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ABSTRACT 

문기라 (Kira Moon) 

생명과학부 미생물생태학  

(Department of Biological Sciences, Microbial Ecology) 

The Graduate School 

Seoul National University 

 

Viruses, the smallest and simplest form of life, are the most abundant 

biological entities on the Earth. Bacteriophages (phages) are viruses that infect of 

infecting bacterial cells. As bacterial cells are known to be found in almost every 

environment known, their predators, bacteriophages are also found in diverse 

environments including ocean, soil, hot spring, polar areas, and deserts. However, 

despite their high abundance and ability to survive under extreme conditions, 

environmental bacteriophages had been understudied due to limitations in isolating 

and culturing them in laboratory settings. As a result, number of isolated and 

identified bacteriophages is very low relative to their high abundance in the 

environment. Recently, to overcome culturability restrictions, viral metagenome, 

also denoted as virome, was suggested to study bacteriophage population without 

culturing. Therefore, based on viral metagenome technique, many large-scale marine 

virome projects had been performed, especially in marine settings. However, most 

of the virome sequences remain as un-interpreted due to the dearth of known 

bacteriophage genome information in the public genome databases. Furthermore, 

only few number of bacteriophage studies in freshwater environments including both 

virome and isolation of phages have been performed despite the importance of inland 

freshwaters as highly conserved reservoirs of diverse microbial communities. For 

better understanding of freshwater microbial community structure and their 
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ecological dynamics, this study performed both culture-independent and culture-

dependent bacteriophage researches. Using viral metagenome, a culture-independent 

method, bacteriophage population distribution in Lake Soyang, the largest lake in 

South Korea, was observed. Since microbial community within a confined lake shifts 

as seasonal stratification takes place, bacteriophage community was also expected to 

change according to seasons. Therefore, 6 seasonal samples were collected from 

Lake Soyang and viral metagenome samples were prepared from them. When 

sequence similarity between 6 samples were compared, no clear seasonal variability 

was observed, however, gradual change of viral sequences was observed through 

time. When taxonomic annotation was performed using virome reads, up to 93.6% 

of them were not identifiable. Among those that were annotated with a taxonomic 

name, most of them were shown to be the phages that were isolated from marine 

environments. For more analysis of freshwater virome, viral contigs constructed 

from Lake Soyang virome data were grouped with reference viral sequences 

obtained from public databases, and 211 groups were found that showed no 

similarity with previously reported bacteriophages. In attempts to identify those 

unique viral groups, their putative host bacteria were predicted. Among 211 virome 

contig groups, 23 groups with the most viral contig sequences (976 contigs) were 

predicted to infect a host belonging to the phylum Proteobacteria and 1 group with 

315 contigs was anticipated to infect a host within the phylum Actinobacteria, which 

are the two major bacterial phylum found in Lake Soyang. In spite of diverse 

attempts to interpret freshwater virome, inability to annotate virome reads and 

biasedly assigning the annotated freshwater virome reads to representative marine 

bacteriophage genomes indicated the under-representation and deficiency of 

freshwater bacteriophages. Therefore, to fill the gaps in the knowledge of freshwater 

bacteriophages, novel bacteriophages were physically isolated and cultured from 

Lake Soyang. As a result, total of 4 novel bacteriophages have been isolated from 

Lake Soyang. Two representative bacterial strains of the family Comamonadaceae, 
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Rhodoferax and Curvibacter isolates were used as hosts to screen for novel phages 

from Lake Soyang. Hence, two independent phages infecting Curvibacter sp. and 

one phage infecting Rhodoferax sp. were isolated, and they were named as P26509A 

and P26059B, and P26218, respectively. The bacteriophage, P19250A that infects a 

strain belonging to the family Methylophilaceae, was also isolated and revealed to 

be the most abundant bacteriophage in Lake Soyang in winter seasons, in which its 

host, LD28 clade also thrives. In the binning analyses of freshwater viromes, 

P19250A was the most highly-assigned freshwater phage (up to 8.7%) in several 

viromes of foreign countries, including five viromes from Lake Soyang that were 

constructed in this study. These results showed that newly isolated bacteriophages 

would be an essential resource for analyses of freshwater viromes. One of the major 

ecological roles of bacteriophages is as mediators of horizontal gene transfer (HGT) 

between bacterial cells. Among many bacterial protein genes, antibiotic resistance 

gene (ARG) is one of the ecologically and clinically important genes that are 

transported by bacteriophages. To observe bacteriophage community structure of the 

lentic environment and their roles as ARG transporters in urban area, the Han River, 

which flows from Lake Soyang to the Yellow sea, passing through Seoul (the capital 

of South Korea) was selected as the study site. When overall sequence similarity was 

compared, all 6 samples collected from the Han River had low dissimilarity. Also, 

when taxonomic assignment of virome reads were analyzed, no significant change 

of taxonomic assignment was observed, indicating that Han River, which flows for 

approximately 180 km, has stably maintained viral population. As one of the 

auxiliary metabolic genes carried by bacteriophages, a number of ARGs was 

observed within from viral metagenome reads. Among virome contigs, 7 viral 

contigs were shown to be carrying well conserved active antibiotic resistance genes, 

suggesting that those genes may be transferred to bacterial cells upon phage infection 

and lead to the rise of antibiotic resistance bacterial strains. Through both culture-

independent and dependent methods, distribution of bacteriophage sequences and 
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their ecological roles in freshwater environments, both lentic and lotic, were 

observed. Through isolation of novel bacteriophages that are abundantly distributed 

in freshwater habitats, this study has provided a key information of interpreting 

global virome samples as well as that of Lake Soyang. Therefore, this study 

emphasized the need of isolation and culture of environmental bacteriophages to 

understand viral ecology and also viral metagenome data.  

Keywords : Bacteriophage, dsDNA virus, freshwater, viral metagenome, 

novel bacteriophage, whole genome sequencing, antibiotic resistance gene 
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1. Environmental bacteriophages  

1.1. Bacteriophages: the most abundant biological entities on the Earth 

Bacteriophages, often referred as phages, are the smallest and simplest form 

of life that are most widely and abundantly found on The Earth. Bacteriophages are 

obligate parasites that could only reproduce themselves through infection of a host 

bacteria. For their survival, bacteriophages can interchangeably take multiple life 

cycles. The most common form of bacteriophage life cycle is lytic cycle, which that 

once a bacteriophage particle enters the host cell, it replicates its nucleic acids and 

assembles new bacteriophage particles using the host cell replication machinery. 

Once complete particles are assembled, they burst out of the cell, leading to bacterial 

cell death. On the other hand, bacteriophages may take a temperate life cycle, which 

includes both lytic and lysogenic cycles. When bacteriophages take lysogenic life 

cycle, they do not actively replicate their genomes after they enter the host cell. 

Rather, the phage genomes integrate into the host genome and replicate along with 

their host genomes. Once bacteriophage genomes have been integrated into the host 

genome, they are called as prophages. Bacteriophages choose to take lysogenic life 

cycle when surrounding environments are not favorable such that bacterial cells are 

under stress and bacterial replication machineries are not functioning or that host 

bacterial densities are low and chance of further viral infection is limited (Maurice 

et al., 2013; Payet and Suttle, 2013). When situations become favorable, those phage 

genomes resume replication and particle assembly and burst out of the host cell to 

seek for the next host bacterium. Besides these two major life cycles, bacteriophages 

may also be replicating and reproducing viral particles without host cell lysis, 

through budding or secretion from the host cell membrane (Koskella and Brockhurst, 

2014; Sime-Ngando, 2014). Through highly adaptive strategies of replication, 

bacteriophages have survived in diverse environments along with their hosts. 
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As bacteria are known to inhabit in diverse and extreme environments, their 

predators, bacteriophages, are also known to be existing in such environments as 

well. Through shotgun metagenome sequencing, many researchers discovered 

bacteriophage genes in diverse environments such as hot springs, polar areas, and 

deserts (Adriaenssens et al., 2015; Bellas and Anesio, 2013; Breitbart et al., 2004b; 

Lopez-Bueno et al., 2009). Among various environments, bacteriophages are known 

to be most abundant in aquatic environments, where they are found as free-floating 

particles. Researchers have calculated that approximately 4 × 1030 viral-like particles 

(VLP), which includes bacteriophages, are found in ocean alone (Ignacio-Espinoza 

et al., 2013; Suttle, 2005) while 1031 viral particles are estimated to exist on The 

Earth (Cobián Güemes et al., 2016). Despite high number of VLPs found on the 

Earth, they are significantly understudied compared to bacterial cells. In open oceans, 

viral particles are found to be approximately 10-fold more abundant than microbial 

cells (Wommack et al., 2015). However, number of isolated and sequenced viral 

particles are much less than those of bacterial cells; number of bacterial genomes 

that have been sequenced are about 12-fold more than those of viruses.  

1.2. Difficulties in environmental bacteriophage researches 

Among sequenced viral particles reported on National Center for 

Biotechnology Information (NCBI) database, environmental viruses, mostly 

comprised of bacteriophages, take only 30%, which is about 2,000 sequences. 

Number of identified bacteriophages is significantly low compared to number of 

VLPs predicted to be existing in natural environments due to restrictions in culturing 

individual phages. One of the major limitations in culturing and isolating 

bacteriophages is that they are obligate parasites which require their hosts to be 

cultured beforehand. However only few environmental bacterial species, less than 1% 

of the existing bacterial population have been cultured in artificial media so far, as 

claimed by the ‘great plate count anomaly’ (Hugenholtz, 2002; Vartoukian et al., 
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2010). Therefore, attempts to culture bacteriophages that infect environmental 

bacterial groups are also highly restricted.  

Although most of the bacterial groups remain uncultured that no 

morphological, physiological, and genomic data are available, the ‘unculturable 

bacteria’ can be assigned with group names according to phylogenetic classification 

done by 16S rRNA sequences which are well conserved in bacterial and archaeal 

species (Yarza et al., 2014). However, viral genomes are known to be highly variable 

and subjected for frequent mutations due to horizontal gene transfers, thereby no 

conserved sequence was found. Lack of universally conserved sequences restricted 

viral particles in environments to be identified with culture-independent methods. 

Therefore, due to such limitations, studies on environmental viruses have been 

hampered, leaving bacteriophages as massive dark matters of microbial ecology.  

2. Ecological roles of bacteriophages 

2.1. Population control of bacterial communities by bacteriophages 

As an obligate parasite, most bacteriophages lyse their hosts for their 

replication. Therefore, as lytic bacteriophages thrive in the environment, the density 

of designated hosts decreases. At different magnitudes, bacteria and their phages 

show alternating fluctuation in densities over time. According to a suggested model 

by Rodriguez-Brito and his colleagues, while both viral and microbial densities 

oscillate over time, viral abundance shows a peak soon after its host microbes 

reaches the peak abundance (Rodriguez-Brito et al., 2010). Such phenomenon is 

explained by a hypothesis, ‘kill-the-winner’ (KtW) (Thingstad, 2000). The KtW 

theory states that as a bacterial strain blooms within its habitat, its bacteriophages 

acquire higher chance of encountering their hosts, thereby increasing rate of 

infection and leading to higher rate of viral replication and decrease in host cell 

densities. Therefore, bacteriophages are considered as one of the significant factors 
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that control bacterial population. Within aquatic environment, KtW events are often 

observed through interactions between Cyanobacteria and cyanophages. Parsons and 

her colleagues illustrated roles of bacteriophages as population controllers of their 

hosts through observing rapid decrease of blooming Cyanobacterial population as 

their corresponding phages start to increase in number (Parsons et al., 2012).  

2.2. Indirect participation of bacteriophages in geochemical cycling in 

freshwater environments 

Bacterial cells that are abundant in aquatic environment contribute in 

biochemical cycling such as utilization of carbon to produce CO2 gas (Chistoserdova, 

2011) and complete nitrification (Daims et al., 2015). As those bacterial cells flourish 

in the environment, their phages also increase in number and eventually lead to 

bacterial cell lysis. Therefore, those bacteriophages will disrupt nutrient cyclings 

performed by bacterial species. As bacteriophages predate on abundant hosts, the 

dominant microbial population that participate in different biochemical cycling will 

change over time, consequently shifting biochemical components within the system. 

Likewise, phages indirectly participate in diverse biochemical cyclings in 

environments through interference and its impact is enhanced especially in enclosed 

aquatic systems such as lakes. Furthermore, by destroying the bacterial cells through 

lytic life cycles, phages also contribute in organic carbon particulate accumulation 

in freshwater environment (Guidi et al., 2016). As bacteriophages lyse host cells for 

release of newly produce viral particles, the host cell debris is releases to the system. 

Since cell debris are highly organic and rich of metabolites such as carbon, the 

release of cell debris leads to increase in nutrients that can be utilized by neighboring 

microbial communities (Pan et al., 2014). Phages are not only the predators for 

microbial cells that control bacterial abundance but also a key participant in 

modifying freshwater chemical parameters.  
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2.3. Bacteriophages as reservoirs of bacterial genes  

Bacteriophages rely on their host cells’ machineries for their reproduction. 

Therefore, the phage genomes are often replicated along with the host genomes. 

During process of packaging phage genomes into newly produced phage capsids, 

parts of bacterial genomes are occasionally mis-packaged into phage capsids as 

either small pieces of genes or encompassed parts of the phage genome. While phage 

particles carry bacterial gene within its capsid, they continue infecting other bacterial 

cells. At this stage, the acquired genes are either transferred to the next host cell or 

remain as a part of the phage genome and continue to be replicated with the phage 

genome. Temperate phages freely change their life cycles back and forth, from lytic 

to lysogenic. Therefore, when a temperate phage genome carrying acquired bacterial 

gene takes lysogenic life cycle, the acquired bacterial gene may be integrated into 

the new host’s genome, enriching the genetic diversity of the host bacteria. In this 

process, the phage genome serves as both reservoir and transporter of the bacterial 

genes. This phenomenon can be found in all phages, however, temperate phages have 

higher chance of transferring bacterial genes from one to the other. Recent studies 

have revealed that it is the temperate phages that dominate in the aquatic systems 

rather than complete lytic phages, which was conventionally known before (Brum et 

al., 2015a; Knowles et al., 2016), implying more possibility of phages as agents for 

horizontal gene transfer (HGT) which enhance genetic diversity among bacterial 

groups.  

 Although phages are the predators of the bacteria and cause cell death 

through infection, some phages carry bacterial genes that benefit their host, which 

are called as auxiliary metabolic genes (AMG). Cyanobacteria, Synechococcus and 

Prochlorococcus genera are known to perform photosynthesis for their production. 

These Cyanobacteria were known to perform both photosystems (PS) I and II, but 

core genes for PS I were missing in their genomes. Interestingly, those missing PSI 
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core genes were found within bacteriophage genomes that infect Cyanobacteria 

(Hevroni et al., 2015). Upon infection, these phages insert their genome into the host 

cell and express the PS I core genes and missing core genes are complemented. 

Therefore, while the Cyanobacteria is infected by a cyanophage, both PS I and II are 

activated and cell production increases. Through this mechanism, the cyanophages 

benefit from enhanced cell production by having more efficient replication of phage 

particles (DeLong and Beja, 2010; Sharon et al., 2009). Considering that 

bacteriophages do not perform any metabolic pathways for their survival, carrying 

of an extra bacterial gene within their tight capsid may be inefficient. Therefore, 

presence of functional AMGs in bacteriophage genomes is a significant evidence of 

evolution established by HGTs.  

Some phages carry imm genes called ‘superinfection immunity’ gene 

(Abedon, 2015). These genes are mainly carried by lysogenic phages but seldomly 

carried by lytic phages as well. The imm gene codes for plasma membrane protein 

which prevents superinfection, also known as coinfection of one or more phages. 

This is a defensive method of the phages to protect their host cell from further phage 

infections, which would cause competition in using host cell replication machinery. 

In the bacterial cell’s perspective, initially infected phage genome serves as “vaccine” 

that protects bacterial cells against other phages. Bacteriophages are not simple 

predators or parasites that only cause harm to the bacterial cells, rather they are 

complex organisms that co-evolved with bacteria through benefiting their hosts as 

well. Therefore, there is a need for phages to be reconsidered as opportunistic 

symbiont biological entities and couriers of diverse bacterial genes. 
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3. Viral metagenome: culture-independent 

bacteriophage researches 

3.1. Development of methods to prepare environmental samples for 

viral metagenome  

With increase in awareness of roles of bacteriophages in the environment 

and their high abundance, numerous attempts have been made to study 

bacteriophages of diverse environments. Number of researchers attempted to isolate 

and sequence bacteriophages that infect major bacterial groups in oceans and two 

groups have successfully identified bacteriophages that infect SAR116 and SAR11, 

distinctively, the most abundant bacterial groups in the ocean (Kang et al., 2013; 

Zhao et al., 2013). Just as their hosts did, the bacteriophages that were identified to 

be infecting SAR116 and SAR11 were also found to be the most abundant 

bacteriophages in ocean (up to 25.3% of the viral metagenome reads analyzed) 

illuminating a large part of environmental bacteriophage population (Culley, 2013). 

However, large proportion of bacteriophage in environments, including ocean is still 

left as unknown.  

The bacteriophages of SAR116 and SAR11 were able to be isolated because 

their hosts were able to be cultured in artificial media. Since most of the bacterial 

species still remain as uncultured, their bacteriophages are also uncultured. In order 

to overcome the culturability limitations, researchers have developed viral 

metagenome (virome) methods, specifically for viral particles in aquatic 

environments. Shotgun metagenome sequencing allowing access to large number of 

viral genetic sequences regardless of presence of marker genes. Since viral particles, 

especially bacteriophages, are very small in size, which are mostly less than 0.2-μm 

in diameter, and amount of DNA within a phage capsid is too small for metagenome 

library construction, collection and concentration of bacteriophage particles for 
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shotgun sequencing from aquatic environments required massive volume of samples. 

Using tangential flow filtration (TFF) system, which collects viral particles of 

desired size through continuous flow of water sample through filter sets, 

approximately 120 L of sea water is required to collect sufficient amount of viral 

particles for sequencing (Wommack et al., 2004). Recently, a method that collects 

viral particles through flocculation using ferric chloride (FeCl3) was developed by 

John et al., 2011. The iron oxyhydroxide particles flocculates with negatively 

charged viral particles in water, and flocculated particles were large enough to be 

collected on polycarbonate filter papers. The chemical flocculation method 

recovered approximately 95% of the viral particles in aquatic samples while the TFF 

method recovered only 23% (John et al., 2011), thereby allowing concentration of 

approximately 10L of water to collect enough bacteriophage particles for 

metagenome library construction. Thus, chemical flocculation provided highly 

efficient method to concentrate viral particles from environments using relatively 

small volume of samples, allowing culture-independent access to enormous 

bacteriophage populations in the environment with high efficiency. However, the 

chemical flocculation method primarily concentrates negatively charge 

bacteriophages with capsid, which are mostly represented by the order Caudovirales. 

Therefore, some viruses with lipid membrane may be under-represented. However, 

considering that most environmental bacteriophage community structures are 

composed of double-stranded DNA (dsDNA) phages (Roux et al., 2016b), the 

chemical flocculation method can be accepted to prepare of viral metagenome 

samples that adequately represent viral populations of aquatic environments. The 

detailed methods of viral metagenome sample preparation using FeCl3 flocculation 

are described in chapter 2 and 4. 
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3.2. Global-wide ocean viral metagenome studies 

Using highly efficient viral particle concentration methods, number of 

research groups performed a global-wide ocean viral metagenome sampling. As of 

January 2017, total of 5 marine projects have been set out to collect global-wide 

ocean viral metagenome samples. Two expeditions, Tara Ocean expedition and 

Malaspina expedition, sailed across the Earth to collect biological water samples 

from 2009 to 2011. The Tara Ocean expedition collected surface water samples to 

observe biological diversity and influence of environmental factors on viral 

community structure in 6 oceans and revealed that marine bacteriophages are mostly 

comprised of non-tailed viruses and distribution of different morphology of viruses 

is influenced by salinity, temperature, and oxygen concentration (Brum et al., 2013). 

Meanwhile, the Malaspina expedition focused more on distribution of deep ocean 

viral and microbial communities (Brum and Sullivan, 2015).  

The other three marine virome projects focused on more confined sampling 

sites with different depths and time points. The University of Southern California’s 

Microbial observatory at San Pedro Ocean Time-series (SPOT) project surveyed 

dynamics of bacterial and viral population, specifically myoviruses in daily time 

points for approximately 3 months of time period. The SPOT project revealed that 

populational concentrations of bacteria and myoviruses showed fluctuations at daily 

intervals but when they were observed in monthly intervals, the fluctuations were 

rather stable and uniformly maintained with seasonal variability, indicating that viral 

and host relationships have been established over long time period and have 

predictive population shifts (Chow and Fuhrman, 2012). The Bermuda Atlantic 

Time-series Study (BATS) has observed viral and microbial populations over 10 

years of period at the Sargasso Sea. Through long-time period observations, the 

BATS showed that most of the viroplanktons present in open ocean environments 

are predicted to be cyanophages since viroplanktons abundance fluctuated according 
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to abundance shifts of cyanobacteria (Parsons et al., 2012).  

The Pacific Ocean Virome (POV) project collected sea water samples from 

2009 to 2011 from different depths of the Pacific Ocean. Using the data set, a new 

approach of viral population identification has been proposed (Hurwitz and Sullivan, 

2013), which was clustering of viral protein sequences. Due to lack of viral 

sequences in publicly available genome databases, most of the viral reads could not 

be identified using conventional BLAST search, thereby leaving large portion of 

viral metagenome as dark matters. Therefore, cataloging viral metagenome reads 

based on protein clusters (PC) that they share with other metagenome reads or 

reference sequences were used to classify unknown virome reads, independent from 

existing databases. Thus, they were able to create approximately 1.3 million PCs to 

assign virome reads to. Then by observing the virome sequence groups established 

based on shared PCs, distribution patterns of viral groups across the Pacific Ocean 

was observable. The POV made a conclusion that marine viral community represents 

the seed-bank hypothesis. A viral population may dominate in regional areas, 

infecting their hosts. While they remain in the local area, the viruses are the “banks” 

of viral genes that are easily influenced by variable environmental conditions (due 

to small size of the viruses). Such local viral “banks” will start influencing bacterial 

cells through infection. Since the microbial cells are motile, they may travel to a 

neighboring niche, and this time, they may be carrying bacteriophage genes within 

their cells. Therefore, the bacterial cells with viral genetic components will serve as 

the “seed” that will spread the viral particles or genetic materials to distantly located 

niche. Thereby, locally dominating viral groups may participate in shaping overall 

ocean microbial ecology (Brum et al., 2015b).  

To expand virome studies from taxonomical identification and distribution 

of viral reads to functional survey of bacteriophages, auxiliary metabolic genes 

(AMGs) coded by viral reads were focused and studied in depth as well. Viral 
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metagenome data from two ocean virome projects, POV and Malaspina expedition, 

were analyzed for protein coding genes of the viral reads. Within viral contigs 

assembled from virome reads, 243 AMGs were identified, where 148 of them were 

newly found (Roux et al., 2016a). Although it was found at low frequency, amoC 

gene, which encodes the C subunit of ammonia monooxygenase that is involved in 

ammonia oxidation, was found in viral contigs for the first time. Therefore, it became 

clearer that bacteriophage may play key roles in nutrient cycling in marine 

environments through manipulation of their host metabolic genes. 

3.3. Viral metagenome, a casket filled with novel sequences 

With help of high throughput sequencing methods, billions of viral 

metagenome reads have been collected through many studies and most of them still 

remain as unknown bacteriophage genomes, waiting to be identified. Based on these 

viral metagenome data, attempts to fish out putative bacteriophage genomes of a 

bacteria of interest were made. Since bacteriophages are known to be highly 

susceptible of HGTs as they infect their host cells, those with specific hosts are 

predicted to be carrying a portion of their host bacteria genome. Especially when the 

host bacteria are known to carry signature genes, their bacteriophages are highly 

likely to be carrying those genes as well. One of the most abundant but uncultured 

freshwater bacterial groups is Actinobacteria. Within the Actinobacterial clade, a 

subgroup called acI are known to be the most widely distributed in freshwater lakes. 

The acI clade is known to be carrying a signature gene, whiB transcription factors 

(Ghylin et al., 2014; Warnecke et al., 2004). Hinted from this, Ghai and his 

colleagues searched for viral contigs assembled from viral metagenome that carry 

whiB gene (Ghai et al., 2017). From two viral metagenome samples prepared from 

a freshwater reservoir Amadorio, located in Alicante, Spain, 8 contigs that carry 

whiB genes were identified. Although putative bacteriophage sequences are obtained, 

morphological or physical characteristics were not obtainable, thereby leaving these 



13 

 

phage contigs as putative candidate phages of acI clade, not as defined 

bacteriophages.  

4. Significance of freshwater microbial ecology 

Inland freshwaters, including lakes, reservoirs, streams, and rivers, occupy 

approximately 3,536,000 km2, which is about 2.60 % of the Earth’s surface. Within 

inland freshwaters, lakes and reservoirs occupy 85%, serving as water resources for 

diverse human activities. Although inland freshwaters take less area than oceans, it 

is estimated that approximately 50% of the CO2 gas emission of the Earth is from 

the world’s largest lakes, one of the largest contributor being the Caspian Sea, an 

enclosed inland water with about 1.2% salinity (Raymond et al., 2013). The 

freshwater lakes receive large amount of dissolved organic carbon from surrounding 

soils and accumulates dissolved CO2 in water system. With large surface area and 

gas transfer velocity of 3-4 m per day, inland freshwater participates in carbon 

cycling on the Earth’s atmosphere (Raymond et al., 2013). Furthermore, CO2 

emission from inland freshwaters will participate in regulation of global climate and 

participate in permafrost thaw as well (Tranvik et al., 2009). 

Although different oceans have different currents and environmental 

conditions, eventually, it is a connected system. However, each freshwater lake is 

isolated from each other, having independent systems from each other despite 

locations or climates. Therefore, each lake is considered to have a unique ecosystem 

that has developed independently. Interestingly, despite ecological niche differences, 

key players of the microbial community are often very similar among lakes 

(Glöckner et al., 2000; Newton et al., 2011). Throughout different lakes around the 

world, the most dominant bacterial group is known to be those of the phylum 

Actinobacteria, followed by the phylum Proteobacteria. Although they may appear 

in different proportions, freshwater Actinobacteria and Proteobacteria are almost 

universally found in lake environments. Surface waters, including streams and rivers 
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also contain relatively stable microbial structure. However, since surface running 

waters flow through diverse environments, they are heavily influenced by 

agricultural, industrial, and urban activities. Also, inland waters, both lakes and 

rivers are sensitive to climate and environmental changes (Tseng et al., 2013), 

providing valuable study sites and samples for seasonal and climate-dependent 

microbial researches (Eiler et al., 2014; Hahn et al., 2015; Niño-García et al., 2016). 
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5. Purposes and scope of the study 

The general purposes of this study are to observe and understand freshwater 

bacteriophage diversity and distribution within inland lake and river through culture- 

independent and dependent methods. Through viral metagenome, a culture-

independent method, non-specific and broad range of bacteriophage genomes were 

able to be collected for analysis. Also, through isolation and culturing bacteriophages 

from freshwater lake, not only that host-bacteriophage relationship was observed, 

but also contribution in interpretation of viral metagenome prepared from the 

identical site was possible. The detailed purposes of this research are as follow.  

1. Survey of bacteriophage population and discovery of unique bacteriophage 

sequences in an oligotrophic freshwater lake, Lake Soyang: 

Freshwater lake bacterial community are known to have seasonal variability, 

thereby, their predators, bacteriophages were also expected to have seasonal 

differences. Therefore, viral metagenome samples were prepared from surface 

water of Lake Soyang for different seasons. Also, in attempts to identify novel 

and unique viral sequences that are present in Lake Soyang, viral contigs were 

assembled from virome reads and analyzed.  

2. Culture and whole genome sequencing of novel bacteriophages isolated from 

Lake Soyang: 

In order to discover bacteriophages that infect dominant heterotrophic bacteria 

in lake, novel bacteriophages were screened using bacterial strains isolated from 

Lake Soyang. Isolated bacteriophages were subjected for whole genome 

sequencing and those sequences were used to interpret viral metagenomes.  

3. Survey of bacteriophage population distribution along the Han River body as 

well as detection of antibiotic resistance genes carried by the bacteriophage 

sequences through viral metagenome: 
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Through viral metagenome samples prepared from different points of Han River, 

that flows from pristine upstream to urbanized downstream, changes of 

bacteriophage population along the river flow were studied. Also, to evaluate 

the roles of bacteriophage as bacterial gene reservoirs and transporters, 

antibiotic resistance genes within viral metagenome data were studied. 

Therefore, through these perspectives, this study will provide an insight on 

freshwater bacteriophage population in both lentic and lotic freshwater systems 

through viral metagenome analysis. Discovery of novel bacteriophages that thrive in 

freshwater lake allowed more extensive understanding of bacteriophage community 

structure through contribution of its genome data to interpret viral metagenome 

prepared from diverse lakes, including Lake Soyang. 



 

 

 

 

 

 

 

 

CHAPTER 2.  

Seasonal Freshwater Bacteriophage Survey in a 

Freshwater Lake using Viral Metagenome 
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ABSTRACT 

Inland freshwaters, which occupy approximately 2.6% of the Earth’s surface, 

are valuable sources of microbial diversity. Especially, freshwater lakes are confined 

systems that each of them represents a unique biome with their own microbial 

community. Although each lake is independent from each other, surprisingly, major 

bacterial components are similar with each other. Therefore, understanding microbial 

diversity of inland lakes provides universally applied knowledge. Bacterial community 

has been studied in diverse lakes using 16S rRNA amplicon sequencing. However, viral 

community, which plays a major role in bacterial population shifts, has been 

understudied due to limited methods to observe them. Recently, viral metagenome 

method has been developed that allowed marine bacteriophage population studies. 

However, viral community of diverse freshwater systems has not been studied much, 

leaving them as terra incognita. Therefore, to understand viral community of an 

oligotrophic lake, Lake Soyang of South Korea was subjected for viral metagenome 

sequencing. For survey of change in bacteriophage community over different seasons, 6 

different samples were collected from surface water of Lake Soyang. However, viral 

metagenome sequences did not show seasonal variability, but rather implicated gradual 

changes in virome sequences over time. Within virome reads, only 6.40-12.16% of them 

were shown to have a similar match in an existing database, being able to identify the 

bacteriophage community. For further analysis of the virome, metagenome contigs were 

assembled and protein-coding genes were predicted. Then, based on sequence similarity, 

protein clusters were constructed and compared to reference viral sequences. As a result, 

total of 693 clusters were created and among those, 211 of them were identified to be 

newly found from Lake Soyang virome. For identification of bacteriophage contigs, their 

putative hosts were predicted through manual curation of each open reading frames 

found within complete and circularized contigs of Lake Soyang. Hence, 23 groups with 

976 contigs were predicted to have a host belong to the phylum Proteobacteria and 1 

group with 315 contigs to have a host within the phylum Actinobacteria. 
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1. INTRODUCTION 

Viruses are known to be capable of infecting every known organism, 

including themselves. Among them, bacteriophages, also known as phages, are 

viruses that infect bacteria of various environments. Bacteriophages are obligate 

parasites that completely depends on bacterial cell replication machinery for their 

replication. After bacteriophages utilize bacterial cell machinery for genome 

replication and assembly of proteins needed for phage particles, most of the times, 

they lyse the host cell membrane and release themselves to the environment. Hence, 

bacteriophage infection often leads to bacterial cell death, leading to bacterial 

population control. While bacteriophages assemble newly produced genome into 

bacterial capsids, bacterial gene fragments are occasionally incorporated into capsids 

as well. Those bacterial gene fragments can be delivered to another bacterial cell as 

bacteriophages infect the next host, exhibiting horizontal gene transfer (HGT). 

Bacteriophages also have critical ecological importance for their high abundance and 

distribution. They are estimated to be making 1024 productive infections in every 

second, establishing 1031 viral particles on the Earth (Hendrix, 2010), which includes 

soil, marine, lakes, hot spring, and polar areas (Adriaenssens et al., 2015; Parsons et 

al., 2012; Zawar-Reza et al., 2014). However, despite their significance, most of 

these phages are unknown of their identity nor hosts because there are restrictions in 

culturing and isolating bacteriophages. Because bacteriophages are obligate 

parasites of bacteria, culturing bacteriophage requires host bacteria that are grown in 

artificial media. However, despite development of diverse culturing technologies, 

more than 99% of bacterial population is known to be still uncultured (Vartoukian et 

al., 2010). In spite of unculturability, bacterial groups can be named and 

phylogenetically classified with 16S rRNA sequence diversity, which is highly 

conserved in bacterial and archaeal strains. However, viral particles do not have any 

conserved sequence that could be used to detect and classify them. To overcome 
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methodological limitations in culturing and identifying abundant and ecologically 

function bacteriophages, viral metagenome (virome) was suggested which collects 

genetic information on environmental bacteriophages without culturing. 

Since the very first viral metagenome performed in 2002 (Breitbart et al., 

2002), number of viral metagenome studies has been done in diverse environments, 

discovering high number of viral genes that were not reported before. From 2009 to 

2011, the Pacific Ocean Virome (POV) performed large scale viral metagenome 

studies in ocean with different depths, providing great insight to marine 

bacteriophages. From POV, Hurwitz and her colleagues discovered that 

bacteriophage genes are niche-specifically distributed, especially from photic and 

aphotic zones (Hurwitz et al., 2015). The niche-specific bacteriophage contig 

sequences contained auxiliary metabolic genes (AMGs) that modify bacterial 

metabolic processes, specific for their habitats. The viral sequences found in aphotic 

zone contained flagellar genes, flaB and motA, that may improve bacterial cell 

motility in the deep sea for better nutrient acquisition.  

With a gigantic pool of unique sequences, viral metagenome data are like 

caskets of unfound bacteriophage genomes and these data can be utilized to search 

for novel bacteriophages. When bacterial hosts of interest are known to be carrying 

a signature gene sequence, it is very likely that its bacteriophage would be carrying 

the sequence as well, as a result of horizontal gene transfer between parasites and 

hosts. Therefore, in theory, putative genomes of bacteriophages that are not yet 

identified can be searched within viral metagenome data using signature gene of the 

bacterial strain of interest. Ghai and his colleagues attempted to search for genomes 

of bacteriophages that are predicted to be infecting a freshwater bacterial group. The 

uncultured freshwater bacteria lineage, Actinobacteria, known as one of the most 

abundant freshwater bacteria and acI, a clade of Actinobacteria, is known to be 

carrying whiB transcription factors. Therefore, Ghai and his colleagues searched for 
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viral contigs with whiB sequences within freshwater lake viral metagenome data and 

were able to suggest 6 contigs that were suspected to be infecting Actinobacterial 

group, acI (Ghai et al., 2016). This study not only found putative phage genomes 

that could infect uncultured bacterial groups, but also showed that environmental 

virome data are reservoirs of novel bacteriophage genomes that need to be sequenced 

and identified. 

Multiple research expeditions set out to collect environmental microbial 

and viral samples and produced large amount of metagenome data (Hingamp et al., 

2013; Hurwitz and Sullivan, 2013). However, freshwater viral metagenome studies 

are relatively scarce, compared to large number of different lakes with different 

characteristics that exist across the continents. According to a review article by 

Bruder and her colleagues, only 13 studies on freshwater virome have been published 

by 2016, severely underrepresenting freshwater microbial ecology (Bruder et al., 

2016). Surface freshwaters occupy approximately 2.6% of the Earth’s surface 

(Raymond et al., 2013) and 91.3% of surface waters are comprised of lakes. Surface 

waters are spread across all the continents serving as essential geographic water 

resources for all biological entities on the Earth. Also, freshwater lakes are isolated 

from each other and that each has independent ecosystem that functions as unique 

reservoirs of biological organisms. Interestingly, although all lakes are independent 

from each other with distinctive properties, overall composition of microbial 

communities are similar with each other. Therefore, to inspect viral community 

structure in an oligotrophic lake and provide data sets for freshwater microbial 

ecology, viral metagenome study has been performed in Lake Soyang. 

Lake Soyang is the largest and oldest conserved freshwater lake located in 

South Korea. As an oligotrophic lake, Lake Soyang encompasses diverse freshwater 

microbial organisms including diverse uncultured bacterial species, such as 

Actinobacterial groups acI, acIV, and LD28 clade, thereby imposing possibility of 
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having unknown bacteriophage communities that have not been reported before. In 

this study, 6 surface water samples were collected from Lake Soyang, at different 

seasons to observe viral population distribution along the seasonally varying 

bacterial population. Also, as numerous uncultured bacteriophages are expected to 

exist in Lake Soyang, novel bacteriophage sequences retrieved form viral 

metagenome were analyzed.  
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2. MATERIALS AND METHODS 

2.1. Seasonal sampling of surface water of Lake Soyang 

From October 2014 to May 2016, total of 6 surface water samples, 

representing different seasons were collected from Lake Soyang, located in 

Gangwon province, South Korea (37.947421 N, 127.818872 E) (Fig. 2-1). For viral 

metagenome analysis, approximately 10 L of surface water samples were collected. 

The environmental data, such as water temperature, pH, and dissolved oxygen (DO), 

total nitrogen (TN), total phosphate (TP), biochemical oxygen demand (BOD), 

chemical oxygen demand (COD), and suspended solids (SS) levels were provided 

by the Water Information System of the Ministry of Environment, of South Korea 

(http://water.nier.go.kr) (Table 2-1). Immediately after sampling of the lake water, 

approximately 30 ml of lake water was fixed with 2.5% glutaraldehyde solution. 

Then 100 μl of the fixed samples were stained with SYBR Gold (Invitrogen, 

Waltham, MA, USA) and viewed under epifluorescence microscopy for viral particle 

enumeration.  

2.2. Viral metagenome sample preparation and metagenome 

sequencing 

The collected water samples were brought to the lab in 4°C. Upon arrival 

to the lab, the samples were filtered through a 0.2-μm Supor® PES Membrane filter 

(Pall Corporation, New York, USA) using a filter tower to remove bacterial-like 

particles. To the filtered water samples, 0.01 g of FeCl3·6H2O were added per 10 L 

of sample to flocculate viral particles within the sample. The samples were 

vigorously shaken to promote flocculation of viral particles with FeCl3 ions and they 

were incubated at room temperature for 1 hr to 12 hrs. The flocculated viral particles 

were then collected on a 0.8-μm Isopore polycarbonate filter (Merck Millipore,  

 



24 

 

 

 

 

Figure 2-1. A map displaying the sampling site of Lake Soyang. The circle shows the 

sampling site.  
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Darmstadt, Germany) (John et al., 2011). The polycarbonate filters were placed in a 

conical tube and stored in 4˚C in dark until further treatment.  

The polycarbonate filters with flocculated viral particles were dissolved in 

0.1 M EDTA-0.2 M MgCl2-0.2 M ascorbate acid buffer to chelate iron particles and 

suspend viral particles. Then the samples were treated with DNase I and RNase A at 

final concentrations of 10 U/ml and 1 U/ml (Sigma-aldrich, St. Louis, MO, USA), 

respectively to remove any possible external nucleic acids. After one hour of 

incubation with both enzymes in 20˚C, DNase and RNase were deactivated by 

adding 100 mM of EDTA and EGTA (Hurwitz et al., 2013). The viral particles within 

the sample were purified through cesium chloride (CsCl) step-gradient 

ultracentrifugation (Thurber et al., 2009). To a centrifuge tube, different densities of 

CsCl were stacked in following order; 1.7, 1.5, 1.35, and 1.2 g/cm2, from bottom to 

top. Then above the top layer, approximately 15 ml of prepared sample was added. 

The samples were centrifuged at 24,000 rpm for 4 hrs at 4˚C in a Beckman Coulter 

L-90K ultracentrifuge with a SW32 Ti swing bucket. After centrifugation, the 

density fraction between 1.5 and 1.35 g/cm2, which corresponds to density of double-

stranded DNA (dsDNA) phages, were retrieved with a syringe. Buffer exchange of 

the sample with SM buffer (50 mM Tris-HCl, pH 7.5; 100 mM NaCl; 10 mM 

MgSO4·7H2O; 0.01% gelatin) was performed to remove CsCl remaining in the 

sample. Then, for sterilization, the samples were filtered through a 0.2-μm pore size 

Acrodisc® Syringe filter (Pall Corporation). The viral DNA was extracted from the 

filtrates using the Qiagen DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany). 

The DNA samples were then used for TruSeq library construction. Sequencing was 

performed using Illumina MiSeq platform, with 2 × 300-bp paired-end reads at 

ChunLab Inc. (Seoul, South Korea). The overall scheme of the viral metagenome 

preparation steps is shown in the figure 2-2. 
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Figure 2-2. Flow chart of viral metagenome sample processing steps. 
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2.3. Quality trimming, assembly, and analysis of viral metagenome 

reads and contigs 

Using the CLC Genomics Workbench (Qiagen), the raw whole genome 

sequencing data were mapped to the phiX174 genome for removal of sequencing 

control reads, followed by trimming of low quality reads using Trimmomatic 

program (Bolger et al., 2014). Although bacteria-like particles were removed, after 

series of bacterial cell removal processes and sterilization during viral metagenome 

sample process, presence of bacterial contamination was further investigated using 

MeTaxa program (Bengtsson-Palme et al., 2015). Within quality trimmed 

metagenome reads, presence of bacterial 16S small subunit ribosomal RNA (SSU 

rRNA) sequences were screened using default parameters. The trimmed reads were 

then assembled using SPAdes version 3.5.0 (for ’14 Oct. and ’15 Jan. samples) and 

3.8.2 (for all the other samples) (Bankevich et al., 2012). The dissimilarity/distances 

between Lake Soyang virome reads were calculated using MASH algorithm (Ondov 

et al., 2016) and Non-metric multidimensional scaling (NMDS) and Principal 

coordinate analysis (PCoA) plots based on the dissimilarity/distance were 

constructed using the Vegan package and hclust provided in R (Oksanen et al., 2007).  

All the assembled contigs from Lake Soyang were used as an input to 

VirSorter algorithm (Roux et al., 2015) to screen for contigs that are viral or 

prophage origin (http://de.cyverse.org/de/). The VirSorter identified viral or 

prophage contigs by searching for viral protein within the submitted contigs. Then 

based on the number of viral protein coding genes found, the submitted contigs were 

classified into three categories, ‘pretty sure,’ ‘quite sure,’ and ‘not so sure.’ For 

further analysis, only the contigs that were classified as ‘pretty sure’ and ‘quite sure’ 

categories were accepted and used for further analysis.  
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2.4. 16S rRNA amplicon sequencing for bacterial community analysis 

Analysis of the bacterial community structure of Lake Soyang was 

performed in parallel with the virome sequencing. Along with the samples for the 

viral metagenome, 1 L of lake samples were also collected for bacterial 16S rRNA 

amplicon sequencing analysis. Six surface water samples from Lake Soyang were 

filtered with a mixed cellulose ester membrane filter (3.0 μm; Advantec MFS, Tokyo, 

Japan) to remove large-sized planktons. Then, bacterial cells were collected on a PES 

membrane filter (0.2-μm; Pall Corporation). The bacterial DNA was extracted from 

the prepared filter using Qiagen DNeasy Blood and Tissue Kit (Qiagen). The 

extracted DNA samples were used to amplify the V3-V4 regions of the 16S rRNA 

genes. Sequencing of the 16S rRNA gene amplicons was performed using the 

Illumina MiSeq platform at ChunLab, Inc. The sequencing data were analyzed using 

CLcommunity program (ChunLab).  

In order to observe sequence relationship between viral metagenome 

sequences and 16S rRNA amplicon sequences prepared in parallel, distance matrices 

were constructed and analyzed. The distance matrix of viral metagenome data were 

prepared using MASH algorithm as described above. That of 16S rRNA amplicon 

sequences was constructed through OTU clustering using MOTHUR software 

(Schloss et al., 2009). Statistical analysis of correlation between distance matrices 

were performed using Mantel statistics test provided by the Vegan package in R 

(Minchin et al., 2015).  
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2.5. Phylogenetic and functional annotation of virome reads using 

metagenome analysis pipeline 

The viral metagenome reads were analyzed using MG-RAST annotation 

server pipeline (Glass et al., 2010). Since the MG-RAST carries its own quality 

control processes, the viral metagenome reads that removed phiX174 mapped genes 

were uploaded. The MG-RAST provided taxonomic and functional annotation for 

each read submitted, based on RefSeq, Genbank, IMG, SEED, and Swissprot 

databases. The assembled contigs were uploaded to the IMG/M ER webserver 

(Markowitz et al., 2012). The IMG/M ER provided taxonomical and functional 

annotations of the predicted ORFs of each contigs. The assembled contigs of Lake 

Soyang virome are available on IMG/M ER webserver with following accession 

numbers: Gp0127957, Gp0127956, Gp0173525, Gp0173524, Gp0173523, and 

Gp013522.  

2.6. Prediction of putative host bacteria of bacteriophage sequences 

acquired from viral metagenome 

From the contigs that were assembled from Lake Soyang viral metagenome, 

total of 260 contigs were predicted to be viral and completely circularized. These 

contigs were considered as candidate bacteriophage genomes present in Lake 

Soyang thereby their identity and hosts were predicted. Since most of the virome 

contigs collected from Lake Soyang were unique and no similar viral sequences have 

been reported before, identification of these sequences were restricted. Therefore, 

protein-coding sequences of virome contigs were groups with reference viral protein 

sequences from NCBI RefSeq databases based on sequence similarity. The program, 

vContact, a program implanted in iVirus (Bolduc et al., 2016), allowed clustering of 

protein sequences based on similarity and produced protein clusters (PC) for further 

analysis. Then the program assigned an input contig seqeunces into different groups 

based on the presence of shared protein clusters, allowing assignment of unknown 



31 

 

bacteriophage contigs retrieved from viral metagenome to a genetically 

characterized group.  

The putative hosts of the virome contigs were predicted by manual curation 

of each taxonomic annotation of ORFs within the contigs. The IMG/M ER webserver 

provided organism names of the best protein BLAST match to all the predicted ORFs 

of the virome contigs submitted. Among the virome ORFs, those predicted to be 

coding for bacterial proteins were considered to be acquired from their hosts. 

Therefore, the host of the contig was predicted when more than 40% of the 

taxonomic annotation results had a consensus bacterial organism.  
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3. RESULTS 

3.1. Seasonal distribution of viral metagenome reads in Lake Soyang 

From October 2014 to May 2016, six samples were collected from Lake 

Soyang, each representing different seasons. Two samples, ’14 Oct. and ’15 Nov. 

represent fall and samples, ’15 Jan. and ’15 Feb. represent winter. The samples ’15 

Sept. and ’16 May each represents summer and spring, respectively. For each sample, 

about 10 L of lake water were used to concentrate viral particles to be sequenced. As 

a result, 5.5 million to 9.6 million reads were obtained through Illumina MiSeq 

sequencing (Table 2-2). The raw sequences were firstly quality controlled by 

removing reads that were mapped to phiX174 genome, which were used as 

sequencing control, resulting approximately 5.0 million reads to 9.5 million reads. 

To observe similarity of virome data, the dissimilarity distance matrix was calculated 

using quality controlled virome reads. Then, the distance matrix was used to 

construct a dendrogram and the samples appeared to be grouped into three groups 

according to sampling periods (Fig. 2-3). Lake Soyang virome samples of ’14 Oct. 

and ’15 Jan., which were the first two samples collected, were branched together, 

while ’15 Sept. and ’15 Nov. samples, and ’16 Feb. and ’16 May samples were 

grouped together. The dendrogram was expanded by calculating dissimilarities 

between Lake Soyang virome and those of foreign lakes and ocean, which were 

collected from NCBI and MetaVir server (http:/metavir-meb.univ-bpclermont.fr), a 

viral metagenome-specific analysis webpage. The dendrogram branches appeared to 

be clustering according to different lakes and oceans. Total of 26 viral metagenome 

data from 8 different virome projects were prepared through different methods. Out 

of 8 virome projects analyzed, including that of Lake Soyang, 4 of the projects used 

tangential flow filtration system (TFF) to concentrate viral particles from 

environmental samples (viromes collected from Taiwan, Michigan, US, UK, and 

France), 3 projects utilized Polyethylene glycol (PEG) (Virginia, US, and Canada),  
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Figure 2-3. Dendrogram showing the clustering pattern of viral metagenomes prepared from 

aquatic environments, including Lake Soyang. The virome sequences for Pacific Ocean 

Virome (MetaVir ID: 1439, 1440, 1442, and 1443), Lake Matoaka, US (MetaVir ID: 2718, 

2719 and 2720), Lough Neagh, UK (MetaVir ID:4925; SRR2174000), and Lake Bourget, 

and Lake Pavin, France (MetaVir ID: 4 and 6) were collected from the MetaVir website, 

while the remaining virome sequences were collected from the NCBI database. An asterisk 

represents metagenome sequencing done using 454 Pyrosequencing, double asterisks 

represent those done with Illumina MiSeq, and triple asterisks represent those done with 

Illumina HiSeq platform. 
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and 2 projects used FeCl3 (POV and S. Korea), while samples prepared from France 

used both TFF and PEG. Also, 3 projects (Virginia, US, Taiwan, and South Korea) 

further concentrated viral particles specifically targeting for dsDNA phages through 

CsCl gradient centrifugation. Sequencing platform for all 8 projects were also 

different from each other, having either one of the three sequencing platforms: 454 

pyrosequencing, Illumina MiSeq, and Illumina HiSeq. However, diversity of sample 

preparation methods or sequencing platforms appeared to cause no bias in sequence 

diversity among different projects – dendrogram branches were constructed 

irrelevant of either factors and rather, they were grouped according to sample types; 

freshwater or saline water, revealing that viral metagenome sequences are highly 

specific to their original environments.   

The environmental metadata vectors were plotted onto NMDS and PCoA 

plots constructed based on the distance matrix, using envfit function of the Vegan 

package (Fig. 2-4 and 2-5). The similarity between virome sequences appeared to be 

significantly correlated with total nitrogen (TN) and suspended solids (SS) 

concentrations (Table 2-3), although influence of nitrogen and suspended solids on 

viral particles in environments are unclear. Overall, unlike bacterial community that 

are known to be highly influenced by seasonal changes due to water stratifications 

that occur during seasonal shifts, viral sequence distribution showed no significant 

differences according to seasonal changes.  

Prior to further analysis, the viral metagenome sequences were analyzed for 

presence of bacterial sequences, which determines whether the samples were 

prepared properly without bacterial contamination. Using MeTaxa program, 

bacterial 16S SSU rRNA sequences were screened within the virome reads. Within 

virome samples analyzed, only 0.0001% to 0.0035% of the base pairs were appeared 

to be those of bacterial 16S rRNA, permitting confident neglection of possibility of  
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Figure 2-4. Principal coordinate analysis (PCoA) plot of six virome samples collected from 

Lake Soyang. The distance was calculated based on raw virome reads using MASH algorithm. 

Environmental vectors were added to the PCoA plot and they are depicted in arrows.  
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Figure 2-5. Non-metric multidimensional scaling (NMDS) plot of six virome samples 

collected from Lake Soyang. The NMDS distance was calculated based on raw virome reads 

using MASH algorithm. Environmental vectors were added to the NMDS plot and they are 

depicted in arrows. 
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Table 2-3. Envfit results of environmental data used for analysis of Lake Soyang viromes 

 NMDS1 NMDS2 R2 p-value 

Temp. (˚C) -0.99905 0.04362 0.73600 0.17083 

pH -0.68245 0.73093 0.54800 0.32500 

DO 0.90493 0.42556 0.78710 0.13056 

BOD 0.52552 -0.85078 0.39830 0.49167 

COD -0.89890 0.43816 0.27450 0.60556 

TN -0.30779 0.95145 0.85700 0.09167 

TP -0.95755 0.28828 0.69210 0.18333 

SS -0.91048 0.41356 0.95060 0.01250 

Season -0.38688 -0.92213 0.27100 0.59444 
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bacterial contamination on viral metagenome sequences (Table 2-4). Therefore, the 

viral metagenome reads were submitted onto MG-RAST webserver for further viral 

metagenome analysis. According to the MG-RAST metagenome sequence quality 

control algorithm, the length of the metagenome reads was uniformly distributed that 

phylogenetic and functional assignment of the viral metagenome reads were 

assumed to be adequately performed without sequence length bias (Table 2-5).  

3.2. Distribution of bacteriophage populations and viral protein genes 

in Lake Soyang 

Through MG-RAST analysis server, in which that raw viral metagenome 

samples were uploaded, performed taxonomic assignment based on the predicted 

protein features of the each read submitted was performed based on BLAST 

algorithm (Wilke et al., 2012). From virome reads, 2.3 million to 4.5 million virome 

reads were predicted with protein coding sequences. However, only 6.40 to 12.16 % 

of those were identified with a known function, leaving the rest as unknown (Table 

2-6). When overall known taxonomic assignment was observed at the organism level, 

the bacterial groups occupied more than 70% of the annotated reads, except in ’15 

Sept. sample, where bacterial annotation reads occupied the total annotation reads 

by approximately 40% (Fig. 2-6a). Dominance of bacterial annotation in viral 

metagenome samples are common when general nonredundant databases, such as 

MG-RAST M5nr and NCBI RefSeq, are used for annotation. Because most of the 

environmental bacteriophages still remain undiscovered and public databases cannot 

represent them, environmental viral reads are often falsely assigned to bacterial 

taxonomy, causing limitations in viral metagenome data interpretation. Despite such 

biases, ’15 Sept. sample had approximately 50% of its reads assigned to viral 

taxonomy. Of the virus assigned reads in ’15 Sept. sample, about 85% were identified 

to belong to the Myoviridae family (Fig. 2-6b), which were mostly consist of  
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Table 2-4. Percent of 16S rRNA bacterial SSU sequences in Lake Soyang viral  

metagenome data 

Site Total bp in virome
Total 16S rRNA 

bp in virome 
% of 16S rRNA 
seq. in virome 

‘14 Oct. 2,222,290,309 8,806 0.00040% 

‘15 Jan. 2,083,564,492 2,411 0.00012% 

‘15 Sept. 3,684,907,065 9,914 0.00027% 

‘15 Nov. 2,787,349,768 2,845 0.00010% 

‘16 Feb. 2,405,978,956 12,080 0.00050% 

‘16 May 2,354,370,573 81,912 0.00348% 
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Table 2-5. Average read lengths of viral metagenome collected from  

Lake Soyang before and after quality control (QC) of metagenome  

reads by a metagenome analysis server 

Site 
Mean seq. length 

(before QC) 
Mean seq. length 

(after QC) 

‘14 Oct. 296 ± 23 222 ± 61 

‘15 Jan. 297 ± 20 215 ± 63 

‘15 Sept. 288 ± 32 202 ± 71 

‘15 Nov. 297 ± 21 240 ± 60 

‘16 Feb. 298 ± 18 237 ± 61 

‘16 May 295 ± 28 240 ± 61 
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Table 2-6. Ratio of predicted and identified protein features of Lake Soyang virome, 

calculated a metagenome analysis server 

Samples 
Predicted 

protein features
Identified 

protein features
Percentage 

’14 Oct. 2,345,903 209,551 8.93  

’15 Jan. 2,654,483 169,840 6.40  

’15 Sept. 4,111,637 313,281 7.62  

’15 Nov. 4,501,168 410,673 9.12  

’16 Feb. 3,600,573 279,516 7.76  

’16 May 2,411,170 293,192 12.16  

 

  



43 

 

 

 

 

Figure 2-6. Taxonomic annotation of Lake Soyang virome samples by a metagenome analysis 

server. (a) Proportion of different domains that were annotated from Lake Soyang virome 

raw reads are depicted. (b) Proportion of different families of virus are shown. 
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cyanophages (Table 2-9). This phenomenon corresponded with temporal 

cyanobacterial bloom that took place in the same period (Fig. 2-7). Although 

cyanobacteria showed peak in the summer season and appeared at low abundance in 

others, the cyanophages were consistently thriving in Lake Soyang throughout 

different seasons (Fig. 2-8 and Table 2-7 to 12), making presence in the lake 

environment independent of their hosts. Other than cyanobacteria and cyanophages, 

no relationship between bacterial species and viral groups were able to be identified.  

Due to deficiency in taxonomic assignment of viral metagenome reads, 

observation of relationship between bacteriophage and bacteria was restricted. 

Therefore, to be independent from limitations caused by shortness in viral genome 

databases, raw sequences of viral metagenome and bacterial 16S rRNA amplicon 

sequencing were compared through distance matrix-matrix analysis. Using the 

Mantel test provided by the Vegan package of R, three statistic tests were performed; 

Kendall, Pearson, and Spearman. All three correlation tests presented that viral 

metagenome and 16S rRNA amplicon sequencing had significant positive 

correlation, indicating that compositions of two sequences are varying together 

(Table 2-13).  

Along with the taxonomic annotations, protein functional group annotation 

based on predicted protein coding genes of the virome reads were obtained through 

the MG-RAST analysis pipeline. The functional proteins were grouped according to 

subsystems of the SEED database (Overbeek et al., 2014). Overall, the protein 

groups assigned to bacteriophage-related proteins were dominating, occupying up to 

55.50% of the total reads assigned to a protein functional group. However, in two 

samples, ’15 Nov. and ’16 May, virome reads that were assigned to bacteriophage-

related protein groups appeared to be exceptionally low (Fig. 2-9 and Table 2-14). 

Although number of viral particles present in the ’16 May sample was covering 

approximately 30% of annotated reads similar to those of other samples  
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Figure 2-7. Taxonomic assignments and distribution of 16S rRNA sequences obtained from 

Lake Soyang. The 16S rRNA amplicon sequencing was performed using Illumina MiSeq 

platform and their taxonomic assignments were performed using CLcommunity program  
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Figure 2-8. Heatmap generated by comparison of annotated viral reads from Lake Soyang. 

The virus annotation was performed by MG-RAST annotation server and only annotated viral 

species that had relative abundance of more than 1% in at least 1 sample were shown here. 
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Table 2-7. List of 15 viruses that were most frequently detected within the viral metagenome 

reads of ’14 Oct. sample collected from Lake Soyang 

SY – ’14 Oct. 

Species name % Norm%a Origin of isolation 

Prochlorococcus phage P-SSM2 16.61 1.13 Marine 

Prochlorococcus phage P-SSM4 7.13 0.69 Marine 

Synechococcus phage S-PM2 6.20 5.44 Marine 

Synechococcus phage syn9 4.69 45.58 Marine 

Myxococcus phage Mx8 3.94 1.37 Soil 

Synechococcus phage S-RSM4 3.89 0.34 Marine 

Acanthocystis turfacea Chlorella virus 1 3.25 0.19 Freshwater 

Mycobacterium phage Omega 2.99 0.46 Unknown 

Pseudomonas phage LUZ24 2.13 0.80 Hospital sewage 

Bordetella phage BPP-1 2.06 0.84 Animal lung 

Microcystis aeruginosa phage Ma-LMM01 2.03 0.22 Freshwater 

Roseobacter phage SIO1 1.87 0.81 Marine 

Cyanophage PSS2 1.49 2.39 Marine 

Mycobacterium phage Pukovnik 1.33 0.43 Unknown 

Mycobacterium phage Myrna 1.22 0.13 Unknown 
a Proportion of viral metagenome reads assigned to a taxonomic nomenclature was 
normalized by genome length of the assigned reference genome. 
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Table 2-8. List of 15 viruses that were most frequently detected within the viral metagenome 
reads of ’15 Jan. sample collected from Lake Soyang 

SY – ’15 Jan. 

Species name % Norm%a Origin of isolation 

Prochlorococcus phage P-SSM2 7.31 0.63 Marine 

Myxococcus phage Mx8 6.59 2.90 Soil 

Microcystis aeruginosa phage Ma-LMM01 5.92 0.79 Freshwater 

Mycobacterium phage Ramsey 5.19 1.93 Unknown 

Bordetella phage BPP-1 3.99 2.04 Animal lung 

Prochlorococcus phage P-SSM4 3.95 0.48 Marine 

Bacillus phage TP21-L 3.74 2.17 Unknown 

Mycobacterium phage Qyrzula 3.13 1.01 Unknown 

Synechococcus phage syn9 2.84 34.87 Marine 

Thalassomonas phage BA3 2.79 1.63 Coral 

Burkholderia phage Bcep1 2.14 0.97 Plant root 

Cyanophage PSS2 2.12 4.29 Marine 

Mycobacterium phage Omega 1.95 0.38 Unknown 

Escherichia phage phiV10 1.89 1.05 Unknown 

Synechococcus phage S-RSM4 1.80 0.20 Marine 
a Proportion of viral metagenome reads assigned to a taxonomic nomenclature was 
normalized by genome length of the assigned reference genome. 
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Table 2-9. List of 15 viruses that were most frequently detected within the viral metagenome 
reads of ’15 Sept. sample collected from Lake Soyang 

SY – ’15 Sept. 

Species name % Norm%a Origin of isolation 

Prochlorococcus phage P-SSM2 57.08 3.86 Marine 

Synechococcus phage syn9 7.47 71.94 Marine 

Prochlorococcus phage P-SSM4 6.48 0.62 Marine 

Synechococcus phage S-PM2 6.04 5.25 Marine 

Synechococcus phage S-RSM4 4.32 0.38 Marine 

Acanthocystis turfacea Chlorella virus 1 2.82 0.17 Freshwater 

Pseudomonas phage YuA 1.85 0.54 Hospital sewage 

Bordetella phage BPP-1 1.74 0.70 Animal lung 

Invertebrate iridescent virus 6 1.37 0.11 Drosophila 

Mycobacterium phage Cjw1 1.00 0.22 Unknown 

Mycobacterium phage D29 0.94 0.33 Unknown 

Synechococcus phage Syn5 0.71 0.26 Marine 

Invertebrate iridescent virus 3 0.59 5.27 Drosophila 

Cyanophage PSS2 5.59 8.88 Marine 

Enterobacteria phage T4 0.59 0.06 Unknown 
a Proportion of viral metagenome reads assigned to a taxonomic nomenclature was 
normalized by genome length of the assigned reference genome. 
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Table 2-10. List of 15 viruses that were most frequently detected within the viral metagenome 
reads of ’15 Nov. sample collected from Lake Soyang 

SY – ’15 Nov. 

Species name % Norm%a Origin of isolation 

Prochlorococcus phage P-SSM2 31.17 2.29 Marine 

Synechococcus phage S-PM2 8.58 8.12 Marine 

Prochlorococcus phage P-SSM4 6.57 0.68 Marine 

Synechococcus phage syn9 6.38 66.87 Marine 

Acanthocystis turfacea Chlorella virus 1 5.91 0.38 Freshwater 

Synechococcus phage S-RSM4 5.63 0.54 Marine 

Bordetella phage BPP-1 5.32 2.33 Animal lung 

Paramecium bursaria Chlorella virus 1 3.12 0.18 Freshwater 

Mycobacterium phage Cjw1 1.91 0.47 Unknown 

Ostreococcus virus OsV5 1.72 0.17 Marine 

Micromonas sp. RCC1109 virus MpV1 1.67 0.17 Marine 

Listonella phage phiHSIC 1.50 0.73 Marine 

Cafeteria roenbergensis virus BV-PW1 1.29 0.04 Marine 

Ostreococcus tauri virus 1 1.28 0.12 Marine 

Bathycoccus sp. RCC1105 virus BpV1 1.16 0.11 Marine 
a Proportion of viral metagenome reads assigned to a taxonomic nomenclature was 
normalized by genome length of the assigned reference genome. 
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Table 2-11. List of 15 viruses that were most frequently detected within the viral metagenome 
reads of ’16 Feb. sample collected from Lake Soyang 

SY – ’16 Feb. 

Species name % Norm%a Origin of isolation 

Prochlorococcus phage P-SSM2 23.97 2.96 Marine 

Bordetella phage BPP-1 23.22 17.01 Animal lung 

Prochlorococcus phage P-SSM4 9.33 1.63 Marine 

Synechococcus phage S-PM2 4.36 6.92 Marine 

Acanthocystis turfacea Chlorella virus 1 3.86 0.42 Freshwater 

Synechococcus phage S-RSM4 2.60 0.42 Marine 

Flavobacterium phage 11b 2.56 2.21 Sea-ice 

Synechococcus phage syn9 2.56 44.96 Marine 

Lactobacillus johnsonii prophage Lj771 2.48 1.89 Human intestine 

Listonella phage phiHSIC 2.44 2.00 Marine 

Pseudomonas phage YuA 2.12 1.13 Marine 

Streptococcus phage EJ-1 1.78 1.29 Unknown 

Vibrio phage VP5 1.51 1.18 Wastewater 

Burkholderia phage BcepC6B 1.25 0.92 Plant root 

Ostreococcus lucimarinus virus OlV1 1.06 0.17 Marine 
a Proportion of viral metagenome reads assigned to a taxonomic nomenclature was 
normalized by genome length of the assigned reference genome. 
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Table 2-12. List of 15 viruses that were most frequently detected within the viral metagenome 
reads of ’16 May sample collected from Lake Soyang 

SY – ’16 May 

Name % Norm%a Origin of isolation 

Acanthocystis turfacea Chlorella virus 1 20.14 1.86 Freshwater 

Prochlorococcus phage P-SSM2 14.77 1.55 Marine 

Bordetella phage BPP-1 1.93 1.21 Animal lung 

Prochlorococcus phage P-SSM4 6.27 0.93 Marine 

Synechococcus phage S-RSM4 3.35 0.46 Marine 

Synechococcus phage syn9 3.33 49.90 Marine 

Synechococcus phage S-PM2 3.17 4.29 Marine 

Mycobacterium phage Cjw1 2.71 0.95 Unknown 

Paramecium bursaria Chlorella virus 1 2.30 0.18 Freshwater 

Ostreococcus tauri virus 1 1.86 0.26 Marine 

Rhizobium phage 16-3 1.59 0.70 Plant root 

Roseobacter phage SIO1 1.51 1.01 Marine 

Yaba-like disease virus 1.32 0.24 Animal skin 

Ostreococcus virus OsV5 1.16 0.17 Marine 

Cyanophage PSS2 1.16 2.87 Marine 
a Proportion of viral metagenome reads assigned to a taxonomic nomenclature was 
normalized by genome length of the assigned reference genome. 
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Table 2-13. Distance matrix-matrix correlation between bacterial  

16S rRNA amplicon sequences and viral metagenome sequences  

collected from Lake Soyang 

Correlation test r Significance 

Kendall 0.5048 0.0042

Pearson 0.6805 0.0042

Spearman 0.6929 0.0028
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Figure 2-9. Functional gene annotation of Lake Soyang virome samples. The functional gene 

annotation was performed by MG-RAST annotation server. The annotation was done based 

on the SEED subsystem database and annotation matches with e-value threshold of 1.00E-5 

were taken into consideration for data analysis. 
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Table 2-14. Proportion of each Lake Soyang virome reads that were assigned to function 
annotation categories by a metagenome analysis server 

Function category 
’14 
Oct.
(%) 

’15 
Jan. 
(%) 

’15 
Sept. 
(%) 

’15 
Nov. 
(%) 

’16 
Feb. 
(%) 

’16 
May 
(%) 

Amino Acids and Derivatives 2.45 2.11 1.23 5.72 3.81  9.85  

Carbohydrates 2.38 1.41 1.90 5.32 4.02  9.73  

Cell Division and Cell Cycle 0.44 0.30 0.51 0.78 0.74  1.31  

Cell Wall and Capsule 3.07 3.66 4.20 4.44 3.58  2.99  

Clustering-based subsystems 11.01 9.51 8.83 12.78 8.88  13.12  

Cofactors, Vitamins, Prosthetic 
Groups, Pigments 

3.65 2.18 3.03 3.87 2.55  4.93  

DNA Metabolism 6.80 6.53 2.78 4.96 5.14  4.85  

Dormancy and Sporulation 0.95 0.22 0.01 0.13 0.06  0.09  

Fatty Acids, Lipids, and 
Isoprenoids 

0.34 0.21 0.08 1.16 0.65  1.98  

Iron acquisition and metabolism 0.04 0.02 0.01 0.17 0.12  0.12  

Membrane Transport 0.62 0.90 0.32 1.60 1.20  2.31  

Metabolism of Aromatic 
Compounds 

0.10 0.03 0.11 0.25 0.24  0.33  

Miscellaneous 3.08 2.32 0.80 3.96 2.72  4.89  

Motility and Chemotaxis 1.33 0.76 0.81 1.20 0.67  0.29  

Nitrogen Metabolism 0.16 0.07 0.18 0.60 0.41  0.63  

Nucleosides and Nucleotides 4.58 4.26 8.58 6.84 4.32  4.77  

Phages, Prophages, Plasmids, and 
Transposable elements 

50.11 55.50 53.45 24.50 47.08  12.29  

Phosphorus Metabolism 0.45 0.39 0.80 1.41 0.56  1.69  

Photosynthesis 0.71 2.96 2.09 0.52 1.13  0.16  

Potassium metabolism 0.04 0.03 0.03 0.19 0.13  0.16  

Protein Metabolism 2.77 3.64 5.57 7.59 5.54  10.57  

RNA Metabolism 1.59 0.95 0.74 4.80 2.18  4.43  

Regulation and Cell signaling 0.29 0.33 0.54 0.51 0.43  0.72  

Respiration 0.82 0.29 0.71 2.79 1.50  4.08  

Secondary Metabolism 0.03 0.02 0.02 0.09 0.05  0.26  

Stress Response 1.35 0.55 2.13 1.46 1.02  1.80  

Sulfur Metabolism 0.12 0.08 0.22 0.64 0.25  0.26  

Virulence, Disease and Defense 0.73 0.78 0.32 1.75 1.05  1.39  
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(4.05×107 particles per ml, Table 2-1), number of reads that were taxonomically 

assigned to viruses were also the lowest in ’16 May. Such disproportionality hints at 

the abundance of novel bacteriophages in the ’16 May sample with unique genome 

sequences that were not able to be identified with current databases.   

3.3. Novel bacteriophage contigs recovered from viral metagenome 

Using the SPAdes assembler, contigs were assembled from viral 

metagenome reads prepared from Lake Soyang. Among assembled contigs, only 

those with 10 kbp or longer were used for further analysis to assure that the contig 

is a viable bacteriophage genome candidate. The obtained contigs were determined 

whether they are viral origin or not using the VirSorter algorithm. Thus, only 1.28 to 

4.02% of the assembled contigs were confidently identified as viral origin (Table 2-

15). Among them, total of 260 circularized viral contigs were identified for all 6 

samples combined. These contigs were considered as complete bacteriophage 

sequences. As seen from analysis of viral metagenome reads, taxonomic annotation 

of metagenome reads based on BLAST with public genome database is highly 

limited due to insufficient number of viral sequences in databases and lack of 

universal viral marker genes that could allow classification of the sequences. 

Therefore, identification of virome contigs were attempted through clustering of 

protein coding sequences based on similarity of protein-coding sequences, alone. 

Using the VirSorter algorithm, protein-coding sequences for all viral-predicted 

contigs were computed. Therefore, those protein sequences were identified as viral 

origin and were used to build protein clusters along with viral protein sequences 

collected from NCBI RefSeq database (release 79), using vContact program based 

on sequence similarity. As a result, total of 693 groups with similar sequences were 

constructed. Among those, 211 groups were consisted of contigs retrieved from viral 

metagenome only, representing unreported viral sequences that cannot be found on 

public databases. Of all, 28 largest groups that consisted of 50 or more viral  
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Table 2-15. Number of viral metagenome contigs that were identified 
as virus or prophage by VirSorter 

Sample Contigs 

Viruses Prophages

Contigs
Complete 

contigs
Contigs

’14 Oct. 78,169 2,043 53 8 

’15 Jan. 89,763 2,512 58 6 

’15 Sept. 121,633 2,743 13 10 

’15 Nov. 214,755 3,265 49 13 

’16 Feb. 164,680 3,141 45 10 

’16 May 140,964 2,868 42 6 
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sequences covered 32.9% of total number of sequences that were clustered and most 

of them were comprised or either reference sequences of virome contigs only. 

Groups consisted of references sequences only often showed grouping of viral 

proteins that belonged to an identical viral or bacterial taxonomic groups thereby 

providing evidence that the protein clusters are reliable to predict taxonomic groups 

for each ORF group. For example, groups 4, 10, and 15 were comprised of both 

virome contigs and reference sequences, that taxonomic prediction of virome contigs 

were possible (Fig. 2-10). Contigs clustered to groups 4 and 10 were predicted to be 

those of cyanophages or enteric bacteria phages, respectively, according to the 

reference sequences found within these groups. However, the reference seqeunces of 

group 15 showed no consensus characteristics that 14 virome contigs that were 

assigned to the group were not able to be identified. Including those of group 15, the 

remaining Lake Soyang virome contigs (2,030 ORFs) remained unclassified, thus 

concluded as unreported viral protein sequences found from Lake Soyang.  

For more detailed analysis, 260 circularized and complete viral contigs 

were used for taxonomic assignment using public databases. Each ORF within the 

circularized contigs were predicted with a taxonomic assignment through BLAST 

with NCBI RefSeq and IMG protein database. However, most of the ORFs of 

circularized contigs were not found within either NCBI or IMG databases. ORFs that 

were able to be identified by the public databases were mostly assigned to bacterial 

groups. Thereby, assuming that bacterial protein sequences within a bacteriophage 

genome are the results of HGT during infection, number of ORFs that were assigned 

to a bacterial taxonomy were counted to predict their putative hosts. When more than 

40% of the ORFs with a taxonomic assignment had a consensus, then the consensus 

bacterial group was predicted as a putative host (Table 2-16). Out of 260 contigs, 

most of the them were predicted to have hosts belonging to the phylum 

Proteobacteria (66.54%) and about half of those were not able to be identified with 

hosts with lower taxonomic level because they did not have consensus bacterial  
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Figure 2-10. Viral sequence groups constructed based on shared protein clusters between 

viral metagenome contigs and references sequences collected from the RefSeq database. The 

taxonomic assignment of each group was made based on the reference sequences that were 

included in the groups. For the groups with asterisks, the hosts of the virome contigs were 

predicted based on IMG taxonomic annotations. The predicted host of the groups 1, 5, 6, 7, 

and 26 was predicted to belong to the phylum Proteobacteria, those of group 2 was predicted 

to belong to the phylum Actinobacteria, and that of group 22 was predicted to belong to the 

phylum Bacteroidetes.  
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Table 2-16. Predicted hosts of complete bacteriophage contigs retrieved from viral 
metagenome samples. 

 ’14 
Oct. 

’15 
Jan. 

’15 
Sept.

’15 
Nov. 

’16 
Feb. 

’16 
May 

Total 

Proteobacteria_p 26 14 6 18 18 12 94 

Alphaproteobacteria_c 4 7 1 5 5 4 26 

Rhizobiales_o 1 6 0 2 2 0 11 

Betaproteobacteria_c 1 6 1 3 2 2 15 

Burkholderiales_o 4 3 0 1 6 2 16 

Gammaproteobacteria_c 2 4 2 2 1 0 11 

Actinobacteria_p 4 5 2 3 0 3 17 

Bacteroidetes_p 1 2 0 2 5 6 16 

Cyanobacteria_p 1 0 0 0 0 0 1 

Firmicutes_p 0 1 0 2 1 2 6 

Planctomycetaceae_f 0 0 0 1 0 0 1 

Unknown 9 10 1 10 5 11 46 

Total 53 58 13 49 45 42 260 
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taxonomic assignments. Within the phylum Proteobacteria, Alphaproteobacter was 

shown to be the most prevalently infected bacterial group. Using this method, the 

furthest taxonomic level of bacterial host that can be predicted was the family level, 

which was Planctomycetaceae (’15 Nov.). No more detailed prediction on putative 

bacterial host was able to be made because the virome contigs were compsed of too 

diversely originated ORFs. Interestingly, although virome reads’ taxonomic 

assignment showed that ’15 Sept. sample were dominated by cyanophages (Fig. 2-

6b, Table 2-9), no complete contig from the sample was shown to belong to 

cyanophages. Rather, only one contig, ’14 Oct.-25, showed high resemblance with a 

Synechococcus phage S-CBS4 (70% identity). Since bacteriophage genomes are 

usually composed of ORFs of multiple bacteria, prediction of their hosts was 

restrictive. Thereby among the complete contigs, 46 of them were not able to be 

predicted on their hosts nor their identity (Table 2-16). Complete viral sequences 

with predicted hosts were reciprocally tracked within the viral protein-clustering 

groups that were constructed earlier in attempts to reveal the identity of both 

complete sequences and viral groups. As a result, 15 complete viral contigs that had 

the phylum Proteobacteria as predicted host group belonged to the viral sequence 

group 1 and eight complete contigs that had the phylum Actinobacteria as predicted 

host group were found within the viral sequence group 2, allowing indirect host 

prediction of 706 contigs belonging to groups 1 and 2 (Fig. 2-10). In the same context, 

viral sequence groups 5, 6, 7, and 26 were also revealed to have the phylum 

Proteobacteria as their host group and group 22 appeared to have the phylum 

Bacteroidetes as their putative host group. Although the host prediction using protein 

clustering and protein sequence annotation were not able to provide delicate and 

detailed prediction on virome contigs, 1,872 viral contigs among 2,142 virome 

sequences that are distinctive from existing databases were able to be predicted with 

their putative host groups at the phylum level, providing the first steppingstones for 

isolation of unreported freshwater bacteriophages. 
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4. DISCUSSION 

 In this study, freshwater bacteriophage population distribution was 

observed using metagenome approach in Lake Soyang, the largest artificial lake in 

South Korea. To observe seasonal changes of the viral population, 6 samples were 

collected from 2014 to 2016, at different seasons. After collecting and concentrating 

viral particles only, the viral DNA was sequenced for each metagenomic analysis. 

Using the raw sequences obtained, the dissimilarity distance index was calculated to 

observe the sequence similarities without any bias caused by known sequence 

databases. The viral metagenome sequences of all 6 samples appeared to be highly 

similar with each other that no significant difference between seasons was observed. 

A dendrogram constructed based on distance index of metagenome sequences 

showed that viral samples can be grouped into three branches, not by seasons but by 

sampling periods. Samples collected on October 2014 and January 2015 formed a 

branch, while those collected on September 2015 and November 2015 formed 

another and those of February 2016 and May 2016 formed one (Fig. 2-3). This 

indicated that viral population is shifting gradually over time, rather than having 

seasonal cycles. Besides the temporal changes, environmental influence on virome 

read distribution was observed through plotting NMDS and PCoA plots. Although 

TN and SS appeared to be having positive correlation with viral sequence 

compositions (Table 2-3). It is widely known that as lytic bacteriophage infects their 

hosts and lysis the bacterial cell for release of newly produced bacteriophage 

particles, organic carbon and nitrogen that were constituting the bacterial cell are 

released to the surroundings. It has been calculated that viral lysis could release 4-

40 nM of nitrogen per day when it is assumed that 2-20% of bacterioplankton are 

lysed by bacteriophages per day (Hewson and Fuhrman, 2008). Therefore, the 

positive correlation of TN concentration in Lake Soyang and viral metagenome reads 

may indicate bacteriophages are actively lysing bacterial cells for their reproduction.  
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When the viral population changes were observed after the sequenced reads 

were assigned to taxonomic groups, no seasonal pattern was observed as well, except 

for cyanophage bloom that occurred in the summer season. In the ’15 Sept. sample, 

the number of reads that were assigned to the family Myoviridae was significantly 

high, occupying 85% of all the reads that were assigned to viruses. The 

corresponding 16S rRNA amplicon sequencing that were performed in parallel with 

viral metagenome, showed increased proportion of cyanobacteria in ’15 Sept. sample. 

The correlation between cyanobacteria and myovirus population has been observed 

before in many different environments, especially in oceans (Chow and Fuhrman, 

2012). Hence, paired seasonal abundance of cyanobacteria and myovirus population 

seems to be a universal phenomenon that could be observed in both marine and 

freshwater environments. Virome reads assignment at the species level also showed 

high abundance of cyanophages in ’15 Sept., the summer sample (Fig. 3-8). 

Especially, Prochlorococcus phage P-SSM2, which showed high dominance in viral 

groups of ’15 Sept. sample, showed gradual decrease in its abundance after the 

bloom. When virome reads were annotated with taxonomic assignments, 

cyanophage bloom was most observable. This may be due to actual Cyanobacteria-

cyanophage bloom that took place, but also may be a biased observation due to 

relatively well represented and identified cyanophages. Among environmental 

bacteriophages, cyanophages are the most identified and well-studied group. 

Therefore, public databases contain relatively high number of cyanophages genomes, 

which may have led to biased interpretation in viral metagenome reads. Seasonal 

variation was also not visible when predicted functional genes were annotated from 

virome reads. Clear seasonal pattern of viral population distribution may not have 

been observable due to small sample size. However, low resolution of viral 

population annotation, which was caused by limited size of the viral database with 

low representation of viral population may have caused limitations in interpretation 

of viral metagenome data as well.  
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 From the MG-RAST annotation server, approximately 87.84% to 93.60% 

of the virome reads that were submitted were predicted to having protein sequences 

but not able to be identified, indicating that Lake Soyang virome is mostly consisted 

of unreported viral sequences (Table 2-6). Therefore, those sequences were subjected 

for further analysis after construction of viral contigs from viral metagenome reads. 

Using virome contigs that were 10 kbp or longer, protein sequence clusters were 

constructed based on sequence similarity with protein sequences collected from 

NCBI RefSeq viral database. As a result, total of 693 groups were established and 

among those, 211 groups were composed of Lake Soyang virome contigs only. 

Taxonomic prediction for only 16 groups that consisted of both Lake Soyang virome 

contigs and reference sequences were able to be made based on the reference 

sequences that they were grouped with.  

 From the viral groups that were only consisted of Lake Soyang virome 

contigs, circularized contigs were collected for manual curation of their host 

prediction. Through IMG/M ER annotation server and RefSeq database, ORFs of the 

circularized contigs were predicted and taxonomic assignment was made for each 

ORF. The taxonomic predictions made on all ORFs carried by a single contig were 

summarized and when more than 40% of the taxonomic predictions had consensus 

to a specific bacterial organism, it was accepted as a predicted host. Most viral 

genomes are composed of diverse protein coding genes of bacterial origin, those are 

suspected to be obtained from horizontal gene transfer, during infection. Therefore, 

host prediction was made according to bacterial taxonomic assignments made on 

each ORFs. As a result, 7 major groups that were unique to Lake Soyang virome 

were able to be predicted with their putative hosts. Within 28 largest groups that 

consisted of 50 contigs or more, 5 Lake Soyang groups (groups 1, 5, 6, 7, and 26) 

were identified to have putative hosts within the phylum Proteobacteria and 2 groups 

were each predicted to have hosts within in the phylum Actinobacteria (group 2) and 

Bacteroidetes (group 22). Hence, total of 976 contigs were newly identified as 
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bacteriophages that could possibly infect hosts within the phylum Proteobacteria, 

315 as those infecting a member of the phylum Actinobacteria, and 59 as those 

infecting those of the phylum Bacteroidetes.  

 In the era of massive viral metagenome data, interpretation of those data is 

often being hampered by limited number of viral sequences that have been identified 

and sequenced before. Although large number of unique viral contigs were found in 

viral metagenome study performed in Lake Soyang, most of them were not able to 

be identified expanding more dark matter to the environmental viral genome 

database. Therefore, although viral metagenome approach was suggested to 

overcome the limitations of the bacteriophage cultures, it is the experimental 

bacteriophage culture and isolation that could provide information for viral 

metagenome analysis. Therefore, two methods, viral metagenome and bacteriophage 

isolation, must be accompanied together for better understanding of bacteriophage 

ecology in diverse environments. 



 

 

 

 

 

 

 

 

 

CHAPTER 3.  

Genomic and Ecological Study on Novel 

Bacteriophages Isolated from Lake Soyang 
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ABSTRACT 

Recently, through number of viral metagenome studies performed in 

diverse environments, thousands of putative novel bacteriophage genomes became 

known. However, most of those genomes remain as unknown or unclassified due to 

dearth of environmental bacteriophage genome databases that could be used to 

identify viral sequences retrieved from viral metagenome. Therefore, physical 

isolation and genome sequencing of individual bacteriophages are necessary not only 

for expanding our knowledge on environmental microbial ecology but also for better 

interpretation of viral metagenome data. From Lake Soyang, the largest conserved 

freshwater lake in South Korea, 4 new bacteriophages were isolated using 3 different 

bacterial strains that were also isolated from Lake Soyang; P19250A infecting a 

strain belonging to the LD28 group, P26059A and P26059B infecting Curvibacter 

sp., and P26218 infecting Rhodoferax sp. strain. The bacteriophages P19250A and 

P26059A appeared to be members of the Siphoviridae family and P26218 and 

P26059B was those of the Podoviridae family. Through Illumina MiSeq platform, 

whole genome of all four phages have been sequenced. Using obtained sequences, 

the binning analyses were performed on freshwater viromes and it was shown that 

the phage P19250A was the most highly-assigned freshwater phage (up to 8.7%) in 

Lake Soyang. Also, the proportion of P19250A-assigned reads fluctuated following 

the seasonal abundance of LD28 clade in Lake Soyang, which indicated host-

dependent bacteriophage population shifts. The phages P19250A and P26218 

showed seasonal preference in winter. Meanwhile, P26059A showed weak 

seasonality in summer season, reflecting bacterial host abundance according to 

seasonal changes. These results showed that novel bacteriophages isolated from 

Lake Soyang and their genomes would be essential resources for understanding 

freshwater bacteriophage community and also suggest that phages of other abundant 

freshwater bacteria need to be isolated as well.  
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1. INTRODUCTION 

Bacteria, which are present in diverse environments, are known to thrive in 

lake waters at 106 cells per ml and, their predators, bacteriophages (phages), are 

calculated to be present as 10-times more abundant than their hosts, being the most 

abundant biological entities on the Earth (Ignacio-Espinoza et al., 2013). Phages in 

the environment often take lytic life cycle, which they aggressively reproduce 

through host cell lysis, and thereby actively control the bacterial populations. The 

phages also participate in nutrient cycle in aquatic environments. Not only that they 

interfere with various nutrient cycles performed by bacterial cells by predation, but 

they also contribute in increase of the dissolved carbon source in the environment 

through lysis of bacterial cells and release of cell debris into the surrounding system 

(Guidi et al., 2016). Phages also participate in proliferation of bacterial gene 

diversity by mediating horizontal gene transfer through unintentional carriage of host 

gene fragments while infecting one host after the other (Yu et al., 2016). In process 

of carrying their host genomes within the phage capsid, some phages acquired 

bacterial functional genes that could benefit both the host and itself. Those bacterial 

functional genes carried by phages are called auxiliary metabolic genes (AMG) and 

those genes are known to be involved in photosystem, glycolysis, and phosphorous, 

sulfur, and nitrogen cycling (Adriaenssens and Cowan, 2014; Hurwitz and U’Ren, 

2016; Sharon et al., 2009). The AMGs enter the bacterial cell and are expressed to 

enhance cell metabolism upon phage infection and eventually benefit phage 

reproduction. Despite diverse functions of the phages in the environment, 

recognition and appreciation of environmental phages are highly lacking. In the 

NCBI Genome database, as of March 2017, total of 91,075 prokaryote genomes are 

available while only 7,140 viral genomes are accessible. Among those, 

bacteriophage genomes are even less – 2,101 genomes sequenced and those of 

environmental phages are expected to be lesser. Despite high number of phage 
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particles found in the environments, number of identified bacteriophages is relatively 

low due to hardships in culturing individual phages. One of the major limitations in 

culturing phages is that they require their hosts to be cultured before phage screening 

to begin. Only few environmental bacterial species have been cultured in laboratory 

settings so far, and even if they are successfully cultured, maintaining those strains 

in artificial media are challenging, which limits the attempts to culture their 

bacteriophages.   

In order to overcome the culturability restrictions, viral metagenome 

approach, also known as virome, was suggested to discover unknown environmental 

bacteriophage sequences (Edwards and Rohwer, 2005). Without the need of 

culturing both bacteria and phages, virome analysis allowed access to large amount 

of bacteriophage genomes in diverse environments such as ocean (Angly et al., 2006; 

Brum et al., 2015b; Hurwitz and Sullivan, 2013), freshwater (Roux et al., 2012; 

Skvortsov et al., 2016), Antarctic freshwater (de Cárcer et al., 2015; Lopez-Bueno 

et al., 2009), hot spring (Breitbart et al., 2004b), and soil (Reavy et al., 2015; 

Srinivasiah et al., 2013). Through assembling environment virome data, many 

studies identified novel and abundant bacteriophage genomes in various 

environments (Brum et al., 2015b; Hurwitz and Sullivan, 2013; Lopez-Bueno et al., 

2009). Also, some studies were able to propose putative phage genomes from virome 

data sets using marker genes conserved in specific viral groups or host genomes 

(Ghai et al., 2016; Zawar-Reza et al., 2014). However, there still were limitations in 

analysis of virome data that most of the assembled phage genomes were not able to 

find a close match within established genome databases. Furthermore, phage genome 

sequences alone was not sufficient to provide information on their hosts or 

morphology, which are required basic information for phage classification. As 

mentioned above, viral genome database is considerably small compared to that of 

bacterial genome. Number of novel environmental phage genomes acquired from 
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viral metagenomes outnumbers the existing viral genome groups and those genomes 

are not being able to be classified or group to an existing phage/viral genome groups 

and they are currently named as simply “unclassified.” Also, because viral genomes 

are too diverse and they do not carry any universally conserved sequences, 

construction of taxonomic trees to classify viral particles with only sequence 

information was not achievable. Furthermore, despite numerous and extensive viral 

metagenome studies performed recently, lack of representative freshwater phages 

has hampered proper taxonomic and functional interpretation of freshwater viromes 

(Bruder et al., 2016), and has resulted in many freshwater virome reads being 

assigned to marine phages (Green et al., 2015; Skvortsov et al., 2016) which are 

relatively studied more. Therefore, virome approaches to study environmental 

phages must be accompanied with individual phage cultures and experimental 

observations.  

A number of studies on marine bacteriophages have been done, including 

isolation of the most abundant bacteriophages in the ocean (Kang et al., 2013; Zhao 

et al., 2013) and survey of marine viral population through metagenome (Hurwitz 

and Sullivan, 2013; Roux et al., 2016a). In depth studies on specific bacteriophages 

were also performed and discovered marine cyanophages with photosystem genes as 

AMGs to assist their host metabolism and enhance phage reproductivity (Sharon et 

al., 2009). However, all these extensive studies on bacteriophage were confined to 

marine environments, still leaving un-pioneered spaces of bacteriophages in other 

biospheres, such as freshwater lakes (Cobián Güemes et al., 2016). Inland waters, 

including lakes, reservoirs, streams, and rivers, play important roles in global 

biogeochemical cycles and climate change (Raymond et al., 2013; Tranvik et al., 

2009). There are large number of freshwater lakes across the continents that are 

diverse in size and characteristics with large ecological values. Since each lake is 

enclosed and isolated from each other, despite how similar climate or environment 
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they have, each of them have unique and independent systems. Meanwhile, major 

bacterial composition is very similar across different lakes (Glöckner et al., 2000; 

Newton et al., 2011; Salcher, 2013), providing interesting aspects in freshwater 

microbial evolution and ecology. Also, inland lake microbial communities react 

more sensitively to climate and environmental changes compared to those of oceans 

due to smaller area (Tseng et al., 2013), providing valuable study sites for seasonal 

and climate-dependent microbial researches. In this regard, there are numerous 

studies on freshwater microbes with diverse aspects, such as community structures 

influenced by salinity gradient, climate changes and water chemistry (Eiler et al., 

2014; Hahn et al., 2015; Niño-García et al., 2016). Also, in-depth studies on 

individual bacterial strains that inhabit in freshwater lakes have been done by many 

researchers (Hahn et al., 2016; Jezbera et al., 2013; Salcher et al., 2015). Yet, many 

of the freshwater bacterial strains still remain uncultured, along with their phages. 

Until today, no phage has been isolated that infects major freshwater heterotrophic 

bacterial groups, such as acI, acIV, LD12, Limnohabitans, Polynucleobacter, and 

LD28. Hence, isolation and culturing of freshwater phages using freshwater bacteria 

are necessary to understand the freshwater virosphere. 

Lake Soyang, located in South Korea, is the largest and oldest artificial lake 

in Korea that serves as tap water reservoir for Seoul metropolitan area. As well as 

other conserved oligotrophic lakes, Lake Soyang inhabits diverse bacterial lineages 

and phage groups. To lead the study on the freshwater microbial population and 

dynamics, number of bacterial strains and bacteriophages have been isolated and 

studied from the site. For this study, two of representative families of the class 

Betaproteobacteria were selected to isolate their bacteriophages; the families 

Methylophilaceae and Comamonadaceae within the class Betaproteobacteria. 

Among the diverse freshwater bacterial groups, the class Betaproteobacteria is often 

the most abundant group in freshwater environments, though less abundant in marine 
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environments (Cottrell et al., 2005; Zwart et al., 2002). Thereby the freshwater 

Betaproteobacteria is the best-studied and the most cultured bacterial group (Newton 

et al., 2011).  

One of the major heterotrophic bacterial groups in freshwater is the 

methylotrophs belonging to the Betaproteobacteria group, who are responsible for 

single-carbon (C1) utilization and contribute in carbon cycle of its inhabiting 

environment (Beck et al., 2014; Chistoserdova, 2015; Halsey et al., 2012; Hanson, 

1998). By participating in C1 compound metabolism, methylotrophic bacteria are 

expected to play important roles in the control of the emission of greenhouse gases 

such as methane and carbon dioxide. While methylotrophic bacteria are distributed 

among diverse phylogenetic groups (Chistoserdova and Lidstrom, 2013) with 

various metabolic pathways, a few phylogenetically related clades in the family 

Methylophilaceae have been described as a major methylotrophic group in water 

column of marine and freshwater environments. In marine habitats, the OM43 clade 

of the Methylophilaceae was found to be a major methylotrophic group by several 

studies (Gifford et al., 2013; Rappe et al., 1997; Sowell et al., 2011). Isolation and 

genome sequencing of HTCC2181, a coastal strain of the OM43 clade, showed the 

ability of C1 compound utilization. In freshwater habitats, the LD28 and 

PRD01a001B groups are known to be frequently found in pelagic freshwater. 

Especially, the LD28 clade, a close relative of the OM43 clade, was found to be 

widespread and abundant (Newton et al., 2011; Salcher et al., 2011). Recently, 

Salcher et al., (2015) successfully isolated bacterial strains affiliated with the LD28 

and PRD01a001B clades and described the isolates as type strains of two novel 

species of the Methylopumilus, a novel Candidatus genus within the 

Methylophilaceae. The genome sequences of the two strains showed the existence 

of methylotrophic pathway, and methanol was revealed to enhance the growth of 

strain MMS-2-53, a LD28 isolate. Considering the recurrent seasonal variation of 
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the LD28 clade (Salcher et al., 2015; Salcher et al., 2011), studies on phages 

infecting the LD28 clade bacteria are expected to contribute in better understanding 

of the dynamics of the LD28 clade. 

Metagenomic studies on several freshwater bacteria revealed that the 

family Comamonadaceae, arbitrarily named betI (Zwart et al., 2002), is the most 

frequently found family (Kaden et al., 2014) within the class Betaproteobacteria. 

The genus Rhodoferax (Newton et al., 2011), belonging to the family 

Comamonadaceae, is found in diverse habitats including ditch water, activated 

sludge, Antarctic microbial mats, and water reservoirs (Cottrell et al., 2005; Hiraishi 

et al., 1991; Madigan et al., 2000; Newton et al., 2011). The Curvibacter genus is a 

member of the family Comamonadaceae, a representing family of the class 

Betaproteobacteria (Willems, 2014), which is one of the dominating bacterial group 

in freshwater environments (Newton et al., 2011). Therefore, understanding the 

ecology of the genera Rhodoferax and Curvibacter and their lytic phage will 

contribute to the understanding of freshwater microbial dynamics and help in further 

freshwater phage genomic studies. 

Therefore, in this study, three bacterial strains isolated from Lake Soyang, 

that belong to the genus Betaproteobacteria, were selected for their phage isolation; 

one belonging to the family Methylophilaceae (IMCC19250) and two strains 

belonging to the family Comamonadaceae (IMCC26218 and IMCC26059). Thus, 

total of four bacteriophages were successfully isolated and sequenced. The phage 

P26218 was isolated using Rhodoferax saidenbachensis strain IMCC26218, and the 

phages P26059A and P26059B were isolated using a strain IMCC26059, a strain 

belonging to Curvibacter species. Lastly, P19250A, a lytic phage was isolated and 

shown to be infecting IMCC19250, a strain belonging to LD28 clade. After whole 

genomes of the isolated phages were obtained, their genomic distribution in Lake 

Soyang were observed through competitive binning analysis of viral metagenome 
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data prepared from the identical lake. The binning analysis revealed that P19250A 

was the most abundant bacteriophage found in winter seasons while other three 

phages showed relatively low appearances in Lake Soyang. Through sequencing of 

novel bacteriophages isolated from Lake Soyang, not only that our knowledge on 

freshwater virosphere was extended, but also was able to provide enhanced 

interpretation on unknown parts of the viral metagenome studies.  
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2. MATERIALS AND METHODS 

2.1.   Isolation and purification of freshwater bacteriophages 

2.1.1. Isolation and cultivation of the host strains from Lake Soyang 

On October 2011, a freshwater sample was collected at a depth of 30 m 

from Lake Soyang, located in Gangwon province of South Korea (37.947421 N, 

127.818872 E), and was transported to the laboratory. For media preparation, 2 L of 

the water sample was filtered through a 0.2-μm pore-size polyethersulfone (PES) 

membrane filter (Pall Corporation, New York, USA), autoclaved (2 h), cooled, and 

aerated (4 h). Then, 10 μM NH4Cl, 10 μM KH2PO4, 50 μM pyruvic acid, 5 μM D-

glucose, 5 μM N-acetyl-D-glucosamine, 5 μM acetic acid, 1 μM FeCl3, 1 μM 

methionine, 1 μM glycine, 1 μM cysteine, and a vitamin mixture (Cho and 

Giovannoni, 2004) were added to the treated water to be used as culture media. A 

small volume of untreated water was diluted to a microbial cell density of 10 cells 

ml-1 using the media prepared as above, and aliquoted into 48-well microtiter plates 

(1 ml per well). The plates were incubated at 15°C in the dark for 6 weeks. After 

incubation, the cell density in each well was measured using a Guava® EasyCyteTM 

Plus Flow Cytometry System (Merck Millipore), and the growth-positive wells were 

harvested for phylogenetic analysis based on 16S rRNA gene sequences as described 

by Yang et al. (2016).  

Among the bacterial strains that were initially cultivated, a bacterial strain 

IMCC19250, which was classified to the LD28 clade was purified by a subsequent 

dilution culturing and was selected as a host strain for the isolation of bacteriophages. 

The IMCC19250 strain was grown in artificial freshwater media (AFM) using 

methanol as a sole carbon source and it did not form colonies on agar medium. 

Thereby, all experiments, including phage isolation, were performed using AFM.  
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Table 3-1. Composition of the artificial freshwater medium 
(AFM) used to culture an LD28 strain, IMCC19250 

Chemicals 
Final 
concentration 

KH2PO4 200μM 

(NH4)2SO4 300μM 

MgSO4 7H2O 300μM 

KCl 200μM 

CaCl2 2H2O 500μM 

NaHCO3 300μM 

CH3OH 200μM 

Vitamin mixturea 1 × 

Trace metalb 1 × 

Na2CO3 to pH 7.2 
aSee Stingl et al. (2008) for detailed composition 

bSee Carini et al. (2013) for detailed composition 

  



 

78 

 

The recipe for AFM is shown in table 3-1. AFM was prepared by adding salts to 

MilliQ water, followed by autoclaving (1.5 h), aeration (≥12 h), and the addition of 

a vitamin mixture and trace metals.  

On April 2014, a freshwater sample was collected from the identical site, at 

depth of 1 m. Using the identical method described above, bacterial strains that each 

belong to the genera Rhodoferax (IMCC26218) and Curvibacter (IMCC26059) were 

isolated. Based on a comparative 16S rRNA gene sequence analyses, strain 

IMCC26218 was found to belong to the genus Rhodoferax with 98.7% sequence 

similarity to R. saidenbachensis ED16T. The IMCC26059 strain showed 98.00% 16S 

rRNA similarity with Curvibacter delicatus, and, it also showed close relatedness to 

Curvibacter fontanus when Neighbor-joining phylogenetic tree was constructed 

using 16S rRNA sequences, making ambiguous phylogenetic identification of 

IMCC26059 and leaving the strain as putative novel species (Fig. 3-1). Both strains 

were able to form colonies on R2A agar (Becton, Dickenson and Company, Franklin 

Lakes, NJ, USA) at 20˚C (Quast et al., 2012). 

2.1.2. Isolation of a bacteriophage infecting IMCC19250, a non-colony 

former 

The surface water sample collected on April 2014 was filtered through a 

0.2-μm PES membrane filter (Merck Millipore, Darmstadt, Germany) (Brum et al., 

2015b) to remove large particles and retain only those smaller than 0.2-μm in 

diameter, which was mostly comprised of viral particles, and 200 μM methanol and 

1 × vitamin mixture were added. Strain IMCC19250 grown in AFM with 200 μM 

methanol was inoculated into 800 ml of the lake water sample processed as described 

above, at the density of 5 × 104 cells ml-1, and incubated at 20°C for 3 weeks to enrich 

the bacteriophages present in the lake water that could infect the host strain. During 

incubation, 10 ml of the enrichment culture was sub-sampled every week. Collected  
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Figure 3-1. 16S rRNA neighbor-joining phylogenetic tree of representative bacterial strains 

of the phylum Betaproteobacteria. Bacterial strains, IMCC26218, IMCC26059, and 

IMCC19250, that were isolated from Lake Soyang and used as hosts for phage screening are 

marked in bold. The tree was constructed with bootstrap value of 1,000 based on the SILVA 

ribosomal RNA gene database (Quast et al., 2012).  
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sub-samples were mixed with 2 ml of chloroform, vortexed, and centrifuged at 3,000 

× g for an hour to remove bacterial cells. The aqueous phase, which contained 

putatively retained bacteriophage particles, was collected and stored at 4°C until 

analysis. 

To screen for phages infecting IMCC19250, an exponentially growing 

culture of IMCC19250 was diluted to approximately 104 cells ml-1 using AFM, and 

1 ml of the bacterial culture was aliquoted into 48-well plates, and 10 μl of the 

enrichment culture samples prepared as above were inoculated. After 2 weeks of 

incubation at 20°C, the cell density of each well was measured with a Guava® 

EasyCyteTM Plus Flow Cytometry System (Merck Millipore), and compared to the 

densities of uninoculated control wells (with host only). Several wells that showed 

much lower cell densities than the control wells were selected for further 

experiments. Samples were collected from each of the selected wells, treated with 

200 μl of chloroform, and inoculated into a 20 ml of IMCC19250 culture containing 

about 104 cells ml-1. During incubation, the cell density of the cultures was monitored 

by flow cytometry. Growth retardation and/or cell lysis was observed in many 

cultures, suggesting phage infection. The presence of phage particles in those 

cultures was confirmed by epifluorescence microscopy according to the method of 

Patel et al., 2007, with slight modifications. Samples (10–100 μl) of the cultures 

were filtered onto 0.02-μm Whatman Anodisc 25 filters (Sigma-Aldrich, St. Louis, 

MO, USA), stained with SYBR Gold (Invitrogen, Waltham, MA, USA), and 

examined under a Nikon Eclipse 80i epifluorescence microscope (Nikon Instruments, 

Melville, NY, USA). The cultures that were confirmed to contain phage particles 

were stored in either 7% DMSO (Sigma-Aldrich) or 10% glycerol (Sigma-Aldrich) 

at -80°C. A phage strain was established from one selected sample through co-culture 

with IMCC19250, and was named P19250A, after its bacterial host. 
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2.1.3. Isolation of bacteriophages infecting colony-forming bacterial 

strains 

Bacterial strains IMCC26218, a strain belonging to Rhodoferax species and 

IMCC26059, a strain belonging to Curvibacter species were isolated from Lake 

Soyang and both were able to form colonies on R2A agar (Becton, Dickenson and 

Company, Franklin Lakes, NJ, USA). Therefore bacteriophages infecting these 

strains were isolated using R2A media. To screen for putative bacteriophages 

infecting Rhodoferax sp. IMCC26218 and Curvibacter sp. IMCC26059, surface 

waters from Lake Soyang were collected and brought to lab at 4˚C on October 2014 

and May 2015, respectively. The water samples were filtered through a 0.2 μm PES 

membrane filter (Merck Millipore) (Brum et al., 2015b) immediately after the 

samples were brought to lab. To 400 ml of treated water sample, 100 ml of 5 × R2A 

broth (MB Cell, Los Angeles, CA, USA) and liquid culture of IMCC26218 and 

IMCC26059 were each added and incubated at 20°C for 2 weeks for enrichment of 

bacteriophages infecting target hosts. During the incubation period, 10 ml of the 

enrichment culture was sub-sampled for 5 times at a 3-day interval. Each sub-sample 

was treated with approximately 3 ml of chloroform to inactivate the bacterial cells. 

The treated samples were used for spot-double agar layer (DAL) plaque assay on its 

designated host lawn plates for phage screening via appearance of plaques (Grabow, 

2004), resulting in the isolation of phage P26218 and P26059A. The DAL plates 

were prepared with 1.5 × R2A agar as the bottom layer and 0.7 × R2A agar with 

bacterial liquid culture as the top agar.  

On June 2016, another surface water sample was collected from the 

identical site. After filtering the water sample through 0.2 μm PES membrane filter 

(Merck Millipore), 1 L of water sample was concentrated to approximately 12 ml 

using 50 kDa Centrifugal Device (Pall Corporation). The samples were filtered 

through a 0.2 μm Acrodisc® Syringe Filter (Pall Corporation) for sterilization. Ten 



 

82 

 

μl of concentrated samples were spotted on IMCC26059 bacterial lawn plate and 

plaques were obtained from the spotted regions. The plaque was retrieved and 

purified through series of DAL plating for purification and obtained phage particle 

was named as P26059B. 

2.2.   Growth curves of isolated bacteriophages 

2.2.1. Co-culture growth curve of host and its bacteriophage 

For phage P19250A, its growth curve was constructed through co-culture 

analysis with its host, IMCC19250. An exponentially-growing culture of strain 

IMCC19250 was inoculated into six culture flasks that contained 30 ml of fresh AFM, 

at an initial cell density of 104 cells ml-1. Subsequently, P19250A was added to three 

flasks at a multiplicity of infection (MOI) of 18. Another 3 flasks, without phage, 

were used as controls. The cultures were incubated at 20°C, and the growth of the 

host strain was measured every day with a Guava Flow Cytometer (Merck Millipore). 

At the same time, a 1 ml of sub-sample was taken from each culture flask and 

analyzed to enumerate the phage particles by epifluorescence microscopy after 

staining with SYBR Gold (Patel et al., 2007). 

2.2.2. One-step growth curves of bacteriophages P26059A and P26059B 

One-step growth curves for P26059A and P26059B were constructed using 

exponentially growing IMCC26059 liquid culture and their phage stocks (2.43×108 

PFU/ml and 7.98×108 PFU/ml, respectively) prepared in SM buffer. The phage 

stocks were each inoculated to the host liquid culture at MOI of 0.33 (P26059A) and 

6.29 (P26059B). The mixtures were incubated in a shaking incubator at 20˚C and 

100 rpm for 10 min. The incubated samples were serially diluted to 10-4 fold and was 

placed in shaking incubator for 3 hours. During incubation, the liquid culture was 

withdrawn every 20 min and plated on DAL plate in triplicate. The plaques were 
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counted after two days of incubation in 20˚C and enumerated plaque numbers were 

used to draw one-step growth curves. 

2.3. Enrichment and concentration of bacteriophage particles 

Bacteriophages P19250A, P26218, and P26059A were enriched and 

concentrated through preparing 800 ml of lysate solutions. P19250A particles were 

amplified by co-culture with IMCC19250 in 800 ml of AFM and P26218 and 

P26059A particles were enriched in co-culture with their hosts, IMCC26218 and 

IMCC26059, respectively, in R2A Broth.  

Lysate solution of P26059B was prepared differently from other phages. 

For the phage P26059B, 10 confluent DAL plates with propagated phages were 

prepared. To extract phage particles from the plaques, 5 ml of SM buffer were added 

to each plate and they were incubated on a gyratory shaker in 4˚C. After an overnight 

incubation, the SM buffer was retrieved. Ten ml of chloroform was added to 

approximately 50 ml of SM buffer with harvested phage particles was harvested and 

vigorously vortexted for 5 min for removal of bacterial cells. Then the sample was 

centrifuged at 3,000 × g for 30 min. and only the top aqueous layer was collected for 

further procedures. 

All the lysates prepared were collected and concentrated according to the 

methods in “Molecular Cloning: A Laboratory Manual” (Green and Sambrook, 2012) 

with minor modifications. After treatment with 1 μg ml-1 DNase I and RNase (Sigma-

Aldrich) and the addition of 1 M NaCl and 10% (w/v) polyethylene glycol (PEG) 

8000, the lysate was incubated on ice for overnight, and then centrifuged at 11,000 

× g for 40 min to precipitate phage particles. The pellet was soaked in SM buffer 

and resuspended. An equal volume of chloroform was added to the resuspended 

pellet, vortexed, and centrifuged at 3,000 rpm for 30 min at 4°C. The top aqueous 

phase was collected and ultracentrifuged for 2 h at 240,000 × g in a Beckman Coulter 
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L-90K ultracentrifuge with a SW 55 Ti swinging-bucket rotor. The pellet was 

resuspended in 100 μl of SM buffer for further analysis.  

2.4. Morphological analysis of isolated phages using transmission 

electron microscopy 

For morphology analysis of the phages, copper grid samples were prepared 

to be observed under a transmission electron microscope, TEM (CM200; Phillips, 

Amsterdam, Netherlands). Ten μl of the phage concentrates were adsorbed onto 

formvar and carbon-coated copper grids. The grids were negatively stained using 2% 

uranyl acetate by two short stainings followed by 45 sec of a final staining step 

(Ackermann and Heldal, 2010). After observation, taxonomic classification of 

phages was made based on its morphology (King et al., 2012). 

2.5. Whole genome sequencing of phages and quality control 

From the prepared phage concentrates, genomic DNA was extracted using 

the Qiagen DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany) according to 

the manufacturer’s instructions. Whole genome sequencing for the phage genomes 

was performed by ChunLab, Inc. (Seoul, South Korea). The sequencing library was 

constructed using the TruSeq DNA sample preparation kit (Illumina, San Diego, US) 

and the samples were sequenced using an Illumina MiSeq system with 2 × 300 bp 

paired-end reads. The sequences for phages were each assembled using SPAdes-

assembler (Bankevich et al., 2012). Assembled contigs were checked for their 

completeness followed by gene prediction by the RAST server (Aziz et al., 2008). 

Each predicted gene was analyzed by BLAST against NCBI’s nr and env-nr protein 

databases (Lavigne et al., 2008) for their function prediction and only the results 

with e-values less than 0.001 were accepted. The protein coding genes that did not 

have a predicted function were further analyzed with BLAST upon UniProt database 

(Apweiler et al., 2004), Pfam database (Finn et al., 2013), and Conserved Domain 
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Database (CDD) (Marchler-Bauer et al., 2011). Then their functions were predicted 

based on the protein domain found with the e-value threshold of 0.001. For further 

analysis of the phage genomes, tRNAs were searched using tRNAscan-SE v. 2.0 

(Lowe and Eddy, 1997) and ARAGORN v. 1.2.38 (Laslett and Canback, 2004), 

which were available on-line. 

2.6. Competitive binning analysis of sequenced phage genomes within 

virome data 

To observe the abundance and distribution of bacteriophage genomes that 

have been obtained, six viromes of Lake Soyang and other publicly available 

freshwater viromes were used for the analyses. Public viromes were downloaded 

from NCBI and MetaVir (http://metavir-meb.univ-bpclermont.fr/). Viral 

metagenome data from Lake Soyang were collected from October 2014 to May 2016. 

Total of 6 surface water samples were collected and viral particles were concentrated 

from approximately 10 L of lake water using FeCl3 (John et al., 2011). Then collected 

viral particles were sequenced using Illumina MiSeq sequencing platform. Virome 

sequences of Lake Soyang were trimmed using Trimmomatic based on quality score 

and length (Bolger et al., 2014), and phiX174 control sequences were removed by 

discarding sequences that were mapped to the phiX174 genome in the read mapping 

using CLC Genomics Workbench (Qiagen). In the binning analysis, each read of the 

viromes was assigned to the best-matching protein in a custom-made search database 

by the DIAMOND algorithm (Buchfink et al., 2015) with a bitscore cutoff of 40. 

The search database was constructed by adding annotated protein sequences of 

isolated phages to all the viral proteins and non-redundant bacterial proteins of 

RefSeq (release 72 (Nov. 5, 2015) for analysis of the phage P19250A and release 79 

(Nov. 2016) for analysis of the phages P26218, P26059A and P26059B). The binning 

results were summarized by calculating the number of virome reads assigned to each 

viral and bacteriophage genome. 
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Along with viral metagenome, bacterial 16S rRNA amplicon sequencing 

was performed using identical samples. From 1-2 L of surface lake waters, bacterial 

DNA was extracted as described in Yang et al. (2016). The V3-V4 regions of the 16S 

rRNA genes were amplified using Illumina MiSeq platform at ChunLab, Inc. 

Taxonomic classification of processed sequences was performed with the RDP 

classifier in MOTHUR, using a custom-made database that was based on the SSURef 

NR database of Silva (Release 123; available at https://www.arb-silva.de/). The 

abundances of the host bacterial strains were calculated by dividing the number of 

sequencing reads assigned to the target bacteria by the total sequencing reads. 

To search for virome contigs that showed synteny to the phage genomes, 

reads from selected viromes including those of Lake Soyang were assembled using 

SPAdes (Bankevich et al., 2012). Contigs (≥10 kb) assembled from each virome 

were compared by local tBLASTx to a custom-made search database that included 

the genomes of the phages obtained in this study in addition to the all viral genomes 

in RefSeq (release 72 or 79) to search for contigs that showed high similarity to 

bacteriophage genomes of interest. The BLAST results were summarized to 

calculate the total bitscore between all pairs of viral genomes and virome contigs. 

Virome contigs, for which the total bitscore with the phage of interest was higher 

than the bitscore with any other viral genome, were picked for further analyses. 

Selected contigs were further analyzed by tBLASTx, provided at the NCBI website, 

against both the Reference genomic sequences database (“refseq_genomic”) for 

further confirmation. The total bitscore between the selected virome contigs with 

target phage genome was compared to that of the best hit of selected virome contig 

in “refseq_genomic.” Then, only contigs that had a higher bitscore with the target 

phage genome compared to the best match found from the existing database were 

used for the synteny analysis.  
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3. RESULTS 

3.1. Physical characteristics of bacteriophages isolated from Lake 

Soyang 

3.1.1. Morphology, growth curve, and host range of the phage P19250A 

In attempts to isolate phages infecting major freshwater bacterial groups, 

bacteriophage P19250A, which infects strain IMCC19250 of the LD28 clade (Fig. 

3-1), was isolated from Lake Soyang, where the host strain was previously isolated 

as well. Morphological characterization by TEM revealed that P19250A belonged to 

the family Siphoviridae, with an icosahedral shaped head (approximately 51 nm in 

diameter) and a long non-contractile tail (approximately 95 nm in length; Fig. 3-2a). 

P19250A showed a lytic life cycle when co-cultured with its host. Concentration of 

P19250A particles increased exponentially from 8.04 × 103 per ml (immediately after 

inoculation) to 3.04 × 108 particles per ml within 5 days (Fig. 3-2b). Concurrently, 

the number of host cells started to decrease after 2 days of incubation and reached 

9.55 × 104 cells per ml after 5 days, while the host cultures not inoculated with the 

phage entered latent period with a cell density of 7.96 × 106 cells per ml. After 

confirming the lytic ability toward the original host strain, the host range of P19250A 

was tested using phylogenetically related bacterial strains isolated from the same 

lake. The P19250A was able to infect all the four tested isolates of the LD28 group 

that showed 99.85–100% sequence similarity of 16S rRNA gene. However, 

IMCC30193, a strain that belongs to the PRD001a001B group with 96.31% 16S 

rRNA sequence similarity to IMCC19250, was not infected by P19250A (Fig. 3-3). 

Considering that the LD28 and PRD01a001B clades were suggested to form two 

different species within a same genus (Salcher et al., 2015), our results showed that 

the host range of P19250A is restricted to only those within the same species. 
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Figure 3-2. General characteristics of the phage P19250A. (a) Transmission electron 

micrographs of P19250A particles showing icosahedral capsids and long non-contractile tails. 

The scale bars represent 20 nm (left) and 50 nm (right). (b) Lysis of host strain IMCC19250 

by P19250A during co-culture. For comparison, IMCC19250 growth was also measured in 

the absence of P19250A. Error bars represent standard error (n = 3). 
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Figure 3-3. Phylogenetic position of the host strain, IMCC19250, among related strains in 

the family Methylophilaceae, and determination of the host range of the phage P19250A. (a) 

Neighbor-joining phylogenetic tree based on 16S rRNA gene sequences showing the 

phylogenetic position of the strains that were used for host range determination. Four strains 

of the LD28 clade and one strain of the PRD01a011B clade used for the experiment are shown 

in bold. Bootstrap values are shown at the nodes. (b) Growth curves of the bacterial strains 

used for determination of the host range of P19250A. Bacterial cells co-cultured with 

P19250A (closed triangles) and uninfected cultures (closed circles) are shown. 



 

90 

 

3.1.2. Physical characteristics of the phages P26218, P26059A, and 

P26059B 

Phage P26218 is a lytic phage that forms plaques of 1 to 2 mm in diameter, 

on Rhodoferax sp. IMCC26218 culture plates. TEM of purified phage particles 

revealed its icosahedral-shaped head (52.1 nm in diameter) with a short tail for 9.4 

nm in length (Fig. 3-4), classifying the P26218 as a member of the family 

Podoviridae of the order Caudovirales (King et al., 2012).  

Two phages, P26059A and P26059B of Curvibacter sp. IMCC26059 were 

independently isolated from Lake Soyang. The phage P26059A was isolated on May 

2015 using phage-enrichment method and the phage P26059B was isolated on April 

2016 through concentration of phage particles present in the lake water. Both phages 

formed plaques on the bacterial lawn plate, indicating active lytic cycle of both 

phages. The plaque size for P26059A was approximately 1 mm in diameter and that 

of P26059B was 5 mm in diameter. When their morphology was observed under 

TEM, the two phages revealed to have different morphologies as well. P26059A 

belonged to the family Siphoviridae with a long tail of 153.14 nm in length with 

62.20 nm head in diameter. Meanwhile, the phage P26059B appeared to be a member 

of the family Podoviridae with a short tail (9.00 nm) and an icosahedral shaped head 

(58.86 nm in diameter) (Fig. 3-5a). Furthermore, one-step growth curves for both 

phages were constructed to observe their life cycles. The latent periods for P26059A 

and P26059B were 120 min and 80 min each and their burst sizes were 

approximately 15 and 58, respectively (Fig. 3-5b).  
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Figure 3-4. Transmission electron micrographs of the phage P26218 particles infecting 

Rhodoferax sp. IMCC26218. The TEM images were obtained using Philips CM200 electron 

microscope. Scale bars represent 100 nm in (A) and 20 nm in (B). 
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Figure 3-5. Transmission electron microscopy images and one-step growth curves of the 

phages P26059A and P26059B. (a) The phage P26059A is shown in the left panel and the 

phage P26059B is shown in the right panel. The scale bars each represent 20 nm and 50 nm, 

respectively. (b) One-step growth curves of the phages P26059A and P26059B are shown 

with standard error bars (n = 3).  
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3.2. Genomic characteristics of bacteriophages isolated from Lake 

Soyang 

3.2.1. Genome features of the phage P19250A 

Complete genome of the phage P19250A was obtained through Illumina 

MiSeq sequencing platform with 694 × fold coverage. The total size of the genome 

was 38,562 bp in length with 35.40% of G+C content (Table 3-2). A total of 58 genes 

were predicted in the genome through annotation by the RAST annotation service 

(Aziz et al., 2008), GeneMark.hmm (Lukashin and Borodovsky, 1998), and 

GLIMMER (Delcher et al., 1999). Each annotated protein coding genes were 

analyzed with BLAST against the NCBI non-redundant protein database and only 

the BLAST match with e-value threshold of 0.001 or less were accepted as putative 

function of the gene. Among 58 predicted protein coding genes, 20 of them were 

functionally annotated and they encoded proteins typically found in phages in a 

modular architecture (Table 3-3).  

Within the phage genome, terminase small and large subunits (ORFs 1 and 

2) and a portal protein (ORF 3) constituted a phage genome packaging module. 

Capsid-related proteins were clustered together (ORFs 4-6) followed by tail-related 

proteins (ORFs 7, 15, 19, and 21), forming a structure module together. ORF 23 was 

annotated to code for the collagen triple helix repeat-containing protein which has 

been first identified in a giant mimivirus, Acanthamoeba Polyphaga mimivirus 

(Colson et al., 2011; La Scola et al., 2008). Although collagen proteins are known to 

be dominantly found in mammals, they are found, albeit rarely, in prokaryotes and 

viruses and known to function as structural proteins (Rasmussen et al., 2003). Within 

the GenBank database, only few of phages belonging to the order Caudovirales carry 

the collagen-like protein and among the family Siphoviridae, only Synechococcus 

phage S-CSB2 and Bacillus phage PM1 were shown to carry it.  
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Table 3-2. Sequencing information of the phage P19250A genome 

Features P19250A 

Length 38,562 bp 

G+C content 35.40% 

Number of contigs 1 

Number of annotated genes 58 

Gene coding content 93.25% 

Sequencing platform Illumina MiSeq (2 × 300 bp) 

Library used TruSeq (shotgun) 

NCBI Accession number KX815270 
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Several genes were predicted to encode proteins related to nucleic acid metabolism. 

ORF31 encoded an exonuclease, and ORF 39 was annotated to encode a VRR-NUC 

(virus-type replication-repair nuclease) domain-containing protein. The VRR-NUC 

domains were known to help segregation of phage genomes and repair of double 

strand breaks (Kinch et al., 2005). Recently, crystal structure of VRR-NUC domain 

was identified, which showed that the domain has similar structure as Holliday 

junction resolvase and further revealed that VRR-NUC dimer functions as one 

(Pennell et al., 2014). The ORFs 28 to 53 are mostly comprised of hypothetical or 

unknown proteins, indicating that these genes are highly specific and unique to 

P19250A genome. 

P19250A’s phylogenetic location was explored using its terminase large 

subunit, capsid protein, and phage tail tape-measuring like protein (ORFs 2, 5, and 

15, respectively). Related protein sequences were collected from Pfam database 

(Finn et al., 2013) and GenBank nr database, and they were used for construction of 

maximum-likelihood phylogenetic trees. Three different phylogenic trees were 

constructed; however, no consistency was observed among all trees (Fig. 3-7). 

Different marker genes of P19250A were placed in separated branches from other 

bacteriophages, not being able to be classified into existing phage groups and 

remained as unique and novel unclassified group of phages.  

3.2.2. Genome features of the phage P26218 

The capsid of the phage P26218 encapsulated a linear dsDNA with length 

of 36,315 bp with 56.7% G+C content (Table 3-4). Although the phage P26218 

showed a morphology of a typical Podoviridae family, when its genomic 

characteristics were considered, no similar genomic architecture to those of a known 

phage was found among the known viral genera, leaving P26218 without an assigned 

genus. The amino acid sequence of DNA polymerase I (encoded by polA) of P26218,  



 

99 

 

 

 

 

 

 

  



 

100 

 

 

 

 

 

 

 

 

 

 

Figure 3-6. Genome map of the phage P19250A and its synteny contigs recovered from viral 

metagenomes. Within the genome map, structural genes are shown in blue, genes related to 

DNA replication, recombination, and modification are shown in green, genes related to cell 

lysis and packaging are shown in red, and genes involved in auxiliary functions are shown in 

purple. Synteny between the P19250A genome and contigs assembled from Lake Soyang and 

Lough Neagh viromes are shown below. The sequence comparison was performed with 

tBLASTx, and similar regions are connected by rectangles.  
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Figure 3-7. Phylogenetic trees of the phage P19250A, constructed using maximum likely 

method with bootstrap of 100, provided by the MEGA6. The sequences were collected from 

Pfam database and NCBI website. Phylogenetic tree in panel (a) was constructed using 

terminase I, large subunit protein sequences, that in panel (b) was constructed with 

bacteriophage tape measuring proteins, and that in panel (c) was constructed with 

bacteriophage capsid proteins. 
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Table 3-4. Sequencing information of the phage P26218 

Features P26218 

Length 36,315 bp 

G+C content 56.70% 

Number of contigs 1 

Number of annotated genes 44 

Gene coding content 93.18% 

Sequencing platform Illumina MiSeq (2 × 300 bp) 

Library used TruSeq (shotgun) 

Assemblers SPAdes version 3.1.1 

GenBank ID KP792623 
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one of the widely used viral phylogenetic markers (Adriaenssens and Cowan, 2014; 

Breitbart et al., 2004a), was aligned with that of representative strains of the families 

Podoviridae and Siphoviridae and the aligned sequences were used for phylogenetic 

analysis. The phylogenetic tree based on DNA polymerase I revealed that P26218 

formed a clade with a marine metagenome sequence, parted from previously known 

type species, confirming limitations in its assignment to a known genus (Fig. 3-8).  

Out of 44 predicted ORFs, only 15 (34%) were assigned with a known 

function. Four ORFs were predicted to be related to DNA replication, 2 to DNA 

metabolism, 5 to packaging and structural functions, and 4 to other known functions 

(Fig. 3-9, Table 3-5). BLASTp analyses showed that each ORF with an identified 

function was homologous to ORFs from different phages belonging to different viral 

families. All ORFs encoding viral packaging function were closely related to those 

of other viruses in the family Podoviridae. The ORFs encoding DNA polymerase I, 

ATPase component, thymidylate synthase, and hydrolase-like protein were similar 

to those of the family Siphoviridae, while the genes for DnaB-like ATP-dependent 

helicase and ParB-like nuclease domain showed a high degree of homology to those 

of the family Myoviridae. This genomic architecture of P26218 confirmed the 

mosaic genome structure, known to be a result of lateral gene transfer usually 

predicted in viral genomes in attempts to enhance their genetic diversity (Swanson 

et al., 2012; Yoshida et al., 2015) and often observed in species of the order 

Caudovirales such as phages P22 and lambda. 

3.2.3. Genome features of the phages P26059A and P26059B 

The genome size of P26069A was 84,008 bp with 43.60% G+C content. 

The genome coded for 124 genes and contained two tRNA genes. The P26059B 

genome was 41,471 bp long with 54.30% G+C content. For P26059B, a total of 46 

genes were predicted by the RAST annotation server (Table 3-6). After protein  
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Figure 3-8. Phylogenetic tree highlighting the relationship of the phage P26218 infecting 

Rhodoferax sp. IMCC26218 with representatives of the families Podoviridae and 

Siphoviridae. Sequences of DNA polymerase I (polA) collected from NCBI were aligned 

using CLUSTALW software, with Bacillus phage B103 (X99260) and SPO1 (NC011421.1) 

as an outgroup. The phylogenetic tree was generated using the neighbor-joining method 

implemented in MEGA6. Bootstrap values representing over 60% in 1,000 replicates are 

shown in the tree. 

 



 

107 

 

 

F
ig

ur
e 

3-
9.

 G
en

om
e 

m
ap

 o
f 

th
e 

R
ho

do
fe

ra
x 

ph
ag

e 
P2

62
18

. 
To

ta
l 

le
ng

th
 o

f 
th

e 
ge

no
m

e 
is

 3
6,

31
5 

bp
 a

nd
 c

on
tig

 f
un

ct
io

ns
 a

re
 c

ol
or

-c
od

ed
 a

s 

fo
llo

w
s:

 l
ig

ht
 g

re
y 

re
pr

es
en

ts
 h

yp
ot

he
tic

al
 p

ro
te

in
s,

 y
el

lo
w

 r
ep

re
se

nt
s 

D
N

A
 m

et
ab

ol
is

m
, 

re
d 

re
pr

es
en

ts
 D

N
A

 r
ep

lic
at

io
n,

 a
nd

 b
lu

e 
re

pr
es

en
ts

 

st
ru

ct
ur

al
 a

nd
 p

ac
ka

gi
ng

 g
en

es
 a

nd
 g

re
en

 r
ep

re
se

nt
s 

ot
he

r 
kn

ow
n 

fu
nc

tio
na

l g
en

es
. 



 

108 

 

   

Ta
bl

e 
3-

5.
 G

en
om

e 
an

no
ta

tio
n 

of
 th

e 
ph

ag
e 

P
26

21
8.

 O
nl

y 
th

e 
O

R
F

s 
w

ith
 a

ss
ig

ne
d 

fu
nc

tio
n 

ar
e 

sh
ow

n.
 

O
R

F
 

S
ta

rt
 

S
to

p
 

St
ra

n
d

 
B

es
t 

B
L

A
S

T
 m

at
ch

 (
V

ir
u

s 
fa

m
il

y)
 

F
u

n
ct

io
n

 (
A

cc
es

si
on

 N
o.

) 
E

-v
al

u
e 

D
B

 

4 
10

34
 

19
18

 
+

 
L

ep
to

sp
ir

a 
ph

ag
e 

L
E

1 
(M

yo
vi

ri
da

e)
 

P
ar

B
-l

ik
e 

nu
cl

ea
se

 (
C

A
E

14
77

7.
1)

 
5.

00
E

-0
4 

G
en

ba
nk

_n
r 

6 
28

79
 

34
24

 
+

 
E

sc
he

ri
ch

ia
 p

ha
ge

 N
4 

(P
od

ov
ir

id
ae

) 
H

yp
ot

he
ti

ca
l p

ro
te

in
 (

Y
P

_9
50

52
7.

1)
 

9.
00

E
-1

8 
G

en
ba

nk
_n

r 

7 
34

86
 

41
72

 
+

 
B

ac
il

lu
s 

ph
ag

e 
P

B
C

1 
(S

ip
ho

vi
ri

da
e)

 
H

yp
ot

he
ti

ca
l p

ro
te

in
 (

Y
P

_0
06

38
34

81
.1

) 
5.

00
E

-1
7 

G
en

ba
nk

_n
r 

8 
41

69
 

45
70

 
+

 
B

ac
te

ri
op

ha
ge

 A
P

S
E

-2
 (

P
od

ov
ir

id
ae

) 
H

yp
ot

he
ti

ca
l p

ro
te

in
 (

A
B

A
29

38
3.

1)
 

4.
00

E
-0

9 
G

en
ba

nk
_n

r 

9 
47

37
 

53
42

 
+

 
C

lo
st

ri
di

um
 p

ha
ge

 p
hi

C
T

45
3A

 (
U

N
) 

H
yp

ot
he

ti
ca

l p
ro

te
in

 (
A

JA
42

50
7.

1)
 

1.
00

E
-1

9 
G

en
ba

nk
_n

r 

11
 

59
25

 
78

89
 

+
 

St
ap

hy
lo

co
cc

us
 p

ha
ge

 tp
31

0-
2 

(S
ip

ho
vi

ri
da

e)
 

P
ol

A
 D

N
A

 p
ol

ym
er

as
e 

I 
(Y

P
_0

01
42

99
16

.1
) 

1.
00

E
-9

6 
G

en
ba

nk
_n

r 

12
 

78
65

 
81

76
 

+
 

B
ac

te
ri

op
ha

ge
 A

P
S

E
-5

 (
U

nc
la

ss
if

ie
d)

 
V

R
R

-N
U

C
 d

om
ai

n 
(A

C
J1

01
48

.1
) 

8.
00

E
-1

4 
G

en
ba

nk
_n

r 

13
 

82
01

 
97

30
 

+
 

X
yl

el
la

 p
ha

ge
 X

fa
s5

3 
(P

od
ov

ir
id

ae
) 

H
el

ic
as

e 
(Y

P
_0

03
34

48
94

.1
) 

2.
00

E
-1

03
 

G
en

ba
nk

_n
r 

14
 

97
73

 
10

60
6 

+
 

P
se

ud
om

on
as

 p
ha

ge
 

vB
_P

ae
S_

P
A

O
1_

A
b1

8 
(S

ip
ho

vi
ri

da
e)

 
H

yp
ot

he
ti

ca
l p

ro
te

in
 (

C
E

F
89

64
8.

1)
 

2.
00

E
-2

2 
G

en
ba

nk
_n

r 

15
 

10
60

3 
11

18
1 

+
 

P
se

ud
om

on
as

 p
ha

ge
 

vB
_P

ae
S_

P
A

O
1_

A
b1

8 
(S

ip
ho

vi
ri

da
e)

 
G

ln
 Q

 A
B

C
-t

yp
e 

po
la

r 
am

in
o 

ac
id

 tr
an

sp
or

t 
sy

st
em

 (
C

E
F

89
65

1.
1)

 
6.

00
E

-1
5 

G
en

ba
nk

_n
r 

16
 

11
19

5 
12

24
4 

+
 

P
se

ud
om

on
as

 p
ha

ge
 M

P
14

12
 

(S
ip

ho
vi

ri
da

e)
 

T
hy

m
id

yl
at

e 
sy

nt
ha

se
 (

Y
P

_0
06

56
10

23
.1

) 
8.

00
E

-7
5 

G
en

ba
nk

_n
r 



 

109 

 

  

Ta
bl

e 
3-

5.
 (

co
nt

in
ue

d)
 

O
R

F
 

S
ta

rt
 

S
to

p
 

St
ra

n
d

 
B

es
t 

B
L

A
S

T
 m

at
ch

 (
V

ir
u

s 
fa

m
il

y)
 

F
u

n
ct

io
n

 (
A

cc
es

si
on

 N
o.

) 
E

-v
al

u
e 

D
B

 

17
 

12
24

1 
12

78
0 

+
 

P
se

ud
om

on
as

 p
ha

ge
 Y

uA
 

(S
ip

ho
vi

ri
da

e)
 

H
D

 c
on

ta
in

in
g 

hy
dr

ol
as

e-
li

ke
 p

ro
te

in
 

(Y
P

_0
01

59
58

41
.1

) 
6.

00
E

-1
8 

G
en

ba
nk

_n
r 

18
 

12
77

7 
13

26
5 

+
 

P
se

ud
om

on
as

 p
ha

ge
 M

6 
(S

ip
ho

vi
ri

da
e)

 
H

yp
ot

he
ti

ca
l p

ro
te

in
 (

Y
P

_0
01

29
45

69
.1

) 
2.

00
E

-1
5 

G
en

ba
nk

_n
r 

21
 

14
66

8 
14

13
8 

- 
T

ha
la

ss
om

on
as

 p
ha

ge
 B

A
3 

(P
od

ov
ir

id
ae

) 
H

yp
ot

he
ti

ca
l p

ro
te

in
 (

Y
P

_0
01

55
29

92
.1

) 
4.

00
E

-1
5 

G
en

ba
nk

_n
r 

22
 

15
21

3 
14

66
8 

- 
A

ci
ne

to
ba

ct
er

 p
ha

ge
 (

P
od

ov
ir

id
ae

) 
zl

iS
 L

ys
oz

ym
e 

fa
m

il
y 

pr
ot

ei
n 

(Y
P

_0
07

01
06

32
.1

) 
8.

00
E

-6
3 

G
en

ba
nk

_n
r 

26
 

17
72

1 
16

34
2 

- 
T

ha
la

ss
om

on
as

 p
ha

ge
 B

A
3 

(P
od

ov
ir

id
ae

) 
H

yp
ot

he
ti

ca
l p

ro
te

in
 (

Y
P

_0
01

55
22

70
.1

) 
4.

00
E

-1
4 

G
en

ba
nk

_n
r 

28
 

21
10

6 
19

71
8 

- 
E

B
P

R
 P

od
ov

ir
id

ae
vi

ru
s 

1 
(P

od
ov

ir
id

ae
) 

H
yp

ot
he

ti
ca

l p
ro

te
in

 (
A

E
I7

08
66

.1
) 

7.
00

E
-3

0 
G

en
ba

nk
_n

r 

29
 

21
86

0 
21

12
0 

- 
V

ib
ri

o 
ph

ag
e 

V
vA

W
1 

(P
od

ov
ir

id
ae

) 
P

ha
ge

 p
ro

te
in

 (
Y

P
_0

07
51

83
45

.1
) 

1.
00

E
-3

5 
G

en
ba

nk
_n

r 

30
 

22
73

2 
21

85
7 

- 
R

al
st

on
ia

 p
ha

ge
 R

SK
1 

(P
od

ov
ir

id
ae

) 
H

yp
ot

he
ti

ca
l p

ro
te

in
 (

Y
P

_0
08

85
37

98
.1

) 
2.

00
E

-2
0 

G
en

ba
nk

_n
r 

32
 

24
47

8 
23

05
1 

- 
V

ib
ri

o 
ph

ag
e 

V
vA

W
1 

(P
od

ov
ir

id
ae

) 
P

ha
ge

 s
ta

bi
li

sa
tio

n 
pr

ot
ei

n 
(Y

P
_0

07
51

83
49

.1
) 

3.
00

E
-1

11
 

G
en

ba
nk

_n
r 

33
 

25
18

4 
24

48
0 

- 
E

B
P

R
 P

od
ov

ir
id

ae
vi

ru
s 

1 
(P

od
ov

ir
id

ae
) 

H
yp

ot
he

ti
ca

l p
ro

te
in

 (
A

E
I7

08
72

.1
) 

6.
00

E
-4

1 
G

en
ba

nk
_n

r 

37
 

27
77

1 
26

56
0 

- 
E

B
P

R
 P

od
ov

ir
id

ae
vi

ru
s 

1 
(P

od
ov

ir
id

ae
) 

P
22

 C
oa

t P
ro

te
in

 (
A

E
I7

08
75

.1
) 

0.
00

E
+

00
 

G
en

ba
nk

_n
r 



 

110 

 

 

Ta
bl

e 
3-

5.
 (

co
nt

in
ue

d)
 

O
R

F
 

S
ta

rt
 

S
to

p
 

St
ra

n
d

 
B

es
t 

B
L

A
S

T
 m

at
ch

 (
V

ir
u

s 
fa

m
il

y)
 

F
u

n
ct

io
n

 (
A

cc
es

si
on

 N
o.

) 
E

-v
al

u
e 

D
B

 

38
 

28
65

8 
27

80
1 

- 
E

B
P

R
 P

od
ov

ir
id

ae
vi

ru
s 

1 
(P

od
ov

ir
id

ae
) 

P
ha

ge
-s

ca
ff

ol
d 

pr
ot

ei
n 

(A
E

I7
08

76
.1

) 
2.

00
E

-4
4 

G
en

ba
nk

_n
r 

39
 

30
84

7 
28

65
5 

- 
E

B
P

R
 P

od
ov

ir
id

ae
vi

ru
s 

1 
(P

od
ov

ir
id

ae
) 

H
ea

d-
ta

il
 c

on
ne

ct
in

g 
pr

ot
ei

n 
(A

E
I7

08
77

.1
) 

0.
00

E
+

00
 

G
en

ba
nk

_n
r 

40
 

31
23

6 
30

84
4 

- 
E

B
P

R
 P

od
ov

ir
id

ae
vi

ru
s 

1 
(P

od
ov

ir
id

ae
) 

G
N

A
T

 a
ce

ty
lt

ra
ns

fe
ra

se
 (

A
E

I7
08

78
.1

) 
1.

00
E

-0
8 

G
en

ba
nk

_n
r 

41
 

32
76

9 
31

25
2 

- 
P

el
ag

ib
ac

te
r 

ph
ag

e 
H

T
V

C
01

0P
 

(P
od

ov
ir

id
ae

) 
P

ha
ge

 te
rm

in
as

e,
 la

rg
e 

su
bu

ni
t 

(Y
P

_0
07

51
77

00
.1

) 
3.

00
E

-1
05

 
G

en
ba

nk
_n

r 

44
 

36
11

5 
33

94
4 

- 
Y

er
si

ni
a 

ph
ag

e 
P

Y
10

0 
(M

yo
vi

ri
da

e)
 

D
na

B
-l

ik
e 

A
T

P
-d

ep
en

de
nt

 h
el

ic
as

e 
(C

A
J2

84
84

.1
) 

4.
00

E
-1

1 
G

en
ba

nk
_n

r 



 

111 

 

 

 

 

 

Table 3-6. Genome sequencing information of the phages P26059A and P26059B 

   

 Features P26059A P26059B 

Sequencing library Paired-end TruSeq library Paired-end TruSeq library 

Sequencing platform Illumina MiSeq Illumina MiSeq 

Fold coverage 1,205 × 4,247 × 

Genome length 84,008 bp  41,471 bp 

G+C% 43.60% 54.30% 

No. of coding sequences 124 46 

tRNA 2 0 

Assembler SPAdes-3.5.0 SPAdes-3.8.2 

Gene calling RAST ver. 2.0 RAST ver. 2.0 

GenBank ID KY981271 KY981272 
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coding genes were predicted by the RAST server, each gene was analyzed using 

BLAST against the NCBI nr and env-nr protein database. Only the BLAST match 

results with e-value less than 0.001 were considered as the predicted function of the 

gene. For the coding genes with no predicted function from the NCBI nr and end-nr 

BLASTp search, their functions were predicted based on the protein domain search 

made against CDD and Pfam database (Fig. 3-10). For P26059A, out of 124 

predicted protein genes, 63 of them had a significant match in either one of NCBI nr, 

env-nr, or UniProt database. Nine of the protein coding genes of the P26059A did 

not have a functional protein assignment, so their functions were predicted based on 

the conserved protein domain found in the gene. Despite the extensive search, 27 of 

the genes remain as unknown with its function and 15 among them were found to 

have no significant BLAST match at all, leaving them as unique proteins of P26059A 

(Table 3-7). When P26059B protein coding genes were analyzed using BLAST upon 

NCBI protein nr database, 31 out of 46 genes had a significant match results. The 

remaining genes were searched upon protein databases, but no conserved protein 

domain was found. Among the 31 annotated genes, 12 of them were not able to be 

assigned with a known function (Table 3-8).  

The P26059A genome carried 17 genes related to DNA modification and 

replication. Among those, total of 6 endonuclease genes were found and 4 of them 

(ORFs 11, 15, 20, and 58) contained a GIY-YIG domain which is widely found in 

prokaryotes and eukaryotes. The GIY-YIG domains are known to be found in 

endonucleases that function as repair system of damaged DNA in prokaryotes. 

Within bacteriophage genome, it is known to function in cleaving the host DNA to 

utilize the host nucleotides in phage genome replication (Mak et al., 2010), leading 

to active replication of phage genomes. Along with endonucleases, the phage 

P26059A encoded for the PhoH family protein (ORF 117). The PhoH proteins are 

well distributed among marine bacteriophages and cyanophages and their coding 
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genes are used to make phylogenetic classifications (Fig. 3-11) (Adriaenssens and 

Cowan, 2014; Goldsmith et al., 2011). The phoH gene expression within bacteria is 

known to be induced under phosphate starvation, which would promote uptake of 

phosphorous from the environment. Thereby, phoH gene carried by the phage 

genome is suspected to be expressed in the host cells to promote phosphorous uptake 

and lead to increase in phosphorus level within the cell to be utilized for phage 

genome replication. In oligotrophic environments, where phosphorous is typically 

limiting, such strategy would provide advantage of faster phage DNA replication 

with sufficient amount resources.   

For its genome packaging and assembly of phage particles, P26059A 

carried diverse proteases with different purposes. Number of typical proteases found 

in phage genomes were also found in the genome of P26059A, such as serine 

protease XkdF (ORF 10), peptidase M15 (ORF 35), and cell wall hydrolase (ORF 

103). ORF 82 encoded for an integration host factor, IHF, which functions for 

condensation of nucleotides in bacterial cells (Sanyal et al., 2014). In bacteriophage 

genomes, the IHFs also condenses bacteriophage genomes in order to package them 

into capsid proteins. ORFs 101 and 116 encode for caseinolytic proteases (Clp) 

which are commonly found in bacterial genes. Within many bacterial cells, ATP-

activated chaperon subunit, ClpA and protease subunit, ClpP, form a chaperon-

protease pair to degrade foreign proteins found in bacterial cell, which are mostly 

phage proteins (Gaillot et al., 2000). The protease subunit ClpP have been found in 

bacteriophage genomes as well and it was revealed that these proteases are utilized 

by phage particles and act as prohead proteases for packaging (Cheng et al., 2004). 

ClpS is an adaptor protein that binds to the ClpA and ClpP pair to stabilize the ClpA, 

thereby forming ClpAPS complex to degrade aggregated proteins and foreign 

proteins (Dougan et al., 2002). The ClpS protein is commonly found in prokaryotic 

cells but not in viral cells. Only few phages infecting enteric bacteria have been  
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Figure 3-11. Neighbor-joining phylogenetic tree of the phage P26059A using phoH gene. The 

reference sequences were collected from Pfam database. The tree was constructed using 

MEGA 6 (Tamura et al., 2013) with bootstrap of 1,000 after performing alignment using 

CLUSTAL X (Thompson et al., 2002) 
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reported to be carrying clpS gene. In P26050A genome, ORF 116 encodes for ClpP 

and ORF 101 encodes for ClpS- like protein. From previous studies, it is reasonable 

to hypothesize that ClpP and ClpS would function as proteases to cleave phage 

proteins translated by the host bacteria into designated size and structure for phage 

packaging. However, mechanism for phage particles to utilize Cp proteases for their 

beneficial purposes without inactivation of their own genes must be studied further 

for understanding of phage genomics. While the phage P26059A carried numerous 

genes for active replication of its genome, it also had genes for defense mechanism. 

The ORF 85 encodes for a Lar family protein, a restriction alleviation protein (King 

and Murray, 1995), which protects phage genome from host restriction 

endonucleases. Also, ORF 108 encodes for a superinfection immunity protein to 

prevent infection of secondary phages upon infection of the first (Abedon, 2015; Lu 

and Henning, 1989). Presence of such defense mechanisms may have provided better 

survival of P26059A over other phages infecting the identical host.  

Within the genome of P26059A, the ORF 59 was annotated as tRNA 

nucleotidyl transferase/ poly (A) polymerase, which contributes in tRNA elongation 

(Table 3-7), hinting for the presence of tRNA gene. Therefore, tRNA was searched 

using the tRNAscan-SE 2.0 (Lowe and Eddy, 1997) and one Arg-tRNA was found 

between 61,021 bp and 61,096 bp. Also, when tRNA was searched further using 

ARAGORN engine (Laslett and Canback, 2004), Pyl-tRNA (Pyrrolysine) was also 

found between 62,398 and 61,396 bp of P26059A genome. The Pyl-tRNA are known 

to be strictly found only in bacteria and archaea while found rarely in phage genomes. 

For phylogenetic analysis of the phages P26059A and P26059B, Neighbor-

Joining phylogenetic tree was constructed using terL gene sequences that were 

carried by both phages (Fig. 3-12). As expected, two phages were too divergent from 

each other that they were not able to be classified into a monophyletic group. The 

phage P26059B was clustered with representative bacteriophage strains of the family 
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Podoviridae. However, P26059A terL gene was clustered with representative 

sequences of the family Myoviridae, despite that it was morphologically classified 

as a member of the family Siphoviridae. 
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Figure 3-12. Neighbor-joining phylogenetic tree of the phages P26059A and P26059B. The 

tree was constructed using genes coding for terminase large subunit. The reference sequences 

were collected from NCBI nr database. The tree was constructed using MEGA 6 (Tamura et 

al., 2013) with bootstrap of 1,000 after performing alignment using CLUSTAL X (Thompson 

et al., 2002) 
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3.3. Abundance and distribution of isolated bacteriophages in 

freshwater lakes 

Along with physical isolation and genome analysis of the phages isolated 

from Lake Soyang, their genomic abundance and distribution within their original 

habitat was observed through competitive binning analysis using the viral 

metagenome samples prepared from Lake Soyang. More than 9 million sequences 

from each virome were assigned by DIAMOND (Buchfink et al., 2015) to the best-

matching protein in a database that included all viral proteins and all bacterial non-

redundant proteins from NCBI RefSeq (release 72 or 79) in addition to the proteins 

annotated in the phage genomes obtained in this study. Among the reads assigned to 

viruses, which comprised 12.45–29.39% of all assigned reads, four bacteriophages 

isolated from this study occupied 2.08% to 11.26%, unveiling the identity of virome 

reads that were unknown. When competitive binning results for all four phages 

isolated from Lake Soyang were compared, P19250A appeared to be the most 

abundant bacteriophage, especially in winter seasons (’15 Jan and ’16 Feb; Table 3-

9). Also, P19250A was the most highly-assigned freshwater phage for five out of six 

samples (except in ’15 Sept., Table 3-10), while most other highly-assigned viruses 

were from marine environments (Fig. 3-13a). Interestingly, the proportion of 

P19250A-assigned reads showed the same appearance as that of the LD28 clade (Fig. 

3-13); the proportion of both P19250A-assigned reads and the LD28 clade showed 

peaks in winter (’15 Jan. and ’16 Feb.) and recorded the lowest values in summer 

(’15 Sept.; Fig. 3-13b), suggesting that proliferation of a phage type represented by 

P19250A is dependent on the presence of LD28 clade. 

P19250A was also highly assigned in binning analysis of other freshwater 

viromes. When 40 viromes from 8 freshwater lakes and reservoirs (Green et al., 2015; 

Mohiuddin and Schellhorn, 2015; Roux et al., 2012; Skvortsov et al., 2016; Tseng 

et al., 2013; Watkins et al., 2015) were analyzed using the same method as that for  
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Table 3-10. Ranks of bacteriophages within analyzed virome samples 

Sample 
name 

Rank Name 

% within 
viral 
binned 
reads 

Origin 

Lake Soyang 1 Synechococcus phage S-SM2 6.54 Marine 

'14 Oct. 2 Synechococcus phage S-CBS4 3.88 Estuary 
 3 Pelagibacter phage HTVC008M 3.64 Marine 
 4 Pelagibacter phage HTVC010P 3.28 Marine 
 5 Persicivirga phage P12024S 3.24 Marine 
 6 Puniceispirillum phage HMO-2011 3.16 Marine 
 7 Synechococcus phage S-SKS1 2.65 Marine 
 8 Cyanophage KBS-S-2A 1.95 Marine 
 9 Prochlorococcus phage P-SSM2 1.89 Marine 
 10 Synechococcus phage S-SSM7 1.78 Marine 
 11 P19250A 1.32 Freshwater 

Lake Soyang 1 P19250A 5.13 Freshwater 

'15 Jan. 2 Puniceispirillum phage HMO-2011 3.03 Marine 
 3 Rhodothermus phage RM378 2.80 Hot spring 
 4 Pelagibacter phage HTVC008M 2.32 Marine 
 5 Synechococcus phage S-CBS4 2.14 Estuary 
 6 Synechococcus phage S-SM2 1.95 Marine 
 7 Cyanophage KBS-S-2A 1.82 Marine 
 8 Pelagibacter phage HTVC010P 1.51 Marine 
 9 Microcystis phage Ma-LMM01 1.34 Freshwater 
 10 Synechococcus phage S-CBP3 1.33 Estuary 
 11 Synechococcus phage S-CBS2 1.22 Estuary 

Lake Soyang 1 Synechococcus phage S-SM2 8.31 Marine 

'15 Sept. 2 Synechococcus phage S-SKS1 7.83 Marine 
 3 Prochlorococcus phage P-SSM2 6.02 Marine 
 4 Pelagibacter phage HTVC008M 5.29 Marine 
 5 Pelagibacter phage HTVC010P 4.49 Marine 
 6 Puniceispirillum phage HMO-2011 2.91 Marine 
 7 Synechococcus phage ACG-2014f 2.73 Marine 
 8 Synechococcus phage S-SSM7 2.49 Marine 
 9 Synechococcus phage S-CBS4 1.81 Estuary 
 10 Synechococcus phage S-PM2 1.60 Marine 
 11 Synechococcus phage S-RIM8 A.HR1 1.33 Marine 
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Table 3-10. (continued) 

Sample 
name 

Rank Name 

% within 
viral 
binned 
reads 

Origin 

Lake Soyang 1 Chrysochromulina ericina virus 6.15 Marine 

'15 Nov. 2 Phaeocystis globosa virus 5.46 Freshwater 
 3 Pelagibacter phage HTVC010P 4.30 Marine 
 4 Synechococcus phage S-SM2 3.97 Marine 
 5 Synechococcus phage S-SSM7 3.41 Marine 
 6 Pelagibacter phage HTVC008M 3.05 Marine 
 7 Synechococcus phage S-SKS1 2.77 Marine 
 8 P19250A 2.28 Freshwater 
 9 Puniceispirillum phage HMO-2011 2.17 Marine 
 10 Prochlorococcus phage P-SSM2 1.88 Marine 
 11 Aureococcus anophagefferens virus 1.52 Marine 

Lake Soyang 1 P19250A 8.70 Freshwater 

'16 Feb 2 Cyanophage KBS-S-2A 4.64 Marine 
 3 Idiomarinaceae phage 1N2-2 3.54 Marine 
 4 Salicola phage CGphi29 3.33 Marine 
 5 Synechococcus phage S-SM2 2.44 Marine 
 6 Synechococcus phage S-SSM7 2.27 Marine 
 7 Puniceispirillum phage HMO-2011 2.20 Marine 
 8 Pelagibacter phage HTVC008M 1.81 Marine 
 9 Synechococcus phage S-SKS1 1.79 Marine 
 10 Synechococcus phage S-CBS4 1.51 Estuary 
 11 Synechococcus phage S-CBS1 1.29 Marine 

Lake Soyang 1 Cyanophage KBS-S-2A 7.59 Marine 

'16 May 2 Puniceispirillum phage HMO-2011 4.72 Marine 
 3 P19250A 4.20 Freshwater 
 4 Chrysochromulina ericina virus 2.57 Marine 
 5 Idiomarinaceae phage 1N2-2 2.19 Marine 
 6 Phaeocystis globosa virus 2.11 Freshwater 
 7 Acanthocystis turfacea Chlorella virus 1 1.92 Freshwater 
 8 Salicola phage CGphi29 1.90 Marine 
 9 Persicivirga phage P12024S 1.65 Marine 
 10 Pelagibacter phage HTVC008M 1.62 Marine 
 11 Synechococcus phage S-RIP2 1.41 Marine 
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Table 3-10. (continued) 

Sample 
name 

Rank Name 

% within 
viral 
binned 
reads 

Origin 

Matoaka 
open,  

1 Puniceispirillum phage HMO-2011 18.59 Marine 

US 2 P19250A  5.30 Freshwater 
 3 Acanthocystis turfacea Chlorella virus 1  4.34 Freshwater 
 4 Persicivirga phage P12024S  3.85 Marine 
 5 Nitrincola phage 1M3-16  2.61 Unknown 

 6 Citrobacter phage CVT22  2.01 
Termite 
gut 

 7 Celeribacter phage P12053L  1.83 Marine 
 8 Cellulophaga phage phi38:1  1.67 Marine 
 9 Roseobacter phage SIO1  1.34 Marine 
 10 Cyanophage PP  1.24 Freshwater 
 11 Pelagibacter phage HTVC008M  1.22 Marine 

Lough 
Neagh,  

1 P19250A  6.26 Freshwater 

UK 2 Idiomarinaceae phage 1N2-2  6.04 Marine 
 3 Salicola phage CGphi29  5.99 Marine 
 4 Persicivirga phage P12024S  4.30 Marine 
 5 Synechococcus phage S-CBS4  2.59 Estuary 
 6 Cyanophage KBS-S-2A  2.26 Marine 
 7 Puniceispirillum phage HMO-2011  2.05 Marine 
 8 Planktothrix phage PaV-LD  1.89 Freshwater 
 9 Pelagibacter phage HTVC008M  1.80 Marine 
 10 Cronobacter phage vB CsaM GAP32  1.56 Sewage 
 11 Cellulophaga phage phi38:1  1.46 Marine 
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Figure 3-13. Binning of virome reads from Lake Soyang to reference viral genomes, 

including the phage P19250A genome. (a) Proportion of virome reads assigned to viral 

groups according to the habitat they were isolated from. The top 30 most highly-assigned 

viruses for each virome were grouped into three categories: Freshwater; Marine or estuary; 

and Soil, sewage, or hot spring), and are indicated by different colors. P19250A was not 

grouped with other viruses and is marked separately. All other viruses were grouped together 

and marked as “Others.” Supporting Information Table S3 shows detailed information on the 

highly-assigned viruses and their proportion. Note that the proportion was calculated using 

the number of reads assigned to all viruses as the denominator. (b) Seasonal change in the 

proportion of P19250A-assigned virome reads and the relative abundance of the LD28 clade. 

The proportions of P19250A-assigned reads are the same as those presented in (a). The 

relative abundance of the LD28 clade was calculated based on the taxonomic classification 

of 16S rRNA gene amplicon sequences obtained from the water samples. 
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Lake Soyang and contribution of P19250A among the virus-assigned reads ranged 

from 0.06% to 6.26% (Table 3-10). P19250A-assigned reads showed the highest 

proportion in the virome of Lough Neagh (Skvortsov et al., 2016), at 6.26%, 

followed by the virome of Lake Matoaka (open) (Green et al., 2015), at 5.34% (Table 

3-11). P19250A ranked the first among freshwater phages for both samples, while 

most other highly-assigned viruses were of marine origin, as was observed in Lake 

Soyang viromes. 

Then, contigs that were assembled from viromes that could show synteny 

and similarity to the P19250A genome were searched. When contigs assembled from 

several viromes were compared to the P19250A genome and all viral genomes in 

RefSeq (release 72) using tBLASTx, 20 contigs were found to be most similar to the 

P19250A genome: 17 contigs from Lake Soyang and 3 from Lough Neagh. These 

contigs showed highly-conserved synteny to the P19250A genome and in particular, 

two contigs from Lake Soyang had similarity to the entire P19250A genome (Fig 3-

6 and Fig. 3-14). Finding these highly syntenic contigs showed the existence of a 

phage type that shares genomic content with P19250A. 

Compared to P19250A, the phages P26218, P26059A, and P26059B 

occupied less portion of the viral population in Lake Soyang (Table 3-9). When their 

distribution and abundance were observed in Lough Neagh and Lake Michigan, the 

phage P26218 showed high abundance in Lough Neagh and some of Lake Michigan 

samples, but P26059A and P26059B showed low abundance in all samples analyzed 

(Table 3-12). Albeit at low appearances, P26059A and P26218 showed slight 

seasonality. Within Lake Soyang virome, P26059A appeared to be more abundant in 

summer season (’15 Sept) while P26218 showed higher abundance in winter seasons, 

along with P19250A.  
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a(Number of reads assigned to bacteria or viruses) × 100/(Number of total reads) 

   

b(Number of reads assigned to viruses) × 100/(Number of reads assigned to bacteria or 

viruses)  

c(Number of reads assigned to P19250A) × 100/(Number of reads assigned to viruses)  

d Competitive binning analysis of Lake Michigan was performed using RefSeq database 

release 79 while all the other samples were analyzed using RefSeq database release 72. 
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Table 3-12. Competitive binning results for the phage P26218, P26059A, and P26059B in 

Lough Neagh and Lake Michigan viromes 

Virome samples 

Virus /  
total binned

P26059A P26059B P26218 

%a % b Rank % Rank % Rank 

Lough Neagh 14.45 0.35 53 0.08 189 3.16   4 

LMc-SRR1974494  2.91 2.20  6 0.38  51 0.11 160 

LM-SRR1974488  0.40 0.97 17 0.31  65 0.30  68 

LM-SRR1974511  2.15 1.01 16 0.58  35 0.05 281 

LM-SRR1974497  1.95 0.77 21 1.42   9 1.55   7 

LM-SRR1974501  1.85 0.64 30 0.44  46 1.21  13 

LM-SRR1974512  1.51 0.79 23 0.47  50 0.17 134 

LM-SRR1974491  2.27 0.44 52 0.32  75 0.09 190 

LM-SRR1974513  1.62 1.27  8 0.35  68 0.18 126 

LM-SRR1974503  3.52 0.54 34 0.27  74 0.11 162 
a Proportion of virus-binned reads among all the binned reads 

b Proportion of P26059A, P26059B, or P26218 among all the reads that were binned to 

viruses 

c LM is an abbreviation for Lake Michigan 
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4. DISCUSSION 

From Lake Soyang, an oligotrophic lake located in South Korea, 4 different 

bacteriophages were isolated using 3 bacterial strains that were also isolated from 

the identical site. One bacteriophage was isolated using a host strain, IMCC19250, 

belong to the freshwater Methylotroph, LD28 group, and was named as P19250A. 

Another phage, P26218, was isolated using a strain belonging to the genus 

Rhodoferax, and the phage was name after its host, IMCC26218. Lastly, two phages 

infecting an identical host, Curvibacter sp. IMCC26059, were independently 

isolated and each were named as P26059A and P26059B. Bacteriophage P19250A 

and P26059A had icosahedral shaped heads with long contractile tails, indicating 

that those phages belong to the family Siphoviridae, while P26218 and P26059B had 

short tails, which classified these two phages into the family Podoviridae. For further 

analysis on the phages that were isolated, whole genome sequencing for all 

bacteriophages were performed through Illumina MiSeq sequencing platform.  

The complete genome of the phage P19250A was 38,562 bp in length with 

58 protein coding genes. Through competitive binning analysis performed in this 

study, P19250A, the first phage of the LD28 clade, appeared to be abundant in 

diverse freshwater environments, and suggested that the P19250A genome can lead 

to more appropriate interpretation of previously unidentified virome sequences, as 

demonstrated in marine environments by studies on phages infecting the SAR 11 and 

SAR116 clades (Kang et al., 2013; Zhao et al., 2013). 

Lytic bacteriophage P26218 is the first virus identified that infects the genus 

Rhodoferax. The complete genome of the phage P26218 was 36,315 bp in length 

with 44 protein coding genes. All predicted ORFs from this phage genome were 

protein-coding, with 3 specifically coding for DNA replication, 7 for DNA 

metabolism, and 5 for packaging and structural proteins. The group of ORFs with 
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similar function was postulated to originate from different groups of viral families 

(Podoviridae, Siphoviridae, and Myoviridae), which was indicative of the mosaic 

property of the P26218 genome.  

Bacteriophages P26059A and P26059B were two independent phages sharing 

an identical host, Curvibacter sp. IMCC26059. The P26059A genome was 84,008 bp in 

length and it carried total of 124 protein coding genes. The complete genome of P26059B 

was 41,471 bp in length with 46 predicted coding genes. When competitive binning 

analysis was performed against virome data prepared from both Lake Soyang and Lake 

Michigan, they were both detected at low frequencies, yet, they were consistently 

detected in virome data that were analyzed. Especially P26059A, which appeared more 

frequently than P26059B, had seasonal preference in summer (Lake Soyang-’15 Sept.). 

Also, P26059A had a synteny contig within a virome ’15 Sept. data that showed high 

similarity (99% identity), implying for the presence of another bacteriophage infecting 

Curvibacter sp. IMCC26059. Many of the aspects, including physical characteristics, 

genome features, and ecological abundance were different between P26059A and 

P26059B, although they shared the identical host. This implies that sole information on 

phages, either physical characteristics or genomes, is not sufficient for their classification 

and categorization, but both are in need to correctly understand bacteriophage 

characteristics.  

Recently, diverse viral metagenome studies were performed in attempts to mine 

for the novel bacteriophage genomes that could control bacterial population in diverse 

environments including aquatic, sediments, and clinical samples and possibly carry 

AMGs that influence their hosts in various ways. However, due to lack of conserved 

marker genes among phages and precedingly identified phage genomes, interpretation 

of viral metagenome data is highly limited. Thus, along with numerous viral 

metagenome studies that became available to the public, phage isolation and 

identification must be accompanied for better interpretation and classification of phage 

sequences retrieved from immense virome data.  



 

 

 

 

 

 

 

 

 

CHAPTER 4.  

Distribution of Bacteriophage Population and 

Antibiotic Resistance Genes Carried by 

Bacteriophage Genomes in an Urban River 
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ABSTRACT 

 With development of next generation sequencing technologies and 

establishment of viral metagenome preparation methods, increased number of viral 

metagenome studies have been done in diverse environments. However, compared 

to studies performed at diverse environments, those performed in river systems are 

significantly lacking. Therefore, in this study, 6 sites from Han River, one of the 

major river system in South Korea, were selected for viral metagenome study to 

observe viral population distribution and their changes along the river flow. 

Throughout the river, the taxonomic composition of viral assemblages remained 

constant with minor shifts between different viral strains, indicating that viral 

population is stably maintained in a single water system regardless of the distances 

between the sampling sites. Furthermore, since the Han River flows through the 

Seoul metropolitan area and is highly influenced by anthropological activities, 

antibiotic resistance genes (ARGs) carried by bacteriophage contigs were further 

studied among bacterial metabolic genes that are encoded by viral reads and diverse 

ARGs were detected throughout samples. To verify that these ARGs are truly carried 

by bacteriophage genomes, viral metagenome reads were assembled into contigs, 

then ARGs were searched within the contigs that were predicted to be viral origin. 

As a result, total of 19 contigs were found to be carrying ARGs and among them, 7 

contigs were found to be carrying beta-lactamase genes. When beta-lactamase genes 

were further analyzed, all of them were found to have active sites, implying for 

functional ARGs that are carried by bacteriophage genomes. Viral metagenome 

study done in an urban river body revealed that bacteriophage community is 

relatively well maintained throughout the river flow. Also, environmental phages 

appeared to be functioning as reservoirs of bacterial protein genes, especially ARGs, 

calling for the need of interest in bacteriophage-carried ARGs.   
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1. INTRODUCTION 

Viruses are the most abundant biological entities on The Earth, with the 

number of virus-like particles (VLPs) being estimated to be approximately 4.80 × 

1031 (Cobián Güemes et al., 2016). The bacteriophage (phages) that infects bacterial 

cells represent the largest proportion of VLPs, and are present as 10-times more 

abundant than their hosts, bacteria (Ignacio-Espinoza et al., 2013). Recently, with 

development and standardization of highly efficient viral metagenome (virome) 

preparation methods (John et al., 2011; Thurber et al., 2009), high diversity and 

distribution of bacteriophages are being re-illuminated through large scale ocean 

virome studies. In 2009 to 2011, Tara Ocean expedition was set out to collect for 

marine biological samples including those for viral metagenome (Karsenti et al., 

2011). Also during the same period, Pacific Ocean Virome (POV) expedition was 

also set out (Hurwitz and Sullivan, 2013) to examine microbial and viral community 

changes across the oceans. The global-wide virome expeditions provided deeper 

understanding of environmental viral community structures with large amount of 

predicted viral sequences.  

Along with taxonomic annotations of metagenome reads for study of viral 

population distribution in environments, the virome analysis also provided 

information on the distribution and ecological roles of predicted viral functional 

genes. Bacteriophage genomes were previously known to be carrying metabolic 

genes that are indirectly related to phage reproduction by adjusting host metabolism, 

which are called auxiliary metabolic genes (AMG). The AMGs within bacteriophage 

particles are often subjected for horizontal gene transfer (HGT) from a bacterial cell 

to another, enriching bacterial genetic diversity through phage infection. Also, 

AMGs can be expressed within the host bacterial cells upon viral infection, 

participating in host metabolism. The most well-known AMGs within bacteriophage 
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genomes are those related to photosynthesis, psbA, psbD, psaA, PTOX, petE, petF, 

hli, and et cetera. (Hevroni et al., 2015; Ledermann et al., 2016; Mann et al., 2003; 

Millard et al., 2004; Sharon et al., 2009; Sullivan et al., 2006). Photosystem related 

AMGs are mainly found in phages that infect cyanobacteria and upon infection, these 

genes are expressed to assist the host cell photosystem to enhance cell metabolism, 

which will lead to improvement of replication efficiency of phage nucleic acids. 

Likewise, bacteriophages are known to carry diverse supplementary metabolic genes 

such as those involved in carbon, phosphate, nitrogen, and sulfur metabolisms 

(Breitbart, 2012; Hurwitz and U’Ren, 2016). 

Other than AMGs that assist host cell metabolism, bacteriophages also 

carry accessory genes that act as a defensive system for their hosts. Stress response 

gene, mazG, that regulates programmed cell death under starvation stress, has been 

found within a cyanophage (Bryan et al., 2008). Also, some bacteriophages were 

revealed to be carrying antibiotic resistance genes (ARGs) that could defend their 

host bacteria from antibiotic attacks during infection (Lekunberri et al., 2017; 

Mazaheri Nezhad Fard et al., 2011; Modi et al., 2013). The ARGs found in 

bacteriophage genomes are considered more significant due to their high potential 

of HGT to different bacterial cells (Brown-Jaque et al., 2015) and safe carriage by 

phage capsids, which are less sensitive to environmental changes compared to 

bacterial cell membrane. Also, bacteriophage with ARGs were found not only in 

clinical environments such as animal system or fecal samples (Colomer-Lluch et al., 

2011a), but also found in river waters (Colomer-Lluch et al., 2011b), implicating 

wide spread of ARGs in diverse systems by bacteriophages. As one of the major 

input of ARGs into the natural environment, the WWTP effluents were previously 

reported to be containing high copy number of ARGs, providing input of those genes 

into natural water systems (Colomer-Lluch et al., 2011b). The Han River system 

encompasses four urban WWTP effluent discharging sites, which are suspected to 
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be causing anthropologic influence on the river system. Therefore, as Han River 

flows from pristine upstream to downstream, ARGs were expected to increase in 

number, especially those encapsulated in phage capsids to be safely carried and 

conserved.   

Unlike oceans, freshwater systems have highly diverse and independent 

characteristics per their locations. Also, as freshwater systems are located inland, 

they are more accessible to people and at the same time, influenced by them. Lotic 

freshwater systems have varying microbial community at different locations 

depending on environmental parameters such as water velocity, however key players 

of the microbial community structure are known to be stably maintained in 

freshwater environments (Staley et al., 2013). Compared to bacteria, bacteriophage 

population within running water bodies has been understudied (Cai et al., 2016; 

Rastrojo and Alcamí, 2016). The Han River is one of the most important river system 

located in South Korea that flows through the Seoul city, the capital of Korea. The 

Han River runs across the South Korea, experiencing numerous changes of 

surroundings. The river system encompasses 5 lakes that are well conserved to be 

used as water reservoirs. As the river flows toward the Yellow Sea, it flows through 

the Seoul metropolitan area, receiving wastewater treatment plant (WWTP) effluents. 

Therefore, as the river flows towards the downstream, viral community is expected 

to be changing.  

In this research, 6 sites were selected from Han River, from upstream to 

downstream for survey of viral community distribution along the running water 

system. Along with taxonomic observation, protein coding genes encoded by viral 

metagenome reads were studied for estimation of their ecological roles. Then, 

considering that the selected river flows through densely populated cosmopolitan 

area with WWTP effluent discharging sites, ARGs carried by putative bacteriophage 

contigs obtained from virome reads were searched and analyzed. 
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2. MATERIALS AND METHODS 

2.1. Sampling of surface water of Han River  

On May 26th and 27th, 2016, approximately 20 L of surface water samples 

were collected from 6 selected sites on Han River system, located in South Korea 

(Fig. 4-1). All the samples were collected from the center of the river width to avoid 

possible bias that could be caused from the river banks. From upstream to 

downstream, the samples were named as H1 to H6. Sample from the site H1 was 

collected from the Guman bridge in Hwacheon county of Gangwon province. The 

Guman bridge is located on the North Han River, which is connecting two lakes, 

Lake Paro and Lake Hwacheon, the most northern freshwater lakes of South Korea. 

The site H2 is located in Gapyeong county of Gyeonggi province, surrounded by 

water recreational sites. Surface water sample of H3 site was collected from the 

Paldang bridge, which is located downstream of the Paldang dam, located in Hanam 

city of Gyeonggi province. The Han River continues to flow through the Seoul city 

and the sites H4 and H5 were selected within the Seoul city. The surface samples for 

sites H4 and H5 of Han River were collected from Hannam bridge and Haengju 

bridge, respectively. The two bridges are about 21 km apart from each other and both 

are located in the downstream of the urban WWTPs’ effluent sites. The site H6 is 

located at the most downstream of the Han River and just outside the boundary of 

Seoul city. The surface water sample of H6 was collected from middle of the Ilsan 

bridge that connects Gimpo city and Ilsan city of Gyeonggi province. The water 

sample of H6 site was considered as brackish water with slight salinity of 0.15 PSU. 

Collected water samples were brought to the lab at 4˚C. The environmental 

parameters for each site were retrieved from the Water Information System operated 

by the Ministry of Environment of South Korea (http://water.nier.go.kr) (Table 4-1).  
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Figure 4-1. A map displaying sampling sites across the Han River body. The triangles indicate 

the sampling sites and black circles are representing waste water treatment plants located in 

Seoul. All sampling was performed in the middle of the river width.  
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2.2. Sequencing of viral metagenome of Han River 

Immediately after transporting to the lab, the collected water samples were 

filtered through a GF/A glass microfiber filter (Whatman, Maidstone, UK) to remove 

large sized particles and debris. Approximately 10 L of water samples were then 

filtered through a 0.2-μm Supor® PES Membrane filter (Pall Corporation, New York, 

USA) to remove particles larger than 0.2-μm in diameter, which included most of 

prokaryotic cells. As described in chapter 2, the filtered samples were treated with 

0.01 g of FeCl3·6H2O per 10 L of sample and vigorously shaken to flocculate viral 

particles. After incubation of 1 hr in room temperature, the flocculated samples were 

filtered through a 0.8-μm Isopore polycarbonate filter (Merck Millipore, Darmstadt, 

Germany) to collect and concentrate viral particles (John et al., 2011). The 

polycarbonate filters with concentrate of 10 L portion of lake waters were treated 

with 0.1 M EDTA-0.2 M MgCl2-0.2 M ascorbate buffer for an overnight on a rocking 

incubator in 4°C to dissolve flocculated viral particles and chelate iron molecules. 

DNase I and RNase A (Sigma-Aldrich, St. Louis, MO, USA) with final 

concentrations of 10 U/ml and 1 U/ml, respectively, were added to the dissolved 

solution for removal of external nucleic acids and the mixtures were incubated in 

30°C for an hour. After incubation, the enzymes were deactivated by addition of 100 

mM of EDTA and EGTA (Hurwitz et al., 2013). The viral particles were further 

concentrated and purified using CsCl step-gradient ultracentrifugation (Thurber et 

al., 2009). After 4 hrs of centrifugation at 24,000 rpm at 4˚C (Beckman Coulter L-

90K ultracentrifuge), viral particles with densities between 1.5 and 1.35 g/cm2 were 

collected with a syringe, which were specifically targeted for double stranded DNA 

phages. To remove any remaining CsCl in the sample, buffer exchange with SM 

buffer was performed using 50K Amicon centrifugal device (Merck Millipore). For 

final sterilization of the samples, 0.2-μm pore size Acrodisc® Syringe filter (Pall 

Corporation) was used to filter the collected samples and only the viral particles were 
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remaining in the sample. The viral DNA was extracted from the prepared samples 

using the Qiagen DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany). DNA 

samples were used for TruSeq library construction for Illumina MiSeq sequencing, 

which was performed at the ChunLab Inc. The overall process of the viral 

metagenome sample preparation is shown in Figure 4-2. After viral metagenome 

sequences were obtained, bacterial 16S SSU rRNA sequences were searched using 

MeTaxa program (Bengtsson-Palme et al., 2015) and confirmed that metagenome 

samples were free of bacterial contamination. 
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Figure 4-2. Flow chart of viral metagenome sample processing steps. 
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2.3. Quality trimming of sequencing data, assembly of virome reads, 

and analysis of similarity between viromes 

Before analysis, the sequencing reads were mapped to the phiX174 genome 

to remove putative contamination by sequencing control reads, using CLC Genomics 

Workbench (Qiagen). Then, the sequences were trimmed using Trimmomatic based 

on quality score and length (Bolger et al., 2014). Using the trimmed reads from each 

virome, contigs were assembled using SPAdes version 3.8.2 (Bankevich et al., 2012) 

with metaspades.py assembler option. The assembled contigs were further screened 

and those shorter than 10 kb were removed and those longer than 10 kb were used 

for further analysis. 

All the virome contigs obtained from SPAdes assembler were determined 

if they are viral origin or not, using VirSorter algorithm (Roux et al., 2015) that is 

available in iPlant Discovery Environment (http://de.cyverse.org/de/). The VirSorter 

algorithm detects probable virus and prophage genomes based on BLAST search 

against viral genome specific database. Only 0.39% to 0.93% of the viral 

metagenome contigs were identified as either viral or prophage origin.  

The dissimilarity/distance between virome samples were analyzed using 

MASH algorithm (Ondov et al., 2016), which estimates distance between 

genome/metagenome reads based on Jaccard index calculated using reduced 

representation of k-mer profile of sequence data (sketch). Based on the 

dissimilarity/distances matrix calculated by MASH, Non-metric multidimensional 

scaling (NMDS) plot and principal coordinate analysis (PCoA) plot were constructed 

to ordinate virome samples using the Vegan package and hclust in R (Oksanen et al., 

2007). 
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2.4. Phylogenetic and functional annotation of virome reads using 

metagenome analysis pipelines 

The virome samples were analyzed using two online pipelines, MG-RAST 

and IMG/M ER server. Raw virome reads were uploaded unto the MG-RAST server 

for their taxonomic and functional gene annotation (http://metagenomics.anl.gov) 

(Glass et al., 2010). The raw sequences were uploaded because the MG-RAST 

operated its own quality control and pre-processing pipelines. The MG-RAST 

provided taxonomic and functional annotations on each shotgun sequencing reads 

based on multiple databases, maximizing the number of annotated genes. The 

assembled contigs were uploaded unto the IMG/M ER webserver (Markowitz et al., 

2012) for their taxonomic and functional annotations. The IMG/M ER server does 

not provide quality-control service and assembling algorithm, thereby only the 

contigs that were quality controlled and assembled were uploaded. Also, the IMG/M 

ER server provided functional annotation for each protein coding genes within 

assembled contigs, thereby allowing prediction of functional genes present in 

putative bacteriophage genomes. The assembled viral metagenome data are available 

on IMG/M ER webserver (Gp0175588, Gp0175592, Gp0175603, Gp0175595, 

Gp0175596, and Gp0175601).  

2.5. Antibiotic resistance gene search and sequence analysis 

Among the AMGs carried by bacteriophages, ARGs were specifically 

screened from Han River virome. Assembled virome contigs that were classified as 

virus or prophages were used as query to screen for AMGs that are carried by 

putative phage genomes. The query sequences were analyzed by BLAST against two 

ARG-specific databases. The Comprehensive Antibiotic Resistance gene Database 

(CARD, downloaded on Feb. 2016) (Jia et al., 2017) was used to search for ARGs 

in general using local BLAST (Lavigne et al., 2008). For more reliable detection of 
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ARGs, only the BLAST results with e-values lower than 0.001, bitscores larger than 

40, and percent identity higher than 80% were accepted. After finding that most of 

the ARGs that were detected were related to beta-lactamase genes, more specific 

database, Resfams AR (Antibiotic Resistance, downloaded on Aug. 2016) database 

(Gibson et al., 2015), were used. To screen for ARGs against the Resfams database, 

hmmscan was used (Söding, 2005). From the results, only those with e-values lower 

than 0.001 and scores higher than 40 were accepted. Putative ARG sequences 

obtained from viral metagenome contigs were aligned with representative ARG 

sequences obtained from the NCBI nr database using ClustalW embedded in MEGA 

6 (Tamura et al., 2013). Then, the alignment of sequences were visualized using 

Jalview version 2 (Waterhouse et al., 2009). 
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3. RESULTS 

3.1. Analysis on viral metagenome reads obtained from Han River 

On May 2016, surface water samples from 6 selected sites on Han River 

were collected for viral metagenome analysis. After flocculation and concentration 

of viral particles using FeCl3 from 10 L of collected samples, sequencing was 

performed using Illumina MiSeq platform. Thus, 4.3 million to 8.3 million reads 

were obtained from each sample and after removing low-quality reads, 3.6 million 

to 6.6 million reads were retrieved as a result (Table 4-2). The biodiversity indices 

indicated high diversity of virome samples (Table 4-3). Using quality controlled 

virome reads, dissimilarity/distance between the viromes was calculated based on k-

mer profiles and distance matrix was constructed. To observe relationship between 

virome samples, a dendrogram was constructed based on the distance matrix. 

Although the samples had low dissimilarity (0.03-0.08), 6 virome samples were able 

to be grouped into 2 groups. One group consisted of samples collected from H1, H2, 

and H5 sites while the other consisted of those collected from H3, H4, and H6 sites 

(Fig. 4-3). Because these groupings were rather inconsistent with locations along 

river flow or distances between sampling sites, PCoA and NMDS plots were 

constructed using the same distance matrix, and the impact of environmental 

parameters were analyzed by fitting the parameters onto the plot (‘envfit’ function 

of R). However, the p-values for correlation between environmental factors and 

ordination coordinates of virome samples were too high (p=0.45-0.98 for PCoA and 

p=0.59-0.99 for NMDS), indicating that influence of environmental parameters on 

similarity/dissimilarity of viral metagenomes were insignificant (Fig. 4-4 and Fig. 4-

5). Prior to taxonomic and functional analysis of viral metagenome data, 

contamination by bacterioplankton cells were determined using MeTaxa program. 

Within metagenome reads, only 0.00007% to 0.00025% of the reads appeared to  
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Table 4-3. Shannon-Wiener and Simpson’s index of viral  

metagenomes prepared from the Han River 

 

 

 

 

 

 

 

 

 

 

 

  

Sample H' 2D 

H1 4.5656 0.9774

H2 4.6923 0.9819

H3 4.9026 0.9856

H4 4.7096 0.9811

H5 4.8502 0.9844

H6 4.8869 0.9863
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Figure 4-3. Dendrogram showing the clustering pattern of the Han River viral metagenomes. 

The distance matrix between viromes was calculated using the MASH algorithm, and then 

used for clustering based on UPGMA. 
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Figure 4-4. Principal coordinate analysis (PCoA) plot of six virome samples obtained from 

the Han River body. The distance was calculated based on raw virome reads using MASH 

algorithm. Environmental vectors were added to the PCoA plot and they are depicted in 

arrows. However, no significant correlation between environmental vectors and virome 

samples were observed (p=0.4474-0.9806). 
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Figure 4-5. Non-metric multidimensional scaling (NMDS) plot of six virome samples 

obtained from the Han River body. The distance was calculated based on raw virome reads 

using MASH algorithm. Environmental vectors were added to the NMDS plot and they are 

depicted in arrows. No significant correlation between environmental vectors and virome 

samples were observed (p=0.6500-0.9986). 
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have similarity with bacterial 16S rRNA sequences, indicating that no bacterial 

contamination was present in Han River virome samples (Table 4-4). After quality 

control of metagenome data, the virome reads were uploaded onto the MG-RAST 

webserver for taxonomic and functional analysis. Prior to the analysis, the MG-

RAST calculated average length of the submitted virome reads and it was shown that 

virome read lengths were evenly distributed (Table 4-5). Therefore, it was assumed 

that no bias was caused by sequence length and further analysis was performed. 

The quality controlled viral metagenome reads were assembled using 

SPAdes program with metagenome option and 93,140 to 328,299 contigs were 

constructed from each sample (Table 4-2). Among those, only the contigs with 10 kb 

or longer in length were selected for further analysis. Among the assembled contigs, 

those that are predicted to be viral or prophage origin were screened using VirSorter 

which identifies viral or prophage ORFs within given sequences. Per VirSorter, less 

than 1% of the assembled contigs were found to be viral or prophage origin (Table 

4-6).  
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Table 4-4. Percent of 16S rRNA bacterial SSU sequences in the Han River viral  

metagenome data 

 

  

Site Total bp in virome
Total 16S rRNA 

bp in virome 
% of 16S rRNA 
seq. in virome 

H1 1,456,458,749 3,664 0.00025% 

H2 1,288,843,440 926 0.00007% 

H3 1,902,716,563 5,668 0.00030% 

H4 3,147,663,020 9,480 0.00030% 

H5 2,000,621,402 1,881 0.00009% 

H6 2,509,404,691 3,290 0.00013% 
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Table 4-5. Average read lengths of viral metagenome collected  

 from the Han River 

Site 
Mean seq. length  

(before QC) 
Mean seq. length  

(after QC) 

H1 298 ± 17 210 ± 75 

H2 298 ± 16 211 ± 76 

H3 297 ± 19 219 ± 72 

H4 298 ± 17 222 ± 71 

H5 298 ± 18 203 ± 76 

H6 298 ± 18 218 ± 72 
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Table 4-6. Number of viral metagenome contigs that were identified as  

virus or prophage r 

Site 

Viruses Prophages 

Contigs > 10kb Contigs > 10kb 

H1 616 158 110 73 

H2 961 220 101 49 

H3 954 105 118 75 

H4 1,388 291 155 97 

H5 1,316 142 134 82 

H6 1,174 145 123 68 
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3.2. Taxonomic and functional annotation of Han River virome reads 

3.2.1. Viral taxonomic distribution in Han River  

The raw viral metagenome reads were first mapped to phiX174 genome and 

mapped reads were removed to avoid bias caused by sequencing control reads. Then 

the virome reads that were unmapped to phiX174 genome were recollected and they 

were uploaded unto the MG-RAST webserver. The MG-RAST annotation pipeline 

included removal of low quality reads, thereby no prior trimming process was 

necessary. After the metagenome sequences were uploaded, the MG-RAST pipeline 

annotated each read to a non-redundant M5nr database (Wilke et al., 2012). Although 

bacterial cells and any possible external nucleic acid was removed during the viral 

metagenome sample preparation, more than 70% of the annotated reads were 

classified as bacteria (Fig. 4-6a). However, this is a common phenomenon in viral 

metagenome analyses due to limitation in complete removal of bacterial cells during 

sample preparation, existence of prophage regions in many bacterial genomes, and 

dearth of viral gene database. Compared to number of bacterial genomes that have 

been sequenced, those of viral genomes are much less. Accordingly, most of the 

novel viral genes retrieved from viral metagenome samples are often annotated as 

bacterial or unknown not being able to be classified with a known query. Within the 

reads that were annotated as viruses, which comprised of approximately 13 to 24% 

of annotated reads in all samples, proportion of predicted viral family was analyzed. 

Proportion of viral reads that were assigned to the Podoviridae and Siphoviridae 

family increased as the river flowed to the downstream while that of unclassified 

viruses decreased (Fig. 4-6b). However, the viral families encompass broad range of 

viruses regardless of phage hosts that no definitive conclusion on viral population 

distribution was able to be made. When viral species that were annotated from viral 

metagenome reads were inspected, Acanthocystis turfaceae Chlorella virus 1, 

Bordetella phages, and Prochlorococcus phages appeared to be most abundantly  
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Figure 4-6. Taxonomic annotation of the Han River virome samples by metagenome analysis 

server. (a) Proportion of different domains that were annotated from Han River virome raw 

reads are depicted. (b) Proportion of different families of virus are shown.  
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Figure 4-7. Heatmap showing the taxonomic composition of the viromes obtained from the 

Han River body. The taxonomic assignment of virome reads was performed by MG-RAST 

server and only viral species that had relative abundance of more than 1% in at least 1 sample 

were shown here. 
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assigned throughout all 6 virome samples while Myxocococcus phage Mx8 appeared 

with high abundance only in H1 and H2 samples, the most upstream samples (Fig. 

4-7). The host of Bordetella phage BPP-1, Bordetella bronchiseptica, is an animal 

pathogen that could cause bronchitis and both the host and the bacteriophage are 

known to be able to persist well in natural environment (Coote, 2001). On the 

contrary, Prochlorococcus phage P-SSM2 is known to be present in marine 

environments, infecting Prochlorococcus marinus str. NATL1A. Origin of annotated 

viral species of all Han River virome samples were highly diverse (Table 4-7 to 12). 

This may indicate presence of diverse bacteriophages in Han River, but at the same 

time, it may indicate that some of viral metagenome reads have been inadequately 

assigned to viruses from different origins due to shortness in number of 

bacteriophages and viruses isolated from freshwater. Other than minor shifts among 

phage populations, no specific pattern was observed in viral population along the 

river flow. Thereby, it could be concluded that major components of the viral 

population remain consistent across the river.  

3.2.2. Functional protein distribution in Han River 

The MG-RAST server predicted protein coding genes of viral metagenome 

reads and functionally annotated them based on diverse protein databases such as the 

SEED subsystems, UniProt, COG (Conserved Ortholog Groups), NOG (Non-

supervised Ortholog Groups), and KEGG. Based on the functional protein 

annotation from the SEED subsystem, which provides the most detailed annotation, 

functional protein distribution was observed among Han River virome samples. On 

the contrary to the taxonomic annotation, 40 to 66% of the annotated reads were 

identified and grouped into phages and prophage-related genes (Fig. 4-8, Table 4-

13). Among the phage-related genes that were found, r1t-like Streptococcal phage 

proteins were most frequently annotated, followed by proteins related to phage 

packaging machinery and replication (Table 4-14). High frequency of phage-related  
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Table 4-7. List of 20 viruses that were most frequently assigned within the viral  

metagenome reads of the H1 sample 

H1 

Species name % Origin of isolation 

Prochlorococcus phage P-SSM2 18.13 Marine 

Myxococcus phage Mx8 15.48 Soil 

Bordetella phage BPP-1 7.76 Animal lung 

Prochlorococcus phage P-SSM4 7.31 Marine 

Acanthocystis turfacea Chlorella virus 1 6.36 Freshwater 

Lactobacillus johnsonii prophage Lj771 5.16 Gut 

Enterobacteria phage phiP27 3.66 Gut 

Streptococcus phage EJ-1 3.16 - 

Listonella phage phiHSIC 3.16 Marine 

Synechococcus phage S-PM2 2.29 Marine 

Synechococcus phage syn9 2.11 Marine 

Burkholderia phage BcepC6B 1.86 Plant root 

Aeromonas phage phiAS5 1.73 River 

Staphylococcus phage tp310-2 1.49 Soil (animal farm) 

Synechococcus phage S-RSM4 1.33 Marine 

Enterobacteria phage WV8 1.25 River 

Lactobacillus phage phiJL-1 1.23 Vegetable fermentation 

Paramecium bursaria Chlorella virus AR158 1.10 Freshwater 

Staphylococcus phage 3A 1.01 - 

Mycobacterium phage Chah 0.86 - 
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Table 4-8. List of 20 viruses that were most frequently assigned within the viral  

metagenome reads of the H2 sample 

H2 

Species name % Origin of isolation 

Acanthocystis turfacea Chlorella virus 1 17.96 Freshwater 

Bordetella phage BPP-1 11.86 Animal lung 

Prochlorococcus phage P-SSM2 9.01 Marine 

Myxococcus phage Mx8 8.82 Soil 

Roseobacter phage SIO1 4.96 Marine 

Lactobacillus johnsonii prophage Lj771 4.08 Gut 

Prochlorococcus phage P-SSM4 3.47 Marine 

Enterobacteria phage phiP27 2.91 Gut 

Synechococcus phage syn9 2.30 Marine 

Listonella phage phiHSIC 2.00 Marine 

Rhizobium phage 16-3 1.85 Plant root 

Synechococcus phage S-PM2 1.58 Marine 

Flavobacterium phage 11b 1.45 Sea-ice 

Burkholderia phage BcepC6B 1.35 Plant root 

Synechococcus phage S-RSM4 1.31 Marine 

Silicibacter phage DSS3phi2 1.09 Marine 

Burkholderia phage BcepB1A 1.08 Plant root 

Paramecium bursaria Chlorella virus 1 1.07 Freshwater 

Xanthomonas phage Xop411 1.04 Plant 

Aeromonas phage phiAS5 0.96 River 
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Table 4-9. List of 20 viruses that were most frequently assigned within the viral  

metagenome reads of the H3 sample 

H3 

Species name % Origin of isolation 

Bordetella phage BPP-1 14.23 Animal lung 

Acanthocystis turfacea Chlorella virus 1 8.06 Freshwater 

Burkholderia phage BcepIL02 7.23 Plant root 

Burkholderia phage Bcep22 6.26 Plant root 

Mycobacterium phage Pacc40 3.96 - 

Prochlorococcus phage P-SSM2 3.40 Marine 

Lactobacillus johnsonii prophage Lj771 3.03 Gut 

Endosymbiont phage APSE-1 3.00 Aphid 

Salmonella phage SS3e 2.86 Sewage 

Roseobacter phage SIO1 2.71 Marine 

Sinorhizobium phage PBC5 2.62 Plant root 

Prochlorococcus phage P-SSM4 2.57 Marine 

Burkholderia phage BcepC6B 1.98 Plant root 

Synechococcus phage S-PM2 1.83 Marine 

Synechococcus phage syn9 1.74 Marine 

Enterobacteria phage HK022 1.55 Gut 

Rhizobium phage 16-3 1.51 Plant root 

Pseudomonas phage YuA 1.33 Freshwater 

Enterobacteria phage phiP27 1.32 Gut 

Invertebrate iridescent virus 6 1.23 Drosophila 
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Table 4-10. List of 20 viruses that were most frequently assigned within the viral  

metagenome reads of the H4 sample 

H4 

Species name % Origin of isolation 

Bordetella phage BPP-1 24.91 Animal lung 

Acanthocystis turfacea Chlorella virus 1 14.49 Freshwater 

Prochlorococcus phage P-SSM2 8.49 Marine 

Prochlorococcus phage P-SSM4 3.82 Marine 

Burkholderia phage BcepC6B 3.14 Plant root 

Lactobacillus johnsonii prophage Lj771 3.00 Gut 

Synechococcus phage syn9 2.69 Marine 

Roseobacter phage SIO1 2.62 Marine 

Streptococcus phage EJ-1 2.11 - 

Synechococcus phage S-PM2 1.61 Marine 

Enterobacteria phage phiP27 1.38 Gut 

Invertebrate iridescent virus 6 1.38 Drosophila 

Pseudomonas phage YuA 1.37 Freshwater 

Synechococcus phage S-RSM4 1.34 Marine 

Ostreococcus tauri virus 1 1.29 Marine 

Enterobacteria phage N4 1.28 Gut 

Mycobacterium phage Pacc40 1.24 - 

Aeromonas phage phiAS5 1.24 River 

Prochlorococcus phage P-SSP7 1.15 Marine 

Salmonella phage epsilon15 1.00 - 
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Table 4-11. List of 20 viruses that were most frequently assigned within the viral  

metagenome reads of the H5 sample 

H5 

Species name % Origin of isolation 

Bordetella phage BPP-1 21.61 Animal lung 

Acanthocystis turfacea Chlorella virus 1 9.52 Freshwater 

Roseobacter phage SIO1 5.60 Marine 

Mycobacterium phage Pacc40 5.51 - 

Rhizobium phage 16-3 3.37 Plant root 

Burkholderia phage BcepC6B 3.08 Plant root 

Endosymbiont phage APSE-1 2.61 Aphid 

Enterobacteria phage phiP27 2.55 Gut 

Lactobacillus johnsonii prophage Lj771 2.55 Gut 

Burkholderia phage Bcep22 2.37 Plant root 

Xanthomonas phage Xop411 2.29 Plant 

Salmonella phage SS3e 2.27 Sewage 

Prochlorococcus phage P-SSM2 2.07 Marine 

Burkholderia phage BcepIL02 2.04 Plant root 

Enterobacteria phage RB32 1.61 Gut 

Pseudomonas phage PAJU2 1.34 Sputum/River 

Enterobacteria phage HK022 1.34 Gut 

Sodalis phage phiSG1 1.26 Tsetse fly 

Synechococcus phage syn9 1.22 Marine 

Azospirillum phage Cd 1.22 Plant 
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Table 4-12. List of 20 viruses that were most frequently assigned within the viral  

metagenome reads of the H6 sample 

H6 

Name % Origin of isolation 

Bordetella phage BPP-1 11.24 Animal lung 

Acanthocystis turfacea Chlorella virus 1 9.53 Freshwater 

Mycobacterium phage Pacc40 7.47 - 

Enterobacteria phage phiP27 4.02 Gut 

Prochlorococcus phage P-SSM2 3.87 Marine 

Roseobacter phage SIO1 3.86 Marine 

Rhizobium phage 16-3 3.68 Plant root 

Lactobacillus johnsonii prophage Lj771 3.39 Gut 

Salmonella phage SS3e 3.05 Sewage 

Burkholderia phage BcepC6B 2.42 Plant root 

Prochlorococcus phage P-SSM4 2.30 Marine 

Enterobacteria phage RB32 2.17 Gut 

Synechococcus phage syn9 2.08 Marine 

Xanthomonas phage Xop411 2.05 Plant 

Burkholderia phage Bcep22 2.03 Plant root 

Enterobacteria phage HK022 1.64 Gut 

Pseudomonas phage PAJU2 1.59 Marine 

Pseudomonas phage PA11 1.53 Marine 

Enterobacteria phage N4 1.45 Gut 

Azospirillum phage Cd 1.42 Plant 
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Figure 4-8. Functional gene annotation of the Han River virome samples. The functional gene 

annotation was performed by MG-RAST annotation server. The annotation was done based 

on the SEED subsystem database and annotation matches with e-value threshold of 1.00E-5 

were taken into consideration for data analysis.  
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Table 4-13. Proportion of each Han River virome reads that were assigned to  

function annotation categories 

Function category 
H1 

(%) 
H2 
(%) 

H3 
(%) 

H4 
(%) 

H5 
(%) 

H6 
(%) 

Amino Acids and Derivatives 3.21 1.54 2.56 3.88 0.97  0.74  

Carbohydrates 2.72 1.48 2.68 4.11 1.29  0.98  

Cell Division and Cell Cycle 0.95 0.58 0.86 0.88 0.61  0.66  

Cell Wall and Capsule 1.30 1.67 1.84 2.00 1.89  2.19  

Clustering-based subsystems 7.78 11.53 9.39 11.49 8.42  9.31  

Cofactors, Vitamins, Prosthetic 
Groups, Pigments 

1.72 1.67 3.50 3.91 1.64  1.91  

DNA Metabolism 4.16 4.47 4.50 5.14 3.36  3.51  

Dormancy and Sporulation 0.03 0.03 0.03 0.04 0.02  0.02  

Fatty Acids, Lipids, and 
Isoprenoids 

0.41 0.17 0.44 0.69 0.15  0.07  

Iron acquisition and metabolism 0.02 0.03 0.03 0.04 0.03  0.04  

Membrane Transport 0.71 0.34 0.70 0.75 0.42  0.39  

Metabolism of Aromatic 
Compounds 

0.09 0.09 0.13 0.14 0.05  0.06  

Miscellaneous 1.51 1.50 1.72 2.41 1.20  1.05  

Motility and Chemotaxis 0.64 0.03 0.57 0.14 0.06  0.05  

Nitrogen Metabolism 0.20 0.05 0.25 0.32 0.12  0.17  

Nucleosides and Nucleotides 5.03 6.72 6.43 8.29 5.10  5.85  

Phages, Prophages, Transposable 
elements, Plasmids 

57.32 56.13 51.79 40.15 66.49  63.77  

Phosphorus Metabolism 0.71 1.94 0.68 1.30 1.01  1.08  

Photosynthesis 1.61 0.86 0.31 0.70 0.15  0.13  

Potassium metabolism 0.02 0.04 0.02 0.04 0.03  0.01  

Protein Metabolism 5.51 4.86 5.83 7.14 3.79  4.50  

RNA Metabolism 1.39 0.99 1.57 1.80 0.84  0.80  

Regulation and Cell signaling 0.67 1.32 1.39 1.28 0.81  0.86  

Respiration 0.85 0.34 0.75 1.17 0.24  0.14  

Secondary Metabolism 0.04 0.03 0.11 0.19 0.02  0.01  

Stress Response 0.81 0.76 0.99 1.14 0.82  1.10  

Sulfur Metabolism 0.08 0.30 0.37 0.26 0.16  0.19  

Virulence, Disease and Defense 0.48 0.52 0.57 0.60 0.33  0.39  
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genes obtained by functional annotation of viral metagenome reads, while only 13 

to 24% of the identical virome reads were taxonomically annotated to belong to viral 

species, may derive two inferences; most of the protein coding genes that were 

predicted to be coding for phage-related genes were carried by bacterial cells, 

indicative of high proportion of prophages, and that Han River viromes mostly 

consist of unknown bacteriophages that carry essential bacteriophage protein genes 

but were inappropriately assigned to bacterial species putatively due to sequence 

uniqueness.  

Bacteriophages are known to be carrying AMGs that are not essential but 

helpful for phage reproduction by adjusting host metabolism upon infection. Various 

AMGs have been identified from bacteriophage genomes and they encode proteins 

involved in functions such as carbon utilization, ammonia assimilation, sulfur 

oxidation, nitrogen regulation, and photosynthesis. Within Han River virome 

samples, diverse AMGs have also been predicted from virome reads (Table 4-15). 

Although they were found in low frequencies, many AMGs found within the Han 

River virome consisted of enzymes participating for carbohydrate metabolism, 

which are known to assist host cell metabolism during phage infection. Also, AMGs 

related to photosynthesis and respiration were found as reported before. Along with 

metabolic genes, virome reads were also annotated as defensive proteins against 

toxic substances such as cobalt, zinc, and cadmium. Interestingly, diverse ARGs 

were also found within virome reads (Table 4-16). Considering that gene transfer 

agents, such as plasmids, integrons, and transposons were found at relatively high 

proportion among virome reads (Table 4-14), and diverse ARGs were also found, it 

may indicate that bacteriophage community in Han River are acting as couriers and 

transporters of diverse bacterial genes including ARG.  
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3.3. Antibiotic resistance genes within viral metagenome and viral 

contigs 

3.3.1. Search of ARG from general protein database 

Although ARGs were found in viral metagenome reads, whether they are 

carried by true bacteriophage genomes and whether they are functional were not able 

to be judged. Therefore, assembled viral metagenome contigs were analyzed. To 

predict protein coding genes within the assembled contigs and annotate their 

functions, the virome contigs that are 10 kb in length or longer, were uploaded unto 

IMG/M ER webserver. From the IMG/M ER annotation, 53 contigs were found to 

be carrying ARGs. Those ARGs were collected and further analyzed by BLAST 

against NCBI nr database, and 33 ARGs in 33 contigs were eliminated for high 

BLAST e-values. Among the 15 contigs that survived (Table 4-17), bona fide 

bacteriophage contigs were searched by annotating all the ORFs found in the contig. 

To double-check, the 15 contigs were reannotated by the RAST server (Aziz et al., 

2008). Among 15 contigs, only 3 contigs were carrying bacteriophage-related genes 

such as terminase and capsid gene that they were determined to be bona fide 

bacteriophage genomes with ARG (Fig. 4-9). All three contigs, H2-260, H4-1399, 

and H5-411 carried Beta-lactamase genes with different domains. The contig H2-

260 that has been retrieved from site H2 carried a beta-lactamase 2 gene with three 

conserved active sites of H-X-H-X-D-H, H-D, and D (Fig. 4-10), implying for 

possible activity of the beta-lactamase. Besides those active site, beta-lactamase 

genes also share highly conserved active site, S-X-X-K. The contig H5-411 was 

shown to be carrying metallo-beta-lactamase gene but this ARG does not carry the 

S-X-X-K active site within the protein coding gene. Yet, interestingly, this metallo-

beta-lactamase gene contained amino acid sequences of K-X-X-S, a reversed form 

of the conserved active site of the beta-lactamases.  
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Figure 4-9. Genome map of three putative bacteriophage contigs retrieved from the Han 

River virome that carry ARGs. The ORFs that code for bacteriophage-related genes are 

shown in blue while ORFs coding for ARG are shown in red. 
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The contig H4-1399 carried a PASTA domain (Penicillin-binding-protein (PBP) and 

Serine/Threonine kinase Associated protein), which are found at the C-termini of the 

Penicillin-binding-proteins. The PASTA domains are “mutational hotspots” that 

could provide large diversity to PBPs (Yeats et al., 2002). The PASTA domain found 

in the H4-1399 contig showed large variation from its reference sequences (Fig. 4-

11), suggesting diversified form of the PASTA domain. Also, until recently, the 

PASTA domain has not been found in a viral genome before, thereby the contig H4-

1399 is the first putative bacteriophage genome that was revealed to be carrying the 

PASTA domain.  

3.3.2. ARG-specified databases 

Inspired by the ARGs found in virome contigs, more specified and sensitive 

ARG search was performed using the CARD. For local BLAST search, assembled 

and virus-sorted virome contigs were used as a query and CARD, which contains 

2,341 reference sequences was used as a database. Regardless of the sampling sites, 

large number of genes were detected to have similarity with ARGs. To refine the 

search results, threshold of e-value≤0.001, percent identity ≥ 80%, and bitscore ≥ 40 

were applied. Unfortunately, no BLAST result satisfied all three thresholds given 

(Fig. 4-12). However, seeing that high number of genes had a significant match with 

ARG with at least one of the threshold criteria, the candidate ARGs present in the 

viral metagenome data were suspected to be diverged and CARD was too narrow 

database to be used for metagenome reads.  

Based on the fact that all three ARGs detected from IMG database were 

related to beta-lactamase genes, beta-lactamase gene specific search was performed 

using Resfams database. The Resfams is a protein database that includes CARD and 

curated beta-lactamase protein sequences. The VirSorter program, which was used 

to sort virome contigs of viral origin, provided translated protein coding sequences  
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Figure 4-12. A Venn diagram displaying number of viral metagenome contigs that were found 

to be carrying ARG based on CARD. Virome contigs were analyzed with BLAST against the 

CARD to screen for ARG and contigs that satisfy each threshold levels, e-value, percent 

identity, and bitscore were counted. No contigs were found to be satisfying all the three 

thresholds. 
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for all the contigs submitted. Therefore, the translated contig sequences that were 

classified as phage-origin were used as a query and the hmmscan was performed. As 

a result, total of 4 contigs were revealed to contain beta-lactamase 2 genes with two 

different domains (Table 4-18). The beta-lactamase 2 genes within contigs H3-74, 

H4-367, and H4-244 had an identical active site as the H2-260 contig, which was 

identified earlier (Fig. 4-10). The contig H4-441 had a different domain from the 

others, and it carried an active site of S-X-X-K, the universal active site of beta-

lactamase 2 genes (Fig. 4-13).   

Using number of different databases to search for ARGs within virome 

samples, total of 7 bacteriophage contigs were discovered to be carrying ARG. Five 

of 7 contigs were retrieved from site H4, which was Hannam Bridge located in the 

Seoul city. The site is located downstream of an urban WWTP efflux site, thereby it 

could be suspected to be responsible for increase in number of viral contigs 

containing ARGs. 
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Table 4-18. List of ARGs that were found within assembled viral metagenome contigs  

Site Contig no.
Contig 
length 
(bp) 

ARG e-value Score 
Pfam 
domain 

H3 74 34,930 Beta-lactamase-2 6.40E-20 65.10 PF12706.2 

H4 244 29,404 Beta-lactamase-2 2.40E-20 65.10 PF12706.2 

H4 367 26,437 Beta-lactamase-2 2.40E-20 65.10 PF12706.2 

H4 441 20,541 Beta-lactamase-2 6.20E-14 45.50 PF13354.1 
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4. DISCUSSION 

 Bacteriophages, especially those found in natural environments play 

important ecological roles through controlling bacterial population, interference of 

geochemical cycling, and transfer of genetic materials from one cell to another. 

Therefore, in here, bacteriophage distribution in urban river waters were studied 

using viral metagenomics, a culture-independent method. The Han River, selected 

study site, flows across the northern area of South Korea and through the Seoul city. 

From the most upstream sampling site to the most downstream one, which flows for 

approximately 180 km, the river experiences diverse changes of environments; 

conserved water reservoir lakes, recreational sites, and urban river that receives 

WWTP effluents. Therefore, along with the water flow, the bacteriophage population 

composition was expected to change. However, the overall distribution of viral 

populations did not show much variation. The most frequently assigned 

bacteriophages in sampling sites H1 and H2 were Thalassomonas phage BA3 and 

Prochlorococcus phage P-SSM2, which are marine bacteriophages. Taxonomic 

assignment of viromes reads to marine bacteriophages in inland freshwater river 

indicates either narrowness of current bacteriophage database that hampers analysis 

of bacteriophage community of freshwater systems or that the presence of close 

relatives of marine bacteriophages thriving in river systems, yet, to be taxonomically 

unidentified. In sampling sites H3 to H6, the most abundant bacteriophages were 

Bordetella phage BPP-1, which infects human pathogen bacteria, Bordetella 

bronchiseptica. Since site H3 to H6 are located close or within the metropolitan city, 

increased abundance of Bordetella phage BPP-1 may imply the intervention of 

human influence to the water system.  

 Compared to the taxonomic annotation of the Han River virome samples, 

which annotated approximately 70% of virome reads as bacterial origin, the 
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functional annotation revealed that more than 40 % of the reads were annotated into 

bacteriophage-related functional group, which mostly consisted of phage structural 

genes. In protein sequence databases, numerous phage-related sequences are 

taxonomically assigned as bacterial origin, largely due to carriage of prophages in 

bacterial genomes. Consequently, imbalance between taxonomic and functional 

annotation may occur as seen in Han river virome. Besides well-known 

bacteriophage related genes, diverse metabolic genes were also detected, which were 

predicted to be AMGs of the bacteriophages. Along with the AMGs that are known 

to assist the host metabolism such as carbohydrate, nitrogen, phosphorous, and sulfur 

metabolism auxiliary defensive genes were also found that may contribute in 

defensive mechanism against heavy metals through expression of resistance genes 

and heavy metal efflux pumps. Also, genes to defend against antibiotics were also 

found. Once the bacterial cells are infected by phages that carry defensive genes, 

until the cell lysis due to bacteriophage replication and bursting, the cells will survive 

against toxic materials, which will provide enough time for active phage replication. 

 Among defensive AMGs detected from the Han River virome, ARGs were 

investigated again at the assembled contigs level. Also, to ensure that ARGs are 

carried by bacteriophages, not prokaryotic cells, the assembled contigs were checked 

twice, before and after the detection of ARGs within the contig. Through utilization 

of three databases, two of which were ARG-specified databases, total of 7 bona fide 

bacteriophage contigs were found to be carrying beta-lactamase genes. These ARGs 

had highly conserved active sites, anticipating that these genes would be functional. 

When each of the ORFs of those contigs were analyzed using protein BLAST to 

predict their hosts, no decisive conclusion was able to be drawn, for most of the 

ORFs had best BLAST matches of diverse organisms, including environmental 

virome reads. Although virome contigs that carry true ARGs were found at very low 

frequency, presence of active and diverse ARGs within environmental bacteriophage 
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contigs suggest their role as reservoirs of diverse ARGs within environments. Novel 

ARGs with various protein folds and variated sequences often arise from different 

environmental bacteria. Hence, the fact that environmental bacteriophage contigs are 

carrying active ARGs imply the possibility that those genes could be transferred to 

the next host bacteria and lead to arise of pathogenic bacterial strains with new ARGs 

(Vaz-Moreira et al., 2014; Wright, 2010). Bacteriophages that were isolated from 

animal system and clinical wastes were previously reported to be carrying ARGs 

(Colomer-Lluch et al., 2011a; Colomer-Lluch et al., 2011b; Modi et al., 2013). 

However, there has been debate whether ARGs present in bacteriophage genomes 

are functional (Enault et al., 2016). In this study, the ARGs found in freshwater 

virome contigs were shown to contain conserved active sites, suggesting their viable 

activity.  

 Although samples for virome analysis were taken from different sites along 

a lotic freshwater system, viral population and functional annotation did not vary 

significantly. Minor shifts in dominating bacteriophage were observed between 6 

virome samples but overall population composition remained consistent. The 

functional composition of the virome reads also remained consistent throughout the 

river flow, indicating that viral population is not influenced by distances or different 

sites, within an identical water system. Within 6 viromes, 7 of ARGs with conserved 

active sites were found in bacteriophage contigs. This result provides evidence for 

their role as reservoirs of bacterial genes, and at the same time, their role as mediator 

for ARGs in the environment. 
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Conclusions 
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Despite their high abundance and ecological roles as microbial population 

controllers and reservoirs of bacterial genes, environmental bacteriophages were 

underappreciated. However, recently, with development of comprehensive methods 

to efficiently concentrate viral particles from aquatic environments and easier access 

to metagenome technologies, environmental bacteriophages have been re-

illuminated with their extensive variability of genetic diversity and wide distribution. 

However, interpretation of viral metagenome data was still limited due to lack of 

isolated and sequenced individual bacteriophages from environment, leaving most 

of the viral metagenome reads as unknown. Therefore, from Lake Soyang, an 

oligotrophic freshwater reservoir, viral metagenome study was accompanied with 

culturing bacteriophage particles and sequencing of dominantly found 

bacteriophages in the freshwater environment. Hence, in this study, viral 

metagenome and bacteriophage isolation and culturing were performed 

simultaneously to better understand the bacteriophage population dynamics in 

freshwater environments.  

From Lake Soyang, a large oligotrophic lake, seasonal distribution of 

bacteriophages was observed using viral metagenome. However, no significant 

seasonal variation was observed among bacteriophages, except for cyanophages, 

which bloomed in summer season and gradually decreased as winter approached. 

From Lake Soyang virome project, only the seasonal variability of cyanophages was 

observable because they are the most studied and identified environmental 

bacteriophage. About 90% of the analyzed viral metagenome reads appeared to be 

unidentified by the existing databases, restricting analysis of metagenome data. 

Since database-based classification of virome reads were limiting, protein sequence-

based analysis was performed using metagenome-assembled contigs. As a result, 

approximately 2,000 contigs of Lake Soyang were found to be unreported sequences. 

Furthermore, identification of phage taxonomy and putative hosts of these contigs 
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were performed through manual curation of each ORFs carried by contigs. Among 

those, 976 contigs were predicted to have a host within the phylum Proteobacteria, 

315 of them to have a host within the phylum Actinobacteria, and 59 of them were 

predicted to infect bacteria belonging to the phylum Bacteroidetes. Yet, prediction 

on specific bacterial host strain of the virome contigs were not able to be made. Each 

virome contigs were constructed with ORFs that are predicted to be accumulated 

from diverse bacterial host through HGT over long history of infection and co-

evolution. Therefore, conclusion on single putative bacterial host was hard to be 

made. Genomic studies of bacteriophages and their metagenome data are also in need 

of more accurate annotation of their sequences, which could only be achieved by 

actual culturing and sequencing of bacteriophage isolates.  

Therefore, from the identical site, Lake Soyang, novel bacteriophages were 

screened and isolated using bacterial strains isolated from the same lake. Using three 

bacteria strains that each belonging to LD28 group, Curvibacter species, and 

Rhodoferax species, four distinctive bacteriophages were isolated. Using the pure 

culture of bacteriophages obtained, whole genome sequencing was performed. As a 

result, it was revealed that the bacteriophage P19250A, which infects a strain 

belonging to the LD28 group, was the most abundantly found bacteriophage in Lake 

Soyang, specifically in winter seasons. Also, through binning analysis, four 

bacteriophage genomes obtained from Lake Soyang were found to be detected in 

various viral metagenome samples prepared from freshwater lakes of different 

countries. Especially in Lough Neagh, located in United Kingdom, the genome of 

P19250A appeared to be the most abundantly found bacteriophage genome, 

providing more refined interpretation of Lough Neagh virome study. Also, in 

bacteriophage evolution perspectives, the fact that the phage P19250A genome was 

found in diverse lakes of different countries show that phages appear to be infecting 

hosts of the same taxonomic clades may have developed independently and provide 
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evidence for convergent evolution of bacteriophages.  

Along with bacterial strain belonging to LD28 clade, two representative 

bacterial strains, IMCC26218 and IMCC26059 belonging to Rhodoferax sp. and 

Curvibacter sp., respectively, were used to screen for novel bacteriophages from 

Lake Soyang. P26218, which infects Rhodoferax sp., IMCC26218 appeared to be a 

member of the family Podoviridae. P26059A and P26059B, which infect 

Curvibacter sp., belonged to different bacteriophage families, the family 

Siphoviridae and Podoviridae, respectively.  

Using the same method as in Lake Soyang, viral population changes were 

observed through viral metagenome in running freshwater water, the Han River, one 

of the major river bodies of South Korea, six sampling sites were selected along the 

river flow to observe viral population distribution along the river flow. However, 

viral population distribution along the river flow was relatively consistent, 

displaying stably maintained viral community over 180 km of the rive length. From 

the Han River viral metagenome, various ARGs carried by bacteriophage contigs 

were discovered. These ARGs had highly conserved active sites indicating their 

possibility to be expressed within bacterial cells upon phage infection. Such event 

can lead to transfer of ARGs to diverse bacterial stains, leading to establishment of 

antibiotic resistance strains. Since viability of bacteriophage-carried ARGs have 

been in debate by many researchers, the virome-origin ARGs with highly conserved 

functional domains will provide solid proof that bacteriophages are the reservoirs 

and carriers of ARGs that could benefit the infected hosts.  

 This study has observed bacteriophage population, specifically dsDNA 

bacteriophages within freshwater environments, including both lentic and lotic 

waters, obtaining large number of unreported virome contigs. Also, from viral 

metagenome study performed in the Han River, an urban river, bacteriophage 
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genomes appeared to be carrying ARGs with novel sequences with conserved active 

sites, indicating that bacteriophages are the reservoirs of ARGs that occur in natural 

environments. Along with viral metagenome studies, this study isolated four novel 

bacteriophages from Lake Soyang. Among them, P19250A, an LD28 clade phage, 

appeared to be the most abundant bacteriophage in many lakes, including Lake 

Soyang, especially during winter seasons, and contributed to better understanding of 

freshwater bacteriophage ecology.  
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국문초록 

 

바이러스는 지구상에서 가장 많은 수로 존재하고 있으며 그 중, 

박테리오파지 (파지)는 세균을 감염시킬 수 있는 바이러스로써 바이러스 

중 가장 많은 비율을 차지하고 있다. 그들의 숙주인 세균은 지금까지 알

려진 거의 모든 환경에서 발견됨에 따라 박테리오파지 역시 해양, 토양, 

온천, 극지방, 사막 등 다양한 환경에서 존재함이 확인되었다. 그러나 이

러한 생존 능력과 개체의 풍부함에도 불구하고 그들의 숙주인 세균 배양

의 한계로 인해 지금까지의 환경 박테리오파지의 연구는 매우 제한적이

었다. 최근, 이러한 제한을 극복하기 위해 바이러스 메타게놈 방법이 제

시되었다. 바이러스 메타게놈은 박테리오파지를 배양하지 않고 그들의 

유전자 정보에만 기반하여 박테리오파지 개체군을 연구할 수 있게 하였

다. 따라서 바이러스 메타게놈을 사용하여, 대규모 해양 바이러스 프로젝

트가 수행되었다. 그러나 내륙 담수 환경이 다양한 미생물 군락의 저장

고로서의 역할을 하고 있음에도 불구하고 담수 환경에서의 박테리오파지 

연구는 아직까지 소수에 불과하다. 따라서 본 연구에서는 담수 환경에서

의 박테리오파지 개체군 분포와 세균 유전자 운반체로서의 생태계 내 역

할의 이해를 위해 바이러스 메타게놈 시퀀싱과 박테리오파지의 배양 방

법을 함께 수행하여 담수 환경 내의 박테리오파지 연구를 진행하였다. 

우선, 계절 변동성에 따른 지표 호수내의 박테리오파지 개체 수 분포를 

연구하기 위해 국내 담수 호수인 소양호에서 계절별 시료를 채취하여 바

이러스의 메타게놈 표본을 준비하였다. 여섯 개의 시료 간 염기서열 유

사성을 비교 하였을 때, 계절에 따른 명확한 변동성은 관찰되지 않았지

만, 시간 경과에 따른 바이러스 메타게놈 유전자의 점진적 변화가 관찰
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되었다. 또한 바이러스 메타게놈 데이터에서 얻어진 바이러스 contig 와 

NCBI 에 등록된 바이러스 유전자 서열들과 함께 단백질 서열 유사성을 

기반하여 분류하였을 때, 693개의 단백질 서열 그룹이 생성되었고, 그 중, 

211개의 그룹이 소양호에서 얻은 contig 들로만 이루어져 있음을 알 수 

있었다. 이 contig 들은 기존의 데이터베이스를 통해 유사한 박테리오파

지, 또는 바이러스를 확인할 수 없는 소양호 특이적 박테리오파지로써, 

기존의 BLAST 방법을 통해 계통학적 분류 분석을 수행할 수 없었다. 따

라서, 211개 그룹에 속해있는 contig 의 open reading frame (ORF)를 각각 

분석하여, 박테리오파지 분류 기준의 하나인, 그들의 숙주 세균을 예측하

고자 하였다. 그 결과, 976 개의 contig 가 속해 있는 23개의 그룹은 

Proteobacteria 문에 속하는 세균을 숙주로 가지고 있을 것으로 예측되었

고, 315개의 contig 가 속해 있는 1개의 그룹은 Actinobacteria 문에 속하는 

세균을 숙주로 가지고 있을 것으로 예측되었다. 하지만, 해당 박테리오파

지 contig 의 좀 더 정확한 계통학적 분류는 이루어지지 않았다. 이는, 공

공 유전체 데이터베이스 내에 담수 박테리오파지 유전체의 부족으로 인

해 발생하는 현상으로써 바이러스 메타게놈의 결과가 충분히 해석되지 

못하고 있음을 나타냈다. 따라서 이러한 현상을 해소하고 담수 박테리오

파지 군집 이해에 기여하기 위해, 소양호에서 분리 된 배양 균주들을 이

용하여 그들의 박테리오파지를 선별 배양 하였다. 그 결과, 소양호에서 

총 4개의 새로운 박테리오파지가 분리되었다. 그 중 하나인 P19250A 박

테리오파지는 Methylophilaceae 계통의 균주를 감염시키며 겨울철 소양호

에서 가장 높은 빈도를 보이며 나타나는 것을 확인하였다. 이는 겨울철

에 만연하는 P19250A 의 숙주 균주인 LD28 clade 의 계절성을 함께 보이

는 것으로 나타났다. 또한, 소양호와 해외 담수 호수에서 얻은 바이러스 
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메타게놈 데이터를 대상으로 binning 분석을 진행 하였을 때, 소양호의 5

개 샘플을 포함한 해외의 담수 호수에서 P19250A가 가장 높은 빈도로 

나타나는 것을 확인하였다. 담수 호수 내 우점하는 세균 그룹의 하나인, 

Comamonadaceae과 내 두개의 세균을 선정하여 박테리오파지 분리 실험

에 사용하였다. 그 결과, Rhodoferax속에 속하는 세균을 감염하는 박테리

오파지인 P26218을 분리하는데 성공했으며, Curvibacter속의 세균인 

IMCC26059를 감염하는 박테리오파지 P26059A 와 P26059B 를 분리하였

다. 분리 후, 이들 박테리오파지들은 전체 유전체 시퀀싱을 통해 유전체

를 얻었으며 이는 같은 지역에서 준비한 바이러스 메타게놈과 비교하여 

이들의 유전체 풍부도를 확인할 수 있었다. 그러므로 신종 박테리오파지

의 분리와 그들의 유전체 분석은 담수 바이러스 메타게놈 분석에 필요한 

필수적인 자원임을 보여주었다. 내륙 담수 환경 중 하나인 강에서의 박

테리오파지 분포를 확인하기 위해, 한국의 가장 북단에 위치한 한강에서 

6개의 지점을 선정 후 표층수 시료를 채취하여 바이러스 메타게놈 연구

를 진행하였다. 여섯 개의 시료의 전체 유전자 서열 유사성을 비교하였

을 때, 모든 시료는 모두 낮은 비 유사성을 보였다. 또한 바이러스의 계

통학적 분류를 통한 분석 결과, 바이러스 속의 분포는 강의 흐름에 따른 

유의한 변화를 가지지 않았다. 이는 약 180 km 에 걸쳐 흐르는 한강은 

안정적인 바이러스 및 박테리오파지 개체군 분포를 가지고 있음을 시사

하였다. 또한 바이러스 메타게놈에서 얻은 바이러스 contig 내에서 박테

리오파지에 의하 운반되는 보조 대사 유전자의 하나인 항생제 내성 유전

자의 분포를 관찰하였다. 그 결과, 총 15개의 바이러스 contig는 활성 항

생제 내성 유전자를 보유하고 있는 것으로 나타났으며, 이는 파지 감염 

시, 이들 유전자가 다음 숙주 세균 세포로 옮겨져 항생제 내성 균주의 
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발생으로 이어질 수 있음을 시사하였다. 따라서 내륙 담수에서 서식하는 

박테리오파지가 세균의 유전자 이동에 기여하는 중요한 매개체임을 확인

하였다. 본 연구는 이와 같이, 생태계에서 가장 작은 개체인 박테리오파

지의 신종 발견과 메타게놈 분석을 통해 국내 담수 환경에 서식하는 박

테리오파지의 분포도와 생태학적 역할을 확인하였으며, 나아가 해외 담

수 호수의 박테리오파지 군집 분석에도 기여하였다.  

주요어 : 박테리오파지, dsDNA 바이러스, 호수, 담수 지표수, 바이러스 

메타게놈, 신종 박테리오파지, 전체 게놈 시퀀싱, 항생제 내성 유전자 
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