Tmax(li, xi) − ε))        

[3-3] 

Herein, the C5+ productivity is maximized, and ΔTmax is minimized. ΔTmax 

is bounded by the ε-constraint in Equation [3-4]. For obtaining the Pareto 

optimal curve, we find the maximum value of C5+ productivity with different ε 

values. 

∆Tmax ≤ ε  [3-4] 

The ε-constraint is the hidden constraint in this problem whose feasibility 

cannot be realized before calculating the CFD sub-problem. Therefore, we 

deactivate the point that does not adjust to the ε-constraint, using scalarization 

of ΔTmax with a large penalty factor P. However, this method is not the weighted-

sum or scalarization technique as the difference between ΔTmax and ε does not 

affect the objective function. 

In Figure 3-1, the FT single-channel reactor length was divided into 10 zones 

of 50 mm each, where each zone can have different catalyst dilution ratios. 

Hence, during optimization, the packing length (li) and dilution ratio (xi) are set 

as design variables while operating conditions such as the gas hourly space 
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velocity (GHSV) of syngas and inlet temperature were fixed. Index n is the 

number of catalyst packing zones.  

li is the integer variable that tells how to divide the 10 zones of the reactor 

into n packing zones. To illustrate, if n is 2, l1 is 3, and l2 is 7, then the catalyst 

packing zone will be divided into 2 zones of 3 unit zone length and 7 unit zone 

length, that is 150 mm and 350 mm. Accordingly, the equality constraint that 

expresses the sum of li should equal 10 as given in Equation [3-5]. The 

stochastic solver generates the combinations of li randomly within the variable 

bounds defined by Equation [3-6]. 

∑ li = 10
n
i=1   [3-5] 

1 ≤ li ≤ 10  [3-6] 

Because the FT reaction is fast and highly exothermic, the temperature in 

the immediate region of the reactor inlet, front zone in this case, tends to go 

undesirably high. Therefore, it is necessary to strategically apply different 

dilution ratios over the entire catalyst packing zone; for instance, higher dilution 

ratios in the front zones and lower dilution ratios in the rear zones. This way, 

the reaction rate in the front zones, especially in the region of the reactor inlet, 

can be allowed to limit to a desirable level while still allowing a desirable level 

of catalyst activity in the middle and rear zones of the reactor. By limiting the 

reaction rates to the desired level and hence the heat generation rate in the front 

zones, ΔTmax along the channel length can be minimized. The dilution ratio 



 

 126 

inequality constraint is given by Equation [3-7] with variable bounds of dilution 

ratios 0 (all catalyst) to 1 (all diluent) [3-8].  

xi ≤ xi−1  [3-7] 

0 ≤ xi ≤ 1   [3-8] 
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Figure 3-1. Superstructure of 500 mm FTS single microchannel reactor for dividing catalyst packing zone optimization. 
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We built an integrated interface between MATLAB and the commercial 

CFD software FLUENT, called the GA-CFD optimizer. In this study, the CFD 

reactor model has inputs of di and xi, and outputs of ΔTmax and C5+ productivity. 

The GA algorithm in MATLAB calls FLUENT using ActiveX server 

communication. With this connection, the input variables of FLUENT can be 

received from MATLAB, and the output of FLUENT can be sent back to 

MATLAB, as shown in Figure 3-2. Initially, the input parameters and reaction 

kinetics data are set, and the CFD reactor model runs with those settings. After 

that, the GA algorithm generates a population within variable bounds. Each 

individual in the population is sent to FLUENT through the ActiveX server. 

Once the output of FLUENT is received in MATLAB, the objective function 

value is calculated and checked for termination criteria. The maximum 

population size and six consecutive stall generations are used for the 

termination criteria. If the termination criteria are not satisfied, a new 

population is generated through three characteristic steps: selection, mutation, 

and recombination. The GA solver does not provide a guarantee of optimality. 

In fact, the convergence rates are different between integer variables and 

continuous variables. Thus the global solution of a MINLP problem can seldom 

be found from a stochastic solver. Several studies indicate that stochastic 

solvers do not allow continuous variables to converge while discrete variables 

correspond to a global optimum solution [71-73].  
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Figure 3-2. Block diagram of GA-CFD optimizer algorithm. 
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Herein, we optimized the MINLP problem in two stages. Several studies 

used multi-stage optimization of MINLP, either to reduce the complexity or to 

improve convergence [74-76]. In the first stage optimization, the MINLP 

problem is solved multiple times with different crossover fractions (0.4, 0.6, 

and 0.8) until the integer variables have the same solution for all values of the 

crossover fraction. If the values of integer variables are different in each run, 

the population size of the problem is increased, and the calculation is repeated. 

The original MINLP problem is reduced to NLP in the second stage using the 

integer variable solution found in the first stage. In the second stage GA-CFD, 

the reduced NLP has optimized once again with the GA. The 2nd stage 

optimization still does not guarantee the global optimum solution; an improved 

solution can be found in the 2nd stage optimization in many cases within a 

reasonable computation time. Herein, a maximum of 50 generations and 20 x n 

individuals for a population are used. Single point crossovers with crossover 

fractions of 0.4, 0.6, and 0.8, two elite populations, and Gaussian mutation are 

used in the GA solver. The tournament selection method is used to choose 

parents for the next generation. Note that we adopt the GA parameters from 

[77]. 

We compare the effectiveness of the GA-CFD optimizer with grid search 

when the number of zones is relatively small. If the number of zones is one and 

we divide the continuous variable with 0.1 scales, then the near optimum 
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solution can be calculated within 10 CFD executions. If the number of zones is 

2, 3, or 4, the number of function evaluations increases to 405, 4320, and 17640, 

respectively. Considering that the average function evaluation time is about 1 

minute, we did a grid search only for cases having one and two zones and 

compared the result with the GA-CFD optimizer.  
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3.2.1.3. Optimization result 

In Figure 3-3, the results of a grid search, dividing xi as 0.1 scales and 

considering all possible combinations of li, with 1 zone and 2 zones are 

compared with results from the 1st stage GA-CFD optimizer with 2 zones and 

3 zones. ε was changed to different ΔTmax values such as 1, 1.5, 2, 3, and 5 for 

obtaining the Pareto optimal curve. The meaning of the curve is the correlation 

between ΔTmax, which represents the safety factor, and maximum C5+ 

productivity, which represents the efficiency of the reactor, at fixed ΔTmax. 

When n equals 2 and 3, all optimal points calculated by the GA-CFD optimizer 

through all the temperature ranges are advantageous compared to 1 zone 

catalyst packing. Optimization results indicate that the discrete dilution method 

allows distribution of the overall heat of the FT reaction in the most strategic 

manner to different catalyst packing zones. The 3 zones 1st stage GA-CFD 

optimizer gives the best solution except when ε =1, compared to the solution 

from a 2 zone total grid search. Although the 2 zones 1st stage GA-CFD 

optimizer gives the same optimal solution as the total grid search in the high 

ΔTmax region, only sub-optimal solutions are obtained in the low ΔTmax region. 

The feasible searching area decreases at low ε because the ε-constraint tightens 

the boundary of the feasible searching area. In order to confirm the 

reproducibility of the GA-CFD results, Table 3-1 that shows multiple execution 

results of the optimization problem is included. Although a pseudo-random 
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initialization of the initial population is carried out, the best-found solutions are 

very close to different numbers of zones and ε constraints. Even though the 

reproducibility of the MINLP GA-CFD optimizer is appropriate to this 

optimization problem, it is true that the best-found solution cannot be 

guaranteed to be the optimal solution. Thus, 2nd stage NLP GA-CFD 

optimization is performed to increase the quality of the solution. 
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Figure 3-3. Pareto optimal curve between ΔTmax and 1/C5+ productivity of 

total search and GA-CFD optimizer through n=1, 2, and 3. 
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Table 3-1. Multiple execution results of the GA-CFD with various crossover fraction. 

 
2 zones 3 zones 4 zones 

Crossover 

fraction 

ΔTmax 

(oC) 

1/C5+ productivity 

(m2∙s∙mol-1) 

ΔTmax 

(oC) 

1/C5+ productivity 

(m2∙s∙mol-1) 

ΔTmax 

(oC) 

1/C5+ productivity 

(m2∙s∙mol-1) 

0.4 3.985 1.667 1.945 1.798 1.996 2.007 

0.6 3.818 1.633 1.928 1.812 1.966 1.919 

0.8 3.854 1.623 1.984 1.798 1.921 1.869 
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When the number of catalyst packing zones increases, the performance of 

the 1st stage GA-CFD optimizer decreases. Unlike 2 zone results, the 4 zone 1st 

stage GA-CFD optimizer gives high performance at low ΔTmax and low 

performance at high ΔTmax. To illustrate, 4 zone optimal points are better than 

2 or 3 zones at low ΔTmax although this is not the case at high ΔTmax. A higher 

number of catalyst packing zones can describe the optimal solution more 

sensitively than a lower number of catalyst packing zones because with the 

former the searching area can be expanded. However, the 1st stage GA-CFD 

optimizer has low performance due to the handling method of integer variables 

and constraints in the GA algorithm. It makes n*20 children in a population 

with a random combination of each li in its boundary condition without 

considering the summation constraint (11). For children whose li combination 

is infeasible, the optimizer gives a penalty value to the objective function and 

does not evaluate the CFD reactor model function. This algorithm helps the 

randomness of integer variable combinations but decreases the number of 

children in a population, and in some cases, it is too low to proceed with the 

optimization. At 4 zones and further, we observed that there are few feasible 

children in the population and the optimizer stops iterating at an early stage; the 

optimizer cannot find a good solution before stall generation. Simply changing 

the crossover fraction and stall generation were not enough to find a high-

quality solution; so a 2nd stage GA-CFD was executed. Figure 3-4 shows the 

absolute advantage, indicated by Pareto optimal curve, of a 4 zone 2nd stage 
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GA-CFD optimization compared to a 3 zone 1st stage GA-CFD optimization, 

which the 4 zone 1st stage GA-CFD optimization failed to achieve. The number 

of function evaluations was 1930, about a 90 % reduction from that of the 4 

zone grid search (17640). Information of the best found Pareto optimal curve 

calculated by the 4 zone 2nd stage GA-CFD optimization is given in Figure 3-5. 

Firstly, all temperature profiles through the position of the axial direction of the 

reactor are bounded under the temperature constraint successfully. Front 

sections of each zone show a sudden temperature rise because of the higher 

catalyst loading, and 4 discrete sections are shown. The reason why the 

temperature distribution at the high temperature constraint value is less uniform 

than the low temperature constraint value is that CO and H2 are already reacted 

at the front of the reactor, and it is not enough to increase the temperature at the 

rear section of the reactor. Thus, it does not imply that the optimal solution is 

not efficient. Although the CO conversion at higher ε value is higher than at 

lower ε value because of the possibility of high temperature which accelerates 

the reaction rate, CH4 selectivity is lower because methane selectivity increases 

when the reactor temperature is higher, decreasing the C5+ productivity. 

However, the operator does not need to consider this value because each point 

of the Pareto-optimal curve is maximized for C5+ productivity solution at that 

temperature constraint. 
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Figure 3-4. Comparing Pareto optimal curve with different n and between 1st 

stage and 2nd stages. 

 

 

 

 

 

 



 

 139 

 

Figure 3-5. Profile of ΔT, CO conversion, and CH4 selectivity of the best 

found Pareto optimal curve calculated by the 4 zone 2nd stage GA-CFD. 
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In order to clarify the effectiveness of the proposed GA-CFD method, the 

same objective functions were solved by other traditional non-convex 

constraint local optimization algorithms such as active-set, interior-point, and 

sequential quadratic programming (SQP). Integer variables were processed by 

the bound method. Each sub-optimal result with three different zones (2, 3, and 

4) and five different temperature constraints as ε-constraints (1, 1.5, 2, 3, 4) is 

given in Figure 3-6. The GA-CFD optimizer gives a better solution than a local 

optimization algorithm. Especially, the result of the 2nd stage GA-CFD 

optimizer with 4 zones is always better than any of the other methods. Active-

set, SQP, and SQP-legacy algorithms return sub-optimal solutions while the 

interior-point method cannot find optimal solutions in most trials. Although 

several local optimization solvers sometimes return a better solution than the 

1st stage GA-CFD optimizer at the point where the ε-constraint equals 1, we 

strongly believe that the GA-CFD optimizer locates on the dominant position 

because the convergence rate of the local solver is too low to use generally and 

the GA-CFD optimizer is developed for derivative-free MINLP, which is not 

supported in traditional non-convex constraint local optimization algorithms.
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Figure 3-6. Comparison diagram of different zones and temperature constraint optimized by traditional non-convex 

constraint algorithm and proposed algorithm (GA-CFD) form of a) Pareto curve and b) group data chart.
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The input parameters and the optimal solutions for several points are given 

in Table 3-2. The key factor in the decrease in computation cost of GA-CFD 

optimization is the decrease in the number of function evaluations of the CFD 

reactor sub-problem, as the CFD reactor sub-problem requires high 

computational time to solve. In the case of 1st stage GA-CFD optimization, the 

number of function evaluations in most cases was less than 1000 cycles. 

Although this value is larger than the 2 zone total grid search (405), it is much 

smaller than the 3 and 4 zone total grid searches (4320 and 17640, respectively).  
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Table 3-2. Result of several optimal points given by GA-CFD optimizer. 

  1 2 3 4 5 6 7 8 

Objective function  

 1/C5+ productivity (m2∙s∙mol-1) 1.62 1.62 1.60 2.11 1.89 1.80 1.87 1.73 
 dTmax (K) 5.35 3.85 3.59 1.93 1.99 1.95 1.92 1.97 

          

Variables  

 l1 10 1 1 10 4 6 2 2 

 l2  9 2  6 1 2 2 

 l3   7   3 3 3 

 l4       3 3 
 x1 0.000 0.366 0.723 0.600 0.595 0.604 0.724 0.674 

 x2  0.123 0.367  0.419 0.256 0.667 0.487 

 x3   0.103   0.052 0.48 0.364 

 x4       0.157 0.001 
          

ε  4 4  2 2 2 2 

n 1 2 3 1 2 3 4 4 

Crossover fraction  0.8 0.6  0.8 0.4 0.8 0.4 

CPU time (min)  905 570  246 81 78 1428 

Number of generation   50 50  24 16 19 30 

Function evaluation  1400 686  275 88 94 1930 

Stopping criterionα 0 2 2 0 1 1 1 2 

GA-CFD stage  1 1  1 1 1 2 
α Stopping criterion 0: grid search does not need stopping criterion, 1: maximum stall generation has been reached (5),  

2: maximum number generation has been reached (50) for point 1-7 and (30) for point 8 



 

 144 

Analyzing the points that are on the Pareto optimal curve, we realize that the 

difference in catalyst dilution ratio between the zones is not extreme. It means 

that a gradual change of dilution ratio is better than a sudden change because a 

sudden change cannot distribute the reaction rate effectively over the entire 

catalyst packed zones of the reactor. If the dilution ratios in the front zone are 

much lower than in the rear zones, most of the reaction occurs at the rear zones 

and the problem of hot spots appears again, this time at the rear zones. 

Furthermore, the method of dividing the catalyst packing zone has no advantage 

when ε is high because, at high ε, the decreasing effect for C5+ productivity is 

much larger than the decreasing effect for ΔTmax. Hence, this method is most 

appropriate when safety issues are critical or specific chemical components are 

highly sensitive to temperature change. 

To discuss the difference between pre- and post-optimization performance, 

a summarized bar graph is shown in Figure 3-7. ΔTmax of the best solutions from 

GA-CFD and the local solvers are lower than the base case (which does not 

apply the catalyst zone division method) with similar C5+ productivity. GA-

CFD can find a better solution than the local solver. Unlike ΔTmax, the best 

found 1/C5+ productivity with a similar ΔTmax from the local solver does not 

decrease. The interior-point method cannot find a feasible solution for that 

search region. However, GA-CFD can decrease the objective function, and we 

can conclude that GA-CFD had a high advantage over other optimizers. For 
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analyzing the detail of the reactor interior, two sets of optimal points are 

selected. In Table 3-2, the first case compares ΔTmax among points 1-3 and 8, 

where 1/C5+ productivity is similar (1.60-1.73 m2∙s∙mol-1) for different numbers 

of zones (1, 2, 3, and 4, respectively). The second case compares C5+ 

productivity among points 4-6 and 8, where ΔTmax is similar (1.93 – 1.99 °C) 

for different numbers of the zone (1, 2, 3, and 4, respectively). 
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Figure 3-7. Summarized result graph of ΔTmax and C5+ productivity through 

single zone packing, GA-CFD, and various local solver. 
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In Figure 3-8, polar contour graphs of the reactor’s ΔT profile are given for 

case 1 where the angle direction is the reactor length, and the radial direction is 

the reactor radius. Optimal catalyst packing of the 4 zone type reactor results in 

a 63.2% decrease in ΔTmax compared to the optimal catalyst packing of the 1 

zone type reactor, for similar 1/C5+ productivity (1.60-1.73 m2∙s∙mol-1). In the 

front zones, reaction rates are lowered and the remaining reactants, thus, 

manage to react at rear zones under a higher dilution ratio. It is obvious that the 

Pareto optimal solution calculated by the 2nd stage GA-CFD result has an 

advantage over the sub-optimal points calculated by other methods such as the 

local solver and even the 1st stage GA-CFD by Figure 3-6. Moreover, Figure 

3-8 visualizes a better temperature distribution of the Pareto optimal solution. 

Although the rear position temperature of the 2nd stage GA-CFD solution is 

higher than the other solutions, it reduces the front temperature from rising, 

which is the main problem of highly exothermic reactors such as the FT reactor. 

Since the heat of reaction and heat transfer to coolant channel together 

determine the reactor temperature, mere redistribution of the heat of reaction, 

using optimal catalyst packing, does not guarantee a good distribution of 

temperature. Thus, for the proposed GA-CFD optimizer which set the ε-

constraint as ΔTmax, no heat of reaction is proper to optimize the reactor 

efficiency and safety simultaneously. Finally, we can find points that have 

similar or even higher C5+ productivity than the points with high averaged 

catalyst dilution ratio. To illustrate, comparing the point 2 (n=2) in Table 3-2 
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which has the 0.147 averaged catalyst dilution ratio and 1.66 m2∙s∙mol-1 1/C5+ 

productivity with the point (n=1) which has the same dilution ratio, the 1/C5+ 

productivity of the 1 zone point is higher (1.66 m2∙s∙mol-1) than the 2 zones 

point. Therefore, it can be concluded that the temperature profile and 

component distribution affect the reaction kinetics simultaneously and not only 

the low dilution ratio, but the dilution zone combination together guarantee the 

efficiency of the reactor. 
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Figure 3-8. Polar contour graph of ΔT profile under similar C5+ productivity 

of a) single zone catalyst full packing, b) two zone GA-CFD result, c) three 

zone GA-CFD result, d) four zone 2nd stage GA-CFD result.  

*radial direction is reactor width and angle direction is reaction length. 
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In Figure 3-9, although ΔTmax is similar, it is possible to get more C5+ by 

high CO conversion and reaction control using catalyst packing zone division. 

The C5+ productivity of the optimal solution reactor with 4 zones is 22 % higher 

than that of the 1 zone reactor. A strategy that decreases the reaction rate in the 

front zones for controlling ΔTmax and increases in the middle and rear zones for 

producing the C5+ at the reactor exit is shown on the Pareto optimal curve. In 

the case of the 2nd stage GA-CFD 4 zone, although the dilution ratio of the front-

most zone is higher than the other cases, the dilution ratio of the middle and 

rear zones are lower for similar values of ΔTmax achieved. Finally, CO 

conversion of the 2nd stage GA-CFD 4 zone is 5.8 %, 17.1 %, and 40.7 % higher 

than the 3 zone, 2 zone, and 1 zone results, respectively for a similar ΔTmax.  
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Figure 3-9. a) CO conversion and CH4 selectivity and b) C5+ reaction (ID=6) rate under the similar ∆Tmax point of single 

zone catalyst packing, two zone GA-CFD result, three zone GA-CFD result, and four zone 2-stage GA-CFD result. 
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3.3. Process systems scale optimization 

3.3.1. A modified DIRECT algorithm for hidden 

constraints optimization problem 

3.3.1.1. Introduction 

The chemical process systems are troublesome problems to optimize them 

because of its essential attributes. They have a number of equality constraints 

such as mass balance and energy balance, and it makes hard to find a feasible 

solution. Not only the objective function but also the feasible region are 

generally non-linear, and numerous local optimums exist. To solve these 

problems, various kinds of optimization algorithms have been developed and 

applied to the industrial applications [78-85]. Derivative-free optimization, 

which can optimize the function for which derivative information is unavailable, 

unreliable, or impractical to obtain because of being expensive to calculate or 

noisy [86], is the key technique for this purpose. The reason why this kind of 

technique is important is that many analyzing methodologies used in 

engineering and science problems are black-box models for which a user cannot 

get the equations and other specific information being used from either the 

software or the analyzing machine. Especially, commercial software usually 

does not give exact equations and derivative information because of calculation 

methodology or their intellectual property rights. To solve this problem, many 

researchers have studied derivative-free optimization to optimize their specific 

engineering or science problems [87-91]. Derivative-free optimization 
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algorithms can be classified by two types of criteria, which are optimizing 

directly or indirectly and locally or globally. The direct search method uses the 

objective function directly for optimization whereas models based on an 

indirect search method regress the original function into an accurate surrogate 

model. Specifically, nature-inspired metaheuristic stochastic global search 

algorithms such as a genetic algorithm (GA), simulated annealing (SA), and 

particle swarm algorithms (PSO) are different from deterministic algorithm 

because they involve randomness which does not exist in the deterministic 

algorithm. Furthermore, algorithms are different depending on whether their 

target is local or global. A brief classification of derivative-free optimization 

algorithms originally provided from [86] are listed in Table 3-3 and see [86] for 

more details.  
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Table 3-3. Classification of derivative-free optimization. 

 
 Local Search Global Search 

Deterministic 

algorithm 

Direct search 

method 

Nelder-Mead simplex algorithm 

Generalized pattern search (GPS) 

Generating set search (GSS) 

Mesh adaptive direct search (MADS) 

Pattern search methods using 

simplex gradient 

Lipschitzian-based partitioning techniques  
- DIvide a hyper-RECTangle(DIRECT) 

- Branch-and-Bound(BB] search 

Multilevel coordinate search (MCS) 

Model-based 

search 

method 

Trust-region methods 

Implicit filtering 

Response surface methods (RSMs) 
- Kriging 

- Analysis of computer experiments (DACE) 

stochastic model 

- Efficient global optimization (EGO) 

- Radial basis functions 

- Sequential design for optimization (SDO) 
Surrogate management framework (SMF) 

Optimization by branch-and-fit 

Stochastic 

algorithm 
  

Hit-and-run algorithms 

Simulated annealing (SA) 

Genetic algorithms (GA) 

Particle swarm algorithms (PSO) 
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In the case of the chemical engineering industry, commercial process 

simulators for designing process systems such as Aspen Plus, Aspen HYSYS, 

and SimSci PRO/II can be classified as black-box models in general. Since they 

are sequential modular-based simulators, it is hard to get derivative information 

of the target variables. Furthermore, an optimization tool given by a program 

usually shows low performance. Hence, for optimizing the process simulator 

function, an appropriate derivative-free optimization algorithm is necessary. 

For this reason, much research has been conducted for designing optimal 

process models with high-performance, derivative-free optimization algorithms 

by integrating commercial simulators and optimization algorithms. Lee et al. 

[92] integrated Aspen Plus and a gradient-based optimization method with 

MATLAB code for maximizing the exergy efficiency of the multi-component 

organic Rankine cycle (ORC) by changing component composition. Also, Lee 

et al. [77, 93] used GA for decomposing the MINLP problem to optimize a 

superstructure of a rigorous rate-based reactive distillation model and green-

field post-combustion CO2 capture process. For optimizing a rigorous tray-by-

tray distillation column model, Javaloyes-Antón et al. [94] implanted a particle 

swarm algorithm into a process model simulated by Aspen HYSYS. Cozad et 

al. [95] developed the automated learning of algebraic models for optimization 

(ALAMO) to make a surrogate model of the given derivative-free function, and 

it can be used for a simulation of model-based derivative-free optimization [96]. 

Shi and You [97] proposed a novel adaptive surrogate modeling-based 
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algorithm to solve the integrated scheduling and dynamic optimization problem 

for sequential batch processes. Quirante et al. [98] used kriging interpolation, 

one of the response surface methods (RSMs), for rigorous designing of 

distillation columns where original model is formulated by Aspen HYSYS. Not 

only that, but also various researchers have tried to optimize the process 

systems using commercial simulator with external optimization algorithms [99-

105]. 

Especially, liquefied natural gas (LNG), which is a widely used energy 

source for the remote transportation due to its environmental friendly attributes 

[106, 107], is the key area for this type of optimization. The liquefaction process 

for natural gas (NG) is an energy intensive process and therefore many 

researchers have widely studied about the process design and optimization of a 

liquefaction process [108-110]. Among the liquefaction technologies, single 

mixed refrigerant (SMR) liquefaction process is a traditional but still effective 

process for many projects with small-scale LNG production capacity [111-113]. 

It uses only single cycle of mixed refrigerant (MR) and therefore its efficiency 

is limited compared to the advanced processes such as the propane precooled 

mixed refrigerant (C3MR) or dual mixed refrigerant liquefaction process. 

However, it has the advantage of simple configuration, which makes the 

process easy to operate it with lower capital investment. Also, the efficiency of 

SMR can be improved with proper modification and optimization, and 

therefore many researchers have studied the SMR process optimization 
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problems. Shirazi and Mowla modeled optimized the PRICO SMR process by 

using GA [114]. Xu et al. modeled and optimized the PRICO SMR with Aspen 

Plus and GA [115]. Khan et al. modeled an SMR liquefaction process with a 

commercial simulator Honeywell UniSim Design and optimized it with the 

nonlinear programming [116], particle swarm paradigm [117] and sequential 

coordinate random search (modeled by Aspen HYSYS) [118]. Moein et al. 

modeled the APCI SMR process with Aspen HYSYS and optimized it with GA 

when the ambient temperature is changed [119]. Morosuk et al. modeled 

PRICO SMR with Aspen Plus and discussed about the evaluation and 

optimization for improvement [120]. Mehrpooya and Ansarinasab modeled and 

compared Linde and APCI liquefaction process based on exergy and cost 

analysis with Aspen HYSYS [121]. Park et al. modeled and optimized SMR 

using Aspen HYSYS and particle swarm algorithm with varying ambient 

temperature [122]. 

Previous optimization methods for a process simulator usually used a 

stochastic solver and surrogate model-based optimization because their 

implementation is simple compared to deterministic algorithms. Especially, 

nature-inspired metaheuristic algorithms were applied to the general purpose of 

a significant number of process systems studies, and they gave fine best-found 

solution in general [93, 115, 123-130]. However, when optimizing a process 

with a methodology that has been traditionally used, the following problems 

may arise. In the case of stochastic solvers, the algorithms highly depend on 
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tuning parameters, and the convergence rate of the objective function is slower 

with improper parameters. In addition, because these parameters are so 

numerous, finding an appropriate parameter set can be another problem. If the 

objective function has a high computation cost, it can be very inefficient 

because additional evaluation must be applied. Moreover, because of the 

features of the stochastic solver, randomness, even if the same initial conditions 

such as population for GA and swarm for PSO are set the same, it can be 

optimized along with other trajectories, thus causing reproducibility problems. 

There is also a problem because the initial population itself can have a large 

impact on optimization and does not guarantee that solvers converge into a 

global optimal solution. Moreover, although model-based search methods have 

been developed by machine learning technology, it is difficult to consider 

hidden constraints, especially complicated shape constraints that should be 

calculated in a process simulator. In fact, in order to solve these problems, stable 

noisy optimization by branch-and-fit (SNOBFIT) which can solve the hidden 

constraints in a robust way have been developed [131]. It is necessary to 

develop a handling method because it is hard to consider the possibility of 

hidden constraint when forming surrogate with a conventional regression 

model. Although several studies were performed with systematic optimization 

using the explicit function of liquefaction process [132-135], explicit process 

modeling makes lots of works, and complicated mathematical expression such 

as differential algebraic equation for kinetics can decrease the convergence rate. 
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Conclusively, most compatible optimization algorithms for process 

modeling should need a global search algorithm, hidden constraints handling, 

robustness, and a consistent result. As can be seen in Table 3-3, typical 

algorithms that satisfy these properties are Lipschitzian-based partitioning 

techniques. Among these, DIRECT-type algorithm is an appropriate algorithm 

for solving general engineering problems [136-143]. It is proved by Jones and 

Finkel and Kelley [144, 145] that if objective function is a deterministic and 

Lipschitzian continuous, then convergence to the global optimum is guaranteed. 

Since DIRECT does not require a Lipschitzian constant, there is no need to 

predict or compute it, so the parameter is actually only a Jones factor, and even 

this value has found an appropriate value [144]. Thus, deterministic and robust 

optimization can be performed. However, several improvements should be 

performed to apply the DIRECT algorithm to the process optimization. The 

DIRECT algorithm does not have a specific interpretation for handling hidden 

constraints [146]. Thus, if we want to integrate a derivative-free optimization 

scheme effectively with an unknown infeasible region with hidden constraints 

of the process simulator function, then we should develop an effective hidden 

constraint-handling algorithm. Therefore, in this study, we developed a sub-

dividing step as a hidden constraint handling method to apply the DIRECT 

algorithm to process systems optimization. By applying this method to the SMR 

liquefaction process modeled by Aspen HYSYS, the performance of the 

algorithm was validated.  
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The paper is organized as follows. A brief introduction to the original 

DIRECT method is described. The proposed modified DIRECT algorithm that 

has a sub-dividing step to handle hidden constraints is explained and compared 

with the previous methods of the barrier approach and neighborhood 

assignment strategy (NAS) [138]. To test the performance of the modified 

DIRECT algorithm with a sub-dividing step, a simple single mixed refrigerant 

(SMR) process for natural gas liquefaction with 3 hidden constraints modeled 

by Aspen HYSYS V8.8 is utilized. Finally, the optimized process is compared 

with the conventional DIRECT algorithms (barrier approach, neighborhood 

assignment strategy), the stochastic global search algorithms (GA, PSO, SA), 

the model based global search algorithm (SNOBFIT), and the several local 

search methods (GPS, GSS, MADS, SQP, active-set, interior-point) 
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3.3.1.2. DIRECT Algorithm with Hidden Constraints 

The DIRECT algorithm is based on Lipschitzian-based partitioning 

techniques, and it can handle non-linear and non-convex functions globally [86]. 

Since many functions of process systems engineering in chemical engineering 

are calculated by commercial software assumed to be black-box models for 

users, and as the equations are highly non-linear and non-convex, a 

deterministic derivative-free global optimization algorithm is appropriate. 

Moreover, after they evaluate the simulation, commercial process simulators 

give error messages because of convergence errors or a physically infeasible 

region. Thus, we should consider hidden constraints that do not give 

information of infeasibility before evaluating a function. In this research, we 

suggest a modified DIRECT algorithm to handle hidden constraints by using a 

sub-dividing step based on the original DIRECT algorithm. 
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3.3.1.3. Basic Ideas of the Original DIRECT algorithm 

The mathematical description of the original DIRECT algorithm was 

developed by Jones et al. [144]. Two critical ideas were implemented in 

Shubert’s algorithm for applying it to derivative-free optimization problems 

without the Lipschitz constant. First, hyper-rectangular partitions based on N-

dimensional trisection are suggested. This can decrease the computational cost 

by evaluating the function at the center of the hyper-rectangle and not at all 

extreme points. Since the center point solution of the hyper-rectangle is 

conserved, unnecessary overlapped function calculations are not performed 

after partitioning. Second, the decision criteria regarding which hyper-

rectangles should be divided are decided based on the concept of potentially 

optimal hyper-rectangles. At the iteration step, all hyper-rectangles are 

identified that are potentially optimal and only potentially optimal hyper-

rectangles will be divided before passing to the next iteration. The brief 

description of the potentially optimal condition based on [144] is given in 

Definition 1. 

 

Definition 1 Let i and j be the index of the hyper-rectangle and ci and cj be 

the center of hyper-rectangles i and j, respectively. dj is a measure for this hyper-

rectangle such as the distance from the center of hyper-rectangle i to its vertices. 

Let ε called Jones factor be a positive constant and let fmin be the minimum 
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function value so far iteration. A hyper-rectangle j is called potentially optimal 

if positive 𝐾̃ exists such that 

f(cj) − K̃dj  ≤   f(ci) − K̃di    for  ∀I  [3-9] 

f(cj) − K̃dj  ≤   fmin − ε|fmin|      [3-10] 

The step of identifying hyper-rectangles is performed at every iteration 

repeatedly. Thus, resolution of the searching area near the locally or globally 

optimal solution increases sequentially. A brief description of the DIRECT 

algorithm is shown in Algorithm 1. 
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Algorithm 1 DIRECT(upper and lower bound of variables, f, 𝜀, 
termination criteria) 

Normalize the searching space to be the unit hyper-rectangle. 

Evaluate the function at the center of hyper-rectangle (c1) and fmin=f(c1). 

while termination conditions such as reaching the number of max 

iteration and function evaluation are activated 

      Identify which hyper-rectangles are the potentially optimal hyper-

rectangles. 

      Divide all potentially optimal hyper-rectangles. 

      Evaluate the function value at the center of new hyper-rectangles. 

      Update fmin. 

end while 
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3.3.1.4. Modified DIRECT Algorithm for Hidden 

Constraints 

The DIRECT algorithm does not have a constraint-handling mechanism, 

and its searching area consists of the upper and the lower bound of each variable. 

However, a constraint-handling mechanism should be needed to solve 

engineering application problems. Three constraint- handling methods were 

proposed which are the barrier approach, L1 penalty function [147], and the 

neighborhood assignment strategy (NAS) [138]. However, the L1 penalty 

function approach is not appropriate for hidden constraints because it requires 

a predefined explicit constraint. If a commercial process simulator diverges at 

an infeasible point, then it is impossible to use the L1 penalty function because 

it has no function value. Furthermore, although the barrier approach can handle 

the hidden constraint, it was not an appropriate method with DIRECT with 

hyper-rectangles with a large feasible area, but an infeasible center [148]. Thus, 

the function should be evaluated by checking whether the point is either in the 

hidden constraint or not and whether it can be effectively handled by NAS. 

NAS sets the enlarged rectangle whose center is an infeasible point and 

determines the surrogate value from the already evaluated feasible points. Thus, 

it does not need a penalty parameter or constraint function value. However, 

because NAS does not use information of constraints such as the shape of the 

constraint or constraint violations, its performance can decrease greatly when 

the shape of the constraints is highly non-convex [149]. 
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To solve this problem, we suggest a sub-dividing step for infeasible hyper-

rectangles that do not satisfy the hidden constraints. If the points are identified 

as infeasible points, then the function assigns a penalty value like the barrier 

approach. In the sub-dividing step, all infeasible hyper-rectangles are divided 

after dividing potentially optimal hyper-rectangles, and the center values of the 

new hyper-rectangles generated by the sub-dividing step are calculated. After 

the sub-dividing step, the new minimum function value is updated and goes 

back to the next iteration. A brief introduction of this algorithm is shown in 

Algorithm 2. 
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Algorithm 2 modified-DIRECT(upper and lower bound of variables, f, 

𝜀, termination criteria) 

Normalize the searching space to be the unit hyper-rectangle. 

Evaluate the function at the center of the hyper-rectangle (c1). 

if f(c1) is feasible  

      fmin=f(c1). 

else 
      Divide the first hyper-rectangle. 

end if 
while termination conditions such as reaching the number of max 

iterations and function evaluations are activated 

      Identify which hyper-rectangles are the potentially optimal hyper-

rectangles. 

      if the sub-dividing step is activated 

         Identify which hyper-rectangles have an infeasible function 

value 

      end if 

Divide all potentially optimal hyper-rectangles 

      Evaluate the function value at the center of the new hyper-

rectangles. 

      if the sub-dividing step is activated 

   Divide all infeasible hyper-rectangles 

         Evaluate the function value at the center of the new hyper-

rectangles. 

      end if 

      Update fmin 

end while 
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To illustrate the sub-dividing algorithm, Figure 3-10 shows a geometric 

graph of the DIRECT algorithm with a sub-dividing step at the third main 

iteration. Unlike the barrier approach, the sub-dividing step can decompose the 

edge of the hidden constraints and expand the feasible searching area. Thus, it 

is possible to consider complicated shape constraints with high skewness such 

as a non-convex shape. Although the calculation cost is higher than the original 

DIRECT algorithm because of the sub-dividing step, if sub-dividing steps are 

performed at the proper iteration, then performance can be increased effectively 

within computational limitations. For validating the performance of a simple 

problem with a hidden constraint, the Goldstein-Price test function, which is 

given by the Equation [3-11], is used [150]. 

f(x1, 𝑥2) = [1 + (x1 + x2 + 1)
2(19 − 14x1 + 3x1

2 − 14x2 +

6x1x2 + 3x2
2)][30 + (2x1 − 3x2)

2(18 − 32x1 + 12x1
2 +

48x2 − 36x1x2 + 27x2
2)], {x1, 𝑥2} ⊂ 𝐷 ∩ 𝐷ℎ𝑖𝑑𝑑𝑒𝑛   

[3-11] 

where the pre-defined feasible region D and hidden constraint Dhidden are 

defined as Equation [3-12] and [3-13]. 

D = {(x1, x2) | (−2,−2) ≤ (x1, x2) ≤ (2,2)} [3-12] 

Dhidden = {(x1, x2) | [(x1 + 1)
2 + (𝑥2 + 1)

2 ≥ 1.1] ∩

[(x1 − 1)
2 + (𝑥2 − 1)

2 ≥ 0.9]}  

[3-13] 

We assume that we do not know the value of Dhidden, thus only the function 

can determine that the point is feasible or in[feasible and the optimization 
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problem is min
𝑥1,𝑥2⊂𝐷∩𝐷ℎ𝑖𝑑𝑑𝑒𝑛

𝑓(𝑥1, 𝑥2) . The sub-dividing step is activated at 

iterations 5 and 15. The barrier approach and NAS are also evaluated with a 

limited function evaluation number set to 2000 for comparing the algorithm 

performance in the same manner. 
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Figure 3-10. Geometric interpretation of potentially optimal point and 

infeasible point using DIRECT with sub-dividing step algorithm on two 

dimension hidden constraints problem at a) the first iteration, b) the second 

iteration, c) the third iteration with the first sub-dividing step, d) the fourth 

iteration. 
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The objective function values versus function evaluation are illustrated in 

Figure 3-11. Convergence speed of the barrier approach, NAS, and the sub-

dividing step are similar at the early stage, but the optimal values are different. 

The final optimal values are 14.4, 4.3, and 3.5, respectively. Moreover, NAS 

shows a second decreasing phase at about the 1700 function evaluation number 

point. It seems that NAS finds the feasible points in the enlarged rectangle with 

a surrogate model at that stage. In Figure 3-12, the barrier approach and NAS 

show convergence values of feasible points at (0.22, -0.87) which is far from 

the infeasible circle hidden constraints while the sub-dividing step has 

convergent points at (0.049, -0.99) which is almost at the edge of the hidden 

constraints. Although NAS has a second set of convergent points at (0.074, -

0.97), it is also farther from the hidden constraints than the sub-dividing step. 

The reason for the inefficiency of the barrier approach is that the barrier 

approach deactivates the infeasible hyper-rectangle and that rectangle cannot 

be divided until optimization is over. Thus, the resolution of feasible rectangles 

near the hidden constraint is very low, and we can see a rectangle barrier in 

Figure 3-12. There is a possibility that NAS gives a low performance when 

NAS fails to consider the shape of the hidden constraint and estimates the 

function value of an infeasible point from the surrogate model. 
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Figure 3-11. DIRECT with barrier, NAS, and sub-dividing step iteration for 

Goldstein-Price test function. 
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Figure 3-12. The points where Goldstein-Price test function is evaluated with 

barrier, NAS, and sub-dividing step at 2000 function evaluation. 
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3.3.1.5. SMR Liquefaction Process for Natural Gas 

The single mixed refrigerant (SMR) liquefaction process is one of the 

famous cryogenic mixed refrigerant processes because of its simplicity. The 

basic structure of the SMR process consists of a single stage cold box, a Joule-

Thomson valve, and 4 series compressors with after-cooling. Although SMR 

processes are theoretically inefficient in exergy compared to advanced 

liquefaction processes, such as the dual mixed refrigerant (DMR) cycle and the 

propane pre-cooled mixed refrigerant (C3MR) cycle [133], they have been used 

because of their simple structure and network connections, which guarantee 

easy control, operation, and low capital cost. In this study, the base case of the 

SMR process was selected from [151] which consists of two multi-stream heat 

exchangers, a phase separator, three compressors, and after-cooling heat 

exchangers. 
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3.3.1.6. Process Model and Design Variables 

The process is modeled by Aspen HYSYS V8.8, which is a qualified 

commercial process simulator in the LNG industry. The process flow diagram 

and the name of each unit and stream are given in Figure 3-13. Table 3-4 lists 

the simulation basis and feed conditions in the SMR process. The base 

operating condition and assumptions are provided from the literature, and the 

readers should refer to [34]. The mixed refrigerant consists of nitrogen, methane, 

ethane, propane, and n-butane, and the composition of NG is nitrogen, methane, 

ethane, propane, i-butane, n-butane, and i-pentane. Peng-Robinson EOS is used 

for calculating thermodynamic properties. The production rate of NG and the 

minimum temperature approach (MTA) were fixed as 26.38 kg/h and 3±0.15K, 

respectively. In fact, liquefaction process performance should be evaluated by 

not only exergy and compressor shaft work but also by capital cost. However, 

it is difficult to scalarize the operating cost and the capital cost in the same 

dimension such as cost. Thus, we bound MTA as ±5% of 3K for keeping off 

the catastrophe, infinite area of the heat exchanger and set the minimum MTA 

of LNG-100 and LNG-101 of the base case as 2.85 K for comparison purposes. 

Centrifugal compression energy is calculated by the Schultz polytrophic 

method with 80% adiabatic efficiency. The pressure drop across the heat 

exchanger, flash drum, and mixer is ignored. Table 3-5 lists the 9 design 

variables, which are 4 types of pressure variables and 5 types of refrigerant 
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composition, and their bounds. LP, MP1, MP2, and HP are the pressure of 

stream 1-start, 2a, 2c, and 2, respectively, which are connected to the 

compressors. Especially, LP is connected to the after stream of the Joule-

Thomson valve, VLV-101, which directly affects exergy efficiency and the 

MTA of the cold box. Although LP can be changed to the temperature of stream 

7 as in previous research [117], we selected this pressure variable for preserving 

the consistency of variable type. Although the mixed refrigerant is mixed with 

5 pure chemical compounds, compositions of 4 of the compounds are enough 

to set the optimization problem because of the composition constraint, which 

limits the sum of composition equal to 100%. Previous researches [117, 118] 

usually selected the bounds based on the preceding process knowledge, process 

designer experience, and sensitivity analysis of variables. However, that 

method is not efficient for the general purpose of optimization for various 

processes. Because the proposed optimization method can handle predefined 

constraints and hidden constraints simultaneously, the user does not need to find 

the nice bounds. In this research paper, the upper and lower bound of each 

variable is set to ±90% of the base set of the design variables. 

  



 

 177 

Table 3-4. Base operating condition of SMR process and NG feed 

composition. 

Property State 

NG feed  

Temperature (K)  300 

Operating pressure (bar) 65 

Flow rate (kg/h) 26.38 

 

Composition 

(mol%) 

Nitrogen 4.0 

Methane 87.5 

Ethane 5.5 

Propane 2.1 

i-Butane 0.3 

n-Butane 0.5 

i-Pentane 0.1 

Minimum temperature approach at LNG-

100 and LNG-101 (K) 
2.85 

Intercooler outlet temperature (K) 305 

Compressor adiabatic efficiency (%) 80 

 

 

 

 

  



 

 178 

Table 3-5. The lower and upper bounds of design variables. 

Property Lower bounds Upper bounds 

Pressure variables (bar)   

LP 0.300 5.700 

MP1 0.750 14.250 

MP2 1.875 35.625 

HP 4.675 88.825 

Composition variables (%)   

Nitrogen 0.859 16.321 

Methane 2.597 49.343 

Ethane 2.541 48.279 

Propane 3.911 74.309 

n-Butane dependent 
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Figure 3-13. Process flow diagram of single mixed refrigerant (SMR) natural 

gas liquefaction process. 
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Table 3-6. Base operating condition of SMR process and NG feed 

composition. 

Property State 

NG feed  

Temperature (K)  300 

Operating pressure (bar) 65 

Flow rate (kg/h) 26.38 

 

Composition 

(mol%) 

Nitrogen 4.0 

Methane 87.5 

Ethane 5.5 

Propane 2.1 

i-Butane 0.3 

n-Butane 0.5 

i-Pentane 0.1 

Minimum temperature approach at LNG-100 and 

LNG-101 (K) 
2.85 

Intercooler outlet temperature (K) 305 

Compressor adiabatic efficiency (%) 80 
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For automating the connection between Aspen HYSYS V8.8 and the 

MATLAB optimization algorithm, the Aspen HYSYS SMR process case is set 

by objective function and ActiveX server communication technology is used 

and block diagram of combined algorithm and process simulation function is 

shown in Figure 3-14. Therefore, we can manage the process simulation as the 

function of MATLAB. Overall optimization algorithm is coded in the 

MATLAB and hidden constraints feasibility is also checked by external in-

house code. Because of technical problems with the software, composition is 

changed by controlling the molar flow rate of pure component streams and the 

molar flow rate is determined by matching the temperature of 1-start and 1-end 

using the adjustment unit ADJ-1 with the secant method. Aspen HYSYS SMR 

process model, MATLAB-Aspen HYSYS ActiveX server interaction structure, 

and in-house objective function are provided at supplementary. 
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Figure 3-14. Block flow diagram of optimization platform for DIRECT 

algorithm with sub-dividing step method for hidden constraint handling method 

and interconnection between optimization algorithm and Aspen HYSYS SMR 

process model. 
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3.3.1.7. Optimization Formulation 

There are three types of constraints for process systems equations which are 

defined by the process simulator (hp(x)), predefined constraints (gi(x), hj(x)) 

and hidden constraints (sk(x)). We should distinguish those constraints for 

different considerations. Brief optimization problem is given in Equation [3-14]. 

min
𝑥∈ℝ1×𝑛

𝑓(𝑥) + 𝛾𝑝(𝑥)      

subject to  

gi(𝑥) ≤ 0     i = 1,2,3  

hj(𝑥) = 0     j = 1  

hp(𝑥) = 0    p = 1,2,3,… ,m  

p(x)

= {
0  𝑖𝑓 𝑠𝑘(𝑥) = 0 𝑎𝑛𝑑 𝑔𝑖(𝑥) ≤ 0 𝑎𝑛𝑑 ℎ𝑗(𝑥) = 0𝑘 = 1,2,3

1  𝑖𝑓 𝑠𝑘(𝑥) ≠ 0 𝑜𝑟  𝑔𝑖(𝑥) > 0 𝑜𝑟  ℎ𝑗(𝑥) ≠ 0 𝑘 = 1,2,3
 

LB ≤ x ≤ UB  
 

[3-14] 

First, hp(x) such as the mass and heat balance equation, several 

thermodynamics equations, and other numerical equation systems are already 

defined by the process simulator. Thus, at the optimization platform, users do 

not need to consider those type equations precisely. Since the second type of 

constraints is predefined, it is possible to do not evaluate the function at out of 

constraints. Thus, if the variables set do not fit gi(x) and hj(x) which are linear 

constraints, a penalty function (p(x)) will be activated in the objective function 

and penalty parameter (γ) which is usually large value as barrier increases 

objective function. Thus, the process simulation function does not need to be 

evaluated. Predefined inequality constraints, gi(x), mean that the series 

connection of compressors should increase the pressure of each of the streams 
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which is given in Equation [3-15]. Predefined equality constraint, hj(x) means 

that the mole fraction (mk) summation of overall chemical components mole 

fraction should be equal to 100% because of its definition Equation [3-16] 

PLP ≤ PMP1 ≤ PMP2 ≤ PHP  [3-15] 

∑𝑚𝑘  = 100%,      k ∈ all chemicals in SMR  [3-16] 

In this SMR process, there are three types of physically infeasible regions, 

which are 1) a case with no solution (divergent system), 2) a case with a 

temperature crossing point at LNG-100 and LNG-101, or MTA is not in 

3±0.15oC, and 3) a case that the liquid stream enters the compressors. However, 

it is impossible to know which design variable sets are in the infeasible regions 

before running the process simulator, which are also called hidden constraints. 

Thus, we judge this region as an infeasible hyper-rectangle for evaluating the 

process simulator function. With these three types of constraints, we integrated 

the process simulator with the modified DIRECT algorithm and the sub-

dividing step using Aspen HYSYS and MATLAB. If the variable sets do not 

satisfy the pre-defined constraints and the hidden constraints, those points will 

be divided at the sub-dividing step. As in gi(x) and hj(x), p(x) is activated, and 

the penalty parameter is added to the objective function value. The objective 

function, f(x) is the specific power required for NG liquefaction (kJ/kg-LNG) 

which is the total energy consumption of the compressor over the LNG product 

mass flow rate in stream 17. Since LNG should not be obtained as a multiphase 
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form and vapor fraction of LNG must equal to 0, stream 17 after V-100 to 

measure the mass flow for liquid phase through flash calculation is selected 

For validating the performance of the proposed algorithm, the algorithms 

given in Table 3-7 are tested. There are three types of the stochastic global 

search algorithm, GA, PSO, and SA, which are the most famous nature-inspired 

metaheuristic algorithm. For a fair comparison, population size for GA, swarm 

size for PSO, and reanneal interval for SA are set to 40. SNOBFIT is 

deterministic but model-based search method, and it has been known as robust 

and flexible for hidden constraints. GPS, GSS, and MADS are deterministic 

and direct search method but local search method based on pattern search. 

Finally, conventional constrained non-convex local optimization solver, active-

set, interior-point, and SQP are tested with default option in MATLAB. In order 

to compare with the DIRECT algorithm under the same conditions, we tried to 

compare the values at the same computation cost based on the function 

evaluation. However, in the case of the local solver, the operation is stopped 

with the terminal criterion when the local optimum is lost and the operation is 

no longer meaningful. In the case of the DIRECT algorithm, barrier approach 

and the NAS for hidden constraint handling method are also calculated to 

compare the performance of the proposed method, the sub-dividing step. In 

order to compare the experiments under the same conditions, we try to compare 

the values at the same computation cost based on the function evaluation. 

However, in the case of the local solver, the operation is stopped with the 
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terminal criterion when solver fall into the local optimum, and the operation is 

no longer meaningful. 
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Table 3-7. List of Algorithms for comparing the performance. 

Solver Global/Local Deterministic / Stochastic Constraints Options 

GA Global Stochastic Yes 

'PopulationSize'={40} 

'CrossoverFraction'={0.5} 

'EliteCount'={2} 

PSO Global Stochastic Yes 'SwarmSize'={40} 

SA Global Stochastic No 

'AcceptanceFcn'=@modified_BoltzmannPr

obabilityDensity 

'ReannealInterval'={40} 

SNOBFIT Global Deterministic Yes Default 

GPS Local Deterministic Yes 
'PollMethod'='GPSPositiveBasisNp1' 

'SearchMethod'=@GPSPositiveBasisNp1 

GSS Local Deterministic Yes 
'PollMethod'='MADSPositiveBasisNp1' 

'SearchMethod'=@GSSPositiveBasisNp1 

MADS Local Deterministic Yes 

'PollMethod'='MADSPositiveBasisNp1' 

'SearchMethod'=@ 

MADSPositiveBasisNp1 

Active-set Local Deterministic Yes 

Default (fmincon option) 
Interior-

point 
Local Deterministic Yes 

SQP Local Deterministic Yes 
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3.3.1.8.  Optimization Result and Discussion 

The optimization results of the SMR process are listed in Table 3-8. Since 

the objective function we have taken is the specific power required for NG 

liquefaction, results can be compared based on this value, and see how close 

the objective value approaches the constraint by looking at the MTA values of 

LNG-100 and LNG-101. For comparing each algorithm fairly, in the case of 

global search algorithm, the maximum number of iterations of the process 

simulator function is limited to 20,000 times. Meanwhile, the maximum 

number of iterations for local search algorithm is also limited to 20,000 times, 

but all of them stop before it because of falling into the local optima. From the 

conclusion, the DIRECT algorithm with sub-dividing step successes in 

obtaining the most optimal value in the determined computation cost. This 

value is an energy saving effect of 18.9% for the base case, and 13% on average 

in comparison with other algorithms. Objective function value versus function 

evaluation of each algorithm is given in Figure 3-15.
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Table 3-8. Optimization result of SMR process.  

Property 
Base 

case 

DIRECT 

sub-dividing step 

DIRECT 

barrier 

DIRECT 

NAS 
GA PSO SA SNOBFIT GPS GSS MADS 

Active

-set 

Interior

-point 
SQP 

Total compression power (kW) 8.27 6.71 6.82 7.39 8.03 7.67 7.41 6.77 8.25 7.91 7.97 8.27 8.27 8.27 

Specific power required for NG 

liquefaction (kJ/kg-LNG) 
1170 949 965 1045 1136 1085 1048 958 1167 1118 1128 1170 1170 1170 

Minimum temperature approach at 

LNG-100 (K) 
3.01 3.00 3.02 3.00 3.05 3.00 2.99 3.00 3.01 3.00 3.00 3.01 3.01 3.01 

Minimum temperature approach at 

LNG-101 (K) 
2.85 2.85 2.96 3.27 2.87 2.93 3.53 2.88 2.85 2.88 2.85 2.85 2.85 2.85 

Design variables  

Pressure (bar) 

LP 3.12 3.87 3.07 3.00 3.58 2.87 4.39 5.70 3.12 3.44 3.41 3.12 3.12 3.12 

MP1 7.50 7.27 6.50 4.50 11.22 8.56 10.22 9.40 8.88 9.87 8.41 7.50 7.50 7.50 

MP2 18.75 13.10 9.17 7.50 24.35 19.82 17.08 16.07 22.75 23.26 17.88 18.75 18.75 18.75 

HP 46.75 28.05 24.93 18.70 47.15 37.99 39.85 38.32 46.75 47.10 47.32 46.75 46.75 46.75 

Composition (mol%) 

Nitrogen 8.59 8.58 7.83 8.59 8.91 6.93 11.25 11.93 8.59 8.68 8.63 8.59 8.59 8.59 

Methane 25.97 25.78 24.24 25.97 26.62 25.66 25.03 25.91 25.97 26.42 26.35 25.97 25.97 25.97 

Ethane 25.41 30.68 30.49 25.41 27.12 26.29 32.21 35.09 25.41 29.46 29.57 25.41 25.41 25.41 

Propane 39.11 15.64 15.64 15.64 34.21 34.40 19.03 10.47 39.11 29.86 30.11 39.11 39.11 39.11 

n-Butane 0.92 19.32 21.80 24.39 3.13 6.72 12.49 16.60 0.92 5.58 5.34 0.92 0.92 0.92 

Computation cost 

(the number of process simulator 

function evaluation) 

- 20000 336 811 438 51 47 103 
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Figure 3-15. Objective function value versus function evaluation of GA, 

DIRECT algorithm with barrier approach, NAS, and sub-dividing step. 
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First of all, in case of DIRECT type solver, the specific power required for 

NG liquefaction from the sub-dividing step optimal solution is 1.7% and 9.2% 

lower DIRECT with the barrier approach, and NAS, respectively. Surprisingly, 

the result of the barrier approach is better than NAS. In Figure 3-15, a graph of 

the barrier approach and NAS shows similar movement at the early stage; NAS 

cannot find a much better solution within the limited function evaluation 

whereas the barrier approach finds a better solution. It seems that the hidden 

constraint handling method of NAS is not appropriate for highly non-convex 

constraints or functions because its surrogate model assumes the neighborhood 

function value linearly, such as F+δ|F|, where F is the low function value in the 

neighborhood around the infeasible center c. Since a physically feasible process, 

condition is very sensitive to design variables with non-convex hidden 

constraints, many populations and many iterations are needed to achieve a 

better solution. However, the solution fails when limited by the computational 

cost. Thus, the performance of NAS for an SMR process function is low and 

rather the barrier approach and DIRECT with the sub-dividing step is better. 

Obviously, the sub-dividing step shows better performance than the barrier 

approach because sub-dividing step divide the edge of the hidden constraints 

and solution can approach closer to the edge. 

In case of stochastic solver, GA, PSO, and SA, best-found solutions are 

16.4%, 12.5%, 9.4% higher than DIRECT with sub dividing step respectively. 

First, GA does not produce better results than expected. This seems to be due 
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to the fact that the initial population selection has a great influence in the 

process of finding solutions. In the SMR process, the range of hidden 

constraints is quite wide, so if there is no initial procedure such as enumeration 

and the initial population is given randomly, there is a case where there is no 

feasible solution in the generation. This confirms the problem that most of 

calculations occur within an infeasible region even after significant generation. 

A total of 20,000 operations are performed five times and two initial population 

failure are detected. Among the others, the best performance trial is shown in 

Figure 3-15. Although improved optimal solution can be found by changing 

various GA parameters such as crossover fraction, It is a disadvantage to do 

such additional operations. Similarly, in case of PSO, if all the swarms of the 

initial particles exist only in the infeasible region, the problem seems to occur 

because the direction or velocity of the particles cannot be calculated properly. 

However, unlike GA, 2 times are infeasible during 4 times, but 2 are better than 

GA. In case of giving several points which converged in DIRECT with initial 

swarm, it is about 4% better than DIRECT. However, this is another problem 

that determines what the initial swarm is given. Also, because there is a 

randomness tendency, it is not always possible to reproduce the solution in the 

same way. Therefore, it is can be said that the higher computation cost is needed. 

In case of SA, the Boltzmann probability density function, which is the default 

acceptance function, is used and since the penalty factor is increased, the 

temperature of the algorithm is drastically lowered and reannealing is prevented. 
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Hence, we modify the algorithm to make the reannealing forcibly if the 

temperature is too low and continue the constant iteration at one point. The 

results show that SA shows similar performance to the DIRECT with NAS 

method. Overall, it seems that the stochastic solvers do not perform well in this 

optimization problem. Sometimes, however, solver can show nice solution with 

several trials because of their randomness characteristics and if initial procedure 

is well performed then solver can calculate the great solution. Despite 

probability of the great solution, it is impossible to guarantee that stochastic 

solver gives the best optimal solution deterministically. Thus, if the objective 

function is the case of high cost function, it is very inefficient and risky. 

SNOBFIT, a deterministic and global solver, is a model based search method, 

but it is known to be an algorithm designed to handle hidden constraints very 

well. SNOBFIT gives the second best optimal solution following the DIRECT 

with sub-dividing step. However, because error between quadratic subproblem 

of SNOBFIT and original SMR process simulation function is relatively high 

up to about 5000 function evaluation, convergence rate is relatively slow than 

other algorithms. Even though SNOBFIT shows better optimal value at short 

interval, 12,000-16,000, DIRECT with sub-dividing step gives better optimal 

solution at the other intervals and has better early stage convergence speed. 

Local solver gives a very bad solution overall. Even though the function 

evaluation is forced to 20,000, it fall into the local optimum, and the further 

operation became meaningless and stopped. Base case is given for initial point 
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of local solver, which is the main factor of difference between the pattern search 

(GPS, GSS, MADS) and conventional constrained non-convex solver (active-

set, interior-point, SQP). Since the base case itself is precisely adjacent to the 

MTA hidden constraint (≥ 2.85 oC), if the LP rises even a little, the penalty 

function is activated because MTA of LNG-101 decreases. Because 

conventional constrained non-convex solvers change the main problem to the 

subproblem for handling the constraint effectively using the gradient 

information, they have tried to move through the gradient but they fail to find 

the better solution because of the discontinuity of hidden constraints. Thus, the 

final solutions of three solver are just same as base case. Unlike conventional 

constrained non-convex solvers, GPS, GSS, and MADS try to investigate the 

pattern of larger searching area and success to find better solution than base 

case. However, their solutions are 18.7%, 15.1%, and 15.9% higher than 

DIRECT with sub-dividing step respectively, which is terrible performance 

compared to global search algorithm. Herein, some reasons why solution might 

be considered as local optimum are explained. The results of the high-

performance solvers in the global solver show that the n-butane content is 

significantly increased (more than 15%) and the HP pressure is significantly 

reduced (less than 40 bar) compared to the base case, which decrease the 

compressor power. However, if the change is continuously simulated on the 

simulator, it is impossible to converge continuously which means there are 
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some discontinuous hidden constraints. In the case of the local solvers, they 

fails to pass the hidden constraints barrier during iteration and stops.  

The optimal design of an SMR process has lower HP pressure and propane 

composition and higher n-butane composition than the base case. In fact, the 

process simulator convergence of LNG-100 and LNG-101 highly depends on 

the composition of refrigerant, LP, and HP. Thus, the DIRECT with hidden 

constraint handling method can the point to where low HP pressure decreases 

the total compressor work ensuring convergence by changing the refrigerant 

composition. In Figure 3-16, the hot and cold composite curve of LNG-100 and 

LNG-101 shows that the composite curve of the optimal case from DIRECT 

with the sub-dividing step adjoin closer to each other than the base case. Thus, 

we can conclude that exergy efficiency, which represents the efficiency of the 

overall liquefaction process, of the optimal case is better than the base case. 

Furthermore, in Figure 3-17, the overall ΔT profile of the optimal case is lower 

on average than the base case and the maximum ΔT of the optimal case is 24.8 

K while the base case is 46.9 K. Thus, although the minimum temperature 

approach of the two cases is the same, the optimal solution can have high 

efficiency. Finally, the heat exchanger separation line, which is the discrete heat 

flow line between LNG-100 and LNG-101, moves to the right in the optimal 

solution. The overall heat flow quantity of the optimal solution increases and 

most of that quantity is allocated to LNG-100 because the ΔT profile of LNG-

100 is better than for LNG-101.
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Figure 3-16. Hot and cold composite curve of a) base case and b) optimal solution of DIRECT algorithm with sub-dividing 

step.
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Figure 3-17. ΔT profile in the cold box of base case optimal and DIRECT 

algorithm with sub-dividing step. 
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3.3.1.9. Conclusion 

The modified DIRECT algorithm using sub-dividing steps is suggested as a 

means to handle hidden constraints. Unlike conventional methods such as the 

barrier approach and NAS, the sub-dividing step method can consider non-

convex shape hidden constraints efficiently by partitioning the edge of the 

constraints. Thus, the DIRECT algorithm can search an expanded feasible 

searching area better than other methods. The DIRECT with sub-dividing step 

optimization decreases HP and increases n-butane content for lower 

compression specific power demands compared to the base case. To illustrate, 

the SMR NG liquefaction process with a commercial process simulator is 

optimized and provided a 18.9% better solution than the base case. In 

comparison with GA, PSO and SA, the proposed algorithm solves the problems 

of reproducibility and initial procedure of stochastic solver based on 

deterministic characteristics and efficiency of algorithm itself and DIRECT 

with sub dividing step provides 16.4%, 12.5%, 9.4% better solution 

respectively. The result is even 1.7% and 9.2% better than the DIRECT 

algorithm with other hidden constraint handling methods, the barrier approach 

and NAS, respectively. We strongly believe that the proposed algorithm has 

advantages for optimizing chemical processes, not only SMR process, but also 

many processes developed in a commercial simulator such as the Aspen 

HYSYS because of its non-linearity and non-convexity with a large hidden 
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constraints area. However, significant improvements on the original DIRECT 

algorithm and DIRECT with a sub-dividing step are required for a numerically 

robust and reliable solution. The proposed methodology cannot guarantee that 

which iterations are the best for the sub-dividing step. Moreover, not all 

infeasible hyper-rectangles but rather selected hyper-rectangles located in the 

edge of the hidden constraints should decrease the computation cost. Finally, if 

the DIRECT algorithm is modified for considering integer variables, then it can 

be applied for mixed integer non-linear programming (MINLP) problems such 

as mixed refrigerant selection, superstructure optimization of process design, 

and heat exchanger network synthesis (HENS).  
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3.3.2. Simultaneous synthesis of a heat exchanger 

network with multiple utilities using utility 

substages 

3.3.2.1. Introduction 

In the last half-century, optimization of process synthesis with process 

integration has been applied in most important fields of research and industry 

for increasing price competitiveness. In particular, there has been a focus on 

heat exchanger network synthesis (HENS) designed for energy integration of 

utilities and process streams. A significant portion of annualized cost, which 

includes capital cost and operating cost, can be minimized by HENS. One of 

the main approaches with HENS is the sequential method, which applies 

heuristics or physical intuitions for dividing a problem into subproblems; this 

is represented by pinch technology. The other is the simultaneous method, 

which solves the problem using mathematical programming techniques such as 

mixed-integer non-linear programming (MINLP) without dividing a problem  

[152]. Recently, HENS has developed to the point of achieving global optimal 

solutions not only mathematically but also in reality; for instance, addressing 

uncertainty, non-isothermal mixing, and bypass streams [153, 154]. Thus, the 

research trend is focused on generalizing and expanding HENS models, which 

combine the optimization of simultaneous methods with the heuristics and 

realistic factors of sequential methods while reaching the global optimum in a 

feasible amount of computing time. 
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In general processes, multiple utilities should be considered for generating 

optimal networks. To illustrate this, a steam cycle with a CO2 post-combustion 

capture process can use various low-pressure, medium-pressure, and high-

pressure (LP, MP, and HP) utilities as heat sources for stripping columns, 

decrease reboiler stream cost relative to using just a single utility. Furthermore, 

using various working fluids in an organic Rankine cycle can reduce 

irreversibilities, decreasing compressor operating costs. However, most 

conventional HENS algorithms cannot synthesize networks with multiple 

utilities because they consider a single utility when composing the HEN [155]. 

HENS that consider multiple utilities were allegedly developed in several 

projects related to graphical techniques in the sequential method and 

mathematical techniques in the simultaneous method. In the sequential method 

field, Shenoy et al. [156] proposed a multiple-utility model based on the pinch 

method. Total annual cost (TAC) is minimized by calculating the optimal 

minimum approach temperature and utility combination. Other graphical 

technique research considers stream temperature versus enthalpy plot 

supertargeting (STEPS) for optimizing the minimum approach temperature 

[157]. For utility targeting in the sequential method, a non-graphical procedure 

using rigorously calculated process stream thermodynamic properties was 

suggested [158] in order to consider realistic situations. These kinds of 

sequential models have the advantages of simple calculations, intuitive 
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graphical visualization, and industrial feasibility. However, they contain the 

critical limitations inherent to sequential methods: inability to consider heat 

flows cross the pinch point and lack of a guarantee of a globally optimal 

network. 

In the simultaneous methods field, Isafiade and Fraser [159] suggested an 

interval-based MINLP model with multiple utilities, but the assumption of fixed 

utility end site superstructure could not be surmounted. Moreover, by 

expanding stagewise superstructure, the modified model could place utilities 

anywhere else [160]. The proposed superstructure has new splitting streams, 

which involve multiple utilities in each conventional stage. Although modified 

HENS implements optimization with multiple utilities, it is hard to converge in 

many stages and analyzing a structure that contains subsequently arranged 

utilities is difficult because of inefficient superstructure geometry. Huang and 

Karimi [161] introduced generalized stagewise superstructure with cross flows 

and the model could nearly calculate a globally optimal network. However, 

even with the four utility simplification constraints, the problem had numerous 

discrete variables and constraints, which hampered calculations. Thus, in some 

examples, they set the time limitation on a solver related to global solver 

concepts such as BARON. 

In this work, a new methodology is presented for solving HENS considering 

multiple utilities by using utility substages. The most important problems in 
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previous methods, namely a search area too large to find an optimal solution in 

a feasible amount of computing time and inefficient superstructure network, 

can be solved by using a modified superstructure. Using the utility substage 

concept, series connection of multiple utilities can be taken into account in one 

stage. Also, fixing positions of utilities heuristically in order of temperature in 

the modified superstructure can decrease the number of discrete variables. A 

reduced model size results and can enhance solution quality in the same number 

of stages or less compared to previous models. 
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3.3.2.2. Utility substage superstructure 

The overall problem statement is similar to those of previous simultaneous 

HENS methods: finding the optimized structure of a heat exchanger network 

by using NH hot streams and NC cold streams along with possible combinations 

of input temperatures and heat capacity flow rates [155]. Basic assumptions and 

constraints for the superstructure such as constant heat capacity and flow rates, 

infeasible combinations of the same set of streams (NH, NC), and isothermal 

mixing are derived from conventional HENS problems considering multiple 

utilities. Several new sets and constraints related to utility substages are added 

to the model formulation because the model should describe the geometrical 

connection of a modified utility substage superstructure with multiple utilities. 

Five indices, namely i, j, m, n, and k, representing hot streams, cold streams, 

hot utilities, cold utilities, and stages, respectively, are imposed on the model 

description to formulate the model effectively. Moreover, the superstructure 

properties, number of stages (NOK), number of hot utilities (NOM), and 

number of cold utilities (NON), are defined as scalar parameters and are fixed 

before solving a problem. Based on this discussion, each set is defined as: 

HP = {i|i is a hot process stream} 

CP = {j|j is a cold process stream} 

HU = {m|m is a hot utility, m = 1,…NOM} 
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CU = {n|n is a cold utility, n = 1,…NON} 

ST = {k|k is a stage in the superstructure, k = 1,…NOK} 

ST' = {k|k is a stage in the superstructure, k = 1,…NOK+1} 

To illustrate the modified superstructure, Figure 3-18 that contains a 2 by 2 

stream system and m by n utility stream with 2 stages is shown. Existing 

between each conventional stage, the utility substage is the core idea of this 

modified superstructure. Series connection of multiple utilities via utility 

substages can easily consider the continuous connection of utilities and 

provides an opportunity to rapidly approach the global optimal solution. 

Although thermodynamic efficiency between the utility-stream heat 

exchanging system, which accounts indirectly for network preference owing to 

low heat exchanger area cost, is better than stream- stream heat exchanger 

systems, stream- stream heat exchangers should be considered because of the 

trade-off between utility cost and heat exchanger investment cost. Thus, vague 

situations, such as splitting one stream into two streams and designating one for 

stream/stream heat exchanger and another for stream/utility heat exchanger, 

have only a marginal chance of reaching an optimized solution. Therefore, it is 

better to expand the feasible search area to consider a large number of stages 

than to resort to conventional algorithms through deleting ambiguous network 

structure and adding high-probability structure. Even if the number of utilities 

increases, the number of stages would not increase because of the utility 
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substage. Moreover, the increasing number of variables and constraints is linear 

in the present approach, while previous research necessitated increasing the 

number of stages for considering utilities connected in series [160]. 
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Figure 3-18. Utility substage superstructure. 
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Each of the multiple utilities that are connected by utility substages has a 

fixed location according to the order of its temperature. This heuristic structure 

is based on preceding research that suggested low-quality utilities be used prior 

to high-quality utilities to increase thermodynamic efficiency with decreasing 

operating cost [156]. Therefore, in the case of a hot utility, a low-temperature 

utility such as a low-pressure steam should be located before a high-temperature 

utility such as a high-pressure steam. On the contrary, in the case of a cold utility, 

a high-temperature utility such as hot oil should be located first, followed by a 

low-temperature utility such as chilled water. Hence, the series connection 

property of utility substages does not have a random combination, as it 

decreases the number of constraints and variables considered. Furthermore, it 

is possible to use the existing stage temperature variables thi,k,n and tcj,k,m, 

instead of using new variables for the utility substage, which only adds linear 

constraints (except for the heat exchanger area function). 
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3.3.2.3. Model formulation 

Since utility substages are added to established conventional superstructure, 

the model formulation is also changed. Indices such as m and n are added to 

each variable of constraint to describe the utility substage. Moreover, binary 

variables, which express the existence of various utilities and heat exchangers, 

should be changed to three-dimensional variables involving the type of stream, 

stage number, and type of utility. The series connection property of utility 

substages presents linear constraints of added temperature variables except for 

the heat exchanger area function, which contains non-convexity. 

 

- Overall heat balance for each stream 

(TINi-TOUTi)Fi=∑ ∑ q
i,j,kk∈STj∈CP

+∑ ∑ qcu
i,k,nn∈CUk∈ST'

  i∈HP  [3-17] 

(TINj-TOUTj) Fj=∑ ∑ q
i,j,kk∈STi∈HP

+∑ ∑ qhu
j,k,mm∈HUk∈ST'

    j∈CP  [3-18] 

Overall heat balance is calculated by Equations [3-17] and [3-18] by 

multiplying the heat capacity flow rate, assuming constant temperature 

difference between inlet and outlet streams and constant total sum of heat being 

exchanged through all heat exchangers in the superstructure. It should be noted 

that additional terms of heat exchange between multiple utilities and stream 

(qhuj,k,m, qcui,k,n) are linear.  
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- Heat balance at each stage 

(thi,k,NON+1-thi,k+1,1) Fi=∑ q
i,j,kj∈CP

       i∈HP, k∈ST  [3-19] 

(tcj,k,NOM+1-tcj,k+1,1)Fj=∑ q
i,j,ki∈HP

       j∈CP, k∈ST  [3-20] 

A utility substage and a conventional stage can be connected by the 

temperature thi,k,n between utility substage n-1 and n of the cold utility at stage 

k and the temperature tcj,k,m between utility substage m-1 and m of the hot utility 

at stage k. Thus, Equations [3-19] and [3-20] can describe temperature balance 

on the overall superstructure continuously even if a conventional stage and 

utility substage are disconnected at a certain point, for instance, because of 

geometry. In other words, the last temperature of stage k equals the first 

temperature of utility substage k, and the last temperature of utility substage k 

equals the first temperature of stage k+1. 

(thi,k,n-thi,k,n+1) Fi=qcu
i,k,n

       i∈HP, k∈ST, n∈CU  [3-21] 

(tcj,k,m-tcj,k,m+1) Fj=qhu
j,k,m

       j∈CP, k∈ST, m∈HU  [3-22] 

In the utility substage, the location of the utility is fixed in order of 

temperature, which is represented by the order of indices m and n. When the 

index number is higher, operating temperature of a utility is lower. Furthermore, 

heat balance can be simply formulated by Equations [3-21] and [3-22]. The 

temperature difference because of series connection property and model does 

not need additional hot and cold utility load constraints. 
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- Assignment of superstructure temperatures and feasibility of 

temperatures 

thi,1,1 = TINi       i∈HP   [3-23] 

tcj,1,1 = TOUTj       j∈CP  [3-24] 

thi,NOK+1,NON+1 = TOUTi       i∈HP  [3-25] 

tcj,NOK+1, NOM+1 = TINj       j∈CP  [3-26] 

Inlet temperatures and outlet temperatures of streams are interlocked with 

the superstructure end site temperature in Equations [3-23]-[3-26]. Unlike 

previous single-utility superstructure, which has the asymmetric structure 

property, it is not necessary to add an end-site utility temperature constraint 

(Yee and Grossmann, 1990). 

thi,k,n ≥ thi,k,n+1      i∈HP, k∈ST', n∈CU  [3-27] 

tcj,k,m ≥ tcj,k,m+1      j∈CP, k∈ST', m∈HU  [3-28] 

thi,k,n ≥ thi,k+1,1      i∈HP, k∈ST  [3-29] 

tcj,k,m ≥ tcj,k+1,1      j∈CP, k∈ST  [3-30] 

Temperature order at the utility substage can be described by the ordering of 

m and n with inequality constraints. Conventional stage temperature order is 

easily described by the ordering of k. Equations [3-27]-[3-30] describe the 

feasibility of temperatures. 
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- Logical constraints 

q
i,j,k

-M zi,j,k≤0       i∈HP, j∈CP, k∈ST  [3-31] 

qcu
i,k,n

-M zcui,k,n≤0       i∈HP, k∈ST', n∈CU  [3-32] 

qcu
i,k,n

-M zcui,k,n≤0       i∈HP, k∈ST', n∈CU  [3-33] 

The binary variable zi,j,k denotes existence of a heat exchanger between hot 

stream i and cold stream j at stage k. If the value of zi,j,k is zero, then qi,j,k will 

also be zero because a heat exchanger does not exist. When zi,j,k is unity, the 

“big M” constraint will be activated for calculating qi,j,k within the upper bound, 

M. To shrink the search area as much as possible during consideration of the 

feasible search area containing the optimal point, the value of M is defined as 

min
 
((TINi-TOUTi) Fi, (TINj-TOUTj) Fj). Therefore, qi,j,k can be calculated 

within the physical maximum heat exchange rate between hot stream i and cold 

stream j; this is represented in Equation [3-31] 

Additionally, zhuj,k,m and zcui,k,n are the binary variables, which denote the 

existence of hot and cold utilities, respectively. The value of zero indicates that 

the hot or cold utility does not exist, and when the value is unity, the solver 

searches for the optimal qhuj,k,m and qcui,k,n within the upper bound constraint. 

In the utility case, it is assumed that there is no limitation of the heat exchange 

rate on utilities. Hence, it is possible to fix the upper bound constraint as 
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(TINi-TOUTi) Fi and (TINj-TOUTj) Fj. In this feasible search area, qhuj,k,m 

and qcui,k,n are calculated by Equations [3-32] and [3-33]. 

∑ zcui,k,n, zhuj,k,mm∈HU, n∈CU = θ        i∈HP, j∈CP, k∈ST'  [3-34] 

Optionally, it is possible to accelerate calculation speed by restricting the 

maximum number of multiple utilities to θ. If the number of opportunities to 

connect the utility in series is low, Equation [3-34] can be implemented to 

construct multiple utilities practically. 

-  Calculation of approach temperatures 

dtli,j,k ≤ thi,k,NON+1-tcj,k,NOM+1+γ
i,j

*(1-zi,j,k)  i∈HP, j∈CP, k∈ST [3-35] 

dtri,j,k ≤ thi,k+1,1-tcj,k+1,1+γ
i,j

*(1-zi,j,k)     i∈HP, j∈CP, k∈ST    [3-36] 

dthuj,k,m ≤ TINhum-tcj,k,m+γ
j,m

*(1-zhuj,k,m) j∈CP, k∈ST', m∈HU [3-37] 

dthuj,k,m+1 ≤ TOUThum-tcj,k,m+1+γ
j,m

*(1-zhuj,k,m)  

 j∈CP, k∈ST', m∈HU   
[3-38] 

dtcui,k,n ≤ thi,k,n-TOUTcun+γ
i,n

*(1-zcui,k,n)   

i∈HP, k∈ST', n∈CU    
[3-39] 

dtcui,k,n+1 ≤ thi,k,n+1-TINcun+γ
i,n

*(1-zcui,k,n)  

i∈HP, k∈ST', n∈CU     
[3-40] 

dtli,j,k, dtri,j,k, dthuj,k,m, dtcui,k,n  ≥ EMAT  [3-41] 

 

For defining the temperature driving force of heat exchangers, each 

approach temperature can be formulated using Equations [3-35]-[3-41]. 
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Because of the discontinuous network of a conventional stage, the approach 

temperature of a stream/stream heat exchanger should be modified as the 

approach temperature on the left and right sides in Equations [3-35] and [3-36]. 

As with other mixed-integer constraints, the upper bound method is used to 

activate and deactivate each constraint. γ, which denotes M in the upper bound 

constraint method, represents the maximum approach temperature between two 

streams including the multiple utilities, which constitute the heat exchanger. 

Thus, the model can efficiently cover all of the feasible search area. Moreover, 

the exchanger minimum approach temperature (EMAT) can be set by Equation 

[3-41] when the user wants to define the approach temperature boundary. An 

important note is that even when a user-set EMAT is provided for some value, 

the optimal solution EMAT might not have been exactly the value that the user 

set initially, but rather some value that optimizes the objective functions. Inlet 

and outlet approach temperatures for each utility are set separately and can be 

formulated continuously because of the series connection with fixed positions.  

- Objective function and heat exchanger area function 

Chen’s approximation, which is one of the most popular logarithmic mean 

approximations in the HENS area, is used for comparing efficiency of the 

present model with that of previous algorithms [162]. This log mean 

temperature difference (LMTD) has been used for describing heat exchanger 

area function in recent simultaneous HENS models involving multiple utilities. 
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LMTDi,j,k= [(dtli,j,k)(dtri,j,k) (
dtli,j,k+dtri,j,k

2
)]

1

3
  [3-42] 

Ai,j,k=
qi,j,k (

1

hi
+

1

hj
)

LMTDi,j,k
  [3-43] 

Heat exchanger area can be calculated by Equations [3-42] and [3-43] using 

a constant heat transfer coefficient for each stream, constant rate of heat 

exchange between the two streams, and LMTD. The area of hot and cold utility 

heat exchangers can be calculated in the same way as for stream heat 

exchangers. Therefore, the objective function, also called total annualized cost, 

is expressed by summation of utility cost and investment cost as in Equation 

[3-44]: 

min
xH∈ΩH

(∑ ∑ ∑ CCUn  q
i,k,n

n∈CUk∈ST'i∈HP

+ ∑ ∑ ∑ CHUm  q
j,k,m

m∈HUk∈ST'j∈CP

) 

+ 

(

  
 

∑ ∑ ∑ CFi,jzi,j,k

k∈STj∈CPi∈HP

+ ∑ ∑ ∑ CFCi,n  zcui,k,n

n∈CUk∈ST'i∈HP

+ ∑ ∑ ∑ CFHj,m  zhuj,k,m

m∈HUk∈ST'j∈CP )

  
 

 

+

(

  
 

∑ ∑ ∑ Ci,jAi,j,k

β

k∈STj∈CPi∈HP

+ ∑ ∑ ∑ CCi,nAcui,k,m

βcu

n∈CUk∈ST'i∈HP

+ ∑ ∑ ∑ CHj,m  Ahuj,k,n
βhu

m∈HUk∈ST'j∈CP )

  
 

 

[3-44] 
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3.3.2.4. Numerical application 

Since the suggested model in this paper presents a non-convex MINLP 

considering multiple utilities, model size is bigger than in the conventional, 

single-utility SYNHEAT model. However, the utility substage model can 

provide a better result with fewer continuous variables, discrete variables, and 

constraints than the other simultaneous multiple-utility models presented by 

Ponce-Ortega et al. [160] and Haung and Karimi [161]. Although some cases 

yield larger TAC than in the non-isothermal mixing model because the present 

model is based on isothermal mixing and stream splitting, this model has 

several advantages; for instance, its small model size expands the feasible 

search area, especially in cases of numerous utilities and scenario analysis for 

various conditions. To validate the efficiency of the utility substage model, 

several examples are presented. In terms of mathematical programming, 

BARON/GAMS and LINDOglobl/GAMS, which are deterministic global 

algorithms based on branch-and-bound methods, and DICOPT/GAMS, which 

divides the MINLP problem into NLP-MIP subproblems using outer 

approximation, are used as solvers. The programming language used is GAMS 

24.2.1 and MINLP subsolvers are CONOPT 3 (NLP solver) and Cplex 12.6 

(MIP and LP solver).  
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- Example 1 

This is a classical problem from Shenoy et al. [156] and other researchers 

who invented the modified HENS model considering multiple utilities and has 

been used to validate their respective models. In this example, two hot streams, 

one cold stream, a hot utility for HP, MP, and LP steam, and chilled water for a 

cold utility should be combined to make an optimal network system. Table 3-9 

summarizes stream information and parameters for example 1 and Figure 3-19 

shows the optimized HEN. The obtained TAC is $96,076, which is a lower cost 

than in any previous literature. The main factor of this result comes out from 

considering many stages with small model size, helping to expand the search 

area. Comparing model size with the result in Table 3-12, the number of 

constraints and variables are reduced by 45% and 70%, respectively, compared 

with results in recent literature. In fact, part of the utility cost is reduced further 

compared with the solution of Ponce-Ortega et al. [160] because they use two 

types of hot utility while this model uses three types of hot utility, distributing 

heat duty more efficiently. Moreover, comparing this model with model of 

Huang and Karimi [163], considering a number of stages with feasible model 

size can easily expand the network connecting heat exchangers with utilities. 

Thus, right side of network is totally different and it decreases more utility cost 

with little increasing of investment cost by efficient heat load distribution. From 

the efficiency of the utility sub stage super-structure in considering many stages, 
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it is evident that small model size helps to converge the solution near to the 

global optimum. 
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Table 3-9. Stream information and cost function for example 1. 

Stream TIN 

(oC) 

TOUT 

(oC) 

F  
(kW K-1) 

h  
(kW m2 K-1) 

Cost  

($ kW-1 yr-1) 

H1 105 25 10 0.5 - 

H2 185 35 5 0.5 - 

C1 25 185 7.5 0.5 - 

      

HP Steam 210 209 - 5.0 160 

MP Steam 160 159 - 5.0 110 

LP Steam 130 129 - 5.0 50 

Chilled 

water 

5 6 - 2.6 10 

 

   Exchanger capital cost = 800 (area) 
   Annualization factor = 0.298 
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Figure 3-19. Optimized HEN with heat load, heat exchanger area, and annualized cost data for example 1.
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- Example 2 

Like example 1, this example is also a representative problem from Shenoy 

et al. [156] and has been solved in various projects related to multiple-utility 

HENS. The solution depends strongly on the efficiency of the model related to 

superstructure because the model size of problem is quite large, consisting of 

two hot streams, three cold streams, three types of hot utility (HP, MP, and LP 

steam), and two types of cold utility (chilled water and air cooling). Table 3-10 

summarizes stream information and parameters for example 2.The model can 

expand its search area to consider non-isothermal mixing and to expand the 

number of stages. Although, the utility substage model assumes isothermal 

mixing for stream splitting, because of its heuristically efficient superstructure, 

series connection of multiple utilities, and temperature-order fixed position, the 

model can consider a large number of stages with few variables and constraints. 

For global-search solvers such as BARON/GAMS and LINDOglobal/GAMS, 

convergence of MINLP problems depends strongly on model size and 

convexity; the present model has characteristics that accelerate for the case of 

equal upper and lower bounds. Figure 3-20 describes the optimized HEN of 

example 2. Table 3-12 compares this model, with which the minimum TAC is 

obtained, with other isothermal mixing multiple-utility HENS models. Even 

though the competing models are based on non-isothermal mixing, such as the 

work by Huang and Karimi [164], the utility substage model gives a better 
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solution than when the model is solved with commercial solvers such as 

BARON, DICOP, and SBB. Only the non-isothermal mixing models produce 

slightly better TAC when they use modified solvers with the newly proposed 

outer approximation algorithm. 
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Table 3-10. Stream information and cost function for example 2. 

Stream TIN 

(oC) 

TOUT 

(oC) 

F  
(kW K-1) 

h  
(kW m2 K-1) 

Cost 
($ kW-1 yr-1) 

H1 155 85 150 0.5 - 

H2 230 40 85 0.5 - 

C1 115 210 140 0.5 - 

C2 50 180 55 0.5 - 

C3 60 175 60 0.5 - 

      

HP Steam 255 254 - 0.5 70 

MP Steam 205 204 - 0.5 50 

LP Steam 150 149 - 0.5 20 

Cold water 30 40 - 0.5 10 

Air cooling 40 65 - 0.5 5 

 

Exchanger capital cost = 13000 + 1000 (area)0.83 

   Annualization factor = 0.322 
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Figure 3-20. Optimized HEN with heat load, heat exchanger area, and 

annualized cost data for example 3. 
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-  Example 3 

Example 3 is a newly proposed problem in this paper for illustrating how 

direct series connection of multiple utilities can help to reach the optimum. In 

fact, the utility substage superstructure has the power to present series 

connection of utilities because of its geometric characteristics. Thus, this 

example emphasizes the advantages of using the utility substage superstructure. 

Table 3-11 describes the stream information and the cost function. Imagining 

the composite curve, expensive HP or MP steam should be replaced by cheap 

LP steam or hot oil. Moreover, if the number of hot utilities increases and fixed 

costs of heat exchangers decrease, then series connection of the hot utilities will 

be attractive. To verify this alter-native, we compared with the conventional 

simultaneous method, SYNHEAT, and modified a multiple-utility models, 

which considers only one utility at one stage, similar to the previous model, 

with the utility substage model proposed in this paper. In this example, 

Paterson’s LMTD approximation described in Equation [3-45] is substituted 

into the objective function [165]. The reason for using this LMTD is that Huang 

et al. [153] found Paterson’s LMTD to be the best, it is used by and recent 

simultaneous models. 

LMTDPi,j,k = [
1

6
(dtli,j,k + dtri,j,k) +

2

3
((dtli,j,k)(dtri,j,k))]

1

2
  [3-45] 
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As a result in Figure 3-21, TAC is reduced by 45.6% compared with the 

result from SYNHEAT and by 21.0% compared with one utility in the one-stage 

model under the same calculation conditions (e.g., using three stages) on the 

GAMS/BARON solver. This phenomenon occurs when utility cost is the major 

cost in the TAC and various utilities can be used as alternatives. Since the utility 

substage model is optimized for considering series connection of utilities, it is 

possible to obtain very effective solutions even considering small stages. If a 

cheap but low-quality utility and an expensive but thermally effective utility 

were interlaced with a trade-off relation, it is difficult to analyze using only the 

composite curve. However, the simultaneous multiple-utility model can 

consider all combinations with a wide search area for reaching the optimal 

solution. An optimal utility system is constructed, dividing the heat duty of HP 

steam and LP steam to less expensive MP steam and hot oil, respectively and it 

is easily seemed in Figure 3-22. Although the utility substage model synthesizes 

a network in which heat duty of cold utilities is higher than in other networks, 

it is possible for it to reach the lowest annualized cost because this example is 

ahot-utility-dominated case. Theoretically, it is possible to construct an optimal 

structure (Figure 3-21c) with two stages by using the utility substage model. 

However, previous models such as Ponce-Ortegaet al. [160] need at least seven 

stages to synthesize the same optimal structure. Because of MINLP problem 

characteristics, it is difficult to converge within a feasible computation time. 
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Table 3-11. Stream information and cost function for example 3. 

Stream TIN 

(oC) 

TOUT 

(oC) 

F  

(kW K-1) 

h  
(kW m2 K-1) 

Cost  

($ kW-1 yr-1) 

H1 600 450 5 0.5 - 

H2 250 30 30 0.5 - 

C1 50 650 30 0.5 - 

      

HP Steam 680 680 - 5 200 

MP Steam 630 630 - 5 150 

LP Steam 400 400 - 5 45 

Hot Oil 330 300 - 5 10 

Chilled water 20 25 - 1 20 

 

   Stream exchanger capital cost = 500 (area) 
   Cold utility exchanger capital cost = 500 (area) 

   Hot utility exchanger capital cost = 100 (area) 
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Table 3-12. Solution comparison for examples 1-3 regarding total annualized cost and model size. 

Example TAC ($) Model size  

(equations, continuous variables, discrete variables) 

 This work Literature This work Literature 

1 96,076 96,937a 

97.079b 

97,211c 

98,263d 

 

(291, 184, 48) (511, 501, 120)b 

2 1,120,619 1,115,705e 

1,120,271e 

1,120,711e 

1,135,773e 

1,121,175e 

1,150,460c 

1,158,500d 

(827, 475, 114) (2236, 889,38)e 

(320, 174, 25)e 

(1391, 1442, 360)b 

3 1,567,144 - (253, 151, 30) - 

a: [163], b: [160], c: [159], d: [156], e: [164] 
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Figure 3-21. Optimized HEN with heat load, heat exchanger area, and 

annualized cost data for example 4 calculated by a) SYNHEAT, b) restricting 

series connection of utility, and c) utility substage superstructure. 
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Figure 3-22. Composite curve for example 4 calculated by a) SYNHEAT, b) restricting series connection of utility, and c) 

utility substage superstructure.
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3.3.2.5. Conclusion 

Developing an effective simultaneous model with multiple utilities for 

application to various process syntheses is a highly challenging area of process 

integration research. In previous literature, there have been several limitations 

to synthesis of multiple-utility HEN, including pinch method limitations, 

single-utility simultaneous model, and very large size of multiple-utility 

simultaneous models. In this work, the utility substage superstructure, which 

features temperature-order fixed position of multiple utilities with series 

connection, is suggested. The new algorithm obtains even smaller model size 

than in previous algorithms and a better heat exchanger network solution. From 

assessing the TAC and the number of variables and constraints, it is verified 

that the heuristics and modified factors of the utility substage superstructure are 

effective. Furthermore, it is verified in the case of existing various utilities and 

low fixed cost that series connection of multiple utilities can be effective for 

decreasing TAC, especially utility operating cost; our algorithm is optimized 

for solving problems of this kind. Considering the same number of stages, TAC 

is reduced by 45.6% compared with the SYNHEAT model result and 21.0% 

compared with the single utility result in the single-stage model. 

Although several problems remain, which preclude a guarantee of the global 

optimum in cases requiring consideration of stream bypassing and non-

isothermal mixing, the present research demonstrates the significant power of 
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the utility substage algorithm in treating multiple utilities effectively with small 

model size, which is the most important issue for multiple-utility problems. 
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3.4. Plant-wide systems scale modeling and 

optimization 

3.4.1. Toxic gas release modeling for real-time analysis 

using variational autoencoder with convolution 

neural networks 
As the chemical engineering industry grows steadily, concerns about 

catastrophic accidents in chemical plants have increased. Among the various 

types of accidents in chemical processes, toxic gas leaks are particularly critical 

owing to the wide range of the risks involved. When toxic gas dispersion occurs, 

a toxic gas cloud is generated and remains in the accident area. If the 

concentration of the toxic gas is above a certain level, the local population is 

subjected to serious health hazards. When an accident occurs in a densely 

populated area, e.g., an urban area, the risk becomes even higher. On December 

3, 1984, for example, a methyl isocyanate gas leak accident caused at least 3800 

deaths and about 100,000 permanently disabled in Bhopal, India [166]. 

Therefore, methods for predicting gas dispersion in accidents in urban areas are 

essential. However, toxic gas dispersion experiments are difficult to implement 

owing to cost, risk, and technical requirements. 

To resolve this, computer simulation has been developed to model gas 

dispersion. There are two-dimensional integral models, viz. the Box model and 

Gaussian dispersion models, [167] and simulators (ALOHA and PHAST), 

which can be used in emergency owing to their short computation time. They 
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are fairly accurate in the case of flat terrain without three-dimensional obstacles. 

However, they have low accuracy in the case of three-dimensional obstacles, 

such as mountains and buildings, as these obstacles are ignored. Moreover, they 

do not change dynamically, as they are based on the steady state Thus, it is 

difficult to use these tools in actual emergency situations [168, 169]. 

Computational fluid dynamics (CFD) is widely used to accurately simulate 

the dispersion of toxic chemicals in urban areas. CFD has the highest accuracy 

because it takes into account geographic information and gas characteristics. 

The CFD model in urban areas has been developed in various studies. Hanna et 

al. [170] described and compared five CFD models using gas dispersion 

experimental data from Madison Square Garden in Manhattan (MSG05). 

Hanna et al. [171] simulated a hypothetical chlorine railcar accident in the 

Chicago urban area using FLACS and compared the results with those obtained 

by simpler models, such as SLAB, HGSYSTEM, and ALOHA. Likewise, Long 

et al. [172] compared a gas dispersion CFD model (AcuSolve) and the Urban 

Dispersion Model (HPAC) in regions with large obstacles. Xie et al. [173] 

modeled gas flow and dispersion in London using large eddy simulation. 

However, CFD-based simulation models have a critical disadvantage, i.e., 

computation cost. Most accident scenarios require more than 1 h for simulation 

in CFD-based tools, such as FLACS, Fluent, and OpenFOAM [171, 174, 175]. 

When a toxic gas spill occurs, the simulation time must be at least less than the 
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golden time, also known as golden hour, to effectively predict the extent of the 

accident and evacuate the population. However, there are currently no CFD-

based tools for simulating accidents faster than the golden time. Hence, these 

tools cannot practically be used in real-time alarm systems. Therefore, there is 

a need for computationally efficient methods that are as accurate as CFD. 

Therefore, research on surrogate or meta-models has been conducted to 

simplify complex models and shorten computation time. Palmer and Realff 

[176] and Caballero and Grossmann [177, 178] used surrogate models based on 

kriging functions to optimize flowsheet simulation. Gomes et al. [179] used 

kriging models for real-time process optimization. Chen et al. [180] applied 

meta-models of complex process simulations with time-space-dependent 

output adopting Gaussian process regression. Moreover, Wang et al. [181] 

achieved data reduction using segPCT-PCA and Gaussian process regression 

(GPR) meta-models. Loy et al. [182] developed and compared two surrogate 

models for consequence analysis based on CFD, i.e. a non-linear global 

surrogate model (least squares support vector machine) and a linear piece-wise 

surrogate model (linear nearest neighbor interpolation). Research for 

developing a meta-model has been steadily progressing, and methods such as 

kriging (Gaussian process model) and support vector machines have been 

primarily used. In addition, Kajero et al. [183] has reviewed other methods for 

this meta-modeling. 
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Three steps are required for designing a surrogate model based on large 

amounts of data: data reduction, data regression, and data reconstruction. In 

most of the studies mentioned above, since data reduction uses a linear method 

such as PCA, it is often difficult to distinguish nonlinear manifolds or to store 

image information with complex nonlinearities. Therefore, a training technique 

for the representation of an unlabeled data set through an autoencoder has been 

developed. An autoencoder is a learning system based on artificial neural 

networks that can efficiently learn and compress input information. 

Autoencoders are composed of an encoder (recognition network), a decoder 

(generative network), and hidden layers (internal representation). Since 

autoencoders are based on neural networks and can operate in various 

combinations, they achieve sufficient dimensionality reduction even for data 

sets with strong nonlinearity. Moreover, when combined with a convolutional 

neural network (CNN), they can perform powerful feature detection, which is 

a significant performance improvement [184]. Finally, a variational 

autoencoder that extends to a generative model based on the latent space 

generated by features of the training set has been developed as a powerful 

model that can generate images by extracting definite features and changing 

their values [185]. Therefore, it would be a powerful meta-modeling, with the 

addition of the regression process that performs the mapping between the 

important variable and the encoded data or the latent space from the 

autoencoder. 
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In regard to regression, various methods are used, such as linear regression 

and artificial neural networks. Recently, various methods have been introduced 

to deep neural networks (DNN) and resolved the issues of vanishing gradient, 

excessively low learning speed, and overfitting the training set [186]. For 

example, initialization methods have been introduced [187, 188]. Moreover, the 

ReLU activation function, which exhibits better performance than the sigmoid 

activation function, and the Mother Nature activation function appeared in the 

theory of deep networks. In addition, non-saturating activation functions, such 

as the leaky ReLU, ELU, and SeLU, were introduced, improving performance. 

It is obvious that these methods can reduce the vanishing and exploding 

gradient problems at the beginning of training state; however, these may occur 

during the learning state. To resolve this, zero-centering and normalization of 

the input are required before the activation function through the Batch 

Normalization (BN) method proposed by [189] and subsequent scaling and 

shifting of the results. Moreover, techniques such as momentum optimization, 

Nesterov Accelerated Gradient, AdaGrad, RMSProp, and Adam optimization 

have been developed to optimize machine learning. Adam (Adaptive 

Momentum Estimation) optimization is performed by combining Momentum 

optimization and the RMSProp algorithm [190]. Therefore, it is highly likely to 

develop high-performance surrogate models using this state-of-the-art deep 

learning technique for data reduction with high-quality feature extraction, data 
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regression of highly non-linear manifold, and generation or reconstruction of 

the image data by means of generative models. 

In this study, a gas leak model of industrial-scale was developed for the 

Mipo complex in the city of Ulsan, Republic of Korea, using FLACS. Moreover, 

a surrogate model was constructed for real-time applications, namely, a real-

time alarm system within golden time. Initially, for the scenario where three 

variables (wind speed, wind direction, release rate) were randomly applied, the 

data was obtained by CFD and the probability of death factor (Pdeath) was 

expressed as a 2D image. Subsequently, using a variational autoencoder with 

deep convolutional layers, the resulting data of dimension 30,400 was 

compressed into a 32-dimensional latent space. Through the deep neural 

network architecture designed by the authors, the variable space was mapped 

into the latent space to predict the 32-dimensional latent space with 3 variables. 

Finally, a surrogate model was constructed that can generate the predicted 

contour of Pdeath through three variables only. The effectiveness and 

applicability of the model was demonstrated by comparison with several other 

methods of regression. It was shown that the model does not merely memorize 

the Pdeath contour but rather extracts features and smoothly generates the image. 

  



 

 239 

3.4.1.1. Toxic gas dispersion model 

In this study, FLACS (Flame Acceleration Simulator) is utilized as a gas 

dispersion CFD tool. The version of FLACS used is v10.4 released in July 27th, 

2015 and developed by Gexcon. FLACS was originally developed for 

explosion simulation. However, FLACS may also simulate gas dispersion and 

fire models. A number of studies have been conducted to verify the accuracy of 

the atmospheric dispersion model of FLACS used in this study. Hanna [171] 

modeled an actual chlorine leakage accident in an urban area and compared the 

results with the accident data. In addition, Yang et al. [175] compared the 

hydrogen fluoride leakage accidents in the Gumi area in Korea with the FLACS 

simulation results. In addition, several studies have been carried out to validate 

gas diffusion experiments performed under various conditions, not actual 

accidents, with FLACS [174, 191-193] 

 

- Model description 

The Mipo complex in the city of Ulsan, Republic of Korea, has a large 

number of industrial plants as well as a residential area nearby. Thus, this region 

has a high potential of not only gas leakage accidents but also considerable 

damage in case of such an accident. Therefore, it was selected as a virtual gas 

leakage accident site. In the model, seen on the left side of Figure 3-23, flat 

terrain with thousands of buildings was assumed. The size of the entire domain 
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is about 4,000 m in the x-direction, 3,000 m in the y-direction, and 80 m in the 

z-direction (from ground level). The CAD image inside FLACS can be seen on 

the right side of Figure 3-23. As more than 500 simulation data points are 

required, a uniform grid resolution of 20 m × 20 m × 20 m was used to reduce 

computation cost. 
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Figure 3-23. (a) The geometry of Mipo complex in Ulsan, (b) top view of CAD image, and (c) 3D view of CAD image in 

FLACS.
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As liquefied chlorine is used on a large scale in this area for industrial 

purposes, chlorine was chosen as the material of the hypothetical release 

scenario. To generate distinct simulation samples, three main variables were 

randomly selected within a certain boundary. Wind direction was chosen within 

0 - 2π, wind speed within 0.5~5 m/s, and release rate within 10~100 kg/s. All 

other variables were fixed, including release duration (60 s), release point, 

release material, and temperature (20° C). The entire simulation time in all 

cases was set to 1000 s. The conditions of the simulation are summarized in 

Table 3-13. 
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Table 3-13. Scenario conditions 

Variable Unit Value 

Ambient temperature ℃ 20 

Ambient pressure Bar 1 

Wind direction rad 0 - 2π 

Wind speed m/s 0.5 – 5 

Discharge rate kg/s 10 – 100 

Discharge direction - +Y 

Release duration s 60 

Total simulation time s 1000 

Pasquill class - None 
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- Mathematical formulation 

FLACS calculates the compressible fluid flow using conservation equations 

for mass, energy, and momentum. It solves the three-dimensional Reynolds-

averaged Naiver−Stokes (3D RANS) equations, which are widely used in CFD, 

based on the k-ε turbulence model [194] on a non-uniform Cartesian mesh. The 

k-ε model is an eddy viscosity model with turbulent kinetic energy transport 

and dissipation of the turbulent kinetic energy equation. In particular, FLACS 

uses distributed porosity concepts [195] to efficiently calculate the effect of 

obstacles smaller than the sub-grid on fluid flow. This approach not only 

considers small obstacles but also reduces computational cost. In this study, two 

governing equations for compressible fluid flow are used: conservation of mass 

and momentum equation. The conservation of mass equation can be written as 

𝜕

𝜕𝑡
(𝛽𝑣𝜌) + 

𝜕

𝜕𝑥𝑗
(𝛽𝑗𝜌𝑢𝑗) =  

𝑚̇

𝑉
,  [3-46] 

where 𝛽𝑣  denotes volume porosity and 𝛽𝑗  area porosity in the 𝑗 -direction. 

Here, 𝑗 is any of the directions determined by the Cartesian coordinates x, y, 

and z. The momentum equation can be written as 

𝜕

𝜕𝑡
(𝛽𝑣𝜌𝑢𝑖) + 

𝜕

𝜕𝑥𝑗
(𝛽𝑗𝜌𝑢𝑖𝑢𝑗) =  −𝛽𝑣

𝜕𝑃

𝜕𝑥𝑖
+ 

𝜕

𝜕𝑥𝑗
(𝛽𝑗𝜎𝑖𝑗) +

 𝐹𝑜,𝑖 + 𝛽𝑣𝐹𝑤,𝑖 + 𝛽𝑣(𝜌 − 𝜌0)𝑔𝑖,   

[3-47] 
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where 𝐹𝑜,𝑖 is the flow resistance created by sub-grid obstacles, 𝐹𝑤,𝑖 is the flow 

resistance created by the walls, and 𝜎𝑖𝑗 is the stress tensor. Here, 𝐹𝑜,𝑖 and 𝜎𝑖𝑗 

are defined by 

𝐹𝑜,𝑖 = −𝜌 |
𝜕𝛽

𝜕𝑥𝑖
| 𝑢𝑖|𝑢𝑖|  [3-48] 

𝜎𝑖𝑗 = 𝜇𝑒𝑓𝑓 (
𝜕𝑢𝑖

𝜕𝑥𝑗
+ 

𝜕𝑢𝑗

𝜕𝑥𝑖
) − 

2

3
𝛿𝑖𝑗 (𝜌𝑘 + 𝜇𝑒𝑓𝑓

𝜕𝑢𝑘

𝜕𝑥𝑘
)   [3-49] 

where 𝜇𝑒𝑓𝑓 is the effective viscosity, defined as follows: 

𝜇𝑒𝑓𝑓 =  𝜇 +  𝜌𝐶𝜇
𝑘2

𝜀
  [3-50] 

where 𝑘 is the turbulent kinetic energy and 𝜀 its dissipation. The second term 

is the turbulent viscosity or eddy viscosity. 

 

- Lethality calculation 

Chlorine is a highly toxic material. There are a number of indicators that can 

be used to assess the risk of exposure to toxic gases. Among these, AEGLs 

(Acute Exposure Guideline Levels), ERPGs (Emergency Response Planning 

Guidelines), and TEELs (Temporary Emergency Exposure Limits) are widely 

used. Moreover, there is a method from Withers and Lees [196, 197] to 

quantitatively calculate the probability of death using the probit function. This 



 

 246 

method is a vulnerability model for describing the average fatal effects due to 

chlorine release. The equation of this method can be written as 

𝑃𝑟 = 𝑎 + 𝑏𝑙𝑛 ∫ 𝑐𝑛𝑑𝑡  [3-51] 

𝑃𝑑𝑒𝑎𝑡ℎ = 0.5 + (1 +
erf(𝑃𝑟−5)

√2
)  [3-52] 

where 𝑃𝑟 is the probit, 𝑐 is the concentration by volume (in ppm), and 𝑎, 𝑏, 

𝑛  are constants. In the case of chlorine, 𝑎  is -0.829, 𝑏  is 0.92, and 𝑛  is 2 

[198]. In this study, the probit value is integrated up to 10 minutes after the 

onset of the leak. As the toxic gas flows into the residential area for about 10 

min during the pre-simulation stage, 10 min is considered the golden time. 

 

- Numerical setup 

FLACS solves the conservation equations for each cell of a 3D Cartesian 

grid using the finite volume method. The numerical time step algorithm that is 

used in FLACS is based on the implicit first-order backward Euler method. 

Time steps in transient simulations should be set so that the solution evolves 

smoothly and stably in time. The Courant-Friedrich-Levy (CFL) number 

provides a solver-specific criterion for the maximum time step that yields a 

stable solution in the compressible solver of FLACS. Two CFL numbers are 

used to determine the maximum time steps: CFLV and CFLC. CFLV is based 
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on fluid velocity, whereas CFLC is based on sound velocity. The CFD solver 

chooses the minimum value between CFLV and CFLC. 

∆𝑡𝑣 = 
CFLV

max (
𝑢𝑖
∆𝑥𝑖
)
  [3-53] 

∆𝑡𝑐 = 
CFLC

max (
𝑐

∆𝑥𝑖
)
  [3-54] 

∆𝑡 = min (∆𝑡𝑣 , ∆𝑡𝑐) [3-55] 

where ∆𝑥𝑖 represents the length of the cell in i-direction and ∆𝑡 denotes 

the time step. In this study, CFLV is fixed at 1.0 and CFLC is fixed at 10, which 

are common values in dispersion simulations. Each simulation is performed by 

parallel computing with 12 CPU threads. The computer used in this study has 

a 24-core Intel Xeon E5-2697v2 (2.7 GHz) processor and 256 GB DDR3 RAM. 

 

- Data sampling and preprocessing 

To create a surrogate model using a neural network, hundreds of sample data 

points are required for training. However, it is costly to manually acquire large 

amounts of data; thus, an automated process is used to generate them. This is 

carried out by linking Python code with FLACS. Moreover, it is difficult to 

directly use the results obtained from FLACS in surrogate model training. 
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Therefore, it is necessary to preprocess them. The flow chart for this process 

can be seen in Figure 3-24. 
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Figure 3-24. Data sampling and preprocessing flow chart  
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Initially, among the input variables applied to each sample, three variables 

(wind speed, wind direction, and release rate) are randomly selected within a 

certain range. Using these selected variables, the cs and cl files are created. To 

initiate the FLACS calculation, the cs (scenario), cl (leak), co (geometry), cg 

(grid), and cp (porosity) files are required. Among them, the co, cg, and cp files 

are fixed because the simulation is performed with a single geometry. As the 

variables in the cs and cl files only are changed, they are generated for each 

sample. Once the FLACS simulation is complete, the resulting r3 file (binary 

form) can be converted to an a3 file (ASCII form) using the FLACS utility. The 

result thus obtained is four-dimensional data (x, y, z, and time). Subsequently, 

Pdeath is calculated by integrating over time up to 10 min. Only the data at the 

point z = 2 m, which is the height directly affecting the population, is extracted 

from the reduced 3D data and becomes 2D data (150 × 200), which is the Pdeath 

value corresponding to the x and y coordinates. 550 samples are thereby 

generated.  
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3.4.1.2. VAEDC-DNN surrogate model 

Most of the previous studies on the reduced-order model for chemical 

engineering problems, such as reactor modeling, gas dispersion modeling, and 

process data monitoring, used principal component analysis (PCA) for data 

reduction and feature extraction [199-205]. However, as deep autoencoders 

exhibit superior performance in nonlinear data reduction compared with PCA 

and shallow autoencoders [206], well configured deep autoencoder are be 

employed in the present case. Even though PCA can effectively reduce linearly 

correlated data in certain cases, and there are several applications of PCA, such 

as kernel-PCA for nonlinear dimensionality reduction or manifold learning, an 

autoencoder is the nonlinear generalized version of PCA. Furthermore, 

autoencoders can be applied to the generative model owing to their theoretical 

relationship with the latent variable model [207]. Pdeath images generated from 

CFD gas dispersion models are highly nonlinear owing to complicated 

geometric factors (buildings, mountains, and loads), and it is considerably 

difficult to extract features from them. Thus, a surrogate model based on a 

variational autoencoder [185] is introduced for compressing the output image 

data 𝑥 ∈ ℝ152×200 to the latent space 𝑧 ∈ ℝ1×𝑁𝑧, where Nz is the number of 

latent variables, using a probabilistic encoder (𝑞𝜙(𝑧|𝑥) ) and a probabilistic 

decoder as generator (𝑝𝜃(𝑥|𝑧)) by means of variational Bayes that let the prior 

over the latent variables be the centered isotropic multivariate Gaussian 
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(𝒩(𝑧; 0,1)). Finally, the latent space z is mapped by the variable space 𝑣 ∈

ℝ1×3 for reconstructing the image with v only. 

For developing the surrogate model (𝑓∗(𝑣)) of the CFD gas release model 

( 𝑓(𝑣))  employed by FLACS, a variational autoencoder with deep 

convolutional layer (VAEDC) and a fully connected deep neural network (DNN) 

involving batch normalization layers are used. The input of the original CFD 

model and the VAEDC-DNN surrogate model is represented by 𝑣 ∈ ℝ1×3, that 

is, wind velocity (m/s), wind direction (rad), and gas release rate (kg/s). The 

output of the models is represented by 𝑥 ∈ ℝ152×200 , which is the contour 

image of Pdeath. Thus, the problem can be defined as developing a high 

performance, minimum mean squared error, surrogate model 𝑓∗(𝑣):ℝ1×3 →

ℝ152×200 of the original CFD model 𝑓(𝑣):ℝ1×3 → ℝ152×200 using the pre-

calculated data set of 𝑓(𝑣) . 500 data points are used as training set 

(𝑣train, 𝑥train) and validation set (𝑣validation, 𝑥validation). 50 data points are 

used for testing (𝑣test, 𝑥test) the final metric (mean squared error) between the 

generated image data of (𝑥gen
test) and 𝑥test. 
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- Model architecture 

The proposed surrogate model, VAEDC-DNN, consists of two parts. The 

first part constructs the encoder and decoder using a variational autoencoder 

with deep convolutional layers (VAEDC). The second part maps the variable 

space (v) to the latent space (z) using deep neural networks. This two-stage 

method enables the proposed model to efficiently regress the Pdeath image (x) 

with the variable (v). 

The detailed VAEDC architecture of the encoder and decoder for the 

surrogate model is shown in Figure 3-25. Three convolutional layers with a 

kernel size of (3,3), stride of 1, He initialization, ReLU activation function, and 

padding of the same dimension are used. After each convolutional layer, a max 

pooling layer with (2,2) filters and stride 2 is used for dimension reduction. 

Subsequently, the input layer dimension (152 × 200) is reduced to 19 × 25, 

which is one-fourth of the width and height of the image. Then, the 19 × 25 × 

8 (number of filters) layer is reshaped into 1 × 3800 vectors for constructing a 

3800-128-64 fully connected dense layer with the ReLU activation function. 

The 𝜇 and log(𝜎2) layers in parallel represent the mean and log of variance, 

respectively, of the latent variables. Thus, the dimension of the 𝜇  layer, 

log(𝜎2)  layer, and z layer is 1 × Nz, where Nz is the number of the latent 

variables. After the encoding process is finished, the decoding process is started, 

which is the inverse of the encoding process. Finally, the loss function, which 
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is represented by the variational lower bound, is calculated using 𝑥train and 

𝑥gen
train at the variational layer. 

The detailed DNN configuration for mapping the latent space from VAEDC 

and the variable space (wind velocity, wind direction, and gas release rate) is 

shown in Figure 3-26. A 5-layer fully connected deep neural network with batch 

normalization, ReLU activation function, and He initialization is used for 

mapping the variable space into the latent space. In the training phase, the 

network is trained using 400 resampled training sets (𝑥train
′
, 𝑣train

′
) and 100 

validation sets (𝑥validation
′
, 𝑣𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛

′
) . The mean of the latent variables 

designated as output in this supervised learning is extracted using the encoder 

part of the VAEDC that has already been trained. The variable set 𝑣train
′
 , 

mapped in one-to-one correspondence, is used as input. Finally, in the 

generating phase, the model uses a test set that was not used as training or 

validation set in both VAEDC and DNN. 𝑧test is predicted by 𝑣test and the 

trained DNN, and 𝑥gen
test is generated by the decoder of the trained VAEDC. 

Performance can be assessed by comparing the mean squared errors between 

𝑥gen
test and 𝑥test. 
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Figure 3-25. VAEDC architecture 
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Figure 3-26. DNN architecture for combining with VAEDC 
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- Latent space and variational lower bound estimator 

The loss function is one of the most important settings for constructing 

efficient autoencoders. In this study, the variational lower bound on the 

marginal likelihood proposed by [185] is used. The lower bound is given by the 

following equation: 

ℒ(θ, ϕ; x(𝑖)) = −𝐷𝐾𝐿(𝑞𝜙(𝑧|𝑥
(𝑖))||𝑝𝜃(𝑧)) + 𝔼𝑞𝜙(𝑧|𝑥)[log 𝑝𝜃(𝑥

(𝑖)|𝑧)] [3-56] 

where DKL denotes Kullback−Leibler divergence, 𝑝𝜃(𝑥|𝑧)  is the 

probabilistic decoder with generative parameter 𝜃 , and 𝑞𝜙(𝑧|𝑥)  is the 

probabilistic encoder with variational parameter 𝜙 . Training consists in 

maximizing the variational lower bound on the marginal likelihood of the data 

point i through the variational parameter 𝜙 and generative parameter 𝜃. To use 

this statistical approach in a neural network framework, the loss function is 

defined as 𝑙(𝜃, 𝜙; 𝑥(𝑖)) = − ℒ(𝜃, 𝜙; 𝑥(𝑖))  for converting the maximization 

problem to a minimization problem. Furthermore, to generate samples from 

𝑞𝜙(𝑧|𝑥)  and reparametrize 𝜙  as a multivariate Gaussian with diagonal 

covariance structure with mean ( 𝜇)  and standard deviation ( 𝜎)  of the 

approximate posterior, the following equation is applied to sampling. 

z(𝑖) = 𝜇(𝑖) + σ(𝑖)⨀𝜖  and  𝜖~𝒩(0,1). [3-57] 

This sampling is performed at the z layer which is located after the 𝜇 and 

log(𝜎2) layers in Fig. 3. Previous studies [185] proved that the KL divergence 



 

 258 

can be calculated and differentiated without estimation, and the second term of 

the variational lower bound can be treated as a binary crossentropy loss function. 

Finally, the proposed loss function for VAEDC and the data point 𝑥(𝑖) is given 

by 

𝑙(𝜃, 𝜙; 𝑥(𝑖)) ≃ −
0.5

𝑁𝑧
∑ (1 + log ((𝜎𝑗

(𝑖))
2
)

𝑁𝑧
𝑗=1 − (𝜇𝑗

(𝑖))
2
− (𝜎𝑗

(𝑖))
2
) +

152×200

𝑁train
∑ (𝑥(𝑖) ∙ −log 𝑝𝜃(𝑥

(𝑖)|𝑧) + (1 − 𝑥(𝑖)) ∙ − log (1 −
𝑁train
𝑖=1

𝑝𝜃(𝑥
(𝑖)|𝑧)))   

[3-58] 

 

- Performance evaluation and numerical setting 

It is very important to evaluate the performance of the proposed surrogate 

model correctly. Evaluating the performance using the value of the loss function 

of VAEDC or DNN is inappropriate. The purpose of the surrogate model is to 

predict the Pdeath image correctly using the variable space, rather than merely 

encode and decode the image data or map the variable space into the latent 

space. Therefore, it is necessary to determine whether the latent space 

accurately reflects the features representing the Pdeath image and whether the 

variable space and the generated image data are in one-to-one correspondence. 

That is, it should be ensured that the image data is not simply memorized in the 

latent space or overfitting. Thus, the performance of the surrogate model is not 

evaluated by each loss function of VAEDC and DNN but rather using the mean 
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squared error between 𝑥gen
test  and 𝑥test , where the test set was not used as 

training or validation set in both VAEDC and DNN. Furthermore, for 

comparing the model performance with other types of surrogate models based 

on autoencoder neural networks, a neural network with one hidden layer (NN) 

without autoencoder, a deep neural network with three hidden layers and batch 

normalization (DNN) without autoencoder, NN with simple autoencoder (AE-

NN), NN and DNN with deep autoencoder (DAE-NN, DAE-DNN), NN and 

DNN with deep convolutional autoencoder (DCAE-NN, DCAE-DNN), DNN 

with simple variational autoencoder (VAE-DNN), and DNN with variational 

autoencdoer with deep convolutional layers (VAEDC-DNN) are compared 

using the same hyperparameters (Table 3-14). Detailed architectures and 

summaries are provided in the supplementary file. 

To compare the models fairly, the number of epochs of both the autoencoder 

and neural network was set to 1,500, and the size of the latent space (Nz) was 

set to 32 for all models. The size of the variable space (Nv) was set to 3, i.e., 

wind velocity (m/s), wind direction (rad), and release rate (kg/s). The Adam 

optimizer [190] was used for optimizing loss functions. All models were coded 

using the Python deep learning library Keras with the Tensorflow backend. 

Training was carried out using NVIDIA GeForce GTX 1070 with 8 GB GDDR5. 
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Table 3-14. Summary of various models for comparison (architecture, loss 

function, number of parameters); detailed descriptions are shown in the 

supplementary file. 
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3.4.1.3. Results and discussion 

Various training aspects of the models will be examined through the change 

of each loss function concerning the epoch (Figure 3-27). The maximum epoch 

for all training is set to 1500. If this number does not fit, the training may be 

underfitting or overfitting. This can be determined by comparing the loss 

function of the validation set with the loss function of the test set. As the number 

1500 is set through trial and error, the entire training process is considered 

appropriate for all models. In the case of NN, a significantly unstable training 

process manifests itself as the epoch rises over 70. The prediction of a higher 

dimension from a considerably lower dimension in a fully connected dense 

hidden layer results in an unstable training process because the number of 

parameters (30,434,400) is excessively large and no additional normalization 

process is added. However, it may be used for comparison because the process 

appears to stabilize to some extent as the epoch exceeds 800. Considering DNN, 

which has three hidden layers and batch normalization applied after each layer 

to alleviate the vanishing gradient problem of deep networks, the training 

process is more stable, without overfitting, and exhibits fast convergence. 

Regarding AE-NN, the autoencoder part and the NN or DNN parts should be 

considered separately. In the autoencoder training process, represented by the 

blue line, overfitting occurs slightly after the epoch 100 only in the case of DAE. 

However, in AE, DCAE, VAE, and VAEDC, the value of the loss function at 
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the end of training is highly satisfactory. NN, represented by the red line, 

exhibits a highly stable training process, unlike NN without autoencoder. 

Moreover, there is no difference between the training error and the validation 

error. Therefore, there is no overfitting. In the case of DNN, there is a slight 

vibration in the second half. Nevertheless, it appears to be well trained because 

it exhibits a monotonically decreasing training process, and there is almost no 

difference between the validation error and the test error. However, the lower 

validation error compared with the training error is attributed to the fact that the 

randomly extracted validation sets, 𝑥validation
′
  and 𝑣validation

′
 , contain a 

predictable subset. 
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Figure 3-27. Comparison of epoch vs. loss function graphs for NN, DNN, AE-NN, DAE-NN, DAE-DNN, DCAE-NN, 

DCAE-DNN, VAE-NN, and VAEDC-DNN models. 
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In Figure 3-28, the mean squared error between 𝒙𝐠𝐞𝐧
𝐭𝐞𝐬𝐭 and 𝒙𝐭𝐞𝐬𝐭 for each of 

the 50 newly extracted test data sets (𝒙𝐭𝐞𝐬𝐭 , 𝒗𝐭𝐞𝐬𝐭 ) is shown. The mean and 

standard deviation for all test data sets with Gaussian distribution fitting is also 

provided. The surrogate model constructed using the proposed VAEDC-DNN 

exhibits the highest performance. The mean value is the lowest, at 0.00246, and 

the standard deviation of 50 test data sets is considered the narrowest. That is, 

VAEDC-DNN does not merely memorize the Pdeath image information 

obtained from the training set, but rather has the ability to extract features in 

the most suitable form for the latent space and to map it explicitly to the variable 

space. When NN is used, it can be seen that regardless of the effectiveness of 

the autoencoder compression, performance drops considerably. It can be seen 

that the relationship between the latent space and the variable space is not 

captured clearly. However, performance increases when encoding is such that 

each variable stored in the latent space clearly exhibits nonlinear correlation 

with the variable space. It can be confirmed that performance is improved even 

when NN is used in the order of VAE, DCAE, DAE, and AE. In conclusion, the 

best performance is achieved when VAE-based autoencoder and convolutional 

layers are used. In the case of NN without autoencoder, the number of 

parameters is 30,434,400, whereas in VAEDC-DNN it is 1,007,641, which is 

3.31% of the former. The superior performance may be attributed to efficient 

training and feature extraction with a small number of parameters.
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Figure 3-28. Mean squared error of test set data 
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It should be noted that in terms of the mean squared error, NN and DNN 

without autoencoder appear to perform better compared with several 

combinations of autoencoders and NN. However, if 𝑥gen
test is drawn directly in 

the contour graph, NN and DNN without autoencoder are shown to exhibit 

severe noise. To visualize this, a contour graph of five randomly selected 𝑥gen
test 

generated from FLACS (CFD), which is the ground zero result, NN, AE-NN, 

DAE-DNN, ACAE-DNN, and VAEDC-DNN are shown in Figure 3-29. If NN 

or DNN without autoencoder are used, severe noise appears. This is because it 

is difficult to efficiently extract only the features of the image during the 

training process. Hence, other training data images are memorized and reflected 

in the results. Moreover, owing to the characteristics of highly nonlinear images, 

it is difficult to predict the entire image using the variable space only. Thus, the 

result is quite misleading in some cases, such as the 1st, 3rd, and 5th columns in 

Fig. 7. The noise disappears from the prediction after data compression by the 

autoencoder. However, failure to extract features by the autoencoder and map 

the variable space into the latent space by NN results in deterioration of the 

surrogate model performance. Such phenomena can be observed directly in AE-

NN. The disappearance of noise is important; however, only the approximate 

trends are predictable. In the case of the 2nd column data, prediction is 

considerably inaccurate, whereas in the 5th column data it is highly accurate. At 

this point, it becomes apparent that the introduction of the DNN model with 
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batch normalization model is necessary for improving overall performance. 

Feature extraction should be activated through the deep convolutional layer and 

image compression should be accurately performed with the latent space by 

predicting the posterior distribution through the variational autoencoder. 

Between the two best-performing models, i.e., VAEDC-DNN and DCAE-DNN, 

VAEDC-DNN provides superior prediction compared with FLACS (CFD). In 

the 1st column, Pdeath spreads out slightly to the upper side; it cannot be detected 

by DCAE-DNN, whereas VAEDC-DNN detects it. In the 3rd column, VAEDC-

DNN is nearly matched although the other models cannot clearly predict width 

and size. In 4th and 5th column data, superior feature extraction is exhibited even 

though the shape is complex with many cracking features. Finally, it can be 

seen that a cracked, non-convex, complex image is predicted as well. 
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Figure 3-29. Comparison of generated Pdeath image (xgentest) using vtest with 

FLACS (CFD), which is ground truth, DNN, AE-NN, DAE-DNN, DCAE-

DNN, and VAEDC-DNN. 
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As can be seen by the sentence “walking in the latent space” from [208], 

understanding the landscape of the latent space is highly important because it 

is possible to detect memorization through walking in the latent space. If there 

is sharp image transition, which implies that the latent space is collapsed, the 

model fails to learn relevant and interesting representations. In this study, as the 

variable space has already been mapped into the latent space, “walking in the 

variable space” is suitable for determining whether the manifold is learned. The 

results are shown in Figure 3-30. 
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Figure 3-30. “Walking in the variable space” of a VAEDC-DNN. 
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As the variable space (v) is three-dimensional, the toxic gas release rate 

(discharge rate) is fixed at 50 kg/s, and Pdeath is visualized as a linear series of 

10 points in wind velocity and wind direction. Smooth transitions in all 

directions are observed. Pdeath spreads wider as wind velocity increases, and the 

diffusion direction of Pdeath varies smoothly with wind direction, and the 

topography and obstacles of the region are reflected by the asymmetrical 

movement. Fig. 8 shows that VAEDC-DNN accurately extracts the Pdeath 

features, as it is trained not to merely interpolate and symmetrically rotate the 

wind direction. 

Comparison of computational time, storage space for saving the model, and 

use in real-time alarm systems between the CFD model and VAEDC-DNN is 

given in Table 3-15. In the case of real-time alarm systems, if a chemical release 

accident occurs, then wind velocity, wind direction, and release rate are 

provided to the alarm system from external sensors. Subsequently, Pdeath or 

concentration of toxic chemicals should be calculated. When using the CFD 

model for calculating Pdeath, CPU time is over 700 s using 16 cores of the Intel 

Xeon E5-2667v3 (3.2 GHz) processor; thus, it is impossible to obtain this 

information before golden time (10 min). Moreover, it is difficult to pre-

calculate all scenarios in advance because the storage requirement for saving 

CFD data is on the GB scale per case, and results are usually non-linear via the 

variable space, owing to the complexity of the geometry. Thus, VAEDC-DNN 
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is particularly helpful for developing the surrogate model with a minimum 

amount of pre-calculated CFD data. After training, up to 1 s of CPU time with 

a single core is required. As mentioned above, the non-linear correlation 

between the Pdeath distribution and the geometry effect via the variable space is 

achieved by the variational autoencoder. Hence, with hundreds of pre-

calculated CFD results, VAEDC-DNN successfully predicts the Pdeath contour 

via any variable space. 
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Table 3-15. CPU computational time, storage space for saving the model, and use in real-time alarm systems. 

 CPU time Storage Use in real-time alarm systems 

CFD model ~700 s with 16 cores GB scale 
Thousands of cases are required for predicting all 

variables. 

VAEDC-DNN < 1 s with single core KB scale 
With hundreds of cases, the surrogate model can predict 

all variables. 
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3.4.1.4. Conclusions 

In this study, the CFD model was reduced, and regression was introduced 

through a surrogate model for fast calculation. A variational autoencoder with 

deep convolutional layers was used to extract only key features without noise 

from high-dimensional image data. Thereby, the CFD result data was reduced, 

and features were extracted into the latent space z. Moreover, a surrogate model 

for mapping the variable space v to z using a deep neural network with batch 

normalization was designed. The integrated model, a variational autoencoder 

with deep convolution layers interconnected with a deep neural network 

(VAEDC-DNN), was finally proposed, and the results were remarkable. To 

verify the performance of the proposed surrogate model, a toxic gas release 

scenario in the Mipo complex in the city of Ulsan, Republic of Korea, modeled 

by the commercial CFD software application FALCS was used. CFD modeling 

was based on CAD, reflecting the complex geometry of real industrial 

complexes, and the distribution of the probability of death (Pdeath) was obtained 

as a 2D contour graph by varying v. 500 randomly sampled training sets, and 

100 validation sets were used for training. Furthermore, 50 randomly sampled 

test sets, which were not used for training, were used for performance 

evaluation by comparing the results of the ground truth CFD and those of the 

proposed surrogate model via the mean squared error of Pdeath. For objectivity, 

NN without autoencoder, DNN without autoencoder, AE-NN, DAE-NN, DAE-
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DNN, DCAE-NN, DCAE-DNN VAE-DNN, and VAEDC-DNN were 

compared using the same hyperparameters. The mse of VAEDC-DNN was 

0.00246, which is on average 47.7% as low as that of the other models. 

Moreover, the model yields a fairly accurate prediction of the nonlinearity of 

image cracks and topography. Finally, it is confirmed that image generation is 

not overfitting by data memorization through the smoothness of image 

transition in the variable space. 

The proposed regression methodology has considerable advantages for 

developing the surrogate model when the dimension of the training data is very 

large, which may result in problems related to noise or feature extraction. 

Furthermore, it leads to high-quality surrogate models when the computational 

cost of the original model, such as a CFD-based model, is overly high for real-

time analysis. Therefore, when constructing an early warning system for 

chemical accidents, or when the dynamics of a virtual plant is required at real 

time in the form of a 2D or 3D contour image of the concentration of chemicals 

or temperature profile, compressing the pre-calculated CFD results and 

developing a surrogate model using VAEDC-DNN is expected to have a 

considerable effect. In future work, it is expected that state-of-the-art generative 

models, such as boundary equilibrium generative adversarial networks 

(BEGAN), will be used for generating images with sharp edges for more 

complex features.  
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 Industrial Applications 

4.1. Optimal Design and Operation of Fischer-Tropsch 

Microchannel Reactor for Pilot Scale Compact Gas-to-

Liquid Process  

A pilot scale (1.0 BDP) compact GTL process comprising of reforming 

section, CO2 separating section and Fischer -Tropsch (FT) synthesis section is 

presented. Systematic design procedure adopted for the design of a modular 0.5 

BPD microchannel FT reactor block design consisting of 528 process channels 

is described. On average 98.27% CH4 conversion to syngas in reforming section 

comprising of a pre-reformer unit and a tri-reformer unit, CO2 separation rate 

of 36.75 % along with CO/H2 reduction from 2.67 to 2.08 in CO2 membrane 

separation section comprising of three membrane separators, for the entire plant 

operation duration of 450 hr demonstrated successful and stable operation of 

pre-processing sections of the present pilot-scale compact GTL process. 

Parallel operation of FT microchannel reactor and multitubular fixed bed type 

FT reactor proved failure for latter due to reaction runaway, while the former 

showed stable operation with high CO conversion of 83% and successful 

temperature control (at 220 oC, 230 oC, and 240 oC during the 139 hr operation), 

which demonstrated the appreciable performance of KOGAS-SNU novel 

microchannel FT reactor. 
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4.1.1. Pilot scale compact GTL process 

The present KOGAS-SNU collaboration project "GTL Pilot Plant Operation 

and Technology Enhancement Project" works on technology development for 

compact GTL process mainly targeting for offshore and small to mid-scale gas 

field application. The process consists of syn-gas reformer units, CO2 

membrane separator units, NG supply tanks (supplied from LNG storage tank 

in Incheon, South Korea), and an integrated FT reactor that produces synthetic 

crude oil through FT reaction. FT reactor being at the core of GTL process, the 

main focus of the work was on the design of modular FT microchannel reactor 

block suitable for small- to medium-sized gas fields where one reactor module 

can produce FT product up to 0.5 BPD. Accordingly, a novel modular 

microchannel FT block reactor was developed in-house following a rigorous 

deign procedure. The microchannel block reactor is expected to miniaturize FT 

synthesis with nearly 100 times heat exchange capacity compared to the 

conventional fixed bed type FT reactor, as supported by several literatures [12-

14, 209]. Like Velocys®, the pioneer company for microchannel FT reactor 

based small-scale GTL process, the capacity of present pilot scale compact GTL 

process can be scaled up by numbering up the the block reactor modules. This 

allows microchannel reactors to have flexibility in their desired production 

capacity. Additionally, block-type micro-channel reactors are also effective for 

reactor scale-up in offshore environments where ocean wave motion can affect 
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the reaction performance [9]. The tri-reformer section in the present compact 

GTL process however used a vessel type reformer, but since the total height is 

designed to be within ~ 3 m, the tri-reformer unit does not nullify the 

advantageous feature of block-type microchannel reactors in the context of 

offshore application. 
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Figure 4-1. Overview of KOGAS compact GTL pilot plant (1 barrel per day) involved a) reformer section, b) CO2 

membrane separation section, and c) FT reactor section. 
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Figure 4-2. Process flow diagram of the compact GTL process which involves unit processes of reformer, CO2 separation, 

and FT reaction process. 
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Overview of the KOGAS GTL pilot plant is shown in Figure 4-1 and Figure 

4-2 shows the process flow diagram of the overall compact GTL process. The 

process can be divided into three processing sections, namely, reforming 

section, CO2 separating section, and FT reaction section. Boiler feed water, 

natural gas, CO2, and O2 are the feed materials. These feed materials are 

converted to syngas (mixture of CO and H2) by the reforming section which is 

then passed as feed to the FT reaction section after removing CO2 in the CO2 

membrane separator section. The reforming section consists of pre-processing 

units (B-1, B-2, B-3, T-1, T-2, T-3, E-1, E-2, E-3) to heat up, mix and pressurize 

the feed natural gas, and a pre-reformer and a tri-reformer unit to convert feed 

natural gas to syn-gas (mixture of CO and H2). First. boiler feed water (BFW) 

is received by a make-up tank (T-1) which is then pumped (by P-1) to the steam 

generator (E-1) where it subsequently becomes steam after passing through a 

waste heat boiler located at the bottom of the tri-reformer. Natural gas is 

supplied from an LNG storage tank located outside the pilot plant facility at 

KOGAS and is mixed with steam at the upstream of pre-reformer. CO2 and O2 

supplied to the reformer section requires booster (B-2, B-3) to increase flow 

pressure to that of feed gas stream to tri-reformer in order to mix with the feed 

gas stream before entering the tri-reformer. O2 supply in this case does not 

require an electric heater as it exchanges heat in heat exchanger (E-6) with the 

hot stream coming out from tri-reformer. Equations [4-1]-[4-3] show the 

reactions in the conventional process of steam reforming of methane (SRM), 
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the carbon dioxide reforming of methane (CDR), and the partial oxidation of 

methane (POM), respectively.  

CH4 + H2O ↔ CO + 3H2  ∆H298
o = 206.3 kJ/mol   [4-1] 

CH4 + CO2 ↔ 2CO + 2H2  ∆H298
o = 247.3 kJ/mol                            [4-2] 

CH4 +
1

2
O2 ↔ CO + 2H2  ∆H298

o = −35.6 kJ/mol  [4-3] 

The tri-reforming process of methane (TRM) proposed by Song and Pan 

[210] is considered suitable for GTL process, because in their case, the three 

reforming reactions occur simultaneously making it easier to control syngas 

ratio (H2/CO) in tri-reformer product. Inappropriate H2/CO ratio is the main 

factor for coke formation that can occur in processes that use syngas as feed, 

such as dimethyl ether (DME) production, GTL, biomass-to-liquid (BTL) and 

coal-to-liquid (CTL) [210-213]. In the present compact GTL process, boiler 

feed water converted to steam along with natural gas, CO2, and O2 are reacted 

in the pre-reformer with ReforMax 100 (Sud-Chemie catalyst) and the tri-

reformer with KDN-1 (Ni-Mg/Ce-ZrO2/γ-Al2O3 based tri-reformer catalyst) 

developed by KOGAS to produce the syngas. The reaction temperature of the 

pre-reformer was maintained between 400-420 ° C and the temperature of the 

heterogeneous zone of the tri-reformer was maintained between 900-1000 ° C. 

High-temperature of the tri-reformer product is reduced to a much lower 

temperature (~25 oC) suitable for CO2 membrane separating section by first 

exchanging heat with O2 supply to reforming section and then subsequent 

cooling using chilled water.  
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In the tri-reformer, in addition to SMR, CDR and POM reactions, methane 

combustion also occur at the high reaction temperature of tri-reformer. This 

lead to excess CO2 in the tri-reformer product stream. 

CH4 + 2𝑂2 ↔ 𝐶𝑂2 + 2𝐻2𝑂  ∆𝐻298
𝑜 = −880

𝑘𝐽

𝑚𝑜𝑙
                            [4-4] 

However, in the FT reaction, excessive CO2 act as an inert gas, like N2 in 

the CO/Al2O3 based catalyst, and the reaction conversion gets dominated by 

undesired methanation reaction [209]. Syngas feed to the FT reactor along with 

excess CO2 would require reactor size to increase drastically, in addition to 

promoting undesired methanation reaction. Therefore, CO2 membrane 

separator section is introduced to lower the CO2 concentration to less than 10 

mol%. Three membrane units (M-1, M-2 and M-3) are connected in tree fashion 

so that the permeate of M-1 is transferred to M-3 andthe retentate is transferred 

to M-2.The permeate of M-3 which contains excess CO2 gas is vented out. 

Alternatively, the permeate of M-3 can be recycled to the tri-reformer unit by 

combining with the main CO2 feed stream to tri-reformer. The retentate of M-3 

and the permeate of M-2 are combined and recycled to M-1 using the gas 

compressor to minimize H2 and CO losses. Finally, the retentate of M-2 showed 

a CO2 removal efficiency of the CO2 membrane separation section upto 36.8-

39.4% leaving the syngas stream composition with an average CO2 content of 

~ 10%. The syngas purified using the CO2 membrane separation section of the 

pilot plant has H2/CO ratio ~2, which is a necessary condition for high FT 

reaction conversion and desired selectivity [214]. The purified syngas enters 
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the FT reaction section of the pilot plant comprising of a microchannel block 

FT reactor and a multitubular fixed bed type FT reactor connected in parallel 

for performance comparison. Both microchannel FT reactor block and a 

multitubular fixed bed type FT reactor were maintained at the same operating 

conditions of 20bar, 220 oC and GHSV = 2500 hr -1. A hydrogen (H2) gas 

cylinder is connected to reaction system to reduce the FT catalyst needed for 

FT reaction. A nitrogen (N2) gas cylinder is also connected to the reaction 

system to act a diluent and to be used in the calculation of CO conversion and 

CH4 selectivity by gas chromatography later. Both H2 and N2 are heated to the 

FT reactor operating temperature through a gas heater (E-8). Cobalt based 

catalyst with alumina support (12 wt% Co / γ-Al 2 O 3), developed by KOGAS, 

was used for the FT reaction along with alumina ball as inert packing material. 

In lab-scale experiment, incipient wetness impregnation (IWI) was performed 

to produce the catalyst in gram scale (detail information of catalyst with 

reaction  kinetics is reported in [31]). However in pilot scale operation, 

because of necessity of industrial scale production, spray coating method was 

used for producing the catalyst in kilogram scale. Products of the FT reaction 

were collected as light oil, wax and gas after passing through 1st and 2nd decanter 

(T-10 and T-11 for light oil and gas) and wax-receiving drum (T-12 for wax). 

The gas is then sent to GC analyzer for analyzing the gaseous products.  

In addition to the development of an integrated and compact GTL process, 

present work also includes the design of a corrugated fin-type microchannel FT 
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reactor block suitable for the process. Therefore, the present GTL technology 

development requires consideration of both process and reactor design along 

with the analysis for optimal operating conditions for the reactor. Furthermore, 

to our knowledge, literature on combined work for design, fabrication and 

operation of pilot scale microchannel reactors is limited. Therefore, it is 

imperative to organize the sequence of studies conducted in the design process. 

In the next section, we explain the design procedure followed in the present 

study to achieve the final design of microchannel FT reactor block used in the 

pilot plant demonstration. 
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4.1.2. Microchannel FT reactor design 

The work presented in Chapter 4.1.2 has been submitted to Chemical 

Engineering and Processing: Process Intensification with KS. Kshetrimayum 

(joint first author). Furthermore, this section was used in Ph.D. thesis of KS. 

Kshetrimayum (“Modeling, Simulation, and Design Procedure Development of 

Micro-channel FT Reactor using Computational Fluid Dynamics”). Thus, I 

exclude this Chapter in my thesis. Especially, specific data (Figure 4-5 and 

Figure 4-6) are shared with him under his consent. 
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4.1.3. Pilot plant experiment 

- Pilot plant setup 

The pilot scale GTL process experiment was performed through three 

operating sections reformer section, CO2 membrane separation section, and FT 

Synthesis section. Tri-reformer for the reformer section was made by stainless 

steel with shell side and jacket side. Al2O3 ball was packed on the top of the 

reactor, KDN-1 (Ni-Mg/Ce-ZrO2/γ-Al2O3 based tri-reformer catalyst 

developed by KOGAS) was packed in the middle of the reactor, and Al2O3 ball 

was packed at the outlet region of the reactor. Operation temperature and 

pressure were set to 900-1000oC and 25 bar respectively. Average pressure drop 

was 25 kPa through the overall Tri-reformer section. In case of pre-reformer, 

Al2O3 ball was packed on the top of the reactor, ReforMax 100 (Sud-Chemie) 

was packed on the middle of the reactor, and Al2O3 ball was packed on the 

bottom of the reactor. Operation temperature and pressure were set to 400-

420oC and 27 bar respectively. Total operation time of reformer section, 

including the reformer ignition start up time, was 450 hr. At the ignition 

condition, GHSV was about 1567 hr-1, mass flow rate of steam was 9.8 kg/hr, 

and volumetric flow rate of natural gas and oxygen were 4.8 and 4.5 Nm3/hr 

respectively. 

In the case of CO2 membrane separation section, total operation time was 

188 hr for microchannel reactor and 134 hr for multitubular packed bed reactor. 
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Average pressure of M-1 rententate, M-2 permeate, M-3 retentate, and M-3 CO2 

exhaust were 22.5 bar, 6.0 bar, 6.5-7.0 bar, and 0-0.1 bar respectively. For 

increasing the CO2 removal efficiency, recycle loop with gas hold up tank (T-

8), gas compressor (C-2), and gas cushion tank (T-9) was designed and stream 

was merged into the inlet stream of M-1. Target syngas ratio after membrane 

section was set to about 2.0. 

Two FT reactor, microchannel (FT-2) and multitubular fixed bed type (FT-

1), were installed in parallel for comparing the performances. Microchannel FT 

reactor core was made by 316L stainless steel with 285×295×460 mm. There 

were 528 reaction channels in total, and the specification of each channel was 

5 mm in height, 10 mm in width and 460 mm in length. Both the inlet and outlet 

region (about 30 mm on both sides) of the reactor was filled with Al2O3 balls, 

and GL-3000S (12 wt% cobalt catalyst supported on 1 mm γ-Al2O3 developed 

by KOGAS) was prepared for packing 400 mm of reaction channel. 

Multitubular fixed bed FT reactor core was made by stainless steel for shell side 

and high pressure steel pipe for tube side. Diameter of the reactor core was 300 

mm and total length was 1815 mm. Diameter of each tube was 33.4 mm and 

length was 1200 mm and the number of the tube was 33. The inlet and outlet 

region of the reactor was filled with Al2O3 balls, and GL-3000S was prepared 

for packing at the middle of the reactor. Target operating temperature and 

pressure were set as 220-240oC and 20 bar respectively. For the cooling system, 
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silicon based cooling oil, Syltherm 800®, was circulated at the flow rate of 200 

L/min with non-seal hot oil circulating pump (P-2). Hot oil receiver with 9 kW 

heater (E-9) and 9 kW hot oil 2nd heater heated up the coolant. Gas 

chromatography (YoungLin YL6100GC) with the 45/60 molecular sieve 13X, 

80/100 PORAPAK N 10 ft×1/8 in, thermal conductivity detector (TCD) and 

flame ionization detector (FID) was installed after the 2nd decanter (T-11) for 

analyzing the gaseous components (CO, N2, CH4, and CO2) of the FT reaction 

products. Locations of the thermocouples installed in the microchannel FT 

reactor for sensing the local temperature inside the reactor are indicated in the 

front view of the reactor, as shown in Figure 4-3. For reducing and rinsing the 

catalyst, H2 and N2 were supplied from a H2 cylinder and a N2 cylinder kept 

near the reactor set-up. Downstream end section of the compact GTL process 

consisted of decanter (T-10, T-11) and wax receiving drum (T-12) 
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Figure 4-3. Location and index of the thermocouples (TC-(1-7)) in the front 

view of the reactor. 
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4.1.4. Result and discussion 

First, the composition of the syngas stream coming out from reformer 

section and passing through CO2 membrane separation section is checked 

before feeding to the FT reaction section. The temperature data from three 

thermocouples (TC-RE1, TC-RE2, and TC-RE3) located in the heterogeneous 

zone of the tri-reformer is shown in Figure 4-4. It can be seen that after the auto 

ignition reaction (AIR) was successfully performed and stabilized, the 

thermocouple located in the heterogeneous zone of tri-reformer shows 

temperature between 900-1000 oC. From the composition data of tri-reformer 

exit, it can be seen that an average of 98.27% CH4 is converted to syngas 

(mixture of H2 and CO) with syngas ratio (H2/CO) as 2.67 on average. In fact, 

H2/CO ratio in the initial AIR reaction is 9.34, but once the tri-reforming 

process is stabilized (after 24 hr operation), the H2/CO ratio decreases to an 

average value of 2.67 and remain static for rest of the operating hours, as can 

be seen in Figure 4-4. The average CO2 molar composition at the tri-reforming 

exit is 16.44%. This percentage of CO2 in the syngas stream is unsuitable for 

FT reaction and should be removed through the CO2 membrane separation 

section. The average CO2 molar composition in the exit stream from CO2 

membrane separation section is 10.58%, showing a CO2 removal rate of about 

36.75%. In this particular CO2 separation process, non-polar CO2 is removed 

by the selective permeability of the membrane. However, non-polar H2 also gets 
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removed at the same time through a small portion of the membrane, thereby 

reducing the overall H2/CO ratio to an average value of 2.08, which is 

appropriate value for low-temperature FT reaction. And, as can be seen from 

Figure 4-4, the reforming section and the CO2 separation section, which are the 

pre-processing sections for the FT reaction section, were operated stability till 

280 hr without large variations while FT reaction section was operated from 

140 hr to 270 hr. This clarifies the fact that syngas supply to the FT reaction 

unit was stable during the entire duration of FT reactor operation. 
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Figure 4-4. Temperature and composition profile after starting the operation 

of reformer and CO2 membrane separation sections. 
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To compare the performance of the two types of FT reactors based on the 

thermal control , data from thermocouples installed inside the microchannel 

reactor (TC- (1-7)) as indicated in Figure 4-3 and data from the thermocouples 

installed inside the central tube of the multitubular fixed bed reactor (TC-FB1 

and TC-FB2 located at the 2nd and 3rd segments of the 10 segments divided 

along the longitudinal direction of the tube) are compared, as shown in Figure 

4-5. First, the temperature of the microchannel reactor was increased to 220 oC, 

followed by step increase to 230 oC and 240 oC in order to determine whether 

the runaway reaction occurred or not. Even though the syngas inlet temperature 

(TC-6) is higher than the target reactor temperature (by more than 10 oC), the 

enhanced heat transfer capability of the microchannel reactor system can easily 

bring down the syngas temperature to the target reactor temperature before 

entering the reactor core. It is noteworthy that because TC-3, TC-4, and TC-7 

are installed at the entrance of the reactor, reactor area is large since it is a pilot 

scale, uniform gas inlet distribution fails, and with the highly exothermic nature 

of FT reaction, it is possible that temperature fluctuation could occur with large 

heat generation, but temperature shows fluctuation within 1 oC. The syngas 

outlet (TC-5) temperature profile is similar to that of other temperature sensors 

and is much lower than the syngas inlet, which is an evidence that there was no 

undesired heterogeneous heating phenomena near the position of the 

thermocouples. Moreover, no runaway reaction occurred even when the 

operating temperature was increased to 240 oC and inlet syngas temperature to 
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250 oC, which indicates that developed microchannel FT reactor is robust even 

at high temperature operation. However, in the multitubular fixed bed FT 

reactor, unlike microchannel FT reactor, hot spot at the front region of the 

reactor was observed, as shown by the thermocouple (TC-FB1) data in Figure 

4-5, indicating a condition of runaway reaction. When the operating 

temperature was increased from 220oC to 230oC, TC-FB1 showed rapid rise in 

temperature to about 395oC indicating a surge in exothermic reaction at that 

condition. Even when the temperature of the coolant supplied to the 

multitubular fixed bed reactor was kept much lower compared to that of coolant 

supplied microchannel reactor, the low heat removal efficiency of multitubular 

fixed bed reactor system could not prevent the runaway reaction from appearing. 

During the runaway reaction, the catalyst inside the multitubular fixed bed 

reactor got deactivated resulting to the eventual disappearance of FT reaction 

in the reactor. Accordingly, multitubular fixed bed reactor was shut down for 

safety and economic reason. 
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Figure 4-5. Reactor temperature of the microchannel FT reactor and 

multitubular fixed bed FT reactor as given by thermocouples installed inside 

the reactors. 
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Therefore, it can be understood that temperature data from multitubular 

fixed bed reactor suggest that smaller tube diameter (smaller than 5mm 

diameter of the present tube) may provide higher heat removal capacity needed 

to control reactor temperature of multitubular type FT reactor. Also, in the 

coolant oil circulation system of the present FT reaction section, there is no 

cooling facility in the hot oil return line. This can prove to be a disaster in the 

reactor operation should the temperature of the catalyst layer rises rapidly due 

to a rapid exothermic reaction as the reaction heat cannot be removed abruptly. 

Therefore, it is necessary to provide additional cooling facility in the hot oil 

return line or dilute the catalyst loading to avoid excessively high reaction rate. 

On the other hand, temperature data from microchannel reactor operation 

showed safe and stable operation, adequate control of reactor temperature, 

while still achieving high CO conversion for the entire duration of reaction 

operation (140 hr to 270 hr), as shown in Figure 4-6. Microchannel FT reactor, 

therefore, proved to be more advantageous compared to multitubular fixed bed 

FT reactor in terms of FT reactor performance. Accordingly, a microchannel FT 

reactor may be used to achieve efficient and safer operation of small scale 

compact GTL plant. Additionally, although not conducted, in the present pilot 

scale demonstration set-up, since both microchannel FT reactor and multiubular 

fixed bed type reactor are installed in parallel, replacing the latter with second 

module of the former should make the productivity of 1 BPD (two 0.5 BPD 

modular microchannel reactor in parallel). 
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Figure 4-6. CO conversion and CH4 selectivity of compact GTL pilot plant 

with microchannel FT reactor in the FT reaction section. 
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Finally, we evaluate the performance of the microchannel FT reactor based 

on CO conversion and CH4 selectivity. The CO conversion is calculated by 

indirect measurement of the absolute molar composition of CO at the inlet and 

outlet of the reactor given by the GC analyzer and using inert N2 gas from the 

GC data as the baseline. The average CO conversion is estimated to be about 

83.54%. Although temperature affects the CO conversion [2, 16, 24, 215], in 

the present pilot plant operation, it is difficult to notice the effect of operating 

temperature change on CO conversion as there are no clear cut shift in the value 

of CO conversion time series data. There are several peaks with low conversion, 

but the reason for the existence of these peaks is believed to be due to the 

fluctuations in flow and conversion rates in the reformer section. However, the 

conversion rate in the present pilot plant operation (83.54 %) is higher than the 

values (65 - 78 %) reported from both commercial and lab scale FT synthesis 

operation. This higher value of CO conversion achieved in the present pilot 

plant operation may be due to the fact that the syngas injection rate into the 

reactor (GHSV = 2500 hr -1) was much lower than the GHSV value of 4000 

ml/gcat ∙ h used in the simulation [31]. Experiments using the same catalyst 

showed a conversion rate of 42.00% at 4000 ml / gcat · hr at 220 oC on a lab 

scale [31]. However, in the KOGAS compact GTL pilot plant, due to the 

efficiency and design limitations of the reformer and the CO2 membrane section, 

the space velocity set to 2500 ml / gcat · hr. This GHSV is low but the 

conversion is overwhelmingly high. Consequently, heat produced by the 
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exothermic reaction would be higher. Assuming that the total enthalpy change 

is directly proportional to the mole of CO converted, rate of heat produced for 

the GHSV used in the present pilot plant operation can be obtained as 𝑛̇CO ×

𝑋𝐶𝑂 × 165
kJ

mol CO
 [14] which gives around 15 kW. But because heat removal 

performance of the in-house designed microchannel FT reactor is efficient, the 

reactor temperature control was excellent in the pilot plant experiment. 

Although operation with higher values of GHSV was not conducted due to high 

operation cost (approximately 100,000 USD per run), we expect that there will 

be no heat removal problem with the present microchannel FT reactor block 

even if FT synthesis operation were carried out with increased value of GHSV. 

However, it is possible to have an argument for the unchanged conversion 

although thermocouple indicated increased temperature because there can be 

uncontrolled reactions at any location inside the reactor. Even though all 

thermocouples show no high temperature that indicates hot spot or run away 

reaction, hot spots or runaway reaction can develop somewhere inside the 

reactor which is likely to be missed by the thermocouples installed at the front 

region of the reactor. Moreover imperfect distribution of inlet syngas can 

accelerate the uncontrolled kinetics because we did not performed the optimal 

design simulation of the inlet part of the reactor. Thus, in the future research, 

penetrated method for sensing the temperature of the reaction channel and the 
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method or simulation for checking the gas distribution performance should be 

performed.  

In the case of CH4 selectivity, the average selectivity is 50.13% much higher 

than value of 10-20% obtained in our lab scale experiments [31]. Compared 

with lab scale, the higher CH4 selectivity can be obtained on a normal pilot scale, 

but the CH4 selectivity obtained in this experiment is undesirably high and 

needs to be lowered. Multiple reasons exist for the CH4 selectivity in the present 

pilot-scale experiment to be undesirably higher than that of our lab scale 

experiments. One obvious reason is the fact that the residence time for the 

syngas flow in the present pilot plant operation was much lower compared to 

the our lab-scale experiment. If the residence time is insufficient, the CH4 

selectivity is expected to increases as there is no sufficient time for the carbon 

chain growth [216]. Second reason could be the fact that in our lab scale 

experiment, incipient wetness impregnation (IWI) was used for producing the 

catalyst in gram scale. However, in pilot scale, because of necessity of industrial 

scale production, spray coating method was used for producing the catalyst in 

kilogram scale. And the third reason could be that Al2O3 support diameter of 

pilot scale operation was about 1 mm, which is much bigger than the dimeter 

of Al2O3 support used in our lab scale (100 μm scale). This difference in catalyst 

support diameter can make approximately 10 times difference in the catalyst 

surface area per unit volume, thereby reducing the catalyst activity significantly. 
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Additionally, the bigger catalyst support size does not allow Co particles to 

sufficiently penetrate into the support pores. Therefore, due to low effective 

residence time of syngas, less effective method of catalyst material coating and 

bigger catalyst support size, much higher value of CH4 selectivity was obtained 

although nearly constant value of GHSV and CO mass fraction was maintained 

during the entire operating hours. Yet another reason could be the fact that the 

plant was operated at conditions corresponding to high CO conversion. As 

commonly known with FT reaction, CO conversion and the product selectivity 

are strongly related to the process operating conditions. In the present pilot plant 

operation, operating time at 220 oC was relatively low compared to that of 230 

oC and 240 oC, thereby making overall CO conversion unreasonably high. And 

it is generally agreed that high CH4 selectivity is generated for high CO 

conversion [217] .  

The final reason for obtaining undesirably high CH4 selectivity in the 

present pilot plant operation is expected to be the improper method of catalyst 

reduction. In the present pilot plant experiment, the catalyst was reduced at 300 

oC using only H2. However, D.B. Bukur et al. [218] identified with their Fe-

based FT catalyst that more CH4 and gaseous hydrocarbons are obtained if the 

catalyst is reduced only with H2 reduced compared to that of carbon monoxide 

or syngas reduced catalysts. In Co-based FT catalyst too, it is reported that 

lower CH4 selectivity, and good catalyst stability can be achieved by using 
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syngas rather than pure H2 for catalyst reduction prior to actual FT reaction 

[219]. Moreover, it is also reported that low catalyst reduction temperature 

cannot reduce catalyst sufficiently. In our present pilot plant experiment, to 

avoid excessive vaporization and subsequent increase in pressure over 20bar of 

the coolant medium, temperature was not increased over 300 oC during the 

catalyst reduction process. Therefore, assuming that all the reasons discussed 

are applicable to the present method of catalyst preparation, catalyst pre-

processing and reactor operation in order to reduce high CH4 selectivity 

following practices are recommended; 1) reducing the catalyst with syngas, 2) 

increasing the reduction temperature above 300 oC, 3) producing the catalyst 

with IWI method, and 4) operating with moderate value (below 80 %) of CO 

conversion. 
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4.1.5. Conclusion 

A pilot scale compact GTL process is operated using an in-house designed 

microchannel reactor block as the FT synthesis unit. Process description of the 

present pilot scale compact GTL process comprising of reforming section, CO2 

separating section and FT synthesis section are presented. Systematic computer 

aided engineering design procedure adopted for a modular 0.5 BPD 

microchannel FT reactor block design (285 mm × 295 mm × 460 mm) 

consisting of 528 process channels is described in the form of design procedure 

flow-chart. Reforming section comprising of a pre-reformer unit followed by a 

tri-reformer unit achieved an average value of 98.27% CH4 conversion to 

syngas. CO2 membrane separation section comprising of three membrane 

separators achieved separation rate of 36.75% along with successful reduction 

of CO/H2 ratio from 2.67 to 2.08, a value desired in low temperature FT 

synthesis. Temperature data from thermocouples installed inside both 0.5 BPD 

modular microchannel and packed bed type FT reactors operated in parallel 

showed stable temperature control for microchannel FT reactor for the entire 

plant operation up to 270 hr, while the multitubular fixed bed type FT reactor 

operation failed due to reaction runaway. From the modular microchannel FT 

reactor operation, although undesirably high value of CH4 selectivity (50.13%) 

was obtained from the plant operation, high CO conversion of 83% and stable 

temperature control at 220 oC, 230 oC and at 240 oC during the entire pilot plant 
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operation (140 hr to 270 hr ) demonstrated the appreciable performance of 

KOGAS-SNU novel microchannel FT reactor. Reasons for undesirably high 

value of CH4 selectivity are mostly reactor operation related rather than the 

design related. Accordingly, following practices are recommended to achieve 

appreciable CO conversion with low CH4 selectivity: reducing the catalyst with 

syngas, increasing the reduction temperature above 300 oC, producing the 

catalyst with IWI method, and operating with moderate value (below 80%) of 

CO conversion. Furthermore, penetrated thermocouple for sensing reactor 

inside temperature should be developed for microchannel reactor for 

understanding precise temperature profile and further study related to distribute 

inlet syngas uniformly which can be related to uniform packing of catalyst must 

be performed for more controllable reactor. Further, the compact GTL process 

described, the systematic modular microchannel reactor design procedure and 

pilot plant operation data presented in the present paper may serve as a general 

guideline in similar future works on pilot scale reactor model development, 

design and operation. 
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4.2. Industrial scale (40 tonCO2/day) CCUS 

carbonation reactor geometry design optimization 

Using the reactor modeling in Section 2.3, the design of the CCUS direct 

carbonation reactor, a 40 tonCO2/day class, was carried out with Daewoo E&C. 

It is aimed to find the optimal reactor structure design and operating condition 

by analyzing the base case for reactor designed with approximate heuristic 

through various computer-aided engineering techniques. The design 

specifications sought by the reactor must first satisfy the inlet gas flow rate of 

7000 Nm3 / hr and the temperature inside the reactor to 80 oC. Also, the CO2 

concentration is 15 mol%, which is higher than the general incinerator and 

seems to be about the average of coal-fired power plants. The solid 

concentration before the reaction is 28.7 wt% of the total reaction agent, and 

after the reaction is completed, including the amount of precipitated calcium 

carbonate, solid concentration is increased to 36.1 wt%. The resulting solution 

is an opaque white liquid with a density expected to be about ~ 1.3 tonnes / m3. 

We tried to find the maximum value of the solid suspension by fixing these 

external conditions and taking into consideration various variables such as the 

speed, position, number and baffle of the stirrer, and addition of the slope 

structure under the reactor. 

To evaluate the degree of solid suspension, which is the primary purpose of 

this paper, it is necessary to measure quantitatively the solid suspension degree. 
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As a measure of these, just-suspension speed (Njs), solid distribution, and cloud 

height are often used [220]. Njs is the impeller's speed (rpm) that ensures that 

all solids stay on the floor for a second or more. However, even though there 

are no settled solid particles, further analysis of the solid distribution is 

necessary because the distribution throughout the reactor may be uneven. Also, 

because the height at which a solid can be maximally floated is limited, its 

height is expressed as cloud height (Hc). Cloud height is defined as the point at 

which the liquid-solid mixture is separated from the clean liquid. As a concrete 

value, the average height is calculated as the maximum height of the isosurface 

where the average solid fraction is achieved [55]. If the cloud height is 

explicitly present, the cloud height is maximized, and the efficiency of the 

reaction can be increased since it is the dead space above which no reaction 

occurs. In this study, Njs, which cannot be directly measured using normal-state 

CFD calculations, was not analyzed, but solids distribution and cloud height 

were directly measured and analyzed. First, we set 50 height points (0 m to 2.45 

m at 0.05 m intervals) in a 2.5 m height reactor, calculate the average solid 

fraction at each height point, and calculate the standard deviation (STD) for 

quantifying the solid distribution. If the deviation of the solid fraction along the 

height direction is large, the STD value becomes large. For example, in Figure 

2-16, the STD value decreases as the solid volume fraction changes with reactor 

height. Also, the cloud height was determined by measuring the highest height 
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of the isosurface (Figure 4-7), which achieved 5% of the total solid volume 

fraction throughout the reactor.  



 

 309 

 

Figure 4-7. Visualization of cloud height of solid-liquid multiphase reactor 
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4.2.1. Design procedure and simulation set-up 

To optimize the design of the reactor, the method used in this study is 

computer-aided engineering, the 3D geometry is computerized, meshing is 

performed, and the reactor is analyzed by CFD model. In this process, reactors 

of various structures and conditions can be tested, and the reactor with the best 

performance can be selected. In this research, solid suspension, bubble 

dispersion, and bubble residence time are the most important design objectives. 

All of these values must be high enough for the reactor to have maximum 

Ca(OH)2 dissolution and CO2 mass transfer.  

In order to accomplish this, we tried to find the optimal combination by 

conducting the screening work for the second time. First, we analyze the 

influence of the overall design variables on the 22 cases of the first order, select 

the conditions that showed the best performance among them, and make a new 

combination to perform the second design analysis.  

The core design variables are 1) impeller geometry involving axial type 

which gives vertical flow, radial type which gives horizontal flow, and pitched 

blade type which gives horizontal and vertical flow at the same time. 2) The D 

/ T ratio, which is the diameter ratio of the stirrer to the diameter of the reactor, 

is also one of the most important design parameters. 3) The number of the 

impeller layer is also very important. The number of impellers involved has a 

great influence on the back mixing and affects the retention of the reactants. 
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Also, 4) the spacing between the impeller layers is also important. If the spacing 

is too long, the effect of the multi-layer impeller is significantly deteriorated. If 

the spacing is too short, the mixing loop is broken, and the flow becomes 

ineffective. 5) The impeller angular velocity is the most important value that 

can be overestimated without too much emphasis. 6) Finally, the presence of 

the baffle and the length are important, and they must be analyzed because the 

internal reactor flow forces them to have a rising fluid flow that affects the 

ability of solid particles to rise upwards. The combination of each variable is 

shown in Table 4-1. 

The Eulerian-granular multiphase model (2.3.2) was used for the solid-

liquid model and the Eulerian multiphase model for the gas-liquid model.  
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Table 4-1. Variables specification. 

Impeller 
Baffle 

Type # Clearance D/T Rpm 

Radial Triple* Lowa Smallc 30* Base*,e 

Mix    60 Longf 

PBT* Dual Base* Base*,d 90 Long & Wideg 

*indicates the values constituting the base case, aC1=0.46T, C2=0.21T, bC1=0.54T, C2=0.29T, cD=0.33T, dD=0.5T, 
eh=1.95 m, d=100 mm, fh=2.5 m, d=100 mm, gh=2.5 m, d=250 mm, all variables are describe in Figure 2-13 
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4.2.2. Result and Discussion 

The results are introduced first in the 1st design case and then in a way to 

explain the new 2nd design case selected. Table 4-2 shows the results of all 1st 

design cases.  

First, the analysis results of gas-liquid fluid dynamics are as follows. Eight 

models with changes in RPM (0 rpm, 30 rpm, 90 rpm), impeller type change 

(PBT, Radial impeller), impeller diameter change (D / T = 0.33, 0.5), impeller 

clearance change did not have a meaningful effect on residence time. Turning 

the RPM to 60 rpm or more causes surface vortex, which reduces the residence 

time and also the gas dispersion inside the reactor. If we lower the clearance, 

decrease the D / T to 0.33, or change it to a radial impeller, the surface vortex 

disappears, but the residence time or gas dispersion is worse than the 0, 30rpm 

model. When the power consumption, residence time, and gas dispersion were 

taken into consideration, the model with the rpm reduced to 30 rpm in the base 

case and the model with the D / T reduced from 0.5 to 0.33 were most suitable. 

Overall, gas-liquid systems do not seem to need special consideration in the 

2nd design case because there is no phenomenon that the impeller speed is so 

fast that the vortex phenomenon does not occur and that the gas dispersion does 

not change significantly due to other factors.
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Table 4-2. 1st Design result of each case. 

  Impeller Diffuser Baffle Solid suspension Bubble characteristics Impeller Power 

 rpm D/T type # clearance position length 
width 

(mm) 
top mid bot STD 

Cloud 

Height 

(m) 

Dispersion 

(STD) 

residence 

time (s) 

Surface 

Vortex 

(top, mid, bot) 

(kW) 

Sum 

(kW) 

Base 

case 
60 0.5 PBT 3 base base base 100 6% 9% 10% 0.008 1.078 0.1183 2 O (7.74, 6.01, 7.62) 21.37 

1 0 0.5 PBT 3 base base base 100 0% 7% 100% 0.114 0.452 0.095 2.27 X (0, 0, 0) 0 

2 30 0.5 PBT 3 base base base 100 5% 8% 13% 0.014 1.037 0.102 2.28 X (1.32, 0.96, 1.13) 3.41 

3 60 0.5 PBT 3 base base base 100 6% 9% 10% 0.008 1.078 0.1183 2 O (7.74, 6.01, 7.62) 21.37 

4 90 0.5 PBT 3 base base base 100 7% 8% 9% 0.005 0.954 0.149 1.59 O (20.7, 20.1, 17.5) 58.3 

5 60 0.33 PBT 3 base base base 100 5% 8% 13% 0.016 1.142 0.104 2.29 X (1.66, 1.28, 1.82) 4.76 

6 90 0.33 PBT 3 base base base 100 7% 8% 11% 0.008 1.062      

7 30 0.5 PBT 3 base base long 100 5% 8% 13% 0.014 1.081      

8 30 0.5 PBT 3 base base long 250 6% 8% 11% 0.01 1.134      

9 60 0.5 PBT 3 base base base 400      0.112 1.97 O (10.1, 6.26, 7.52) 23.88 

10 30 0.5 PBT 3 low base base 100 6% 9% 10% 0.009 1.239      

11 60 0.5 radial 3 base base base 100 6% 8% 11% 0.009 1.127 0.113 2.22 X (3.43, 3.06, 4.14) 10.63 

12 30 0.5 radial 3 base base base 100 5% 8% 17% 0.019 0.839      

13 30 0.5 radial 3 base base long 100 5% 8% 17% 0.021 0.872      

14 30 0.5 radial 3 base base long 250 5% 8% 16% 0.018 0.964      

15 60 0.5 radial 3 base base base 400           

16 30 0.5 PBT 2 base base base 100 16% 8% 5% 0.001 1.303      

17 30 0.5 radial 2 base base base 100 6% 7% 13% 0.015 0.838      

18 30 0.5 radial 2 low base base 100           

19 30 0.5 mix 2 base base base 100 8% 8% 9% 0.001 1.266      

20 30 0.5 mix 2 low base base 100 6% 8% 13% 0.015 1.016      

21 30 0.5 mix 3 base base base 100 5% 8% 16% 0.017 0.889      

22 60 0.5 PBT 3 low base base 100      0.1105 2.07 X (9.78, 5.60, 8.18) 23.56 
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The degree of dispersion of solid particles is very important in this reactor. 

The rate of dissolution of the solid drug, which is the rate-determining step of 

the reaction, is greatly influenced by how uniformly the solid drug particles are 

dispersed. Therefore, it is important to select a model in which the volume 

fraction distribution of the solid particles is maximally uniform, and the cloud 

height is maximized. 

Part of the graph that can be analyzed is the particle volume fraction gradient 

(denoted by gradient contour), cloud height (denoted by the dense isosurface 

portion of the reactor, rather than the perfect suspension), and velocity vector 

field. The result of changing the impeller rotation speed at 0, 30, 60, and 90 rpm 

in the 3 layer impeller with pitched blade turbine (PBT) as the base case is show 

in Figure 4-8. The particle volume fraction was found to be 60 and 90 rpm, 

which is well mixed (volume fraction is uniform throughout).  However, at 30 

rpm, the solid concentration is high on both sides and at the bottom of the 

impeller. This part is a part that does not contact with the gas, and provides a 

room for reducing the reactivity. However, we tried to design a structure that 

can be appropriately suspended at 30 rpm as the power usage is proportional to 

the cube root of impeller speed. As a result of analyzing the flow field of the 

internal liquid, it can be seen that the impeller has three separate flow loops in 

three-layer impeller.  In the case of the top impeller at the top, there is not 

enough space above and below, and the circulation loop of the liquid is distorted. 
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This suggests that energy is not being used efficiently. In addition, the structure 

of the diffuser located at the bottom prevents the bottom impeller from 

generating a flow, which is a bad shape that generates only a weak upward flow. 
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Figure 4-8. Particle volume fraction and velocity vector field of different 

impeller speed. 
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We also wanted to see if there is sufficient suspension effect at high rpm (60, 

90) even when the impeller diameter is reduced (Figure 4-9). As the D / T 

decreases, the solid suspension is not good because the force and energy that 

make the flow as a whole decrease. However, it was confirmed that when D / T 

= 0.33 when the speed was increased up to 90 rpm, the suspension shape was 

almost similar to D / T = 0.5 of 60 rpm. In other words, it was confirmed that 

the change of D / T = 0.5  D / T = 0.33 was equivalent exchange by raising 

about 30 rpm when hit by rpm. As discussed above, since the outermost angular 

velocity decreases as the D/T decreases, the energy transfer force decreases, 

and the velocity vector field weakens as a whole.  



 

 319 

 

Figure 4-9. Particle volume fraction and velocity vector field of different D/T 

factor. 
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In the analysis of the change according to the impeller type (Figure 4-10), it 

was confirmed that the radial impeller (width = 100mm) has bad performance 

in terms of the solid suspension than the PBT. This basically supports the 

previous findings that axial velocity has a significant effect on the solid 

suspension. Also, our system shows that the rising edge of both side edges is 

important. However, at 60 rpm, it can be confirmed that the suspension is 

sufficiently performed even with the radial impeller. 

Radial impellers, however, must be installed with sufficient width and length 

of the baffle to work properly. The baffle of the base case used in this model is 

very thin with a width of 100 mm and is not installed at the bottom of the reactor. 

Therefore, it seems necessary to separately analyze the effect of the radial 

impeller when supplementing the baffle. 

Radial impellers do not form an axial velocity vector near the impeller, but 

rather push it radially. It is important to note that the spacing between the 

impellers is not sufficient and the intermediate circulation loops are not 

properly generated and interfere with each other. Therefore, baffle installation 

and clearance change are necessary.  
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Figure 4-10. Particle volume fraction and velocity vector field of different 

Impeller type. 
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An analysis of the changes in the baffle (Figure 4-11) shows that when the 

baffle is simply lengthened (extending to the bottom of the reactor), it is better 

than without. And if the width increases to 250 mm, we can see that it gets better. 

In addition, even when the baffle is installed long and wide, it is still the same 

that the radial impeller is not as solid as the PBT. If the baffle is strengthened 

even at the same impeller rpm, the velocity vector in the ascending direction 

becomes stronger, and the circulating loop flow between the impellers becomes 

thicker. This is because the fluid moves out of the simple rotating motion and 

the baffle forces axial flow. This phenomenon is observed because the longer 

and wider the baffle makes the axial flow better. 
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Figure 4-11. Particle volume fraction and velocity vector field of different 

baffle. 



 

 324 

Clearance and dual impeller analysis are show in Figure 4-12 and Figure 

4-13. Overall, it is assumed that the position of the impeller is inefficiently 

positioned to produce an appropriate velocity field. Thus, two changes have 

been applied. First, we lowered the clearance of the middle and bottom 

impellers by about 350 mm to help the rise of the solid particles. 

Also, the top impeller seemed to interfere with the flow of the middle 

impeller, thus eliminating the top impeller. As a result, the best suspension of 

all primary designs and the highest averaged cloud height. However, dual radial 

impeller showed poor results, so when using a two-layer impeller, both PBT 

types should be used. 

When we checked the speed field, I could see why the dual impeller is the 

best for solid suspension. Usually, a solid flow is generated through a portion 

of the diffuser structure. In the case of a dual impeller, the top side of the 

diffuser is precisely struck to form a rising solid flow. Furthermore, it is 

sufficient for the flow to rise to the top without stopping by the top impeller. 

Thus, the design should be PBT dual impeller or mixed dual impeller 

(PBT+radial). However, if the median impeller is radial, the radial velocity 

created by the current rpm is too slow to allow the fluid to move to the wall 

quickly enough. It is not a good design because it does not show the collision 

effect (the baffle and the transformation into the axial flow from that part after 

the collision with the wall). 
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Finally, the height of the upper impeller of dual impeller increases 250 mm 

to simulate because the height is too low. From the result, installing the impeller 

in upper side gives the worse result. The velocity field shows why the impeller 

is not as good as when it is installed at a high altitude. It has been observed that 

the 2-stage impeller is too high to produce a circulating loop that reaches the 

bottom at a slower speed of 30 rpm. Therefore, it is considered that the structure 

that removes only the upper impeller from the clearance of the original design 

shows the best solid suspension.  
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Figure 4-12. Particle volume fraction and velocity vector field of different 

clearance and dual impeller I. 
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Figure 4-13. Particle volume fraction and velocity vector field of different 

clearance and dual impeller II. 
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Based on the 1st Design case, design variables are changed appropriately for 

performing the 2nd optimal design case study. Gas-liquid CFD simulation is not 

carried out because bubble characteristics are not that depended on the design 

variables. The result is organized in Table 4-3.
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Table 4-3. 2nd Design result of each case. 

 Impeller Diffuser Baffle Solid suspension 

 rpm D/T type # clearance position length 
width 

(mm) top mid bot STD 
Cloud 

Height (m) 

1 30 0.5 PBT 2 base base long 250 8% 8% 9% 0.001 1.133631 

2 30 0.5 PBT 2 slope base long 250 8% 8% 9% 0.001 1.114928 

3 30 0.33 PBT 2 slope base long 250 0% 5% 31% 0.134 0.728325 

4 30 0.5 mix 2 base base long 250 8% 8% 9% 0.001 1.115463 
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First, when D/T = 0.33, it can be seen that even if another good design is 

introduced, the solid does not rise properly. It is confirmed that this is caused 

by the inability to make a good upflow by a small impeller. It is obvious with 

looking the vector field that follows. In the remaining 3 cases, we could see the 

almost similar flow, and it would be better to use anyone, but in practice, it is 

best to use 30 rpm, PBT, D/T = 0.5, dual, baffle (250 mm) and slope. Although 

could height can be lower than previous one, it does not have big meaning for 

overall solid suspension.  

Finally, about the vector field, in the case of D/T=0.33, impeller is not 

sufficient to generate up flow of the solid particles where the others are 

sufficient. If reactor applies the slope structure in the bottom, rising flow is 

easily generated. 

Therefore, it is recommended to change the triple impeller layer, which is a 

base case design, with a dual layer and use a long wide type baffle. Also, 

impeller velocity is best to drive at 30-60 rpm, and slop structure is good for 

rising flow, but not too bad even not exist so that it can be optional. With this 

change, the cloud height of 1.037 m would be 1.2 m, the suspension STD of 

0.0141 would fall to 0.001, and the vortex and bypass possibilities would 

disappear.  
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Figure 4-14. Particle volume fraction and velocity vector field of 2nd design 

result. 
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4.2.3. Conclusion 

A tank agitator carbonation reactor in which the reaction between calcium 

oxide and carbon dioxide takes place is studied to understanding that how 6 

design variables (the number of the impeller, impeller type, D/T, clearance, 

speed, baffle) affect to the solid dispersion using CFD simulation.  

The number of the impeller has the greatest effect on solid suspension. 2 

layer impeller has much better performance than 3 layer impeller because the 

first impeller acts as an obstacle to circular loop flow. Impeller types also have 

a big impact, with PBT much better than radial. Radial impellers are 

advantageous for gas dispersion, but they do not provide a uniform distribution 

of solids, even when the number of revolutions and baffle is increased. 

In the case of impeller clearance, the solid suspension degree is not 

significantly influenced within the scope of this study, but the solid suspension 

degree is slightly improved when the clearance is slightly lower than the 

reference setting. The larger the diameter and the number of revolutions of the 

impeller are, the more the solid suspension is improved. Especially, if the 

number of revolution of the impeller increases, solid is well suspended even 

with the inefficient design because the effect of the other design variables 

decreases. However, since the number of revolutions and the diameter of the 

agitator is closely related to the power consumption of the impeller, the 

unnecessary excessive design should be avoided. 
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In the case of baffles, the longer and wider the shape, the higher the degree 

of solid dispersion, but the effect is not greater than the other variables. Among 

the length and width, the improvement is wider when the width is wider. 

The analytical results obtained in this study show how the internal design 

parameters of the reactor affect the dispersion of the solid reactants. At the same 

time, an internal design combination was derived that evenly distributes the 

solid reactants. Equal distribution of solid reactants is critical to increasing the 

rate of dissolution of calcium oxide, which is the rate-determining step in a 

mineral carbonation reactor, and is a prerequisite for improving mass transfer 

rates and thus reaction rates. We will further examine the simulation results 

through further experiments and investigate the solid dispersion phenomenon 

that will vary when gas is introduced. 
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 Concluding Remarks 

5.1. Summary of Contributions 

This thesis considered the application of computational science approach 

such as computational fluid dynamics (CFD), mathematical programming, 

derivative-free optimization, and machine learning technology to the process 

systems engineering topics. Especially, advanced modeling of reactor and 

process for Gas-to-Liquid (GTL) process and carbon capture, utilization, and 

storage (CCUS) process were performed. Moreover, optimization and analysis 

platform was developed for the unit, process, and plant-wide scale systems for 

various objectives. This chapter summarized the key contributions and 

conclusion of this thesis. 

• Chapter 2.2 provided the 2D axisymmetric CFD model of FT 

microchannel reactor with porous media zone with lumped FT kinetics. In 

the same chapter, the 3D CFD based FT microchannel reactor block model 

with external heat source calculated by Aspen Plus was introduced. 

• In Chapter 2.3, rigorous carbonation kinetics study with dynamics of 

the bubble and solid particle regarding DAE was performed. In the same 

chapter, Eulerian-granular multiphase carbonation reactor was modeled by 

CFD. 
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• Chapter 2.4 extended CFD reactor model to CFD-process simulator 

integrated platform for designing process and reactor simultaneously. The 

result of simulation shows CFD reactor modeling result, and process 

simulator (Aspen Plus) result perfectly exchange data and be designed 

automatically and simultaneously. 

• Chapter 3.2 provided reactor scale systems optimization methodology. 

CFD reactor model function is perfectly connected to GA based multi-

objective algorithm with the ε-constraint method. Pareto optimal curve of 

C5+ productivity and ∆Tmax is successfully solved. 

• In Chapter 3.3, Lipschitz continuous function based derivative-free 

optimization algorithm was introduced for considering hidden constraint 

which is very important for optimizing process systems scale simulation. 

LNG liquefaction process is introduced to exemplify the performance of 

the algorithm, and 18.9% of operating cost is reduced than base case. In 

the same chapter, simultaneous synthesis of a heat exchanger network with 

multiple utilities using utility substages was explained. Thus, HEN of the 

sustainable process can be optimized with this systematic approach with 

various utilities. 

• Chapter 3.4 provided a surrogate model for real-time analysis of toxic 

gas release in an overall plant system. Deep learning technology is used 
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for constructing the surrogate model and possibility of real-time 

calculation can help to apply this method to safety sustainable process.  

• In Chapter 4.1, industrial application of proposed methodology 

presented in CHAPTER 2 and CHAPTER 3 for compact GTL process was 

provided. 1 BPD scale compact GTL pilot plant was constructed and tested 

with our FT microchannel reactor. 

• Chapter 4.2 provided industrial application of computer-aided 

engineering reactor optimization procedure for 40 tonCO2/day CCUS 

carbonation reactor. Various designs of the reactor were analyzed, and 

optimal design will be applied by CCUS reactor of Daewoo E&C. 
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5.2. Future Work 

It is believed that the recommended future work path is to explore the 

connection between the limitations of the various methodologies proposed in 

this study and other fields of computational science such as molecular dynamics 

and deep learning which are now rapidly developing. Considering multiphase 

and complicated reaction kinetics at the same time, reactor model with high 

convergence is very difficult to formulate, so it would be very valuable to study 

this part. Also, in the case of the integration framework in Section 2.4, it is 

necessary to consider a methodology that can be applied to more diverse 

reactors such as stirred tank reactors beyond simple packed bed reactors. Also, 

it is necessary to extend the various optimization algorithms presented to show 

high efficiency even under various conditions. In this thesis, only the 

autoencoder is included in the PSE field during deep learning, but it is expected 

that various deep learning techniques such as LSTM, GAN, and reinforcement 

learning can be applied to the PSE field. 

Reactor modeling. CFD modeling has been carried out on packed bed 

reactors and stirred reactor type reactors, which are considered to be the most 

important in chemical reactions, but there are many other reactors used in 

chemical engineering. Therefore, it is necessary to study the CFD reactor 

modeling platform which can generally be used for various reactor modeling. 

In this study, lumped reaction kinetics or external kinetics calculation was used 
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because of the high computational cost of CFD. However, this would need to 

be addressed for more accurate modeling of the reactor, since this would show 

a much lower convergence and accuracy than simultaneous calculation in CFD 

at once. 

CFD-PSE integration framework. The currently developed CFD-process 

simulation platform is simply a form in which the CFD model and the process 

simulator model exchange data at the same time. In practice, however, efficient 

data fabrication ideas are needed to apply this to more forms of sensitivity 

analysis. We also believe that this methodology, which is currently applied only 

to packed bed reactors, can be used in commercial parts as well as in 

combination with more diverse reactor types and process types. 

Improving the algorithms. The modified DIRECT algorithm is designed 

to divide all hidden constraints. This may be good for solving a general non-

convex searching space, but it has inefficiencies in normal process simulations. 

Therefore, additional research is needed to improve the algorithmic inefficiency. 

Deep learning. We have seen through this thesis that data reduction through 

autoencoder can be used very effectively in the PSE field, but I have not thought 

about how other deep learning techniques could be able to graft the 

conventional PSE area. Therefore, CNN, which has strong ability to process 

image data, LSTM, which shows strong ability to voice processing or time 

series data, and GAN, which generates new data by appropriately processing 
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various data mixing, are very exciting to suggest ways to replace techniques 

used in existing PSE techniques. Also, we can expect a significant performance 

improvement using Bayesian optimization based method such as Gaussian 

process, which may be inefficient when using existing GA or deterministic 

algorithm in optimizing CFD. 

Applications. Finally, we have applied GTL and CCUS to two commercial 

processes as industrial applications. In the future, however, we can see more 

diverse results by applying the computational science approach for design and 

optimization. It will be great future work.  
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Nomenclature 

Acronyms & Abbreviations 
AEGLs acute exposure guideline levels 

Adam  adaptive momentum estimation 

AE  autoencoder 

AIR   auto ignition reaction  

ALAMO algebraic models for optimization 

BFW   Boiler feed water 

BN  batch normalization 

BPD  Barrel per day 

BTL  Biomass to liquid 

C3MR  propane precooled mixed refrigerant 

CAE  computer-aided engineering 

CCUS  carbon capture, utilization, and storage 

CDR  carbon dioxide reforming of methane 

CFD  computational fluid dynamics 

CFL  courant-Friedrich-Levy 

CNN  convolutional neural network 

CTL  coal to liquid 

DAE in 3.4 deep autoencder 

DAE  differential algebraic equation 

DCAE  deep convolutional autoencdoer 

DIRECT divide a hyper-rectangle 

DME  dimethyl ether 

DMR  dual mixed refrigerant 

DNN  deep neural network 

ERPGs  emergency response planning guidelines 

FID  flame ionization detector 

FPSO  floating production storage and offloading 

FT  Fischer-Tropsch 

GA  genetic algorithm 

GC  gas chromatography 

GHSV  gas hourly space velocity 

GPS  generalized pattern search 

GSS  generating set search 

GTL  gas-to-liquid 

HENS  heat exchanger network synthesis 

HP  high pressure 

IWI  incipient wetness impregnation 

KOGAS Korea gas corporation 

LNG  liquefied natural gas 

LP  low pressure 

LPM  liter per minute 

MADS  mesh adaptive direct search 

MINLP mixed integer non-linear programming 

MP  middle pressure 
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MRF  multiple reference frame 

MTA  minimum temperature approach 

NAS  neighborhood assignment strategy 

NG  natural gas 

NN  neural network 

Nu  Nusselt number 

ORC  organic Rankine cycle 

PBT  pitched blade turbine 

PCA  principal component analysis 

POM  partial oxidation of methane 

Pr  Prandtl number 

PSO  particle swarm optimization 

RANS  Reynolds-averaged Naiver-Stokes 

Re  Reynolds number 

RSMs  response surface methods 

SA  simulated annealing 

segPCT segmented principal component transform-principal component 

analysis 

SMR  single mixed refrigerant 

SNOBFIT stable noisy optimization by branch and fit 

SNU  Seoul national university 

SQP    sequential quadratic programming 

SRM  steam reforming of methane 

TCD  thermal conductivity detector 

TEELs  temporary emergency exposure limits 

TRM   tri-reforming process of methane 

VAE  variational autoencoder 

VAEDC variational autoencoder with deep convolutional layers 

 

CHAPTER 2 

2.2 Gas-to-Liquid (GTL) Fischer-Tropsch (FT) reactor model 

Jj⃗⃗     diffusion flux of species j [mol/m2∙s] 

𝐶𝑆𝐻2
   hydrogen concentration on the surface of catalyst [mol/m3] 

A  area of Ca(OH)2 [m2] 

C2    inertial resistance factor [m-1] 

CH    height of coolant channel [m] 

CW    width of coolant channel [m] 

CCD    distance between coolant channel and coolant channel [m] 

CPD    distance between coolant channel and process channel [m] 

Dp   mean diameter of catalyst particle [m] 

Dp  catalyst particle mean diameter (m) 

E  energy (J) 

F  force (N) 

g⃗    gravitational acceleration [m/s2] 

h  heat transfer coefficient [W/m2∙K] 

J  diffusive mass flux [mol/m2∙s] 
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keff  effective thermal conductivity [W/m∙K] 

kp    thermal conductivity of catalyst particle [W/m∙K] 

L  reactor length [m] 

l  zone length [m) 

mcat    catalyst mass in the reactor [kg] 

p  static pressure [Pa] 

P  penalty factor 

PH    height of process channel [m] 

PL   length of process channel [m] 

PW   width of process channel [m] 

Q   heat flux [W/m2] 

R  reaction rate [kg/m3∙s] 

Sh    heat source term [W/m3] 

T  temperature [oC] 

Tcmax    maximum temperature of coolant channel [K] 

Tpmax    maximum temperature of process channel [K] 

ucin    coolant inlet velocity [m/s] 

uin    reactant inlet velocity [m/s] 

v  velocity [m/s] 

V∞  superficial velocity [m/s] 

x  zone dilution ratio 

Y  mass fraction 

α    permeability [m2] 

ε  ε-constraint 

εcat  catalyst porosity 

μ    viscosity [kg/m∙s] 

ρ  density [kg/m3] 

τ⃗ eff   viscous dissipation [m2/s3] 

 

Subscripts and superscripts  

c  Chemical species 

flu  Fluid 

i  Zone position 

o  Optimization 

r  Radial direction 

s  Simulation 

sol  Solid 

x  Direction of X 

 

2.3 Carbon Capture, Utilization, and Storage (CCUS) multiphase 

carbonation reactor model 
A  area of Ca(OH)2 [m2] 

a  area of bubble [m2] 

d  diameter of bubble [m] 

E  enhancement factor 

Hw   Henry's coefficient [mol/m3∙Pa]  

n  mole number of chemicals 
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R  gas constant [kJ/K∙mol] 

Vg  volume of gas [m3] 

Vparticle  volume of solid particle [m3] 

 

CHAPTER 3 

3.2 Reactor systems scale optimization 
Same as 2.2 

 

3.3 Process systems scale optimization 
Acui,k,n  heat exchanger area of cold utility n and hot stream i at stage k 

Ahuj,k,m heat exchanger area of hot utility m and cold stream j at stage k 

Ai,j,k  heat exchanger area of hot stream i and cold stream j at stage k 

c  center of hyper-rectangle 

CCi,n  area cost coefficient of cold utility 

CCUn  per unit cost of cold utility 

CFCi,n  fixed cost of cold utility heat exchanger 

CFHj,m  fixed cost of hot utility heat exchanger 

CFi,j  fixed cost of process stream heat exchanger 

CHj,m   area cost coefficient of hot utility 

CHUm  per unit cost of hot utility 

Ci,j  area cost coefficient of heat exchanger 

CP  set of cold process stream 

CU  set of cold utilities 

d  measure for hyper-rectangle 

D  predefined constraints 

Dhidden  hidden constraints 

dtcui,k,n  temperature approach for matching hot stream i and cold utility at 

stage k 

dthuj,k,m temperature approach for matching hot utility and cold stream j at 

stage k 

dtli,j,k  left temperature approach for matching stream i and j at stage k 

dtri,j,k  right temperature approach for matching stream i and j at stage k 

EMAT  minimum approach temperature 

Fi  heat capacity flow rate of hot stream  

Fj  heat capacity flow rate of cold stream  

hi  heat transfer coefficient for hot stream i 

hj  heat transfer coefficient for cold stream j 

hm  heat transfer coefficient for hot utility m 

hn  heat transfer coefficient for cold utility n 

HP  set of hot process stream 

HU  set of hot utilities 

K  potential optimal index 

LMTDi,j,k Chen’s log-mean temperature difference 

LMTDPi,j,k Paterson’s log-mean temperature difference 

m in 3.3.1 mole fraction in percentage 

M  total heat contents of stream 
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NOK  number of stages 

NOM  number of hot utilities 

NON  number of cold utilities 

qcui,k,n  heat exchanged between hot utility and cold stream j at stage k 

qhuj,k,m  heat exchanged between hot stream i and cold utility at stage k 

qi,j,k  heat exchanged between process stream i and j at stage k 

ST  set of stages in the superstructure 

ST'  expanded set of stages in the superstructure 

tcj,k,m  temperature of hot stream j at stage k and utility substage m 

thi,k,n  temperature of hot stream i at stage k and utility substage n 

TINcum inlet temperature of cold utility 

TINhun  inlet temperature of hot utility 

TINi  inlet temperature of hot stream 

TINj  inlet temperature of cold stream 

TOUTcum outlet temperature of cold utility 

TOUThun outlet temperature of hot utility 

TOUTi  outlet temperature of hot stream 

TOUTj  outlet temperature of cold stream 

zcui,j,n  binary variable denoting existence of heat exchanger between 

stream i and cold utility n 

zhuj,k,m  binary variable denoting existence of heat exchanger between 

stream j and hot utility m 

zi,j,k  binary variable denoting existence of heat exchanger between 

stream i and j 

β  exponent for heat exchanger area cost 

βcu  exponent for heat exchanger area cost for cold utility 

βhu  exponent for heat exchanger area cost for hot utility 

γ  penalty factor 

γ  upper bound for temperature difference 

δ  positive constant for NAS 

ε  Jones factor 

θ  the maximum number of multiple utilities 

 

Subscripts and superscripts  

i in 3.3.1 index of hyper-rectangle 

i in 3.3.2 hot stream  

j in 3.3.1 index of hyper-rectangle 

j in 3.3.2 cold stream  

k in 3.3.1 index of chemicals 

k in 3.3.2 subscripts for the stages  

m  hot utility 

n  cold utility 
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3.4 Plant-wide systems scale modeling and optimization 
Pdeath  Probability of death 

βv  volume porosity 

ρ  density [kg/m3] 

βj  area porosity in the j th direction [m/s) 

uj  mean velocity (j th component, vector) [m/s] 

𝑚̇  mass rate or release rate [kg/s) 

V  volume [m3] 

P  gauge pressure, overpressure [Pa] 

σij  stress tensor [N/m2] 

Fo,i  flow resistance created by sub-grid obstacles [N] 

Fw,i  flow resistance created by walls [N] 

ρ0  density of sub grid object [kg/m3] 

gi  gravitational acceleration in the i th direction [m/s2] 

δij  Kronecker delta function 

μeff  effective viscosity [Pa·s] 

μ  turbulent viscosity [Pa·s] 

Cμ  constant in the k-ε equation; typically Cμ=0.09 

ε  dissipation of turbulent kinetic energy [m2/s3] 

k  turbulent kinetic energy [m2/s2] 

Pr  probit 

c  concentration in ppm by volume 

x  Pdeath contour data 

z  latent space 

Nz  the number of latent variables 

pθ(x|z)  probabilistic decoder as generator with parameter θ 

qϕ(z|x)  probabilistic encoder with parameter ϕ 

v  variable space 

f*(v)  surrogate model function 

f (v )  CFD model function 

ℒ(θ, ϕ; x(𝑖)) variational lower bound 

DKL  Kullback-Leibler divergence 

l(θ, ϕ; x(𝑖)) loss function 

Ntrain  the number of training data set 

Nv  the number of variables 

 

Subscripts and superscripts   

gen  generated data 

test  test set 

train  training set 

validation validation set 

 

CHAPTER 4 

Same as CHAPTER 2  
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Abstract in Korean (국문초록) 

 
최근 화학공학분야에서는 고성능 컴퓨터 연산능력과 알고리즘의 

발전으로 컴퓨터 기반의 공정 프로세스 공학이 주목받고 있다. 이에 

전통적으로는 응용수학분야에서 개발되고 있는 계산과학적 접근 

방법들이 다양한 방식으로 공정 프로세스 공학에 이식되고 있다. 

특히, 전산유체역학, 최적화 방법론, 기계학습 등의 기법들이 화학 

반응기 모델링과 공정 최적화에 적용될 수 있는 방법에 대해서 

연구되고 있다. 이런 계산과학적 접근법을 통해서 비전통연구 

분야가 파생되고 있는데, 복잡한 3 차원 반응기 구조의 유동현상이나, 

기계학습을 통해 얻어진 대안모델을 활용한 최적화 방법 등이 그 

것이다. 이와 평행하게 지속가능한 공정에 대한 필요성이 대두되고 

있다. 전통적인 화석연료를 기반으로 하는 화학공장은 원유가격에 

매우 의존적이기 때문에 원료에 대한 다양한 포트폴리오를 

준비하지 않으면 중동이나 미국등의 산유국의 원유가격 제한 등에 

산업이 심각하게 타격 받을 수 있다. 추가적으로 이런 원유 기반 

화학산업에서는 많은 양의 이산화탄소가 발생할 수 밖에 없다. 

따라서, 이런 상황에서 지속가능한 화학공장을 유지하기 위해서는 

이산화탄소 포집공정이 반드시 필요하며, 단순히 포집 후 저장하는 

것으로는 경제성이 매우 떨어지기 때문에 이를 활용할 수 있는 

방안이 간구 되고 있는 실정이다. 이런 일련의 공정의 필요성에 

알맞는 공정은 Gas-to-Liquid (GTL) process 와 Carbon capture, utilization, 

and storage (CCUS)로 보여진다. 
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본 학위논문에서는 공정 및 반응기의 모델링, 최적화, 그리고 

설계문제를 전산유체역학, 수리계획모델, 기계 학습, 그리고 다양한 

최적화 알고리즘을 통해서 해결하고자 하였다. 먼저 지속가능한 

공정에서 가장 중요하다고 볼 수 있는 GTL 공정의 FT 

마이크로채널 반응기와 CCUS 공정의 삼상 탄산화 반응기를 

전산유체역학을 통해서 모델링하였다. 추가로 전산유체역학을 통한 

반응기모델과 공정 시뮬레이터를 연계한 플랫폼을 개발하여 기존의 

공정 시스템 엔지니어링의 분야의 연구 범위 확장을 제안했다. 

이렇게 개발된 반응기모델을 통해서, 확률적 최적화 알고리즘인 

유전알고리즘과 ε-제약조건 방법을 이용하여 FT 마이크로채널 

반응기에서 C5+ 생산성 최대화와 최대온도상승 폭의 최소화를 

동시에 이루는 다중 목적함수 최적화를 수행하였다. 메인 

정수혼합비선형 프로그래밍 (MINLP) 문제는 외부 CFD 반응기 모델 

함수와 내부 최적화 제약조건으로 나누어진다. 다층 촉매충진 

기법에 적용하여, 발열이 최대한 균등하게 나올 수 있게 하였다. 

최적점은 다양한 크로스오버에 대해서 재생산이 가능하였으며, 다른 

전통적인 비선형 최적화 알고리즘보다 효율적인 것으로 판단된다. 

파레토 최적점을 보면, C5+ 생산성은 기존 케이스에 대비해 22% 

향상되었으며, 최대온도상승 폭은 63.2% 감소한 것으로 보인다.  

공정수준에서의 최적화 플랫폼에서는 hidden constraints 를 

처리하기 위해 sub-dividing step 을 적용한 modified DIRECT 

알고리즘을 제안한다. 본 알고리즘의 성능은 극저온 단일 혼합 

냉매를 이용한 천연가스 액화공정에 적용하여 검증하였다. 그리고 
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기존에 잘 알려져 있는 통계적 최적화 알고리즘인 (GA, PSO, SA), 

모델 기반 최적화 알고리즘인 (SNOBFIT), 지역 최적화 기법인 (GPS, 

GSS, MADS, active-set, interior-point, SQP)과 비교하여 그 효과를 

검증하였다. 기존 공정 대비 최적 공정의 경우 압축기 에너지를  

18.9% 가량 줄일 수 있었다. 같은 장에서 열교환망 합성에 대한 

연구도 함께 진행되었다. 다양한 유틸리티를 동시에 활용하여 

CAPEX 와 OPEX 를 한번에 최적화하는 초구조를 제안하여 사용할 

수 있는 유틸리티가 많은 경우 기존의 방법론으로는 찾기 힘들었던 

획기적인 구조들을 찾아낼 수 있는 것으로 확인된다. 

공장전체적인 수준에서의 분석방법에 대해서는 독성가스 누출 

위험성을 줄이기 위한 CFD 대안모델을 개발하였다. 딥러닝 기법 중 

convolutional layers 를 적용한 variational autoencoder 를 이용하여 대량의 

CFD 데이터를 압축하고 이를 딥뉴럴네트워크 기반의 함수에 

매핑하여 독성가스 확산계산 시간을 획기적으로 감소시켰다. 개발된 

모델은 울산에 있는 미포 산업단지의 염소가스 누출 사고에 

적용하여 검증하였다. 다른 대안모델보다 월등한 성능을 보였으며 

변수공간 내 이미지 변화가 부드럽게 진행되어 이미지가 단순히 

기억되는 것이 아니라 그 특징(feature)을 정확하게 훈련시켰음을 

보였다. 

최종적으로 개질기와 이산화탄소 분리장치, 그리고 FT 합성 

반응기를 포함하는 1 BPD 급 GTL 파일럿 공정을 통해 산업적 

적용가능성에 대해서 논의하였다. 체계적인 마이크로채널 반응기 

설계 절차를 설명하고 실제 설계된 반응기의 형태와 구조가 어떤 
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논리를 통해서 도출 되었는지에 대해서 설명한다. 평균 98.27%의 

메탄전환률을 보이는 개질기와 2.08 의 CO/H2 비율로 합성가스를 

공급해주는 이산화탄소 분리기를 거쳐 FT 마이크로채널 반응기로 

합성가스가 주입된다. 반응기의 성능을 검증하기 위해서 FT 

마이크로채널 반응기와 다중 채널 고정층반응기가 병렬 형태로 

설치되었다. 전자의 경우 220oC-240oC 까지의 운전조건 범위 내에서 

안전하게 온도제어가 된 반면, 후자의 경우에는 발열현상이 

심각해지고 폭주반응이 일어나게 되어 마이크로채널 반응기의 

제열성능이 훨씬 뛰어난 것으로 판단된다. 같은 장에서 CCUS 

탱크교반 탄산화 반응기에 대한 컴퓨터 기반 설계방법론이 적용된 

연구로 진행하였다. 6가지의 변수 (교반기 개수, 교반기 종류, 교반기 

속도, D/T, 교반기 유격, 배플)에 대한 설계 검증을 통해서 40 

tonCO2/day 급 탄산화 반응기의 최적 설계에 대해서 제안하였다. 

주요어: 계산과학; 전산유체역학; 최적화; 디자인; Gas-to-Liquid 

(GTL); 피셔-트롭쉬; 마이크로채널 반응기; 탄소 포집, 전환, 저장; 

기계학습; 딥러닝 

학 번 : 2013-20968 


	CHAPTER 1. Introduction 
	1.1. Research motivation 
	1.1.1. Chronological stages of development of process design 
	1.1.2. Current status of process systems engineering with computational science approach
	1.1.3. Introduction to the sustainable process 

	1.2. Research objectives 
	1.3. Outline of the thesis 
	1.4. Associated publications 

	CHAPTER 2. Study of the Novel Reactor Models using Computational Science 
	2.1. Introduction 
	2.2. Gas-to-Liquid (GTL) Fischer-Tropsch (FT) reactor model 
	2.2.1. 2D axisymmetric computational fluid dynamics (CFD) based Fischer-Tropsch microchannel reactor single-channel model 
	2.2.2. 3D CFD based Fischer-Tropsch microchannel reactor multi-channel model 

	2.3. Carbon Capture, Utilization, and Storage (CCUS) multiphase carbonation reactor model 
	2.3.1. Rigorous reaction kinetics for carbonation based CCUS reactor 
	2.3.2. Eulerian multiphase model for carbonation reactor 

	2.4. CFD-Process integrated platform for simultaneous process and reactor design 
	2.4.1. Introduction 
	2.4.2. Model formulation 
	2.4.3. Result and discussion 
	2.4.4. Conclusion 


	CHAPTER 3. Optimization for the Unit, Process, and Plant-wide Systems 
	3.1. Introduction 
	3.2. Reactor systems scale optimization 
	3.2.1. Multi-objective optimization of microchannel reactor for Fischer-Tropsch synthesis using computational fluid dynamics and genetic algorithm 

	3.3. Process systems scale optimization 
	3.3.1. A modified DIRECT algorithm for hidden constraints optimization problem 
	3.3.2. Simultaneous synthesis of a heat exchanger network with multiple utilities using utility substages 

	3.4. Plant-wide systems scale modeling and optimization 
	3.4.1. Toxic gas release modeling for real-time analysis using variational autoencoder with convolution neural networks 


	CHAPTER 4. Industrial Applications 
	4.1. Optimal Design and Operation of Fischer-Tropsch Microchannel Reactor for Pilot Scale Compact Gas-to-Liquid Process 
	4.1.1. Pilot scale compact GTL process 
	4.1.2. Microchannel FT reactor design 
	4.1.3. Pilot plant experiment 
	4.1.4. Result and discussion 
	4.1.5. Conclusion 

	4.2. Industrial scale (40 tonCO2/day) CCUS carbonation reactor geometry design optimization 
	4.2.1. Design procedure and simulation set-up 
	4.2.2. Result and Discussion 
	4.2.3. Conclusion 


	CHAPTER 5. Concluding Remarks 
	5.1. Summary of Contributions 
	5.2. Future Work 

	Nomenclature 
	Reference 
	Abstract in Korean (국문초록) 


<startpage>19
CHAPTER 1. Introduction  17
 1.1. Research motivation  17
  1.1.1. Chronological stages of development of process design  19
  1.1.2. Current status of process systems engineering with computational science approach 21
  1.1.3. Introduction to the sustainable process  23
 1.2. Research objectives  25
 1.3. Outline of the thesis  26
 1.4. Associated publications  29
CHAPTER 2. Study of the Novel Reactor Models using Computational Science  30
 2.1. Introduction  30
 2.2. Gas-to-Liquid (GTL) Fischer-Tropsch (FT) reactor model  32
  2.2.1. 2D axisymmetric computational fluid dynamics (CFD) based Fischer-Tropsch microchannel reactor single-channel model  37
  2.2.2. 3D CFD based Fischer-Tropsch microchannel reactor multi-channel model  52
 2.3. Carbon Capture, Utilization, and Storage (CCUS) multiphase carbonation reactor model  75
  2.3.1. Rigorous reaction kinetics for carbonation based CCUS reactor  77
  2.3.2. Eulerian multiphase model for carbonation reactor  92
 2.4. CFD-Process integrated platform for simultaneous process and reactor design  105
  2.4.1. Introduction  105
  2.4.2. Model formulation  106
  2.4.3. Result and discussion  112
  2.4.4. Conclusion  116
CHAPTER 3. Optimization for the Unit, Process, and Plant-wide Systems  117
 3.1. Introduction  117
 3.2. Reactor systems scale optimization  119
  3.2.1. Multi-objective optimization of microchannel reactor for Fischer-Tropsch synthesis using computational fluid dynamics and genetic algorithm  119
 3.3. Process systems scale optimization  152
  3.3.1. A modified DIRECT algorithm for hidden constraints optimization problem  152
  3.3.2. Simultaneous synthesis of a heat exchanger network with multiple utilities using utility substages  200
 3.4. Plant-wide systems scale modeling and optimization  233
  3.4.1. Toxic gas release modeling for real-time analysis using variational autoencoder with convolution neural networks  233
CHAPTER 4. Industrial Applications  276
 4.1. Optimal Design and Operation of Fischer-Tropsch Microchannel Reactor for Pilot Scale Compact Gas-to-Liquid Process  276
  4.1.1. Pilot scale compact GTL process  277
  4.1.2. Microchannel FT reactor design  286
  4.1.3. Pilot plant experiment  287
  4.1.4. Result and discussion  291
  4.1.5. Conclusion  304
 4.2. Industrial scale (40 tonCO2/day) CCUS carbonation reactor geometry design optimization  306
  4.2.1. Design procedure and simulation set-up  310
  4.2.2. Result and Discussion  313
  4.2.3. Conclusion  332
CHAPTER 5. Concluding Remarks  334
 5.1. Summary of Contributions  334
 5.2. Future Work  337
Nomenclature  340
Reference  346
Abstract in Korean (국문초록)  360
</body>

