

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

�¾���� �î�É���_�ß�Ô

Identifying Semantically Similar Questions

in Social Q&A Communities

3â3² <�9®9§%K A:-ú%�EF8&3r

9v3�G² <�-Ž ?ê?ò8& �VG² 8F�Â

2018#š 29*

�í�I�;���é �;���R

�¾�����Ò �¾���� �´�Ð

�� �" �6

Identifying Semantically Similar Questions

in Social Q&A Communities

<�&��¦4n .k <� 4n

9Ê #Ò-Ž9š ��8WG ̄ 3s3�G¯9Z#Ò-Ž9’*² :r?òG¾

2017#š 129*

3r9�%VG¯�¦ %VG¯9&

��8WG¯�R ��8W:k/J :Z�K

 – .ê 4n

 –.ê4n 9® 3s3�G¯9Z#Ò-Ž9š 9Î;VG¾

2017#š 129*

9Z 9& 9û (9Î)

/ Ö 9 Z 9 &9 û (9Î)

9Z 9& (9Î)

Abstract

Identifying Semantically Similar Questions

in Social Q&A Communities

Buomsoo Kim

Management Information System

The Graduate School of Business, Seoul National University

SQA communities are an impressive instance of knowledge sharing over the Web.

A tremendous number of questions are asked and answered every minute in

prospering SQA communities such as Yahoo! Answers, Stack Exchange network,

and Quora. However, it could be observed that a large proportion of the new

questions are redundant, with a semantically similar counterpart existing in the

database. There exist few thorny challenges regarding identifying semantically

equivalent questions in SQA communities: (1) semantically similar questions could

be rather dissimilar in terms of syntax and lexicon, (2) obtaining reliable training

and test datasets is troublesome, (3) the influence of domain- or context-specific

languages, and (4) severe class imbalance problem could seriously hamper the

identification process. We suggest a data-driven framework that could overcome

such challenges and complement existing models. Our work takes multi-

disciplinary approach in building the framework, borrowing concepts and

techniques from machine learning, natural language processing (NLP), deep

learning, information retrieval, and etc. Our final model utilizing Word2Vec and

convolutional neural networks for language modeling shows desirable level of

performance, test accuracy of 0.975478 and average precision of 0.983501.

Keywords: Q&A, online communities, collective intelligence, wisdom of crowds,

language modeling, word2vec, convolutional neural networks, deep learning

Student Number: 2016-20545

Table of Contents

1. Introduction --- 1

2. Related Works -- 6

3. Methodology --- 17

3.1 Data Collection & Preprocessing ------------------------------- 18

3.2 Language Modeling -- 22

3.3 Identification (Classification) ----------------------------------- 25

3.4 Model Selection & Evaluation ---------------------------------- 29

4. Results -- 32

4.1 Initial Attempt -- 32

4.2 Revised Approach --- 35

5. Conclusion -- 36

References -- 40

Appendix 1. Visualization of Model ------------------------------------ 47

Appendix 2. Grid Search Results -- 48

Appendix 3. Random Search Results ----------------------------------- 51

1

CHAPTER 1 Introduction

The advancement of Web 2.0 has enabled extensive knowledge sharing activities

among users. Especially, Social Question & Answer (SQA) communities are an

impressive case of collective intelligence in which participants interact with each

other vigorously. As the collective intelligence of SQA communities matures and

diversifies, more users are relying on SQA services, rather than depending solely

on search engines to fulfill their information needs (John et al 2016). Currently,

there are many thriving SQA communities such as Yahoo! Answers, Stack

Exchange network, and Quora. In such communities, a myriad of questions are

asked every minute and many users endeavor to provide helpful answers. . Figure 1

exhibits one of the questions in Stack Overflow, the biggest SQA community of the

Stack Exchange network. User interfaces of other SQA communities are largely

similar to that of Figure 1.

Figure 1. Question in Stack Overflow community

2

As of April 2017, over 8,000 questions are asked in the Stack Overflow

community on a daily basis (Stack Exchange 2017). The sheer number of new

questions could imply that the community is blooming. However, it might also

imply that some questions are asked without prior search efforts, creating

redundant questions. For instance, if one searches “Python cosine similarity” at the

Stack Overflow website, a number of semantically equivalent questions could be

observed (Table 1).

Table 1. Partial query result of "Python cosine similarity" in Stack Overflow
SQA community

Title Date

Cosine Similarity [Python] Mar 28, 2014

How to calculate cosine similarity given 2 sentence Strings? -

Python
Mar 2, 2013

Computing cosine similarity using Python Feb 1, 2017

Calculate cosine similarity of two matrices - Python Feb 24, 2014

Vectorized cosine similarity calculation in Python Dec 3, 2015

Finding cosine similarity between 2 numbered datasets using

python
Aug 17, 2014

Such questions not only hamper searching attempts, but also lead to the

dispersion of group intelligence. Surowiecki (2005) has contended that one of the

four preconditions for “the wisdom of crowds” is “aggregation,” which assures the

existence of certain mechanisms that can alter individual judgments into a

3

collective one. Thus, detecting semantically similar questions and “aggregating”

their corresponding contents is a critical issue in enhancing collective intelligence

of a SQA community.

Nevertheless, identifying similar questions remains a challenging problem

despite constant research efforts (John et al 2016; Zhou et al 2015). One of the

major challenges is related to the “lexico-syntactic gap,” which makes semantically

equivalent questions syntactically and lexically unlike (Das et al 2016). Recently, a

few related works have attempted to resolve this problem with neural network

language models, Word2Vec (Chahuara et al 2016; Zhou et al 2015). Word2Vec,

proposed by Mikolov et al (2013a), is an efficient way to estimate word

representations in a finite vector space. Moving slightly forward, we have

implemented a Doc2Vec model, an extension of Word2Vec, proposed by Le and

Mikolov (2014). Besides, we have created a prototypical model based on

convolutional neural networks (CNN). According to Kim (2014), CNNs with word

embedding are useful model structure for classifying sentences.

Another challenge relates to labeling training and test data. Even though it is

relatively easy to obtain SQA-related datasets, there still exist difficulties in

labeling them, i.e., classifying question pairs into similar and dissimilar categories.

Literature review has revealed that most previous studies have resorted to a small

number of human annotators. However, it is suggested that this is a highly costly

procedure requiring considerable amount of time and human effort. Furthermore,

due to fatigue from a lengthy process and the lack of domain-specific knowledge,

human judges are prone to make cognitive errors (Lorist et al 2005). Thus, we rely

on collective intelligence of SQA community users rather than human annotators.

4

Finally, domain-specific languages make the identification of the meaning of

questions highly complicated and demanding. In contemporary English, there exist

a number of words that convey different meanings depending on the context and

domain. Furthermore, sometimes people call the same concept with different

wordings. For instance, according to Merriam Webster’s, the word derivative has a

distinct meaning in each area of linguistics, mathematics, chemistry, and finance –

for details, refer to Table 2 (Derivative 2017). Hence, we propose a generic

framework that can be used to match similar questions and merge them in any pre-

specified domain level.

Table 2. Diverse meanings of the word "derivative"

Domain Meaning

General Something derived

Linguistics
A word formed from another word or base: a word formed by

derivation

Mathematics

The limit of the ratio of the change in a function to the

corresponding change in its independent variable as the latter

change approaches zero

Chemistry

A chemical substance related structurally to another substance and

theoretically derivable from it

A substance that can be made from another substance

Finance
A contract or security that derives its value from that of an

underlying asset (such as another security) or from the value of a

5

rate (as of interest or currency exchange) or index of asset value

(such as a stock index)

Empirical evaluation results with real-world datasets from Stack Exchange

SQA communities have revealed that our models demonstrate a practical level of

performance in finding semantically equivalent questions, irrespective of the

domain of interest. Our best model (model 5B) shows test accuracy of 0.925,

precision of 0.95778, recall of 0.889366, and F-score of 0.922274.

Furthermore, it is confirmed that CNN-based text classification model

proposed in Kim (2014) is effective even with cross-domain identifications and

under severe class imbalance problems. By building a global model using CNNs,

we were able to boost the performance. Whereas the global model based on

Doc2Vec resulted in classification accuracy of merely 0.507, our CNN based deep

learning model was able to achieve over 0.97 of classification accuracy and over

0.98 of average precision under class balance circumstances.

The rest of the article is organized as follows. In next section, we review

related works. In the following section, our overall framework and methodologies

are explained. Then, the results and findings are presented. In the final section, we

conclude our study by summarizing the contributions and limitations of our study.

6

CHAPTER 2 Related Works

There exist a number of prior attempts to identify duplicate questions in SQA

communities. Translation models with basic similarity measures were widely

employed at the outset. Jeon et al (2005) have set up a foundation for the

translation model, which was initially proposed to support machine translation, for

instance, from French to English. In such models, the similarity between different

questions is equivalent to the probability of translating one question into another

one. In the paper, “the IBM model 1,” which does not require prior linguistic

knowledge is adopted for its simplicity (Brown et al 1993). In the experiment, as

the source and target languages are the same (Korean), word translation

probabilities can be interpreted as “semantic similarities of words.”

The translation probability (i.e., semantic similarity) from word s (source

word) to word t (target word) is:

𝑃𝑃(𝑡𝑡|𝑠𝑠) = 𝜆𝜆𝑠𝑠−1�𝑐𝑐�𝑡𝑡�𝑠𝑠; 𝐽𝐽𝑖𝑖�
𝑁𝑁

𝑖𝑖=1

in which 𝜆𝜆𝑠𝑠 is a normalization factor that makes the sum of probabilities equal to

1, N refers to the number of training instances, and 𝐽𝐽𝑖𝑖 is the ith pair in the training

set. In each 𝐽𝐽𝑖𝑖, there are two sentences – a source sentence and a target sentence.

So, what the model calculates is the semantic proximity of words in source

sentence and words in target sentence in each data instance. Finally,

𝑐𝑐�𝑡𝑡�𝑠𝑠; 𝐽𝐽𝑖𝑖� =
𝑃𝑃(𝑡𝑡|𝑠𝑠)

𝑃𝑃(𝑡𝑡|𝑠𝑠1) + ⋯+ 𝑃𝑃(𝑡𝑡|𝑠𝑠𝑛𝑛)
#(𝑡𝑡, 𝐽𝐽𝑖𝑖)#(𝑠𝑠, 𝐽𝐽𝑖𝑖)

7

where {𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛} are words in the source sentence in 𝐽𝐽𝑖𝑖 and #(t, 𝐽𝐽𝑖𝑖) is the

number of occurrence of the word t in 𝐽𝐽𝑖𝑖. Table 3 is a partial result of such

computations; the first row (header) demonstrates the source words and below

rows should semantically similar words to them, ranked based on similarity (Jeon

et al 2015). Their model shows comparable result to those of other approaches -

mean average precision of 0.314.

Table 3. Similar Words to Keywords

Word
Rank music intel excel font watch

1 music pentium excel font watch

2 file 4 korean korean time

3 tag celeron function 97 background

4 sound amd novice add start

5 background intel cell download date

 Jeon et al (2005) have obtained dataset from Naver KnowledgeIN archive,

which is the biggest SQA community service in South Korea. In generating

training samples, they see the corresponding answers to questions. Their bold

assumption is that if answers to questions are similar, the questions should be

semantically similar as well. However, this could be somewhat problematic since

8

an answerer might have interpreted a question erroneously and gave an answer

unrelated to the question. Furthermore, if there are multiple answers to a single

question, a measure to deal with conflict between answers should be addressed.

 Xue et al (2008) adopted the basic algorithm of translation model used in

Jeon et al (2006), IBM Translation Model 1. However, they extend the approach by

taking into account both question part and answer part. In other words, word to

word translation probabilities between both question-answer pairs, 𝑃𝑃(𝑄𝑄|𝐴𝐴), and

answer-question pairs, 𝑃𝑃(𝐴𝐴|𝑄𝑄), are utilized. Both probabilities are computed and

combined to generated pooled probabilities. Table 4 is the partial result of querying

similar words using both probability measures.

Table 4. Partial Result of Querying Similar Words

source

word
everest xp

probability

used
𝑃𝑃(𝐴𝐴|𝑄𝑄) 𝑃𝑃(𝑄𝑄|𝐴𝐴) Pooled 𝑃𝑃(𝐴𝐴|𝑄𝑄) 𝑃𝑃(𝑄𝑄|𝐴𝐴) Pooled

1 everest mountain everest xp xp xp

2 29,035 tallest mountain drive window window

3 ft everest tallest install computer install

4 mount highest 29,035 click system drive

5 8,850 mt highest system pc computer

Lee et al (2008) have proposed improved translation model, namely

9

“compact translation model,” from IBM model 1 used in Jeon et al (2005). One of

the problems of IBM translation model 1 is that it solely depends on word co-

occurrence statistics between source and target sentences. Hence, as it cannot take

into account the effect of “context,” unimportant words such as stopwords are

comprised in interpretation, creating a great noise. In compact translation model,

two different term weighting strategies, Term Frequency-Inverse Document

Frequency (TF-IDF) and TextRank schemes are employed.

TF-IDF is a classical method to weight terms based on their relative status

in documents (Salton and Buckley 1988). To calculate the weight of word w in

document D, two measures, term frequency (tf) and inverse document frequency

(idf) are employed.

𝑡𝑡𝑡𝑡𝑤𝑤,𝐷𝐷 =
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑤𝑤,𝐷𝐷

|𝐷𝐷|

𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤 = log (
|𝐶𝐶|
𝑑𝑑𝑓𝑓𝑤𝑤

)

where 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑤𝑤,𝐷𝐷 is the number of occurrences of w in D (i.e., how many

times w occurs in D). |D| and |C| refers to the size of document D (i.e., how many

unique words are comprised in D) and the size of document collection (i.e., how

many documents are there, in total). Lastly, 𝑑𝑑𝑑𝑑𝑤𝑤 is the number of documents in

which w occurs.

TF-IDF weight of word w in D (𝑡𝑡𝑡𝑡 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤,𝐷𝐷) is simply a product of

𝑡𝑡𝑡𝑡𝑤𝑤,𝐷𝐷 and 𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤. Simply put, words with high TF-IDF weights are regarded as

important and low weights less important.

10

𝑡𝑡𝑡𝑡 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤,𝐷𝐷 = 𝑡𝑡𝑡𝑡𝑤𝑤,𝐷𝐷 ∗ 𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤

TextRank is an adoption of Google’s PageRank algorithm – a graph-based

ranking model for keyword generation. Words in entire corpora constitute vertices

in graph and the number of co-occurrence between each word pair become the

weight of the edge. At the outset, the scores of vertices are initialized as 1, and the

PageRank algorithm is applied until convergence. Major assumption of TextRank

algorithm is that a word with importance co-occurs frequently with other words

with importance in corpora. Hence, under such assumption, it could be said that

words with high TextRank score has crucial importance.

Xue et al (2008) and Lee et al (2008) performed experiment using

external archive of SQA communities, respectively Wondir and Yahoo! Answers.

Both models in Xue et al (2008) and Lee et al (2008) seem to outperform Jeon et al

(2005)’s naïve translation model.

As mentioned above, considering all words in a question with equal

importance would be inefficient and ineffective; it would be desirable to attend to

certain class of words that have distinctive status in corpora. With recent

developments in NLP and machine learning, various methodologies and models

were suggested to perform such functionality. Zhang et al (2014), Das et al (2015),

and Chahuara et al (2016) have taken topic modeling approach.

Topic models attempt to find certain themes, i.e., “ topics,” from a text

corpus by inspecting hidden structures in the corpus. Latent Dirichlet Allocation

(LDA), one of the simplest and most popular topic modeling methods, is a

generative model that infers probability about each observation in training data

11

(Blei 2012).

Intuitively, not only different words are “highlighted” in different

documents, but also different classes of words exist in a single document as well.

For instance, words about data analysis, such as “computer” and “prediction” and

words about evolutionary biology, such as “ life” and “organism” can co-exist in an

article. Here, data analysis and evolutionary biology can be regarded as “ topics” of

the article. A topic is formally defined as “a distribution over a fixed vocabulary.”

The combination of topics in a corpus leads to guess the overall characteristic of a

document – in this case, scientific one. In short, LDA is a language model that

attempts to capture and formalize such intuition (Blei 2012).

LDA is a generative probabilistic model that regards data as arising from a

generative process with hidden variables. Further, joint probability distribution

over the observed and hidden random variables is defined. Mathematically defined,

the generative process can be represented as below:

 𝑝𝑝(𝛽𝛽1:𝐾𝐾 ,𝜃𝜃1:𝐷𝐷, 𝑧𝑧1:𝐷𝐷,𝑤𝑤1:𝐷𝐷)

= �𝑝𝑝(𝛽𝛽𝑖𝑖)
𝐾𝐾

𝑖𝑖=1

�𝑝𝑝(𝜃𝜃𝑑𝑑)
𝐷𝐷

𝑑𝑑=1

 (�𝑝𝑝(𝑧𝑧𝑑𝑑,𝑛𝑛|𝜃𝜃𝑑𝑑

𝑁𝑁

𝑛𝑛=1

)𝑝𝑝(𝑤𝑤𝑑𝑑,𝑛𝑛|𝛽𝛽1:𝐾𝐾 , 𝑧𝑧𝑑𝑑,𝑛𝑛))

where 𝛽𝛽1:𝐾𝐾 are topics (each 𝛽𝛽𝑘𝑘 distribution over the vocabulary) and topic

distribution for the dth document is 𝜃𝜃𝑑𝑑 (𝜃𝜃𝑑𝑑,𝑘𝑘 topic distribution for topic k in

document d). 𝑧𝑧𝑑𝑑 is the topic assignments for the dth document (𝑧𝑧𝑑𝑑,𝑛𝑛 topic

assignment for the nth word in dth document) and 𝑤𝑤𝑑𝑑 is the observed words for

document d (𝑤𝑤𝑑𝑑,𝑛𝑛 the nth word in dth document). From such distribution, hidden

topic structure of a document is inferred.

12

 Zhang et al (2014) have attempted to induce semantic similarity between

query and question by taking topic modeling approach. Based on features extracted

from topic models, clustering is performed and similar questions are filtered.

Approaches taken by Das et al (2015) and Chahuara et al (2016) are in similar vein.

Das et al (2015) have proposed Deep Structured Topic Model (DSTM), a novel

process that comprises two steps – retrieving similar questions in latent topic vector

space and re-ranking them with a deep layered semantic model. Chahuara et al

(2016) have combined topic modeling and multinomial regression. On top of the

topic model, multinomial nonlinear regression is performed to retrieve and rank

similar questions. The instantiation is evaluated on Yahoo! Answers dataset, relying

on human annotators. Their results are reported to perform better than benchmark

models employing translation models or basic ranking algorithms.

Finally, Zhou et al (2015) and Wang and Poupart (2016) have proposed

approaches based on neural network language models, Word2Vec. Such models

convert each word into a vector, enabling arithmetic operations and topological

analysis among word vectors. Such vector space models not only reduce the

dimensionality of input space dramatically, but also enable algebraic operations

between word vectors based on their semantic and syntactic similarities. For

instance, relationships such as vector(“King”) – vector(“Man”) +

vector(“Woman”) = vector(“Queen”), vector(“Madrid”) – vector(“Spain”) +

vector(“France”) = vector(“Paris”), and vector(“apple”) – vector(“apples”) =

vector(“car”) – vector(“apple”) can be deduced (Mikolov et al 2013a, Mikolov et

al 2013b).

There are two variations of Word2Vec model that are commonly used -

13

the Continuous Skip-gram (CS) and the Continuous Bag-Of-Words (CBOW). The

CS model attempts to predict the distribution of neighboring words (i.e., window)

using center word, while the CBOW model attempts to predict a center word using

neighboring words (Mikolov et al 2013a, Mikolov et al 2013b). However, in

practice, both models show no significant difference in terms of performance.

Figure 2. Architectures of CBOW and CS models

Both models resemble a shallow neural network with a single hidden layer

(projection layer). Weights of hidden layer are randomly initialized and

continuously updated using back propagation and such weights are used to infer

vector representation of each word in corpus (Mikolov et al 2013a, Mikolov et al

2013b). Figure 2 is an outline of model architectures of CBOW and CS models

(Adapted from Mikolov et al 2013a).

Zhou et al (2015) have created a CS model with metadata of category

14

information, called M-NET. Simply put, on top of word embedding model,

category information of each word is appended to help learning. For instance, in a

question “What are the security issues with java?” under the category “Computers

& Internet → Security,” the corresponding category of word java also becomes

“Computers & Internet → Security.” Then, words that belong to similar category

would have similar vector representations in embedding space. For instance, words

Java and Python are likely to be more proximate than words Java and French in

vector space.

Wang and Poupart (2016) also adopted the CS model, but with different

approach in terms of representing questions as vectors. After they trained

Word2Vec model, they have performed TF-IDF computation to weight-average

word vectors. Most questions in corpus have different number of words that have

finite-dimensional vector representation. So one simple and intuitive way to get

vector representation for each question would be averaging all word vectors

element-wise. However, one problem with such approach would be encompassing

too much information; as mentioned above, unimportant words would be counted

as same as important words. Hence, a fix to this problem that Wang and Poupart

(2016) adopted was to generate weights (i.e., relative importance) of words in each

question and weight-average them to take into account more information.

As generating and classifying training and test datasets are an important

issue, we also surveyed labeling methods. Most prior studies relied on a small

number of human annotators deciding whether two distinct questions are

semantically equivalent (Song et al 2007, Lee et al 2008, Xue et al 2008, Wang et

15

al 2009, Hao and Agichtein 2012, Zhang et al 2014, Das et al 2015, Zhou et al

2015, John et al 2016, Chahuara et al 2016). However, this point might constitute

limitations for such studies. Manually labeling data is immensely time-consuming

and laborious. Thus, it is highly costly and it might lead to human error arising

from fatigue and boredom of menial work, leaving some room for improvement

(Lorist et al 2005). Table 5 is the summary of related works.

Table 5. Summary of Related Works

Author(s) Methodology Dataset Labeling

Jeon et al (2005) Translation model

Naver

KnowledgeIN

archive

Ranking algorithm

(LM-HRANK

measure)

Song et al. (2007)
Similarity

measures

FAQ system

archive
Human Annotator

Achananuparp et

al. (2008)

Similarity

measures

Sample corpus

(TREC-9)
Unspecified

Lee et al (2008) Translation model
Yahoo! Answers

Archive
Human Annotator

Xue et al (2008) Translation model

Wondir archive,

Sample corpus

(TREC-9)

Human Annotator

Wang et al (2009)
Syntactic tree

matching

Yahoo! Answers

Archive
Human Annotator

Hao and Agichtein Equivalent pattern Yahoo! Answers Human Annotator

16

(2012) learning Archive

Shtok et al (2012)

Query

performance

prediction

Yahoo! Answers

Archive

Crowdsourcing

(Amazon Mechanical

Turk)

Zhang et al (2014) Topic Modeling

Yahoo! Answers

archive,

Sample corpus,

Twitter dataset

Human Annotator

Das et al (2015) Topic Modeling
Yahoo! Answers

Archive

Ranking algorithm

(BM25),

Human judge

Han et al (2015)
Rule-based

approach

Sample corpus

(ICHI 2015)
Unspecified

Zhou et al (2015)
Neural network

language model

Yahoo! Answers,

Baidu Zhidao

Archive

Human Annotator

John et al (2016)
Graph-based

cluster analysis

Yahoo! Answers

Archive
Human Annotator

Chahuara et al

(2016)
Topic modeling

Yahoo! Answers,

Stack Exchange

Archive

Human Annotator

Hoogeveen et al

(2016)
Machine learning Sample corpus Unspecified

Wang and Poupart

(2016)

Neural network

language model
Sample corpus Unspecified

17

CHAPTER 3 Methodology

In order to create a classification model, we employ techniques from diverse

disciplines, including natural language processing, machine learning, and

information retrieval. Our proposed methodology comprises four steps: (1) Data

collection and preprocessing, (2) Language Modeling, (3) Identification

(classification), and (4) Evaluation. Our overall framework is summarized in Table

6 and Figure 3 is the bird eye’s view of our model. Visualization of our model

using Keras library in Python is provided in Appendix 1.

Table 6. Overall Framework

Steps Disciplines referred to Techniques employed

Data Preprocessing
∙ Natural Language

Processing

∙ Tokenization

∙ Lemmatization

∙ Stopwords removal

Language Modeling
∙ Neural language

modeling

∙ Word2Vec

∙ Doc2Vec

Identification

(Classification)

∙ Machine learning

∙ Deep learning

∙ Logistic regression

classifier

∙ Deep learning

(convolutional neural

networks)

Model Selection

& Evaluation

∙ Information retrieval

∙ Machine learning

∙ Evaluation metrics

(accuracy/precision/recall/F-

18

score/average precision)

Figure 3. Bird Eye's View of Final Model (CNN)

3.1 Data Collection & Preprocessing

As briefly mentioned above, obtaining a reliable dataset for training is a nontrivial

issue in identifying similar questions in SQA community archives. In particular, it

is difficult to label the question pairs, classifying them as a match or non-match.

We took an alternative approach to obtaining and labeling a dataset: to rely on the

collective intelligence of active SQA communities. Some of the questions in Stack

Exchange communities are marked as “duplicate.” If a questions gains five votes

from moderators or users with a certain level of reputation, the question is closed

as duplicate and the title is appended with “[Duplicate]” mark. Figure 4 is one of

duplicate marked questions in Stack Overflow community.

19

Figure 4. Example of Duplicate Question

We have chosen eight varied, active communities: Ask Ubuntu, Arqade,

Geographic Information Systems, Home Improvement, Super User, Server Fault,

TeX-LaTeX, and, Unix & Linux. Ask Ubuntu (https://askubuntu.com/) is a SQA

platform for Ubuntu users and developers. It is one of the oldest (7 years and 5

months) and largest (280,000 questions) community in the Stack Exchange

network and about 130 questions are asked daily on average. Arqade

(https://gaming.stackexchange.com/) is a place for passionate video gamers;

https://askubuntu.com/
https://gaming.stackexchange.com/

20

gamers enjoying video games via PC, Playstation, mobile, etc. communicate and

socialize in the Arqade community. Geographic Information Systems

(https://gis.stackexchange.com/) is a site for devoted cartographers, geographers,

and other related professionals. Although it is relatively small in number of users

(80,000), it is highly active in light of number of questions (38 daily, 92,000 total)

and answers (109,000 total). Home Improvement (https://diy.stackexchange.com/)

is a site for contractors and serious DIYers (Do-It-Yourself). Many users who are

wanting to renovate their places by themselves exchange ideas and thoughts at the

Home Improvement community.

Super User (https://superuser.com/) and Server Fault

(https://serverfault.com/) are also two of the oldest (8 years and 5 months and 8

years and 8 months, respectively) and largest (366,000 questions and 254,000

questions, respectively) communities. Lastly, TeX-LaTeX (https://tex.

stackexchange.com/) and Unix & Linux (https://unix.stackexchange. com/) are

sites specialized for Latex users and Unix/Linux users respectively. There are also

great number of committed users to TeX-LaTeX and Unix & Linux communities.

A brief glance at the data revealed that there are a number of duplicate

question pairs in Stack Exchange communities – 1,263,520 questions in total and

14,713 questions in total. Thus, we conjectured that it would be sufficient to

generate enough training data and test data to learn and evaluate the model. Basic

statistics of eight communities of interest are summarized in Table 7.

https://gis.stackexchange.com/
https://diy.stackexchange.com/
https://superuser.com/
https://serverfault.com/

21

Table 7. Number of Questions and Duplicate Questions for Each Community

Community (Topic) Number of Questions
Number of Duplicate

Questions

Ask Ubuntu 257173 5531

Arqade 75696 1021

Geographic Information
Systems

79194 250

Home Improvement 28973 75

Super User 343033 4398

Server Fault 238764 1320

Tex – Latex 129182 1609

Unix & Linux 111505 509

As our data is in unstructured format, preprocessing is necessary. We have

utilized NLP techniques in order to maximize the performance of the word

embedding model constructed. After converting all the letters to lowercase, we

removed all the stopwords in the text, and tokenized and lemmatized each title and

body corpus. Stopwords are routine words in English that has negligible effect on

the meaning of a text (Perkins 2010). Examples of stopwords include ‘ is’, ‘ at’,

‘any’, ‘ a’, and ‘do’. Tokenization involves breaking down the text into indivisible

parts, i.e., tokens (Bird and Loper 2006). Lemmatization is the process of finding

the canonical form of a word, namely lemma. Usually a set of words share a lemma

(Perkins 2010).

22

Finally, the whole dataset is split into 7 to 3 ratio of training and test

dataset. The training set is cross-validated for model selection and hyperparameter

tuning. Then the final model is trained using the training set and evaluated with test

data.

3.2 Language Modeling

Doc2Vec is a method to retrieve a fixed-dimensional vector representation for each

document. The overall framework is largely similar to that of Word2Vec, but

paragraph matrix (or document matrix) is added in learning process and each

paragraph (document) can be represented in same finite-dimensional space with

words. Figure 5 is an abstracted framework for learning word vectors and Figure 6

is one for learning paragraph vectors (Le and Mikolov 2014).

After preprocessing, we have constructed a Doc2Vec model with the

question corpus and computed similarities between questions for each domain. As

mentioned earlier, we have built domain-specific models to evade the potential

problem of domain-specific vocabularies and jargons.

23

Figure 5. Framework for Learning Word Vectors

Figure 6. Framework for Learning Paragraph Vectors

24

After the Doc2Vec model is generated, we have calculated cosine

similarity measures between questions. As each question has two parts, a body and

a title, we have computed two similarity measures for a question pair. Cosine

similarity between two vectors is simply the cosine of vectors. Cosine similarity of

two vectors A and B (with 𝜃𝜃 an angle between two vectors) can be calculated as

below:

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐴𝐴,𝐵𝐵) = cos(𝜃𝜃) =
𝐴𝐴 ∙ 𝐵𝐵

|𝐴𝐴||𝐵𝐵|
=

∑ 𝐴𝐴𝑖𝑖𝐵𝐵𝑖𝑖𝑖𝑖

�∑ 𝐴𝐴𝑖𝑖2𝑖𝑖 �∑ 𝐵𝐵𝑖𝑖2𝑖𝑖

Where here 𝐴𝐴𝑖𝑖,𝐵𝐵𝑖𝑖 are components of A and B, respectively.

Usually, the title is a one-sentence summary of the question and the body

is a detailed explanation of the question (Figure 7). Thus, one question pair has two

similarity measures, body similarity and title similarity.

Figure 7. Title and Body of Question

25

However, in our revised attempt adopting CNN for Sentence

Classification approach (Kim 2014), we have computed vector representation of

each word in corpus with Word2Vec (Mikolov 2013). And when creating

representation for each sentence (i.e., question), we have concatenated vector

representations for words in a sentence, converting it into a matrix. More details

are covered in Section 3.3 for the revised approach.

3.3 Identification (Classification)

As we take the machine learning approach in developing the framework, the

identification process can be deemed as a classification problem. Thus, we want to

classify each question pair as similar or non-similar.

For each Doc2Vec model corresponding to a specific domain of interest,

we have created a predictive model based on the logistic regression algorithm, one

of the simplest, yet powerful, classification algorithms (Shmueli et al 2016). We

have tried to avoid overfitting by not only reducing the number of parameters by

employing a simple algorithm, but also restricting the number of features used. We

have initially attempted to classify question pairs with only the title similarity

feature, which is computationally cheaper. However, we were able to obtain better

results when considering both features.

It should be noted that logistic classification model based on Doc2Vec

similarity measures fail to achieve a reliable performance in a global context; it

ends up in correctly classifying only half of the question pairs. In other words, it

fails to grasp the effects of differing domain-specific languages and topics. Hence,

26

we build a global model using CNNs, whose prototype is proposed in Kim (2014).

As explained in above, data instances with “match” labels were created by

resorting to the collective intelligence of each community. We artificially created

data with ‘non-match’ labels by randomly picking question pairs in the question

dataset without duplicates. To evade the class imbalance problem, we have set the

portion of each class equally. Thus, the half of the dataset for each domain is

labeled ‘1’ (i.e., similar), and the rest is labeled ‘0’ (i.e., not similar).

There are some reasons why we have employed CNN structure. To start

with, CNN is comparatively cheaper in terms of computation resources than

Recurrent Neural Networks (RNN) or Multi-Layer Perceptron (MLP) structures.

Characteristics of CNNs such as single feature extraction from convolution

operations, dimensionality reduction from pooling operations, weight sharing

significantly reduce computational efforts.

Furthermore, in light of language modeling context, CNNs can extract

information regarding “context” of sentence with sliding filters and local

connectivity (Young et al 2017). In other words, CNNs effectively capture the local

context of each word occurrence in sentence. Consider trivial case of interpreting a

sentence “I had two hamburgers at McDonald’s for lunch today, so I do not want to

eat at Wendy’s now.” At the beginning of the sentence, words “hamburgers” and

“McDonald’s” imply that the speaker is going to talk about something related to

fast foods, in this case “Wendy’s.” And CNN structure can take into account this

contextual information when interpreting the sentence by taking advantage of

sliding filters, which function as “windows.” Hence, CNNs are employed in a

27

number of prior studies in NLP domain and applications of such (Kalchbrenner et

al 2014; Yih et al 2014; Ruder et al 2016; Poria et al 2016).

We have extended and ameliorated the CNN structure for sentence

classification proposed in Kim 2014. To start with, we perform square convolution

and pooling operations, rather than rectangular ones. In NLP domain, rectangular

convolution/pooling operations, or one-dimensional convolution/pooling

operations, are commonly performed (Figure 8). However, as empirical results

show no big difference in terms of accuracy, we have performed square

convolution & pooling operation, which is common in image recognition field

(LeCun et al 1998; Krizhevsky et al 2012).

Figure 8. Rectangular and Square Convolution Operations

To effectively manage training process, we have adopted Scaled

Exponential Linear Units (SELU) activation function and Batch Normalization

(BN) technique. SELU is one of the most recent developments in research domain

28

regarding activation functions. As outputs of the function tend to converge to

distribution of zero mean and unit variance, it is claimed to be effective in handling

noise and perturbations (Klaumbauer et al 2017).

𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙(𝑥𝑥) = 𝜆𝜆 �
𝑥𝑥 (𝑖𝑖𝑖𝑖 𝑥𝑥 > 0)

𝛼𝛼𝑒𝑒𝑥𝑥 − 𝛼𝛼 (𝑖𝑖𝑖𝑖 𝑥𝑥 ≤ 0)

BN, which is a normalization scheme for each training batch, is an effective

method for model training. With BN, it is reported that higher learning rates are

permissible and weight initialization schemes can be ignored. Further, it also can

prevent overfitting, acting as a regularizer (Ioffe and Szegedy 2015).

 Finally, as the CNN structure in Kim 2014 is a sentence classification

model, we convert it into sentence-pair classification model. Say that we have

sentences of maximum length l (i.e., l words for each sentence, at maximum) and

embedding dimension of d. Then we get 2l X d matrix for each sentence pair. If

one of sentences has smaller length than l, remaining elements are zero-padded to

preserve the dimensionality. Conversely, if we have a sentence with number of

words bigger than l, such sentence is pre-truncated to fit in.

 Created embedding weights, i.e., vector representations, are not updated

by back-propagation; they are kept static during the training process. This is similar

to CNN-static model implementation in the original paper (Kim 2014).

 Let assume that we have two questions, “Merge two arrays” and “Array

merging in NumPy” and set l = 4, d = 100. Resulting matrix for such question pair

would be 8 X 100 matrix, as in Figure 9. Note that the third row of matrix is all-

zero, to preserve the dimensionality of data instances. If we have another question

29

“How can I merge arrays in Python,” such question would be truncated to “merge

arrays in Python” to fit into 8 X 100 matrix.

Figure 9. Example of Sentence Pair Representation

3.4 Model Selection & Evaluation

For each Doc2Vec model corresponding to a specific domain of interest, we have

created a predictive model based on the logistic regression algorithm, one of the

simplest classification algorithms (Shmueli et al 2016). We have tried to avoid

overfitting by not only reducing the number of parameters by employing a simple

algorithm, but also restricting the number of features used (Hawkins 2004).

Features used as an input for the predictive model are similarity measures

calculated in Section 4.1, body similarity and title similarity. In fact, we have

initially attempted to classify question pairs with only the title similarity feature,

which is computationally cheaper. However, we were able to obtain better results

by considering both features. Detailed results are shown in Section 4. As a result,

30

we have created 16 classification models, summarized in Table 8.

Table 8. Classification Models of Initial Attempt

Model Community (Domain)
Features Used

Title
Similarity

Body
Similarity

1A
Ask Ubuntu

O

1B O O

2A
Arqade

O

2B O O

3A Geographic Information
Systems

O

3B O O

4A
Home Improvement

O

4B O O

5A
Super User

O

5B O O

6A
Server Fault

O

6B O O

7A
TeX-LaTeX

O

7B O O

8A
Unix & Linux

O

8B O O

The classification result is cross-validated to assess the generalizability of

the algorithm. k-fold cross-validation is a popular and reliable model selection tool

to assess the accuracy and generalizability of a classifier (Kohavi 1995;

31

Refaeilzadeh 2009). We have conducted a five-fold cross-validation to gauge the

overall performance of each classifier.

Evaluation of a design artifact is a critical part of design science research

(Hevner et al 2004). To conduct evaluation, we have calculated two types of error

for L: type-1 and type-2 errors. As mentioned, recall and precision are metrics that

are often used to gauge type-1 error (false positive) and type-2 error (false negative)

in classification problems. Recall is the proportion of real positive cases that are

predicted positive. Precision is the proportion of predicted positive cases that are

actual positives among total predicted positive cases. F-score, the harmonic mean

of precision and recall, is calculated. In addition, average precision, which is the

mean of precision measures, is calculated when evaluating the revised model

(Shmueli et al 2016).

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝐹𝐹 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
2 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

For each domain, we have randomly partitioned the initial dataset into two

disjoint sets, a training set and a test set. The ratio of training set to test set is 7 to 3.

First, a predictive model using logistic regression algorithm is generated using the

training set. Then, the results are validated by metrics mentioned above, which are

calculated using the test set. The process is iterated for 30 times and metrics are

averaged to verify the generalizability of our model.

32

When evaluating the CNN model and selecting appropriate model, grid

search and random search are employed. Grid search is trying all possible

combinations in the hyperparameter “grid,” which is one of the most common

methods for hyperparameter tuning. In contrast, random search evaluates models

with randomly initialized parameters in pre-specified distributions. It is reported

that random search is more effective for finding an appropriate model with a

limited computation resource (Bergstra and Bengio 2012).

We perform both random search and grid search, and compare the results

in various scenarios. First scenarios is identical to the original one – class ratio of 0

(non-match) to 1 (match) is set to 1:1. Second and third scenarios are planned to

take into account the skewedness of real-world dataset; in second, ration is 10 to 1

and in third, 100 to 1.

CHAPTER 4 Results

4.1 Initial Attempt

In this section, we display our analysis results. Five-fold cross-validation results

are summarized in Table 9. Performances of the models 1A to 8B are compared.

The models differ in the domain of interest, i.e., the community, and the features

used for the classification process.

33

Table 9. Cross-validation Results

Model Accuracy Standard Deviation

1A 0.845761 0.029341

1B 0.897675 0.027395

2A 0.853553 0.025580

2B 0.910813 0.021823

3A 0.837868 0.052829

3B 0.904867 0.057153

4A 0.892444 0.087446

4B 0.919359 0.087210

5A 0.880266 0.014106

5B 0.926470 0.015834

6A 0.839293 0.063470

6B 0.902929 0.070452

7A 0.804261 0.032912

7B 0.855272 0.026580

8A 0.820760 0.036140

8B 0.879022 0.048658

 Cross-validation results have revealed that our models show a practical

level of performance over all eight domains – accuracy around 0.90. Hence, it

could be argued that our proposed framework is quite generalizable to various

domains. Overall, models considering both features, title similarity and body

similarity, outperform models considering only one feature, title similarity, by

accuracy of about 0.05. Thus, we have considered both features in further

34

evaluation process.

Hence, we have calculated the test accuracy, precision, recall, and F-score

of nine models, including the global model that comprises all data from eight

domains. As mentioned, the metrics are averaged during the iteration process of 30

times to assure the generalizability of the model. Evaluation results are summarized

in Table 10.

Table 10. Summary of Evaluation Results (Initial Attempt)

Model Community
(Domain)

Test
accuracy Precision Recall F-score

1B Ask Ubuntu 0.897339 0.930675 0.859006 0.893331

2B Arqade 0.907516 0.945810 0.865160 0.903528

3B GIS 0.907862 0.956520 0.856595 0.901823

4B Home
Improvement 0.859184 0.890310 0.857216 0.856703

5B Super User 0.925000 0.957780 0.889366 0.922274

6B Server Fault 0.891725 0.967703 0.737892 0.836916

7B Tex-Latex 0.853264 0.885034 0.809969 0.845570

8B Unix & Linux 0.874578 0.932291 0.808427 0.865512

9 Global 0.507437 0.563082 0.509670 0.535046

35

Evaluation results demonstrate the applicability of our proposed framework.

All models have shown a satisfactory level of test accuracy over 0.85. Especially,

models 2, 3, and 5 have shown a high level of test accuracy over 0.90.

Nevertheless, it could be observed that model 9, namely the Global model,

fails to produce useful results. Model 9 gathers all questions in eight domains,

creates a global Doc2Vec model, and with vector representations from the model,

classifies each question pair. Hence, when using a simple structure for

identification, it could be asserted that building a distinct model for each domain is

effective.

4.2 Revised Approach

In building a global model that can be applied in the presence of a large training

dataset, we take the approach proposed in Kim (2014). First, with the training set

composed of all questions in eight domains, we create a Word2Vec model with

dimensionality of 100. Then, we excluded questions that have lengths of over 10

words. Such questions were minimal in proportion; holding only 1% of the

questions. Then, we created a convolutional neural network (CNN) model for

question pair classification.

Hyperparameters are tuned with grid search and random search methods and

mentioned above; i.e., individual models are created and cross-validated with

specified hyperparameter settings and chosen based on its performances.

Hyperparameters of interest are batch size, dropout rate, epochs, and number of

filters. Re-evaluation results of best models in each scenario are summarized in

36

Table 11. More detailed results are available in Appendix 2 and 3.

Table 11. Summary of Evaluation Results (Revised Attempt)

Method Scenario
Test

Accuracy
Precision Recall

F1-
score

Average
Precision

Grid
Search

1 0.9754 0.97 0.98 0.98 0.9835

2 0.9903 0.90 0.99 0.95 0.9514

3 0.9958 0.74 0.81 0.77 0.7768

Random
Search

2 0.9939 0.95 0.98 0.97 0.9687

3 0.9966 0.71 0.92 0.81 0.8209

As expected, average precision measures under class imbalance scenarios

suffer, especially in scenario 3. However, there is a good news – when performing

random search, we could see a slight boost in terms of average precision (0.8209),

compared to result of grid search (0.7768). It could be asserted that random search,

as claimed by Bergstra and Bengio (2012), performs better than grid search.

CHAPTER 5 Conclusion

In this study, we have proposed a framework that can contribute to the collective

intelligence in SQA communities by identifying similar questions. Even though

37

finding semantically similar questions is a critical issue and garnered interest in

both practice and academia, it remains a thorny problem. Thus, prior studies show

some limitations regarding the implementation and evaluation of the models. We

have addressed such limitations and provided partial solutions for them.

We have taken multidisciplinary approach to the creation and evaluation

of the framework and models. Techniques and ideas from NLP, neural network

language modeling, machine learning, and deep learning are utilized to implement

the models.

As it is difficult to obtain reliable test datasets, we fell back on “the

wisdom of crowds” already established in active SQA communities. By doing so,

we were able to reduce human effort in labeling the training and test datasets, while

obtaining reliable data for learning. Finally, by formulating a Doc2Vec model for

each domain, we were able to ease the problems of the “lexico-syntactic gap” and

domain-specific terminologies.

Classification and evaluation results show that our framework and models

show an applicable level of performance, with the possibility of solving the real-

world problem of identifying semantically equivalent questions in SQA

communities. Nevertheless, our study has some limitations. To start with, as we

have built a Doc2Vec model for each domain, it requires a certain amount of

training data regarding the domain of interest. However, in building a global model,

a CNN-based model structure suggested by Kim (2014) is highly effective.

Furthermore, the levels of collective intelligence in SQA communities

might vary depending on the domain. It is one of our assumptions that the

38

collective intelligence of each SQA community excels the intellectual ability of an

individual. However, in some cases this might turn out to be unrealistic and require

further validation, though not evident in our chosen communities with a number of

active users. For instance, some SQA communities might suffer from a lack of

participation among users as they are concerned with unpopular topics. Hence, it

would be crucial to check the participatory status of a community to warrant the

collective intelligence of the users before applying the framework.

Even though there are plenty of previous works devoted to solving the

problem of identifying similar questions in SQA domain, there still exist many

questions to be answered in depth. Such questions provide room for future work,

challenging researchers in NLP and machine learning.

 One of the potential pitfalls and directions for future research would be

regarding imbalance among classes, which is slightly covered in this study. In

reality, there are much more dissimilar question pairs than similar question pairs, as

indicated in Table 5. One interesting research area would be testing the model with

not only basic measures such as accuracy, precision, and recall, but also other

suggestions such as receiver operating characteristics (ROC) and bookmaker’s

informedness (Fawcett 2006; Powers 2011). Such attempts are expected to be

highly beneficial for both research and practice. Otherwise, it could be effective to

perform class-weight learning with highly skewed datasets, especially penalizing

false negatives very harshly to prevent all-zero classification.

Also, more refined methods to model sentences (questions) could be

utilized. Nowadays, there are some state-of-the-art word embedding techniques,

39

apart from Word2Vec and Doc2Vec. For instance, GloVe (Pennington 2014) or

geometry of sentence (Mu et al 2017) could be good choices for future research.

Moreover, adopting state-of-the-art methods not only in language

modeling contexts, but also in computational learning could be meaningful. Even

though we have stressed the desirability of CNN-based methods, RNN-based

models such as Long-Short Term Memory (LSTM) models or Gated Recurrent

Units (GRU) models can be effective as well (Hochreiter et al 1997; Chung et al

2014). Using such models with state-of-the art techniques such as sequence-to-

sequence (Sutskever et al 2014; Cho et al 2014) and attention mechanisms (Luong

et al 2015) can be meaningful research direction.

Finally, applications on more real-world datasets and feedbacks from such

attempts would boost the generalizability and applicability of the model. First, we

could try out with data from other domains, i.e., communities, in stack exchange

network. Then, taking out and testing our model for more large-scale datasets in

other networks such as Quora or Yahoo! Answers could be desirable.

40

References

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter

optimization. Journal of Machine Learning Research, 13(Feb), 281-305.

Bird, S. 2006. “NLTK: the natural language toolkit,” In Proceedings of the

COLING/ACL on Interactive presentation sessions. pp. 69-72.

Blei, D. M. 2012, “Probabilistic topic models,” Communications of the

ACM (55:4), pp. 77-84.

Brown, P. F., Pietra, V. J. D., Pietra, S. A. D., & Mercer, R. L. (1993). The

mathematics of statistical machine translation: Parameter

estimation. Computational linguistics, 19(2), 263-311.

Chahuara, P., Lampert, T., & Gançarski, P. 2016. “Retrieving and Ranking

Similar Questions from Question-Answer Archives Using Topic

Modelling and Topic Distribution Regression,” In International

Conference on Theory and Practice of Digital Libraries. pp. 41-53.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,

Schwenk, H., & Bengio, Y. (2014). Learning phrase representations

using RNN encoder-decoder for statistical machine translation. arXiv

preprint arXiv:1406.1078.

41

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation

of gated recurrent neural networks on sequence modeling. arXiv

preprint arXiv:1412.3555.

Das, A., Shrivastava, M., & Chinnakotla, M. 2016. “Mirror on the wall:

Finding similar questions with deep structured topic modeling” In

Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp.

454-465.

Derivative. 2017, In Merriam-Webster.com. Retrieved April 30, 2017, from

https://www.merriam-webster.com/dictionary/derivative

Fawcett, T. (2006) “An introduction to ROC analysis,” Pattern Recognition

Letters (27:8), pp. 861-874.

Fellegi, I. P., & Sunter, A. B. 1969, “A theory for record linkage,” Journal

of the American Statistical Association (64:328), pp. 1183-1210.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural

computation, 9(8), 1735-1780.

Jeon, J., Croft, W. B., & Lee, J. H. 2005. “Finding similar questions in large

question and answer archives,” In Proceedings of the 14th ACM

international conference on Information and knowledge management,

pp. 84-90.

Hawkins, D. M. (2004). The problem of overfitting. Journal of chemical

information and computer sciences, 44(1), 1-12.

https://www.merriam-webster.com/dictionary/derivative

42

Hevner, A. R., March, S. T., Park, J., & Ram, S. 2004, “Design science in

information systems research,” MIS quarterly (28:1), pp. 75-105.

Ioffe, S., & Szegedy, C. (2015, June). Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

In International Conference on Machine Learning (pp. 448-456).

John, B. M., Goh, D. H. L., Chua, A. Y. K., & Wickramasinghe, N. 2016.

“Graph-based Cluster Analysis to Identify Similar Questions: A Design

Science Approach,” Journal of the Association for Information Systems

(17:9), September, pp.590-613.

Kalchbrenner, N., Grefenstette, E., & Blunsom, P. (2014). A convolutional

neural network for modelling sentences. arXiv preprint

arXiv:1404.2188.

Klambauer, G., Unterthiner, T., Mayr, A., & Hochreiter, S. (2017). Self-

Normalizing Neural Networks. In advances in Neural Information

Processing Systems (NIPS).

Kim, Y. 2014. “Convolutional neural networks for sentence classification,”

arXiv preprint arXiv: 1408.5882.

Kohavi, R. (1995, August). A study of cross-validation and bootstrap for

accuracy estimation and model selection. In Ijcai (Vol. 14, No. 2, pp.

1137-1145).

43

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet

classification with deep convolutional neural networks. In Advances in

neural information processing systems (pp. 1097-1105).

Le, Q., & Mikolov, T. 2014. “Distributed representations of sentences and

documents,” In Proceedings of the 31st International Conference on

Machine Learning (ICML-14), pp. 1188-1196.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based

learning applied to document recognition. Proceedings of the IEEE,

86(11), 2278-2324.

Lee, J. T., Kim, S. B., Song, Y. I., & Rim, H. C. 2008, “Bridging lexical

gaps between queries and questions on large online Q&A collections

with compact translation models,” In Proceedings of the Conference on

Empirical Methods in Natural Language Processing, pp. 410-418

Lorist, M. M., Boksem, M. A., & Ridderinkhof, K. R. 2005, “ Impaired

cognitive control and reduced cingulate activity during mental fatigue,”

Cognitive Brain Research (24:2), pp. 199-205.

Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to

attention-based neural machine translation. arXiv preprint

arXiv:1508.04025.

44

(Mikolov et al 2013a) Mikolov, T., Chen, K., Corrado, G., & Dean, J. 2013.

“Efficient estimation of word representations in vector space,” arXiv

preprint arXiv:1301.3781.

(Mikolov et al 2013b) Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S.,

& Dean, J. (2013). Distributed representations of words and phrases and

their compositionality. In Advances in neural information processing

systems (pp. 3111-3119).

Mu, J., Bhat, S., & Viswanath, P. (2017). Representing Sentences as Low-

Rank Subspaces. arXiv preprint arXiv:1704.05358.

Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global vectors for

word representation. In Proceedings of the 2014 conference on

empirical methods in natural language processing (EMNLP) (pp. 1532-

1543).

Perkins, J. 2010. Python text processing with NLTK 2.0 cookbook. Packt

Publishing Ltd.

Poria, S., Cambria, E., Hazarika, D., & Vij, P. (2016). A deeper look into

sarcastic tweets using deep convolutional neural networks. arXiv

preprint arXiv:1610.08815.

Powers, D.M. 2011. Evaluation: from precision, recall, and F-measure to

ROC, informedness, markedness, and correlation.

45

Refaeilzadeh, P., Tang, L., & Liu, H. (2009). Cross-validation. In

Encyclopedia of database systems (pp. 532-538). Springer US.

Ruder, S., Ghaffari, P., & Breslin, J. G. (2016). INSIGHT-1 at SemEval-

2016 Task 5: Deep Learning for Multilingual Aspect-based Sentiment

Analysis. arXiv preprint arXiv:1609.02748.

Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic

text retrieval. Information processing & management, 24(5), 513-523.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra,

D. (2016). Grad-CAM: Visual Explanations from Deep Networks via

Gradient-based Localization. See https://arxiv. org/abs/1610.02391 v3.

Shmueli, G., Patel, N. R., & Bruce, P. C. 2016. Data Mining for Business

Analytics: Concepts, Techniques, and Applications with XLMiner. John

Wiley & Sons.

Stack Exchange. 2017. “All sites.” https://Stack

Exchange.com/sites?view=list#traffic. Accessed April 30 2017.

Surowiecki, J. 2005. The wisdom of crowds, Anchor.

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence

learning with neural networks. In Advances in neural information

processing systems (pp. 3104-3112).

Xue, X., Jeon, J., & Croft, W. B. 2008. “Retrieval models for question and

answer archives,” In Proceedings of the 31st annual international ACM

https://stackexchange.com/sites?view=list#traffic
https://stackexchange.com/sites?view=list#traffic

46

SIGIR conference on Research and development in information

retrieval. pp. 475-482.

Yih, S. W. T., He, X., & Meek, C. (2014). Semantic parsing for single-

relation question answering.

Young, T., Hazarika, D., Poria, S., & Cambria, E. (2017). Recent trends in

deep learning based natural language processing. arXiv preprint

arXiv:1708.02709.

Zhou, G., He, T., Zhao, J., & Hu, P. 2015. “Learning Continuous Word

Embedding with Metadata for Question Retrieval in Community

Question Answering,” In the 53rd Annual Meeting of the Association for

Computational Linguistics and the 7th International Joint Conference

on Natural Language Processing, pp.250-259.

47

5 Appendices

Appendix 1

: Visualization of model (using Keras in Python)

48

Appendix 2

: Grid Search Results

1) Scenario 1

Trial
Average

Accuracy

Batch

Size
Dropout Rate Epochs

Number of

Filters

1 0.917738 30 0.2 100 10

2 0.939447 30 0.2 100 20

3 0.956748 30 0.2 200 10

4 0.965650 30 0.2 200 20

5 0.947132 30 0.3 100 10

6 0.946754 30 0.3 100 20

7 0.965776 30 0.3 200 10

8 0.965273 30 0.3 200 20

9 0.957126 30 0.4 100 10

10 0.954733 30 0.4 100 20

11 0.954229 30 0.4 200 10

12 0.964853 30 0.4 200 20

13 0.918157 40 0.2 100 10

14 0.902410 40 0.2 100 20

15 0.935122 40 0.2 200 10

49

16 0.963761 40 0.2 200 20

17 0.950071 40 0.3 100 10

18 0.936088 40 0.3 100 20

19 0.946544 40 0.3 200 10

20 0.960779 40 0.3 200 20

21 0.917947 40 0.4 100 10

22 0.963887 40 0.4 100 20

23 0.963593 40 0.4 200 10

24 0.970354 40 0.4 200 20

AVG 0.948507

2) Scenario 2

Trial
Average

Accuracy

Batch

Size
Dropout Rate Epochs

Number of

Filters

1 0.948998 30 0.3 100 10

2 0.954877 30 0.3 100 20

3 0.970909 30 0.3 200 10

4 0.963275 30 0.3 200 20

5 0.971062 30 0.4 100 10

6 0.970070 30 0.4 100 20

50

7 0.974269 30 0.4 200 10

8 0.973658 30 0.4 200 20

9 0.969153 40 0.3 100 10

10 0.967932 40 0.3 100 20

11 0.966787 40 0.3 200 10

12 0.973123 40 0.3 200 20

13 0.966022 40 0.4 100 10

14 0.972513 40 0.4 100 20

15 0.968848 40 0.4 200 10

16 0.969917 40 0.4 200 20

AVG 0.967588

3) Scenario 3

Trial
Average

Accuracy

Batch

Size
Dropout Rate Epochs

Number of

Filters

1 0.936113 30 0.3 100 10

2 0.990186 30 0.3 100 20

3 0.990768 30 0.3 200 10

4 0.990601 30 0.3 200 20

5 0.990435 30 0.4 100 10

51

6 0.987940 30 0.4 100 20

7 0.989105 30 0.4 200 10

8 0.990186 30 0.4 200 20

9 0.990685 40 0.3 100 10

10 0.991600 40 0.3 100 20

11 0.990768 40 0.3 200 10

12 0.990518 40 0.3 200 20

13 0.990768 40 0.4 100 10

14 0.991267 40 0.4 100 20

15 0.990435 40 0.4 200 10

16 0.989021 40 0.4 200 20

AVG 0.9869

Appendix 3

: Random Search results

1) Scenario 2

Trial
Average

Precision

Batch

Size
Dropout Rate Epochs

Number of

Filters

1 0.908705 39 0.5 57 13

2 0.918524 35 0.3 143 16

52

3 0.911144 41 0.3 92 12

4 0.914986 37 0.3 60 13

5 0.913085 44 0.5 52 16

6 0.924158 41 0.3 172 12

7 0.926931 33 0.4 149 15

8 0.915296 47 0.4 59 17

9 0.882247 46 0.3 79 19

10 0.919945 44 0.3 92 15

AVG 0.913502

2) Scenario 3

Trial
Average

Precision

Batch

Size
Dropout Rate Epochs

Number of

Filters

1 0.390429 47 0.5 95 18

2 0.474817 41 0.5 95 18

3 0.464673 44 0.3 173 16

4 0.458598 39 0.5 130 10

5 0.463360 38 0.5 99 13

6 0.451081 47 0.3 182 17

7 0.391716 48 0.5 87 10

53

8 0.411866 48 0.3 157 10

9 0.417540 36 0.3 117 13

10 0.375774 35 0.4 75 12

AVG 0.429985

