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Compression systems are one of the essential units in chemical processes. A 

compression system plays an essential role but consumes a significant amount 

of power. Also, this system is primarily employed to maintain a constant 

discharge pressure and needs to stay protected against surge phenomena. The 

surge phenomena causes back flow and vibration, which are damaging to the 

bearings, seals, and other parts of the compressor. Therefore, operating an 

efficient and robust compression system is the most important issue in plant 

design and management. A compressor needs to be operated within an operable 

range, which should be considered both at the design stage and at the operation 

stage.  
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First, the authors propose a new process design method that improves the 

operability of the compression system, away from the design approach that 

considers only the economics. The suggested approach differs from a traditional 

one in that it performs design and optimization with several steady-state 

operation regimes depending on the load variation. The proposed design 

approach makes a loss in the compressor equipment cost, but it reduces the 

operation cost over a wide range of operations, leading to the overall 

improvement of economics and operability of compressor.  

Secondly, the author suggests the Nonlinear Autoregressive eXogenous 

Neural Net model (NARX NN)(Park, 2015) based real- time optimization for 

more efficient operation of industrial-scale multi-stage compression system in 

a commercial terephthalic acid manufacturing plant. NARX model is 

constructed to consider time-dependent system characteristics using actual 

plant operation data. The prediction performance is improved by extracting the 

thermodynamic characteristics of the chemical process as a feature of this 

model. And a systematic RTO method is suggested for calculating an optimal 

operating condition of compression system by recursively updating the NARX 

model.  

Finally, the author proposes an advanced control system for robust operation 

of a parallel compression system. Control of a parallel compressor system has 

proven to be challenging because the control targets usually exhibit control 

interactions between the different control loops. To decouple this control 
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interference, Mitsubishi Heavy Industries has developed an advanced feed-

forward control structure for parallel fixed-speed compressor systems. 

However, operation in the presence of an unpredictable disturbance presents a 

few technical challenges for this structure. Most of these problems result in 

poor load sharing and then operation in the recycle mode in order to protect the 

system from surge conditions. Moreover, an anti-surge control delay occurs 

when operating under a low load. To overcome these problems, an improved 

control structure that incorporates an additional discharge flow controller signal 

and a nonlinear signal calculator for anti-surge valve control is proposed.  

Keywords: Compression system; Process design; Process modeling; Load 

variation; Neural Network; Real-time optimization; Techno-economic 

optimization; Anti-surge Control; Load-sharing; Control interference;  

Student Number: 2014-21586  
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CHAPTER 1. Introduction 

 

 Research motivation 

Compression systems are one of the most important parts of 

petrochemical, natural gas, and chemical plants. Compressors constituting 

the compression system are not only expensive but also have a critical 

impact on the overall chemical process. Therefore, operating an efficient and 

robust compression system is the most important issue in plant management. 

A compressor system is primarily employed to maintain a constant discharge 

pressure and needs to stay protected against surge phenomena. A surge 

phenomenon, i.e., unstable back-and-forth flow in the centrifugal 

compressor, occurs when the suction volumetric flowrate of the compressor 

is lower than the limit line, i.e., the surge flowrate line. When the suction 

volumetric flowrate is lower than surge line, the resistance of the discharge 

side is higher than the head increase across the compressor. In the condition, 

it is not possible to keep this pressure gradient any more. It causes a periodic 

local back and forward flow, which is the surge phenomena. The surge 

phenomena causes back flow and vibration, which are damaging to the 

bearings, seals, and other parts of the compressor. Therefore, in a real 

industry, a compressor needs to be operated within an operable range, which 

should be considered both at the design stage and at the operation stage. In 

the industry, however, a number of uncertainties in chemical processes, 
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including compression systems, make robust operation within this operable 

range difficult. Although there are many existing studies on the uncertainty 

of this process, there is a lack of studies considering the fluctuation of the 

process due to future load changes in the process design stage. A system 

designed to maximize the operability of the compression system according 

to possible variation of the load in the future can prevent the compressor 

from malfunctioning and increase the overall economical efficiency by 

increasing the operation time of the whole process.  

 Compression systems can be broadly categorized into two types 

according to their structure: Series Compression System (multi-stage 

compression system) and Parallel Compression System. First, an industrial 

scale multi-stage compression system has a complex nonlinearity. This is 

due to the complex correlation of the unknown state parameters of the 

compression stage and the expansion stage (for power generation) (Azlan 

Hussain, 1999; Haykin, 1994) that make up the compression system. Thus, 

the linear modeling method using only the input-output of the system is 

difficult to simulate this complex nonlinearity. Furthermore, the state of each 

stage is also affected by a number of stochastic trending factors. Stochastic 

factors such as aging of equipment or external environment affecting the 

efficiency of the compression system tend to be time-dependent in nature. 

Therefore, in order to design a model that accurately predicts the energy 

consumption of a multi-stage compression system, it is necessary to use a 
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nonlinear technique to simulate the complex nonlinearity of the system, as 

well as a modeling method that can reflect time-varying factors. In addition, 

the system cannot be precisely sensed because it is the system of the state 

because it is difficult to accurately monitor the multi-stage system. 

Therefore, these modeling issues must be solved for efficient operation of 

the series compression system.  

 In parallel compression systems, there are issues that need to be 

addressed in relation to control. Surge phenomena are generally caused by 

poor matching of the compressor, inappropriate compressor design, and an 

inadequate anti-surge control system. Because a surge phenomenon shuts 

down the entire process and causes mechanical damage to the centrifugal 

compressor, the control system should quickly prevent a surge. For these 

reasons, various parametric studies have been conducted, and various 

scenarios have been analyzed to achieve instant and stable anti-surge control. 

However, discharge-pressure control and anti-surge control usually occur in 

opposite directions because of control interference. This inner-compressor 

control interference can cause a control instability or significant oscillations. 

A load-sharing control system should also be incorporated in a parallel 

centrifugal compressor system. Load sharing is an important consideration 

for energy efficiency and control in a parallel compressor system. This inter-

compressor control interference can cause inefficient or overloaded 

operation; hence, it should be decoupled for stable and efficient operation. 
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Therefore, a parallel compressor system requires an advanced control 

structure rather than a simple feedback control structure. 

 

 Research objectives 

The objective of this thesis is to propose an integrated solution for the 

energy efficient and robust operation of industrial-scale compression 

systems from the new design approach of compression systems to modeling, 

optimal operation strategy and control system development.  

First, a new design approach for robust and efficient operation of the 

compression system under load changing conditions is proposed. The 

proposed approach is applied to the PRICO®  Single Mixed Refrigerant 

(SMR) process to evaluate the economics of actual gas field well depletion 

scenarios. Compared with existing design approach, it shows that flexible 

operation of compressor is possible. Next, the author designs a multi-stage 

compression system model that has better prediction performance than 

existing models by using actual operation data and artificial neural network 

structure, and provides a platform capable of efficient and sustainable 

operation through real-time optimization technique and model re-update. 

Finally, the author develop a control system to solve the control issues that 

may occur while operating the actual compression system, and evaluate the 
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robustness of the proposed control system by applying it to various 

operation scenarios.  

 

 Outline of the thesis 

Chapter 1 provides the research motivation and the objective of the thesis. 

In Chapter 2, A new design approach is proposed to deal effectively with the 

load variation caused by depletion of gas filed. In addition to showing the 

techno-economic assessment of the proposed approach for the actual gas 

filed well depletion scenario, it also shows that the compressors in the 

liquefaction process operate more robustly. Chapter 3 includes NARX 

modeling of industrial-scale multi-stage compression systems and real-time 

optimization results using them. In Chapter 4, the development of an 

advanced control system for an industrial-scale parallel compression system. 

It also shows that efficient and robust operation is possible by applying to 

various operating scenarios. Chapter 5 presents the conclusion and the 

suggestion for the future works.
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CHAPTER 2. Process Design Approach 

Considering Compressor Operability- 

Application to LNG liquefaction process 

 

 Introduction 

Environmental concerns and limited availability of fuel resources have 

increased interests in natural gas and made natural gas the fastest growing fuel 

(1.6% per annum, p.a.) among other dominant fossil fuel resources. In particular, 

liquefied natural gas (LNG) grows seven times faster than the pipeline gas trade 

owing to its flexible means of transport in response to regional supply and 

demand fluctuations and long-distance trades (BP, 2017). Despite the 

geological mismatch between natural gas fields and consumers, the traditional 

natural gas upstream processing is mainly carried out onshore (Lee et al., 2012). 

However, recent developments in the technology of LNG floating production, 

storage, and offloading (LNG-FPSO) have facilitated installing conventional 

onshore LNG processing facilities into the sea, which allows scattered small- 

and mid-sized offshore gas reserves to be economically recovered with lower 

infrastructure requirements than that of the traditional onshore fixed facilities 

(Yang et al., 2018). 

Liquefying natural gas requires significant energy use to satisfy cryogenic 

temperature around -160°C. This energy intensive yet necessary process has 
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drawn the attention of many researchers to improving energy efficiencies, 

especially via process simulation and optimization in the process systems 

engineering (PSE) society. Numerous liquefaction processes have been 

introduced with different refrigerant types and process configurations over the 

last decades, mainly for large-scale liquefaction processes (WorleyParsons, 

2013). Since raw feed gas is mainly hydrocarbon mixture, the enthalpy varies 

nonlinearly along temperature change during cooling and liquefaction. Mixed 

refrigerant (MR) cycles effectively reduce the temperature difference between 

the refrigerant cycle and natural gas, while pure refrigerant cycles are relatively 

simple but require more number of refrigeration stages. Representative 

processes using pure refrigerant are ConocoPhillips optimized cascade®  

process and turbo expander using nitrogen. Dual mixed refrigerant (DMR), 

propane pre-cooled mixed refrigerant (C3MR) with or without a nitrogen 

refrigeration cycle, parallel mixed refrigerant (PMR), and mixed fluid cascade 

process (MFCP) are the example processes using MR for large-capacity LNG 

production. Among the major companies having MR technologies are Air 

Product and Chemicals Inc. (APCI), Shell, Statoil/Linde, and Axens 

(WorleyParsons, 2013). These processes with MR have been hot topics for 

research in design and optimization, producing numerous research articles 

regarding new configurations, exergy analysis, and design optimization with 

different objective functions and algorithms. For further information regarding 

aforementioned liquefaction cycles and the overall review in LNG plants, 
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please see the review articles (Lee et al., 2017; Lim et al., 2013). Also, Qyyum 

et al., (2017) and Khan et al., (2017) give a thorough review and extensive 

literature analysis specifically on the optimization of natural gas liquefaction 

process in PSE community and future direction in LNG industry.  

The small-scale NG liquefaction process, typically less than 1 million tons 

per annum (MTPA), is often used as a peak shaving plant to compensate unmet 

demand for natural gas (Mingot and Cristiani, 1997). Single mixed refrigerant 

(SMR) liquefaction process is promising when it comes to the offshore 

application due to its compactness, lightweight, and simplicity. Recent studies 

on SMR liquefaction process includes energy (Xu et al., 2014) and exergy 

analysis (Mehrpooya and Ansarinasab, 2015; Mokarizadeh Haghighi Shirazi 

and Mowla, 2010; Qyyum et al., 2018a), process alternative configurations 

(Xiong et al., 2016), use of modified/combined optimization algorithms 

(Aspelund et al., 2010; Khan and Lee, 2013; Lee et al., 2002; Morin et al., 2011; 

Na et al., 2017; Park, 2015; Pham et al., 2017, 2016; Qyyum et al., 2018b), 

consideration of external factors such as ambient temperature (Moein et al., 

2015; Park et al., 2016; Xu et al., 2013), various objective functions (besides 

energy/power consumption), problem formulations (Cao et al., 2016; Lee et al., 

2017; Lee and Moon, 2016; Mehrpooya and Ansarinasab, 2015; Nguyen and 

de Oliveira Júnior, 2018), new modeling approaches (Vikse et al., 2018), and 

efficient operation systems (Won and Kim, 2017; Won and Lee, 2017).  
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The majority of these studies focus on the design or optimization with a 

minimum amount of the energy or unit power consumption as an objective 

function, e.g. compression work; only a few economic analyses are presented. 

Lee and Moon, (2016) perform energy and cost analysis of SMR process with 

two different objective functions of compression energy and the total 

annualized cost (TAC) using genetic algorithm (Psichogios & Ungar). Castillo 

and Dorao, (2012) conduct cost minimization of SMR process using an 

integrated model for decision-making framework where multi-level and multi-

objectives are solved simultaneously. Nguyen et al., (2017) carry out simple 

comparative economic evaluation study of floating LNG (FLNG) facilities with 

various number of trains for liquefaction process. However, the 

abovementioned economic studies are carried out based on a single steady-state 

operating regime, either with a simple economical evaluation model (no 

optimization) or without considering the economic efficiency according to the 

number of trains. This design approach might lead to a miscalculation of costs, 

given the fluctuation in feed gas conditions and an overall natural gas 

production rate considering well depletion. As small gas fields can be exhausted 

in a few years and peak shaving offshore floating facilities can be relocated to 

new gas fields, the optimal design values and operating conditions derived by 

a single steady-state regime and feedstock information without considering 

uncertainties may be not optimal. Moreover, since the capital investment for 

small-scale application accounts for a large portion in the total cost, economic 
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evaluation according to the number of trains should not be ignored. Also, robust 

system design is required for process operation under such load uncertainty. 

Especially, it is essential to secure the operability of the compressor within the 

refrigeration cycle. 

In this study, PRICO®  SMR process considering the reduction in feed gas 

load according to well depletion is designed. And a techno-economic 

evaluation framework formulated as a nonlinear program (NLP) coupled with 

a process flowsheet simulator is introduced. . Finally, an optimal PRICO®  SMR 

process is suggested and concluding remarks about compressor operability are 

provided.  
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 Process Modeling 

2.2.1. Problem Description 

The traditional design approach focuses on finding optimal configuration and 

operating conditions to meet a design specification, i.e., production of 1 MTPA 

liquefied natural gas, assuming feed gas conditions are fixed. What this 

approach overlooks is feed gas load reduction and composition change 

according to well depletion and consequentially movement of development 

field. The principle of depletion is commonly described by the Hubbert peak 

theory (Maggio and Cacciola, 2012); the production curve of non-renewing 

resources approximates a bell curve, which means that once the production 

reaches a peak, it will start to decline exponentially. Production rate starts to 

increase at first by going through a dewatering phase, reaches a stable gas 

production phase, and then enters a decline stage. This indicates that natural gas 

production inevitably comes with a feed gas load reduction, not just 

"fluctuation", along the well depletion. Due to the circumstances, a 

comprehensive design approach to decide a proper equipment size and 

operating conditions under changing steady-state operation regimes is required 

so that long-term economics and near optimal operations are ensured even if 

the feed gas load is reduced. 

Herein, we propose a comprehensive optimal design of PRICO®  SMR 

process for small-scale offshore application by considering the feed natural gas 
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load reduction and the number of trains. The gas production curves of Maui and 

Kapuni gas fields in New Zealand (Ministry of Business Innovation and 

Employment, 2014) are sampled and normalized with a peak production rate of 

1 MTPA. Figure 2-1 shows the normalized production profile of each gas field 

well. Several steady-state operating regimes in terms of the production rate are 

then chosen. To evaluate the influence of train capacity on economics and 

energy objectives, one and two-train cases are considered. Each train case is 

then optimized with the conventional approach of using one steady-state regime 

(Cases 1 and 3) and with the proposed approach of considering several steady-

state regimes (Cases 2 and 4). 

 Case 1: One-train with a fixed load 

 Case 2: One-train with load reduction 

 Case 3: Two-train with a fixed load 

 Case 4: Two-train with load 
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Figure 2-1. The normalized production profiles of natural gas wells with the maximum production rate 

of 1 MTPA (Left: Maui gas field and right: Kapuni gas field) 
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2.2.2. PRICO®  SMR liquefaction process 

The PRICO®  SMR process is the simplest configuration of the single mixed 

refrigerant process and extensively studied over the last decades. It was first 

used in the Skikda LNG plant in Algeria in 1981 and operated for 23 years. 

Because it is simple and lightweight compared to other LNG liquefaction 

processes, it is known to be suitable for offshore plants and can be operated 

with flexibility (Remeljej and Hoadley, 2006). To liquefy pretreated natural gas 

at high pressure, single MR stage is used to facilitate transport and storage of 

LNG at the atmospheric pressure. The mixed refrigerant is pressurized through 

the compression stages and enters a multi-stream heat exchanger where it is 

cooled and liquefied by cold MR stream. The liquefied MR expands and its 

temperature decreases as it passes through the Joule-Thomson valve, enters the 

main heat exchanger in the reverse direction to hot MR stream and natural gas, 

and then has a cycle shape to return to the compression stages. The main heat 

exchanger is a plate-and-fin apparatus with a brazed aluminum core. A natural 

gas stream enters the main heat exchanger and comes out in the form of 

liquefied natural gas with the temperature of -160°C. Compression stage 

consists of compressors and sea water intercoolers, with limited compression 

ratios up to 4 and after-chilled temperature of 40 °C for realistic operation. 

The process flow diagram and the names of each unit and stream are given 

in Figure 2-2. The feed specifications and design assumptions are listed in Table 
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2-1 (Khan and Lee, 2013). The feed natural gas is mainly composed of 91.3 

mol% methane, 5.36 mol% ethane, and 2.14 mol% propane, and it is assumed 

that no natural gas liquid (NGL) recovery process is required to satisfy the 

heating value of LNG product. MR consists of methane, ethane, propane, n-

butane, and nitrogen. Peng-Robinson equation of state is used to predict 

thermophysical properties in the PRICO®  SMR process as it is widely accepted 

to simulate LNG system. Flowsheet modeling is performed using the Aspen 

HYSYS® , which is a qualified commercial process flowsheet simulator in the 

LNG industry. The purpose of this study is to propose a new design approach 

considering the life time of the gas field well and compare it with the results of 

the traditional approach. Therefore, design variables are determined by the two 

different design approaches while the given feed conditions and simulation 

basis remain the same. The design variables include the composition of the MR, 

the heat exchange area of the main heat exchanger, the flowrate of MR, 

temperature and pressure of MR_cold_in stream, and pressure ratio of the 

compression stage. 
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Figure 2-2. Process flow diagram of PRICO®  SMR liquefaction process
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Table 2-1. Feed natural gas specifications and design assumptions 

Property Value 

NG Pressure 50 bar 

NG Temperature 32 °C 

NG composition [mole fraction]  

 Methane 0.9135 

 Ethane 0.0536 

 Propane 0.0214 

 i-butane 0.0046 

 n-butane 0.0047 

 i-pentane 0.0001 

 n-pentane 0.0001 

 nitrogen 0.002 

Compressor polytropic efficiency 0.8 

Main heat exchanger pressure drop  

 Hot stream (∆p) 1 bar 

 Cold stream (∆p) 1 bar 
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 Process Optimization 

2.3.1. Optimization Framework 

Figure 2-3 shows the difference between the suggested approach considering 

load reduction scenarios and the conventional design approach with 100% load 

standard for PRICO®  SMR process. The traditional approach assumes that the 

process will be operated in a single steady-state regime, which means the 

production rate does not change along the well development. The process 

design and optimization were carried out with one set of design specification, 

such as 1 MTPA of LNG production. On the other hand, the proposed approach 

considers several sets of design specification; the production rate changes along 

the well development, and thus the production rate is not fixed as 1 MTPA but 

varies along with the change in operation regimes. In order to compare the 

design approaches, two optimization steps are performed. The first step is to 

determine the optimum MR composition and unit size that are fixed given the 

load changes. The second step is to determine the operating variables that give 

the minimum operating cost according to the scenario including the load 

changes. The difference from the traditional approach is to consider the load 

capacity at the stage of determining the unit size and optimal MR composition. 

The load reduction scenarios, which are based on the production profile of the 

natural gas field well, calculate the load capacity according to the number of 

trains. The new approach determines the MR composition and the unit sizing 
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data that can yield the maximum profit at three different production rates, 100% 

of the maximum production rate (1 MTPA), minimum production rate, and 

medium production rate.  

Since the optimization framework proposed in this study externally 

calculates the simulation model using a sequential process simulator (Aspen 

Hysys), it is difficult to obtain the gradient of the objective with respect to the 

design variables. Hence, derivative-free optimization such as genetic algorithm 

(Psichogios & Ungar), which is known to yield reasonable solutions for NLP, 

is adopted. Simultaneously determining MR stream and the area of the main 

heat exchanger may generate many infeasible solutions due to hidden 

constraints in this nonlinear system. This problem makes it difficult to compare 

the different design approaches using only the local optimization solver with 

the base case design. Therefore, we designed a structure to input possible 

variable sets within proper variable bounds into the simulation model through 

the communication module between Aspen HYSYS®  and MATLAB 

optimization algorithm. The simulation results are again evaluated for 

economics through Matlab with a penalty for infeasible solutions. Even though 

this modeling and optimization structure requires a lot of computation time to 

find a global solution, it is suitable to show the difference between the two 

approaches and compare the results. In this SMR process, there are four types 

of physically infeasible regions, which are 1) a case without solution (divergent 
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system), 2) a case with a temperature cross at main heat-exchanger, 3) a case 

with gas inflow to compressor, and 4) a case with a very low temperature value 

after the inter-cooler. 
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Figure 2-3. Optimization framework for the traditional 

(left) and proposed (right) design approaches 
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2.3.2. Optimization Formulation 

2.3.2.1. Optimization for unit sizing and MR 

composition 

The goal of optimization is to determine the unit size and MR composition 

to maximize the net present value (NPV) of the process. 

min
𝑥∈ℝ1×𝑛

−NPV − γp = f(𝑥) (P1) 

subject to  

A𝐱 = 𝑏  

𝑥𝐿𝐵 ≤ 𝑥 ≤ 𝑥𝑈𝐵  

h𝑝(𝑥) = 0   𝑝 = 1,2,3, … , 𝑚     

ℎ𝑗(𝑥) = 0   𝑗 = 1  

𝑔𝑖(𝑥) ≤ 0   𝑖 = 1,2,3, … ,7  

p(𝑥) = {
0
1
   

𝑖𝑓    ℎ𝑝(𝑥) = 0 𝑎𝑛𝑑 𝑔𝑖 ≤ 0 𝑎𝑛𝑑 𝑠𝑘(𝑥) = 0

𝑖𝑓    ℎ𝑝(𝑥) ≠ 0 𝑎𝑛𝑑 𝑔𝑖 > 0 𝑎𝑛𝑑 𝑠𝑘(𝑥) ≠ 0
  

 

h𝑝, ℎ𝑗, and 𝑔𝑖 represent convergence of the process simulator, an equality 

constraint, and inequality constraints. x is an optimization variable vector to be 

determined. This includes the heat exchange area (Xenos et al.) for determining 

the size of the heat exchanger, the pressure ratio to determine the size of the 
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compressor, the MR composition, and the operating parameters to be 

determined again in the next step. In the case of using a maximum production 

rate, only 8 are the optimization variables because optimization is performed 

based on a single steady-state regime in the process flowsheet. The objective 

function is the calculated NPV value at the maximum production rate, as in 

many other existing studies. On the other hand, in the case of considering the 

load reduction, there are 14 optimization variables corresponding to all three 

models of different production rates. NPV is determined by weighted average 

of the NPV values of the three models, and only the unit sizing data of 100% 

load is used for the unit cost included in the NPV calculation. The ratio of the 

NPV of the three models is determined by the shape of the production profile 

of the gas field well and can vary depending on which profile is used. However, 

in general, it is difficult to know the production profile of the well in the process 

design stage, and the equal weights, i.e., 1: 1: 1, were used in this study. Since 

the purpose of this step is to determine the optimal unit cost and composition 

of MR for each case, rather than quantitative comparison of each case, we do 

not need an exact ratio of the three objectives. A and b represents the mass 

balance of MR compositions. Table 2-2 shows the lower and upper bounds of 

the optimization variable and design constraints of one- and two-train cases. 

Design constraints include the gas inflow into the compressors, the temperature 

cross of the heat exchanger, and the temperature constraints of the MR_hot 

stream entering the heat exchanger. In order to increase the model convergence 
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in the optimization process and to avoid getting stuck in a local minimum, a 

penalty term γp is added to the objective function if the process simulator 

determines that at least one stream or units isn’t converged, the design 

constraint is violated, or the set of variables is infeasible, it sets p(x) as 1 to 

activate the penalty value γ. For the GA, 50 populations, 0.8 of the crossover 

fraction, and 20 of the maximum generation were used (Na et al., 2017). The 

GA algorithm is terminated if the average relative change in the best fitness 

function value over stall generation value is less than or equal to TolFun (default 

value 1e-6) or the number of generations has reached the maximum generation 

value. The optimization was carried out using Aspen Hysys v8.8 and MATLAB 

R2016a on a PC with Intel® Core™ i5-4590 CPU at 3.30 GHz and 6 GB RAM 

running Window 10.  
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Table 2-2. Design variables, their bounds, and constraints 

Design variables Standard load Unit 
Lower  

bound 

Upper 

bound 

MR flowrate (one-train) Common 102 kgmol/hr 150 400 

MR flowrate (two-train) Common 102 kgmol/hr 50 200 

MR Composition Common mol%   

 Methane   24 27 

 Ethane   35 38 

 Propane   3 6 

 n-butane   20 25 

 Nitrogen   18 4 

UA (one-train case) Common 107 kJ/ºC-hr 4 5 

UA (two-train case) Common 107 kJ/ºC-hr 2 3 

Condenser pressure Max bar 30 45 

P(MR_cold_in) Max bar 3 5 

Condenser pressure Mid bar 25 40 

P(MR_cold_in) Mid bar 3.5 4.5 

Condenser pressure Min bar 20 40 

P(MR_cold_in) Min bar 3.5 4.5 

Design constraints 

∆𝑇𝑚𝑖𝑛 ≥ 3℃, 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑖𝑛𝑡𝑒𝑟𝑚𝑎𝑙 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ (𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑐𝑟𝑜𝑠𝑠) 

LMTD ≥ 3℃, log 𝑚𝑒𝑎𝑛 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒  (𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑐𝑟𝑜𝑠𝑠) 

𝑇𝑀𝑅𝑐𝑜𝑙𝑑𝑜𝑢𝑡
≥ 𝑇𝑀𝑅𝑐𝑜𝑙𝑑𝑖𝑛

𝑑𝑒𝑤 + 3℃ (𝑣𝑎𝑝𝑜𝑟 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑎𝑡 1𝑠𝑡 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟) 

𝑇𝑀𝑅ℎ𝑜𝑡_𝑖𝑛
≥ 40℃ 

𝑃𝑀𝑅𝑐𝑜𝑙𝑑_𝑖𝑛
≤ 𝑃1 ≤ 𝑃2 ≤ 𝑃𝑀𝑅ℎ𝑜𝑡_𝑖𝑛

 

∑ 𝑚𝑗 = 1,   𝑗 ∈ 𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙𝑠 𝑖𝑛 𝑀𝑅 
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2.3.2.2. Determine operating variables according to 

load reduction scenario 

The objective of the optimization in this step is to determine the operating 

variables with minimum operating costs per year according to the load 

reduction scenario after fixing the device size and MR composition determined 

in the previous step. 

min
𝑥∈=ℝ1×4

W𝑐 + γp = f(𝑥)  

subject to  

𝑥𝐿𝐵 ≤ 𝑥 ≤  𝑥𝑈𝐵  

ℎ𝑝(𝑥) = 0    𝑝 = 1,2,3, … , 𝑚  

𝑔𝑖(𝑥) ≤ 0   𝑖 = 1,2,3, … ,7  

p(𝐱) = {
0
1
   

𝑖𝑓    ℎ𝑝(𝑥) = 0 𝑎𝑛𝑑 𝑔𝑖 ≤ 0 𝑎𝑛𝑑 𝑠𝑘(𝑥) = 0

𝑖𝑓    ℎ𝑝(𝑥) ≠ 0 𝑎𝑛𝑑 𝑔𝑖 > 0 𝑎𝑛𝑑 𝑠𝑘(𝑥) ≠ 0
  

 

x is the optimization variable vector to be determined, including the pressure 

ratio, the pressure of the MR_cold entering the heat exchanger, and the flowrate 

of the MR. 𝑊𝐶 means the amount of power to pressurize the MR after heat 

exchange. The power of the compressor is set as the objective function because 

it accounts for the largest portion of the operating cost of the LNG liquefaction 

process. Lower and upper bounds and design constraints of the optimization 
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variables are the same as those described in Chapter 2.3.2.1, and the penalty 

function and optimization solver are also the same. In this study, there are four 

cases to compare, including one-train and two-train cases applying a 

conventional approach and one-train case and two-train cases applying design 

method considering load reduction, as mentioned in Chapter 2.2.1. Table 2-3 

shows load variation trends in two wells with only the different production 

profile in nearly same range of production rate. For the same gas field well, 

one-train case and two-train case have different load reduction scenarios for the 

same production profile. One-train case requires capacity up to 23.7% load 

based on 1 MTPA. In the case of a two-train case, it is possible to design with 

less capacity because it has a range of up to 47.4% load based on 0.5 MTPA. 

For each of the four cases, the optimum operational expenditure (OPEX) for 

each year is calculated through iterative optimization according to this load 

change scenarios. 
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Table 2-3. Feed natural gas specifications and design assumptions 

Year 

Maui gas field Kapuni gas field 

one-train  

[MPTA] 

two-train [MPTA] one-train  

[MPTA] 

two-train [MPTA] 

Train 1 Train 2 Train 1 Train 2 

0 (excluded) 0.094 0.237 0.000 0.067 0.067  0.000  

1 (excluded) 0.126 0.237 0.000 0.128 0.128  0.000  

2 (excluded) 0.176 0.237 0.000 0.176 0.176  0.000  

3 0.355 0.355 0.000 0.239  0.239  0.000  

4 0.376 0.376 0.000 0.241  0.241  0.000  

5 0.501 0.264 0.237 0.640  0.500  0.140  

6 0.646 0.409 0.237 1.000  0.500  0.500  

7 0.781 0.500 0.281 0.927  0.500  0.427  

8 0.758 0.500 0.258 0.459  0.459  0.000  

9 0.824 0.500 0.324 0.304  0.304  0.000  

10 0.851 0.500 0.351 0.379  0.379  0.000  

11 0.841 0.500 0.341 0.493  0.493  0.000  

12 0.863 0.500 0.363 0.554  0.487  0.067  

13 0.923 0.500 0.423 0.565  0.498  0.067  

14 0.883 0.500 0.383 0.625  0.500  0.125  

15 0.801 0.500 0.301 0.602  0.500  0.102  

16 0.745 0.500 0.245 0.568  0.500  0.068  

17 0.845 0.500 0.345 0.668  0.500  0.168  

18 0.893 0.500 0.393 0.730  0.500  0.230  

19 0.757 0.500 0.257 0.710  0.500  0.210  

20 0.905 0.500 0.405 0.742  0.500  0.242  

21 0.956 0.500 0.456 0.793  0.500  0.293  

22 1.000 0.500 0.500 0.778  0.500  0.278  

23 0.912 0.500 0.412 0.835  0.500  0.335  

24 0.617 0.380 0.237 0.692  0.500  0.192  

25 0.540 0.303 0.237 0.843  0.500  0.343  

26 0.476 0.476 0.000 0.726  0.500  0.226  

27 0.451 0.451 0.000 0.717  0.500  0.217  

28 0.271 0.271 0.000 0.679  0.500  0.179  

29 0.257 0.257 0.000 0.219  0.219  0.000  

30 0.281 0.281 0.000 0.241  0.241  0.000  

31 0.237 0.237 0.000 0.640  0.500  0.140  
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2.3.3. Economic Evaluation Model 

The basic economic objective function is to maximize net present value 

(NPV) of the liquefaction process. The majority of previous studies have 

focused on minimizing the power consumption, which omits the consideration 

of capital investment in the design stage and consequently worsens optima 

(Park, 2015). Since NPV is the sum of the future value of the selected process 

at the time of design and the investment cost, it is appropriate to compare the 

approach used in this study.  

NPV =  ∑ 𝑇𝐴𝐶𝐹𝑖 × 𝛽𝑖 + ∑ 𝑇𝐴𝐶𝐹𝑗 × 𝛽𝑗 + 𝑇𝐴𝐶𝐹0 × 𝛽0

−1

𝑗=−2

𝑁

𝐼=1

 (Eq. 2-1) 

 

NPV is calculated as the product of the total annual cash flow and the present 

value factor (𝛽𝑖,𝑗,0). The value of the total annual cash flow (TACF) from -2 to 

0 is determined by the value of the fixed capital investment and is determined 

in Chapter 2.3.2.1. On the other hand, the value of TACF from 1 to N (operating 

life time) is determined as 

𝑇𝐴𝐶𝐹𝑖 = 𝐴𝑂𝐶𝐹𝑖 = 𝐴𝐺𝑃𝐼 × (1 − 𝜃) + 𝐴𝐷𝑖 (Eq. 2-2) 

𝐴𝐺𝑃1 = 𝐴𝑆1 + 𝐴𝑇𝑃𝐶1 − 𝐴𝐷1 − 𝑆𝐶 (Eq. 2-3) 

𝐴𝐺𝑃𝑘 = 𝐴𝑆𝑘 + 𝐴𝑇𝑃𝐶𝑘 − 𝐴𝐷𝑘 (k = 2, … ,6) (Eq. 2-4) 

𝐴𝐺𝑃𝑘 = 𝐴𝑆𝑘 + 𝐴𝑇𝑃𝐶𝑘 (k = 7, … , N) (Eq. 2-5) 
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θ denotes the tax rate, SC denotes the start-up cost, and 𝐴𝐷𝑖 denotes the 

annual depreciation. The value of the annual depreciation factor is referred to 

as the Modified Accelerated Cost Recovery System (MACRS) (IRS, 2015). 

According to the MACRS, depreciation from 1 to 6 years is deducted. The main 

determinants of TACF are annual sales (AS) and annual total production cost 

(ATPC). AS is calculated by the amount of LNG produced annually, and ATPC 

is calculated by the amount of utility cost, the amount of natural gas, and the 

equipment cost. In the conventional NPV calculations, the fixed value is used 

without reflecting the change of the production rate of the gas field well and 

only the economic conversion of the future value and the past value is 

considered. In this study, for the accurate comparison of the two different design 

approaches, the optimum operating cost for each year determined according to 

the changing load is reflected in the NPV calculation. First, in Chapter 2.3.2.1, 

determine the optimum equipment cost and MR composition for each case. 

Next, by assigning AS and ATPC, which are calculated according to the 

optimum operating conditions determined in Chapter 2.3.2.2, to Eq. 2-1 to 2-5, 

the economics model can consider load reduction scenarios. As the currency 

unit, millions of U.S. dollars is used for all values of economic evaluation. The 

equipment cost estimation approach is adapted from Couper, (2005) and Peters 

et al., (2003)  
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 Result and Discussion 

2.4.1. Optimization Results 

2.4.1.1. Capital cost analysis 

Figure 2-4 shows the objective function value versus function evaluation of 

each case as GA runs in the first optimization step. The objective function of 

case 1 and case 3 using the traditional design approach based on fixed single 

design loads, 1 MTPA and 0.5 MTPA respectively, is minimization of (-) 

NPV_max (net present value at fixed single design load). Each time function 

evaluation is repeated, the MR composition and the equipment size are 

determined to yield the maximum profit at 100% design load. Conversely, the 

objective function of case 2 and case 4 using the new design approach 

considering load variation is a linear combination of (-) NPV_max, (-) 

NPV_medium and (-) NPV_min. We determine the optimum equipment size 

and MR composition considering load variation by setting the objective 

function to maximize the profit at three different design loads. The purpose of 

this step is to compare the capital cost between the result of the new design 

approach and that of the traditional approach. Therefore, the specific value of 

NPV for each case in Figure 2-4 is not subject to comparison but to determine 

if the objective function value is nearly unchanged as the solver runs. All four 

cases have undergone the same number of iterations (1550), but the resulting 

number of iterations is different because evaluation results that do not converge 

or violate the design constraints were excluded.  
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Figures 2-5 and 2-6 show the differences in key economic variables and MR 

composition optimization results for the one-train scenario (cases 1 and 2) and 

the two-train scenario (cases 3 and 4), respectively. The different design 

approaches described above determine the installation cost of the main heat 

exchanger and other pieces of equipment and the composition of the MR, which 

are fixed even as the load variation scenario is changed. The optimal design 

considering load variation uses smaller heat exchange area, which leads to a 

decrease in the equipment cost of main heat exchanger. However, it also leads 

to an increase in the MR flowrate under 100% load operation and leads to an 

increase in the compressor equipment cost. In the case of a one-train, the price 

increase of the compressor is larger than the price reduction of the heat 

exchanger, which makes the total capital investment become larger. However, 

in the case of two-train, the decrease in the price of heat exchanger is similar, 

but the increase of the compressor price is smaller than that of the one-train 

case. This difference can be found in the optimal MR flowrate change shown 

in Table 3-4. In the two-train case, the MR flowrate increase was smaller than 

that of the one-train case when the new approach was applied (one-train case: 

22% increase, two-train case: 9% increase). The increase in MR flowrate 

resulting from the application of the new approach reduces operating costs at 

100% load operation and equipment costs of the other units except the heat 

exchanger to account for load variation. Therefore, the two-train cases have less 

load variation than the one-train case, which causes a relatively small loss in 
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the equipment cost of the compressor. This is offset by a reduction in the 

equipment cost of the heat exchanger provided by the small heat exchanger area, 

and thus has less total capital investment. 
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Figure 2-4. Best-found solution trajectories of objective function values of NLP problem through 

function evaluation on 4 cases
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Figure 2-5. Key economic variables related to CAPEX 
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Figure 2-6. Comparison of MR composition 
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Table 2-4. Best-found solutions of decision variables at the production of 

1 MTPA 

Optimization 

variables 

Unit 
Case1 Case2 Case3 Case4 

MR 

Composition 

mol% 
    

 Methane  24.1 25.7 24.8 24.7 

 Ethane  36.1 36.1 35.8 36.1 

 Propane  5.6 3.5 4.2 3.4 

 n-butane  21.8 20.9 23.3 21.6 

 Nitrogen  12.4 13.8 11.8 14.2 

UA 103 kJ/ºC∙hr 45,886 42,043 24,770 22,213 

Condenser 

pressure 

bar 
41.1 41.3 42.5 43.7 

MR flowrate 
102 

kgmol/hr 
201.0 246.4 110.3 121.8 

P(MR_cold_in) bar 3.4 3.8 3.8 4.0 
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2.4.1.2. Annual energy consumption analysis 

Figure 2-7 shows the amount of power in the compression stage depending 

on the load at one- and two-trains. The power consumptions are decreased as 

the load decreases in all cases, but it is not in the linear relationship. This is 

because the heat exchanger size and design constraints require the minimum 

amount of heat exchange. Even if the load is reduced to 23%, the flowrate of 

the MR required should be 60-70% of maximum MR flowrate. Therefore, it is 

difficult to operate economically because a large amount of operating cost is 

required compared to the production amount of LNG under small load 

operation. The new design approach proposed in this study can secure 

economical operation at nearly minimum load while giving up some economic 

efficiency in operating cost at a load close to 100% and capital investment. As 

can be seen from the result of one-train, more amount of power is consumed in 

the operation of the process designed by the proposed approach at a large load 

over 80%. However, for the load between 23% (minimum) to 70%, the process 

operation of the suggested design approach is more economical. On the other 

hand, in the cases with two-train, it is more complicated to compare the two 

design approaches. This is because the increase in the number of trains leads to 

an increase in the number of operation scenarios. Therefore, in the case of two-

train cases, it is necessary to analyze the results of the two design approaches 

by dividing the sections in load. The section 1 is set to operate at near maximum 

load (0.5 MTPA) where both trains are in operation. The intermediate load can 
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be divided into two cases, with or without two-trains, which are called section 

2 and section 3, respectively. Finally, the area near the minimum load, which 

should only be operated by a single train, is section 4. In section 1, it is more 

economical to operate the process based on the traditional design approach, as 

in one-train case. However, section 2, which requires one-train to run at 

maximum load and the other train to handle the natural gas load reduction, is 

different from section 1. This is because the gap between the min-max load of 

the two-train cases is close to that of the one-train case. Hence, the train 

responsible for handling load variation is mainly operated near the minimum 

load. Therefore, the proposed approach for the low load handling train is more 

economical. Sections 3 and 4 show the same tendency with the one-train case 

because it is a single train operation. In section 3 where the load is relatively 

large, the traditional approach is more efficient, but the section 4 near the 

minimum load shows the opposite result. The reason why the result of the 

proposed approach is advantageous as the load decreases in a single train is due 

to the shift in the optimization result to a smaller heat exchange area, as 

mentioned above. The reduction of the heat exchange area leads to an increase 

in the MR flowrate under 100% load operation. This causes more power to be 

consumed in a flowrate of 80% or more. However, design with a small heat 

exchange area can satisfy the design constraints under small load operation 

even with less amount of MR flowrate due to the reduction in the amount of 

heat exchange per hour. This can be confirmed by the trend of the MR flowrate 
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according to the load changes in the one-train and two-train cases in Figure 2-

8. In the case designed with the traditional approach, the flowrate of the MR 

tends to continuously increase as the load decreases. However, in the case 

designed with the proposed approach, the flowrate tends to slightly decrease to 

60-70% of the MR flowrate at the maximum load, and then the flowrate tends 

to increase in the small load operation. This is also the result of the shift of the 

optimized solution to the small heat exchange area, and the optimized heat 

exchange area allows for more optimized operation in the intermediate level 

load operation. Therefore, the process design considering load reduction 

scenarios can prevent an excessive increase in operation cost caused by small 

load operation. The changes in MR flowrate for each load are closely related to 

the robust operation performance of the process. A dramatic change in the MR 

flowrate can interfere with safe operation in the compression stage consisting 

of multi-stage compressors. In both one-train and two-train cases, the variation 

of the MR flowrate according to the load is less in the new approach. Especially, 

in the two-train cases including less load variation, there is almost no difference 

in MR flowrate between min-max load. This also demonstrates the reduction in 

capital investment in the two-train case using the new approach discussed in 

Chapter 2.4.1.1. Even with the new approach applied, operation near minimum 

load cannot avoid an increase in MR flowrate. However, since the gap to the 

minimum load is smaller than that of the one-train case, the increase of the MR 

flowrate can be minimized.
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Figure 2-7. The power consumptions in compression stage depending on the load at 1 train and 2 train 

cases 
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Figure 2-8. The MR flowrate depending on the load at one-train and two-train case 
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2.4.2. Case Study: Maui and Kapuni Gas Field 

Figure 2-9 shows the cumulative discounted cash flow for operation years 

for the Maui gas field and the Kapuni gas field, and Table 2-5 is the net present 

values of the cases 1 to 4. The NPV was calculated based on the year when the 

profit was maximized for each case and well. So, it is the same as the 

cumulative discounted cash flow at the last profitable year. In the case of Maui 

gas field, the last profitable year of one-train cases (cases 1 and 2) is 21 years 

after operation and 20 years for two-train cases (cases 3 and 4). In the case of 

the Kapuni gas field, cases 1, 2, 3, and 4 have values of 28, 29, 26, and 28, 

respectively. The profitable operating year is long in one-train case where the 

equipment cost is low overall, and it can be confirmed that it is lengthened in 

the case of applying the design approach proposed in this study. In cases 3 and 

4 of the Maui gas field where the total NPV is negative, the sum of the total 

revenues during the operation year does not exceed the investment in the unit 

cost. This means that the design of the process should take into account the 

decline in the price of LNG.  

As mentioned earlier, process design based on the suggested design approach 

has higher equipment and installation costs than using the traditional design 

approach in one-train case. In the two-train cases, however, there is almost no 

increase in the investment cost due to the proposed design approach. As a result, 

the cumulative cash flows of both approaches are similar. As we have analyzed 
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in Chapter 2.4.1.2, the design considering the load variation gives more profit 

than the traditional design in the operation of less than 80% load in both one-

train and two-train cases. Conversely, traditional design is more economical 

when operating over 80% load. This means that process design considering load 

variation can be more economical in a wider operating region. In the case of 

one-train, it can be seen that the economic trend of the new approach and the 

traditional approach can be changed depending on the type of natural gas well. 

In the case of Maui gas field, the natural gas production in most operation hours 

is between 0.8 and 1 MTPA. Therefore, a process designed by the traditional 

design approach is more economical. In the case of Kapuni gas field, it 

supplements the production of depleted wells by installing additional wells 

starting from 10 years after operation (Ministry of Business Innovation and 

Employment, 2014). In this way, the economic efficiency of the process design 

considering the load variation is better than that of the process using the 

traditional approach in the case of the wells where most of the production years 

are less than 80% of the maximum load. This means that the economic benefits 

of the proposed approach can exceed the economic loss from the installation 

cost according to the shape of production curve. It should be noted that in most 

cases, the production cycle of the gas field cannot be accurately predicted prior 

to the process design stage. Therefore, the design approach that takes account 

of load variation is economical in a wider operating window, and it is possible 

to respond effectively to a wider variety of well production shapes. 
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On the other hand, the proposed approach clearly shows the economical 

efficiency of the two-train. There are two main reasons for the different results 

depending on the number of trains. The first is due to the less capital investment 

of the design with the new approach, and the second is due to the difference in 

the operation scenarios of the one-train case and the two-train cases. For 

example, when operating at 0.85 MTPA, the operating cost of a one-train case 

model with a traditional approach is lower. However, the overall operating cost 

is better in the new approach because the two-train case operates at 0.5 MTPA 

and 0.35 MTPA, respectively and the gain at 0.35 MTPA is greater than the loss 

of operating costs at 0.5 MTPA (100% load). Therefore, in the two natural gas 

wells applied in this study, the economical efficiency of the two-train case using 

the new approach could be improved. Also, as the number of trains increases, 

the probability of each train operating near the minimum load increases, so the 

economics of the proposed design approach is expected to be even better. But 

this can also be varied depending on the well production shape and the 

operation scenarios of each train.  
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Figure 2-9. Cumulative discounted cash flow profile of Maui gas field and Kapuni gas field 
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Table 2-5. Net present values of Maui and Kapuni gas fields production 

Name of gas field Case 1 Case 2 Case 3 Case 4 

Maui  

(opeartion year) 

(LNG 5$/TCF) 

20MM$ 

(21yr) 

18MM$ 

(21yr) 

-40MM$ 

(20yr) 

-28MM$ 

(20yr) 

Kapuni 

(operation year) 

(LNG 7$/TCF) 

90MM$ 

(28yr) 

103MM$ 

(29yr) 

44MM$ 

(26yr) 

73MM$ 

(28yr) 

 

 

 



 

 58 

2.4.3. Compressor Operability 

Figures 2-10 and 2-11 show the operating point profile with load variation at 

each compressor stage. The left figure is the trend of the system designed 

according to the traditional 100% load design approach and the right is the 

result of the system designed according to the approach proposed in this study. 

In order to compare the results of the above dynamic simulation, the shift of the 

characteristic map due to the change of the compressor size should be 

considered. However, it is difficult to obtain the data of the compressor 

characteristic map in the changed size. Also, because the purpose of this chapter 

is to see the movement of the operating point, we have modeled the compressor 

characteristic map through the numerical equation of the compressor.  

𝑃2 = 𝑓(𝑈1, 𝑀, 𝑈2) × 𝑃1 

= (1 + (𝜂_𝐶 × 𝐻(𝑖𝑑𝑒𝑎𝑙))/(𝐶_𝑝 × 𝑇1))^(𝛾/(1 − 𝛾)) × 𝑃1 
(Eq. 2-6) 

𝐻(𝑖𝑑𝑒𝑎𝑙) = 𝑓(𝑈2) =  𝜎 × (𝑈2)^2 (Eq. 2-7) 

𝜂_𝐶 = 𝑓(𝑀, 𝑈1) = 𝐴 × 𝑀^2 + 𝑓(𝑈1) × 𝑀 +  𝑓(𝑈1^2) (Eq. 2-8) 

 

Equation 2-6 shows the relationship between the discharge pressure and the 

suction pressure of the compressor. The energy supplied during the 

compression process is a function of the rotational speed proportional to the 

radius of the compressor and the compression efficiency determining the energy 

used for the actual pressurization is a function of the compression flow rate and 



 

 59 

the rotational speed of the inlet. Therefore, the enthalpy supplied was calculated 

according to the increasing compressor size. Also, the parameters of equation 

2-8 were estimated from the existing characteristic map. We have modeled a 

new compressor characteristic map on the assumption that the same parameters 

are used. 

The change of the operating point is determined by the operating variables 

determined by the optimization step. In the first stage, the temperature and 

pressure of the stream entering the compressor are determined by the degree of 

heat exchange. Therefore, the variation of the change of the compression flow 

into the 1st stage becomes larger than the 2nd stage. This can be confirmed by 

the degree of change of the operation point. In addition, the operating efficiency 

of the compressor increases as the operating point approaches the surge line. 

As can be seen from the figure, the operating efficiency of the compressor itself 

decreases as the load decreases. Therefore, it would be an important point to 

improve the efficiency of the system by providing a compressor with a 

characteristic map that can operate more efficiently according to the change in 

the operating point. 

 However, the important part of this chapter is the operating of the driving 

point's own profile. Frequent changes of the operating point are one of the 

factors that interfere with the robust operation of the compressor itself. In 

particular, in the case of a compressor which must be operated within a suitable 
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operating range, such frequent and large changes of the operating point are very 

fatal since they increase the likelihood of malfunctioning such as surge. As can 

be seen from the figure below, the system with the design approach that 

considers the load variation has a smaller deviation than the existing design 

approach. This means that the proposed methodology designs a compressor 

system that can operate more robustly. Therefore, it is necessary to design the 

system considering these parts in the design stage, so that the operability of the 

system including the compressor can be improved. 
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Figure 2-10. Operating point profile of 1st stage of compressor along load: left (traditional) & right 

(suggested) 
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Figure 2-11. Operating point profile of 2nd stage of compressor along load: left (traditional) & 

right (suggested)
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CHAPTER 3. Modeling of Industrial-scale 

Multi-stage Compression System using Neural 

Network* 

 

 Introduction 

Compression systems are one of the essential units in chemical processes. In 

general, the primary purpose of a compressor in a compression system is to 

pressurize the target material to the desired pressure, and various types of 

compressor, e.g., centrifugal compressors, reciprocating compressors, rotary 

compressors, etc., are used according to the conditions of a given process 

(Gravdahl & Egeland, 2012). Among them, centrifugal compressors are most 

widely used to compress and supply a significant amount of air and gas at high 

pressures in various chemical processes. They are combined with drivers such 

as steam turbine, gas expander, and electric motor to form air and gas supply 

net- work (Han et al., 2004). In particular, 75–85% of the total electric power 

consumption of the TPA (Terephthalic Acid) process is consumed by the air and 

gas supply network, and the compression system plays an essential role but 

consumes a significant amount of power (Kroschwitz & Howe-Grant, 1991). 

                                                      
* This chapter cites the author’s published journal article: Lee, W., Na, J., Kim, K., 

Lee, C., & Lee, J. (2018). NARX modeling for real-time optimization of air and gas 

compression systems in chemical processes. Computers and Chemical Engineering, 

115, 262-274. 
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Therefore, optimal operation of a compression system is important, and 

many studies have been conducted. Leducq et al. (2006) proposed a predictive 

optimal control algorithm using a non-linear model of the vapor compression 

unit in the refrigeration system. He et al. (1998) constructed a simple low-order 

dynamics model of the vapor compression system and designed the optimal 

MIMO (Multi-input and Multi-output) against disturbances. Also, Romeo et al. 

(2009) conducted a study to minimize the amount of power consumed in carbon 

dioxide multi-stage compression systems in the carbon capture and storage 

(CCS) process. At the core of this optimal operation study is the modeling of a 

compression system, and in particular, a model that accurately predicts total 

energy consumption given the operating condition is required. However, in an 

industrial scale multi-stage compression system, it is impossible to predict the 

performance of a system only through a model based on first-principle 

equations. In the case of a multi-stage system, it is difficult to accurately 

monitor the state of the system because all the variables inside the system 

cannot be precisely sensed. This also poses a challenge for model validation. 

Meanwhile, such a complex first-principle model is also difficult to apply to 

real-time optimization because of its complexity and reliability when key 

parameters are changing in a stochastic manner due to aging, exogenous 

disturbances, etc. To solve these problems, several studies have been conducted 

that design a data-driven black box model of compression system (Ghorbanian 

& Gholamrezaei, 2009; Gresh, 1998; Han & Han, 2003; Xenos et al., 2015). 
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However, these models focus on nonlinear function fitting, especially using a 

feed-forward multi-layer perceptron neural networks structure. Because these 

regression tools are not designed with stochasticity, e.g., aging of equipment 

and time-varying disturbances, in mind, they can suffer from significant 

deviations from the real plant data. 

Basically, an industrial scale multi-stage compression system has a complex 

nonlinearity. This is due to the complex correlation of the unknown state 

parameters of the compression stage and the expansion stage (for power 

generation) that make up the compression system. Thus, the linear modeling 

method using only the input-output of the system is difficult to simulate this 

complex nonlinearity. Furthermore, the state of each stage is also affected by a 

number of stochastic trending factors. Stochastic factors such as aging of 

equipment or external environment affecting the efficiency of the compression 

system tend to be time-dependent in nature. Therefore, in order to design a 

model that accurately predicts the energy consumption of a multi-stage 

compression system, it is necessary to use a nonlinear technique to simulate the 

complex nonlinearity of the system, as well as a modeling method that can 

reflect time-varying factors. In this respect, the purpose of this study is twofold. 

First, we perform regression and prediction of a multi-stage compression 

system in air and gas supply network using Nonlinear Autoregressive 

eXogenous Neural Net (NARX NN) model for time-series data-driven 

modeling. Furthermore, we do not use all the sensor data but perform feature 
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extraction by combining a first principle model with the sensor data. This solves 

the problem of extrapolation and model overfitting. The predictive performance 

of the model is verified by comparing it with the feed-forward multi-layer 

perceptron neural networks and the NARX NN model without feature 

extraction. The second goal is to calculate an optimal operating condition of the 

air and gas supply network consisting of five multi-stage compression systems 

using the NARX NN prediction model. We propose a Real-Time Optimization 

(Puig-Arnavat et al., 2010) strategy that continuously updates the model with 

the optimal operating conditions verified by the actual data and repeatedly finds 

the operating condition at the next time step. This proposed NARX-RTO 

methodology is validated by virtual plant based on actual plant data set. 

 

 Problem Description 

3.2.1. Process description 

Fig. 3-1 shows the schematic structure of the air-gas supply network in a 

commercial TPA manufacturing plant in Korea (Han et al., 2004). This air-gas 

network, which serves to supply a large amount of compressed air and gas, is 

utilized in various chemical processes. The network used in this study consists 

of a total of five multi-stage compression systems, and the configuration of each 

system is summarized in Table 3-1 (Han et al., 2004). The compressed air 

mainly enters the oxidizer to initiate the reaction. More than 90% of the off-gas 
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generated after the reaction is composed of inert high-pressure nitrogen, and 

the expander recovers the electric power from the high-pressure off-gas and 

supplies it to compress the air. The insufficient electric power is supplemented 

by the electric motor. Fig. 3-1 also shows the flow shift between each system 

in the network. This network is operated with a fundamental mass balance 

between the flows into the compressor and expander and the target flow rate 

required for the reaction. 

Fig. 3-2 is a schematic diagram of an n-th multi-stage compression system 

consisting of m compressors and k expanders in the air and gas supply network. 

Humid air enters the first suction stage of the compressor and is pressurized to 

the desired pressure. The compression part consists of several successive 

compression stages and controls the temperature with the existing intercooler 

between each stage. The intercooler serves to minimize the power to the 

compressor by lowering the temperature of the discharged air. The expander 

consists of several expansion stages, and there exists a re-heater between the 

stages to maximize the energy recovery. 
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Figure 3-1. Structure of air & gas supply network 
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Figure 3-2. Scheme of the n-th multi-stage compression system   
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Table 3-1. Configuration of the multi-stage compression systems 

Compression system # 

Number of 

compression 

stages 

Number of 

expansion stages 

Number of electric 

motor 

1 3 2 1 

2 4 2 1 

3 4 2 1 

4 4 2 1 

5 4 0 1 
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3.2.2. Limitations of first-principle models 

In general, the efficiency of the compressor or expander determines the 

pressure and temperature of the stream being compressed or expanded 

(Gravdahl & Egeland, 2012). The above-mentioned efficiencies include the 

mechanical efficiency that occurs in a typical rotating machine and the 

thermodynamic efficiency (adiabatic efficiency, polytropic efficiency, 

isentropic efficiency, etc.) that is determined by the internal mechanism. This 

is an indication of how much of the actual consumption or produced power is 

used for the pressure change of the internal fluid. Therefore, it is essential to 

accurately measure the temperature and pressure of the stream before and after 

compressor (or turbine) to model the efficiency and power consumption of 

compressor (or turbine). However, accurate measurement of the temperature 

and pressure before and after the stage may not yield good predictions because 

existing mathematical models contain many thermodynamic approximations 

(Han & Han, 2003). Furthermore, it is difficult to measure temperature and 

pressure between the stages in multi-stage compression system due to the 

spatial constraints (Han & Han, 2003). Therefore, it is difficult to model the 

inherent characteristic curve of stages and power consumption of each stage 

with rigor for a multi-stage compression system only with the information on 

the inlet of the first stage and the outlet of the last stage.  

To overcome these limitations, data-driven modeling methods based on field 

data have emerged from the existing shortcut model. Gresh (1998) estimated 
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the overall power of a multi-stage compression system using measurement data. 

Ghorbanian and Gholamrezaei (2009) predicted compressor performance map 

using artificial neural networks. Han et al. (2004) also conducted a study to 

predict the power of a multi-stage compression system using neural networks. 

However, the above methodologies do not reflect the dynamic characteristics 

of a system. Future forecasts of the system may depend not only on the 

measurements at the current time but also on those of the past time. Hence, 

model prediction can be improved by including the relevant data at past time 

points rather than simply mapping between the input and output at the current 

time instant. 

3.2.2.1. Variation of system efficiency due to 

disturbance 

Fig. 3-3 shows a simplified schematic of the design methodology of the virtual 

plant model using the commercial simulator, Aspen HYSYS® . The virtual 

plant model used in this study has two purposes. The first is to show the 

efficiency change of the system over time by estimating the temperature and 

pressure between stages, and the second is to verify and overcome the 

overfitting of the designed NARX model. In this section, we try to show the 

relation between the environmental factors and the efficiency change of the 

system by analyzing the difference between the output of the virtual plant 

model and the actual amount of power used. As mentioned above, the efficiency 
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of each stage determines the pressure and temperature of the stream coming out 

of the stage. This means that the compression efficiency and the expansion 

efficiency of each stage can be inversely estimated by estimating the pressure 

and temperature of discharge stream. The design method presented in Fig. 3-3 

uses an algorithm that determines the temperature and pressure between the 

stages to minimize deviation from the actual output data. Since this virtual plant 

model is not intended to find the exact system efficiency but to see the system 

efficiency change over time, we apply two assumptions for the convergence of 

the algorithm. Typical compressors and expanders operate within a reasonable 

pressure ratio range, and the efficiency of the system mainly affects the 

temperature of the discharge stream. Therefore, by using the assumption that 

the pressure changes in each stage are the same, the degree of freedom in the 

design phase is reduced and the convergence of the algorithm is increased. Also, 

the deviation constraint was chosen to be within the appropriate range (30 kW) 

because it was aimed to see the approximate tendency. First, this virtual plant 

model was designed using the first measured data value after the plant operation. 

The temperature and pressure between the stages determined at this time mean 

the internal state of the system at the beginning of the operation and are fixed 

to see only the influence of the external environment. And then, the operation 

data of the process according to time is substituted into this initial model. 

Generally, the offset occurring between the virtual plant model and the actual 

plant arises from complex factors such as changes in internal parameters and 
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external environment. Therefore, the internal state of the system needs to be 

fixed according to time. This type of analysis requires a lot of assumptions, but 

the approximate trend of the system's impact on disturbance such as external 

temperature and humidity can be seen. By comparing the offset and external 

trends in time, we select external factors to be reflected in the design of NARX 

model.  

Fig. 3-4 shows the time-dependent trends of power consumption of the virtual 

plant model and the actual power consumption trend. Fig. 3-4 also shows the 

trends of the offset between the virtual plant and the actual plant and the change 

in the external temperature on the same graph. It is not known precisely which 

function it is, but there seems to be some correlation between the two, assuming 

that the behavior between offset and external temperature over time is similar. 

Also, even if the system is operated under the same external conditions, it can 

be seen that the effect on the actual system varies with time. In other words, it 

can be seen that the multi-stage compression system is influenced by the 

external environmental conditions, and the degree of influence varies in time. 

In this study, it is assumed that the external environmental conditions affecting 

the compression system efficiency are the external temperature and the external 

humidity. External humidity, which does not have a clear trend over time 

because of a severe fluctuation, is difficult to analyze using the same 

methodology and was not addressed in this section. However, temperature and 

humidity basically have the same tendency depending on the season, and even 
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if the external temperature is the same, it can be confirmed that the same amount 

of electricity is not consumed. So, the external humidity is also selected as an 

external disturbance variable that changes the machine operation efficiency. Fig. 

3-5 shows the difference between the amount of power used in the model of the 

2nd, 3rd, 4th and 5th multi-stage compression system and the amount of power 

used in the actual plant. This confirms that the model-plant offset is affected by 

the change in external temperature in Fig. 3-4. It also shows that each system 

has different external disturbance influence functions. Therefore, modeling that 

accurately reflects different influence functions for each system is necessary for 

the operation of the network.  



 

 76 

 

 

 

 

Figure 3-3. Temperature and pressure estimation algorithm for virtual 

plant design from real operation data  
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Figure 3-4. Motor power consumption trend of first compression system of actual plant and virtual plant & 

Comparison of offset and external temperature trends  
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Figure 3-5. Model-plant offset in 2nd to 5th multi-stage compression system 
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3.2.2.2. Efficiency of a system that decreases with time  

In general, the operating efficiency of a process unit is reduced from the 

initial design over time. In particular, if a compressor is kept operating without 

maintenance, the blade is damaged from corrosion and aging, and the 

compression efficiency is decreased (Kurz & Brun, 2012). Fig. 3-6 shows the 

total pressure ratio value for the volume flow into the compressor at the time of 

consumption of the same power during the total operating time of 16,000 hrs in 

the first multi-stage compression system. It can be seen that even if the same 

flow rate is introduced over time, it has a lower head value. In order to see only 

the effect of deterioration over time, a comparison between data with the same 

external conditions is required. Therefore, we use the operation data (1 ~ 

2000hr) in the summer of the first year of operation and the operation data 

(around 16000hr) in the summer of the next year. Since these two sections 

correspond to both ends of the operating data handled, it is believed that the 

effect of decreasing efficiency over time is most clearly shown. In addition, Fig. 

6 shows the operating points with the same operating conditions at a specific 

time, and it can be seen that as the time elapses, more power is consumed with 

the same operating condition. 

Therefore, the amount of power used in a multi-stage compression system 

cannot be regarded as a function of a manipulated input only. The external 

disturbance and the aging of the system cause the difference between the model 
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and the actual plant operation, and it is necessary to construct the model 

including these parameters that change with time. The model structure for 

predicting the power consumption of a multi-stage compression system based 

on the analysis in 2.2.1 and 2.2.2 is shown in Fig. 3-7. 𝑥1 is the manipulated 

variable of the multi-stage compression system. 𝑔𝑐  and 𝑔𝑒  mean 

thermodynamic equations to compute the ideal power of the compressor and 

expander according to the manipulated variable. Function h and f are virtual 

functions representing the external disturbance effect and the aging effect, 

respectively. The first principle model based on thermodynamic equations is 

basically limited in that it can not take into account the influence of unknown 

factors. Also, when applied to a target process that lacks information on the 

interstage, it can not design each stage model, and thus shows a large deviation 

from the actual plant. Furthermore, since it is impossible to quantitatively 

analyze unknown factors such as external disturbance and aging of equipment 

using only operation data, it is difficult to extract virtual functions h and f 

independently. Therefore, the empirical model combined with the NARX is 

used in this study because it can more accurately reflect the unmeasurable 

information and the unknown nature of the system. The neural-net type 

surrogate model including the NARX structure automatically extracts the 

nonlinear features of the unknown factors from the operation data to construct 

the latent space. In particular, the NARX model is known to have strengths in 
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complex nonlinearity modeling as well as time-series data prediction. However, 

this surrogate model is difficult to analyze the physical meaning of each latent 

space due to the existence of hidden layer, and therefore, the robustness of the 

model is questionable in designing the model for prediction. To solve this 

problem, we designed a structure that can more effectively reflect the 

characteristics of the system in which the first principle is embedded by 

extracting features of input through thermodynamic equations rather than using 

all manipulated variables. The NARX model using this feature extraction can 

effectively overcome the limitations of the existing first principle model by 

learning the effects of these stochastic factors on their own and show excellent 

prediction performance. 
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Figure 3-6. Amount of power input over time with the same operating condition & Compressor operating map with 

the same work input. 
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Figure 3-7. Model structure to reflect external disturbance effect and aging of equipment over time. 
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 Long Term Prediction using NARX model 

In this study, we estimated the power of five multi-stage compression 

systems using Nonlinear Autoregressive eXogenous Neural Net (NARX NN) 

model. In general, basic neural net has been widely applied as a data-driven 

modeling method for designing black box models of chemical processes (Azlan 

Hussain, 1999; Haykin, 1994). However, most chemical processes have 

dynamic characteristics, and the compression system of air & gas network also 

shows temporal changes in the overall efficiency. Therefore, in order to design 

a rigorous prediction model of multi-stage compression system, Recurrent 

Neural Net methodology applicable to modeling time series data should be 

considered. However, since the basic RNN methodology has a disadvantage 

that the gradient is lost through a large number of hidden layers, it has a 

limitation in applying it to long-term prediction. NARX NN has been known to 

have excellent performance in long-term prediction of time series data because 

it does not have the issue of gradient loss of existing basic RNN (Menezes & 

Barreto, 2008; Ruiz et al., 2016; Tsungna et al., 1996). This is due to the 

structural advantages of NARX, where the output data goes directly into the 

input without going through the layer. 

 The hidden layer inside the NARX model extracts the information from the 

output and input of the operation data to create an arbitrary feature. The 

existence of these arbitrary features can overcome the limitations of the existing 
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first principle model because it can reflect the stochastic nature of the process 

that the output and input data contain. However, even if this stochastic nature 

is reflected, the data-driven black box model including the NARX model 

basically has a disadvantage that it is vulnerable to extrapolation (Psichogios & 

Ungar, 1992). For a neural net based model, this problem is in the randomness 

of the model that results from the creation of arbitary feature. In this study, we 

designed the feature extraction method that reduces the input dimension using 

the first-principle equations to minimize the randomness of the NARX model 

and to improve the long-term prediction performance. This first principle 

equation based on thermodynamics extracts the thermodynamic relationship of 

the manipulated variables of the process and creates a new input set. By 

transferring the extracted input set including the thermodynamic information of 

this chemical process to the NARX model, the randomness of the model can be 

minimized. This is a complementary form of a first principle model and a 

NARX model, and is particularly suitable for chemical processes that can be 

used to find basic relationships. The NARX model combining these feature 

extraction methods not only improves long-term prediction performance but 

also overcomes the problem of model overfitting.  

3.3.1. First principle based feature extraction 

The neural network modeling method may suffer from undue extrapolation 

problems and lead to unacceptable performance compared to linear function 
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approximation methods due to the over-fitting. To overcome these drawbacks, 

a new training input was designed by extracting the features of the original input 

using first-principle thermodynamical equations. Table 2-2 shows the raw input 

set and the input set after feature extraction for each multi-stage compression 

system. 𝑊𝑛,𝑐
𝑖𝑑𝑒𝑎𝑙  is the minimum power consumed by the compressor of the nth 

compression system. It is assumed that the pressure ratio of each stage is kept 

constant, the temperature before and after the stage is constant at all stages, and 

the pressure drop does not occur in the compressor and other auxiliary 

components. 𝑊𝑛,𝑒
𝑖𝑑𝑒𝑎𝑙  is the ideal power produced by the expander of the nth 

compression system. The expansion ratio between stages is kept constant, the 

temperature and pressure are the same before and after the stage, and the 

discharge pressure at the last stage is assumed to be atmospheric pressure. The 

feature extraction of the input is calculated using equations (1) and (2) from 

(Gravdahl & Egeland, 2012; Han & Han, 2003), and the ASPEN 

thermodynamic data was used given the raw input data sampled every hour. As 

mentioned in Section 2, the difference between the simple thermodynamic 

model and the actual plant is due to the temperature difference between the 

unmeasurable stages, the effect of external disturbance, and the system aging. 

The feature extraction through thermodynamic models allows the neural net 

model to focus on the offset caused by these factors. 
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𝑊𝑛,𝑐
𝑖𝑑𝑒𝑎𝑙 =

𝑁𝐶�̃�𝑎𝑖𝑟�̃�𝑐𝑅𝑇𝑎𝑚𝑏

(�̃�𝑎𝑖𝑟 − 1)�̃�𝑎𝑖𝑟

[(
𝑃𝑛,𝐶𝑚_𝑜𝑢𝑡

𝑃𝑎𝑚𝑏
)

(�̃�𝑎𝑖𝑟−1)/𝑁𝐶�̃�𝑎𝑖𝑟

− 1] (Eq. 3-1) 

𝑊𝑛,𝑒
𝑖𝑑𝑒𝑎𝑙 =

𝑁𝑒�̃�𝑔𝑎𝑠�̃�𝑔𝑅𝑇𝑎𝑚𝑏

(�̃�𝑔𝑎𝑠 − 1)�̃�𝑔𝑎𝑠

[(
𝑃𝑎𝑚𝑏

𝑃1,𝑒𝑘_𝑖𝑛
)

(�̃�𝑔−1)/𝑁𝑒�̃�𝑔

− 1] (Eq. 3-2) 
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Table 3-2. Raw input training set and extracted input training set 

Compression system # Raw input set Input set after feature extraction 

1 
𝑉1,𝑐, 𝑇1,𝑎𝑚𝑏 , 𝑃1,𝐶3𝑜𝑢𝑡

, 𝐻1,𝑎𝑚𝑏 , 𝑉1,𝑒 , 𝑇1,𝑒1𝑖𝑛
 

𝑇1,𝑒2𝑖𝑛
, 𝑃1,𝑒1𝑖𝑛

, 𝛾1,𝑜2, 𝛾1,𝑐𝑜2, 𝛾1,𝑐𝑜 
𝑊1,𝑐

𝑖𝑑𝑒𝑎𝑙 , 𝑊1,𝑒
𝑖𝑑𝑒𝑎𝑙 , 𝑇1,𝑎𝑚𝑏 , 𝐻1,𝑎𝑚𝑏 , 𝑇1,𝑒2𝑖𝑛

 

2 
𝑉2,𝑐 , 𝑇2,𝑎𝑚𝑏 , 𝑃2,𝐶4𝑜𝑢𝑡

, 𝐻2,𝑎𝑚𝑏 , 𝑉2,𝑒, 𝑇2,𝑒1𝑖𝑛
 

𝑇2,𝑒2𝑖𝑛
, 𝑃2,𝑒1𝑖𝑛

, 𝛾2,𝑜2, 𝛾2,𝑐𝑜2, 𝛾2,𝑐𝑜 
𝑊2,𝑐

𝑖𝑑𝑒𝑎𝑙 , 𝑊2,𝑒
𝑖𝑑𝑒𝑎𝑙 , 𝑇2,𝑎𝑚𝑏 , 𝐻2,𝑎𝑚𝑏 , 𝑇2,𝑒2𝑖𝑛

 

3 
𝑉3,𝑐 , 𝑇3,𝑎𝑚𝑏 , 𝑃3,𝐶4𝑜𝑢𝑡

, 𝐻3,𝑎𝑚𝑏 , 𝑉3,𝑒, 𝑇3,𝑒1𝑖𝑛
 

𝑇3,𝑒2𝑖𝑛
, 𝑃3,𝑒1𝑖𝑛

, 𝛾3,𝑜2, 𝛾,𝑐𝑜2, 𝛾3,𝑐𝑜 
𝑊3,𝑐

𝑖𝑑𝑒𝑎𝑙 , 𝑊3,𝑒
𝑖𝑑𝑒𝑎𝑙 , 𝑇3,𝑎𝑚𝑏 , 𝐻3,𝑎𝑚𝑏 , 𝑇3,𝑒2𝑖𝑛

 

4 
𝑉4,𝑐, 𝑇4,𝑎𝑚𝑏 , 𝑃4,𝐶4𝑜𝑢𝑡

, 𝐻4,𝑎𝑚𝑏 , 𝑉4,𝑒, 𝑇4,𝑒1𝑖𝑛
 

𝑇4,𝑒2𝑖𝑛
, 𝑃4,𝑒1𝑖𝑛

, 𝛾4,𝑜2, 𝛾4,𝑐𝑜2, 𝛾4,𝑐𝑜 
𝑊4,𝑐

𝑖𝑑𝑒𝑎𝑙 , 𝑊4,𝑒
𝑖𝑑𝑒𝑎𝑙 , 𝑇4,𝑎𝑚𝑏 , 𝐻4,𝑎𝑚𝑏 , 𝑇4,𝑒2𝑖𝑛

 

5 𝑉5,𝑐, 𝑇5,𝑎𝑚𝑏 , 𝑃5,𝐶4𝑜𝑢𝑡
, 𝐻5,𝑎𝑚𝑏 𝑊5,𝑐

𝑖𝑑𝑒𝑎𝑙 , 𝑇5,𝑎𝑚𝑏 , 𝐻5,𝑎𝑚𝑏 
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3.3.2. NARX modeling 

After eliminating the outlier of the actual operation data of the air & gas 

network for about 3 years, the data were divided into a training set, validation 

set, and prediction set. The first purpose of the compression system operation 

is to pressurize the gas to be compressed to a desired pressure. If the discharged 

pressure does not maintain a certain level or fluctuates, it is considered that 

there is an abnormal operation or a change between steady states. Therefore, 

the operation data of the shut-down section in which the discharged pressure 

greatly falls and the operation data of the section in which the pressure value 

oscillates due to the shift of the state of the system are set as outliers and 

removed from the training data set. This is the reason five multi-stage 

compression systems have different numbers of data even though they are at 

the same time point. Table 3-3 shows the number of data per set in each multi-

stage compression system. The NARX model is trained by the Levenberg-

Marquardt backpropagation algorithm and has a test set and a validation set for 

model self-validation. The default rates are 70:15:15 for training, validation, 

and test, respectively. The prediction set is a data set for verifying the predictive 

performance of the model and consists of the data of the latter part of the 

process operation data. Specifically, of the data sets with outliers removed, the 

first 10000 data points were used as the training set, validation set, and test set. 

The extrapolation performance of the model was verified by selecting 500 data 

points that were not used in the modeling. In the case of the fifth compression 
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system, the number of data used for modeling is smaller than that of the 

compression system due to frequent interruptions such as shutdown. However, 

since it is a relatively simple system without an expander compared to others, 

the number of data points are enough for modeling.  

NARX (Ç oruh et al., 2014; Menezes & Barreto, 2008; Tsungna et al., 1996) 

is a class of discrete-time nonlinear system in the general form of 

𝑦𝑡 = 𝑓(𝑢𝑡, 𝑢𝑡−1 ⋯ 𝑢𝑡−𝑑𝑢
, 𝑦𝑡−1, 𝑦𝑡−2 ⋯ 𝑦𝑡−𝑑𝑦

) (Eq. 3-3) 

where 𝒚𝒕−𝒅𝒚
, 𝒖𝒕−𝒅𝒖

 are the electric motor power output and the inputs after 

feature extraction, respectively, at the delayed time points. As mentioned in 

Introduction, the objective of this study is to present the optimal operating 

condition of the next time step through nonlinear multivariate time series 

prediction with NARX model. Therefore, during the training phase, the 

compressed input at time t is included, but at the optimization stage, the input 

at time t is the optimization variable. Fig. 3-8 shows NARX network mapping 

performance by Multilayer Perceptron (MLP) with 𝒅𝒖, 𝒅𝒚  and one-hidden 

layer. MLP is a class of feedforward artificial neural network. NARX model 

has a single input and a single output, with a delay line on the inputs, and the 

outputs fed back to the input by another delay line. Thus, the structure of the 

NARX model can be expressed in the form of a multilayer perceptron with a 

feed-back connection. 
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Figure 3-8. NARX network with delayed inputs, delayed outputs and current input with one hidden layer  

(𝒛−𝟏 = backward time shift operator) 
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Table 3-3. The number of data in the training and prediction sets for each compression system 

Compression system # 
Number of data in training set 

, validation set, and test set) 
Number of data in prediction set 

1 7000, 1500, 1500 500 

2 7000, 1500, 1500 500 

3 7000, 1500, 1500 500 

4 7000, 1500, 1500 500 

5 3500,750,750 500 
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 Real-time Optimization 

Fig. 3-9 shows the structure of NARX-RTO for multi-stage compression 

system. The NARX model of a total of five multi-stage compression systems 

in the air & gas network predicts the amount of power according to the input 

set after feature extraction and the external disturbance information at the next 

time step. The optimization step determines the raw input set that minimizes 

the amount of power expected at the next time step if the external disturbance 

value is measured. Once the raw input sets of the future time steps and their 

outputs are determined, the data is validated through the virtual plant and then 

the model is retrained using the output from the virtual plant to update the 

model at each specified time step. When a new data set is available, the existing 

initial data is removed and the number of data to be trained is maintained. This 

avoids excessive modeling time with a steady increase in the number of training 

data. It also allows the model to reflect the characteristics of the system better 

that the new incoming data contains. Virtual plant design used the same method 

as mentioned in Section 3.2.2.1. The compression stage and the expansion stage 

in the multi-stage compression system have different states for each stage. 

Accurate dynamic simulation for each stage requires reliable information on 

the degraded mechanical efficiency, the effect of external disturbance, the 

rotational speed of the compressor and the expander, etc. However, most of 

such information is difficult to obtain, which limits the rigorous design of a 
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detailed virtual model of the multi-stage compression system. To overcome 

these limitations, we design a concise virtual plant model with iterative updates. 

First, the temperature and pressure before and after each stage at the 

optimization step are determined using the actual operation data which may not 

be optimal. After determining the temperature and pressure values before and 

after the stage at the optimization stage, the optimized raw input set is input to 

the virtual plant again, and the total power of each system is calculated and 

compared with the result of the NARX-RTO model. The validation and 

correction of the optimization result through the virtual plant prevents 

overfitting that may occur in the modeling stage. For the more accurate design 

of RTO system, the iterative update must be performed through the actual plant. 

However, this study was performed through the virtual plant using the 

commercial simulator because actual plants were not available for validation of 

the optimization results. 

In this study, the prediction window is set to 1(hour) and real-time 

optimization is performed. Generally, the larger the prediction window, the 

more optimal result can be obtained because the operating conditions at the next 

time can be determined based on the accurate trend of the system. However, the 

proposed model does not consist solely of manipulated variables (flow, 

temperature, pressure, etc.) of the system but includes unknown external 

disturbance variables (external temperature and humidity). This means that to 

expand the prediction window requires another model that can predict future 
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external disturbance changes. The presence of another prediction model can 

cause the uncertainty of the model, which can reduce the robustness of the 

model. Also, in the case of external temperature and humidity, a large trend can 

be expected qualitatively, but it is difficult to get accurate values on a time scale. 

Therefore, in this study, we set the prediction window to 1hr assuming that the 

value of the external disturbance variables at the next time step to be predicted 

is the same as the value measured at the current time without designing a 

separate external disturbance prediction model. The changes in the external 

temperature and humidity over an hour are negligible, and the compressors and 

expanders of the compression system covered in this study have their own 

power ranges, so there is no significant trend change in the output of the system.  
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Figure 3-9. NARX-RTO structure 
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3.4.1. Optimization formulation 

The goal of optimization is to minimize the total power consumption of the 

five multi-stage compression systems. 

  

 min
𝑋𝑜𝑝𝑡=[𝑥1,𝑥2,⋯,𝑥32]

𝑊𝑛,𝑚𝑜𝑡𝑜𝑟_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = f(𝑋𝑜𝑝𝑡) (Eq.3-4) 

such that 

A𝑋𝑜𝑝𝑡 = 𝑏 (Eq.3-5) 

𝑋𝑜𝑝𝑡,𝐿 ≤ 𝑋𝑜𝑝𝑡 ≤  𝑋𝑜𝑝𝑡,𝑈 (Eq.3-6) 

𝑊𝑛,𝑀,𝐿 ≤ 𝑊𝑛,𝑀 ≤ 𝑊𝑛,𝑀,𝑈,    n = 1,2,3,4,5 (Eq.3-7) 

𝑃𝑛,𝑐𝑚𝑜𝑢𝑡
≤ 𝑉𝑛,𝑐 × 𝛼𝑛,𝑐𝑠𝑢𝑟𝑔𝑒

+ 𝛽𝑛,𝑐𝑠𝑢𝑟𝑔𝑒
    n = 1,2,3,4,5 (Eq.3-8) 

𝑃𝑛,𝑐𝑚𝑜𝑢𝑡
≥ 𝑉𝑛,𝑐 × 𝛼𝑛,𝑐𝑠𝑡𝑜𝑛𝑒𝑤𝑎𝑙𝑙

+ 𝛽𝑛,𝑐𝑠𝑡𝑜𝑛𝑒𝑤𝑎𝑙𝑙
 n = 1,2,3,4,5 (Eq.3-9) 

𝑃𝑛,𝑒1𝑖𝑛
≤ 𝑉𝑛,𝑒 × 𝛼𝑛,𝑒𝑠𝑢𝑟𝑔𝑒

+ 𝛽𝑛,𝑒𝑠𝑢𝑟𝑔𝑒
   n = 1,2,3,4,5 (Eq.3-10) 

𝑃𝑛,𝑒1𝑖𝑛
≥ 𝑉𝑛,𝑒 × 𝛼𝑛,𝑒𝑠𝑡𝑜𝑛𝑒𝑤𝑎𝑙𝑙

+ 𝛽𝑛,𝑒𝑠𝑡𝑜𝑛𝑒𝑤𝑎𝑙𝑙
  n = 1,2,3,4,5 (Eq.3-11) 

 

X_opt is an optimization variable vector to be determined. It contains most 

of the variables except the discharge pressure of the compression system and 

the suction pressure of the expansion system, which must be determined by the 

user among manipulated variables present in the air & gas supply network. 

Equation (3-5), including A and b, represents the mass balance of the air & gas 
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supply network consisting of five compressors and four expanders. The total 

amount of air and gas supplied is kept constant even if the flow rate changes 

due to optimization. Equation (3-6) shows the lower and upper bounds of all 

the optimization variables. Table 3-4 shows the lower and upper bounds of each 

variable. Equation (3-7) represents the appropriate operating range of the 

existing motor in the compression system. Equations (3-8) - (3-11) constrain 

the operation range of compressors and expanders. This is to prevent the surge 

phenomena that damage blades due to the backflow if the flow rate drops below 

a certain level and the stonewall phenomena that occur when operating above 

a certain level (Botros et al., 2000; Jung et al., 2017). The parameters of each 

equation were estimated from the characteristics map of the compressor and 

expander supplied by the vendors. The GA algorithm is the most common meta-

heuristic algorithm and has been successfully applied to various chemical 

process optimization problems (An et al., 2018; Lee et al., 2016; Na et al., 2017). 

Therefore, the GA algorithm is used to solve the global optimization problem 

including the linear and non-linear constraints. For the GA, 50 populations, 0.8 

of the crossover fraction, and 20 of the maximum generation were used. The 

GA algorithm stops if the average relative change in the best fitness function 

value over stall generation value is less than or equal to TolFun (default value 

1e-6) or the number of generations has reached the maximum generation value. 

The parameters of this GA algorithm were selected considering the 

convergence and reproducibility based on the results of previous studies. The 
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optimization was carried out using Aspen Plus v8.8 and MATLAB R2016a on 

a desktop computer with Intel® Core™ i5-4590 CPU at 3.30 GHz and 6 GB 

RAM running Window 10.  
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Table 3-4. Lower & upper bounds of the optimization variable 

# of 

variable 

Optimization 

variable 

Lower 

bound 

Upper 

bound 

# of 

variable 

Optimization 

variable 

Lower 

bound 

Upper 

bound 

1 𝑉1,𝐶 50 71.1 17 𝑉4,𝑒 40 88.8 

2 𝑉2,𝐶 61.5 64.6 18 Gi(1). 0 8 

3 𝑉3,𝐶 50 82.9 19 Gi(2) -50 60 

4 𝑉4,𝐶 50 82.7 20 Gi(3) 0 60 

5 𝑉5,𝐶 25 36.5 21 Gi(4) 0 60 

6 Ai(1) 0 5 22 Gi(5) 0 120 

7 Ai(2) 0 30 23 Gi(6) 0 10 

8 Ai(3) -30 30 24 Gi(7) 0 10 

9 Ai(4) 0 7 25 𝑇1,𝑒1𝑖𝑛
 409 415 

10 Ai(5) 0 5 26 𝑇2,𝑒1𝑖𝑛
 400 425 

11 Ai(6) 0 5 27 𝑇3,𝑒1𝑖𝑛
 405 425 

12 Ai(7) 0 5 28 𝑇4,𝑒1𝑖𝑛
 408 417 

13 Ai(8) 0 5 29 𝑇1,𝑒2𝑖𝑛
 412 417 

14 𝑉1,𝑒 39.9 40.1 30 𝑇2,𝑒2𝑖𝑛
 412 416 

15 𝑉2,𝑒 23.6 50 31 𝑇3,𝑒2𝑖𝑛
 395 412 

16 𝑉3,𝑒 40 85 32 𝑇4,𝑒2𝑖𝑛
 418 428 
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 Result and Discussion 

3.5.1. Long-term prediction performance 

Fig. 3-10 shows the prediction performance of the five compression systems 

in the air & gas network. The prediction window is 500 hr each, which is outside 

the range of data used for modeling. We compare three modeling methods: 

Simple feed-forward multi-layer perceptron using raw input set without the 

input feature extraction, NARX NN using raw input set, and NARX NN using 

the input set through feature extraction. Fig. 3-10 shows that the prediction 

performance of the NARX with the feature extraction model is superior in all 

compression systems. However, performance differences with the basic neural 

net model for the 1st, 2nd, 3rd, and 4th multi-stage compression systems are 

remarkable, whereas the 5th multi-stage compression system has relatively 

small differences (NARX + feature selection methodology compared to simple 

feed-forward multilayer perceptron modeling = 1st – 67%, 2nd-56%, 3rd-65%, 

4th-44%, 5th-28%). This is attributable to the simple structure of the fifth multi-

compression system without an expander. In the case of the first to fourth multi-

compression systems, characteristics change with time in both the compressor 

and the expander inside the system. On the other hand, the characteristic change 

of the fifth system occurs only in the compressor. This difference of structure 

causes a difference in prediction performance improvement. In this regard, it is 

necessary to use the proposed method using NARX NN with the feature 

extraction for modeling complex compressor networks. Also, five multi-stage 
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compression systems exhibit different prediction performance improvements. 

This means that even with similar systems the efficiency change in time can be 

different. The efficiency reduction rate due to the aging process of each stage 

in the compressor and expander cannot be constant, and the external 

disturbance does not always have the same effect on all stages due to the 

mechanical factors that change instantaneously depending on the operating 

conditions of the stage. 

In the case of simple feed-forward multilayer perceptron modeling, the mean 

square prediction error is 300% compared to the case using the NARX NN 

modeling method. Also, the results of the simple feed-forward multilayer 

perceptron methodology in all multi-stage compression models of the target 

process show a tendency to predict the amount of power lower than the actual 

operating results. This is because the model does not correctly learn the 

difference between the efficiency of the system at the training time and that of 

the system at the prediction time. The efficiency at the time of forecast is 

expected to be lower than that of the past due to the aging of the system, ambient 

temperature, and humidity. The simple feed-forward multilayer perceptron 

model does not learn such a decreasing trend properly, leading to the poor 

prediction of the required amount of electricity. Modeling with neural networks 

can be disadvantageous in that the user cannot accurately understand the 

physical meaning of the weighting parameters of hidden layers. Therefore, we 

cannot accurately analyze the cause of the difference in prediction performance. 
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This makes it difficult to analyze the cause of the difference in prediction 

performance. However, a model should reflect stochastic factors affecting the 

system efficiency in time, NARX model structure is appropriate for modeling 

the system in this regard. 

Taking advantage of the existing first-principle relations in constructing the 

NARX model for selecting input feature could prevent the overfitting and show 

better prediction performance. In general, the performance of a neural net based 

model with training and validation sets, which are often chosen randomly. This 

is because many modeling parameter sets give satisfactory fitting performances 

with more number of input variables than that of the output variables. The 

model parameters are determined by arbitrarily selected training and validation 

sets, which may lead to overfitting and incorrect model parameters if the data 

sets were poorly divided. Using the input set through feature extraction can 

reduce the effect of overfitting owing to the reduced dimension. Moreover, 

since the feature extraction is based on the thermodynamic model of the 

compressor and expander, NARX model is responsible for only the offset that 

is occurring due to the effects of disturbance and the aging of the system over 

time. As a result, the NARX model with feature extraction could reduce Mean 

Squared Error (MSE) by 20% on average compared to the NARX model 

without feature extraction and by 43.5% on average compared to the simple 

feed-forward multilayer perceptron model without feature extraction. The MSE 

of each modeling method for five multi-stage compression systems is 
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summarized in Table 3-5. In conclusion, time series modeling, which combines 

the proposed NARX model with feature extraction based on the first principle 

model, can achieve dramatic improvements in model performance compared to 

simple nonlinear fitting when applied to various dynamic systems operating in 

the field.  
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Figure 3-10. Prediction performance comparison of 1st~5th multi-stage 

compression system 
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Table 3-5. Mean squared error between modeling methodology and actual operating value 

Model 

1st 

compression 

system 

2nd 

compression 

system 

3rd 

compression 

system 

4th 

compression 

system 

5th 

compression 

system 

Simple NN+ 

no feature 

selection 

10338.95

8 
2653.705 11378.31 4725.647 1179.428 

NARX+ 

no feature 

selection 

6065.407 1597.852 4565.14 3046.706 899.2753 

NARX+ 

feature 

selection 

3404.824 1150.069 3953.58 2635.378 842.8104 
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3.5.2. NARX-RTO result using virtual plant model 

Fig. 3-11 shows trend lines in the prediction window of total power 

consumption during actual operation and the results of the NARX-RTO model. 

It also shows the accuracy of the virtual plant design and the verification of the 

optimization results through the output of the virtual plant according to the 

actual input conditions and the optimal input conditions derived by the NARX-

RTO. As a result, an average of 4% (about 1400 kW) of power can be saved 

based on virtual plant results over 52 hours. The integrated NARX model 

updates every 5 hours and requires about 5 minutes of calculation time. Hence, 

the real-time update is not an issue when applied to an actual plant. The NARX 

model developed in this study estimates the output of the next time step by 

using the 5 hour-delayed input set and the output set. Accordingly, we updated 

the model every 5 hours. The virtual plant designed with actual data shows an 

average accuracy of 99.6%, and the virtual plant and NARX-RTO model with 

the optimized raw input set has an average accuracy of 98.3%. In addition, we 

use the result of the virtual plant designed by actual plant data instead of using 

the result of the model itself in the optimization and model update stage at the 

next time step. In this way, it was possible to remedy the inaccuracies of the 

NARX-RTO that occurred at the beginning of the model update.  

Table 3-6 also shows the variation of the optimization variables in the 

prediction window of 1 hr (ambient temperature = 298 K, ambient humidity = 

74.2%) and prediction window of 52 hrs (ambient temperature = 305 K, 
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ambient humidity = 68.8%). The flow rates for the first and second compressors 

were reduced, and the flow rates through the third and fourth compressors were 

increased. This results in lowering the flow rate of the system with relatively 

low compression efficiency and increase the flow rate of the system with 

relatively high efficiency within a level satisfying the basic mass balance of the 

system according to a given external disturbance condition. The model of each 

system designed by the NARX NN modeling method predicts the output and 

parameters given the past input and output data. The predicted parameters are 

difficult to measure such as the temperature between the compression stages, 

the rotational speed of each stage, the friction loss, etc. The change in the flow 

distribution between the compressors comprehensively calculates the effect of 

the predicted parameters, external disturbance and the aging effect over time. 

This makes it possible to generate a minimum amount of power under given 

conditions. Basically, in the prediction window 1 and 52 hrs, the increase in the 

flow rate of the multi-stage compressor of the third compression system is the 

largest. This means that the compression efficiency of the third system is the 

highest. If the mass balance was no longer able to increase the flow rate of the 

third system, it could be seen that the flow rate of the fourth system was 

increased. On the contrary, the system with the lowest internal efficiency of the 

compressor is the first compression system, which shows that the flow rate is 

the most reduced. The nature of the data-driven model based on the neural net 

does not reveal the exact proportion of internal parameter influences, external 
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disturbance effects, and system aging effects on the overall change of efficiency. 

However, it can be deduced that the influence of the internal parameter is the 

greatest in that the amount of flow movement due to the change of the 

prediction window is smaller than the flow amount of movement due to the 

optimization. As the prediction window changes from 1 hour to 52 hours, the 

external disturbance value changes and the efficiency decreases due to aging. It 

can be seen that more amount of flow at 52 hours enters the fourth system and 

the flow at the second system decreases. This is the result of the NARX-RTO 

learning the characteristics of the system according to changes in external 

conditions and time, and arranging the flow rate into a system with better 

efficiency.  

Similarly, in the case of the expander, the flow rate to the expander of the 

second and fourth systems increases and the flow rates of the first and third 

systems decreases. These changes show that the NARX model predicts that the 

expanders in the second and fourth systems have higher efficiency than the 

expanders in the first and third systems, and this is also the result of training the 

factors such as the internal state of the system, the influence of external 

disturbance, etc. Unlike the compressor, the expander has raw measurement 

data for each stage so that it can be used for model training and the optimal 

temperature for each stage can be determined. Therefore, the efficiency 

difference between stages can be analyzed through the optimal temperature of 

the off-gas entering each stage of the multi-stage expander calculated by 
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NARX-RTO. The most notable result is the multi-stage expander of the third 

system, in which the inlet temperature of stage 1 is increased, and the inlet 

temperature of stage 2 is reduced compared to the results before optimization. 

This means that the efficiency of the first stage is relatively higher than that of 

the second stage, and thus produces power through a relatively large 

temperature difference in the first stage with high efficiency and produces the 

minimum power in the second stage with low efficiency.  
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Figure 3-11. Result of NARX-RTO & validation.



 

 112 

 

 

Table 3-6. Comparison of optimization variables before and after NARX-

RTO 

Opt 

variab

le 

Before 

optimizati

on 

After optimization 

(t=1hr,temp=298K,humidity=

74.2%) 

After optimization 

(t=52hr,temp=305K,humidity=

68.8%) 

1 71.10  66.20  66.20  

2 65.70  64.60  64.25  

3 75.90  82.90  82.90  

4 80.90  82.30  82.65  

5 36.30  36.50  36.50  

6 0.30  0.00  0.00  

7 15.50  13.60  13.60  

8 0.20  2.10  2.10  

9 3.60  1.80  1.80  

10 0.00  0.00  0.00  

11 3.20  5.00  5.00  

12 2.10  2.10  2.10  

13 0.00  0.00  0.00  

14 40.00  39.90  39.90  

15 22.40  25.53  25.10  

16 76.20  74.97  75.40  

17 87.50  88.50  88.50  

18 5.10  5.10  5.10  

19 28.20  29.93  29.50  

20 2.50  2.30  2.30  

21 41.70  41.90  41.90  

22 108.00  108.20  108.20  

23 9.60  10.00  10.00  

24 7.10  6.70  6.70  

25 411.00  409.00  409.00  

26 425.00  425.00  425.00  

27 419.00  425.00  425.00  

28 416.00  417.00  417.00  

29 416.00  416.72  416.32  

30 415.00  412.00  412.00  

31 415.00  395.00  395.00  

32 418.00  418.00  418.00  

 



 

 113 

CHAPTER 4. Design of Control System for 

Parallel Compression System† 

 

 Introduction 

Centrifugal compressors are one of the most important equipment in 

petrochemical, natural gas, and chemical plants. A centrifugal compressor is 

expensive and has a critical effect on the entire chemical process. Therefore, 

the control and maintenance of a stable compressor system is critical to 

robust plant management. A compressor system is primarily employed to 

maintain a constant discharge pressure and needs to stay protected against 

surge phenomena. A surge phenomenon, i.e., unstable back-and-forth flow 

in the centrifugal compressor, occurs when the suction volumetric flowrate 

of the com pressor is lower than the limit line, i.e., the surge flowrate as 

indicated in Fig. 4-1. When the suction volumetric flowrate is lower than 

surge line, the resistance of the discharge side is higher than the head increase 

across the compressor. In the condition, it is not possible to keep this pressure 

gradient any more. It causes a periodic local back and forward flow, which 

is the surge phenomena. The surge phenomena causes back flow and 

vibration, which are damaging to the bearings, seals, and other parts of the 

                                                      
† This chapter cites the author’s published journal article: Jung, J., Lee, W., Park, S., 

Kim, Y., Lee, C., & Han, J. (2017). Improved control strategy for fixed-speed 

compressors in parallel system. Journal of Process Control, 53, 57-69. 
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compressor. Therefore, a surge and particularly a surge at a high energy must 

be prevented during centrifugal compressor operation (McKee and Garcia-

Hernandez, 2007). Surge phenomena are generally caused by poor matching 

of the compressor, inappropriate compressor design, and an inadequate anti-

surge control system (Boyce, 2003). Because a surge phenomenon shuts 

down the entire process and causes mechanical damage to the centrifugal 

compressor, the control system should quickly prevent a surge (Stanley and 

Bohannan, 1997). For these reasons, various parametric studies have been 

conducted, and various scenarios have been analyzed to achieve instant and 

stable anti-surge control (Botros and Ganesan, 2008; Li et al., 2013; Shehata 

et al., 2009; Gravdahl et al., 2013; Helvoirt, 2007; Kvangardsnes, 2009). 

However, discharge-pressure control and anti-surge control usually occur 

in opposite directions because of control interference (Rammler, 1994). This 

inner-compressor control interference can cause a control instability or 

significant oscillations. A load-sharing control system should also be 

incorporated in a parallel centrifugal compressor system (Rammler, 1994; 

Hansen, 2008; Manske et al., 2000; Xenos et al., 2015). Load sharing is an 

important consideration for energy efficiency and control in a parallel 

compressor system (Overvag, 2013). This inter-compressor control 

interference can cause inefficient or overloaded operation; hence, it should 

be decoupled for stable and efficient operation (Hansen, 2008; Grong, 2009). 
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Therefore, a parallel compressor system requires an advanced control 

structure rather than a simple feedback control structure (Stanley and 

Bohannan, 1997). Previous studies on multiple-compressor load sharing 

have traditionally focused on minimizing the energy consumption or 

maximizing efficiency in various operation scenarios (Manske et al., 2000; 

Han et al., 2004; Song et al., 2012; Widell and Eikevik, 2010; Cortinovis et 

al., 2016; Wright et al., 1998). These previous studies considered the energy 

efficiency under steady-state conditions or normal operating condition but 

not the controllability under the unpredictable disturbance. An advanced 

feed-forward control structure for a fixed-speed compressor was introduced 

by Mitsubishi Heavy Industries to decouple the control interference in the 

parallel compressor system (Kazuhiro and Kengo, 2006). This control 

system concentrates on controllability rather than the efficiency of the 

compressor using a feed-forward control structure. Moreover, this control 

system breaks down the compressor system into one master compressor and 

one or more slave compressors. The master compressor controls the 

discharge pressure using combined feedback and the feed-forward signal. 

The slave compressors are only controlled by the feed-forward signal. 

This feed-forward signal successfully decouples both inner- and inter-

compressor control interference. This type of feed-forward control structure 

is widely applied in industry. The conventional feed-forward control 
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structure solves several but not all of the major control problems associated 

with the parallel compressor system. For instance, it cannot provide load-

sharing capabilities when the compressor is operating in the surge control 

region. Further, it has a dead time for anti-surge control when the compressor 

is operating under a low load. This paper outlines the inadequacy of the 

conventional control structure and suggests an improved control structure for 

parallel centrifugal compressor systems. The improved control structure 

involves the integration of discharge-pressure control, load-sharing control, 

and anti-surge control. Using a scenario, it is shown that the proposed control 

structure exhibits improved load sharing and instant anti-surge control 

capabilities over the conventional control structure.  
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Figure 4-1. Compressor performance curve and anti-surge control lines 
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 Problem Definition 

Fig. 4-2 shows the conventional control structure for the parallel fixed-speed 

centrifugal compressor system introduced by Mitsubishi Heavy Industries 

(Kazuhiro and Kengo, 2006). A suction throttling valve (STV) controls the 

discharge pressure. When the discharge pressure is less than the set point, the 

STV opening increases. An anti-surge valve (ASV) prevents a surge 

phenomenon. When the suction volumetric flowrate is less than the surge 

control line, the ASV opens and recycles the discharge side stream to the 

suction side. The emergency shut down valve (ESDV) isolates the compressor 

system from the entire process. When the compressor shuts down, the ESDV 

immediately closes to protect the entire system. The master compressor solely 

controls the discharge pressure using the combined signal (CBS). The CBS is 

determined by the feedback signal (FBS) and feed-forward signal (FFS) 

according to Eq. (4-1). The weight factor, W1, is used to determine the pressure 

error sensitivity for the master compressor. The FBS is a valve-opening signal 

from the discharge-pressure controller, and the FFS is a signal for indicating 

the process target load, as given by Eqs. (4-2) and (4-3), respectively. The slave 

compressors use the FFS rather than the FBS to adjust the valve opening. This 

FFS successfully decouples the inner- and inter-compressor control 

interference under normal operating conditions. This feed-forward control 

structure determines the desired STV and ASV opening combination in 
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response to the change in the process target load, as indicated in Eqs. (4-4)–(4-

15). The relationship between the desired valve opening and the target load 

(G(x), H(x)) is simply obtained from the steady-state conditions of the single 

compressor system. As the process load decreases, the desired STV opening 

decreases. When the process load is less than the threshold load, thereby 

causing a surge, the ASV begins to open to prevent a surge. Above the threshold 

load, only the STV opening is adjusted while the ASV remains closed. Below 

the threshold load, only the ASV opening is adjusted while the STV opening is 

fixed at its minimum value. This combination of the valve opening and process 

load is required to build the feed-forward control structure. This feed-forward 

control structure successfully decouples the inner- and inter-compressor control 

interference under normal operating conditions. The desired feed-forward 

control system can prevent a predictable surge phenomenon before the anti-

surge controller becomes active. Although the feed-forward control system can 

prevent predictable surge phenomena, it cannot handle any unpredictable surge 

phenomena caused by a process disturbance, e.g., a change in the operating 

mode and process fluctuations. Therefore, an anti-surge controller is essential 

although the feed-forward control structure exists. Because there are two types 

of inlet signals for every single ASV, the valve opening signals OPASV_1 and 

OPASV_2 should be combined into a single signal. OPASV_1 is the signal from 

the feed-forward controller, and OPASV_2 is the signal from the anti-surge 
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controller. By using a high signal selector, the signal with the maximum value 

is selected as the final ASV opening, as indicated in Eq. (4-12).  

. Feed forward control structure for a parallel compressor system 

𝐶𝐵𝑆 = 𝐹𝐹𝑆 + 𝑊1  × (𝐹𝐵𝑆 − 𝑃0)    

  (Eq 4-1) 

𝐹𝐵𝑆 = 𝑃0 + 𝐾𝑃  × [𝑒𝑃(𝑡) +
1

𝜏𝐼 
∫ 𝑒𝑃(𝑡)

𝑡

0
𝑑𝑡] ,      𝑒𝑃 = 𝑃𝑆𝑃 − 𝑃𝑃𝑉 

 (Eq 4-2) 

𝐹𝐹𝑆 = 𝐹(𝑇𝑎𝑟𝑔𝑒𝑡 𝐿𝑜𝑎𝑑) ×  100    

  (Eq 4-3) 

For the master compressor 

𝑂𝑃𝑆𝑇𝑉 = 𝐺(𝐶𝐵𝑆),                       𝑓𝑜𝑟 𝐶𝐵𝑆 ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑝𝑜𝑖𝑛𝑡 

 (Eq 4-4) 

𝑂𝑃𝑆𝑇𝑉 = 𝑂𝑃𝑆𝑇𝑉_𝑀𝑖𝑛,                   𝑓𝑜𝑟 𝐶𝐵𝑆 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑝𝑜𝑖𝑛𝑡  

 (Eq 4-5) 
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𝑂𝑃𝐴𝑆𝑉 =  𝑀𝐴𝑋[𝑂𝑃𝐴𝑆𝑉_1, 𝑂𝑃𝐴𝑆𝑉_2]   

   (Eq 4-6) 

𝑂𝑃𝐴𝑆𝑉_1 = 0,                                𝑓𝑜𝑟 𝐶𝐵𝑆 ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑝𝑜𝑖𝑛𝑡

  (Eq 4-7) 

𝑂𝑃𝐴𝑆𝑉_1 = 𝐻(𝐶𝐵𝑆)                     𝑓𝑜𝑟 𝐶𝐵𝑆 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑝𝑜𝑖𝑛𝑡

  (Eq 4-8) 

𝑂𝑃𝐴𝑆𝑉_2 = 𝑃0 + 𝐾𝑃  × [𝑒𝑆𝐹(𝑡) +
1

𝜏𝐼 
∫ 𝑒𝑆𝐹(𝑡)

𝑡

0
𝑑𝑡] ,      𝑒SF =

𝑆𝐹𝑆𝑃 − 𝑆𝐹𝑃𝑉 (Eq 4-9) 

For the slave compressor 

𝑂𝑃𝑆𝑇𝑉 = 𝐺(𝐹𝐹𝑆),                       𝑓𝑜𝑟 𝐹𝐹𝑆 ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑝𝑜𝑖𝑛𝑡

  (Eq 4-10) 

𝑂𝑃𝑆𝑇𝑉 = 𝑂𝑃𝑆𝑇𝑉_𝑀𝑖𝑛,                    𝑓𝑜𝑟 𝐹𝐹𝑆 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑝𝑜𝑖𝑛𝑡

  (Eq 4-11) 

𝑂𝑃𝐴𝑆𝑉 =  𝑀𝐴𝑋[𝑂𝑃𝐴𝑆𝑉1
, 𝑂𝑃𝐴𝑆𝑉2

]   

   (Eq 4-12) 
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𝑂𝑃𝐴𝑆𝑉_1 = 0,                                𝑓𝑜𝑟 𝐹𝐹𝑆 ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑝𝑜𝑖𝑛𝑡 

  (Eq 4-13) 

𝑂𝑃𝐴𝑆𝑉_1 = 𝐻(𝐹𝐹𝑆),                   𝑓𝑜𝑟 𝐹𝐹𝑆 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑝𝑜𝑖𝑛𝑡

  (Eq 4-14) 

𝑂𝑃𝐴𝑆𝑉_2 = 𝑃0 + 𝐾𝑃  × [𝑒𝑆𝐹(𝑡) +
1

𝜏𝐼 
∫ 𝑒𝑆𝐹(𝑡)

𝑡

0
𝑑𝑡] ,      𝑒𝑆𝐹 =

𝑆𝐹𝑆𝑃 − 𝑆𝐹𝑃𝑉 (Eq 4-15) 

The conventional control structure introduced by Mitsubishi Heavy 

Industry operate as an equal distance (or equal load distribution) control 

logic under desired operating conditions. Additionally, this feed-forward 

control structure is a specialized control structure for rapid response to a 

disturbance from the gas turbine in a parallel compressor system. This 

feed-forward control system delivers robust control performance for 

simultaneous discharge-pressure control and anti-surge control. 

However, this feed-forward structure has two disadvantages, the first of 

which is poor load sharing.  

Poor load sharing occurs when the system operates in the unpredictable 

surge control region. When the anti-surge controller is active in the slave 
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compressor, the anti-surge controller increases the ASV opening to 

recycle the discharge stream to the suction side. Although it is not a 

problem for a single compressor system, it is a significant problem for a 

parallel compressor system, as indicated in Fig. 4-3. Because recycling 

the discharge flow in the slave compressor reduces the total discharge 

pressure, the master compressor begins to control the discharge pressure 

by opening the STV. As a result, the master compressor handles a much 

greater process load than the slave compressor. Because it reduces the 

suction volumetric flowrate of the slave compressor, the ASV opening 

of the slave compressor increases again. Although the suction volumetric 

flowrate is identical among the compressors, this is not the desired load 

sharing. Fig. 4-3 shows a simple example for different net flowrates in 

each compressor. Although all of the compressor suction volumetric 

flowrates are 75 m3/h (equal distance), the net process flowrates are 75, 

50, 25, and 0 m3/h in the master compressor, slave compressor 1, slave 

compressor 2, and standby compressor, respectively. The standby 

compressor is installed for handling the failure of other compressors that 

can cause significant loss in revenue (Rasmussen and Kurz, 2009). In the 

worst case, the ASV of the slave compressor fully opens. This means that 

the slave compressor changes to the full recycle mode, as in the standby 
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compressor. On the other hand, the master compressor is forced to handle 

twice the normal process load, causing an overload. 

The other problem associated with the conventional feed-forward 

control structure is the dead time of the anti-surge controller. This 

scenario occurs under certain operating conditions. For instance, for low-

load operation, the ASV is already opened by the FFS to prevent a 

predictable surge. In this condition, the ASV opening does not change 

quickly, although an unpredictable process fluctuation causes the anti-

surge controller to become active. Because the conventional control 

structure uses a high signal selector to combine OPASV_1 and 

OPASV_2 as a single signal, the ASV opening is maintained at a constant 

value until OPASV_2 becomes higher than OPASV_1. This implies that 

the conventional control system has structural limitations for rapid anti-

surge control for low-load operation. Table 4-1 presents a simplified 

example of the anti-surge control delay. From 150 ms to 250 ms, OPASV 

does not change, although the anti-surge controller remains active. 

During this period, the suction volumetric flowrate of the compressor 

becomes closer to the surge flow line. Although the absolute delay time 
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is not significantly long, critical problems arise if the surge control does 

not become active immediately.  
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Figure 4-2. Conventional feed-forward control structure for the 

parallel compressor system. 
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Figure 4-3. Example scenario of poor load sharing. 
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Table 4-1. Example scenario of anti-surge control delay 

Process Time [sec] 1 2 3* 4* 5* 6 7 

Suction Volumetric Flowrate 

[m3/hr] 
11100 11000 10900 10700 10400 11500 11400 

Surge Control Line 

[m3/hr] 
11000 11000 11000 11000 11000 11000 11000 

Anti-surge Controller - - Active Active Active Active Active 

Feed forward Signal 

(OPASV_1) 
50 % 50 % 50 % 50 % 50 % 50 % 50 % 

ASC Signal (OPASV_2) 0 % 0 % 10 % 20 % 40 % 70 % 60 % 

ASV Opening (OPASV) 50 % 50 % 50 % 50 % 50 % 70 % 60 % 

Operation Region Normal Region Surge Control Region Normal Region 

*Anti-surge control delay region 
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 Improved Control Structure 

The conventional feed-forward control structure is very practical and has 

robust control logic in a gas turbine system. The compressor system requires a 

quick response to a change in the turbine load, start up, emergency shut down. 

To handle a disturbance in the turbine section quickly, this feed-forward control 

logic is applied to real scenarios in industry. For this reason, we suggested the 

simplest method based on the conventional control structure for solving the 

problems with the poor load distribution and to obtain a quick surge response. 

As indicated in Fig. 4-4, the discharge mass flowrate controller (FC) is added 

to the slave compressor for the desired load sharing. In addition, the high signal 

selector is replaced with a signal calculator for quick anti-surge control. First, 

for improving load-sharing control, the STV opening in the slave compressor 

is adjusted by the feed-forward signal (OPSTV_1) and discharge flowrate 

controller signal (OPSTV_2). To combine two signals into a single signal, the 

load-sharing weight factor (W2) is introduced, as indicated in Eqs. (4-16)–(4-

19). When the anti-surge controller in the slave compressor is active, the ASV 

opens to recycle the discharge flow. As the discharge flowrate decreases, the 

discharge flowrate controller increases OPSTV_2. Although OPSTV_1 is 

constant because of the feed-forward signal, OPSTV_2 increases the final STV 

opening (OPSTV) according to Eq. (4-4). As the STV opening increases, the 

volumetric flowrate of the slave compressor increases. Finally, the slave 
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compressor easily escapes from operation in the surge control region. This 

improved load-sharing control structure prevents the slave compressor from 

switching to the full recycle mode. Furthermore, it helps to exit the surge region 

quickly by increasing the STV opening. Even a small value of W2 successfully 

ensures the desired load sharing. In the conventional control structure, the STV 

opening is not changed in the surge region. This can cause poor load sharing or 

operation in the full recycle mode for the slave compressor. 
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Figure 4-4. Improved feed-forward control structure for the parallel 

compressor system.  
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4.3.1. Improved load-sharing control structure for the 

slave compressor 

𝑂𝑃𝑆𝑇𝑉_1 = 𝐺(𝐹𝐹𝑆),                       𝑓𝑜𝑟 𝐹𝐹𝑆 ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑝𝑜𝑖𝑛𝑡 

 (Eq 4-16) 

𝑂𝑃𝑆𝑇𝑉_1 = 𝑂𝑃𝑆𝑇𝑉_𝑀𝑖𝑛,                   𝑓𝑜𝑟 𝐹𝐹𝑆 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑝𝑜𝑖𝑛𝑡  

 (Eq 4-17) 

𝑂𝑃𝑆𝑇𝑉_2 = 𝑃0 + 𝐾𝑃  × [𝑒𝐷𝐹(𝑡) +
1

𝜏𝐼 
∫ 𝑒𝐷𝐹(𝑡)

𝑡

0
𝑑𝑡] ,      𝑒𝐷𝐹 = 𝐷𝐹𝑆𝑃 −

𝐷𝐹𝑃𝑉 (Eq 4-18) 

      𝑂𝑃𝑆𝑇𝑉 = 𝑂𝑃𝑆𝑇𝑉_1 + 𝑊2 × (𝑂𝑃𝑆𝑇𝑉2
− 𝑃0)   

   (Eq 4-19) 

To improve anti-surge controller dead time, the ASV opening is 

determined not by the high signal selector but by the nonlinear 

combination of OPASV_1 and OPASV_2. As indicated in Eqs. (4-20) to (4-

23), the nonlinear combination makes it possible to open the ASV 

immediately when the anti-surge controller becomes active. Although 

OPASV_1 exists already, OPASV_2 from the anti-surge controller increases 

the ASV opening without delay. Table 4-2 indicates the main difference 
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between the conventional control structure and the improved control 

structure. 

the improved anti-surge control structure for the slave compressor: 

𝑂𝑃𝐴𝑆𝑉 =  𝑂𝑃𝐴𝑆𝑉_1 + 𝑂𝑃𝐴𝑆𝑉_2 − (𝑂𝑃𝐴𝑆𝑉_1 × 𝑂𝑃𝐴𝑆𝑉_2)/100  

   (Eq 4-20) 

𝑂𝑃𝐴𝑆𝑉_1 = 0,                               𝑓𝑜𝑟 𝑥 ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑝𝑜𝑖𝑛𝑡,      𝑥 =

𝐶𝐵𝑆 𝑜𝑟 𝐹𝐹𝑆  (Eq 4-21) 

𝑂𝑃𝐴𝑆𝑉_1 = 𝐺(𝑥)                         𝑓𝑜𝑟 𝑥 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑝𝑜𝑖𝑛𝑡,      𝑥 =

𝐶𝐵𝑆 𝑜𝑟 𝐹𝐹𝑆 (Eq 4-22) 

𝑂𝑃𝐴𝑆𝑉_2 = 𝑃0 + 𝐾𝑃  × [𝑒𝑆𝐹(𝑡) +
1

𝜏𝐼 
∫ 𝑒𝑆𝐹(𝑡)

𝑡

0
𝑑𝑡] ,      𝑒𝑆𝐹 = 𝑆𝐹𝑆𝑃 −

𝑆𝐹𝑃𝑉  (Eq 4-23) 
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Table 4-2. Comparison of the control structures of the conventional and improved control systems 

 Conventional Control Structure Improved Control Structure 

Overall 

CBS = FFS + W1 * FBS 

FFS = F(Load signal) 

FBS = E(eP) 

Master_STV OPSTV = G(CBS) OPSTV = G(CBS) 

Slave_STV OPSTV = G(FFS) 

OPSTV = OPSTV_1 + W2 * (OPSTV_2-50) 

OPSTV_1 = G(FFS) 

OPSTV_2 = E(eDF) 

Master_ASV 

OPASV = Max(OPASV_1, OPASV_2) 

OPASV_1 = H(CBS) 

OPASV_2 = E(eF) 

OPASV = OPASV_1 + OPASV_2 – (OPASV_1 * OPASV_2)/100 

OPASV_1 = H(CBS) 

OPASV_2 = E(eSF) 

Slave_ASV 

OPASV = Max(OPASV_1, OPASV_2) 

OPASV_1 = H(FFS) 

OPASV_2 = E(eSF) 

OPASV = OPASV_1 + OPASV_2 – (OPASV_1 * OPASV_2)/100 

OPASV_1 = H(FFS) 

OPASV_2 = E(eSF) 
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 Modeling Basis 

4.4.1. System Description 

In this study, a dynamic model of a fuel gas supply plant was built using the 

commercial process simulator package ASPEN HYSYS ver. 7.3. The fuel gas 

supply plant model is based on an actual plant and consists of four compressor 

trains: one master compressor, two slave compressors, and one standby 

compressor. As indicated in Fig.4-5, fuel gas is compressed at a compressor 

train and supplied to the gas turbine. The main control target is to maintain a 

constant discharge pressure. As mentioned above, the conventional control 

structure separates the master compressor from the slave compressors. The 

master compressor solely controls the discharge pressure, whereas the slave 

compressor is controlled by the feed-forward signal. The standby compressor 

operates in the full recycle mode by the closing ESDV valves, as indicated in 

Table 4-3. The full recycle mode helps to maintain compressor operation during 

the transition mode (Kurz and White, 2009). Tables 4-4~4-6 list the stream and 

equipment information. For the anti-surge control system, the actual sampling 

rate is 40 ms, and the full valve opening time is 1 s (100%/s) because a rapid 

response is most important characteristic for an anti-surge controller. On the 

other hand, the process controller for the pressure, flowrate, temperature, etc. 

use 140 ms as a sampling rate and 16 s for the full valve opening (6.25%/s) 

because of the price issue and sample noise. The specified values have a ±20% 

deviation from the actual plant data for confidentiality reasons. To clarify the 
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superiority of our control structure over the conventional structure, the control 

performance is compared for two operating scenarios. The first scenario 

represents a decrease in the load set point to demonstrate load-sharing 

capabilities. The second scenario is a suction-side fluctuation to illustrate anti-

surge control capabilities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 137 

 

 

 

 

 

 

 

Figure 4-5. Configuration of the parallel compressor system for a fuel 

gas supply. 
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Table 4-3. Valves and motor for each compressor mode 

 
No. of 

Compressor 

Target 

Load 
ASV STV 

EDSV 

Valve 

Master 

Compressor 
1 1/3 

Controlle

d by CBS 

Controlle

d by CBS 
Fully open 

Slave Compressor 2 1/3 
Controlle

d by FFS 

Controlle

d by FFS 
Fully open 

Standby 

Compressor 
1 0 Full Open Full Open Closed 
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Table 4-4. Stream information. 

 Suction Side Discharge Side Unit 

Temperature 60 60 ºC 

Pressure 16.00 ± 0.05 34 barg 

Mass Flow 30 ± 0.03 30 [ton/hr] 

Molar Flow 1777 ± 18 1777 [kmol/hr] 

Composition Methane: 0.97 / CO2: 0.03 mol/mol 

Molecular Weight 16.88 g/mol 
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Table 4-5. Equipment size information. 

 Value Unit 

Synchronous Speed 1800 RPM 

Full Load Speed 1793 RPM 

Full Load Torque 29300 Nm 

Full Load Power 5250 kW 

Motor Inertia 800 kgm2 

Torque Speed Curve NEMA  Code B - 
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Table 4-6. Compressor performance map. 

Speed = 1800 RPM 

Volume Flow (Act m3/h) Head (m) Polytrophic Efficiency (%) Operation Region 

8000 18500 78.3 Surge Region 

8500 18730 81.0 Surge Region 

9000* 18750 83.0 Surge Region 

9500 18600 84.5 Surge Control Region 

10000 18250 85.8 Normal Operation Region 

10500 17780 86.8 Normal Operation Region 

11000 17180 87.4 Normal Operation Region 

11500 16530 87.5 Normal Operation Region 

12000 15750 87.1 Normal Operation Region 

12500 14800 86.1 Normal Operation Region 

13000 13600 84.5 Normal Operation Region 

*Surge Line 
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4.4.2. Control Structure 

Table 4-7 indicates the control system specifications that are typically used 

in a fuel gas supply plant. As mentioned in Section 4.3, the improved control 

structure consists of one additional flow controller and one nonlinear ASV 

calculator. Fig. 4-6 shows a simplified block diagram of the improved control 

structure. The feedback signal weight factor, W1, is set to 2, and the load 

sharing weight factor, W2, is set to 0.05. The FFS is defined as a percentage of 

the present target load divided by the maximum load. The STV opening 

function G(x) and ASV opening function H(x) represent the desired opening 

combination in a single compressor system. The entire control signal has a 

range from 0 to 100. The set point of the anti-surge controller is calculated 

through a linear regression of the surge flowrate at the maximum compressor 

speed. The synchronized speed of the motor is 1800 rpm, but the actual full-

load speed of the compressor is 1793 rpm because of slip. As indicated in Table 

4-8, the surge flow at a compressor speed of 1793 rpm is calculated on the basis 

of the surge flow at a compressor speed of 1800 rpm. The margin of the surge 

control line is set to 10% of the surge flowrate, and the margin of the surge 

backup line is set to 5% (Grong, 2009; Nored et al., 2008; Bentaleb et al., 2015). 

When the suction flowrate of the compressor reaches the surge control line, the 

anti-surge controller becomes active. When the suction flowrate of the 

compressor reaches the backup line, the interlock system immediately forces 

the ASV to fully open, as indicated in Fig. 4-1. Table 4-9 lists the control 



 

 143 

parameters for the anti-surge controller. The anti-surge controller uses 

aggressive control parameters in the surge control region for a rapid response. 

Moreover, signal time delay of the anti-surge controller is much shorter than 

that of the process controller. The indicated control parameters are adjusted on 

the basis of the model stability because of confidentiality issues.  
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Figure 4-6. Control diagram for the master and slave compressors of the improved control system.. 
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Table 4-7. Detailed information of the control structures. 

 Conventional Control Structure Improved Control Structure 

FFS generator F(Target Load) = Target Load / Maximum Load * 100 

FBS generator  

(Pressure Controller) 

Equation (1-2) 

PSP = 34 barg, P0 = 50 

CBS Calculator 
Equation (1-3) 

W1 = 2  

OPSTV_1 Calculator 
G(x) = 12/20 * (x-80) + 68,      for x > 80, x = CBS or FFS 

G(x) = 68,                    for x < 80, x = CBS or FFS 

OPSTV_2 Calculator 

(Discharge Flow Controller) 
- 

Equation (3-3) 

DFSP = Target Load / 3, P0 = 50 

OPSTV Calculator - 
Equation (3-4) 

W2 = 0.05 

OPASV_1 Calculator 
H(x) = 0,                       for x > 80, x = CBS or FFS 

H(x) = 1.25*(80-x),               for x < 80, x = CBS or FFS 

OPASV_2 Calculator 

(Anti-surge Controller) 

Equation (2-9) 

SFSP = 9591 m3/hr, P0 = 0 

OP_ASV Calculator Equation (2-10) Equation (3-5) 
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Table 4-8. Surge controller set points. 

 Speed 

1800 RPM 
Surge Line Margin 

1st order 

regression 

Speed 

1793 RPM 

Surge Line  
9000 [m3/hr] 0% Speed * 5.00 8965 [m3/hr] 

Surge Backup Line 

(Quick Opening Interlock) 
9450 [m3/hr] 5% Speed * 5.25 9412 [m3/hr] 

Surge Control Line 

(Surge Control SP) 
9900 [m3/hr] 10% Speed * 5.50 9860 [m3/hr] 
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Table 4-9. Controller parameter specifications. 

  Kc Ti Td Time delay 

Turbine Flowrate Controller 0.500 0.100 s – 
1.0 s 

Discharge-Temp. Controller 0.500 0.100 s – 
1.0 s 

Discharge-Pressure Controller 0.500 0.100 s  1.0 s 

Anti-surge 

Controller 

Normal Opening 

Region 
0.250 0.100 s – 0.2 s 

 
Surge Control 

Region 
2.500 0.100 s –  

 
Quick Opening 

Region 
Interlock, Immediately Fully Open 
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 Simulation Results 

4.5.1. Load-sharing performance in the turn-down 

scenario 

Fig. 4-7 shows the results for the control performance when the total process 

load changes from 90% to 70%. As the total process load decreases, the suction 

volumetric flowrate decreases at first (regions A1 and B1). When the suction 

volumetric flowrate reaches the anti-surge control line, the anti-surge controller 

of the slave compressor becomes active (regions A2 and B2). Therefore, the 

ASV of the slave compressor is opened by OPASV_2 instead of OPASV_1. To 

maintain a constant discharge pressure, the STV opening of the master 

compressor is increased. In the conventional control structure in Fig. 4-7(a), the 

suction volumetric flowrate of the slave compressor does not increase even 

though the ASV opening increases (region A2). As mentioned above, this 

problem occurs because the STV of the master compressor is opened to control 

the discharge pressure. The ASV is open as long as the STV of the master 

compressor reaches the maximum opening. Finally, the ASV opening of the 

slave compressor reaches 36%, whereas the ASV of the master compressor 

remains closed. The suction volumetric flowrate of the slave compressor is 

maintained at the anti-surge control line (9860 m3/h), whereas the suction 

volumetric flowrate of the master compressor is much larger (12300 m3/h). The 

master compressor handles 56% of the total load while the two slave 

compressors handle 44% of the total load. As indicated in Table 4-10, the net 
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master-to-slave discharge flow-rate ratio is 2.6. Therefore, the master 

compressor handles a much larger process load than the slave compressor 

(region A3). As shown in the compressor performance map in Fig. 4-8, the 

operating points are very different for the master and slave compressors. 

Because the STV opening is at its maximum, the discharge-pressure control has 

a control offset up to 1.19 barg (region A3). This poor load sharing causes 

discharge-pressure control failure and an efficiency loss. In contrast, the 

improved control structure exhibits the desired load sharing for the same 

operating scenario. As the anti-surge controller opens the ASV of the slave 

compressor, the net discharge flowrate decreases. To increase the discharge 

flowrate, the master compressor opens the STV quickly (region B2). As a result, 

the net discharge flowrate at the slave compressor is much lower than that at 

master compressor. To adjust the net discharge flowrates to be the same, the 

discharge flowrate control signal increases. As a result, the STV opening of the 

slave compressor slightly increases from 68.0% to 69.6% according to Eq. (3-

4). Although the STV opening of the slave compressor increases very slightly, 

it increases the suction volumetric flowrate of the slave compressor again. 

Simultaneously, the STV and the ASV openings of the master compressor are 

both adjusted to control the discharge pressure. As indicated in Fig. 4-8(b), the 

operating points are almost same for the master and slave compressors. Under 

the feed forward control structure, the ASV opening of the slave compressor is 

determined by OPASV_1 and OPASV_2 signals as indicated in equations (2-
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12). The OPASV_1 is a function of the feed forward signal while the OPASV_2 

is a function of the ASC signal. Under the desired operating condition, the ASC 

signal is always zero because the feed forward signal make the ASV open 

before the anti-surge controller is active (Fig. 4-8(b)). In this case, the ASV 

opening is synchronized with OPASV_1. However, feed forward signal is not 

able to handle the unpredictable operating disturbance. To avoid the surge under 

the disturbance, the anti-surge controller is active and ASC signal determined 

the ASV opening. In that case, the ASV opening is synchronized with 

OPASV_2 or ASC signal (Fig. 4-8(a)). 
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Figure 4-7. Results for the turn-down scenario with (a) a conventional 

control system and (b) the improved control system. 
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Figure 4-8. Compressor performance map for the (a) conventional control system and (b) improved control system 

in the turn-down scenario.
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Table 4-10. Control performance results of the turn-down scenario. 

  
Conventional Control System Improved Control System 

Total Load 90.0% => 70.0% 90.0% => 70.0% 

Discharge Pressure 34.0 barg => 33.3 barg 34.0 barg => 34.0 barg 

Master Compressor 

STV Opening (OPSTV) 71.8 % => 100 % 73.2 % => 69.4 % 

ASV Opening (OPASV) 0.00 % => 0.00 % 0.00 % => 12.3 % 

Suction Volumetric Flowrate 10250 m3/hr =>12250 m3/hr 10500 m3/hr => 9860 m3/hr 

Operation Region Normal Operation Mode Anti-surge Control Region 

Slave Compressor 

STV Opening (OPSTV) 74.0 % => 68.0 % 73.3 % => 69.6 % 

OPSTV_1 74.0 % => 68.0 % 74.0 % => 68.0 % 

OPSTV_2 - 36.0 % => 82.0% 

ASV Opening 0.00 % => 36.0 % 0.00 % => 12.5 % 

Suction Volumetric Flowrate 10600 m3/hr => 9860 m3/hr 10500 m3/hr => 9885 m3/hr 

Operation Region Anti-surge Control Region Normal Operation Mode 
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4.5.2. Anti-surge control performance for the scenario 

in which there is a suction-side pressure fluctuation  

Fig. 4-9 shows the results for the control performance for a scenario in which 

the suction-side pressure fluctuates in low load operation. As the target load 

sets 70%, a part of the discharge flow is recycled to the suction side through the 

ASV to avoid surge. In this condition, the scenario assumes that the suction-

side pressure decreases for 30 s and returns to the original state in 30 s with a 

10% variation (from 16.0 barg to 14.4 barg). The 10% variation is the maximum 

value for inspecting the robustness of the control structure. As the suction-side 

pressure decreases, the master compressor controls the discharge pressure by 

increasing the STV opening (regions A1 and B1). As a result, the suction 

volumetric flowrate of the master compressor increases, while the suction 

volumetric flowrate of the slave compressor decreases. As the suction 

volumetric flowrate of the slave compressor decreases, the anti-surge controller 

becomes active. 

In the conventional control structure (Fig. 4-9(a)), the ASV opening of the 

slave compressor does not change immediately, although the anti-surge 

controller becomes active (region A1). This is because the conventional control 

structure uses the high signal selector to determine the final ASV opening 

(OPASV). While the anti-surge controller signal is lower than the feed-forward 

signal (12.62%), the ASV of the slave compressor maintains a constant opening 

value. Finally, the volumetric flowrate of the slave compressor gradually 
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decreases and reaches the backup line (at 225 s). As soon as the volumetric 

flowrate reaches the backup line, the interlock system of the compressor 

becomes active and then, ASV of the slave compressor fully opened 

immediately. Although the quick opening of the ASV successfully protects the 

compressor against the surge phenomenon, the discharge pressure suddenly 

decreases from 34.0 barg to 22.0 barg. To adjust discharge pressure, the STV of 

the master compressor fully opens. As a result, the entire system experiences a 

large fluctuation and an energy loss. 

In contrast, the improved control structure successfully handles the suction-

side pressure fluctuation. The ASV opening of the slave compressors 

immediately increases when the anti-surge controller becomes active (region 

B1). The nonlinear combination explained via Eq. (4-5) makes the ASV of the 

slave compressors open immediately. As the ASV opening of the slave 

compressor increases, the suction volumetric flowrate of the slave compressor 

increases. After the slave compressor exits the surge control region, the anti-

surge control signal gradually decreases without interlock system activation. 

Simultaneously, the STV and ASV of the master compressor are adjusted to 

control the discharge pressure. The minimum pressure is 32.5 barg, and the 

maximum pressure is 36.2 barg for this scenario. The control performance 

results are compared in Table 4-11. 
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In the conventional control structure, the ASV opening maintains 12.62% in 

200s–220s. It means the conventional control structure was not able to conduct 

anti-surge control for 20 s. On the other hand, the improved control structure 

immediately opens the ASV from 12.62% to 18% for 20 s. This rapid response 

prevents that the suction side flowrate reaches the anti-surge backup line.
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Figure 4-9. Results of the suction-pressure disturbance scenario with the (a) 

conventional control system and (b) improved control system. 

 

 

 

 



 

 158 

 

 

 

 

Table 4-11. Control performance results of the scenario in which a suction-side pressure 

fluctuation occurs. 

 Conventional Control 

System 
Improved Control System 

Suction Pressure 16.0 barg => 14.4 barg 16.0 barg => 14.4 barg 

Discharge Pressure 34.0 barg => 22.0 barg 34.0 barg => 32.5 barg 

Master Compressor 

STV Opening (OPSTV) 69.4 % => 100 % 69.4 % => 100 % 

ASV Opening (OPASV) 12.3 % => 0.00 % 12.3 % => 0.00 % 

Suction Volumetric Flowrate 9860 m3/hr => 14500 m3/hr 9860 m3/hr => 11450 m3/hr 

Operation Region Normal Operation Mode Normal Operation Mode 

Slave Compressor 

STV Opening (OPSTV) 69.6 % => 70.5 % 69.6 % => 70.5 % 

ASV Opening (OPASV) 0.00 % => 36.0 % 0.00 % => 28.3 % 

OP_ASV_1 0.00 % => 12.5 % 0.00 % => 12.5 % 

OP_ASV_2 0.00 % => 36.0 % 0.00 % => 18.0 % 

Suction Volumetric Flowrate 9885 m3/hr => 9430 m3/hr 9885 m3/hr => 9650 m3/hr 

Operation Region 
Quick Opening Region 

(Interlock System Active) 
Surge Control Region 
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CHAPTER 5. Concluding Remarks 

 

Firstly, in this thesis, the design approach considering the production change 

of natural gas well is suggested for PRICO®  SMR liquefaction process. The 

optimization result confirmed that the optimum design point changes in the 

direction of smaller heat exchange area of the main heat exchanger when 

considering the feed gas load change. The degree of shift is determined by the 

difference in lower and upper bounds in load determined by the load variation 

scenario. Increasing the MR flowrate due to the reduction of the heat exchange 

area leads to an economic loss of increasing the compressor equipment cost and 

the operating cost at the maximum load operation. However, small heart 

exchange area has the effect of minimizing the tendency of the MR flowrate to 

increase with load reduction. The decrease in the fluctuation of the MR flowrate 

reduces the operating cost under the operation with less than 70% load, meaning 

that the design approach presented in this study can be economical in a wider 

operating window. In addition, the increase in compressor equipment cost was 

minimized in the case of two-trains, and it was found that the economic benefit 

was also achieved in the overall capital investment. Although it is ultimately 

dependent on the production shape of the natural gas well, which design 

approach is economical, the process design approach, which has a wider 

operating window economically, is of value because it is difficult to predict the 
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exact production of the well. Although not discussed in detail in this study, 

changing the optimal design point can also affect the operability of the process. 

Robust process operation due to load variation is one of the most important 

issues as well as economical operation. Especially, multi-stage compression 

system for SMR process is required to secure robust operability due to load 

variations. It is expected that the decrease of the fluctuation of the MR flowrate 

caused by the decrease of the heat exchange area may have a positive influence 

on the overall operability of the process. As the number of trains increases for 

the same load, the fluctuation of the MR flow decreases because the load 

variation capacity that each train has to deal with decreases. It is also shown 

that the new approach proposed in this study can be applied to the multi-train 

case to more effectively cope with the fluctuation of the MR flow. This analysis 

provides insight into the economics and operability of multi-train operation. 

Secondly, when only limited sensor data and first principle models exist for 

industrial plants, a modeling methodology to predict the target output from the 

sensor data more precisely considering the reduction of the efficiency due to 

the aging of the device and the change of the ambient disturbance is suggested. 

Many existing studies have trained a simple feed-forward multi- layer 

perceptron neural networks with steady-state data and have not been able to 

extract the plant data into a specific feature, leading to an overfitted model. The 

NARX-NN structure is for a time- series data modeling, where the history of 



 

 161 

outputs enters the input during the training. This allows for capturing dynamics 

with feedback loops and yields reliable predictions for the closed-loop system. 

Input features were chosen based on the physical properties from the equation 

of state in Aspen HYSYS simulator and the first-principle models for 

calculating compressor and expander work. The proposed model was applied 

to the air-gas compression system, which accounts for a significant portion of 

energy consumption in the chemical plant, and NARX-NN with feature 

extraction could reduce the MSE about 43.5% and 20% compared to simple 

feed-forward multi-perceptron neural networks and NARX-NN without feature 

extraction respectively. Such a model can handle time-varying stochastic nature 

such as system efficiency and external disturbances.  

Finally, a parallel compressor system experiences inner- and inter- 

compressor control interference. To decouple the control interference, a feed-

forward control structure is introduced and widely applied in industry. This 

feed-forward control structure usually provides robust control. However, it has 

two disadvantages in scenarios with unpredictable disturbances. The first 

drawback pertains to the poor load sharing that arises when the anti-surge 

controller becomes active in the slave compressor. The second drawback is 

related to the anti-surge control time delay for low-load operation. To solve 

these problems, an improved control structure is proposed for the parallel 

compressor system. The additional flow controller in the structure allows for 
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the desired load-sharing control for operation in unpredictable surge control 

regions. For immediate anti-surge control, the improved control structure uses 

a nonlinear combination of the anti-surge control signals rather than the high 

signal selector used in the conventional structure. The control performance of 

the improved control structure is compared with that of the conventional control 

structure by using a fuel gas supply plant model. Finally, the conventional feed-

forward control structure is improved for operation in unpredictable anti-surge 

control regions. 
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Nomenclature 

 

AD  Annual depreciation 

AGP  Annual gross profit 

AOCF  Annual operating cash flow 

AS  Annual sales 

ATPC  Annual total production cost 

C3MR  Propane pre-cooled mixed refrigerant 

CAPEX  Capital expenditure 

DMR  Dual mixed refrigerant 

FLNG  Flating LNG 

FPSO  Floating production, storage, and offloading 

GA  Genetic algorithm 

LNG  Liquefied natural gas 

MACRS Modified accelerated cost recovery system 

MFCP  Mixed fluid cascade process 

MR  Mixed refrigerant 

MTPA  Million tons per annum 

NGL  Natural gas liquid 

NLP  Nonlinear programming 

NPV  Net present value 

OPEX  Operational expenditure 
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PMR  Parallel mixed refrigerant 

PSE  Process sysems engineering 

SC  Startup cost 

SMR  Single mixed refrigerant 

TAC  Total annualized cost 

TACF  Total annual cash flow 

𝒉𝒋  Predefined equality constraints 

𝒉𝒑  Convergence of process simulator 

∆𝐓𝒎𝒊𝒏  Minimum temperature difference 

𝑾𝒄  Power consumption 

𝒈𝒊  Inequality constraints 

𝒔𝒌  Hidden constraints 

LMTD  Logarithmic average of the temperature difference 

𝐩  Penalty function 

P  Pressure 

T  Temperature 

Tdew  Dew point temperature 

UA  Heat transfer coefficient × heat exchange area 

x  Vector of desicion variables 

𝛃  Present value factor 

𝛄  Penalty function value 

𝚫𝐏  Pressure drop 
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𝛉  Tax rate 

𝒙  Decision variables 

NARX RNN = Nonlinear Autoregressive eXogenous Recurrent Neural Net 

model 

RTO = Real Time Optimization 

TPA = TerePhthalic Acid 

Ai = Air interconnection 

Gi = Gas interconnection 

T_(n,cm_in) = The temperature entering the mth compression stage of the nth 

compression system, K 

P_(n,cm_in) = The pressure entering the mth compression stage of the nth 

compression system, kgf/cm2 

T_(n,cm_out) = The temperature from the mth compression stage of the nth 

compression system, K 

P_(n,cm_out) = The pressure from the mth compression stage of the nth 

compression system, kgf/cm2 

T_(n,ek_in) = The temperature entering the kth expansion stage of the nth 

compression system, K 

P_(n,ek_in) = The pressure entering the kth expansion stage of the nth 

compression system, kgf/cm2 

T_(n,ek_out) = The temperature from the kth expansion stage of the nth 

compression system, K 

P_(n,ek_out) = The pressure from the kth expansion stage of the nth 

compression system, kgf/cm2 

W_(1,motor_real) = The actual amount of power of the first compression 

system motor, kW 

W_(1,motor_model) = The amount of power of the 1st compression system 

motor of hysys model, kW 
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W_(1,c1) = The energy of the first compression stage of the first compression 

system of the hysys model, kW 

W_(1,c2) = The energy of the second compression stage of the first 

compression system of the hysys model, kW 

W_(1,c3) = The energy of the third compression stage of the first compression 

system of the hysys model, kW 

W_(1,e1) = The energy of the first expansion stage of the first compression 

system of the hysys model, Kw 

W_(1,e2) = The energy of the second expansion stage of the first compression 

system of the hysys model, kW 

W_(n,c)^ideal = The average ideal power consumption of the compression 

stage of the nth compression system, kW 

W_(n,e)^ideal = The average ideal power output of the expansion stage of the 

nth compression system, kW 

N_c = Number of compression stages 

N_e = Number of expansion stages 

k ̃_air = mean adiabatic exponent of air 

k ̃_gas = mean adiabatic exponent of gas 

M ̃_air = mean molecular weight of air, kg/kgmol 

M _̃gas = mean molecular weight of gas, kg/kgmol 

F ̃_c = mean mass flow rate of air, kg/s 

F ̃_g = mean mass flow rate of gas, kg/s 

P_amb = ambient pressure, kgf/cm2 

T_amb = ambient temperature, K 

H_amb = ambient humidity, % 

V_(n,c) = volumetric flow rate of air of the nth compression system, kNm3/hr 

V_(n,e) = volumetric flow rate of gas of the nth compression system, kNm3/hr 

γ_(n,o2) = volume percent of O2 in off-gas of the nth compression system, % 
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γ_(n,co2) = volume percent of CO2 in off-gas of the nth compression system, % 

γ_(n,co) = volume percent of CO in off-gas of the nth compression system, % 

x_(n,cm,1) = Manipulated variables of the mth compression stage model of the 

nth compression system 

x_(n,cm,2) = The external disturbance variables of the mth compression stage 

model of the nth compression system 

x_(n,ek,1) = Manipulated variables of the kth expansion stage model of the nth 

compression system 

x_(n,ek,2) = The external disturbance variables of the kth expansion stage 

model of the nth compression system 

h_(n,cm) = The external disturbance influence function at the mth compression 

stage of the nth compression system 

h_(n,ek) = The external disturbance influence function at the kth expansion 

stage of the nth compression system 

g_(n,cm) = Thermodynamic-based function at the mth compression stage of the 

nth compression system 

g_(n,ek) = Thermodynamic-based function at the kth expansion stage of the the 

nth compression system 

f_(n,cm) = The influence function due to the degradation of the device at the 

mth compression stage of the nth compression system 

f_(n,ek) = The influence function due to the degradation of the device at the kth 

expansion stage of the nth compression system 

u_t = The input set of the NARX RNN model at time t 

y_t = The output set of the NARX RNN model at time t 

d_y = time delay of input set, hr 

d_u = time delay of output set, hr 

X_(opt,L) = Lower limit value of the optimization variable of the nth 

compression system 
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X_(opt,U) = Upper limit value of the optimization variable of the nth 

compression system 

W_(n,M,L) = The minimum operable power value of the electric motor of the 

nth compression system 

W_(n,M,U) = The maximum operable power value of the electric motor of the 

nth compression system 

α_(n,c_surge ) = The first regression parameter of surge limit line of the nth 

compression system 

α_(n,c_stonewall ) = The first regression parameter of stonewall limit line of 

the nth compression system 

β_(n,c_surge ) = The second regression parameter of surge limit line of the nth 

compression system 

β_(n,c_stonewall ) = The second regression parameter of stonewall limit line 

of the nth compression system
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Abstract in Korean (국문초록) 

 

압축시스템은 화학 공정에서 가장 중요한 부분 중에 하나이다. 

압축 시스템은 공정 내에서 중요한 역할을 수행하지만 많은 양의 

전력을 소모한다는 특징을 가진다. 일반적으로 압축기 시스템은 

일정한 토출 압력을 유지하기 위한 목적을 가지고 설비되며, 

압축기는 써지 현상으로부터 보호되어야 할 필요성을 가진다. 

써지는 진동을 동반한 역류 현상으로 압축기 내부뿐 만 아니라 

주변 부분까지 손상을 야기시킨다. 따라서, 효율적이고 강건한 

압축시스템의 운전은 화학 공장의 설계와 관리 측면에서 가장 

중요한 이슈를 가진다. 압축기는 공정 운전 단계에서뿐 만 아니라 

설계 단계에서부터 적절한 운전 범위에서 운전될 수 있도록 

고려되어야 한다.  

 먼저 저자는 기존의 경제성만을 고려한 설계 접근법에서 벗어나 

압축 시스템의 운전성을 높일 수 있는 새로운 공정 설계 방법을 

제안한다. 제안한 설계 방법은 로드의 변화에 따라서 다수의 정상 

상태 운전 영역을 고려한다는 점에서 기존의 설계 방법과 차이점을 

가진다. 각각의 설계 방법이 가지는 경제성은 실제 가스전의 

생산량을 기준으로 계산되는 매년의 수익을 반영한 경제성 평가 



 

 186 

모델을 기반으로 평가된다. 제안한 설계 방법은 압축기 설치 

비용에서 경제적인 손실을 가지지만 더 많은 운전 범위에서 운전 

비용의 이점을 가지기 때문에 전반적인 공정의 경제성을 높일 뿐만 

아니라 압축기의 유연한 운전을 가능하게 한다. 두 번째로 저자는 

산업 규모의 다단 압축기 시스템의 효율적이고 경제적인 운전을 

위한 실시간 최적화 기법 기반의 비선형 자기회귀 인공신경망 

모델을 제안한다. 비선형 자기회귀 인공신경망 모델은 실제 공정 

운전 데이터로부터 시간에 따라 변하는 시스템의 특성을 

반영하기에 적합한 모델이다. 또한 화학 공정이 가지는 열역학적인 

특성을 하나의 인공신경망 구조의 특성점으로 사용함으로써 모델의 

예측 성능을 높이고자 하였다. 그리고 최적의 운전 지점을 

실시간으로 결정해 주기 위해 실시간 최적화 기법을 사용하였으며 

결정된 최적 지점은 다음 시간에서의 의사 결정을 위해 모델에 

반복적으로 갱신된다. 제안한 모델과 최적화 기법은 실제 공장과 

99.6%의 정확도를 보이는 가상의 시뮬레이션 모델을 통해 

검증된다. 제안한 특성점 추출을 결합한 비선형 자기회귀 인공 

신경망 모델은 기존의 단순 피드포워드 다중 신경망 모델에 비해 

43.5%의 정확도 향상을 보였다. 또한 실시간 최적화 기법을 통하여 

총 전력 소모량의 4%를 감소시켰다. 마지막으로 저자는 평형 
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압축기 시스템의 강건한 운전을 위한 고도화된 제어 시스템을 

제안한다. 평형 압축기 시스템의 제어는 일정한 토출압 유지, 써지 

현상 방지, 그리고 로드 분배라는 목적을 가진다. 그러나 평형 

압축기 시스템의 제어는 서로 다른 제어 루프의 존재로 인한 

서로간의 제어 간섭으로 인해 어려움을 가진다. 또한 예측하지 

못하는 외란의 존재는 이러한 제어를 보다 어렵게 한다. 대부분의 

이러한 문제는 로드의 분배를 동등하게 하지 못하는 문제를 

야기시키며 이로 인해 압축기가 재순환 모드로 운전되게 한다. 

더욱이 이러한 조건에서는 써지 현상이 발생할 확률이 높아진다. 

추가적인 토출 유량 제어기 신호와 비선형 신호 계산 체계를 

도입함으로써 이러한 문제들을 해결한다. 
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