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Abstract 

Identifying Semantically Similar Questions 

in Social Q&A Communities 

Buomsoo Kim 

Management Information System  

The Graduate School of Business, Seoul National University 

 

SQA communities are an impressive instance of knowledge sharing over the Web. 

A tremendous number of questions are asked and answered every minute in 

prospering SQA communities such as Yahoo! Answers, Stack Exchange network, 

and Quora. However, it could be observed that a large proportion of the new 

questions are redundant, with a semantically similar counterpart existing in the 

database. There exist few thorny challenges regarding identifying semantically 

equivalent questions in SQA communities: (1) semantically similar questions could 

be rather dissimilar in terms of syntax and lexicon, (2) obtaining reliable training 

and test datasets is troublesome, (3) the influence of domain- or context-specific 

languages, and (4) severe class imbalance problem could seriously hamper the 

identification process. We suggest a data-driven framework that could overcome 

such challenges and complement existing models. Our work takes multi-

disciplinary approach in building the framework, borrowing concepts and 



 

 

techniques from machine learning, natural language processing (NLP), deep 

learning, information retrieval, and etc. Our final model utilizing Word2Vec and 

convolutional neural networks for language modeling shows desirable level of 

performance, test accuracy of 0.975478 and average precision of 0.983501. 

Keywords: Q&A, online communities, collective intelligence, wisdom of crowds, 

language modeling, word2vec, convolutional neural networks, deep learning 
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CHAPTER 1 Introduction 

The advancement of Web 2.0 has enabled extensive knowledge sharing activities 

among users. Especially, Social Question & Answer (SQA) communities are an 

impressive case of collective intelligence in which participants interact with each 

other vigorously. As the collective intelligence of SQA communities matures and 

diversifies, more users are relying on SQA services, rather than depending solely 

on search engines to fulfill their information needs (John et al 2016). Currently, 

there are many thriving SQA communities such as Yahoo! Answers, Stack 

Exchange network, and Quora. In such communities, a myriad of questions are 

asked every minute and many users endeavor to provide helpful answers. . Figure 1 

exhibits one of the questions in Stack Overflow, the biggest SQA community of the 

Stack Exchange network. User interfaces of other SQA communities are largely 

similar to that of Figure 1. 

 

Figure 1. Question in Stack Overflow community 
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As of April 2017, over 8,000 questions are asked in the Stack Overflow 

community on a daily basis (Stack Exchange 2017). The sheer number of new 

questions could imply that the community is blooming. However, it might also 

imply that some questions are asked without prior search efforts, creating 

redundant questions. For instance, if one searches “Python cosine similarity” at the 

Stack Overflow website, a number of semantically equivalent questions could be 

observed (Table 1). 

 

Table 1. Partial query result of "Python cosine similarity" in Stack Overflow 
SQA community 

Title Date 

Cosine Similarity [Python] Mar 28, 2014 

How to calculate cosine similarity given 2 sentence Strings? - 

Python 
Mar 2, 2013 

Computing cosine similarity using Python Feb 1, 2017 

Calculate cosine similarity of two matrices - Python Feb 24, 2014 

Vectorized cosine similarity calculation in Python Dec 3, 2015 

Finding cosine similarity between 2 numbered datasets using 

python 
Aug 17, 2014 

 

Such questions not only hamper searching attempts, but also lead to the 

dispersion of group intelligence. Surowiecki (2005) has contended that one of the 

four preconditions for “the wisdom of crowds” is “aggregation,” which assures the 

existence of certain mechanisms that can alter individual judgments into a 
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collective one. Thus, detecting semantically similar questions and “aggregating” 

their corresponding contents is a critical issue in enhancing collective intelligence 

of a SQA community. 

Nevertheless, identifying similar questions remains a challenging problem 

despite constant research efforts (John et al 2016; Zhou et al 2015). One of the 

major challenges is related to the “lexico-syntactic gap,” which makes semantically 

equivalent questions syntactically and lexically unlike (Das et al 2016). Recently, a 

few related works have attempted to resolve this problem with neural network 

language models, Word2Vec (Chahuara et al 2016; Zhou et al 2015). Word2Vec, 

proposed by Mikolov et al (2013a), is an efficient way to estimate word 

representations in a finite vector space. Moving slightly forward, we have 

implemented a Doc2Vec model, an extension of Word2Vec, proposed by Le and 

Mikolov (2014). Besides, we have created a prototypical model based on 

convolutional neural networks (CNN). According to Kim (2014), CNNs with word 

embedding are useful model structure for classifying sentences. 

Another challenge relates to labeling training and test data. Even though it is 

relatively easy to obtain SQA-related datasets, there still exist difficulties in 

labeling them, i.e., classifying question pairs into similar and dissimilar categories. 

Literature review has revealed that most previous studies have resorted to a small 

number of human annotators. However, it is suggested that this is a highly costly 

procedure requiring considerable amount of time and human effort. Furthermore, 

due to fatigue from a lengthy process and the lack of domain-specific knowledge, 

human judges are prone to make cognitive errors (Lorist et al 2005). Thus, we rely 

on collective intelligence of SQA community users rather than human annotators.  
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Finally, domain-specific languages make the identification of the meaning of 

questions highly complicated and demanding. In contemporary English, there exist 

a number of words that convey different meanings depending on the context and 

domain. Furthermore, sometimes people call the same concept with different 

wordings. For instance, according to Merriam Webster’s, the word derivative has a 

distinct meaning in each area of linguistics, mathematics, chemistry, and finance – 

for details, refer to Table 2 (Derivative 2017). Hence, we propose a generic 

framework that can be used to match similar questions and merge them in any pre-

specified domain level. 

 

Table 2. Diverse meanings of the word "derivative" 

Domain Meaning 

General Something derived 

Linguistics 
A word formed from another word or base: a word formed by 

derivation 

Mathematics 

The limit of the ratio of the change in a function to the 

corresponding change in its independent variable as the latter 

change approaches zero 

Chemistry 

A chemical substance related structurally to another substance and 

theoretically derivable from it 

A substance that can be made from another substance 

Finance 
A contract or security that derives its value from that of an 

underlying asset (such as another security) or from the value of a 
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rate (as of interest or currency exchange) or index of asset value 

(such as a stock index) 

 

Empirical evaluation results with real-world datasets from Stack Exchange 

SQA communities have revealed that our models demonstrate a practical level of 

performance in finding semantically equivalent questions, irrespective of the 

domain of interest. Our best model (model 5B) shows test accuracy of 0.925, 

precision of 0.95778, recall of 0.889366, and F-score of 0.922274. 

Furthermore, it is confirmed that CNN-based text classification model 

proposed in Kim (2014) is effective even with cross-domain identifications and 

under severe class imbalance problems. By building a global model using CNNs, 

we were able to boost the performance. Whereas the global model based on 

Doc2Vec resulted in classification accuracy of merely 0.507, our CNN based deep 

learning model was able to achieve over 0.97 of classification accuracy and over 

0.98 of average precision under class balance circumstances. 

The rest of the article is organized as follows. In next section, we review 

related works. In the following section, our overall framework and methodologies 

are explained. Then, the results and findings are presented. In the final section, we 

conclude our study by summarizing the contributions and limitations of our study. 
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CHAPTER 2 Related Works 

There exist a number of prior attempts to identify duplicate questions in SQA 

communities. Translation models with basic similarity measures were widely 

employed at the outset. Jeon et al (2005) have set up a foundation for the 

translation model, which was initially proposed to support machine translation, for 

instance, from French to English. In such models, the similarity between different 

questions is equivalent to the probability of translating one question into another 

one. In the paper, “the IBM model 1,” which does not require prior linguistic 

knowledge is adopted for its simplicity (Brown et al 1993). In the experiment, as 

the source and target languages are the same (Korean), word translation 

probabilities can be interpreted as “semantic similarities of words.”  

The translation probability (i.e., semantic similarity) from word s (source 

word) to word t (target word) is: 

𝑃𝑃(𝑡𝑡|𝑠𝑠) =  𝜆𝜆𝑠𝑠−1�𝑐𝑐�𝑡𝑡�𝑠𝑠; 𝐽𝐽𝑖𝑖�
𝑁𝑁

𝑖𝑖=1

 

in which 𝜆𝜆𝑠𝑠 is a normalization factor that makes the sum of probabilities equal to 

1, N refers to the number of training instances, and 𝐽𝐽𝑖𝑖 is the ith pair in the training 

set. In each 𝐽𝐽𝑖𝑖, there are two sentences – a source sentence and a target sentence. 

So, what the model calculates is the semantic proximity of words in source 

sentence and words in target sentence in each data instance. Finally,  

𝑐𝑐�𝑡𝑡�𝑠𝑠; 𝐽𝐽𝑖𝑖� =  
𝑃𝑃(𝑡𝑡|𝑠𝑠)

𝑃𝑃(𝑡𝑡|𝑠𝑠1) + ⋯+ 𝑃𝑃(𝑡𝑡|𝑠𝑠𝑛𝑛)
#(𝑡𝑡, 𝐽𝐽𝑖𝑖)#(𝑠𝑠, 𝐽𝐽𝑖𝑖) 
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where {𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛} are words in the source sentence in 𝐽𝐽𝑖𝑖 and #(t, 𝐽𝐽𝑖𝑖) is the 

number of occurrence of the word t in 𝐽𝐽𝑖𝑖. Table 3 is a partial result of such 

computations; the first row (header) demonstrates the source words and below 

rows should semantically similar words to them, ranked based on similarity (Jeon 

et al 2015). Their model shows comparable result to those of other approaches - 

mean average precision of 0.314.  

 

Table 3. Similar Words to Keywords 

Word 
Rank  music intel excel font watch 

1 music pentium excel font watch 

2 file 4 korean korean time 

3 tag celeron function 97 background 

4 sound amd novice add start 

5 background intel cell download date 

 

 Jeon et al (2005) have obtained dataset from Naver KnowledgeIN archive, 

which is the biggest SQA community service in South Korea. In generating 

training samples, they see the corresponding answers to questions. Their bold 

assumption is that if answers to questions are similar, the questions should be 

semantically similar as well. However, this could be somewhat problematic since 



8 

an answerer might have interpreted a question erroneously and gave an answer 

unrelated to the question. Furthermore, if there are multiple answers to a single 

question, a measure to deal with conflict between answers should be addressed.  

 Xue et al (2008) adopted the basic algorithm of translation model used in 

Jeon et al (2006), IBM Translation Model 1. However, they extend the approach by 

taking into account both question part and answer part. In other words, word to 

word translation probabilities between both question-answer pairs, 𝑃𝑃(𝑄𝑄|𝐴𝐴), and 

answer-question pairs, 𝑃𝑃(𝐴𝐴|𝑄𝑄), are utilized. Both probabilities are computed and 

combined to generated pooled probabilities. Table 4 is the partial result of querying 

similar words using both probability measures. 

 

Table 4. Partial Result of Querying Similar Words 

source 

word 
everest xp 

probability 

used 
𝑃𝑃(𝐴𝐴|𝑄𝑄) 𝑃𝑃(𝑄𝑄|𝐴𝐴) Pooled 𝑃𝑃(𝐴𝐴|𝑄𝑄) 𝑃𝑃(𝑄𝑄|𝐴𝐴) Pooled 

1 everest mountain everest xp xp xp 

2 29,035 tallest mountain drive window window 

3 ft everest tallest install computer install 

4 mount highest 29,035 click system drive 

5 8,850 mt highest system pc computer 

 

Lee et al (2008) have proposed improved translation model, namely 
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“compact translation model,” from IBM model 1 used in Jeon et al (2005). One of 

the problems of IBM translation model 1 is that it solely depends on word co-

occurrence statistics between source and target sentences. Hence, as it cannot take 

into account the effect of “context,” unimportant words such as stopwords are 

comprised in interpretation, creating a great noise. In compact translation model, 

two different term weighting strategies, Term Frequency-Inverse Document 

Frequency (TF-IDF) and TextRank schemes are employed.  

TF-IDF is a classical method to weight terms based on their relative status 

in documents (Salton and Buckley 1988). To calculate the weight of word w in 

document D, two measures, term frequency (tf) and inverse document frequency 

(idf) are employed. 

𝑡𝑡𝑡𝑡𝑤𝑤,𝐷𝐷 =  
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑤𝑤,𝐷𝐷

|𝐷𝐷|
 

𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤 = log (
|𝐶𝐶|
𝑑𝑑𝑓𝑓𝑤𝑤

) 

where 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑤𝑤,𝐷𝐷 is the number of occurrences of w in D (i.e., how many 

times w occurs in D). |D| and |C| refers to the size of document D (i.e., how many 

unique words are comprised in D) and the size of document collection (i.e., how 

many documents are there, in total). Lastly, 𝑑𝑑𝑑𝑑𝑤𝑤 is the number of documents in 

which w occurs.  

TF-IDF weight of word w in D (𝑡𝑡𝑡𝑡 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤,𝐷𝐷) is simply a product of 

𝑡𝑡𝑡𝑡𝑤𝑤,𝐷𝐷 and 𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤. Simply put, words with high TF-IDF weights are regarded as 

important and low weights less important. 
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𝑡𝑡𝑡𝑡 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤,𝐷𝐷 =  𝑡𝑡𝑡𝑡𝑤𝑤,𝐷𝐷 ∗  𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤 

TextRank is an adoption of Google’s PageRank algorithm – a graph-based 

ranking model for keyword generation. Words in entire corpora constitute vertices 

in graph and the number of co-occurrence between each word pair become the 

weight of the edge. At the outset, the scores of vertices are initialized as 1, and the 

PageRank algorithm is applied until convergence. Major assumption of TextRank 

algorithm is that a word with importance co-occurs frequently with other words 

with importance in corpora. Hence, under such assumption, it could be said that 

words with high TextRank score has crucial importance. 

Xue et al (2008) and Lee et al (2008) performed experiment using 

external archive of SQA communities, respectively Wondir and Yahoo! Answers. 

Both models in Xue et al (2008) and Lee et al (2008) seem to outperform Jeon et al 

(2005)’s naïve translation model.  

As mentioned above, considering all words in a question with equal 

importance would be inefficient and ineffective; it would be desirable to attend to 

certain class of words that have distinctive status in corpora. With recent 

developments in NLP and machine learning, various methodologies and models 

were suggested to perform such functionality. Zhang et al (2014), Das et al (2015), 

and Chahuara et al (2016) have taken topic modeling approach.  

Topic models attempt to find certain themes, i.e., “ topics,” from a text 

corpus by inspecting hidden structures in the corpus. Latent Dirichlet Allocation 

(LDA), one of the simplest and most popular topic modeling methods, is a 

generative model that infers probability about each observation in training data 
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(Blei 2012).  

Intuitively, not only different words are “highlighted” in different 

documents, but also different classes of words exist in a single document as well. 

For instance, words about data analysis, such as “computer”  and “prediction” and 

words about evolutionary biology, such as “ life”  and “organism” can co-exist in an 

article. Here, data analysis and evolutionary biology can be regarded as “ topics”  of 

the article. A topic is formally defined as “a distribution over a fixed vocabulary.” 

The combination of topics in a corpus leads to guess the overall characteristic of a 

document – in this case, scientific one. In short, LDA is a language model that 

attempts to capture and formalize such intuition (Blei 2012). 

LDA is a generative probabilistic model that regards data as arising from a 

generative process with hidden variables. Further, joint probability distribution 

over the observed and hidden random variables is defined. Mathematically defined, 

the generative process can be represented as below: 

     𝑝𝑝(𝛽𝛽1:𝐾𝐾 ,𝜃𝜃1:𝐷𝐷, 𝑧𝑧1:𝐷𝐷,𝑤𝑤1:𝐷𝐷)

=  �𝑝𝑝(𝛽𝛽𝑖𝑖)
𝐾𝐾

𝑖𝑖=1

�𝑝𝑝(𝜃𝜃𝑑𝑑)
𝐷𝐷

𝑑𝑑=1

 (�𝑝𝑝(𝑧𝑧𝑑𝑑,𝑛𝑛|𝜃𝜃𝑑𝑑

𝑁𝑁

𝑛𝑛=1

)𝑝𝑝(𝑤𝑤𝑑𝑑,𝑛𝑛|𝛽𝛽1:𝐾𝐾 , 𝑧𝑧𝑑𝑑,𝑛𝑛)) 

where 𝛽𝛽1:𝐾𝐾  are topics (each 𝛽𝛽𝑘𝑘  distribution over the vocabulary) and topic 

distribution for the dth document is 𝜃𝜃𝑑𝑑 (𝜃𝜃𝑑𝑑,𝑘𝑘  topic distribution for topic k in 

document d). 𝑧𝑧𝑑𝑑  is the topic assignments for the dth document (𝑧𝑧𝑑𝑑,𝑛𝑛  topic 

assignment for the nth word in dth document) and 𝑤𝑤𝑑𝑑 is the observed words for 

document d (𝑤𝑤𝑑𝑑,𝑛𝑛 the nth word in dth document). From such distribution, hidden 

topic structure of a document is inferred. 
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 Zhang et al (2014) have attempted to induce semantic similarity between 

query and question by taking topic modeling approach. Based on features extracted 

from topic models, clustering is performed and similar questions are filtered. 

Approaches taken by Das et al (2015) and Chahuara et al (2016) are in similar vein. 

Das et al (2015) have proposed Deep Structured Topic Model (DSTM), a novel 

process that comprises two steps – retrieving similar questions in latent topic vector 

space and re-ranking them with a deep layered semantic model. Chahuara et al 

(2016) have combined topic modeling and multinomial regression. On top of the 

topic model, multinomial nonlinear regression is performed to retrieve and rank 

similar questions. The instantiation is evaluated on Yahoo! Answers dataset, relying 

on human annotators. Their results are reported to perform better than benchmark 

models employing translation models or basic ranking algorithms. 

Finally, Zhou et al (2015) and Wang and Poupart (2016) have proposed 

approaches based on neural network language models, Word2Vec. Such models 

convert each word into a vector, enabling arithmetic operations and topological 

analysis among word vectors.  Such vector space models not only reduce the 

dimensionality of input space dramatically, but also enable algebraic operations 

between word vectors based on their semantic and syntactic similarities. For 

instance, relationships such as vector(“King”) – vector(“Man”) + 

vector(“Woman”) = vector(“Queen”), vector(“Madrid”) – vector(“Spain”) + 

vector(“France”) = vector(“Paris”), and vector(“apple”) – vector(“apples”) = 

vector(“car”) – vector(“apple”) can be deduced (Mikolov et al 2013a, Mikolov et 

al 2013b). 

There are two variations of Word2Vec model that are commonly used - 
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the Continuous Skip-gram (CS) and the Continuous Bag-Of-Words (CBOW). The 

CS model attempts to predict the distribution of neighboring words (i.e., window) 

using center word, while the CBOW model attempts to predict a center word using 

neighboring words (Mikolov et al 2013a, Mikolov et al 2013b). However, in 

practice, both models show no significant difference in terms of performance. 

 

 

Figure 2. Architectures of CBOW and CS models 

 

Both models resemble a shallow neural network with a single hidden layer 

(projection layer). Weights of hidden layer are randomly initialized and 

continuously updated using back propagation and such weights are used to infer 

vector representation of each word in corpus (Mikolov et al 2013a, Mikolov et al 

2013b). Figure 2 is an outline of model architectures of CBOW and CS models 

(Adapted from Mikolov et al 2013a).  

Zhou et al (2015) have created a CS model with metadata of category 
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information, called M-NET. Simply put, on top of word embedding model, 

category information of each word is appended to help learning. For instance, in a 

question “What are the security issues with java?” under the category “Computers 

& Internet → Security,” the corresponding category of word java also becomes 

“Computers & Internet → Security.” Then, words that belong to similar category 

would have similar vector representations in embedding space. For instance, words 

Java and Python are likely to be more proximate than words Java and French in 

vector space.  

Wang and Poupart (2016) also adopted the CS model, but with different 

approach in terms of representing questions as vectors. After they trained 

Word2Vec model, they have performed TF-IDF computation to weight-average 

word vectors. Most questions in corpus have different number of words that have 

finite-dimensional vector representation. So one simple and intuitive way to get 

vector representation for each question would be averaging all word vectors 

element-wise. However, one problem with such approach would be encompassing 

too much information; as mentioned above, unimportant words would be counted 

as same as important words. Hence, a fix to this problem that Wang and Poupart 

(2016) adopted was to generate weights (i.e., relative importance) of words in each 

question and weight-average them to take into account more information. 

As generating and classifying training and test datasets are an important 

issue, we also surveyed labeling methods. Most prior studies relied on a small 

number of human annotators deciding whether two distinct questions are 

semantically equivalent (Song et al 2007, Lee et al 2008, Xue et al 2008, Wang et 
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al 2009, Hao and Agichtein 2012, Zhang et al 2014, Das et al 2015, Zhou et al 

2015, John et al 2016, Chahuara et al 2016). However, this point might constitute 

limitations for such studies. Manually labeling data is immensely time-consuming 

and laborious. Thus, it is highly costly and it might lead to human error arising 

from fatigue and boredom of menial work, leaving some room for improvement 

(Lorist et al 2005). Table 5 is the summary of related works. 

 

Table 5. Summary of Related Works 

Author(s) Methodology Dataset Labeling 

Jeon et al (2005) Translation model 

Naver 

KnowledgeIN 

archive 

Ranking algorithm 

(LM-HRANK 

measure) 

Song et al. (2007) 
Similarity 

measures 

FAQ system 

archive 
Human Annotator 

Achananuparp et 

al. (2008) 

Similarity 

measures 

Sample corpus  

(TREC-9) 
Unspecified  

Lee et al (2008) Translation model 
Yahoo! Answers  

Archive 
Human Annotator 

Xue et al (2008) Translation model 

Wondir archive, 

Sample corpus  

(TREC-9) 

Human Annotator 

Wang et al (2009) 
Syntactic tree 

matching 

Yahoo! Answers  

Archive 
Human Annotator 

Hao and Agichtein Equivalent pattern Yahoo! Answers  Human Annotator 
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(2012) learning Archive 

Shtok et al (2012) 

Query 

performance 

prediction  

Yahoo! Answers  

Archive 

Crowdsourcing 

(Amazon Mechanical 

Turk) 

Zhang et al (2014) Topic Modeling 

Yahoo! Answers 

archive,  

Sample corpus, 

Twitter dataset 

Human Annotator 

Das et al (2015) Topic Modeling 
Yahoo! Answers  

Archive 

Ranking algorithm 

(BM25),  

Human judge 

Han et al (2015) 
Rule-based 

approach 

Sample corpus 

(ICHI 2015) 
Unspecified 

Zhou et al (2015) 
Neural network 

language model 

Yahoo! Answers, 

Baidu Zhidao 

Archive 

Human Annotator 

John et al (2016) 
Graph-based 

cluster analysis 

Yahoo! Answers  

Archive 
Human Annotator 

Chahuara et al 

(2016) 
Topic modeling 

Yahoo! Answers, 

Stack Exchange  

Archive 

Human Annotator 

Hoogeveen et al 

(2016) 
Machine learning Sample corpus Unspecified 

Wang and Poupart 

(2016) 

Neural network 

language model 
Sample corpus Unspecified 
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CHAPTER 3 Methodology 

In order to create a classification model, we employ techniques from diverse 

disciplines, including natural language processing, machine learning, and 

information retrieval. Our proposed methodology comprises four steps: (1) Data 

collection and preprocessing, (2) Language Modeling, (3) Identification 

(classification), and (4) Evaluation. Our overall framework is summarized in Table 

6 and Figure 3 is the bird eye’s view of our model. Visualization of our model 

using Keras library in Python is provided in Appendix 1. 

 

Table 6. Overall Framework 

Steps Disciplines referred to Techniques employed 

Data Preprocessing 
∙ Natural Language 

Processing 

∙ Tokenization 

∙ Lemmatization 

∙ Stopwords removal 

Language Modeling 
∙ Neural language 

modeling 

∙ Word2Vec  

∙ Doc2Vec 

Identification 

(Classification) 

∙ Machine learning 

∙ Deep learning 

∙ Logistic regression 

classifier 

∙ Deep learning 

(convolutional neural 

networks) 

Model Selection 

& Evaluation 

∙ Information retrieval 

∙ Machine learning 

∙ Evaluation metrics 

(accuracy/precision/recall/F-
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score/average precision) 

 

 

Figure 3. Bird Eye's View of Final Model (CNN) 

 

3.1 Data Collection & Preprocessing 

As briefly mentioned above, obtaining a reliable dataset for training is a nontrivial 

issue in identifying similar questions in SQA community archives. In particular, it 

is difficult to label the question pairs, classifying them as a match or non-match. 

We took an alternative approach to obtaining and labeling a dataset: to rely on the 

collective intelligence of active SQA communities. Some of the questions in Stack 

Exchange communities are marked as “duplicate.” If a questions gains five votes 

from moderators or users with a certain level of reputation, the question is closed 

as duplicate and the title is appended with “[ Duplicate]” mark. Figure 4 is one of 

duplicate marked questions in Stack Overflow community. 
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Figure 4. Example of Duplicate Question 

 

We have chosen eight varied, active communities: Ask Ubuntu, Arqade, 

Geographic Information Systems, Home Improvement, Super User, Server Fault, 

TeX-LaTeX, and, Unix & Linux. Ask Ubuntu (https://askubuntu.com/) is a SQA 

platform for Ubuntu users and developers. It is one of the oldest (7 years and 5 

months) and largest (280,000 questions) community in the Stack Exchange 

network and about 130 questions are asked daily on average. Arqade 

(https://gaming.stackexchange.com/) is a place for passionate video gamers; 

https://askubuntu.com/
https://gaming.stackexchange.com/
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gamers enjoying video games via PC, Playstation, mobile, etc. communicate and 

socialize in the Arqade community. Geographic Information Systems 

(https://gis.stackexchange.com/) is a site for devoted cartographers, geographers, 

and other related professionals. Although it is relatively small in number of users 

(80,000), it is highly active in light of number of questions (38 daily, 92,000 total) 

and answers (109,000 total). Home Improvement (https://diy.stackexchange.com/) 

is a site for contractors and serious DIYers (Do-It-Yourself). Many users who are 

wanting to renovate their places by themselves exchange ideas and thoughts at the 

Home Improvement community. 

Super User (https://superuser.com/) and Server Fault 

(https://serverfault.com/) are also two of the oldest (8 years and 5 months and 8 

years and 8 months, respectively) and largest (366,000 questions and 254,000 

questions, respectively) communities. Lastly, TeX-LaTeX (https://tex. 

stackexchange.com/) and Unix & Linux (https://unix.stackexchange. com/) are 

sites specialized for Latex users and Unix/Linux users respectively. There are also 

great number of committed users to TeX-LaTeX and Unix & Linux communities. 

A brief glance at the data revealed that there are a number of duplicate 

question pairs in Stack Exchange communities – 1,263,520 questions in total and 

14,713 questions in total. Thus, we conjectured that it would be sufficient to 

generate enough training data and test data to learn and evaluate the model. Basic 

statistics of eight communities of interest are summarized in Table 7. 

 

https://gis.stackexchange.com/
https://diy.stackexchange.com/
https://superuser.com/
https://serverfault.com/
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Table 7. Number of Questions and Duplicate Questions for Each Community 

Community (Topic) Number of Questions 
Number of Duplicate 

Questions 

Ask Ubuntu 257173 5531 

Arqade 75696 1021 

Geographic Information 
Systems 

79194 250 

Home Improvement 28973 75 

Super User 343033 4398 

Server Fault 238764 1320 

Tex – Latex 129182 1609 

Unix & Linux 111505 509 

 

As our data is in unstructured format, preprocessing is necessary. We have 

utilized NLP techniques in order to maximize the performance of the word 

embedding model constructed. After converting all the letters to lowercase, we 

removed all the stopwords in the text, and tokenized and lemmatized each title and 

body corpus. Stopwords are routine words in English that has negligible effect on 

the meaning of a text (Perkins 2010). Examples of stopwords include ‘ is’, ‘ at’, 

‘any’, ‘ a’, and ‘do’. Tokenization involves breaking down the text into indivisible 

parts, i.e., tokens (Bird and Loper 2006). Lemmatization is the process of finding 

the canonical form of a word, namely lemma. Usually a set of words share a lemma 

(Perkins 2010). 
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Finally, the whole dataset is split into 7 to 3 ratio of training and test 

dataset. The training set is cross-validated for model selection and hyperparameter 

tuning. Then the final model is trained using the training set and evaluated with test 

data. 

 

3.2 Language Modeling 

Doc2Vec is a method to retrieve a fixed-dimensional vector representation for each 

document. The overall framework is largely similar to that of Word2Vec, but 

paragraph matrix (or document matrix) is added in learning process and each 

paragraph (document) can be represented in same finite-dimensional space with 

words. Figure 5 is an abstracted framework for learning word vectors and Figure 6 

is one for learning paragraph vectors (Le and Mikolov 2014). 

After preprocessing, we have constructed a Doc2Vec model with the 

question corpus and computed similarities between questions for each domain. As 

mentioned earlier, we have built domain-specific models to evade the potential 

problem of domain-specific vocabularies and jargons. 
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Figure 5. Framework for Learning Word Vectors 

 

 

 

Figure 6. Framework for Learning Paragraph Vectors 
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After the Doc2Vec model is generated, we have calculated cosine 

similarity measures between questions. As each question has two parts, a body and 

a title, we have computed two similarity measures for a question pair. Cosine 

similarity between two vectors is simply the cosine of vectors. Cosine similarity of 

two vectors A and B (with 𝜃𝜃 an angle between two vectors) can be calculated as 

below: 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐴𝐴,𝐵𝐵) = cos(𝜃𝜃) =  
𝐴𝐴 ∙ 𝐵𝐵

|𝐴𝐴||𝐵𝐵|
=  

∑ 𝐴𝐴𝑖𝑖𝐵𝐵𝑖𝑖𝑖𝑖

�∑ 𝐴𝐴𝑖𝑖2𝑖𝑖 �∑ 𝐵𝐵𝑖𝑖2𝑖𝑖

 

Where here 𝐴𝐴𝑖𝑖,𝐵𝐵𝑖𝑖 are components of A and B, respectively.  

Usually, the title is a one-sentence summary of the question and the body 

is a detailed explanation of the question (Figure 7). Thus, one question pair has two 

similarity measures, body similarity and title similarity. 

 

 

Figure 7. Title and Body of Question 
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However, in our revised attempt adopting CNN for Sentence 

Classification approach (Kim 2014), we have computed vector representation of 

each word in corpus with Word2Vec (Mikolov 2013). And when creating 

representation for each sentence (i.e., question), we have concatenated vector 

representations for words in a sentence, converting it into a matrix. More details 

are covered in Section 3.3 for the revised approach. 

 

3.3 Identification (Classification) 

As we take the machine learning approach in developing the framework, the 

identification process can be deemed as a classification problem. Thus, we want to 

classify each question pair as similar or non-similar.  

For each Doc2Vec model corresponding to a specific domain of interest, 

we have created a predictive model based on the logistic regression algorithm, one 

of the simplest, yet powerful, classification algorithms (Shmueli et al 2016). We 

have tried to avoid overfitting by not only reducing the number of parameters by 

employing a simple algorithm, but also restricting the number of features used. We 

have initially attempted to classify question pairs with only the title similarity 

feature, which is computationally cheaper. However, we were able to obtain better 

results when considering both features.  

It should be noted that logistic classification model based on Doc2Vec 

similarity measures fail to achieve a reliable performance in a global context; it 

ends up in correctly classifying only half of the question pairs. In other words, it 

fails to grasp the effects of differing domain-specific languages and topics. Hence, 
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we build a global model using CNNs, whose prototype is proposed in Kim (2014). 

As explained in above, data instances with “match” labels were created by 

resorting to the collective intelligence of each community. We artificially created 

data with ‘non-match’ labels by randomly picking question pairs in the question 

dataset without duplicates. To evade the class imbalance problem, we have set the 

portion of each class equally. Thus, the half of the dataset for each domain is 

labeled ‘1’ (i.e., similar), and the rest is labeled ‘0’ (i.e., not similar). 

There are some reasons why we have employed CNN structure. To start 

with, CNN is comparatively cheaper in terms of computation resources than 

Recurrent Neural Networks (RNN) or Multi-Layer Perceptron (MLP) structures. 

Characteristics of CNNs such as single feature extraction from convolution 

operations, dimensionality reduction from pooling operations, weight sharing 

significantly reduce computational efforts.  

Furthermore, in light of language modeling context, CNNs can extract 

information regarding “context”  of sentence with sliding filters and local 

connectivity (Young et al 2017). In other words, CNNs effectively capture the local 

context of each word occurrence in sentence. Consider trivial case of interpreting a 

sentence “I had two hamburgers at McDonald’s for lunch today, so I do not want to 

eat at Wendy’s now.” At the beginning of the sentence, words “hamburgers”  and 

“McDonald’s”  imply that the speaker is going to talk about something related to 

fast foods, in this case “Wendy’s.” And CNN structure can take into account this 

contextual information when interpreting the sentence by taking advantage of 

sliding filters, which function as “windows.”  Hence, CNNs are employed in a 
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number of prior studies in NLP domain and applications of such (Kalchbrenner et 

al 2014; Yih et al 2014; Ruder et al 2016; Poria et al 2016). 

We have extended and ameliorated the CNN structure for sentence 

classification proposed in Kim 2014. To start with, we perform square convolution 

and pooling operations, rather than rectangular ones. In NLP domain, rectangular 

convolution/pooling operations, or one-dimensional convolution/pooling 

operations, are commonly performed (Figure 8). However, as empirical results 

show no big difference in terms of accuracy, we have performed square 

convolution & pooling operation, which is common in image recognition field 

(LeCun et al 1998; Krizhevsky et al 2012). 

 

 

Figure 8. Rectangular and Square Convolution Operations 

 

To effectively manage training process, we have adopted Scaled 

Exponential Linear Units (SELU) activation function and Batch Normalization 

(BN) technique. SELU is one of the most recent developments in research domain 
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regarding activation functions. As outputs of the function tend to converge to 

distribution of zero mean and unit variance, it is claimed to be effective in handling 

noise and perturbations (Klaumbauer et al 2017). 

𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙(𝑥𝑥) =  𝜆𝜆 �
𝑥𝑥  ( 𝑖𝑖𝑖𝑖 𝑥𝑥 > 0)

𝛼𝛼𝑒𝑒𝑥𝑥 −  𝛼𝛼 (𝑖𝑖𝑖𝑖 𝑥𝑥 ≤ 0) 

BN, which is a normalization scheme for each training batch, is an effective 

method for model training. With BN, it is reported that higher learning rates are 

permissible and weight initialization schemes can be ignored. Further, it also can 

prevent overfitting, acting as a regularizer (Ioffe and Szegedy 2015).  

 Finally, as the CNN structure in Kim 2014 is a sentence classification 

model, we convert it into sentence-pair classification model. Say that we have 

sentences of maximum length l (i.e., l words for each sentence, at maximum) and 

embedding dimension of d. Then we get 2l X d matrix for each sentence pair. If 

one of sentences has smaller length than l, remaining elements are zero-padded to 

preserve the dimensionality. Conversely, if we have a sentence with number of 

words bigger than l, such sentence is pre-truncated to fit in.  

 Created embedding weights, i.e., vector representations, are not updated 

by back-propagation; they are kept static during the training process. This is similar 

to CNN-static model implementation in the original paper (Kim 2014). 

 Let assume that we have two questions, “Merge two arrays”  and “Array 

merging in NumPy”  and set l = 4, d = 100. Resulting matrix for such question pair 

would be 8 X 100 matrix, as in Figure 9. Note that the third row of matrix is all-

zero, to preserve the dimensionality of data instances. If we have another question 
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“How can I merge arrays in Python,”  such question would be truncated to “merge 

arrays in Python”  to fit into 8 X 100 matrix. 

 

 

Figure 9. Example of Sentence Pair Representation 

 

3.4 Model Selection & Evaluation 

For each Doc2Vec model corresponding to a specific domain of interest, we have 

created a predictive model based on the logistic regression algorithm, one of the 

simplest classification algorithms (Shmueli et al 2016). We have tried to avoid 

overfitting by not only reducing the number of parameters by employing a simple 

algorithm, but also restricting the number of features used (Hawkins 2004). 

Features used as an input for the predictive model are similarity measures 

calculated in Section 4.1, body similarity and title similarity. In fact, we have 

initially attempted to classify question pairs with only the title similarity feature, 

which is computationally cheaper. However, we were able to obtain better results 

by considering both features. Detailed results are shown in Section 4. As a result, 
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we have created 16 classification models, summarized in Table 8. 

 

Table 8. Classification Models of Initial Attempt 

Model Community (Domain) 
Features Used 

Title 
Similarity  

Body 
Similarity  

1A 
Ask Ubuntu 

O  

1B O O 

2A 
Arqade 

O  

2B O O 

3A Geographic Information 
Systems 

O  

3B O O 

4A 
Home Improvement 

O  

4B O O 

5A 
Super User 

O  

5B O O 

6A 
Server Fault 

O  

6B O O 

7A 
TeX-LaTeX 

O  

7B O O 

8A 
Unix & Linux 

O  

8B O O 

 

The classification result is cross-validated to assess the generalizability of 

the algorithm. k-fold cross-validation is a popular and reliable model selection tool 

to assess the accuracy and generalizability of a classifier (Kohavi 1995; 
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Refaeilzadeh 2009). We have conducted a five-fold cross-validation to gauge the 

overall performance of each classifier. 

Evaluation of a design artifact is a critical part of design science research 

(Hevner et al 2004). To conduct evaluation, we have calculated two types of error 

for L: type-1 and type-2 errors. As mentioned, recall and precision are metrics that 

are often used to gauge type-1 error (false positive) and type-2 error (false negative) 

in classification problems. Recall is the proportion of real positive cases that are 

predicted positive. Precision is the proportion of predicted positive cases that are 

actual positives among total predicted positive cases. F-score, the harmonic mean 

of precision and recall, is calculated. In addition, average precision, which is the 

mean of precision measures, is calculated when evaluating the revised model 

(Shmueli et al 2016). 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
 

𝐹𝐹 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
2 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 

For each domain, we have randomly partitioned the initial dataset into two 

disjoint sets, a training set and a test set. The ratio of training set to test set is 7 to 3. 

First, a predictive model using logistic regression algorithm is generated using the 

training set. Then, the results are validated by metrics mentioned above, which are 

calculated using the test set. The process is iterated for 30 times and metrics are 

averaged to verify the generalizability of our model. 
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When evaluating the CNN model and selecting appropriate model, grid 

search and random search are employed. Grid search is trying all possible 

combinations in the hyperparameter “grid,” which is one of the most common 

methods for hyperparameter tuning. In contrast, random search evaluates models 

with randomly initialized parameters in pre-specified distributions. It is reported 

that random search is more effective for finding an appropriate model with a 

limited computation resource (Bergstra and Bengio 2012).  

We perform both random search and grid search, and compare the results 

in various scenarios. First scenarios is identical to the original one – class ratio of 0 

(non-match) to 1 (match) is set to 1:1. Second and third scenarios are planned to 

take into account the skewedness of real-world dataset; in second, ration is 10 to 1 

and in third, 100 to 1. 

 

CHAPTER 4 Results 

4.1 Initial Attempt 

In this section, we display our analysis results. Five-fold cross-validation results 

are summarized in Table 9. Performances of the models 1A to 8B are compared. 

The models differ in the domain of interest, i.e., the community, and the features 

used for the classification process. 
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Table 9. Cross-validation Results 

Model Accuracy Standard Deviation 

1A 0.845761 0.029341 

1B 0.897675 0.027395 

2A 0.853553 0.025580 

2B 0.910813 0.021823 

3A 0.837868 0.052829 

3B 0.904867 0.057153 

4A 0.892444 0.087446 

4B 0.919359 0.087210 

5A 0.880266 0.014106 

5B 0.926470 0.015834 

6A 0.839293 0.063470 

6B 0.902929 0.070452 

7A 0.804261 0.032912 

7B 0.855272 0.026580 

8A 0.820760 0.036140 

8B 0.879022 0.048658 

 

 

 Cross-validation results have revealed that our models show a practical 

level of performance over all eight domains – accuracy around 0.90. Hence, it 

could be argued that our proposed framework is quite generalizable to various 

domains. Overall, models considering both features, title similarity and body 

similarity, outperform models considering only one feature, title similarity, by 

accuracy of about 0.05. Thus, we have considered both features in further 
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evaluation process. 

Hence, we have calculated the test accuracy, precision, recall, and F-score 

of nine models, including the global model that comprises all data from eight 

domains. As mentioned, the metrics are averaged during the iteration process of 30 

times to assure the generalizability of the model. Evaluation results are summarized 

in Table 10. 

 

Table 10. Summary of Evaluation Results (Initial Attempt)  

Model Community 
(Domain) 

Test 
accuracy Precision Recall F-score 

1B Ask Ubuntu 0.897339 0.930675 0.859006 0.893331 

2B Arqade 0.907516 0.945810 0.865160 0.903528 

3B GIS 0.907862 0.956520 0.856595 0.901823 

4B Home 
Improvement 0.859184 0.890310 0.857216 0.856703 

5B Super User 0.925000 0.957780 0.889366 0.922274 

6B Server Fault 0.891725 0.967703 0.737892 0.836916 

7B Tex-Latex 0.853264 0.885034 0.809969 0.845570 

8B Unix & Linux 0.874578 0.932291 0.808427 0.865512 

9 Global 0.507437 0.563082 0.509670 0.535046 
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Evaluation results demonstrate the applicability of our proposed framework. 

All models have shown a satisfactory level of test accuracy over 0.85. Especially, 

models 2, 3, and 5 have shown a high level of test accuracy over 0.90.  

Nevertheless, it could be observed that model 9, namely the Global model, 

fails to produce useful results. Model 9 gathers all questions in eight domains, 

creates a global Doc2Vec model, and with vector representations from the model, 

classifies each question pair. Hence, when using a simple structure for 

identification, it could be asserted that building a distinct model for each domain is 

effective. 

 

4.2 Revised Approach 

In building a global model that can be applied in the presence of a large training 

dataset, we take the approach proposed in Kim (2014). First, with the training set 

composed of all questions in eight domains, we create a Word2Vec model with 

dimensionality of 100. Then, we excluded questions that have lengths of over 10 

words. Such questions were minimal in proportion; holding only 1% of the 

questions. Then, we created a convolutional neural network (CNN) model for 

question pair classification. 

Hyperparameters are tuned with grid search and random search methods and 

mentioned above; i.e., individual models are created and cross-validated with 

specified hyperparameter settings and chosen based on its performances. 

Hyperparameters of interest are batch size, dropout rate, epochs, and number of 

filters. Re-evaluation results of best models in each scenario are summarized in 
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Table 11. More detailed results are available in Appendix 2 and 3. 

 

Table 11. Summary of Evaluation Results (Revised Attempt) 

Method Scenario 
Test 

Accuracy 
Precision Recall 

F1-
score 

Average 
Precision 

Grid 
Search 

1 0.9754 0.97 0.98 0.98 0.9835 

2 0.9903 0.90 0.99 0.95 0.9514 

3 0.9958 0.74 0.81 0.77 0.7768 

Random 
Search 

2 0.9939 0.95 0.98 0.97 0.9687 

3 0.9966 0.71 0.92 0.81 0.8209 

 

As expected, average precision measures under class imbalance scenarios 

suffer, especially in scenario 3. However, there is a good news – when performing 

random search, we could see a slight boost in terms of average precision (0.8209), 

compared to result of grid search (0.7768). It could be asserted that random search, 

as claimed by Bergstra and Bengio (2012), performs better than grid search. 

  

CHAPTER 5 Conclusion 

In this study, we have proposed a framework that can contribute to the collective 

intelligence in SQA communities by identifying similar questions. Even though 
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finding semantically similar questions is a critical issue and garnered interest in 

both practice and academia, it remains a thorny problem. Thus, prior studies show 

some limitations regarding the implementation and evaluation of the models. We 

have addressed such limitations and provided partial solutions for them.  

We have taken multidisciplinary approach to the creation and evaluation 

of the framework and models. Techniques and ideas from NLP, neural network 

language modeling, machine learning, and deep learning are utilized to implement 

the models.  

As it is difficult to obtain reliable test datasets, we fell back on “the 

wisdom of crowds” already established in active SQA communities. By doing so, 

we were able to reduce human effort in labeling the training and test datasets, while 

obtaining reliable data for learning. Finally, by formulating a Doc2Vec model for 

each domain, we were able to ease the problems of the “lexico-syntactic gap” and 

domain-specific terminologies.   

Classification and evaluation results show that our framework and models 

show an applicable level of performance, with the possibility of solving the real-

world problem of identifying semantically equivalent questions in SQA 

communities. Nevertheless, our study has some limitations. To start with, as we 

have built a Doc2Vec model for each domain, it requires a certain amount of 

training data regarding the domain of interest. However, in building a global model, 

a CNN-based model structure suggested by Kim (2014) is highly effective.  

Furthermore, the levels of collective intelligence in SQA communities 

might vary depending on the domain. It is one of our assumptions that the 
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collective intelligence of each SQA community excels the intellectual ability of an 

individual. However, in some cases this might turn out to be unrealistic and require 

further validation, though not evident in our chosen communities with a number of 

active users. For instance, some SQA communities might suffer from a lack of 

participation among users as they are concerned with unpopular topics. Hence, it 

would be crucial to check the participatory status of a community to warrant the 

collective intelligence of the users before applying the framework. 

Even though there are plenty of previous works devoted to solving the 

problem of identifying similar questions in SQA domain, there still exist many 

questions to be answered in depth. Such questions provide room for future work, 

challenging researchers in NLP and machine learning. 

 One of the potential pitfalls and directions for future research would be 

regarding imbalance among classes, which is slightly covered in this study. In 

reality, there are much more dissimilar question pairs than similar question pairs, as 

indicated in Table 5. One interesting research area would be testing the model with 

not only basic measures such as accuracy, precision, and recall, but also other 

suggestions such as receiver operating characteristics (ROC) and bookmaker’s 

informedness (Fawcett 2006; Powers 2011). Such attempts are expected to be 

highly beneficial for both research and practice. Otherwise, it could be effective to 

perform class-weight learning with highly skewed datasets, especially penalizing 

false negatives very harshly to prevent all-zero classification. 

Also, more refined methods to model sentences (questions) could be 

utilized. Nowadays, there are some state-of-the-art word embedding techniques, 
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apart from Word2Vec and Doc2Vec. For instance, GloVe (Pennington 2014) or 

geometry of sentence (Mu et al 2017) could be good choices for future research.  

Moreover, adopting state-of-the-art methods not only in language 

modeling contexts, but also in computational learning could be meaningful. Even 

though we have stressed the desirability of CNN-based methods, RNN-based 

models such as Long-Short Term Memory (LSTM) models or Gated Recurrent 

Units (GRU) models can be effective as well (Hochreiter et al 1997; Chung et al 

2014). Using such models with state-of-the art techniques such as sequence-to-

sequence (Sutskever et al 2014; Cho et al 2014) and attention mechanisms (Luong 

et al 2015) can be meaningful research direction.  

Finally, applications on more real-world datasets and feedbacks from such 

attempts would boost the generalizability and applicability of the model. First, we 

could try out with data from other domains, i.e., communities, in stack exchange 

network. Then, taking out and testing our model for more large-scale datasets in 

other networks such as Quora or Yahoo! Answers could be desirable.  
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5 Appendices 

Appendix 1 

: Visualization of model (using Keras in Python) 
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Appendix 2 

: Grid Search Results 

1) Scenario 1 

Trial 
Average 

Accuracy 

Batch 

Size 
Dropout Rate Epochs 

Number of 

Filters 

1 0.917738 30 0.2 100 10 

2 0.939447 30 0.2 100 20 

3 0.956748 30 0.2 200 10 

4 0.965650 30 0.2 200 20 

5 0.947132 30 0.3 100 10 

6 0.946754 30 0.3 100 20 

7 0.965776 30 0.3 200 10 

8 0.965273 30 0.3 200 20 

9 0.957126 30 0.4 100 10 

10 0.954733 30 0.4 100 20 

11 0.954229 30 0.4 200 10 

12 0.964853 30 0.4 200 20 

13 0.918157 40 0.2 100 10 

14 0.902410 40 0.2 100 20 

15 0.935122 40 0.2 200 10 
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16 0.963761 40 0.2 200 20 

17 0.950071 40 0.3 100 10 

18 0.936088 40 0.3 100 20 

19 0.946544 40 0.3 200 10 

20 0.960779 40 0.3 200 20 

21 0.917947 40 0.4 100 10 

22 0.963887 40 0.4 100 20 

23 0.963593 40 0.4 200 10 

24 0.970354 40 0.4 200 20 

AVG 0.948507     

 

2) Scenario 2 

Trial 
Average 

Accuracy 

Batch 

Size 
Dropout Rate Epochs 

Number of 

Filters 

1 0.948998 30 0.3 100 10 

2 0.954877 30 0.3 100 20 

3 0.970909 30 0.3 200 10 

4 0.963275 30 0.3 200 20 

5 0.971062 30 0.4 100 10 

6 0.970070 30 0.4 100 20 
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7 0.974269 30 0.4 200 10 

8 0.973658 30 0.4 200 20 

9 0.969153 40 0.3 100 10 

10 0.967932 40 0.3 100 20 

11 0.966787 40 0.3 200 10 

12 0.973123 40 0.3 200 20 

13 0.966022 40 0.4 100 10 

14 0.972513 40 0.4 100 20 

15 0.968848 40 0.4 200 10 

16 0.969917 40 0.4 200 20 

AVG 0.967588     

 

3) Scenario 3 

Trial 
Average 

Accuracy 

Batch 

Size 
Dropout Rate Epochs 

Number of 

Filters 

1 0.936113 30 0.3 100 10 

2 0.990186 30 0.3 100 20 

3 0.990768 30 0.3 200 10 

4 0.990601 30 0.3 200 20 

5 0.990435 30 0.4 100 10 
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6 0.987940 30 0.4 100 20 

7 0.989105 30 0.4 200 10 

8 0.990186 30 0.4 200 20 

9 0.990685 40 0.3 100 10 

10 0.991600 40 0.3 100 20 

11 0.990768 40 0.3 200 10 

12 0.990518 40 0.3 200 20 

13 0.990768 40 0.4 100 10 

14 0.991267 40 0.4 100 20 

15 0.990435 40 0.4 200 10 

16 0.989021 40 0.4 200 20 

AVG 0.9869     

 

Appendix 3 

: Random Search results 

1) Scenario 2 

Trial 
Average 

Precision 

Batch 

Size 
Dropout Rate Epochs 

Number of 

Filters 

1 0.908705 39 0.5 57 13 

2 0.918524 35 0.3 143 16 
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3 0.911144 41 0.3 92 12 

4 0.914986 37 0.3 60 13 

5 0.913085 44 0.5 52 16 

6 0.924158 41 0.3 172 12 

7 0.926931 33 0.4 149 15 

8 0.915296 47 0.4 59 17 

9 0.882247 46 0.3 79 19 

10 0.919945 44 0.3 92 15 

AVG 0.913502     

 

2) Scenario 3 

Trial 
Average 

Precision 

Batch 

Size 
Dropout Rate Epochs 

Number of 

Filters 

1 0.390429 47 0.5 95 18 

2 0.474817 41 0.5 95 18 

3 0.464673 44 0.3 173 16 

4 0.458598 39 0.5 130 10 

5 0.463360 38 0.5 99 13 

6 0.451081 47 0.3 182 17 

7 0.391716 48 0.5 87 10 
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8 0.411866 48 0.3 157 10 

9 0.417540 36 0.3 117 13 

10 0.375774 35 0.4 75 12 

AVG 0.429985     

 


