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ABSTRACT 

Development of Computational Methods 

for Predicting Protein Interactions 

 

Minkyung Baek 

Department of Chemistry 

The Graduate School 

Seoul National University 

 

 

Proteins are important components of living organisms and are involved in many 

biological processes. The biological functions of proteins result from their 

molecular interactions with other molecules such as metal ions, small organic 

compounds, peptides, lipids, nucleic acids, or other proteins. Therefore, 

computational approaches to predict interactions between proteins and other 

molecules are useful to understand protein functions in molecular level and to 

design molecules that regulate protein functions. Specifically, ligand binding site 

prediction methods can be used to identify druggable sites of target proteins while 

protein-ligand docking techniques can contribute to identifying hit or lead 

compounds and optimizing lead compounds during structure-based drug discovery 

process. In addition, because a large fraction of cellular proteins self-assemble to 

form symmetric homo-oligomers to play their biological roles, computational 

methods to predict homo-oligomer structures can also contribute to drug discovery 
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process by providing atomic details of target oligomer interfaces. 

 In this thesis, three computational methods developed to predict protein 

interactions are introduced: (1) an improved metal and organic molecule binding 

site prediction method, (2) a protein-ligand docking method with an improved 

hybrid scoring function and a sampling algorithm utilizing predicted binding hot 

spot information, and (3) a protein homo-oligomer modeling method using 

bioinformatics and physical chemistry approaches. All methods described here 

show high performances in benchmark tests when compared to other state-of-the-

art programs. These benchmark results suggest that computational approaches 

introduced in this thesis can be applied to in silico drug discovery process. 

 

 

keywords: protein interaction prediction, ligand binding site prediction, protein-

ligand docking, docking scoring function, protein homo-oligomer structure 

prediction 
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Chapter 1. Introduction 

Proteins are bio-macromolecules consisting of amino acids and have one or several 

chains. Like other bio-macromolecules such as nucleic acids and polysaccharides, 

proteins are important components of living organisms and are involved in many 

biological processes including enzymatic activities, metabolism, and signal 

transductions (Kristiansen 2004; Negri et al. 2010; Pawson and Nash 2000). The 

biological functions of proteins result from their molecular interactions with other 

molecules such as metal ions, small organic compounds, lipids, peptides, nucleic 

acids, or other proteins. Structural knowledge of protein complexes is required to 

understand how proteins and various molecules work together to fulfil their tasks. 

Computational approaches to predict ligand binding site and protein-ligand/protein-

protein complex structure are powerful tools to gain such structural knowledge and 

improve our understanding of protein function, reducing time and labor for 

investigating protein interactions experimentally. The major scope of this thesis is 

discussing the developments of computational methods to predict protein 

interactions, especially to predict ligand binding site, protein-ligand complex 

structure, and protein homo-oligomer structures. 

 Typically, proteins interact with other molecules by binding them at 

specific sites. Therefore, identification of the binding sites on the three-dimensional 

protein surfaces can be an important step for inferring protein functions (Campbell 

et al. 2003; Kinoshita and Nakamura 2003) and for designing novel molecules that 

control protein functions (Laurie and Jackson 2006; Sotriffer and Klebe 2002). In 

the last few decades, various computational methods have been developed to 

predict the possible ligand binding sites in proteins (Brylinski and Skolnick 2008, 

2011; Hendlich et al. 1997; Heo et al. 2014; Roche et al. 2011; Yang et al. 2013b). 
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Those methods are based on geometry, energy, evolutionary information, or 

combinations of them (Tripathi and Kellogg 2010). Methods utilizing available 

experimentally resolved structures of homologous protein-ligand complexes were 

proven to be successful in predicting binding sites in the community-wide blind 

prediction experiments (Gallo Cassarino et al. 2014; Lopez et al. 2009; Lopez et al. 

2007; Schmidt et al. 2011). Our group developed a non-metal ligand binding site 

prediction program called GalaxySite using information from similar protein-

ligand complexes in the context of protein–ligand docking (Heo et al. 2014). By 

combining information from template and molecular docking techniques, 

GalaxySite made more precise binding site predictions than simple superposition-

based methods for small organic molecules. In Chapter 2, an extended version of 

GalaxySite named GalaxySite2 is introduced. In GalaxySite2, a metal binding site 

prediction is newly incorporated and the overall performance is improved by using 

BioLiP database (Yang et al. 2013a) with improved ligand and template selection 

method and introducing a new re-scoring function to select final binding sites. 

 Computational protein-ligand docking is used to predict ligand binding 

poses for given binding sites of proteins. The conformational space of the protein-

ligand complex is explored in order to compute energetically stable conformations 

during the protein-ligand docking process. The success of a protein–ligand docking 

program depends on the program’s performance on two famous, but still unsolved 

problems: (1) scoring binding poses to discriminate near-native binding poses from 

non-native poses and (2) sampling a wide range of conformations covering 

conformational space enough. 

 In Chapter 3, a new docking scoring function developed to improve its 

ability to discriminate correct binding poses is introduced. In many cases, scoring 

functions trained to reproduce experimental binding affinities have been used to 



 

 

3 

score both binding poses and binding affinities (Bohm 1998; Eldridge et al. 1997; 

Huey et al. 2007; Korb et al. 2009; Morris et al. 1998; Trott and Olson 2010; Wang 

et al. 2002). To improve scoring ability on binding pose discrimination, I adopt a 

hybrid of different types of scoring functions to take advantage of different scores 

and optimized weight factors by an iterative parameter optimization procedure that 

trains the scoring function to favor near-native poses over non-native poses. 

 A new approach tackling sampling problem in protein-ligand docking, 

especially for large flexible ligands, is introduced in Chapter 4. It has been shown 

that docking small ligands with 6 or fewer rotatable bonds is in general very 

accurate (Plewczynski et al. 2011). However, as the dimensionality of the search 

space increases with large ligands, accurate docking of large flexible ligands 

becomes very challenging. To tackle this problem, it is essential to develop an 

efficient conformational space sampling algorithm. I developed GalaxyDock-Frag, 

a new approach to improve the sampling ability of protein-ligand docking program 

by utilizing predicted binding hot spot information. By predicting fragment binding 

hot spot information using FFT-based fragment docking and utilizing such binding 

hot spot information, the translational and rotational degrees of freedom could be 

searched efficiently resulting in improvements of docking performance for large 

flexible ligands. 

 A large fraction of cellular proteins self-assemble to form symmetric 

homo-oligomers with distinct biochemical and biophysical properties (Andre et al. 

2008; Goodsell and Olson 2000; Poupon and Janin 2010). For example, ligand-

binding sites or catalytic sites are located at oligomer interfaces in many proteins 

(Snijder et al. 1999; Ali et al. 2010; Pidugu et al. 2016), and oligomerization is 

often necessary for effective signal transduction through membrane receptor 

proteins (Heldin 1995; Stock 1996) and selective gating of channel proteins 
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(Clarke and Gulbis 2012). Therefore, knowledge of the homo-oligomer structure is 

essential for understanding the physiological functions of proteins at the molecular 

level and for designing molecules that regulate the functions. In Chapter 5, a 

method to predict protein homo-oligomer structures called GalaxyHomomer is 

described.  

 The methods described in this thesis can be applied to not only studying 

proteins’ function but also discovering new drug molecules for target proteins. 

Druggable sites in a target protein can be detected by developed ligand binding site 

prediction method named GalaxySite2, while structure-based virtual screening can 

be done by newly developed protein-ligand docking methods (GalaxyDock BP2 

Score and GalaxyDock-Frag) which predict protein-ligand complex structures. If 

the target protein forms a homo-oligomer structure, its structure and interfaces can 

be predicted by GalaxyHomomer program introduced in this thesis. 

 

 

  



 

 

5 

Chapter 2. Prediction of Metal and Small Organic 

Molecule Binding Sites in Proteins 

2.1. Introduction to Binding Site Prediction 

Proteins are involved in numerous biological processes such as enzymatic activities 

and signal transductions (Kristiansen 2004; Negri et al. 2010; Pawson and Nash 

2000). The biological functions of proteins result from their molecular interactions 

with other molecules such as metal ions, small organic compounds, lipids, peptides, 

nucleic acids, or other proteins. Typically, proteins interact with other molecules by 

binding them at specific sites. Therefore, identification of the binding sites on the 

three-dimensional protein surfaces can be an important step for inferring protein 

functions (Campbell et al. 2003; Kinoshita and Nakamura 2003) and for designing 

novel molecules that control protein functions (Laurie and Jackson 2006; Sotriffer 

and Klebe 2002) or designing new proteins with desired interaction properties 

(Damborsky and Brezovsky 2014; Feldmeier and Hocker 2013). Various methods 

have been developed to predict ligand binding sites of proteins from protein 

sequences or structures (Brylinski and Skolnick 2008, 2011; Hendlich et al. 1997; 

Heo et al. 2014; Roche et al. 2011; Yang et al. 2013b). Those methods are based on 

geometry, energy, evolutionary information, or combinations of them (Tripathi and 

Kellogg 2010). Methods utilizing available experimentally resolved structures of 

homologous protein-ligand complexes were proven to be successful in predicting 

binding sites in the community-wide blind prediction experiments (Gallo Cassarino 

et al. 2014; Lopez et al. 2009; Lopez et al. 2007; Schmidt et al. 2011). Those 

methods assume that binding sites and interactions at the binding sites are 

conserved among homologs and thus predict binding sites of target proteins by 

transferring the available binding information on homologs. However, such 
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methods based on evolutionary information may not be sufficient to predict 

interactions at the binding sites in atomic detail, and physicochemical interactions 

may have to be considered in addition. 

  To predict not only the binding site residues but interactions at the 

binding sites in atomic detail, a program named GalaxySite was developed (Heo et 

al. 2014). GalaxySite uses information from similar protein-ligand complexes in 

the context of protein–ligand docking. By combining information from template 

and molecular docking techniques, GalaxySite made more precise binding site 

predictions than simple superposition-based methods for non-metal ligand. In this 

chapter, an extended version of GalaxySite program named GalaxySite2 is 

introduced. In GalaxySite2, a metal binding site prediction is newly incorporated 

and the overall performance is improved by using BioLiP database (Yang et al. 

2013a) with improved ligand and template selection method and introducing a new 

re-scoring function to select final binding sites.  

 GalaxySite2 has been tested on the following test sets: 238 metal-binding 

proteins with known experimental structures, 46 homology models of metal-

binding proteins, and 420 targets of the ligand binding site prediction category 

from the continuous automated model evaluation server (CAMEO) released 

between June 13
th
 and August 29

th
, 2014. In these tests, the performance of 

GalaxySite2 was superior or comparable to other state-of-the-art prediction 

methods. 
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2.2. Methods 

2.2.1. Overall Procedure 

The GalaxySite2 program predicts metal and small organic molecule-binding sites 

of a given protein by protein–ligand docking, as shown in Figure 2.1. From the 

BioLiP database (Yang et al. 2013a), up to three ligands are extracted from the 

protein–ligand complex structures of similar proteins detected by HHsearch 

(Soding 2005). Ligand binding poses are then predicted by Monte-Carlo search for 

metal ions or LigDockCSA (Shin et al. 2011) for small organic molecules. After 

ligand-binding poses are predicted for each selected ligand, the lowest energy 

ligand binding poses are re-scored by confidence score, and the final results are 

reported. 
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Figure 2.1. The overall procedure of GalaxySite2 
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2.2.2. Bound Ligand and Template Complex Selection 

Ligands to be docked to the target protein structure are selected using experimental 

structures of template proteins with bound ligands. The template search is 

performed against the protein structure database ‘pdb70’ with a maximum mutual 

sequence identity of 70% using HHsearch. Among top 50 proteins from the 

HHsearch results, proteins whose structures are very different from that of the 

target protein are filtered out. Among the remaining proteins, the proteins in BioLiP 

database, which is the curated database containing biological relevant protein-

ligand complex structures, are selected as template candidates. 

 All the ligands in template candidates are scored according to the Ligand 

Score as represented in Eq. (2.1) and up to three ligands with the highest score and 

templates containing selected ligands are used in the docking calculations. 

Ligand Score ( TMscore BDTalign PSSMscore)TM BDT PSSM

templ

w w w    (2.1) 

The TMscore (Zhang and Skolnick 2005) is used to measure global structural 

similarity while BDTalign score (Roche et al. 2012) is used to measure local 

structural similarity of binding sites between target and template proteins. 

BDTalign score is calculated using following equation: 

0

2

0

max( )
1

BDTalign ,      
max( , ) 1 ( )

pN

ij

i
ij

p t ij

S

S
N N d d

 



       (2.2) 

where Np and Nt are the number of residues within 5 Å  from any ligand atom in 

target and template proteins, respectively. dij denotes distance between two aligned 

residues in target and template proteins and d0 is set to 3 Å . PSSMscore is used to 
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measure sequence similarity of binding sites between target and template proteins 

defined as following: 

0

PSSMscore ( )
p

i

N

res j

i

PSSM aa


               (2.3) 

where Np is the number of residues within 5 Å  from any ligand atom in the target 

protein. resi denotes the position of the i
th
 residue in binding sites, and aaj is the 

amino acid of the residue j in template aligned to the i
th
 residue in the target protein. 

The weight factors were trained on the CAMEO binding site prediction targets 

released between 16
th 

August and 16
th
 November 2013. The resulting weight 

factors are as follows: wTM = 0.3, wBDT = 0.3, wPSSM = 0.4.  

 

2.2.3. Binding Pose Refinement Using Molecular Docking 

2.2.3.1. Optimization of Small Organic Molecule Binding Poses 

LigDockCSA protein-ligand docking program (Shin et al. 2011) is used to optimize 

binding pose of small organic molecules as described in original GalaxySite paper 

(Heo et al. 2014). The flexibility of the ligand is considered only during docking. A 

pool of 30 conformations is first generated by perturbing the initial conformations 

obtained from superposed template ligand poses. The pool is then evolved by 

generating trial conformations, gradually focusing on narrower regions of lower 

energy in the conformational space. Out of the final pool of 30 structures, the pose 

with the lowest docking energy in the largest cluster is selected as a representative 

binding pose.  
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 The energy function used for docking is expressed as follows: 

AutoDock Restraint1.1E E E                    (2.4) 

where EAutoDock is the same as the AutoDock3 energy function (Morris et al. 1998) 

except that the maximum energy value for each interacting atom pair is set to 1.0 

kcal/mol to tolerate steric clashes that may be caused by inaccurate protein model 

structures or ligand-unbound structures. The restraint term ERestraint is derived from 

the template structures that contain the selected ligand.  

 

2.2.3.2. Optimization of Metal Binding Poses 

Because side-chain orientations are really important to make proper coordination 

geometry of a metal ion, conformations of selected side-chains are sampled using 

preferred discrete rotamers (Dunbrack 2002) during the binding pose optimization 

step. Side-chains in the binding site are set to be flexible when the angles between 

two orientation vectors in target and template proteins are larger than 30 degrees. 

The orientation vector of side-chain is defined by Cα coordinates and the center of 

mass of the electron donors. 

 Side-chain conformations and coordinates of metal ion are optimized 

using Monte Carlo minimization (Monte Carlo simulation at T=0). In each 

minimization step, one of the flexible side-chains is perturbed randomly followed 

by optimization of metal coordinates using Monte Carlo minimization. This 

minimization step is repeated 100 times. From the 30 independent runs, the pose 

with the lowest docking energy in the largest cluster is selected as a representative 

binding pose.  
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 The energy function used for docking is expressed as follows: 

Restraint Restraintmet Coord Coord qq qq clashE w E w E w E E        (2.5) 

where ERestraint is restraint term derived from the template structures that contain 

selected metal ion. The ECoord term is empirical scoring function to describe 

coordination geometry, the Eqq term is Coulomb interaction energy, and the EClash is 

the term for considering clashes between metal ion and side-chains. 

 

2.2.4. Final Model Selection and Binding Site Residue Prediction 

After ligand-binding poses are optimized for each selected ligand, the optimized 

ligands are re-scored based on confidence score as follows: 

Confidence Score lig lig dock dock sim simw S w S w S          (2.6) 

The confidence score consists of normalized ligand score (Slig), normalized docking 

energy (Sdock) and template similarity score (Ssim). Normalized ligand score is 

calculated by dividing each ligand score used in ligand/template selection step by 

the maximum ligand score so that it has a range from 0 to 1. To correct size-

dependency of the docking energy, docking energy is divided by a cube root of its 

size before normalizing by maximum value. If docking energy is larger than 0, 

which means that corresponding ligand binding is energetically unfavorable, that 

ligand is filtered out. Template similarity score measures how resulting binding 

poses are similar to those in templates. It is defined using logistic function as Eq. 

(2.7), where Z means the differences in the shortest distances between binding site 

residue and ligand atom in model and those in template.  
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1 1 2 1
( )

1 1 21 exp( 2 )
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Z


 

 
         (2.7) 

 The weight factors, wlig, wdock, and wsim are determined to 0.1, 0.45, and 

0.45, respectively. For each ligand having confidence score larger than 0.5, 

residues are considered in binding site if the distance between any heavy atom in 

the residue and any ligand atom is less than the sum of the van der Waals radii plus 

0.5 Å . 

 

2.2.5. Test Sets and Evaluation Metrics for Binding Site Prediction 

Three test sets were used to assess the performance of the GalaxySite2. The ‘native 

metalloprotein set’ was compiled from the FINDSITE-metal benchmark set 

(Brylinski and Skolnick 2011) consisting of 238 protein-metal complexes. It was 

used to compare the performance of the GalaxySite2 with the state-of-art metal 

binding site prediction program named FINDSITE-metal. The ‘homology model 

set’, containing CASP8 and CASP9 metal binding site prediction targets (16 targets) 

and a subset of native metalloprotein set (30 targets), was employed to verify the 

effectiveness of the side-chain sampling during the metal binding site prediction. 

The ‘CAMEO benchmark set’, consisting 420 CAMEO binding site prediction 

targets released between 13
th
 June and 29

th
 August 2014, was used to compare the 

overall performance of GalaxySite2 with the other binding site prediction servers. 

 To measure the performance of binding site prediction, three evaluation 

metrics, accuracy, coverage, and Matthew’s correlation coefficient (MCC), are 

calculated as: 
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Accuracy
TP

TP FP



                        (2.8) 

Coverage
TP

TP FN



                        (2.9) 

MCC
( ) ( ) ( ) ( )

TP TN FP FN

TP FP TP FN TN FP TN FN

  


      
   (2.10) 

where TP, TN, FP, and FN denote the number of true positive, true negative, false 

positive, and false negative predictions in binding site residue predictions. In 

addition to three metrics, the metal ion displacement in final predicted binding 

poses are employed to compare the performance of GalaxySite2 with FINDSITE-

metal. 

 

2.3. Results and Discussions 

2.3.1. Performance of Metal Binding Site Prediction 

To test the performance of metal binding site prediction of GalaxySite2, the native 

metalloprotein set and the homology model set were used as described in section 

2.2.5. The overall performance of GalaxySite2 on these two test sets are 

summarized in Table 2.1. 
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Table 2.1. The overall performance of GalaxySite2 in the metal binding site 

prediction 

Evaluation metric Native metalloprotein set Homology model set 

MCC 0.852 0.829 

Coverage 0.857 0.830 

Accuracy 0.870 0.857 

Metal Displacement 0.614 Å  1.147 Å  
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 The performance of GalaxySite2 in the metal binding pose prediction is 

compared with that of FINDSITE-metal program in Figure 2.2. FINDSITE-metal 

program predicts metal binding site and the location of metal ion by superposing 

the detected templates onto the target protein structure. As shown in Figure 2.2, 

GalaxySite2 outperforms FINDSITE-metal program in the metal binding pose 

prediction. When the rates of the cases in which the predicted metal binding poses 

are within 1 Å  RMSD from the native pose are considered, GalaxySite2 shows the 

highest success rate of 79% while the success rate of FINDSITE-metal is 30% 

(Figure 2.2 (B)). This result implies that the docking of metal ion using Monte 

Carlo simulation is helpful to predict better metal binding poses compared to the 

simple superposition-based method adopted in FINDSITE-metal. 

 To evaluate the effect of the side-chain sampling in the metal binding site 

prediction, the homology model set consisting total 46 targets was used. Figure 2.3 

shows the performance differences by the side-chain sampling during the 

refinement docking step described in section 2.2.3. By sampling side-chains during 

docking, the MCC, coverage, and accuracy measures are improved by 6.18 %, 

7.46 %, and 4.98 %, respectively. As shown in Figure 2.3 (D), the environment 

RMSD, defined as a RMSD between binding residues in the crystal structure and 

those in the final model structure, are also improved. 
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Figure 2.2. Performance comparison between GalaxySite2 and FINDSITE-

metal. Head-to-head comparison of the displacement (in Å ) of predicted metal ion 

generated by FINDSITE-metal and GalaxySite2 is shown in panel (A). Panel (B) 

shows the cumulative fraction of targets with a distance between the metal position 

in the crystal structure and the closest of the top three predicted binding sites 
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Figure 2.3. Head-to-head comparison of the quality of predicted binding sites 

between docking with rigid receptor mode and with flexible receptor mode in 

terms of MCC (A), coverage (B), accuracy (C), and environment RMSD (D). 
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2.3.2. Improved Ligand and Template Selection with Ligand Score 

Unlike the original GalaxySite program, the ligand/template selection method in 

GalaxySite2 is modified to consider local and global structural similarity as well as 

sequence similarity. To measure improvements of the ligand/template selection, the 

qualities of all selected ligands to be docked in GalaxySite and GalaxySite2 were 

evaluated by MCC of binding site prediction using superposed ligand. As shown in 

Figure 2.4, the ligand/template selection method used in GalaxySite2 shows better 

performance compared to that used in GalaxySite. By considering both of structure 

and sequence similarity, the performance of ligand/template selection improved by 

27.1 %. 
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Figure 2.4. Head-to-head comparison of the quality of selected ligand and 

templates in terms of MCC of the binding site prediction using superposed 

ligand 
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2.3.3. Performance Comparison with Other Binding Site Prediction Servers 

on CAMEO Benchmark Set 

The performance of GalaxySite2 was tested on 420 targets of the ligand binding-

site prediction category from the continuous automated model evaluation server 

released between June 13
th
 and August 29

th
, 2014. In Figure 2.5, results of 

GalaxySite2 for these targets were compared with available results of other servers 

in terms of median values of MCC. Because the number of predicted targets are 

different by server by server, only common targets were considered for comparison. 

The overall results show that the performance of GalaxySite2 is consistently 

comparable or superior to other available server methods.  
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Figure 2.5. Comparison of different binding site prediction methods on the 

CAMEO benchmark set in terms of median MCC 
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2.4. Conclusion on Binding Site Prediction 

GalaxySite2 predicts a binding site of metal and small organic molecules in 

proteins using molecular docking guided by information from similar protein-

ligand complexes. The performance of GalaxySite2 in the metal binding site 

prediction is improved by docking metal ions using Monte Carlo simulation with 

the side-chain sampling. Moreover, the performance in prediction of small organic 

molecule binding sites is improved by improving the ligand and template selection 

method and introducing the final re-scoring method. Overall performance of 

GalaxySite2 is better than or comparable to other state-of-the-art programs 

according to tests on the CAMEO (Continuous Automated Model Evaluation) 

benchmark sets. Unlike other available methods that predict binding residues only, 

GalaxySite2 provides additional predictions on key protein–ligand interactions in 

terms of optimized 3D coordinates of the protein-ligand complexes. Such specific 

information would be very useful for computer-aided drug discovery. 
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Chapter 3. Development of a Hybrid Scoring 

Function for Accurate Protein-Ligand Docking 

3.1. Introduction to Protein-Ligand Docking Score 

In previous chapter, the ligand binding site prediction method named GalaxySite2 

was introduced. When a ligand binding site of a target protein is known, one can 

develop drugs targeting that ligand binding site. Computational methods can 

contribute to identifying hit or lead compounds and to optimizing lead compounds 

for given protein targets, reducing time and labor during the drug discovery process. 

A number of protein–ligand docking programs have been applied to virtual 

screening of compound libraries for such purposes (Abagyan et al. 1994; Morris et 

al. 1998; Kramer et al. 1999; Verdonk et al. 2003; Friesner et al. 2004; Korb et al. 

2006; Trott and Olson 2010; Shin et al. 2011; Shin and Seok 2012; Spitzer and Jain 

2012; Shin et al. 2013; Allen et al. 2015). 

 The success of a protein–ligand docking program depends on the 

program’s performance on two famous, but still unsolved problems: scoring and 

sampling. Scoring in docking has two aspects, which are scoring different binding 

poses of a given ligand to a given protein receptor and scoring different ligands by 

their binding affinities to a given protein. In the docking community, scoring 

methods have often been developed and tested separately of sampling to simplify 

the docking problem. In many cases, scoring functions trained to reproduce 

experimental binding affinities have been used to score both binding poses and 

binding affinities (Jones et al. 1997; Morris et al. 1998; Trott and Olson 2010; 

Eldridge et al. 1997; Bohm 1998; Wang et al. 2002; Huey et al. 2007; Korb et al. 

2009). These binding affinity-based approaches have shown some success in 
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binding pose scoring in various benchmark tests (Bursulaya et al. 2003; Wang et al. 

2003; Ferrara et al. 2004; Perola et al. 2004; Warren et al. 2006; Zhou et al. 2007; 

Cheng et al. 2009; Cross et al. 2009; Li et al. 2014a). 

 In this chapter, I introduce a new docking scoring function, named 

GalaxyDock BP2 Score, specifically designed to predict binding poses with high 

accuracy (Baek et al. 2017b). The score can also be used within GalaxyDock2 

(Shin et al. 2013), a protein–ligand docking program that employs a global 

optimization technique called conformational space annealing (CSA) (Lee et al. 

2005; Lee et al. 1997). The previous version, GalaxyDock, was developed by 

combining CSA with the AutoDock3 energy (Shin et al. 2011; Shin and Seok 2012). 

When the AutoDock3 energy was subject to CSA optimization, it often produced 

binding poses that had lower energy than those found by the Lamarckian genetic 

algorithm of AutoDock3 (Morris et al. 1998), but were more distant from the 

crystal poses, indicating a problem of the AutoDock3 energy (Shin et al. 2011). It 

was noted that ligand torsion energy is absent in the AutoDock3 energy, so a ligand 

torsion energy term was added to the AutoDock3 energy by means of the PLP score 

(Gehlhaar et al. 1995). This resulting energy function is called GalaxyDock BP 

Score, and it has been shown that the docking performance of GalaxyDock 

improved with this addition (Shin et al. 2011).  

 I further improved GalaxyDock BP Score for binding pose prediction by a 

more systematic energy optimization. I first adopted the more recent AutoDock4 

energy (Huey et al. 2007) instead of the AutoDock3 energy (Morris et al. 1998). 

Although the physics-based energy terms of AutoDock4 are effective in sampling 

physically realistic binding poses, other empirical or knowledge-based scoring 

functions perform better in some benchmark tests (Cheng et al. 2009; Li et al. 

2014a). This may be because the force field-based energy with an implicit 
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solvation model does not as effectively account for hydrophobic effects, 

conformational entropy, water-mediated interactions, etc., that are important for 

docking. I therefore decided to adopt a hybrid of different types of scoring 

functions to take advantage of different scores. This type of scoring function was 

successfully employed in other modeling problems such as protein structure 

prediction (Zhang et al. 2004; Zhu et al. 2006; Chopra et al. 2010; Park and Seok 

2012b; Park et al. 2014b). The new GalaxyDock BP2 Score consists of the 

AutoDock4 energy (Huey et al. 2007), PLP ligand torsion energy (Gehlhaar et al. 

1995), an empirical hydrophobic matching score called HM-score taken from X-

Score (Wang et al. 2002), and a knowledge-based atom pair potential that mimics 

DrugScore (Gohlke et al. 2000). Proper balance of the score terms is crucial, and 

the weight factors of the score terms were determined by an iterative parameter 

optimization procedure that trains the scoring function to favor near-native poses 

over non-native poses. 

 To improve the docking performance of GalaxyDock, GalaxyDock BP2 

Score was implemented in GalaxyDock2, which is a more recent version of 

GalaxyDock that generates an initial docking poses using a fast, geometry-based 

docking method that employs a β-complex (Shin et al. 2013). After training on 

protein–ligand complexes selected from the PDBbind 2013 database (Li et al. 

2014b), performance tests were carried out on five other complex sets. First, the 

decoy discrimination power of GalaxyDock BP2 Score was tested on binding pose 

sets generated from the 443 complexes compiled from a refined set of PDBbind 

2013 database (Li et al. 2014b) and on different pose sets from the 195 complexes 

of the CASF-2013 benchmark set (Li et al. 2014a). Additionally, GalaxyDock2 

with GalaxyDock BP2 Score showed superior performance when compared to 

other state-of-the-art docking programs not only in the self-docking tests on the 85 
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target complexes of the Astex diverse set (Hartshorn et al. 2007) and the 64 target 

complexes of the Cross2009 benchmark set (Cross et al. 2009) but also in a more 

realistic docking test on the Astex non-native set (Verdonk et al. 2008). Even 

though GalaxyDock BP2 Score was optimized for scoring binding poses, it shows 

results comparable to other available methods in scoring binding affinities when 

tested on CASF-2013 benchmark set and DUD data set (Huang et al. 2006). 

 

3.2. Methods 

3.2.1. Components of GalaxyDock BP2 Score 

GalaxyDock BP2 Score is a linear combination of multiple components that are 

taken from physics-based, empirical, and knowledge-based scores as follows: 

BP2 vdW, PL 1 hbond, PL 2 qq, PL 3 desolv, PL

4 vdw, L 5 hbond, L 6 qq, L 7 desolv, L

8 PLP_tor 9 HM 10 DrugScore

     

    

   

E E w E w E w E

w E w E w E w E

w E w E w E

   

   

  

     (3.1) 

where E’s are energy terms and w’s are weight factors. The first eight terms are 

physics-based energy terms of AutoDock4 that describe interactions between 

protein (P) and ligand (L) atoms (from EvdW,PL to Edesolv,PL) and those within ligand 

(from EvdW,L to Edesolv,L) (Huey et al. 2007). The EvdW terms describe van der Waals 

dispersion/repulsion interactions with the 12-6 Lennard-Jones potential. The Ehbond 

term describes directional hydrogen bond energy with the 12-10 potential. The Eqq 

term represents screened Coulomb electrostatic energy with a sigmoidal distance-

dependent dielectric constant. Gasteiger charges (Gasteiger and Marsili 1980) and 
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the partial charges of CHARMM22 force field (MacKerell et al. 1998) were 

assigned to ligand and protein, respectively. The Edesolv term represents desolvation 

free energy based on an estimation of solvation free energy loss for each atom due 

to the solvent volume occluded by surrounding atoms. 

The component EPLP_tor is the ligand torsion energy term adopted from the 

PLP score (Gehlhaar et al. 1995). This term may be considered a physics-based 

energy term. The term considers intra-ligand torsional strains that are not 

accounted for in the AutoDock4 energy (Shin et al. 2011). The previous scoring 

function of GalaxyDock, called GalaxyDock BP Score, consists of the AutoDock3 

energy terms (Morris et al. 1998) that correspond to the first six terms of Eq. (3.1) 

and EPLP_tor. GalaxyDock BP Score added 0.1EPLP_tor to the AutoDock3 energy with 

the original weight factors (Shin et al. 2011). In contrast to GalaxyDock BP Score, 

within the new GalaxyDock BP2 Score, all weight factors were optimized again 

including those for two additional terms called HM-score and DrugScore, as 

described in the next paragraphs. 

The hydrophobic matching score EHM is adopted from the X-score (Wang 

et al. 2002) to describe hydrophobic effects involved in protein–ligand binding. 

This term, called HM-score, can be considered an empirical score. HM-score 

scores favorably when a hydrophobic ligand atom is placed in a hydrophobic 

environment. Hydrophobicity of ligand and protein atoms was defined based on the 

LogP value predicted by an in-house version of XLogP program (Wang et al. 2000). 

Although the hydrophobic effect is partially considered by the van der Waals and 
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the desolvation terms of AutoDock4, more complicated hydrophobic effects that 

involve both solvent entropy and enthalpy changes are not effectively taken into 

account. The EHM term therefore supplements this deficiency of AutoDock4. 

The last component, EDrugScore, is a knowledge-based potential that was 

derived in-house using the same logic as the DrugScore distance-dependent atom-

pair potential (Gohlke et al. 2000). Since this knowledge-based potential is 

obtained from statistics of the distances between atoms found in the experimentally 

resolved protein–ligand complex structures, important effects (e.g., water-mediated 

interactions, solvation free energy, ligand conformational entropy) that are hard to 

be accounted for by other physics-based or empirical scores are captured implicitly. 

To derive the potential, the refined set of PDBbind 2013 database (2,959 PDB 

structures) (Li et al. 2014b) was used instead of the ReLiBase (Hendlich et al. 2003) 

used for the original DrugScore (Gohlke et al. 2000). Those complexes used for 

testing obtained energy parameters were excluded from the refined set (see the next 

two subsections for explanation on energy parameter training). The SYBYL atom 

types were used as in the original DrugScore. The newly derived EDrugScore was 

validated by comparing with the distance-dependent part of DSX (Neudert and 

Klebe 2011), the latest version of DrugScore. 

 

3.2.2. Energy Parameter Optimization Based on the Decoy Discrimination 

The procedure used to optimize the weight factors w in Eq. (3.1) is depicted in 
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Figure 3.1. Near-native and non-native docking poses were first generated, and 

energy parameters were then trained such that near-native poses were favored over 

non-native decoy poses, as described in detail below. The optimization procedure 

started with the original weight parameters of the AutoDock4 energy with the 

weights of zero for HM-score and DrugScore, and the final set of parameters form 

the GalaxyDock BP2 Score. 
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Figure 3.1. Overall procedure of energy parameter optimization 
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 First, a set of docking poses that contains both near-native and non-native 

poses was constructed for each protein–ligand complex of the training sets 1 and 2 

(715 and 415 complexes, respectively). How the training sets were constructed is 

explained in the section 3.2.3. During the pose generation, only ligand 

translational/rotational/torsional degrees of freedom were sampled, and protein 

conformation was fixed at the crystal structure using the rigid-receptor mode of 

GalaxyDock (Shin et al. 2011; Shin and Seok 2012). A total of 1,500 near-native 

and non-native poses were generated for each complex as follows: (1) Near-native 

poses were generated by perturbing the crystal ligand pose 2,500 times, following 

the procedure developed to optimize BP Score (Shin et al. 2011), and minimizing 

the resulting structures. The poses were clustered into 500 clusters by K-means 

clustering (Hartigan and Wong 1979), and the 500 cluster centers were used for 

parameter optimization. (2) More poses were generated by running GalaxyDock 

ten times and collecting all intermediate poses sampled during global optimization 

by the conformational space annealing algorithm. The crystal pose was included in 

the initial set of poses for GalaxyDock runs so that conformational sampling does 

not drift too far from the native pose. The total number of resulting poses was on 

the order of 10
5
 for each complex. After filtering out high-energy poses, the poses 

were clustered into 1,000 clusters by K-means clustering, and the 1,000 cluster 

centers were used for parameter optimization. 

 Second, sampling was performed in the parameter space to minimize the 

following objective function F for the pose sets generated as described above (Park 
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et al. 2011): 

nat CorrF Z                (3.2) 

where Znat is the Z-score of the average energy of the top 10% poses closest to the 

crystal pose in the energy–RMSD distribution, where RMSD is root-mean-square-

deviation of a given ligand conformation from the crystal ligand conformation, 

Corr is the Pearson correlation coefficient between energy and RMSD, and   

denotes an average over the complexes in the training set. Monte Carlo 

minimization was run 2,000 times to find local minima of F in the parameter space 

for training set 1. The resulting 2,000 parameter sets were clustered into 10 clusters 

by K-means clustering, and the centers of the 5 largest clusters were selected. 

Among the 5 parameter sets, the parameter set that gave the minimum value of the 

objective function F for the training set 2 was used as the initial parameter set for 

the next round of iteration. 

 With a new energy parameter set, the energy landscape can undergo 

changes in local energy minima. New local minima may appear, and some of old 

local minima may disappear. Therefore, before each new parameter optimization 

cycle, a new set of poses was generated by perturbing crystal structures and 

running GalaxyDock for each complex of the training sets with the new set of 

energy parameters. The poses were clustered into 1,500 clusters, and the cluster 

centers were added to the existing pose set. Energy parameters were then sampled 

with the enlarged pose sets to minimize the objective function. This procedure was 
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repeated until convergence. 

 In the final step of parameter optimization, parameters were further 

refined to optimize docking performance on the training set 2. One hundred 

parameter sets were generated by perturbing the converged parameter set obtained 

as described above, and GalaxyDock2 was run with each parameter set for each 

complex of the training set 2. The parameter set that showed the highest success 

ratio was selected as the final parameter set. A successful prediction was defined as 

a prediction in which the lowest-energy docking pose was within 2 Å  RMSD from 

the native pose. 

 

3.2.3. Training and Test Sets 

Two sets of protein–ligand complexes were used for training the energy, and five 

sets for testing the performance of the energy. The two training sets and the first 

test set were compiled from the refined set of PDBbind 2013 database (2,959 PDB 

structures) (Li et al. 2014b). The database was randomly split into three subsets, 

and each subset was clustered with a sequence identity cutoff of 70% to remove 

redundancy. Up to 3 complexes were selected from each cluster, resulting in 715, 

415, and 443 non-redundant complexes. The first two sets of 715 and 415 

complexes were used for training the energy parameters (called training set 1 and 

2), and the third set of 443 complexes (called test set 1) for testing the ability of the 

new score to discriminate near-native poses from non-native poses. Decoy binding 
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poses for test set 1 were generated by the same method used for generating poses 

for the training set complexes. 

 The second test set is the core set of PDBbind 2013 database, which 

consists of 195 protein–ligand complexes. This set is also referred to as CASF-

2013 benchmark set because it was used in the comparative assessment of scoring 

functions (CASF) project in 2013 to compare performances of 20 different scoring 

functions (Li et al. 2014a). In the current study, this benchmark set is used as an 

additional test set for assessing the decoy pose discrimination capability of the new 

GalaxyDock BP2 Score in comparison to other scoring functions tested in CASF-

2013. The decoy binding poses used for the CASF project were also used in our 

test. The poses were generated by selecting up to 100 docking poses from those 

obtained by running GOLD (Jones et al. 1997; Verdonk et al. 2003), Surflex (Jain 

2007), and MOE (Vilar et al. 2008) for each complex. 

The third test set comprises 85 protein–ligand complex structures of the 

Astex diverse set (Hartshorn et al. 2007), and the fourth set contains 64 protein–

ligand complex structures taken from Ref. (Cross et al. 2009), referred to as 

Cross2009 benchmark set. These two sets were used to evaluate docking 

performance with the new scoring function in comparison to other previously 

tested docking methods. For a more realistic docking test, Astex non-native set 

(Verdonk et al. 2008), which includes receptor structures that are not bound to the 

given ligands, was used as the fifth set. 

 



 

 

36 

3.3. Results and Discussions 

3.3.1. Results of Energy Optimization 

The ten weight factors for the energy components of Eq. (3.1) were determined as 

described in the section 3.2.2. The final energy with the optimized weight factors is 

called the GalaxyDock BP2 Score [Eq. (3.1)], while the previous energy function 

of GalaxyDock used for scoring binding poses is called the GalaxyDock BP Score 

(Shin et al. 2011). 

 The objective function for parameter training written in Eq. (3.2) was 

designed to increase the energy-RMSD correlation for various binding poses and at 

the same time to lower the energy of native-like poses relative to non-native ones. 

The results of this training can depend heavily upon the quality of the binding pose 

sets. Therefore, special care was taken to generate the training poses to cover both 

near-native and non-native regions in the conformational space as much as possible. 

The near-native region was covered by perturbations of the crystal pose, while the 

non-native region was covered by the CSA global optimization implemented in the 

GalaxyDock protein–ligand docking program (Shin et al. 2011; Shin and Seok 

2012). In Figure 3.2, score values of the three scoring functions, AutoDock4 

energy, DrugScore, and GalaxyDock BP2 Score, are plotted against RMSD for the 

poses generated for 1ajp, a member of training set 2. It can be seen from the figure 

that the poses cover a broad range of conformational space and that the poses 

generated by perturbing the crystal structure (red) and CSA global optimization 

(blue) show some overlap. This particular example illustrates a successful 
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parameter optimization: GalaxyDock BP2 Score has its putative global energy 

minimum near the native pose at ~1.5 Å  while its components AutoDock4 energy 

and DrugScore at ~3.5 Å  and ~5 Å , respectively. 

 The parameter training procedure was applied iteratively until 

convergence. The energy surface can be modulated by changes in parameters, so 

new poses were generated with the new parameter set at each iteration step to 

reflect the change in the energy surface. Many parameter sets that give similarly 

low values for the objective function could be found, and the parameter sets that 

form the largest clusters were selected for further validation. Here, we assumed that 

a parameter set located in a broad basin in the parameter space would result in an 

energy surface more robust to small parameter changes and that such parameter set 

would be more transferable to other complexes not included in the training set. 

Parameter values obtained by this strategy indeed converged rapidly, settling to an 

almost converged parameter set after the second iteration, as displayed in Figure 

3.3. From iteration 2 to iteration 5, the weight factors and the contributions of the 

energy components did not show much change, so the iteration was terminated 

after iteration 5. 
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Figure 3.2. The energy versus RMSD scatter plots for AutoDock4 energy (A), 

DrugScore (B) and GalaxyDock BP2 Score (C). The ligand binding poses (PDB 

ID: 1AJP) were generated by two independent methods, perturbation of the crystal 

structure (red) and GalaxyDock docking using CSA (blue). 
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Figure 3.3. Changes of weight factors (A) and contributions of the energy 

components (B) as a function of iteration number during energy optimization. 

Contribution of each energy component is defined as its weight multiplied by 

standard deviation of the energy values for the pose sets for the complexes of the 

training set 2, averaged over the complexes and normalized over the components. 
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The final parameters and the contributions of the energy components to the 

total energy variation are reported in Table 3.1. The contribution of each energy 

component is defined as the standard deviation of the energy values of the 

component multiplied by the weight factor for each pose set averaged over the 

complexes in the training set 2 and normalized over the energy components. The 

largest contributions to GalaxyDock BP2 Score come from the van der Waals term, 

followed by the DrugScore and the HM-score terms. This result indicates that the 

newly added knowledge-based potential DrugScore and the empirical hydrophobic 

interaction score HM-score indeed contribute to the improved binding-pose scoring 

power of GalaxyDock BP2 Score.  
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Table 3.1. The optimized weights and the contributions of the energy 

components to the total energy variation 

Energy Weight Contribution (%)* 

EvdW,PL 1.00 35.0 

Ehbond,PL 0.85 8.8 

Eqq,PL 0.93 9.6 

Edesolv,PL 0.12 2.0 

EvdW,L 0.80 6.4 

Ehbond,L 0.25 1.1 

Eqq,L 1.35 2.6 

Edesolv,L 1.00 0.9 

EPLP_tor 0.01 0.3 

EHM -0.80 10.2 

EDrugScore 0.07 23.1 

*
 Contribution of each energy component is defined as its weight multiplied by 

standard deviation of the energy values for the pose sets for the complexes of the 

training set 2, averaged over the complexes and normalized over the components. 
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3.3.2. Decoy Discrimination Test on the Pose Sets Generated by GalaxyDock 

To assess the decoy pose discrimination power of the newly developed 

GalaxyDock BP2 Score, we employed two types of decoy sets. The first decoy set 

was generated by the same method as described in the section 3.2.3. Near-native 

and non-native poses were generated by perturbing the crystal poses and by 

running GalaxyDock multiple times on the 443 complexes of the test set 1. This 

test set was compiled from the refined set of the PDBbind 2013 database 

independently of the training sets, as described in the section 3.2.3. To minimize 

bias of decoy conformations by the energy function used for generating them, the 

following three energy functions were used to generate the poses: AutoDock4 

energy, the energy function with the parameter set obtained after the first iteration, 

and GalaxyDock BP2 Score.  

 The performance of GalaxyDock BP2 Score in decoy pose discrimination 

is compared with those of other available scoring functions: AutoDock4 energy 

(Huey et al. 2007), DSX (Neudert and Klebe 2011), GalaxyDock BP Score (Shin et 

al. 2011), and X-score
HM

 (Wang et al. 2002) in Figure 3.4. This figure compares 

the rates of the cases in which the top one, two, or three best-scoring poses are 

within 2 Å  RMSD from the native pose for the test set complexes. When the best-

scoring pose is picked, GalaxyDock BP2 Score shows the highest success rate of 

75% while success rates of AutoDock4 energy, DSX, GalaxyDock BP score, and 

X-score
HM

 are 72%, 68%, 67%, and 60%, respectively. GalaxyDock BP2 Score 

also shows the highest success rates for top two and three poses. 
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Figure 3.4. Rates of the complexes of the test set for which the top one (light 

brown bars), two (brown bars), or three (dark brown bars) best-scoring poses 

are within 2 Å  RMSD for five scoring functions. The scoring functions are 

ordered by the success rate for the top one poses. 
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3.3.3. Decoy Binding Pose Discrimination Test on the CASF-2013 

Benchmark Set  

The second decoy pose discrimination test was carried out on the CASF-2013 

benchmark set to compare the performance of GalaxyDock BP2 Score with other 

scoring functions evaluated in the CASF-2013 benchmark study (Li et al. 2014a). 

The binding pose sets generated by the authors using GOLD, Surflex, and MOE 

were used. The native poses were also included following the study. Therefore, this 

is a test on binding pose sets generated independently of GalaxyDock. GalaxyDock 

BP2 Score was evaluated after local energy minimization as well as for the given 

poses. Local minimization was performed to remove steric clashes because 

GalaxyDock BP2 Score contains energy terms sensitive to atomic clashes such as 

van der Waals energy and directional hydrogen bond energy. Local minimization 

improved the success rate prediction of the top 1 pose by ~2%. It was also 

discussed previously that rescoring predefined poses can be misleading when 

assessing docking performance of scoring functions (Korb et al. 2012). The success 

rates of GalaxyDock BP2 Score with and without minimization, AutoDock4 energy, 

DSX, GalaxyDock BP score, X-score
HM

, and the top 10 scoring functions in the 

CASF-2013 benchmark test are compared in Figure 3.5. When the best-scoring 

pose is considered, GalaxyDock BP2 Score shows the highest success rate of 84.1% 

(86.2% when minimized), followed by ChemPLP@GOLD (Korb et al. 2009) 

(81.0%), DSX (Neudert and Klebe 2011) (80.5%) and GlideScore-SP (Friesner et 

al. 2004; Halgren et al. 2004) (78.5%). When the three best-scoring poses are 

considered, DSX (Neudert and Klebe 2011) shows the best success rate of 91.3%, 
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followed by GalaxyDock BP2 Score (89.7%; 91.3% when minimized), 

ChemPLP@GOLD (Korb et al. 2009) (89.7%), and ChemScore@GOLD (Eldridge 

et al. 1997) (88.2%). 
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Figure 3.5. Success rates of 15 scoring functions on the CASF-2013 

benchmark set when the top one (light brown bars), two (brown bars), or 

three (dark brown bars) best-scoring poses are within 2 Å  RMSD. The scoring 

functions are ordered by the success rate for the top one poses. 
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 To find clues about which features of GalaxyDock BP2 Score contribute 

to its improved performance compared to the existing scoring functions, results on 

nine subsets of the CASF-2013 benchmark set with different ligand or interaction 

types defined by the authors (Li et al. 2014a) were examined. The subsets were 

constructed by classifying the benchmark set complexes into three groups each 

based on three criteria: the number of rotatable bonds of ligand (subsets A1-A3), 

the percentage of the solvent-accessible surface area of ligand buried upon binding 

(subsets B1-B3), and the hydrophobic scale of the binding pocket of protein 

measured by logD (subsets C1-C3). Statistics of the subsets are provided in Table 

3.2. 

 Success rates of the scoring functions mentioned above on the nine 

subsets are illustrated in color scale in Figure 3.6. Most scoring functions show 

higher success rates on the subsets A1 and A2 than on A3, on B3 than on B1 and 

B2, and on C1 or C2 than on C3. Interestingly, GalaxyDock BP2 Score shows 

relatively high performance on difficult subsets A3, B1, and B2 compared to other 

scoring functions. The members of subset A3 overlap with those of subsets B1 and 

B2, and this is understandable considering that ligands in A3 have relatively large 

number of rotatable bonds, and those in B1 and B2 bury relatively smaller fraction 

of surface area upon binding. Therefore, the 32 targets of A3 are also members of 

either B1 (13 targets) or B2 (19 targets).  
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Table 3.2. Subsets of the CASF-2013 benchmark set 

Classification Standard Range No. of 

complexes 
Subset Symbol 

No. of rotatable bonds 

of ligand 

1 ~ 3 116 A1 

4 ~ 8 47 A2 

> 8 32 A3 

Fraction of ligand 

solvent-accessible surface 

area buried upon binding 

0.0 ~ 0.65 37 B1 

0.65 ~ 0.85 117 B2 

> 0.85 41 B3 

Hydrophobic scale of 

the binding pocket 

measured by log D 

< -0.50 42 C1 

-0.50 ~ 0.00 116 C2 

> 0.00 37 C3 

This table is taken from (Li et al. 2014a). 
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Figure 3.6. Success rates of 15 scoring functions on the nine subsets of CASF-

2013 benchmark set. Performance on the entire test set is displayed on the left as a 

reference. 
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 The improved performance of GalaxyDock BP2 Score on the subsets A3, 

B1, and B2 implies that this score can describe protein–ligand interactions in 

relatively solvent-exposed environments more accurately than other scoring 

functions. We attribute this success partially to its effective treatment of water-

mediated interactions by the knowledge-based component DrugScore. Evidence of 

this was found when we examined the cases in which GalaxyDock BP2 Score 

succeeded while AutoDock4 energy failed in decoy discrimination. For example, 

the target 1h23 has a relatively open binding pocket and involves many water-

mediated interactions, as shown in Figure 3.7 (A). The AutoDock4 energy selects a 

conformation with 2.4 Å  RMSD from the crystal pose which make many direct 

contacts with protein atoms instead of water-mediated interactions (Figure 3.7 (B)). 

GalaxyDock BP2 Score scores the crystal pose the highest, and the high score is 

mainly due to the DrugScore term. DrugScore favors the crystal pose over the pose 

selected by AutoDock4 energy by 1.62 energy unit, while the score terms from 

AutoDock4 disfavor the crystal pose by 1.11 energy unit. The hydrophobic 

matching score, HM-score, favors the crystal pose by 0.21 energy unit, which is a 

much smaller contribution than that by DrugScore.  
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Figure 3.7. The best-scoring pose for the target 1H23 by GalaxyDock BP2 

Score, which is the same as the crystal pose (A) and that by AutoDock4 

scoring function (RMSD = 2.4 Å ) (B). Water-mediated interactions are present in 

A. 
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Targets with more hydrophobic binding pockets (subset C3) are the most 

difficult to score even with GalaxyDock BP2 Score. It seems that the combination 

of HM-score and the orientation-dependent hydrogen bond energy term of 

AutoDock4 score mainly contribute to the slightly better performance of 

GalaxyDock BP2 Score. For example, the crystal pose of the target 3u9q makes 

many hydrophobic contacts and forms a specific hydrogen bonding network. 

AutoDock4 energy picks a binding pose with 4.1 Å  RMSD that makes a few strong 

Coulombic interactions because Coulomb interaction favors this pose over the 

crystal pose by 0.5 energy unit. GalaxyDock BP2 Score selects the crystal pose 

over the decoy pose because HM-score favors the crystal pose by 1.5 energy unit. 

When compared to other decoy poses with similar HM-score values, GalaxyDock 

BP2 Score favors the crystal pose mainly due to the hydrogen bond energy term. 

 

3.3.4. Comparison with Energy Parameter Optimization Based on Binding 

Affinity Data 

To demonstrate the benefits of the current energy optimization strategy based on 

decoy discrimination over a strategy based on binding affinity data, a different set 

of energy parameters was obtained by optimizing the Pearson correlation 

coefficient between the available experimental binding affinity data and the score 

values of the crystal poses averaged over the same training set targets. The 

resulting weight factors are as follows: w1 = 0.68, w2 = 0.76, w3 = 0.20, w4 = 1.45, 

w5 = 0.23, w6 = 1.77, w7 = 1.91, w8 = 0.25, w9 = -3.16, w10 = 0.70.  
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 When the decoy pose discrimination ability of this binding affinity-based 

scoring function was evaluated, it showed worse performance than GalaxyDock 

BP2 Score. The success rate of the binding affinity-based scoring function on the 

pose sets generated in this study for the test set of 443 complexes compiled from 

the PDBbind 2013 database is 63% when the lowest energy conformation is picked. 

GalaxyDock BP2 Score shows a success rate of 75% for the same set. When the 

binding affinity-based scoring function tested on the decoys for the 195 complexes 

of CASF-2013 benchmark set, the success rate is 77% for top 1 pose, compared to 

84% with GalaxyDock BP2 Score. The decreased performance of the binding 

affinity-based scoring function, which has the same functional form as GalaxyDock 

BP2 Score but has a different parameter set, implies that the overall success of 

GalaxyDock BP2 Score is mainly due to the energy parameter optimization 

strategy. The current example clearly shows that a scoring function optimized for 

better scoring of binding poses has better decoy pose discrimination power than a 

scoring function optimized for better binding affinity prediction. This score trained 

on affinity data did not perform better than BP Score in a preliminary virtual 

screening test as described in section 3.3.6. Therefore, I think that a more 

sophisticated training method than presented here is necessary for developing a 

function that predicts binding affinity in the context of virtual screening. 
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3.3.5. Improved Docking Performance of GalaxyDock2 with GalaxyDock 

BP2 Score 

So far, I have evaluated the performance of GalaxyDock BP2 Score in scoring 

poses generated in advance. The improved score, or energy function, may be used 

to guide conformational sampling towards the global minimum of the given energy 

function, providing scores in situ while sampling is performed. This may result in 

improved docking performance. 

 GalaxyDock BP2 Score has been implemented in the GalaxyDock2 

protein–ligand docking program, which employs a global optimization technique 

called conformational space annealing. GalaxyDock2 with the new energy function 

was tested on the 85 complexes of Astex diverse set (Hartshorn et al. 2007) and the 

64 complexes of Cross2009 benchmark set (Cross et al. 2009) for which other 

state-of-the-art docking programs were tested previously. The results on the two 

benchmark sets are summarized in Table 3.3 and Table 3.4, respectively. On the 

Astex diverse set, GalaxyDock2 with the new score (GalaxyDock BP2 Score) 

succeeded in generating protein–ligand complex structures with RMSD better than 

2 Å  as the lowest energy models in 76 of 85 cases (success rate = 89.4%). This is a 

better performance than those of GalaxyDock2 with the old score (Shin et al. 2013) 

(GalaxyDock BP Score) (81.2%), AutoDock3 (Morris et al. 1998) (81.7%), GOLD 

(Jones et al. 1997; Verdonk et al. 2003) (80.5%), and Surflex-Dock (Jain 2007) 

(80.0%). The average RMSD values of the lowest energy models also improved 

compare to other docking methods. 
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Table 3.3. Performance of docking programs on the Astex diverse set 

Docking Program Success Rate (%)
1)

 RMSD (Å )
2)

 

GalaxyDock2 

w/ BP2 Score 
89.4 1.10 

GalaxyDock2 

w/ BP Score 
81.2 1.69 

AutoDock3
3)

 81.7 1.60 

GOLD
4)

 80.5 - 

Surflex-Dock
5)

 80.0 1.66 

1)
 Percentage of the cases in which RMSD of the best scoring pose from the 

crystal pose is less than 2 Å .  

2)
 RMSD of the top scoring pose from the crystal structure averaged over the 

targets in the Astex diverse set.  

3)
 Taken from (Shin et al. 2011). 

4)
 Taken from (Bursulaya et al. 2003). Average RMSD is not reported in the 

reference.  

5)
 Taken from (Spitzer and Jain 2012). 
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Table 3.4. Performance of docking programs on the Cross2009 benchmark set 

Docking Program Success Rate (%)
1)

 RMSD (Å )
2)

 

GalaxyDock2 

w/ BP2 Score 
89.1 1.11 

Glide-XP
3)

 84.4 1.20 

Glide-SP
3)

 76.6 1.42 

ICM
3)

 75.0 1.80 

DOCK
3)

 62.5 2.76 

Surflex
3)

 62.5 2.04 

FRED
3), 4)

 60.9 - 

PhDock
3)

 57.8 2.58 

GalaxyDock2 

w/ BP Score 
54.7 3.26 

FlexX
3)

 50.0 3.46 

1)
 Percentage of the cases in which RMSD of the top scoring pose from that of the 

crystal structure is less than 2 Å .  

2)
 RMSD of the top scoring pose from the crystal pose averaged over the targets in 

the set.  

3)
 Taken from (McGann 2011). 

4)
 Average RMSD is not reported here because RMSD values of FRED predicted 

results higher than 2 Å  were reported as 2.1 Å  in (McGann 2011). 
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 On the Cross2009 benchmark set, GalaxyDock2 with the new score 

predicted poses within 2 Å  RMSD for 57 out of 64 targets (success rate = 89.1%). 

Average RMSD of the best scoring function was 1.11 Å . The performance of 

GalaxyDock2 with BP2 Score is superior to that of the eight other docking 

programs reported in Ref. (Cross et al. 2009) and that of GalaxyDock2 with the old 

score. The success rates of the other top three methods in Table 3.4 are 84.4% 

(Glide-XP (Friesner et al. 2006)), 76.6% (Glide-SP (Friesner et al. 2004; Halgren et 

al. 2004)), and 75.0% (ICM (Abagyan et al. 1994)). RMSD distributions of the 

lowest energy conformations obtained by each docking method for the targets of 

Cross2009 benchmark set are shown in Figure 3.8. Although GalaxyDock2 with 

the new score shows higher median RMSD values than Glide-XP and ICM, it also 

shows a narrower distribution and fewer outliers. 

 Additional docking test of GalaxyDock2 with BP2 Score was performed 

on the Astex non-native set in which ligands were docked into the non-native 

protein conformations that are unbound or bound to different ligands. The results 

on this benchmark set are summarized in Table 3.5. GalaxyDock2 with BP2 Score 

showed much better performance than GalaxyDock2 with the old BP Score and the 

four other docking programs reported in (Gaudreault and Najmanovich 2015). This 

improved performance is due to the fact that GalaxyDock BP2 Score can tolerate 

some conformational errors in the binding pocket with additional knowledge-based 

and empirical score terms. These results highlight the strength of combining an 

improved hybrid scoring function with an efficient sampling algorithm. 
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Figure 3.8. Distribution of RMSDs of the lowest energy conformations selected 

by GalaxyDock2 with BP2 Score, DOCK, FlexX, Glide-SP, Glide-XP, ICM, 

PhDock, Surflex, and GalaxyDock2 with BP score for the Cross2009 

benchmark set. 
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Table 3.5. Performance of docking programs on the Astex non-native set 

Docking Program 

Success Rate (%)
1)

 

Ideal subset
2)

 Largest common subset
3)

 

GalaxyDock2 

w/ BP2 Score 
61.4 (1106) 66.4 

rDock
4)

 54.7 (1106) 55.6 

GalaxyDock2 

w/ BP Score 
53.7 (1106) 58.3 

AutoDock-Vina
4)

 41.7 (999) 44.4 

FlexX
4)

 41.3 (925) 41.7 

FlexAID
4)

 38.5 (775) 41.7 

1)
 Percentage of the cases in which RMSD of the top scoring pose from that of the 

crystal structure is less than 2 Å . 

2)
 The ideal subset is the largest subset in which a given program is able to run 

without technical errors; The number of targets (in parentheses) in ideal subset is a 

different for each program. 

3)
 The largest common subset contains 669 structures representing 36 unique 

targets. 

4)
 Taken from (Gaudreault and Najmanovich 2015). 
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3.3.6. Scoring, Ranking, and Screening Power Test on the CASF-2013 

Benchmark Set and DUD Data Set 

To see how the scoring function optimized to discriminate binding poses works for 

predicting binding affinity and ranking compounds, we carried out scoring, ranking 

and screening power test of GalaxyDock BP2 Score on CASF-2013 benchmark. 

The scoring power was evaluated by Pearson correlation coefficient between 

predicted and experimental binding affinity data. The results of scoring power test 

are summarized in Table 3.6. Even though GalaxyDock BP2 Score was not 

optimized to predict binding affinity, it showed a performance comparable to other 

available scoring function. When we adopted the free-ligand correction strategy in 

which the score for the free ligand is subtracted from the interaction energy, as 

described in (Shin et al. 2013), the correlation coefficient increased from 0.570 to 

0.590. 

 The ranking power was quantitatively evaluated by the success rate of 

ranking the compounds in the order of binding affinity (high-level) and the success 

rate of picking the compound of highest binding affinity (low-level). GalaxyDock 

BP2 Score showed comparable performance to other scoring functions, as shown in 

Table 3.7. Similar to scoring power test, the free-ligand correction improved 

ranking ability of the scoring function from 52.3% to 53.8% in the high-level and 

from 64.6% to 67.7% in the low-level. 
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Table 3.6. Performance of 15 scoring functions in the scoring power test on 

CASF-2013 benchmark set 

Scoring Function N
1)

 Corr.
2)

 SD
3)

 

X-Score
HM 4)

 195 0.614 1.78 

ChemPLP@GOLD
4)

 195 0.592 1.84 

GalaxyDock BP2 Score 195 0.570 1.85 

DSX 195 0.570 1.85 

PLP1@DS
4)

 195 0.568 1.86 

GalaxyDock BP Score 195 0.565 1.86 

ASP@GOLD
4)

 195 0.556 1.88 

ChemScore@GOLD
4)

 189 0.536 1.90 

AutoDock4 193 0.527 1.92 

Alpha-HB@MOE
4)

 195 0.511 1.94 

LUDI3@DS
4)

 195 0.487 1.97 

GoldScore@GOLD
4)

 189 0.483 1.97 

LigScore2@DS
4)

 190 0.456 2.02 

GlideScore-SP
4)

 169 0.452 2.03 

GlideScore-XP
4)

 164 0.277 2.18 



 

 

62 

1)
 The number of complexes that show favorable binding scores by the scoring func

tion. 

2)
 The Pearson correlation coefficient between the experimental binding data and 

the computed binding scores. 

3)
 The standard deviation in the linear correlation between the experimental binding 

data and the computed binding scores. 

4)
 Taken from (Li et al. 2014a).
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Table 3.7. Performance of 15 scoring functions in the ranking power test on 

CASF-2013 benchmark set 

Scoring Function 
Success Rate (%) 

High-level
1)

 Low-level
2)

 

X-Score
HM 3)

 58.5 72.3 

ChemPLP@GOLD
3)

 58.5 72.3 

PLP2@DS
3)

 55.4 76.9 

GoldScore@GOLD
3)

 55.4 76.9 

DSX 55.4 72.3 

LUDI1@DS
3)

 52.3 69.2 

Alpha-HB@MOE
3)

 52.3 66.2 

GalaxyDock BP2 Score 52.3 64.6 

LigScore1@DS
3)

 52.3 61.5 

AutoDock4 49.2 63.1 

ASP@GOLD
3)

 47.7 72.3 

ChemScore@GOLD
3)

 46.2 63.1 

GalaxyDock BP Score 44.6 63.1 

GlideScore-SP
3)

 43.1 56.9 

GlideScore-XP
3)

 35.4 47.7 

1)
 Ranking three complexes in a cluster as the best > the median > the poorest 

2)
 Ranking the best complex in a cluster as the top one 

3)
 Taken from (Li et al. 2014a).
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 The screening power was evaluated by enrichment factor for top 1%, 5%, 

and 10% of database. Decoy poses provided by CASF-2013 benchmark were used 

to predict binding poses of ligands on target proteins. The screening results are 

summarized in Table 3.8. Unlike scoring and ranking power test, GalaxyDock BP2 

Score showed quite poor performance on this screening power test. We think that 

this screening test based on pre-generated poses is rather limited to assess the full 

potential of this score, so we tried additional screening test which involves docking 

as a tool for generating possible poses, as discussed below. 

 To evaluate the virtual screening power of GalaxyDock BP2 Score with 

GalaxyDock2 protein-ligand docking program in more realistic circumstances, its 

performance on DUD data set (Huang et al. 2006) was compared to previously 

tested docking programs (Cross et al. 2009). The screening performance was 

evaluated by ROC enrichment factor (ROC EF) (Nicholls 2008) and area under 

curve of ROC (ROC AUC). ROC EF is used to evaluate early recovery of active 

compounds while ROC AUC is used to evaluate whether screening performance is 

better than random prediction or not. The results are summarized in Table 3.9. 

GalaxyDock2 with BP2 Score showed comparable performance in both of ROC EF 

and ROC AUC to other methods. Especially, GalaxyDock2 with BP2 Score 

showed good early recovery of active compounds (ROC EF value 18.0 at 0.5% 

false positive rates) following GLIDE-HTVS (18.9) and DOCK6.1 (18.8). 
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Table 3.8. Performance of 15 scoring functions in the screening power test on 

CASF-2013 benchmark set 

Scoring Function 

Enrichment Factor 

Top 1% Top 5% Top 10% 

GlideScore-SP
1)

 19.54 6.27 4.14 

ChemScore@GOLD
1)

 18.90 6.83 4.08 

GlideScore-XP
1)

 16.81 6.02 4.07 

LigScore2@DS
1)

 15.90 6.23 3.51 

ChemPLP@GOLD
1)

 14.28 5.88 4.31 

LUDI1@DS
1)

 12.53 4.28 2.80 

ASP@GOLD
1)

 12.36 6.23 3.79 

GoldScore@GOLD
1)

 7.95 4.52 3.16 

GalaxyDock BP2 Score 7.31 3.81 2.89 

PLP1@DS
1)

 6.92 4.28 3.04 

DSX 6.92 3.95 2.86 

AutoDock4 5.90 4.37 3.00 

Alpha-HB@MOE
1)

 4.87 3.23 1.32 

GalaxyDock BP Score 3.85 2.47 2.51 

X-Score 2.31 2.14 1.41 

1)
 Taken from (Li et al. 2014a). 
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Table 3.9. Screening performance of docking programs on the DUD data set 

Docking Program 

ROC EF
1)

 
ROC 

AUC
2)

 
0.5% 1.0% 2.0% 5.0% 

GLIDE-HTVS
3)

 18.9 14.8 10.7 6.5 0.72 

DOCK 6.1
3)

 18.8 12.3 8.2 4.7 0.55 

GalaxyDock2 with 

BP2 Score 
18.0 12.3 8.6 4.8 0.61 

ICM
3)

 16.9 12.7 8.0 4.6 0.63 

PhDock
3)

 16.9 11.3 7.7 4.1 0.59 

Surflex
3)

 14.3 11.1 7.9 4.9 0.66 

FlexX
3)

 13.7 9.8 7.2 4.4 0.61 

1)
 Mean ROC enrichment factors were calculated for early false positive rates 

2)
 Mean ROC AUC of 0.5 indicates random performance 

3)
 Taken from (Cross et al. 2009). 
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3.4. Conclusion on Protein-Ligand Docking Score 

In this chapter, I introduced a newly developed docking scoring function named 

GalaxyDock BP2 Score by combining physics-based, knowledge-based, and 

empirical scoring functions. The scoring function can be used for scoring binding 

poses generated by other docking programs or as a scoring component of a 

protein–ligand docking program. The scoring function was optimized to have high 

energy-RMSD correlation and high discrimination power of near-native poses from 

non-native ones in the conformational space represented by pre-generated binding 

poses. The poses were generated iteratively during energy parameter optimization 

since the energy landscape can change with different parameters. I showed that the 

new score shows better decoy discrimination power than other available scoring 

functions when tested on two types of binding pose sets. Moreover, the new score 

combined with GalaxyDock2 outperforms other state-of-the-art docking methods 

when tested on the Astex diverse set, the Cross2009 benchmark set, and the Astex 

non-native set. This success in docking tests indicates that the new score has 

strength not only in decoy discrimination, but also in guiding conformational 

sampling during docking. 

Interestingly, GalaxyDock BP2 Score showed a reasonably good 

performance in scoring binding affinities even though it was optimized for scoring 

poses, as reported in section 3.3.6. However, I think that a separate hybrid score 

must be developed in the future for the purpose of predicting binding affinity in 

virtual screening. Difficulties related to such development is that designing an 
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objective function for the purpose is not straightforward and the training procedure 

may take even more computer time than spent here. I envision that the current 

GalaxyDock BP2 Score can be applied to virtual screening of a compound database 

for a given target receptor by separating the stages of binding pose prediction and 

binding affinity prediction. Accurate binding pose prediction is a pre-requisite of 

accurate binding affinity prediction because binding affinity score is evaluated for 

the predicted binding pose. Further study in this direction is underway. 
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Chapter 4. Improving Docking Performance of Large 

Flexible Ligands Using Hot Spot Information 

Predicted by Fragment Docking 

4.1. Introduction to Docking of Large Flexible Ligands 

Computational protein-ligand docking is a technique that explores the 

conformational space of the protein-ligand complex in order to compute 

energetically stable conformations that model the structure of the complex. The 

success of a protein–ligand docking program depends on the program’s 

performance on two famous, but still unsolved problems: scoring and sampling. In 

previous chapter, I discussed about the scoring problem in protein-ligand docking 

and introduced the improved docking scoring function named GalaxyDock BP2 

Score. In this chapter, I will focus on improving sampling algorithm which is the 

other essential part of the protein-ligand docking. 

 It has been shown that docking small ligands with 6 or fewer rotatable 

bonds is in general very accurate (Plewczynski et al. 2011). However, as the 

dimensionality of the search space increases with large ligands, prediction of 

correct binding poses for large flexible ligands becomes very challenging. Tackling 

the challenge of docking large ligands is important for designing putative drug 

compounds that have many rotatable bonds like peptides or peptidomimetics 

(Mandal et al. 2011; McMurray 2008). The field of drug design based on the 

peptides or peptidomimetics is rapidly growing in the pharmaceutical industry 

because of their low toxicity and high specificity (Bellmann-Sickert and Beck-

Sickinger 2010; Vlieghe et al. 2010; Lau and Dunn 2018). Development of an 

accurate docking program for large flexible ligands would be very useful to design 
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peptide or peptidomimetic drug compounds. 

 In this chapter, GalaxyDock-Frag, a new approach to improve the 

sampling ability of GalaxyDock protein-ligand docking program for large flexible 

ligands, is introduced. This approach is based on an assumption that binding “hot 

spots” of a specific receptor protein could be reasonably predicted for each 

fragment of a given ligand. This assumption has been widely tested in druggable 

site detection (Brenke et al. 2009), pharmacophore-based docking (Goto et al. 2004; 

Hu and Lill 2014), and fragment-based drug discovery (Sheng and Zhang 2013), 

and it has turned out that the assumption is quite reasonable.  

 Utilizing the predicted hot spot information might lead to efficient 

conformational search by reducing the conformational space that should be 

sampled. To identify “hot spots” for each fragment, target ligands were fragmented 

into rigid fragments, and up to five fragments were docked into the receptor protein 

using fast Fourier transformation (FFT)-based rigid-body docking. The detected 

fragment binding hot spot information was used to generate initial conformations 

and further trial conformations during conformational space annealing (CSA) 

global optimization. With this approach, higher quality initial conformations were 

obtained and the binding pose sampling of large flexible ligands was improved 

compared to the previous GalaxyDock2 program with GalaxyDock BP2 Score. 

 

4.2. Methods 

4.2.1. Overall Procedure 

The improved version of protein-ligand docking method using fragment binding 

hot spots named GalaxyDock-Frag can be summarized as in Figure 4.1. First, a 
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given ligand molecule splits into rigid fragments. Among the rigid fragments, up to 

five fragments are selected based on their size and hydrophobicity. For each 

selected rigid fragment, millions of docked conformations are sampled by the rigid 

body docking that will be discussed in more details in section 4.2.2. Up to 20 

binding hot spots per fragment are predicted based on fragment docking results. 

The detected fragment binding hot spot information is used to generate initial 

conformations and further trial conformations during conformational space 

annealing (CSA) global optimization. 

 Initial pool of seed ligand binding poses used in conformational space 

annealing global optimization are generated by enumerating all possible multiple-

points matches between binding hot spots and corresponding rigid fragments of an 

ensemble of ligand conformations. The sampled binding poses are then optimized 

and selected as an initial pool using GalaxyDock BP2 Score. Starting with the 

initial pool of ligand binding poses, the ligand binding poses are optimized using 

very efficient and powerful global optimization algorithm named conformational 

space annealing (CSA). 
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Figure 4.1. Flowchart of GalaxyDock-Frag protocol 
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4.2.2. Fragment Binding Hot Spot Detection Using FFT-based Fragment 

Docking 

4.2.2.1. Ligand Fragmentation 

A given ligand molecule splits into rigid fragments by breaking all possible 

rotatable bonds. All rigid fragments are then sorted by their sizes and 

hydrophobicities calculated using XLogP program (Wang et al. 2000). All the 

fragments having hydrophobicity ranged from -0.3 to 0.3 are ignored. Up to five 

rigid fragments are selected to detect binding hot spots by FFT-based rigid body 

docking algorithm. 

 

4.2.2.2. Fragment Docking Based on the FFT Correlation Approach 

Each fragment is docked into binding pockets in a receptor protein by evaluating 

fragment binding energy exhaustively in the discretized 6-dimensional space. The 

translational space is represented as a grid of 0.375 Å  displacements of the 

fragment center of mass, and the rotational space is sampled using 300 rotations 

based on spherical Fibonacci point sets. The energy function describing the 

receptor-fragment interactions is defined on the grid and is expressed as the sum of 

P correlation functions for all possible translations α, β, γ of the fragment at a given 

rotation: 

 
, ,

( , , ) ( , , ) ( , , )P P

P l m n

E R l m n L l m n           (4.1) 

where PR  and PL  are the components of the correlation function defined on the 

receptor and the fragment, respectively. This expression can be efficiently 

calculated using P forward and one inverse FFTs by reducing computational cost 
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from O(N
6
) to O(N

3
logN

3
). 

 For each rotational orientation, which is taken consecutively from the set 

of rotations, the fragment is rotated and the PL  function is calculated on the grid.  

The correlation function of PL  with the pre-calculated PR  function is calculated 

using FFT. Three lowest energy translations for the given rotation are stored. 

Finally, results from different rotations are collected and sorted by their interaction 

energy. 

 

4.2.2.3. Energy Function Used in FFT-based Fragment Docking  

A grid version of GalaxyDock BP2 Score (Baek et al. 2017b) is used in FFT-based 

fragment docking. It includes the van der Waals energy (EvdW), the hydrogen bond 

energy (EHbond), Coulomb interaction energy (Eqq), knowledge-based pairwise 

potential (EDrugScore), and hydrophobicity matching score (EHM).  

 The van der Waals interactions are expressed using 12-6 Lennard-Jones 

potential. To calculate van der Waals energy on grid space, PR  and PL  function 

designed as follows: 
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    (4.3) 

where (l,m,n) is the grid point, and ir denotes index of atoms in receptor protein. 
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The hydrogen bonding interactions on the grid space are described based on similar 

formula to Eq. (4.3). The only difference is hydrogen bonding interactions are 

described using 12-10 Lennard-Jones potential instead of 12-6 Lennard-Jones 

potential. The Coulomb interactions are expressed as in Eq. (4.4) on the grid space. 
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where 
ri

q  and 
li

q  are the partial charges of atom ir and il in receptor and ligand, 

respectively. The knowledge-based pairwise potential is formulated as in Eq. (4.5). 
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The final term, hydrophobicity matching score can be expressed on the grid space 

as following: 
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where envhp(l, m, n) is the environment hydrophobicity defined as a sum of the 

hydrophobicities of receptor atoms within 6 Å  from the grid point (l, m, n). 

 

4.2.2.4. Fragment Binding Hot Spot Detection 

For each fragment, all docked fragment binding poses in section 4.2.2.2 are 

clustered based on its center of mass using DBSCAN algorithm (Ester et al. 1996). 

Clusters are sorted by its size, and up to 20 fragment binding hot spots per 

fragments are defined as geometric centers of each cluster. 

 

4.2.3. Initial Ligand Binding Poses Generation Using Predicted Hot Spot 

Information 

An initial pool of ligand binding poses used in further CSA optimization are 

generated by the process depicted in Figure 4.2. First, the ligand conformations 

without internal clashes are sampled by perturbing all rotatable angles randomly. 

The generated ligand conformation are then placed into the binding site based on a 

Bron-Kerbosch clique detection algorithm (Bron and Kerbosch 1973) that 

enumerates all possible multi-points matches of fragment and its corresponding 

binding hot spots as described in next paragraph. 
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Figure 4.2. Ligand binding pose generation method using predicted binding 

hot spot information 
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 All edge lengths, defined as distances between selected fragments in the 

ligand, are calculated. The edge lengths between all fragment binding hot spots are 

also calculated. All ligand fragment edges that match the fragment binding hot 

spots edges based on the fragment types of their vertices and edge lengths are 

identified. Throughout the matching process, a tolerance of 0.5 Å  for the edge 

lengths is allowed. The matching process can be represented by a graph in which 

each node represents a matching fragment and corresponding binding hot spot pair. 

The Bron-Kerbosch clique detection algorithm then identifies all the completely 

connected subgraphs from this graph. All the vertices in the completely connected 

subgraph (clique) are matched points which can be used to place ligand into 

binding pockets. 

 The ligand is placed into binding sites by superposing the ligand 

fragments to its matched binding hot spots in each clique followed by local 

optimization using simplex algorithm (Nelder and Mead 1965). The GalaxyDock 

BP2 Score is used in local optimization. If the minimized ligand binding pose has 

energy lower than 500.0, it is added to the initial pool of ligand binding poses used 

in CSA. When the number of ligand binding poses in the initial pool is reached 50, 

the initial binding pose generation step is terminated.  

 

4.2.4. Global Optimization Using Conformational Space Annealing 

The initial pool of ligand binding poses is further optimized by conformational 

space annealing (CSA) global optimization method. CSA is an efficient global 

optimization technique that has been applied to protein-ligand docking successfully 

(Shin et al. 2011; Shin and Seok 2012; Shin et al. 2013; Baek et al. 2017b). In CSA, 

a relatively small number of ‘bank’ conformations are evolved by gradually 
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reducing the effective size of the conformational space explored by each bank 

member. A distance measure in the conformational space is introduced as an 

annealing parameter for this purpose. During evolution of the bank, trial 

conformations are generated by crossovers and mutations as in a genetic algorithm. 

 In this work, the conformational space is formed by three translational, 

three rotational, and Ntor torsional degrees of freedom for ligand. The translational 

degrees of freedom are represented by the Cartesian coordinate of the ligand center 

atom, and the rotational degrees of freedom by the quaternion for the ligand 

orientation. The number of conformations in bank is set to 50. 

 At each iteration step of CSA, trial conformations are generated by three 

kinds of operators: (1) crossovers and mutations of translational and rotational 

degrees of freedom, (2) crossovers and mutations of torsional degrees of freedom, 

and (3) pose sampling using fragment binding hot spot information as described in 

section 4.2.3 after perturbing torsion angles by crossovers. The operators are 

represented in Figure 4.3. The ratio between three operators is 3:5:2. 
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Figure 4.3. Operators used to sample binding poses during conformational 

space annealing (CSA) 
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 After trial conformations are generated, the bank is updated considering 

structural diversity and energy of the current bank and the trial conformations. The 

essence of CSA is to focus on narrower conformational space of lower energy 

gradually as the iteration proceeds. For this purpose, a measure of distance between 

two conformations is required, and RMSD between conformations are used as the 

distance measure. In CSA, the effective size of the conformational space 

represented by each bank member is controlled by the distance parameter Dcut at 

the stage of bank update. If a trial conformation within Dcut from a bank 

conformation has lower energy than the bank conformation, it replaces the bank 

conformation. If a trial conformation has distances greater than Dcut from all the 

current bank conformations and has lower energy than the highest energy bank 

conformation, it replaces the highest energy bank conformation. The parameter Dcut 

is gradually reduced as CSA iteration proceeds, and therefore, conformational 

search focuses on narrower spaces of lower energy. When all bank members are 

used as seed, one round of CSA terminates. Two rounds of CSA are executed in 

this study. 

 

4.2.5. Benchmark Test Sets 

Two sets of protein–ligand complexes were used for testing the performance of the 

developed method. The first test set was compiled from the refined set of PDBbind 

2013 database (Li et al. 2014b). The database was clustered with a sequence 

identity cutoff of 30% to remove redundancy resulting in 331 protein-ligand 

complexes. The second test set comprises 53 protein-peptide complexes of 

LEADS-PEP benchmark set (Hauser and Windshugel 2016).  



 

 

82 

4.3. Results and Discussions 

4.3.1. The Effect of Utilizing Predicted Hot Spot Information in Generating 

Initial Ligand Binding Poses 

To evaluate the correctness of predicted fragment binding hot spot information 

used in GalaxyDock-Frag, a rigid ligand docking experiment was performed. The 

native ligand conformation was docked into the binding sites using the binding hot 

spot information predicted by FFT-based fragment docking as described in the 

section 4.2.3. The result is shown in Figure 4.4. It shows the success rate of 82.5%, 

89.4%, and 93.4% when the success of docking is defined as a prediction having 

the ligand RMSD lower than 1.0 Å, 2.0 Å, and 3.0 Å, respectively. This result 

implies that, in most cases, it is a reasonable assumption that binding “hot spots” of 

a specific receptor protein could be reasonably predicted for each fragment of a 

given ligand. 
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Figure 4.4. The cumulative number of targets within various RMSD cutoffs 

when the native ligand conformation docked into binding sites 
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 GalaxyDock searches ligand conformational space using CSA, a 

population-based global optimization technique, during the docking. It has been 

shown that performances of population-based methods tend to depend on the 

quality of the initial population (Kazimipour et al. 2013). Therefore, it is highly 

expected that the performance of GalaxyDock can be improved by improving the 

quality of the initial pool of ligand binding poses. The performance of initial ligand 

binding pose generation based on predicted binding hot spots was compared to that 

of a geometry-based docking method named BetaDock employing beta-complex, 

derived from the Voronoi diagram, used in GalaxyDock2. The performance of 

initial population generation was evaluated using the success rate when the lowest 

RMSD ligand binding pose is considered. The result is summarized in Table 4.1. 

When the docking success is defined as a prediction having the ligand RMSD 

lower than 1.0 Å , 2.0 Å , and 3.0 Å , respectively, the success rates of binding hot 

spot-based method introduced in this study are 54.1%, 76.7%, and 87.2% while 

those of BetaDock are 40.6%, 70.6%, and 86.1%, respectively. 
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Table 4.1. The success rate of initial binding pose sampling method used in 

GalaxyDock-Frag and GalaxyDock2 with various RMSD cutoffs when the 

lowest RMSD conformation among sampled binding poses is considered 

Success rate < 1.0 Å  < 2.0 Å  < 3.0 Å  

GalaxyDock-Frag 54.1% 76.7% 87.2% 

GalaxyDock2 40.6% 70.6% 86.1% 
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4.3.2. The Docking Performance Comparison on the PDBbind Set 

To assess the docking performance of the newly developed GalaxyDock-Frag, it 

was tested on the compiled PDBbind set consisting of 331 targets having various 

torsional degrees of freedom ranging from 1 to 30. The docking performance of the 

GalaxyDock-Frag was compared to the performance of GalaxyDock2 developed 

by our group previously. The success rate of GalaxyDock-Frag is 79.2% while that 

of GalaxyDock2 is 77.3%. When the average RMSD of the lowest energy binding 

poses is considered, the performance differences between GalaxyDock-Frag and 

GalaxyDock2 become more dramatic (1.86 Å  and 2.48 Å , respectively). The 

GalaxyDock-Frag predicted ligand binding poses more accurately compared to the 

GalaxyDock2. 

 Detailed comparison of GalaxyDock-Frag and GalaxyDock2 is shown in 

Figure 4.5. In general, GalaxyDock-Frag could predict the ligand binding poses 

having lower energy and lower RMSD compared to the GalaxyDock2. Especially, 

GalaxyDock-Frag predicted better binding poses of large flexible ligands than 

GalaxyDock2 program. This tendency implies that utilizing fragment binding hot 

spot information is indeed helpful to reduce the search space by reducing the 

translational and rotational degrees of freedom during the docking procedure. 
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Figure 4.5. Performance comparison between GalaxyDock-Frag and 

GalaxyDock2. The energy and RMSD values of the lowest energy binding poses 

are shown in left and right panel, respectively. 
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4.3.3. The Peptide Docking Performance Test on the LEADS-PEP 

Benchmark Set 

 To evaluate the docking ability of GalaxyDock-Frag for large flexible 

ligand, the docking performance test was conducted on the LEADS-PEP 

benchmark set consisting of 53 protein-peptide complexes having residues ranging 

from 3 to 12 residues. As in LEADS-PEP paper (Hauser and Windshugel 2016), a 

docking pose was considered as near-native conformation once its backbone 

RMSD is ≤2.5 Å. The RMSD of top-scored docking poses predicted by 

GalaxyDock2 and GalaxyDock-Frag were calculated and were compared with the 

results of the other state-of-the-art protein-ligand docking programs. This 

benchmark result is summarized in Table 4.2 and Figure 4.6. 

 Considering the median RMSD over the whole benchmark data set for the 

top-scored pose, GalaxyDock-Frag utilizing predicted hot spot information 

revealed as most accurate docking approach (3.4 Å ), followed by GOLD (4.6 Å ), 

GalaxyDock2 (4.7 Å ), and Surflex (5.0 Å ). The median RMSD of AutoDock4 and 

AutoDock-Vina are 6.9 Å  and 7.2 Å , respectively. When the success rates of the 

docking methods were considered, the method developed in this study showed the 

highest success rate of 43.4%, followed by Surflex (32.1%) and GOLD (30.2%). 

 As shown in Table 4.2, most docking programs were capable to predict 

binding poses of shorter peptides (3−4 residues) quite accurately. When the 

medium peptides (5~7 residues) are only considered, GalaxyDock-Frag shows the 

highest success rate of 41.2%, followed by GOLD (29.4%) and Surflex (23.5%). 

For longer peptides (8~12 residues), Surflex shows the best performance (24.0%), 

followed by GalaxyDock-Frag (16.0%) and GOLD (12.0%). 
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Table 4.2. Peptide Docking Performance in terms of RMSD (in Å ) as 

Measured by Best Scored Binding Modes 

PDB Res. AutoDock4* 
AutoDock-

Vina* 
Surflex* GOLD* GalaxyDock2 

GalaxyDock-

Frag 

1B9J 3 1.1 1.0 0.4 0.4 0.4 0.3 

2OY2 3 0.5 7.2 7.1 0.4 0.6 0.6 

3GQ1 3 2.5 1.6 0.9 4.4 2.0 1.7 

3BS4 3 0.5 0.7 0.4 0.9 0.5 0.4 

2OXW 3 3.4 6.8 7.1 6.8 1.5 1.4 

2B6N 3 8.4 7.8 7.9 8.6 0.8 0.5 

1TW6 4 1.3 1.0 0.9 0.4 0.6 0.5 

3VQG 4 2.8 0.6 0.7 0.7 0.7 0.8 

1UOP 4 0.6 6.4 6.5 0.4 0.7 0.7 

4C2C 4 1.0 0.6 0.7 1.0 1.3 1.3 

4J44 4 1.0 0.8 0.9 0.8 0.8 0.6 

2HPL 5 6.9 2.8 7.4 7.3 2.4 0.9 

2V3S 5 3.9 5.6 11.2 1.6 3.9 2.3 

3NFK 5 4.2 8.4 6.7 3.4 4.7 1.1 

1NVR 5 7.3 9.0 9.1 5.2 2.8 2.9 

4V3I 5 9.7 6.4 3.1 7.3 2.0 1.6 

3T6R 5 4.4 7.2 7.4 0.7 2.4 1.4 

1SVZ 6 5.1 8.0 6.5 6.4 4.8 3.9 

3D1E 6 9.4 10.6 9.5 9.6 4.0 4.7 

3IDG 6 6.3 7.2 5.0 9.7 4.0 3.8 

3LNY 6 7.4 11.3 11.3 3.9 9.1 3.4 

4NNM 6 9.7 0.8 3.3 1.5 3.3 2.8 

4Q6H 6 10.7 9.9 8.7 2.8 3.9 3.9 

3MMG 7 10.4 1.2 2.1 1.3 9.7 2.4 

3Q47 7 6.7 9.9 7.7 7.7 4.9 2.4 

3UPV 7 4.7 4.9 2.5 4.6 3.2 3.3 

4QBR 7 8.6 11.3 1.2 1.9 5.4 3.4 

3NJG 7 2.5 2.6 0.4 2.7 5.6 3.3 

1ELW 8 3.2 9.2 2.5 3.5 7.6 6.3 

3CH8 8 7.8 5.4 5.4 6.5 6.9 5.9 

4WLB 8 5.3 6.3 5.0 6.5 5.2 4.4 

1OU8 8 10.2 7.5 4.7 3.9 3.9 4.1 

1N7F 8 11.9 14.3 9.2 8.4 4.6 5.0 

3OBQ 9 12.5 14.5 2.2 5.5 6.1 5.9 

4BTB 9 14.7 15.5 8.6 9.7 13.5 7.4 

2W0Z 9 11.3 14.3 4.4 14.3 2.6 0.8 

4N7H 9 7.4 12.1 6.8 2.2 5.0 5.6 
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2QAB 9 4.3 4.4 4.5 4.8 7.5 5.9 

1H6W 10 13.9 3.2 2.6 1.5 3.7 4.4 

3BRL 10 11.3 4.4 3.1 2.5 5.8 5.3 

1NTV 10 4.9 4.7 15.3 13.9 3.4 4.1 

4DS1 10 5.5 17.5 1.6 5.4 6.4 1.8 

2O02 10 5.0 4.9 12.0 4.0 5.2 5.6 

1N12 11 12.6 16.8 1.3 4.5 10.0 5.0 

2XFX 11 15.6 2.0 1.4 7.0 9.7 1.9 

3BFW 11 11.5 18.5 0.4 19.8 7.4 1.2 

4EIK 11 5.3 7.8 4.6 4.1 7.8 5.6 

3DS1 11 5.8 5.2 12.6 8.0 4.2 5.2 

4J8S 12 7.3 11.4 13.9 14.2 6.3 6.0 

2W10 12 15.1 15.4 4.8 5.6 10.7 8.9 

3JZO 12 5.8 6.1 13.4 9.8 5.9 5.8 

4DGY 12 9.3 8.9 7.8 8.9 7.0 6.7 

2B9H 12 13.2 9.5 10.2 4.3 8.5 6.8 

*
 Data taken from (Hauser and Windshugel 2016) 
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Figure 4.6. Distribution of RMSDs of the lowest energy conformations selected 

by AutoDock4, AutoDock-Vina, Surflex, GOLD, GalaxyDock2 with BP2 Score, 

and GalaxyDock-Frag for the LEADS-PEP benchmark set 
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 Figure 4.7 shows two successful cases of GalaxyDock-Frag, 2HPL and 

3NFK. In both cases, the fragment binding hot spots depicted transparent sphere 

were predicted correctly, and it guided the correct binding pose prediction resulting 

in RMSD 0.92 Å  and 1.14 Å , respectively. It implies that the fragment binding hot 

spots could be predicted well, and utilizing this predicted binding hot spot 

information could lead to a correct prediction of binding poses for large flexible 

ligands. 
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Figure 4.7. Successful examples of GalaxyDock-Frag. Predicted binding poses 

of GalaxyDock-Frag (dark magenta) are compared to native binding poses dark 

green) for two examples, 2HPL (A) and 3NFK (B). The predicted binding hot spots 

are presented in gray spheres. 
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4.4. Conclusion on Docking of Large Flexible Ligands 

In this chapter, I introduced a newly developed protein-ligand docking program 

name GalaxyDock-Frag with an improved sampling algorithm based on predicted 

binding hot spot information. By FFT-based fragment docking, binding hot spots 

for each fragment could be predicted well, and it could reduce the search space by 

sampling translational and rotational degrees of freedom using graph-based 

sampling algorithm utilizing binding hot spot information. GalaxyDock-Frag 

showed better performance than previous GalaxyDock2 with BP2 Score version 

when it tested on the PDBbind set. GalaxyDock-Frag could find more near-native 

conformations with lower energy compared to GalaxyDock2, especially for large 

flexible ligands having more than 20 rotatable bonds.  

 GalaxyDock-Frag showed a superior performance to other protein-ligand 

docking programs on LEADS-PEP benchmark set consisting of 53 protein-peptide 

complexes. It showed better performance for peptides with medium length (5~7 

residues). The docking performance of GalaxyDock-Frag for larger peptides (8~12 

residues) is comparable to Surflex and GOLD, but it has a room for improvement. 

In current GalaxyDock-Frag method, only translational and rotational degrees of 

freedom are sampled using predicted hot spot information. Therefore, only 6 

dimensions or search space are reduced, and it is not sufficient to dock larger 

peptides having more than 8 residues efficiently. If torsional degrees of freedom 

could be sampled with predicted hot spot information, the search space could be 

reduced more. The further study in this direction is now underway. 

 The GalaxyDock-Frag method, introduced in this chapter, can be further 

extended to information-driven protein-ligand docking program. As the number of 

protein-ligand complex structures increases, it becomes easier to get interaction 
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information from the structure database. If similar protein-ligand complexes 

already exist in structure database, hot spot information might be extracted from 

the database instead of predicting by ab initio docking. 
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Chapter 5. Prediction of Protein Homo-oligomer 

Structures 

5.1. Introduction to Homo-oligomer Structure Prediction 

A large fraction of cellular proteins self-assemble to form symmetric homo-

oligomers with distinct biochemical and biophysical properties (Andre et al. 2008; 

Goodsell and Olson 2000; Poupon and Janin 2010). For example, ligand-binding 

sites or catalytic sites are located at oligomer interfaces in many proteins (Snijder 

et al. 1999; Ali et al. 2010; Pidugu et al. 2016), and oligomerization is often 

necessary for effective signal transduction through membrane receptor proteins 

(Heldin 1995; Stock 1996) and selective gating of channel proteins (Clarke and 

Gulbis 2012). Therefore, knowledge of the homo-oligomer structure is essential for 

understanding the physiological functions of proteins at the molecular level and for 

designing molecules that regulate the functions. 

 Methods for predicting the protein homo-oligomer structure can be 

divided into two categories: those that use templates selected from the protein 

structure database and others that dock monomer structures ab initio, without using 

template information. Usually, template-based methods require a sequence as input, 

whereas docking methods require a monomer structure as input. The latter 

requirement can be more restrictive for the user if the monomer structure has to be 

predicted by another method, but it may be preferred if an experimentally resolved 

monomer structure is available. It is generally expected that template-based 
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methods produce more accurate predictions under a situation in which similar 

proteins forming oligomers exist in the structure database. Docking methods may 

be more useful when proper oligomer templates are not available but the monomer 

structure is reliable. Several protein–protein docking methods have been reported 

to date (Dominguez et al. 2003; Gray et al. 2003; Comeau et al. 2004; Pierce et al. 

2005; Schneidman-Duhovny et al. 2005; Tovchigrechko and Vakser 2006; 

Macindoe et al. 2010; Torchala et al. 2013; Lensink et al. 2016), and some of these 

are available as public web servers for predicting homo-oligomer structures. M-

ZDOCK (Pierce et al. 2005) and GRAMM-X (Tovchigrechko and Vakser 2006), 

which use ab initio docking based on fast Fourier transformation (FFT), are two 

such examples. The oligomeric state must be provided as input in these servers. 

However, relatively few web servers that use template-based methods have been 

reported. ROBETTA (Kim et al. 2004; DiMaio et al. 2011) and SWISS-MODEL 

(Biasini et al. 2014) are two web servers that predict the homo-oligomer structure 

from an amino acid sequence. GalaxyGemini (Lee et al. 2013) predicts the homo-

oligomer structure from a monomer structure. These servers predict the oligomeric 

state automatically. Depending on the availability of information on the oligomeric 

state, the user may or may not prefer to specify the oligomeric state. Here, I 

introduce a new method called GalaxyHomomer that predicts the homo-oligomer 

structure from either the amino acid sequence or from the monomer structure (Baek 

et al. 2017a). It can perform both template-based oligomer modeling and ab initio 

docking. It returns five model structures and automatically decides how many 

models are generated by which method depending on the existence of proper 
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oligomer templates.  

Oligomer structures predicted by template-based methods may have errors 

due to sequence differences between the target and template proteins. Those 

predicted by docking methods may have inaccuracy if structural change of the 

monomer induced by oligomerization is not considered. In the previous CASP 

experiment conducted in 2014 in collaboration with CAPRI, we showed that such 

errors in predicted oligomer structures could be reduced by re-modeling 

inaccurately predicted loops or termini and by relaxing the overall structure (Lee et 

al. 2016). GalaxyHomomer incorporates such state-of-the-art model refinement 

methods to improve the accuracy of homo-oligomer models generated by both 

template-based modeling and ab initio docking. 

 According to the assessment of the recent blind prediction experiment 

CASP12 conducted in 2016, GalaxyHomomer, participated as “Seok-assembly”, 

ranked second among the servers participated in the assembly category (Lensink et 

al. 2018; Lafita et al. 2018). When I tested GalaxyHomomer on 136 targets from 

PISA benchmark set, 47 targets from a membrane protein set, 20 targets from 

CASP11 experiments, and 89 targets from CAMEO protein structure prediction 

category, it showed a performance better than or comparable to that of other 

available homo-oligomer structure prediction methods. 
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5.2. Methods 

5.2.1. Overall Procedure 

The overall pipeline of GalaxyHomomer is presented in Figure 5.1. Either a 

sequence or structure (experimental or predicted structure) of the monomer can be 

provided as input. If the oligomeric state is not specified by the user, possible 

oligomeric states are predicted first. Five homo-oligomer structures with the given 

oligomeric states are then generated by template-based modeling and ab initio 

docking. Oligomer templates required by template-based modeling are detected 

based only on the sequence as well as with additional structure information. The 

models are further refined by loop/terminus modeling using GalaxyLoop (Lee et al. 

2010; Park and Seok 2012a; Park et al. 2014a) and by overall relaxation using 

GalaxyRefineComplex (Heo et al. 2016). 
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Figure 5.1. Flowchart of the GalaxyHomomer algorithm. The homo-oligomer 

structure prediction methods based on sequence similarity, structure similarity and 

ab initio docking are attempted in the order in which they are numbered until five 

homo-oligomer models are generated. When the monomer structure is given as 

input, only shaded procedures are executed. 
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5.2.2. Prediction of the Oligomeric State 

Possible oligomeric states are predicted from the input sequence by a similarity-

based method as follows. First, HHsearch (Soding 2005) is run in the local 

alignment mode to detect proteins that are similar to the target in the protein 

structure database ‘pdb70’, with a maximum mutual sequence identity of 70%. The 

oligomeric states of the database proteins were assigned according to the biological 

units described in ‘REMARK 350’. Second, the proteins are re-ranked by a score S, 

which combines the HHsearch sequence score, HHsearch secondary structure score, 

and sequence identity between target and templates (Ko et al. 2012). Next, the S 

scores of the proteins in the same oligomeric states are summed for the top 100 

proteins, and the ratios of different oligomeric states are determined in proportion 

to the S sums. Finally, oligomeric states for five models are assigned according to 

the oligomeric state ratios. 

 

5.2.3. Template-based Oligomer Modeling 

The same top 100 proteins described above are considered as candidates for 

oligomer templates. If a sequence is provided as input, up to five proteins are 

selected as templates based on the ranking of S among those with S greater than 0.2 

times the highest S overall and those greater than 0.7 times the highest S for the 

given oligomeric state. If the number of detected templates using this sequence-

based method is less than five, additional templates are selected using the monomer 

structure predicted by the template-based modeling program GalaxyTBM (Ko et al. 

2012). Structure-based templates are then selected according to the ranking of S 

among those with monomer structures similar to the given monomer structure 

(TM-score calculated using TM-align (Zhang and Skolnick 2005) > 0.5) and in the 
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given oligomeric state. If a structure is provided as input, only the structure-based 

template detection is used with the monomer structure provided by the user. 

 For each oligomer template detected by the sequence-based method, an 

oligomer structure is built using the in-house model-building program 

GalaxyCassiopeia, a component of the most recent version of GalaxyTBM (Ko et 

al. 2012). GalaxyCassiopeia builds models from the sequence alignment and 

template structure by the VTFM optimization used in MODELLER (Sali and 

Blundell 1993) but with FACTS solvation free energy (Haberthur and Caflisch 

2008), knowledge-based hydrogen bond energy (Kortemme et al. 2003), and 

dipolar-DFIRE (Yang and Zhou 2008) in addition to molecular mechanics bonded 

and non-bonded energy terms and template-derived restraints. For each template 

detected by the structure-based method, an oligomer structure is built by 

superimposing the monomer structure onto the oligomer template.  

 

5.2.4. Ab initio Docking 

If less than five oligomer templates are detected by the two template detection 

methods described above, the remaining homo-oligomer models with the given 

oligomeric states are generated using the in-house ab initio docking program 

GalaxyTongDock_C. GalaxyTongDock_C predicts Cn-symmetry homo-oligomer 

structures from the monomer structure using a grid-based FFT docking method 

similar to M-ZDOCK (Pierce et al. 2005) considering Cn-symmetry. The top 200 

homo-oligomer structures generated by FFT are clustered using NMRCLUST 

(Kelley et al. 1996), and the clusters are ranked according to the cluster size. From 

each of the highest ranking clusters, the highest-score structure is selected. 
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5.2.5. Structure Refinement Using Loop Modeling and Global Optimization 

Less reliable loop or terminal regions are re-modelled using GalaxyLoop (Lee et al. 

2010; Park and Seok 2012a; Park et al. 2014a) considering symmetry of the homo-

oligomer structure for the first model for those regions predicted to be unreliable if 

a sequence is provided as input, and for all five models for user-specified regions if 

a structure is provided as input. GalaxyRefineComplex (Heo et al. 2016) is 

subsequently run to further relax the overall structure. 

 

5.3. Results and Discussions 

5.3.1. Overall Performance of GalaxyHomomer Method 

The GalaxyHomomer server was tested on 25 targets in CASP12 in a blind fashion, 

and this server, named “Seok-assembly”, ranked second among the servers 

participated in the assembly category (Lensink et al. 2018; Lafita et al. 2018). In 

CASPs, the oligomeric state is provided by the organizers. The server was also 

tested on three benchmark sets for which the oligomeric state is given as input (136 

homo-oligomer proteins from the PISA benchmark set (Ponstingl et al. 2003), 47 

homo-oligomer membrane proteins compiled from the PDB, and 20 homo-

oligomer proteins among the targets of CASP11 held in 2014 in collaboration with 

CAPRI (Lensink et al. 2016)) and on a set for which the oligomeric state is not 

provided as input (89 homo-oligomer proteins among CAMEO (Haas et al. 2013) 

targets released from August 13, 2016 to November 11, 2016). In these tests, the 

performance of GalaxyHomomer was better than or comparable to that of other 

methods for which performance data are available for the sets in terms of the 

CAPRI accuracy criterion, as summarized in Table 5.1. Note that some methods 

take only the structure as input. The CAPRI criterion reflects the biological 
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relevance of the model structures, and model qualities are classified as high (***), 

medium (**), acceptable (*), and incorrect considering the ligand root mean-square 

deviation (L-RMSD) and interface RMSD (I-RMSD) from the experimental 

structure and the fraction of predicted native contacts (Fnat) (Lensink and Wodak 

2010).
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Table 5.1. Performance comparison of homo-oligomer structure prediction 

methods in terms of the CAPRI accuracy criteria 

Benchmark 

Set 

Prediction 

Methods 

Input Up to 5 

models
1)

 

Top 1 

Model
1)

 

PISA 
(136 targets)

2)
 

GalaxyHomomer  Sequence 62/5***/38** 57/3***/39** 

HH+MODELLER
3)

 Sequence 61/3***/38** 45/1***/26** 

Membrane 

proteins 

(47 targets)
2)

 

GalaxyHomomer Sequence 19/1***/14** 19/1***/9** 

HH+MODELLER Sequence 18/0***/6** 14/0***/4** 

CASP11 
(20 targets)

2) 
GalaxyHomomer Sequence 12/0***/8** 12/0***/5** 

HADDOCK Structure 14/0***/10** 13/0***/9** 

ClusPro Structure 14/0***/7** 10/0***/5** 

BAKER-

ROSETTASERVER 
Sequence 9/0***/8** 9/0***/7** 

SwarmDock Structure 9/0***/3** 8/0***/3** 

GalaxyGemini
4)

 Structure Not available 7/0***/5** 

GRAMM-X Structure 5/0***/1** 3/0***/1** 

CAMEO 
(89 targets) 

GalaxyHomomer Sequence 44/6***/25** 35/3***/25** 

Robetta Sequence 28/4***/17** 26/4***/15** 

SWISS-MODEL
4)

 Sequence Not available 23/3***/16** 

1) 
Data represent the numbers of targets for which the best of up to five predicted 

models were of acceptable or higher/high accuracy (***) and medium accuracy 

(**); values for model 1 are shown. 

2) 
Oligomeric state of target protein is given as an input. 

3) 
Up to five homo-oligomer models were generated by MODELLER based on the 

templates detected by HH-search 

4) 
Data for up to five models were not provided for GalaxyGemini and SWISS-

MODEL because they generated only single models. 
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It has to be noted that GalaxyHomomer does not consider the lipid bilayer 

environment of membrane proteins explicitly in terms of energy or geometry 

during energy-based optimization and docking. However, the results on membrane 

proteins in Table 5.1 are quite promising, implying that membrane environment 

was effectively taken into account in an implicit manner by using the database 

structures of membrane proteins as templates. GalaxyHomomer showed better 

performance than GalaxyGemini (Lee et al. 2013), a previous homo-oligomer 

structure prediction server developed by us, on the CASP11 benchmark set, as 

summarized in Table 5.1. The difference in the performance is mainly due to the 

cases in which predicted monomer structures are not accurate enough. In such 

cases, oligomer structures built directly from the sequence using sequence-based 

templates (method 1 in Figure 5.1) tended to be more accurate than those obtained 

by superimposing the predicted monomer structures on the structure-based 

templates (method 2 in Figure 5.1). GalaxyGemini builds oligomer models using 

only method 2. Additional model refinement performed by GalaxyHomomer also 

improved the model accuracy. 

 

5.3.2. The Effect of Loop Modeling and Global Refinement on Homo-

oligomer Model Quality 

Improvement of the predictions achieved by additional ULR modeling and global 

refinement was analyzed using the benchmark test results on CASP11 benchmark 

set. ULR modeling was performed on 11 of the 13 targets for which initial models 

were generated based on proper templates. Both L-RMSD and I-RMSD were, on 

average, improved by ULR modeling as shown in Figure 5.2. Therefore, ULR 

modeling contributed to enhancing the prediction accuracy of the oligomer 
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structure interface.  

 Structures of the two example cases, T85 and T90, in which I-RMSD was 

improved significantly by interface loop modeling, are presented in Figure 5.3. In 

both cases, improved loop structures lead to improved interface structure, measured 

by I-RMSD, and overall docking accuracy, measured by L-RMSD. 
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Figure 5.2. Improvement in L-RMSD and I-RMSD by ULR modeling for the 

11 targets in CASP11 benchmark set for which ULR modeling was performed 
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Figure 5.3. Improvement by loop modeling for (A) T85 and (B) T90 as 

measured by loop RMSD, L-RMSD, and I-RMSD changes by loop modeling 

(in Å ). Loop regions are colored in dark blue (before) and dark magenta (after), 

and the remaining regions are colored in sky blue (before) and pink (after). They 

are compared with the experimental structure, shown in yellow. 
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 Finally, the performance of model refinement carried out by 

GalaxyRefineComplex at the last stage of GalaxyHomomer was analyzed. 

Refinement could improve models in all four accuracy measures, Fnat, Fnonnat, L-

RMSD, and I-RMSD (Figure 5.4). Among them, native interface contacts covered 

by model structure, as measured by Fnat, shows the most improvement. This result 

can be understood by considering that the refinement procedure can optimize local 

interactions at the interface by repetitive repacking of interfacial side chains. 

Overall docking pose can also be adjusted during short relaxation simulations 

performed after each side chain repacking, leading to small but consistent 

improvement in L-RMSD and I-RMSD. An example case of T85 in which 

refinement performed after loop modeling improves model quality is illustrated in 

Figure 5.5. 
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Figure 5.4. Model accuracy measured by Fnat, Fnonnat, L-RMSD, and I-RMSD 

before and after refinement. 
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Figure 5.5. Improvement of model quality by refinement for T85. L-RMSD 

and I-RMSD are measured in Å . (A) The initial structure (sky blue for chain A 

and dark blue for chain B) and (B) the refined structure (pink for chain A and dark 

magenta for chain B) are compared to the experimental structure (yellow). 

  



 

 

113 

5.4. Conclusion on Homo-oligomer Structure Prediction 

The GalaxyHomomer method predicts the homo-oligomer structure of a target 

protein from a sequence or monomer structure. It performs both template-based 

modeling and ab initio docking, and adopts additional model refinement that can 

consistently improve model quality. The server provides different options that can 

be chosen by the user depending on the availability of information on monomer 

structure, oligomeric state, and locations of unreliable/flexible loops or termini.  

 Modeling of loops/termini at the oligomer interface by GalaxyLoop 

improved interface RMSD, and refinement driven by side chain repacking by 

GalaxyRefineComplex improved the fraction of native contacts. By combining 

additional refinement based on loop modeling and overall structure refinement, 

GalaxyHomomer may generate more precise homo-oligomer models that can be 

useful for further applications such as for drug design targeting protein homo-

oligomer interfaces. 
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Chapter 6. Conclusion 

Proteins perform their biological functions by interacting with other molecules. 

Therefore, predicting protein interactions in atomic detail is very important to 

understand protein functions and to design drugs regulating proteins’ activities. In 

this thesis, three computational methods for predicting ligand binding sites, 

protein-ligand complex structures, and protein homo-oligomer structures have been 

introduced. 

 In Chapter 2, a program for metal and small organic molecule binding 

site prediction named GalaxySite2 was described. GalaxySite2 is an extended 

version of GalaxySite which combines evolutionary information with protein-

ligand docking technique. In GalaxySite2, a metal binding site prediction is newly 

added, and the selection method of putative binding ligand is improved by 

considering not only sequence similarity but also global and local structural 

similarity between target and template proteins. Because GalaxySite2 provides 

additional predictions on key protein–ligand interactions in terms of optimized 3D 

coordinates of the protein–ligand complexes, the results of GalaxySite2 would be 

very useful for locating cofactors before docking ligands into proteins. Moreover, 

based on the interactions observed in prediction results of GalaxySite2, it would be 

possible to get a clue to design principles of molecules targeting predicted binding 

sites. 

 Next, I developed protein–ligand docking programs which can predict 

protein–ligand complex structures when ligands and target binding sites are given. 

The two major components of a protein–ligand docking program are sampling and 

scoring. In Chapter 3, an improved scoring function, GalaxyDock BP2 Score, was 

introduced. By combining different types of scoring functions and balancing them 
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to have high discrimination power of near-native poses from non-native ones, the 

performance of GalaxyDock BP2 Score was improved in decoy discrimination 

tests. When GalaxyDock BP2 Score was applied to docking benchmark tests by 

implementing into GalaxyDock2 program, it showed better performance than other 

state-of-the-art programs in self-docking tests on Astex diverse set and Cross2009 

benchmark set as well as in more realistic docking tests on Astex non-native set. 

This improved performance on Astex non-native set is due to the fact that 

GalaxyDock BP2 Score can tolerate some conformational errors in the binding 

pocket with additional knowledge-based and empirical score terms. Even if 

GalaxyDock BP2 Score showed a reasonably good performance in scoring binding 

affinities, a separate hybrid score must be developed in the future for the purpose of 

predicting binding affinity in virtual screening for more practical use. 

 With the improved docking scoring function, an efficient sampling 

algorithm was also developed as described in Chapter 4. The sampling algorithm 

was improved by utilizing fragment binding hot spot information predicted by 

fragment docking. By sampling translational and rotational degrees of freedom 

based on predicted binding hot spot information, the new sampling algorithm, 

GalaxyDock-Frag, could reduce the search space efficiently resulting in 

improvements of docking performance for large flexible ligands having more than 

20 rotatable bonds. GalaxyDock-Frag was also applied to predict protein-peptide 

complex structures, and it showed good performance for peptides with medium 

length (5~7 residues). For larger peptides (8~12 residues), it shows comparable 

performance to other docking programs, but it has a room for improvement. In 

current GalaxyDock-Frag method, only translational and rotational degrees of 

freedom are sampled using predicted hot spot information. Therefore, only 6 

dimensions of search space are reduced, and it is not sufficient to dock larger 



 

 

116 

peptides having more than 8 residues efficiently. This can be tackled in the future 

by developing torsion angle sampling method with predicted hot spot information. 

 In Chapter 5, the GalaxyHomomer method to predict protein homo-

oligomer structure was introduced. It performs both template-based modeling and 

ab initio docking, and adopts additional model refinement which can consistently 

improve model quality. Modeling of loops/termini at the oligomer interface by 

GalaxyLoop improved interface RMSD, and refinement driven by side chain 

repacking by GalaxyRefineComplex improved the fraction of native contacts. By 

combining additional refinement based on loop modeling and overall structure 

refinement, GalaxyHomomer may generate more precise homo-oligomer models 

that can be useful for further applications such as for drug design targeting protein 

homo-oligomer interfaces. 

 The methods described in this thesis can be applied to in silico structure-

based drug design. Druggable sites in a target protein can be detected by 

GalaxySite2 program, while structure-based virtual screening can be done by 

GalaxyDock-Frag method with GalaxyDock BP2 Score. If the target protein forms 

homo-oligomer, its structure and interfaces can be predicted by GalaxyHomomer 

program. Although all the methods have rooms for improvement in order to be 

applicable to various challenging problems, I hope that the issues mentioned above 

are resolved and the programs will be used in interesting functional and design 

studies in the future. 
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국문초록 

 

단백질은 생체 내의 중요한 구성 요소로 다양한 생물학적 반응에 

관여한다. 단백질은 금속 이온부터 유기 분자, 펩타이드, 지질, 핵산, 

단백질까지 다양한 분자와 상호작용하며 그 기능을 수행한다. 따라서 

단백질과 다른 분자 사이의 상호작용을 예측하는 계산 방법들은 

단백질의 기능을 분자 수준에서 이해하고 단백질의 기능을 제어하는 

신약 물질을 개발하는데 유용하게 쓰일 수 있다. 특히 단백질에 

존재하는 리간드 결합 자리를 예측하는 방법은 신약개발에서 표적으로 

하는 단백질의 약물 결합 자리를 찾아내는데 활용될 수 있으며, 

단백질-리간드 도킹 방법은 신약 개발 단계에서 신약 후보 물질을 찾고 

이를 최적화하는데 기여할 수 있다. 또한 대다수의 단백질들이 그 

생물학적 기능을 수행하기 위해 호모 올리고머 구조를 이루기 때문에, 

이러한 단백질의 호모 올리고머 구조를 예측하는 방법 역시 올리고머 

결합 자리를 표적으로 하는 신약 개발에 큰 도움을 줄 수 있다. 

 본 논문은 단백질의 상호작용을 예측하기 위한 세가지 계산 

방법의 개발 내용과 그 결과를 담고 있다. 첫 번째 방법은 단백질에 

존재하는 금속 이온 및 유기 분자 결합 자리를 예측하는 방법으로 

곁가지 구조의 유연성을 고려한 금속 이온 도킹 방법과 새로운 주형 

구조 선택 방법을 도입함으로써 그 성능을 향상시켰다. 두 번째 방법은 

단백질과 리간드의 결합 구조를 예측하는 단백질-리간드 도킹 방법으로, 

물리 기반 에너지와 통계 기반 에너지를 혼합한 형태의 향상된 평가 

함수와 리간드 조각 구조의 결합 정보를 예측하여 활용하는 새로운 구조 
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샘플링 방법을 도입하였다. 마지막으로, 생물정보학적 접근 방법과 

물리화학적 접근 방법을 혼합하여 단백질의 호모 올리고머 구조를 

예측하기 위한 방법을 개발하였다. 본 논문에서 기술하고 있는 세 방법 

모두 다른 최신 프로그램들과 비교하였을 때 좋은 성능을 보여주었다. 

이 방법들을 활용한다면 단백질의 기능을 이해하는 것뿐만 아니라 

컴퓨터 계산을 활용한 신약 물질 개발에도 큰 도움을 줄 수 있을 것으로 

기대된다. 

 

주요어: 단백질 상호작용 예측, 리간드 결합 자리 예측, 단백질-리간드 

도킹, 도킹 평가 함수, 단백질 호모 올리고머 구조 예측 

학  번: 2013-20267 
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