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Lung cancer is considered as the leading cause of cancer-associated deaths worldwide and 

epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are used clinically as 

target therapies for lung cancer patients. However, the occurrence of acquired EGFR-TKI-

mediated resistance such as gefitinib, remains a major problem in non-small cell lung cancer 

(NSCLC) treatment and limits their efficacy. Subsequently, various studies are ongoing to 

investigate the mechanisms of drug resistance and explore the novel therapeutics strategies for 

NSCLC treatment. The present study suggests the mechanisms of acquired gefitinib resistance 

using PC9-Gef cells, HCC827-Gef cells, H1993-Gef cells and H292-Gef cells that gained 

resistance through continuous exposure to gefitinib. Moreover, employing a natural product 

daphnane diterpenoid yuanhuadine (YD), an antitumor agent, a novel strategy was confirmed to 

overcome this resistance via modulation the targeted genes.  

Accumulating evidence also suggests that microRNAs (miRNAs), a new class of small, 

nonprotein-encoding RNAs, play a significant role in epigenetically modulating various 

phenotypic changes in cancer cells. Indeed, miRNAs may affect genetic programs through post-

transcriptional silencing of target genes, either by inhibiting the translation of target mRNAs or by 

promoting their degradation. These actions may lead to the regulation of numerous aspects of 

cancer biology, including drug resistance.  
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Recently, overexpression of Nicotinamide N-methyltransferase (NNMT), a cancer-associated 

metabolic enzyme, is correlated with various human tumors. However, their precise roles in 

regulating the development of drug-resistant tumorigenesis are still poorly understood. Herein, 

establishing EGFR-TKI-resistant NSCLC models indicates that there is a negative correlation 

between the expression levels of NNMT and miR-449a in tumor cells. Additionally, knockdown 

of NNMT suppressed p-Akt and tumorigenesis, while re-expression of miR-449a induced 

phosphatase and tensin homolog, and inhibited tumor growth. Furthermore, YD, significantly 

upregulated miR-449a levels while critically suppressing NNMT expression.  

Bone morphogenetic proteins (BMPs) are a family of signaling molecules that belong to the 

transforming growth factor-β superfamily and the activation of the BMP-BMP receptor pathway 

conferred resistance to EGFR-TKIs in lung cancer patients harboring EGFR mutations. Recent 

studies have also suggested the possibility that small-molecule BMP4 antagonists were able to 

effectively inhibit the growth of lung cancer cells and chemotherapy-resistant cancer cells. In the 

present study, in comparison with the gene expression pattern of parental NSCLC cells, acquired 

gefitinib-resistant cell lines displayed that BMP4 gene was up-regulated in the gefitinib-resistant 

cell lines. Therefore, the role of BMP4 in EGFR-TKI resistance in NSCLC cells and the dynamic 

interactions of BMP4 with the tumor microenvironment such as miRNA or fatty acids were also 

elucidated.   

Based on these findings, up-regulation of NNMT and BMP4 or down-regulation of miR-449a 

expression can be regarded as novel cancer biomarkers of acquired gefitinib resistance and 

therapeutic targets overcome this resistance. Moreover, YD, which induces the expression of 

miRNAs while suppresses NNMT and BMP4 expression may be considered as a potential lead 

compound for the gefitinib-resistant NSCLC. 

 

Keywords: non-small cell lung cancer, gefitinib, NNMT, BMP4, miRNAs, yuanhuadine, 

metabolism, drug resistance.   

Student number: 2014 – 22148  

 

 

 



V 

 

Table of contents  

 

[Chapter 1] General introduction ………………………………………………….…..     1 

1.1 Background……………………………………………………………………………  2 

1.1.1 Drug resistance in non-small cell lung cancer……………………………………… 2 

1.1.2 The role of exosomes and miRNAs in drug-resistance of cancer cells…………….. 3 

1.1.3 The association of bone morphogenetic proteins with miRNAs and drug-resistance 

         of cancer cells………………………………………………………………………. 
5 

1.1.3.1 Negative modulation of BMPs by miRNAs……………………………………… 5 

1.1.3.2 BMPs and drug resistance in cancer……………………………………………… 7 

1.1.3.3 Bioactive compounds targeting the BMP pathway………………………………. 8 

1.1.4 Nicotinamide N-methyltransferase…………………………………………………. 10 

1.1.5 Yuanhuadine………………………………………………………………………... 11 

1.2 The purpose of this study……………………………………………………………... 13 

[Chapter 2] Targeting Nicotinamide N-methyltransferase and miR-449a in EGFR- 

TKI-resistant non-small cell lung cancer cells………………………………………… 
14 

2.1 Introduction…………………………………………………………………………… 15 

2.2 Material & Methods…………………………………………………………………... 16 

2.2.1 Reagents…………………………………………………………………………….. 16 

2.2.2 Cell culture and establishment of EGFR-TKI resistance of NSCLC cells…………. 16 

2.2.3 Transfection of small interfering RNAs and microRNA…………………………… 17 

2.2.4 RNA extraction and real-time polymerase chain reaction (PCR)………………….. 17 

2.2.5 Plasmid transfection………………………………………………………………… 18 

2.2.6 miRNA quantitative polymerase chain reaction (PCR)…………………………….. 18 

2.2.7 Cell proliferation assay……………………………………………………………... 18 

2.2.8 Flow cytometry for cell cycle analysis……………………………………………... 19 

2.2.9 Analysis of drug combination………………………………………………………. 19 

2.2.10 Western blot analysis……………………………………………………………… 19 

2.2.11 Methylation-specific PCR………………………………………………………… 20 

2.2.12 NNMT enzyme assay……………………………………………………………... 20 



VI 

 

2.2.13 5-Aza-2ꞌ-deoxycytidine treatment………………………………………………… 20 

2.2.14 Colony formation assay…………………………………………………………… 20 

2.2.15 cDNA microarray expression analysis……………………………………………. 21 

2.2.16 In vivo tumor xenograft model……………………………………………………. 21 

2.2.17 Immunohistochemistry of human cancer tissues………………………………….. 22 

2.2.18 Ex vivo biochemical analysis of tumors…………………………………………... 22 

2.2.19 Molecular docking analysis……………………………………………………….. 22 

2.2.20 Statistical analysis…………………………………………………………………. 23 

2.3 Results………………………………………………………………………………… 23 

2.3.1 The NNMT expression profile is inversely correlated to miR-449a expression in 

         gef-resistant NSCLC tissues and cell lines……...………………………………….. 
23 

2.3.2 NNMT modulates gef-resistant NSCLC cells by interacting with miR-449a……… 30 

2.3.3 Reversal of PTEN promoter methylation by miR-449a in gef-Resistant NSCLC 

         cells…………………………………………………………………………………. 
42 

2.3.4 Yuanhuadine leads to reversal of miR-449a and NNMT expression in EGFR-TKI- 

         resistant NSCLC cells………………………………………………………………. 
50 

2.3.5 YD suppresses NNMT activity via the interacting pocket of the enzyme…………. 58 

2.3.6 Discussion…………………………………………………………………………... 60 

[Chapter 3] Role of BMP4 in acquired drug resistance and regulation of fatty acid 

metabolism in EGFR-mutant non-small cell lung cancer cells………………………………………….. 
63 

3.1 Introduction…………………………………………………………………………… 64 

3.2 Material & Methods…………………………………………………………………... 66 

3.2.1 Cancer cell lines and reagents………………………………………………………. 66 

3.2.2 Establishing stable cell lines………………………………………………………... 66 

3.2.3 Microarray expression analysis…………………………………………………….. 66 

3.2.3.1 RNA quality check……………………………………………………………….. 66 

3.2.3.2 Affymetrix whole transcript expression arrays…………………………………… 66 

3.2.3.3 Raw data preparation and statistical analysis…………………………………….. 67 

3.2.4 Xenograft studies…………………………………………………………………… 67 

3.2.5 Phospho-antibody array analysis…………………………………………………… 68 



VII 

 

3.2.6 Metabolic analysis………………………………………………………………….. 68 

3.2.6.1 Metabolite extraction……………………………………………………………... 68 

3.2.6.2 NMR experiments and statistical analysis………………………………………... 68 

3.2.7 Exosome isolation…………………………………………………………………... 69 

3.2.8 Immunoblot analysis………………………………………………………………... 69 

3.2.9 Sulforhodamine B assay (SRB)…………………………………………………….. 69 

3.2.10 Combinatorial drug analysis………………………………………………………. 69 

3.2.11 Real-time polymerase chain reaction (PCR)……………………………………… 69 

3.2.12 Transfection of small interfering RNAs and microRNAs………………………… 70 

3.2.13 Colony formation assay…………………………………………………………… 70 

3.2.14 Cell migration and invasion assays……………………………………………….. 70 

3.2.15 Taqman microRNA assay…………………………………………………………. 70 

3.2.16 Ex vivo biochemical analysis of tumors…………………………………………... 71 

3.2.17 Immunohistochemistry……………………………………………………………. 71 

3.2.18 Ribonucleoprotein immunoprecipitation (RIP) assay…………………………….. 71 

3.2.19 Statistical analysis…………………………………………………………………. 71 

3.3 Results…………………………………………………………………………………   72 

3.3.1 miR-139-5p is a novel biomarker of EGFR-TKI resistance in EGFR-mutant 

        NSCLC cells………………………………………………………………………… 
72 

3.3.2 BMP4 is a candidate biomarker in EGFR-TKI-resistant NSCLC cells……………. 80 

3.3.3 BMP4 affects the growth of EGFR-TKI-resistant NSCLC cells…………………… 87 

3.3.4 BMP4 affects cancer cell metabolism via modulation of ACSL4 and p53………… 93 

3.3.5 Suppression of BMP signaling inhibits the growth of EGFR-TKI-resistant NSCLC 

         cells…………………………………………………………………………………. 
99 

3.4 Discussion…………………………………………………………………………….. 106 

4. Conclusion…………………………………………………………………………….. 109 

References………………………………………………………………………………... 111 

 

 

 

 



VIII 

 

List of Figures 

Figure 1. The proposed function of exosomal microRNA in the regulation of 

                 tumor progression and chemotherapy resistance………………………… 
4 

Figure 2. BMP-mediated signaling pathways………………………………………… 6 

Figure 3. Chemical structure of yuanhuadine………………………………………... 12 

Figure 4. The expression of mRNA NNMT in gef-resistant NSCLC cell lines……... 24 

Figure 5. The expression of NNMT protein in gef-resistant NSCLC cell lines…….. 26 

Figure 6. Immunohistochemistry of NNMT in tumor tissue sections………………. 27 

Figure 7. The expression of miR-449a in gef-resistant NSCLC tissues and cell lines 29 

Figure 8. Effects of NNMT in gef-resistant NSCLC cell growth……………………. 31 

Figure 9. Cell cycle progression of gef-resistant phenotype cell lines………………. 33 

Figure 10. Colony formation of gef-resistant phenotype cell lines………………….. 34 

Figure 11. Effects of miR-449a mimic on the miR-449a expression in gef-resistant 

                  cell lines…………………………………………………………………… 
36 

Figure 12. The potential interactions between NNMT and miR-449a……………… 39 

Figure 13. Effects of dual therapy on antitumor activity in in vivo models………… 41 

Figure 14. The expression of PTEN in gef-resistant NSCLC cells………………….. 43 

Figure 15. Effects of miR-449a on PTEN methylation and PTEN expression……... 45 

Figure 16. The associations between miR-449a and PI3K/Akt pathway in gef- 

                   resistant NSCLC cells……………………………………………………... 
47 

Figure 17. The associations between NNMT and PI3K/Akt pathway in gef- 

                   resistant NSCLC cells……………………………………………………... 
49 

Figure 18. Effects of YD on miR-449a and NNMT over-expression in gef-resistant 

                  NSCLC cells………………………………………………………………… 
55 

Figure 19. Effects of YD on gef-resistant NSCLC in vivo models…………………… 56 

Figure 20. Effects of YD on gef-resistant NSCLC ex vivo analysis………………….. 57 

Figure 21. YD interacts with the binding site of NNMT……………………………... 59 

Figure 22. Scheme of the mechanism of action EGFR-TKI-resistant NSCLC cells 

                  by miR-449a and NNMT…………………………………………………... 
62 

Figure 23. Heat-map representing changes in expression of top up-regulated and 73 



IX 

 

down-regulated miRNAs in PC9-Gef cells compared to PC9 cells…….. 

Figure 24. The expression of miR-139-5p in PC9-Gef compared to PC9 cells……... 75 

Figure 25. Heat-map showing changes in expression of top up-regulated and 

down-regulated miRNAs in PC9-Gef cells treated with control or YD 

(10 nM) for 24 h…………………………….……………………………… 

77 

Figure 26. Effects of YD on miR-139-5p expression in gef-resistant NSCLC cells… 79 

Figure 27. BMP4 is identified by combining target arrays…………………………. 81 

Figure 28. Characterization of indicated parental or drug-resistant cell lines and 

tissues for BMP4 expression at both the protein and mRNA levels….… 
82 

Figure 29. Effects of miR-139-5p and YD on BMP4 in gef-resistant NSCLC cells… 84 

Figure 30. RIP assay of miR-139-5p interaction with BMP4 mRNA……………….. 85 

Figure 31. Effects of YD on BMP4 ex vivo models…………………………………… 86 

Figure 32. Effects of BMP4 on the growth of EGFR-TKI-resistant NSCLC cells in 

vitro……...…………………………………………………………………… 
88 

Figure 33. Effects of BMP4 on colony, migration and invasion of EGFR-TKI- 

resistant NSCLC cells……………………………………………….…….. 
89 

Figure 34. Establishing stable knock-down BMP4 cell lines………………………… 91 

Figure 35. Effects of BMP4 on the growth of gef-resistant NSCLC cells in vivo  

models…………...…………………………………………………………... 
92 

Figure 36. Effects of BMP4 on top 20 terms in enrichment…………………………. 94 

Figure 37. Effects of BMP4 on ACSL4 in gef-resistant NSCLC cells………………. 95 

Figure 38. Effects of ACSL4 on BMP4 in gef-resistant NSCLC cells………………. 96 

Figure 39. Effects of BMP4 on fatty acid metabolism in gef-resistant NSCLC cells 98 

Figure 40. Effects of LDN-193189 on cell proliferation and BMP pathways in gef- 

resistant NSCLC cells………………………………...…………………….. 
100 

Figure 41. Effects of LDN-193189 on miR-139-5p in gef-resistant NSCLC cells….. 101 

Figure 42. Effects of LDN-193189 in combination with YD in gef-resistant NSCLC 

cells…………...……………………………………………………………… 
102 

Figure 43. Effects of LDN-193189 on the gef-resistant NSCLC cells in vivo models 104 

Figure 44. Effects of LDN-193189 on gef-resistant NSCLC cells ex vivo…………… 105 



X 

 

Figure 45. Scheme mechanism action of miR-139-5p and BMP4 in gef-resistant 

NSCLC cells……………………...………………………………………… 
108 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



XI 

 

List of Tables 

Table 1. Effects of gefitinib on the cell proliferation of NSCLC cells…………………. 32 

Table 2. Effects of gefitinib on the cell proliferation of resistance NSCLC cells……… 37 

Table 3. Effects of Yuanhuadine (10 nM) and Gefitinib (50 nM) on Gene Expression 

in H292-Gef  Cells………………………………………………………………. 
51 

  



XII 

 

Abbreviations 

 

1-MNA 1-methylnicotinamide 

ACSL4 Acyl-CoA synthetase long-chain family member 4 

ACVR1 Activin A receptor type 1 

ALK Anaplastic lymphoma kinase 

BMPs Bone morphogenetic proteins 

CRC Colorectal cancer 

EGFR-TKIs Epidermal growth factor receptor – tyrosine kinase inhibitors 

Erl Erlotinib  

GBM Glioblastoma multiforme 

Gef Gefitinib 

GFP Green fluorescent protein 

IHC Immunohistochemistry 

miRNA microRNA 

NNMT Nicotinamide N-methyltransferase 

NSCLC Non-small cell lung cancer 

RISC RNA-induced silencing complex 

SAM S-adenosyl methionine 

siRNA small interfering RNA 

TGF- Transforming growth factor- 

TIMPs Tissue inhibitors of metalloproteinases 

YD Yuanhuadine 

 

 

 

 

 



1 

 

[Chapter 1]  

General introduction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 

 

1. 1 Background  

1.1.1 Drug resistance in non-small cell lung cancer  

Chemotherapy, one of the principal approaches for lung cancer patients, plays a crucial role in 

controlling tumor progression. Clinically, tumors reveal a satisfactory response following the first 

exposure to the chemotherapeutic drugs in treatment. However, most tumors sooner or later 

become resistant to even chemically unrelated anticancer agents after repeated treatment. This may 

contribute to an increase in the drug dosage and fail to improve the clinical prognosis or outcome. 

Subsequently, drug resistance is considered a major impediment in medical oncology. Although 

the different chemotherapy and endocrine regiments as well as targeted drugs have been commonly 

investigated, chemotherapy resistance is still major obstacle to successful treatment. It is well 

known that there are two main types of resistance in cancer, which include the following: (1) 

inherent resistance, where insensitivity already exists before treatment, and (2) acquired resistance, 

which subsequently appears following the initial positive response (Bach et al., 2017a). 

Subsequently, drug resistance is related to a wide variety of solid tumors, especially with lung 

cancer, the most common cause of cancer-related mortality. Small-cell lung cancer cells can 

acquire resistance with continued administration of the drug whereas non-small cell lung cancer 

(NSCLC) that constitutes about 85% of all lung cancers are often intrinsically resistant to certain 

anticancer drugs (Shanker et al., 2010).   

Targeted therapies have significantly improved the survival and quality of life for a subgroup of 

patients with advanced NSCLC in 2005. However, the first acquired resistance was found in 

NSCLC patients treated with epidermal growth factor receptor – tyrosine kinase inhibitors (EGFR-

TKIs), who initially showed an excellent response to treatment (Pao et al., 2005). Subsequently, 

various molecular mechanisms that relate to drug resistance have been explored, including those 

that are both non-mutational (presumably epigenetic) and mutational (genetic). Somatic mutations 

in the EGFR gene such as T790M mutation, deletion in exon 19 or wild-type EGFR amplification 

(Nakata and Gotoh, 2012) are highly associated with favorable response to the EGFR-TKI, 

gefitinib (Sharma et al., 2007), a pioneer targeted drug that has been used as the first-line treatment 

for patients with EGFR mutations (Mok  et al., 2009).   
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1.1.2 The role of exosomal miRNAs in drug-resistance of cancer cells  

 Cell to cell interaction is crucial for all multicellular organisms. There are robust biological 

interaction networks comprising protein-protein, gene-gene, gene-microRNA (miRNA) and 

parallel signaling as well as intracellular and distant cell communications for aggressive and 

therapy resistant cancers (Kitano, 2003; Kitano, 2004). miRNAs are a new class of small, 

nonprotein-encoding RNAs, which have been discovered in diverse organisms and are thought to 

regulate other genes’ expression (Lagos-Quintana et al., 2001). It is well known that miRNAs are 

involved in various biological processes, including stress resistance, cell differentiation and cell 

death (Ambros, 2003). They can also act as either oncogenes or tumor suppressors to regulate 

tumor progression and many contribute to tumor metastasis (Lu et al., 2005; Ma et al., 2007). 

Recent studies have demonstrated that miRNAs are secreted from various cells, including cancer 

cells, into body fluids such as blood, urine, breast milk and saliva (Hu et al., 2012; Ogawa et al., 

2008; Taylor and Gercel-Taylor, 2008) (Figure 1).   

Previous studies also revealed that drug-resistant tumor cells are an abundant source of exosomes 

that may serve as paracrine modulators via the horizontal transfer of genetic cargo (Corcoran et 

al., 2012; O'Brien et al., 2013; Safaei et al., 2005). Because of this role, exosomes may have a 

defined set of miRNAs that transfer a resistance phenotype to sensitive cancer cells by altering cell 

growth and inducing anti-apoptosis programs. For example, through competing with endogenous 

RNA for exosomal miR-34 and miR-449, lncARSR is suggested as a mediator of sunitinib 

resistance in renal cell carcinoma. In epithelial ovarian cancer, Sun et al. suggested that miR-9 can 

mediate the down-regulation of BRCA1 and impede DNA damage repair. Therefore, miR-9 may 

improve chemotherapeutic efficacy by increasing the sensitivity of cancer cells to DNA damage 

and may play a positive function in the treatment of ovarian cancer (Sun et al., 2013). Taken 

together, these studies have revealed the significance of exosomal miRNAs in drug resistance and 

intercellular communication (Simons and Raposo, 2009).   
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Figure 1: The proposed function of exosomal microRNA in the regulation of tumor progression and chemotherapy resistance 

(Bach et al., 2017a).   
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1.1.3 The association of bone morphogenetic proteins with miRNAs and drug-resistance of 

cancer cells  

Bone morphogenetic proteins (BMPs), originally disclosed as an osteogenic factor in 1965 (Urist, 

1965), are considered a unique extracellular multifunctional signaling cytokine and represent part 

of the transforming growth factor- (TGF-β) superfamily (Guo and Wang, 2009) (Figure 2). The 

identification of BMPs has increasingly attracted much attention due to their functions not only in 

embryonic and postnatal development but also in tumor development and dissemination 

(Hardwick et al., 2008). These roles of BMPs are also highly correlated to various aspects of 

carcinogenesis, such as angiogenesis, epithelial-mesenchymal transition and cancer stem cells.  

 

1.1.3.1 Negative modulation of BMPs by miRNAs  

Additionally, various tumor microenvironment factors that strongly affect tumorigenesis interact 

with BMPs, such as microRNAs (miRNAs), mutations or drug treatment. miRNAs, small 

molecules of approximately 18 – 25 nucleotides in length, can modulate gene expression through 

translational repression and their critical roles in cancer progression and osteogenesis were 

recently manifested (Bach et al., 2017a; Wu et al., 2012). The molecular mechanisms involved in 

the negative regulation of BMP activity by miRNAs are also evident. Braig et al determined the 

molecular mechanisms leading to the overexpression of BMP4 in melanoma cells compared to 

normal melanocytes and identified miR-196a as a BMP4-negative regulator that directly 

suppresses BMP4 in malignant melanoma (Braig et al., 2010). Similarly, by profiling miRNAs 

during BMP2-stimulated osteogenesis of C2L12 mesenchymal cells, Li et al characterized two 

representative miRNAs and showed that miR-133 directly targets Runx2, an early BMP response 

gene essential for bone formation, and that miR-135 may also target SMAD5, a key transducer of 

the BMP2 osteogenic signal (Li et al., 2008). Rai et al employed unbiased genome-wide 

approaches in diffuse large B cell lymphoma and found that miR-155 directly targets the BMP-

responsive transcriptional factor, SMAD5 (Rai et al., 2010). miR-155 overexpression suppressed 

SMAD5 expression and disrupted its activity (Rai et al., 2010). In 100 hepatocellular carcinoma 

tissues, Li et al found that miR-148a  directly inhibited the expression level of activin A receptor 

type 1 (ACVR1), a key receptor in the BMP signaling pathway (Li et al., 2015). They also 

determined that this miRNA is related to cancer development and metastasis via the 

ACVR1/BMP/Wnt pathway (Li et al., 2015). In primary mouse keratinocytes following BMP4  
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Figure 2. BMP-mediated signaling pathways. The type-II receptor trans-phosphorylates the 

type-I receptor which, in turn, stimulates transcriptional regulators called SMADs, which 

transduce the signal to the nucleus to modify gene expression (Bach et al., 2018b).     
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treatment, Ahmed et al identified miR-21, which is significantly suppressed by BMP4 (Ahmed et 

al., 2011). They also found that miR-21 regulates two groups of BMP4 target genes, including 

tissue inhibitors of metalloproteinases (TIMP)1, TIMP3 and programmed cell death 4. In primary 

keratinocytes and HaCaT cells, miR-21 can also prevent the inhibitory effects of BMP4 on cell 

migration and proliferation (Ahmed et al., 2011). Consistent with this observation, Qin et al also 

showed that bone morphogenetic protein receptor II (BMPRII) is a direct target of miR-21 in PC3 

and LnCap prostate cancer cells (Qin et al., 2009). Together, these studies indicate the existence 

of an additional level of complexity in the modulation of the BMP pathway.  

 

1.1.3.2 BMPs and drug resistance in cancer  

Cancer cell chemoresistance is considered as a major impediment in medical oncology. Emerging 

studies indicated that drug resistance of cancer cell is able to be related to various factors such as 

epigenetics, miRNAs and cytokines (Bach et al., 2017a; Easwaran et al., 2014; Jones et al., 2016). 

Such a phenomenon has been indicated for the superfamily member TGFβ, which is suggested as 

an emerging player in drug resistance (Brunen et al., 2013), BMPs and their components have been 

also implicanted to various different drug resistance of cancer. Indeed, Wang et al recently 

demonstrated that the resistance of lung squamous cell carcinoma patients with EGFR mutations 

to EGFR-TKIs was, in part, due to activation of the BMP-BMPR-SMAD1/5 signaling pathway 

(Wang et al., 2015). Subsequently, the combined treatment of these cancer cells together with 

inhibitors specific to BMPR may overcome the resistance to EGFR-TKIs (Wang et al., 2015). Xian 

et al enrolled 938 patients with stage III or IV NSCLC and reported that patients with high-level 

expression of BMP4 had a significantly higher chance of being resistant to chemotherapy than 

those with low BMP4 expression (Xian et al., 2014). Du et al reported that knockdown of BMP2 

increased chemoresistance of the MCF-7 breast cancer cell line (Du et al., 2014). Similarly, Liu et 

al also suggested that hypermethylation contributed to the regulation of BMP6 during the 

acquisition of drug resistance in breast cancer cells (Liu et al., 2014). BMP6 was recently indicated 

to induce castration resistance in prostate cancer cells via tumor-infiltrating macrophages (Lee et 

al., 2013). Choi et al also demonstrated that treatment with BMP2 in vivo leads to increased tumor 

growth and chemotherapy resistance (Choi et al., 2015). Octamer-binding transcription factor 

(Oct)4 and nestin, stem cell markers that promote cell survival, are highly associated with 

resistance to chemotherapeutic agents, suggesting that the failure of cancer treatment and BMP 
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signaling is a growth stimulator in cancer cells expressing Oct4 or nestin (Bourguignon et al., 2012; 

Wang et al., 2013; Wen et al., 2013). Langenfeld et al employed DMH2, a small molecule BMP 

inhibitor, and found that DMH2 also significantly suppressed cell growth of nestin/green 

fluorescent protein (GFP) or Oct4/GFP-expressing cells (Langenfeld et al., 2013). Similarly, 

Coffman et al found that human ovarian carcinoma-associated mesenchymal stem cells (CA-

MSCs) promote chemotherapy resistance of ovarian cancer by stimulating the BMP4/Hedgehog 

(HH) signaling pathway (Coffman et al., 2016). However, employing the HH inhibitor, IPI-926, 

prevented CA-MSC-mediated increases in chemotherapy resistance and tumor growth (Coffman 

et al., 2016).   

Conversely, Persano et al reported that BMP2-based treatment increased the Temozolomide 

response in hypoxic drug-resistant glioblastoma multiforme (GBM)-derived cells (Persano et al., 

2012). Eramo et al indicated that chemotherapy resistance is one of the leading reasons for poor 

GBM (Eramo et al., 2006) among the most aggressive tumor types. However, Tate et al found that 

a BMP7 variant may reduce tumor growth and stem cell marker expression in subcutaneous and 

orthotopic glioblastoma stem-like xenografts (Tate et al., 2012). Lian et al also demonstrated that 

knockdown of BMP6 in breast cancer cells increased chemoresistance to doxorubicin by 

upregulating multiple drug resistance-1/P-glycoprotein expression and activating the ERK 

signaling pathway (Lian et al., 2013). Overall, BMPs and their involvements highly related to drug 

resistance of cancer cells and employing BMP family inhibitors may promisingly enhance 

efficiency of cancer treatment.      

 

1.1.3.3 Bioactive compounds targeting the BMP pathway  

Natural compounds have been employed to cancer treatment for thounsands of years and therefore, 

targeting BMPs with dietary natural product-derived compounds is considered one of several 

therapeutic strategies in preventing cancer progression. To illustrate, Craft et al demonstrated that 

genistein, a component of soybean, therapeutically induces reversion to a low-motility phenotype 

in aggressive endoglin-deficient human prostate cancer cells by activating anaplastic lymphoma 

kinase (ALK)2-SMAD1 endoglin-associated signaling (Craft et al., 2008). Hallahan et al indicated 

that retinoid treatment may abrogate tumor growth in medulloblastoma xenografts (Hallahan et al., 

2003). Using specific retinoid receptor agonists and gene expression arrays, they identified BMP2 

as a candidate mediator of retinoid activity (Hallahan et al., 2003). Retinoid-stimulated expression 
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of BMP2 is subsequently important and sufficient for apoptosis of retinoid-responsive cells and 

the expression level of BMP2 by retinoid-sensitive cells is sufficient to promote apoptosis in 

surrounding retinoid-resistant cells (Hallahan et al., 2003). Kodach et al also reported that statins, 

which induce apoptosis in colorectal cancer (CRC) cells via stimulation of BMP2, may only be 

effective in SMAD4-expressing CRCs and have adverse effects in SMAD4-negative tumors 

(Kodach et al., 2007). Subsequently, based on these possible effects of statins on bone tissue, Chen 

et al found that simvastatin induces osteoblast viability and differentiation via the 

RAS/SMAD/ERK/BMP2 signaling pathway (Chen et al., 2010).  

Additionally, by employing in silico screening, Ahmed et al attempted to identify new low-

molecular-weight drug-like compounds with high theoretical scores to bind to Noggin to suppress 

the BMP-Noggin interaction (Ahmed et al., 2010). Sanvitale et al also identified a new small 

molecule inhibitor of BMP signaling, K02288, a highly selective 2-aminopyridine-based inhibitor 

with in vitro activity against ALK2 at lower concentrations, similar to the current lead compound, 

LDN-193189, by screening a panel of 250 recombinant human kinases (Chen et al., 2010). In 

conclusion, the identifying bioactive compounds that specifically target BMPs and their 

involvement will provide the promising for high-through screening in a range of in vitro and in 

vivo models of disease where BMP functions are implicated. The progression of this study will 

drive towards clinical trials for new potential inhibitors of BMPs and their involvements in cancer 

treatment.      
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1.1.4 Nicotinamide N-methyltransferase in cancer   

Deregulated metabolic pathways could affect cancer cell biology in various different ways that 

extend beyond simply providing primary building blocks and energy to support tumorigenesis 

(Ulanovskaya et al., 2013). Nicotinamide (NCA) N-methyltransferase (NNMT, EC 2.1.1.1), a 

cancer-associated metabolic enzyme, that can catalyze the transfer of the methyl group from S-

adenosyl methionine (SAM) to NCA, generating S-adenosylhomocysteine (SAH) and 1-

methylnicotinamide (1-MNA) (Ulanovskaya et al., 2013) is commonly overexpressed in various 

human tumors (Bach et al., 2018a). NNMT is implicated in various disease conditions such as 

metabolic disorders, neurodegenerative diseases and cancer, and tissue NNMT expression or 

plasma levels of its product MNA have been proposed as cancer biomarkers for these conditions 

(Kannt et al., 2018). NNMT exhibits a high expression levels in the liver and follows a bimodal 

frequency distribution which might results in differences among individuals in the metabolism and 

therapeutic effect of drugs (Zhang et al., 2014a). NNMT also can promote epithelial-mesenchymal 

transition in gastric cancer cells through stimulating TGF-β1 expression (Liang et al., 2018) while 

NNMT silencing can stimulate tumor suppressor PP2A, inactive oncogenic serine/threonine 

kinases, and suppress tumor forming ability (Palanichamy et al., 2017).   

In drug resistance cells, NNMT might enhance resistance to 5-fluororacil in colorectal cancer cells 

through suppression of the ASK1-p38 mitogen-activated protein kinase pathway (Xie et al., 

2016).  Williams et al. also indicated that NNMT overexpression might contribute all fundamental 

events, in which NCA appears to be involved. NCA is suggested as a part of the NAD molecule, 

which participates in a wide range of biological processes, including cellular resistance and energy 

production (Williams and Ramsden, 2005).  
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1.1.5 Yuanhuadine  

Yuanhuadine (YD), is a natural product and a daphnane-type diterpenoid that has been isolated 

from the flower buds of Daphne genkwa (Thymelaeceae), a medicinal plant widely distributed in 

Korea and China (Hong et al., 2011; Zhang et al., 2007). A recent study indicated that YD could 

strongly suppress lung cancer cells compared to other cancer cell lines without cytotoxic against 

MRC-5 normal lung epithelial cells (Hong et al., 2011).  Hong et al. further found that YD can 

contribute the cell cycle and suppress Akt/mTOR and EGFR signaling pathways in A549 cells and 

the antitumor activity of YD has been confirmed in an A549 cell-implanted xenograft model (Hong 

et al., 2011).  

In drug resistance of NSCLC studies, Bae et al. attempted to enhance AXL degradation to 

overcome acquired gefitinib-resistance by the treatment of gefitinib-resistant NSCLC cells with 

YD, a potent antitumor agent in NSCLC (Bae et al., 2015). They found that treatment with YD 

effectively could suppress the cancer cell survival in vitro and in vivo. Mechanistically, YD could 

accelerate the turnover of AXL by presenilin-dependent regulated intramembrane proteolysis and 

result in the down-regulation of the full-length AXL. Recently, Bae et al. also employed YD in 

drug resistance of NSCLC cells and found that treatment with YD could effectively elevate Serpin 

B2 levels and suppress invasive properties in H292-Gef cells (Bae et al., 2016).  
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Figure 3: Chemical structure of yuanhuadine. 
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1.2 The purpose of this study  

Even though YD showed a therapeutic promise against cancer growth in both parental lung cancer 

and drug resistance of NSCLC cells studies, therapeutic effects of this natural product on miRNAs 

in EGFR-TKI-resistant NSCLC cells remain poorly understood. Besides, based on the significance 

of investigating resistance mechanisms in EGFR-TKI treatment, the present study also attempts to 

explore the novel mechanisms of resistance in drug-resistant NSCLC cells. Subsequently, this 

study focused on several cancer biomarkers such as miRNAs, BMP4 and NNMT and also 

employed YD to this drug resistance of NSCLC cells to overcome the resistance. Detailed 

descriptions are found in the introductions of Part 2 and Part 3. Activation of NNMT has not been 

reported as a resistance mechanism of EGFR-TKIs in NSCLC yet, and the cause of this activation 

is unclear also. High BMP4 expression has been indicated as a poor prognostic marker in lung 

cancer. However, the relationship between BMP4 and EGFR-TKI resistance has not been reported 

yet.  

In the present study, it was proven that up-regulation of NNMT and BMP4 and down-regulation 

of miR-139-5p and miR-449a result in gefitinib resistance. Subsequently, targeting these resistance 

mechanisms may serve as possible therapeutic strategies. Moreover, it is suggested that YD, a 

daphnane-type diterpene antitumor agent isolated from Daphne genkwa, has also the potential to 

reverse these mechanisms to overcome resistance.  
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[Chapter 2] Targeting Nicotinamide N-

methyltransferase and miR-449a in EGFR-TKI-

resistant non-small cell lung cancer cells 
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2. 1 Introduction  

Lung cancer remains the leading cause of cancer death worldwide, with two main histological 

groups: small cell lung cancer cells and non-small-cell lung cancer (NSCLC), which presents 85% 

of all lung cancer cases (Molina et al., 2008). Despite process in therapeutic strategies for advanced 

NSCLC, the curative effects seem to have reached a plateau, and patient prognosis has remained 

poor. Moreover, studies examining the activation of specific genes in EGFR-TKI-resistant NSCLC 

cells, and the treatment of those overexpressed genes, have been thoroughly investigated. 

Subsequently, novel therapeutic approaches are necessarily required to elucidate the molecular 

mechanisms in drug-resistant cancer cells.  

Accumulating evidence suggests that the deregulation of metabolic enzymes might frequently have 

pro-tumorigenic effects. Nicotinamide (NCA) N-methyltransferase (NNMT) is a cytosolic enzyme 

that catalyzes the transfer of the methyl group from S-adenosyl methionine (SAM) to NCA, 

generating S-adenosylhomocysteine (SAH) and 1-methylnicotinamide (1-MNA) (Ulanovskaya et 

al., 2013). NNMT is overexpressed in a variety of cancers, including liver, kidney, bladder, and 

colon, and has been shown to promote the migration, invasion, proliferation, and survival of cancer 

cells (Roessler et al., 2005; Tang et al., 2011; Tomida et al., 2008). Despite considerable 

experimental evidence that NNMT induces tumorigenesis and may thus represent a potential 

anticancer target, the actual functions of this enzyme in chemo-resistant tumors have not yet been 

fully investigated, especially in EGFR-TKI acquired resistant NSCLC cells.  

A large body of evidence suggests the critical function of microRNAs (miRNAs) in epigenetically 

modulating different phenotypic stages in drug-resistant tumors (Engelman and Settleman, 2008; 

Holohan et al., 2013; Migliore and Giordano, 2013). Our recent study also described the role of 

miRNAs in the regulation of various aspects of tumor progression associated with drug resistance 

(Bach et al., 2017a; Bach and Lee, 2018). The small, non-coding molecules known as miRNAs 

elicit their regulatory effects by binding imperfectly to the 3’ UTR of their target mRNA, leading 

either to degradation of the mRNA or suppression of its translation into functional protein (Liu et 

al., 2005; Saxena et al., 2003). Moreover, the aberrant expression of miRNAs is highly correlated 

with cancer development (Bach et al., 2017a; Bach and Lee, 2018). 

In general, antitumor agents can suppress cancer cell growth through the regulation of cell signal 

transduction or proliferation (Bachegowda et al., 2016; Kim et al., 2017; Weir et al., 2016; Yu et 

al., 2016). Importantly, we have previously found that natural product-derived compounds, 
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including the antitumor agent yuanhuadine (YD), could enhance the antitumor activity of chemo-

therapeutic agents through different mechanisms (Bae et al., 2015; Hong et al., 2011), suggesting 

that these compounds could exert their pleiotropic effects on cancer treatment by regulating 

various cell signaling pathways. Herein, we attempted to elucidate the role of NNMT in EGFR-

TKI resistance in NSCLC cells and the dynamic interactions of NNMT with miR-449a in tumor 

microenvironment. Further studies also indicated that YD can modulate to both NNMT and miR-

449a expression and therefore overcome drug resistance. These findings will highlight potential 

new strategies for the treatment of cancer patients with EGFR-TKI-resistant NSCLC. 

 

2.2 Materials and methods  

2.2.1 Reagents  

RPMI 1640 medium and Opti-MEM Reduced Serum Medium were purchased from Invitrogen 

(Invitrogen, CA, USA). Mouse anti-β-actin and anti-NNMT (G-4) were purchased from Santa 

Cruz Biotechnology (Santa Cruz, CA, USA). Rabbit anti-Akt, anti-phospho-Akt (Ser473), and anti-

PTEN were purchased from Cell Signaling Technology (Danvers, MA, USA). Yuanhuadine (YD; 

purity > 98.5%) was isolated and identified from a CHCl2-soluble fraction of the flowers of 

Daphne genkwa, as described previously (Bae et al., 2015; Hong et al., 2011).   

 

2.2.2 Cell culture and establishment of EGFR-TKI resistance of NSCLC cells 

Human lung carcinoma H292 and H1993 cells were obtained from the American Type Culture 

Collection (Manassas, VA, USA). The cell lines were cultured in RPMI 1640 medium 

supplemented with 10% FBS and antibiotics-antimycotics (PSF; 100 unit/mL penicillin G sodium, 

100 μg/mL streptomycin, and 250 ng/mL amphotericin B). Gefitinib (gef)-resistant H292 (H292-

Gef) cells were developed by our group as described previously (Bae et al., 2015), while erlotinib 

(erl)-resistant H292 (H292-Erl) cells were developed from the parental H292 cells though 

continuous exposure to gradually increasing concentrations of erl (Selleckchem. Houston, TX, 

USA) and maintained in RPMI 1640 medium containing 1 µM erl. Similarly, to establish gef-

resistant H1993 cells (H1993-Gef) and erl-resistant H1993 cells (H1993-Erl), H1993 cells were 

continuously exposed to increasing drug doses up to 10 µM of gef and erl. Subsequently, H1993 

cells with established resistance were maintained in medium containing 10 µM of gef and erl. All 
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cells were incubated at 37ºC in a humidified atmosphere containing 5% CO2 and sub-cultured at 

least twice a week. Cells passaged more than three times were used for the experiments.   

 

2.2.3 Transfection of small interfering RNAs and microRNA  

The small interfering RNA (siRNA) sequences (Stealth RNAi siRNA, Invitrogen) targeting 

NNMT (siNNMT-1: Cat. No. HSS181544, siNNMT-2: Cat. No. HSS107222, siNNMT-3: Cat. No. 

HSS107223), the negative control (NC) (Negative Universal ControlTM Med Cat. No. 46-2001), 

the miR-449a mimic (mirVana miRNA Mimic, assay ID MC11127) and the NC (mirVana miRNA 

Mimic NC No. 1, Applied Biosystems) were transfected into the cell lines by electroporation using 

Lipofectamine RNAiMAX (Invitrogen, CA, USA) according to the manufacturer’s 

recommendations. The cells were harvested for subsequent experiments 24 h and 48 h post-

transfection for real-time PCR and western blot analysis, respectively.  

  

2.2.4 RNA extraction and real-time polymerase chain reaction (PCR) 

RT-PCR was used to determine the gene expression. Briefly, the indicated cells were cultured in 

36-mm dishes for 24 h. The cells were then treated with various indicated concentrations of YD 

for an additional 24 h. Total cellular RNA was extracted with TRIzol reagent according to the 

manufacturer’s instructions. The total RNA (1 μg) that was isolated from the cells was used for 

reverse transcription reaction with Reverse Transcription Reagents. The cDNA was reverse 

transcribed at 42 °C for 60 min with 0.5 μg of oligo (dT)15 in a reaction volume of 20 μL using the 

reverse transcription system (Promega, MI, USA). Gene-specific primers for real-time PCR were 

synthesized by Bioneer Corporation (Daejeon, Korea): human NNMT sense: 5′-

TGTGTGATCTTGAAGGGAACAG-3′, antisense: 5′-CTTGACCGCCTGTCTCAAC-3′; human 

β-actin sense: 5′-AGCACAATGAAGATCAAGAT-3′, antisense: 5′-

TGTAACGCAACTAAGTCATA-3′. Real-time PCR was conducted using a MiniOpticon system 

(Bio-Rad, Hercules, CA, USA); each PCR amplification included 5 μL of reverse transcription 

product, iQ SYBR Green Supermix (Bio-Rad, Hercules, CA, USA), and primers in a total volume 

of 20 μL. The following standard thermo cycler conditions were employed: 95 °C for 20 s prior to 

the first cycle; 40 cycles of 95 °C for 20 s, 56 °C for 20 s, and 72 °C for 30 s; 95 °C for 1 min; and 

55 °C for 1 min. The threshold cycle (CT), indicating the fractional cycle number at which the 

amount of amplified target gene reached a fixed threshold for each well, was determined using the 
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MJ Opticon Monitor software package (Bio-Rad, Hercules, CA, USA). Relative quantification, 

representing the change in gene expression in real-time quantitative PCR experiments between a 

sample-treated group and the untreated control group, was calculated by the comparative 

CT method in accordance with previously described methods (Bach et al., 2017b; Bach et al., 2015).  

The data were analyzed by evaluating the expression 2−ΔΔCT, where ΔΔCT = (CT of target gene − 

CT of housekeeping gene) treated group − (CT of target gene − CT of housekeeping gene) untreated 

control group. For the treated samples, the evaluation of 2−ΔΔCT represents the fold change in gene 

expression relative to the untreated control, normalized to a housekeeping gene.  

 

2.2.5 Plasmid transfection  

FuGENE HD Transfection Reagent (Roche Applied Science) was used to transfect plasmid 

pcDNATM3.1(+)-NNMT (#RG200641 from Origene) or pCMV6-AC-GFP (#PS 100010) control 

vector into parental NSCLC cells. All transfections procedures were performed according to the 

protocol provided by the manufacturer. After transfection for 48 h, NSCLC cells were harvested 

and extracted for protein isolation.  

 

2.2.6 miRNA quantitative polymerase chain reaction (PCR)  

To determine the expression of miR-449a in NSCLC cells, we used the TaqMan® MiRNA Assay 

kit (Applied Biosystems) (Cat. No. 4427975) following the manufacturer’s protocol. In detail, 

miRNA expression was determined by collecting total RNA from 90% confluent cells. Total RNA 

was isolated using TRIzol (Invitrogen, CA, USA) and then converted to cDNA using the 

TaqMan® MiRNA Assay (Part No. 4366596) according to the manufacturer’s protocol. The 

specific primer for mature miRNA was hsa-miR-449a (5′-UGGCAGUGUAUUGUUAGCUGGU-

3′). The miR-449a (Assay ID: 001030) expression levels were analyzed using Taqman quantitative 

real-time PCR (TaqMan MicroRNA Assay, Applied Biosystems) and normalized to the RNU6B, 

an endogenous control (Assay ID: 001093). All reactions were performed in triplicate.  

 

2.2.7 Cell proliferation assay  

The indicated cells were seeded in 96-well plates with various concentrations of YD and incubated 

at 37 °C in a humidified atmosphere with 5% CO2. After incubation, the cells were fixed with a 

50% trichloroacetic acid (TCA) solution for 1 h, and cellular proteins were stained with 0.4% 
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sulforhodamine B (SRB) in 1% acetic acid. The stained cells were dissolved in 10 mM Tris buffer 

(pH 10.0). The effect of SA on cell proliferation was calculated as a percentage relative to a 

solvent-treated control, and the IC50 values were evaluated using nonlinear regression analysis 

(percent survival versus concentration). 

 

2.2.8 Flow cytometry for cell cycle analysis   

The indicated cells were plated in a 36-mm culture dish and incubated for 24 h. Following a 24 or 

48 h treatment, the cells were harvested (via trypsinization and centrifugation), rinsed twice with 

pre-cooled phosphate buffered saline (PBS), and prepared for apoptosis and cell cycle analysis. 

For cell cycle analysis, 1 mL of pre-cooled 70% ethanol was added, and the cells were fixed 

overnight at −20 °C. Next, fixed cells were washed with PBS and incubated with a staining solution 

containing RNase A (50 μg/mL) and propidium iodide (PI) (50 μg/mL) in PBS for 30 min at room 

temperature. The cellular DNA content was analyzed with a FACSCalibur® flow cytometer (BD 

Biosciences, San Jose, CA, USA). At least 10,000 cells were used for each analysis, and the 

distribution of cells in each phase of the cell cycle was displayed using histograms. 

 

2.2.9 Analysis of drug combination  

The cells were post-transfected with siNNMT and/or miR-449a and their scramble siRNA and/or 

NC miRNA, then, the transfected cells were determined using the SRB assay. The combination 

effect was evaluated as described previously (Bae et al., 2015) and the CI values were compared 

to the reference values reported by Chou (Chou, 2006).    

 

2.2.10 Western blot analysis   

The indicated cells were placed in a 36-mm culture dish and incubated for 24 h. After treatment, 

the protein was extracted with lysis buffer, and the protein concentrations were determined using 

the bicinchoninic acid (BCA) method. A 40 μg protein sample was collected from each group, 

boiled for 10 min, loaded onto 10% SDS-PAGE gels, and then transferred to PVDF membranes 

with electroblotting. Membranes were blocked for 1 h with 5% fat-free milk at room temperature, 

rinsed with PBS, and incubated with diluted primary antibodies 1:1000 or 1:500 overnight at 4 °C. 

Then, the membranes were incubated with specific secondary antibodies (1:1000) for 2 h and 

rinsed with PBS. The expression of β-actin was used as an internal standard. Proteins were detected 
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with an enhanced chemiluminescence detection kit from GE Healthcare (Little Chalfont, UK) and 

an LAS-4000 Imager (Fuji Film Corp., Tokyo, Japan). 

 

2.2.11 Methylation-specific PCR  

The methylation status of the PTEN promoter was determined by methylation-specific PCR after 

bisulfite-modification. The methylation sites of the PTEN gene promoter involved region sites MF 

(5′ – TTCGTTCGTCGTCGTCGTATTT – 3′), MR (5′ – GCCGCTTAACTCTAAACCGCAA – 

3′), UF (5′ – GTGTTGGTGGAGGTAGTTGTTT – 3′), and UR (5′ – 

ACCACTTAACTCTAAACCACAACCA – 3′). Genomic DNA was isolated and modified by 

bisulfite using an EpiTect Bisulfite kit (Qiagen, Valencia, CA). Then, the Epitect Methylight PCR 

kit (Cat. No. 59496, Qiagen, Valencia, CA) was employed for quantitative, real-time probe-based 

PCR analysis of methylation status. Methylated and un-methylated genomic regions can be 

amplified by PCR using each sequence-specific pair of primers.    

 

2.2.12 NNMT enzyme assay  

The NNMT enzyme activity was measured using S-adenosyl methionine (SAM) as the methyl 

group donor and nicotinamide as the substrate from Biovision (Milpitas, CA, USA) (Cat No. 

K822-100) according to the manufacturer’s instructions.  

 

2.2.13 5-Aza-2’-deoxycytidine treatment 

A stock solution of 10 mM 5-Aza-2’-deoxycytidine (5-Aza) obtained from Sigma was prepared in 

DMSO. H292-Gef, H1993-Gef, HCC-Gef and PC-9-Gef cells were treated for 24 h with 10 µM 

5-Aza, and total protein or RNA was extracted for western blotting or qRT-PCR, respectively.  

 

2.2.14 Colony formation assay  

Resistant NSCLC cells were plated in a 35-mm culture dish at a density of 100 cells/dish. Twenty-

four hours later, fresh medium containing NNMT siRNA or control siRNA was added to culture 

dishes. Forty-eight hours post-transfection with NNMT siRNA, the cells were washed with PBS 

or treated with gef for an additional 24 h and allowed to grow in plasmid-free medium for 14 days 

(37ºC, 100% humidity, 5% CO2 atmosphere). Cell colonies were fixed with 2% paraformaldehyde, 
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stained with crystal violet (0.5% w/v), and then counted visually or by using ImageJ software. The 

percentage of cells surviving the treatment relative to solvent-treatment controls was calculated.   

 

2.2.15 cDNA microarray expression analysis 

The cDNA array was continuously employed as described previously (Bae et al., 2016) to analyze 

and compare H292-Gef cells treated with YD (10 nM) and non-treated H292-Gef cells.  

 

2.2.16 In vivo tumor xenograft model 

All animal experiments and care were conducted in a manner that conformed to the Guidelines of 

the Institutional Animal Care and Use Committee at Seoul National University and were approved 

by the Korean Association of Laboratory Animal Care (Permission number: SNU-161117-1).  

For the nucleic acid in vivo study, miR-449a, control miRNA, siNNMT and control siRNA were 

purchased from Bioneer Corporation (Daejeon, Korea). These miRNAs and siRNAs were 

conjugated to in vivo-jetPEI transfection reagent (Polyplus-transfection Inc., New York, NY, USA) 

according to the manufacturer’s instructions. Male mice aged 4 – 6 weeks were purchased from 

the National Laboratory Animal Centre. These mice received 200 µl subcutaneous transplants that 

consisted of 1 × 107 cells of PC-9-Gef. On day 14 post-implantation, the mice were randomly 

divided into four groups (n = 5 per group): (1) Control miRNA + control siRNA, (2) control 

miRNA + siNNMT, (3) control siRNA + miR-449a, and (4) miR-449a + siNNMT treated with 

multipoint intratumoral injection (10 µg per 100 µl per tumor for siRNAs two times per week and 

20 µg per 100 µl per tumor for miRNAs three times per week) of these nucleic acids complexed 

with in vivo-jetPEI in 5% glucose for 3 weeks. After completion of the treatment over 1 additional 

week, the mice were sacrificed, and the mouse weight, tumor weight, number of nodules, and 

distribution of the tumors were recorded.    

H1993-Gef and PC9-Gef cells were injected subcutaneously into the flanks of the mice (1 × 107 

cells in 200 μL of medium), and tumors were allowed to grow. When the tumor volume reached 

approximately 400 mm3 (H1993-Gef) and 150 mm3 (PC9-Gef), the mice were randomized into 

vehicle control and treatment groups (n = 5). YD (1 mg/kg) or Gef (10 kg/mg) dissolved in a 

volume of 150 μL of vehicle solution (Tween 80-ethanol-H2O), 1:1:98) was administrated orally 

once a day for 22 days. The control group was treated with an equal volume of vehicle. The tumor 

volume was monitored two times per week for 22 days using calipers and estimated using the 
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following formula: tumor volume (mm3) = (width) × (length) × (high) × π/6. The body weight of 

each mouse was also monitored for toxicity.         

 

2.2.17 Immunohistochemistry of human cancer tissues  

The excised tumors were fixed in 4% paraformaldehyde (PFA) and embedded in paraffin. 

Sectioned slides of the embedded specimens were serially deparaffinized, and the samples were 

rehydrated and subjected to antigen retrieval. The slides were incubated overnight with the 

indicated antibody at 4ºC. After washing with PBS, the sections were incubated with HRP-

conjugated anti-rabbit IgG for 30 min, washed with PBS, and then detected using the LSABTM+ 

System-HRP kit from Dako (Glostrup, Denmark) and counterstained with hematoxylin and eosin 

(H&E). Finally, the stained sections were observed and photographed under an inverted phase-

contrast microscope.    

 

2.2.18 Ex vivo biochemical analysis of tumors  

A portion of frozen tumors excised from each nude mouse was thawed on ice and homogenized 

using a hand-held homogenizer in Complete Lysis Buffer (Active Motif, Carlsbad, CA, USA). 

Aliquots were stored at -80ºC, and the expression of protein, mRNA and miRNA levels of the 

tumor lysates were determined.  

 

2.2.19 Molecular docking analysis  

Molecular docking simulation was carried out using the SYBYL-X2.1.1 (Tripos Inc., St Louis, 

MO) with Surflex-Dock Geom mode. The chemical structure of yuanhuadine was prepared in a 

mol2 format, and the ligand was docked into chain A of the human nicotinamide N-

methyltransferase downloaded from the Protein Data Bank (pdb:3ROD). Staged minimization was 

performed using Powell’s method until the gradient converged to a value of 0.001 kcal/mol·Å. A 

MMFF94 force field was used with MMFF94 charges. Protomol was generated based on the 

location of the original ligands, S-adenosyl-L-homocysteine (SAH) and nicotinamide (NCA), with 

a threshold of 0.5 Å and bloat of 6 Å. The protein movement option was used to allow flexibility 

in the binding pocket of the protein. Docking performance was validated based on the docking 

scores, visual inspection, and the RMSD values of the re-docked poses compared with the original 

structure. Molecular interactions between the ligand and protein were further analyzed using the 
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Discovery studio 4.0 Visualizer (Biovia, San Diego, CA) or PyMOL-v1.0 (Schrödinger KK, 

Tokyo, Japan). 

 

2.2.20 Statistical analysis  

Data are expressed as means ± SD for the indicated number of independently performed 

experiments. Student’s t-test or one-way analysis of variance (ANOVA) followed by Newman-

Keuls multiple comparison test were used to examine between-group differences. Statistical 

significance was accepted at either * p < 0.05, ** p < 0.01, *** p < 0.001, ns: not significant. Data 

analyses were performed using Graphpad Prism (Version 6).  

 

2.3 Results  

2.3.1 The NNMT expression profile is inversely correlated to miR-449a expression in gef-

resistant NSCLC tissues and cell lines  

Previous findings suggest that the higher expression of NNMT in tumor tissues is associated with 

the lower overall survival rates in cancer patients. Therefore, there is an opposite correlation 

between the expression level of NNMT in tumor tissues and the duration of survival 

(http://kmplot.com/analysis/index.php?p=service&start=1). Using a cDNA microarray, we have 

also previously observed high expression of NNMT in EGFR-TKI-resistant cancer cells compared 

to their parental cells (Bae et al., 2016). These findings suggested that NNMT, one of the most 

over-expressed genes, might be considered a novel target gene in EGFR-TKI-resistant NSCLC 

cells. Consequently, we initially determined the expression level of NNMT in parental NSCLC 

cells, including H292 (EGFR wild-type), H1993 (MET amplification), HCC827 (EGFR mutation 

and MET amplification) and PC-9 (EGFR mutation), versus their EGFR-TKI-resistant NSCLC 

cells, including gefitinib (gef)- and erlotinib (erl)-acquired cells. We observed over-expression of 

NNMT mRNA in gef-resistant cells (H292-Gef, H1993-Gef and PC9-Gef) compared with their 

parental cells (Figure 4A). A similar phenomenon was also found in erl-resistant cells (H292-Erl, 

H1993-Erl, HCC827-Erl and PC9-Erl) (Figure 4B). To validate whether these findings might be 

associated with NNMT expression in EGFR-TKI-resistant tumors, the expression of NNMT in 

tumor tissues obtained from our previous in vivo studies was also investigated. Confirmation using 
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H292-Gef and PC9-Gef tumor tissues revealed that the levels of NNMT mRNA were also over-

expressed in gef-resistant tissues (Figure 4C). 

 

 

Figure 4: The expression of mRNA NNMT in gef-resistant NSCLC cell lines. (A & B) 

Characterization of the indicated parental or drug-resistant phenotype cell lines for NNMT 

expression at mRNA levels. (C) Characterization of the indicated parental or gef-resistant 

phenotype tissues for NNMT expression at the mRNA levels. Total RNA was isolated and 

analyzed by real-time PCR using NNMT-specific primers and normalized to β-actin expression.   
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Interestingly, we further observed that H1993 cells, which had the highest established gef and erl 

resistance at 10 μM drug, showed significant NNMT over-expression at both protein and mRNA 

levels in EGFR-TKI-resistant NSCLC cells compared with their parental cells.  

Similarly, NNMT protein expression was up-regulated in H292-Gef, H1993-Gef (Figure 5A), 

H1993-Erl, and HCC827-Erl cells (Figure 5B) and in H292-Gef tumor tissues (Figure 5C). 

Immunohistochemistry (IHC) analyses also illustrated a higher NNMT level in gef-resistant 

tumors (H292-Gef, H1993-Gef) than in their parental tumors (Figure 6). Collectively, these data 

indicated that the basal levels of NNMT expression in gef- or erl-resistant NSCLC cells were over-

expressed compared with their parental NSCLC cells.  
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Figure 5: The expression of NNMT protein in gef-resistant NSCLC cell lines. (A & B) 

Confirmation of NNMT protein over-expression in drug-resistant cancer cell lines. (C) 

Confirmation of NNMT protein over-expression in gef-resistant tissues. The expression of NNMT 

protein was investigated by western blotting using β-actin as the loading control. 
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Figure 6: Immunohistochemistry of NNMT in tumor tissue sections. Immunohistochemical 

analysis of NNMT was performed using anti-NNMT antibody in tumor tissue sections. 

 

 

 

 

 

 



28 

 

Recently, miRNAs have been implicated in a wide range of cellular processes, as well as the 

critical function of miRNAs in the drug resistance of tumor cells, as recently reviewed by our 

group (Bach et al., 2017a; Bach et al., 2018b). Among various miRNAs, we initially analyzed 

miR-449a which has recently been described to have an important role in resistance to sunitinib, 

an oral multi-targeted tyrosine kinase inhibitor (TKI) (Qu et al., 2016). In addition, miR-449a is 

down-regulated in NSCLC and suppresses cancer cell migration and invasion (Luo et al., 2013). 

Subsequently, we found that miR-449a was down-regulated in gef-resistant NSCLC cells 

compared to their parental cells in vitro (Figure 7A) and in vivo in tumor tissues (Figure 7B). 

Furthermore, we observed that miR-449a was also down-regulated in H292-Erl and H1993-Erl 

(Figure 7C). These findings suggested that the expression of NNMT was up-regulated but miR-

449a was down-regulated in EGFR-TKI-resistant NSCLC cells.   
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Figure 7. The expression of miR-449a in gef-resistant NSCLC tissues and cell lines. (A, B & 

C) Characterization of the indicated parental or drug-resistant phenotype cell lines (A & C) and 

tissues (B) for miR-449a expression. miR-449a levels were quantified by Taqman real-time PCR 

and normalized to RNU6B. Data are representative of three independent experiments. ns, not 

significant. *, P < 0.05; **, P < 0.01; ***, P < 0.005 by the t-test.    
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2.3.2 NNMT modulates gef-resistant NSCLC cells by interacting with miR-449a  

The effects of NNMT on proliferation and metastatic potential have been reported in cancer cells 

(Tang et al., 2011; Yu et al., 2015). To investigate whether abnormal over-expression of NNMT 

is associated with the survival of gef-resistant NSCLC cells subjected to gef resistance, NNMT 

small interfering RNA (siRNA) was transfected into human gef-resistant NSCLC cells to 

knockdown intracellular NNMT expression. We found that knockdown of NNMT by siRNA 

interference restored gef sensitivity to gef-resistant NSCLC cells (Figure 8 and Table 1). Even 

though at 48 h, post-siRNA transfection had seemly no significant effects on G0/G1 phase or G2/M 

in cell cycle analysis (Figure 9), the treatment of NNMT siRNA effectively suppressed colony 

formation and enhanced activity with co-treatment of gef in gef-resistant NSCLC cells (Figure 10).  
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Figure 8. Effects of NNMT in gef-resistant NSCLC cell growth. Gefitinib sensitivity of the 

indicated gef-resistant phenotype cell lines. Cells were transiently post-transfected with scramble 

siRNA or NNMT siRNA for 48 h and then incubated with the indicated concentrations of gef. Cell 

viability was assessed by the SRB assay. 
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Table 1: Effects of gefitinib on the cell proliferation of NSCLC cells. 

 

Cell line 

IC50 of Gefitinib (µM) 

siCTL siNNMT 

H292-Gef 7.6 0.5 

H1993-Gef 13.1 2.3 

HCC827-

Gef 
3.9 0.4 

PC-9-Gef 5.5 2.1 
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Figure 9. Cell cycle progression of gef-resistant phenotype cell lines. Cells were transiently transfected with either scramble siRNA 

or NNMT siRNA for 48 h. Transfected cells were subjected to FACS analysis. 
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Figure 10: Colony formation of gef-resistant phenotype cell lines. Cells were transiently post-

transfected with either scramble siRNA or NNMT siRNA for 48 h and then cultured with the 

indicated concentrations of gef and subjected to colony formations assays. 
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We further assessed the effects of miR-449a on cancer cell growth to determine whether miR-449a 

expression could alter gef sensitivity in resistant cells. When gef-resistant NSCLC cells were 

treated with exogenous miR-449a, the cellular level of miR-449a was significantly enhanced 

(Figure 11A). miR-449a-treated gef-resistant NSCLC cells were cultured in various concentrations 

of gefitinib (0.4 - 50 µM gef). As a result, miR-449a transduction significantly increased the gef 

sensitivity, with at least a 2-fold change in the IC50 for gef (Figure 11B & Table 2). These data 

indicated that the level of miR-449a expression affected the gef sensitivity in cancer cells. 
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Figure 11: Effects of miR-449a mimic on the miR-449a expression in gef-resistant cell lines. 

(A) The indicated gef-resistant cell lines were cultured in six-well plates and then transfected with 

NC miRNA or miR-449a for 48 h (50 pmole/well). The levels of miR-449a expression were 

determined by Taqman real-time PCR with specific primers for mature miR-449a. Samples were 

normalized to RNU6B. (B) Gefitinib sensitivity of the indicated gef-resistant phenotype cell lines. 

Cells were transiently post-transfected with NC miRNA or miR-449a for 48 h and then incubated 

with the indicated concentrations of gef. Cell viability was assessed by the SRB assay.   
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Table 2: Effects of gefitinib on the cell proliferation of resistance NSCLC cells. 

  

Cell line 

IC50 of gefitinib (µM) 

NC mimic 
miR-449a 

mimic 

H292-Gef 6.8 3.2 

H1993-Gef 14.3 2.1 

HCC827-

Gef 
2.7 0.3 

PC-9-Gef 2.8 0.4 
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To further investigate the possible pathological relevance of the relationship between miR-449a 

and NNMT in gef-resistant NSCLC cells, we next assumed that the over-expression of NNMT 

could alleviate the expression of miR-449a in gef-resistant NSCLC cells. Subsequently, bio-

informatics analysis (targetscan.org) led us to focus on NNMT as a possible predicted target of 

miR-449a via their potential bindings (Figure 12A). When we knocked down NNMT expression 

by its siRNA, the expression of miR-449a was up-regulated in gef-resistant NSCLC cells (Figure 

12B). Collectively, these data suggested that NNMT was critical for the suppression of miR-449a 

in gef-resistant NSCLC cells. Based on these findings, we sought to experimentally determine 

whether dual inhibition of NNMT by NNMT siRNA and miR-449a exhibited a synergistic 

antitumor efficacy. The combination of NNMT siRNA and miR-449a showed significantly 

different p values compared with each treatment of NNMT siRNA or miR-449a, particularly the 

combination index (CI) was 0.285 at Gef 10 µM (synergism), which led to a remarkable inhibition 

of cell proliferation in PC9-Gef cells (Figure 12C).  
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Figure 12: The potential interactions between NNMT and miR-449a. (A) Bioinformatics 

analysis. The possible binding sites between NNMT and hsa-miR-449a were determined using a 

bioinformatics tool (targetscan.com). (B) Effects of siNNMTs on miR-449a expression by 

transfection with siNNMTs (N(1): siNNMT #1; N(2): siNNMT #2; N(3): siNNMT #3). (C) Effects 

of siNNMT and/or miR-449a on cell proliferation by transfection with miR-449a and/or siNNMT 

in PC9-Gef cells. The combination effect was measured by calculating CI values.   
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Consequently, this combination was applied in additional functional studies. We found that in vivo, 

the miR-449a/siRNA NNMT (siNNMT) combination showed an enhanced antitumor activity 

compared with each treatment (Figure 13A). We next examined the effects of dual therapy on 

antitumor activity in in vivo models. Staining with Ki67, a biomarker of cell proliferation, also 

revealed that miR-449a or siNNMT suppressed the expression of Ki67 (Figure 13B). Taken 

together, the in vitro and in vivo data confirmed the therapeutic efficiency and antitumor activity 

of combined miRNA and siRNA therapy compared with the individual treatments in gef-resistant 

cells.    
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Figure 13: Effects of dual therapy on antitumor activity in in vivo models. (A) Effects of miR-

449a and/or siNNMT on tumor growth in PC9-Gef cells. (B) Immunohistochemistry of Ki-67 in 

tumor tissue sections.  
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2.3.3 Reversal of PTEN promoter methylation by miR-449a in gef-Resistant NSCLC cells  

PTEN plays an important role in cancer development and sensitivity to chemotherapy and loss or 

decreased expression of PTEN has been correlated to acquired resistance (Bach et al., 2017a; Sos 

et al., 2009; Yamasaki et al., 2007). While gef and erl, which target the EGFR, are approved for 

the treatment of patients with advanced NSCLC, PTEN loss is also associated with resistance to 

small molecule EGFR inhibitors including gef (Kokubo et al., 2005). A previous study reported 

that PTEN is down-regulated in PC9-Gef compared with parental PC9 cells (Yamamoto et al., 

2010). In the present study, we also confirmed and continuously investigated the expression of 

PTEN in four cell lines with two different levels of EGFR-TKI resistance, including gef and erl. 

PTEN loss was observed in all EGFR-TKI-resistant NSCLC cells by western blotting (Figure 14A) 

and confirmed by IHC analysis (Figure 14B).  
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Figure 14: The expression of PTEN in gef-resistant NSCLC cells. (A) Characterization of the 

indicated parental or drug-resistant phenotype cell lines for PTEN expression at protein levels. (B) 

Immunohistochemistry of PTEN in tumor tissue sections. Immunohistochemical analysis of PTEN 

was performed using anti-PTEN antibody in tumor tissue sections.   
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Alternations in DNA methylation have been common and extensively studied in many cancers 

(McCubrey et al., 2011). While Ulanovskaya et al found no significant NNMT-dependent changes 

in global cytosine, protein methylation was found to be markedly lower in cells with increased 

NNMT levels (Ulanovskaya et al., 2013). Subsequently, 5-Aza, a DNA methylation inhibitor, was 

employed to investigate its effect on PTEN and miR-449a. We found that 5-Aza suppressed the 

levels of NNMT protein expression (Figure 15A), while 5-Aza induced PTEN expression as 

reported previously (Maeda et al., 2015; Mao et al., 2013) and stimulated the levels of miR-449a 

(Figure 15B). These data suggested that PTEN and miR-449a loss might be closely related to DNA 

methylation in gef-resistant NSCLC cells. Therefore, we further investigated the effect of miR-

449a on PTEN promoter methylation, in which the promoter region contains the methylation site 

(Figure 15C, top panel) (Hino et al., 2009). The H292-Gef cells showed a significant down-

regulation of the expression level of miR-449a both in vitro and in vivo compared with the H292 

cells employed in this study. Using Epitect Methylight assays, we found that miR-449a suppressed 

PTEN methylation, with approximately 3-fold changes compared with the control (Figure 15C, 

bottom-right panel). Using methyl-specific PCR assays, we further confirmed that miR-449a 

induced PTEN un-methylation and suppressed PTEN methylation (Figure 15C, bottom-left panel). 

These results indicated that miR-449a transduction was associated with aberrant methylation of 

the PTEN promoter site in gef-resistant NSCLC cells. Western blot analysis also revealed that 

miR-449a over-expression increased PTEN expression (Figure 15D).  
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Figure 15: Effects of miR-449a on PTEN methylation and PTEN expression. (A & B) Effects 

of 5-Aza on the levels of NNMT and miR-449a expression. The drug-resistant cell lines were 

incubated in the presence or absence of 5-Aza (10 or 20 µM) for 24 h. (C) Reversal of PTEN 

promoter methylation by miR-449a in gef-resistant cells. Top, MSP analysis of the PTEN gene 

and map of the promoter region of the PTEN gene. Bottom, Methylation-specific PCR analysis of 

the PTEN gene in H292-Gef cells. Bottom-right, Cells were transfected with or without miR-449a 

(50 pmole/well) and furthered analyzed by using EpiTect Methylight PCR kit as described in 

Methods part. Bottom-left, Results of MSP analysis of PTEN gene in H292-Gef cells after post-

transfection with or without miR-449a mimic & miR-449a inhibitor (50 pmole/well). M and U 

represent PCR products of methylated and unmethylated alleles, respectively. (D) Effects of miR-

449a on the protein expression of PTEN. The gef-resistant cells were transfected with NC miR-

449a or miR-449a for 48 h. PTEN protein levels were determined from cell lysates by 

immunoblotting.  
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Activation of the PI3K/Akt pathway is reported to associate with drug resistance to 

chemotherapeutic drugs (Bach et al., 2017a; Bach and Lee, 2018). Therefore, targeting Akt might 

modulate the drug resistance in cancer cells (Chiarini et al., 2008; Tazzari et al., 2007; Tazzari et 

al., 2008). The PI3K/Akt pathway was also previously reported to participate in NNMT-dependent 

MMP2 activation and cellular invasion (Tang et al., 2011). Therefore, we further clarified the 

correlations between PTEN/PI3K/Akt and NNMT in gef-resistant NSCLC cells. Knockdown of 

PTEN (siPTEN) was found to increase the levels of p-Akt (Ser473) protein expression (Figure 16A). 

Employing LY294002, a PI3K inhibitor, suppression of NNMT was also observed in gef-resistant 

cells (Figure 16B). Next, we further elucidated the possible crosstalk between the miR-449a level 

and PI3K activity in gef-resistant NSCLC cells. We determined the levels of miR-449a in gef-

resistant NSCLC cells in the presence of LY294002 and found that miR-449a expression was 

increased by PI3K inhibition (Figure 16C).  
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Figure 16: The associations between miR-449a and PI3K/Akt pathway in gef-resistant 

NSCLC cells. (A) Effects of PTEN siRNA on the Akt pathway. The drug-resistant cell lines were 

incubated with scramble siRNA or PTEN siRNA for 48 h and then analyzed by western blotting. 

(B) Effects of PI3K inhibitor on the Akt pathway. Cells were incubated with PI3K inhibitor 

(LY294002, 20 µM) for 24 h and then analyzed by immunoblotting. (C) Effects of PI3K inhibitor 

on miR-449a. The gef-resistant cell lines were incubated with LY294002 for 24 h, and then the 

levels of miR-449a were determined using Taqman real-time PCR.  
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We also found that knockdown of NNMT expression by treatment with NNMT siRNA decreased 

the levels of active Akt in vitro (Figure 17A) and in vivo (Figure 17B). In contrast, transfection 

with NNMT plasmid up-regulated the levels of p-Akt in gef-resistant cells (Figure 17C). Taken 

together, these data raise the possibility that a positive feedback loop of miR-449a with NNMT 

and PI3K guarantees the sustained activation in the resistance of NSCLC cells, which is essential 

for the over-expression of NNMT. 
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Figure 17: The associations between NNMT and PI3K/Akt pathway in gef-resistant NSCLC 

cells. (A) Effects of NNMT siRNA on the Akt pathway. The gef-resistant cell lines were incubated 

with scramble siRNA or NNMT siRNA for 48 h, and then the indicated protein levels were further 

analyzed by immunoblotting. (B) Immunohistochemistry of p-Akt in tumor tissue sections. 

Immunohistochemical analysis of p-Akt was performed using anti-p-Akt antibody in tumor tissue 

sections with or without NNMT siRNA. (C) Effects of NNMT plasmid on the Akt pathway. 

NNMT plasmid was transfected to the indicated parental cells within 48 h, and then further 

immunoblotting was performed to detect protein expressions.   
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2.3.4 Yuanhuadine leads to reversal of miR-449a and NNMT expression in EGFR-TKI-

resistant NSCLC cells  

Based on the correlation between miR-449a and NNMT expression in resistant cancer cells, we 

assumed that an agent with the potential to reverse miR-449a and NNMT expression might be a 

drug candidate to overcome EGFR-TKI-resistant cancers. Natural products have emerged as an 

important source of agents in drug discovery and development (Bach et al., 2015; Bae et al., 2015; 

Kim et al., 2017; Um et al., 2016). Our previous study revealed that the expression of NNMT 

levels in H292-Gef was approximately 4.3-fold higher than that in H292 cells based on a cDNA 

array analysis (Bae et al., 2016). Therefore, to confirm our hypothesis and explore the potential to 

overcome the resistance by regulating the expression of NNMT and miR-449a, we applied 

yuanhuadine (YD), a natural product-derived antitumor agent that was shown to be more sensitive 

to lung cancer cells (Hong et al., 2011). As shown in Table 3, employing cDNA array analysis 

with using the standard 2-fold change in expression as our threshold criterion revealed that NNMT 

was one of the most over-expressed genes in H292-Gef cells compared with H292 cells, and YD 

(10 nM) effectively suppressed the expression of NNMT with a 2.5-fold change.  
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Table 3: Effects of Yuanhuadine (10 nM) and Gefitinib (50 nM) on Gene Expression in H292-Gef Cells (FC, fold change; R, 

H292-Gef; H, H292; YD, yuanhuadine; Gef, gefitinib; +, up-regulated; -, down-regulated).  

No. Accession 
FC (R CTL 

/H CTL) 

FC (R YD 

/R CTL) 

FC (R Gef 

/R CTL) 
Gene Symbol Description 

1 NM_006169.2 + 4.33 -2.55 - NNMT Nicotinamide N-methyltransferase 

2 NM_002543.3 + 3.79 -2.31 - OLR1 
Oxidized low density lipoprotein (lectin-like) 

receptor 1 

3 XM_034819.6 + 2.39 -2.1 - ZNF629 Zinc finger protein 629 

4 NM_000600.1 + 2.39 -3.3 - IL6 Interleukin 6 (interferon, beta 2) 

5 NM_016352.2 + 2.32 -3.41 - CPA4 Carboxypeptidase A4 

6 NM_001360.2 + 2.29 -2.34 - DHCR7 7-dehydrocholesterol reductase 

7 NM_003238.1 + 2.21 -2.1 - TGFB2 Transforming growth factor, beta 2 

8 NM_005585.3 + 2.07 -3.63 - SMAD6 SAMD family member 6 

1 NM_002575.1 -21.64 + 20.75 -2.69 SERPINB2 
Serpin peptidase inhibitor, clade B 

(ovalbumin), member 2 

2 NM_007036.3 -6.79 + 3.69 - ESM1 Endothelial cell-specific molecule 1 

3 NM_198129.1 -6.45 + 4.82 - LAMA3 Laminin, alpha 3 

4 NM_005554.3 -5.62 + 3.98 - KRT6A Keratin 6A 

5 NM_139314.1 -4.82 + 2.75 -3.28 ANGPLT4 Angiopoietin-like 4 

6 NM_005562.1 -4.32 + 3.41 - LAMC2 Laminin, gamma 2 
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7 NM_004029.2 -4.15 + 2.17 - IRF7 Interferon regulatory factor 7 

8 NM_000024.4 -4.08 + 2.5 - ADRB2 Adrenergic, beta-2 receptor 

9 NM_000240.2 -3.84 + 3.84 - MAOA Monoamine oxidase A 

10 NM_000963.1 -3.83 + 5.65 -3.01 PTGS2 Prostaglandin-endoperoxide synthase 2 

11 NM_006850.2 -3.76 + 15.87 -3.3 IL24 Interleukin 24 

12 NM_058172.3 -3.29 + 2.77 - ANTXR2 Anthrax toxin receptor 2 

14 NM_002658.2 -2.84 + 10.67 - PLAU Plasminogen activation urokinase 

15 NM_173343.1 -2.73 + 6.67 - IL1R2 Interleukin 1 receptor, type II 

16 NM_000584.2 -2.63 + 4.99 -3.84 IL8 Interleukin 8 

17 NM_031892.1 -2.62 + 2.34 - SH3KBP1 SH3-domain kinase binding protein 1 

18 NM_005555.3 -2.45 + 4.11 - KRT6B Keratin 6B 

19 NM_002203.3 -2.42 + 4.95 -2.07 ITGA2 Intergrin, alpha 2 

20 NM_005863.3 -2.35 + 2.52 - NET1 Neuroepithelial cell transforming 1 

21 NM_005318.2 -2.32 + 2.56 - H1F0 H1 histone family, member 0 

22 NM_002153.1 -2.26 + 6.99 - HSD17B2 Hydroxysteroid (17-beta) dehydrogenase 2 

23 NM_001109.3 -2.26 + 3.77 -2.63 ADAM8 ADAM metallopeptidase domain 8 

25 NM_000228.2 -2.21 + 2.17 - LAMB3 Laminin, beta 3 

26 NM_006238.3 -2.21 + 3.54 - PPARD 
Peroxisome proliferative activated receptor, 

delta 

27 NM_004431.2 -2.17 + 2.31 -2.07 EPHA2 EPH receptor A2 
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28 NM_004029.2 -2.07 + 2.17 - IRF7 Interferon regulatory factor 7 

29 NM_014631.2 -2.07 + 2.47 - SH3PXD2A SH3 and PX domains 2A 

30 NM_000611.4 -2.02 + 2.28 - CD59 
CD59 molecule, complement regulatory 

protein 

31 NM_006244.2 -2.01 + 2.51 - PPP2R5B 
Protein phosphatase 2, regulatory subunit B, 

beta isoform 
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A subsequent analysis also confirmed that treatment with YD suppressed NNMT expression in 

gef-resistant NSCLC cells. YD down-regulated the expression levels of NNMT protein, NNMT-

related protein (p-Akt, Ser473) and NNMT mRNA in a concentration-dependent manner (Figure 

18A & 18B). Interestingly, YD also effectively restored the decreased level of miR-449a in all 

gef-resistant cells in a concentration-dependent manner (Figure 18C). In addition, the anti-tumor 

activity of YD was evaluated in nude mouse xenograft models implanted with MET amplification 

(H1993-Gef) and EGFR mutation (PC9-Gef) cell lines. As depicted in Figure 19A & 19B, YD (1 

mg/kg) efficiently inhibited tumor growth in H1993-Gef and PC9-Gef cells and was superior to 

gef in H1993-Gef and PC9-Gef cells. Interestingly, we also found that the suppression of NNMT 

by YD was higher than gef both in vitro and in vivo (Figure 20A, left & right & 20B). IHC analysis 

confirmed that the expression of NNMT was suppressed in tumor tissues in the YD-treated groups 

(Figure 20C). In addition, YD was able to suppress NNMT mRNA expression in tumor tissues 

(Figure 20D) while concurrently inducing the levels of miR-449a expression (Figure 20E). Taken 

together, these findings were consistent with the changes in expression of miR-449a and NNMT 

in vitro, suggesting that both YD and miR-449a could regulate the expression of NNMT and indeed 

could be useful for the suppression of NNMT over-expression, which could lead to improved 

sensitivity of gef in gef-resistant cancer cells. 
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Figure 18. Effects of YD on miR-449a and NNMT over-expression in gef-resistant NSCLC 

cells. (A) Effects of YD on NNMT and the related protein expression. NNMT, p-Akt, Akt, and β-

actin protein levels in cell lysates were assayed by immunoblotting after 24 h of YD treatment. (B) 

Effects of YD on NNMT mRNA expression. NNMT mRNA expression was evaluated by real-

time PCR after 24 h of YD treatment. (C) Effects of YD on miR-449a expression. miR-449a levels 

were further analyzed using the Taqman PCR kit after 24 h of YD treatment.  
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Figure 19: Effects of YD on gef-resistant NSCLC in vivo models. (A) The indicated cells were 

implanted subcutaneously into the flanks of BALB/c nude mice. Dosing of YD (1 mg/kg body 

weight) or gef (10 mg/kg body weight) was initiated when the tumor volumes reached 

approximately 400 mm3 for H1993-Gef cells or 150 mm3 for PC9-Gef cells. YD and gef were 

administrated orally once daily for 21 days continuously. The tumor volumes were measured every 

4 days (n = 5 mice per group). The error bars represent the means ± SD. (B) H1993-Gef and PC9-

Gef tumors were excised from animals on day 21 after treatment, and tumor weights were 

calculated. 
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Figure 20: Effects of YD on gef-resistant NSCLC ex vivo analysis.  (A) Protein expression 

levels of NNMT. The proteins from cell lysates (Right panel) or small portions of tumors from 

each group were homogenized in Complete Lysis Buffer (Active Motif) (Left panel) for 

immunoblotting. β-actin was used as an internal standard. (B & C) Immunohistochemistry of 

NNMT in tumor tissue sections. Immunohistochemical analysis of NNMT was performed using 

anti-NNMT antibody in each of the indicated groups. (D & E) Relative expression of NNMT and 

miRNA-449a in tumor transcripts of the indicated xenograft tissues. The levels of NNMT (D) or 

miR-449a (E) expression were analyzed by real-time PCR or with the Taqman PCR kit using 

specific primers, respectively. 
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2.3.5 YD suppresses NNMT activity via the interacting pocket of the enzyme  

To date, there have been very few reports about NNMT inhibitors, especially from natural products. 

Herein, in an effort to identify the interactions between YD and NNMT, the ability of YD to inhibit 

NNMT enzyme activity was initially determined using a biochemical in vitro assay. The analysis 

revealed an inhibitory activity of the NNMT enzyme by YD with an IC50 of 0.4 µM. As a positive 

control, 1-MNA was used for in vitro NNMT inhibition (Figure 21A). To understand the potential 

interactions of YD in the binding site of NNMT, we used the published crystal structure of human 

NNMT complexed with SAH and NCA for the docking study (pdb:3ROD). Due to the low 

similarity between the original ligands (SAH and NCA) and YD, the majority of the interactions 

observed in the original pdb structure (Figure 21B) were changed. The structure of the NNMT-

YD complex with the highest docking score is shown in Figure 21C. YD, which possesses 10 

oxygen atoms including three hydroxyl groups, exhibits several hydrogen bonds and van der Waals 

interactions with NNMT in the binding site. Hydrogen bonds were observed between 1) the acetyl 

group of YD and the hydroxyl group of Tyr20, 2) the hydroxyl group of YD and the backbone 

amide of Tyr86 as well as the side chain of Asn90, 3) the primary alcohol of YD and the side chain 

amide of Gln89, 4) the oxygen atom of the dioxolane ring and the hydroxyl group of Tyr204. 

Among them, the interaction with Tyr20 was an important element for the reported ligand (SAH) 

(Peng et al., 2011). Residues with hydrophobic interactions are shown in Figure 21D. A portion of 

the clustered conserved aromatic residues (Phe15, Tyr20, Tyr86, and Tyr204) reported previously 

are shown in spheres (Peng et al., 2011). Tyr86, which interacted with the adenine ring in the 

original structure, displayed a pi-alkyl interaction with the alkyl side chain of YD. Tyr204 and 

Leu164, residues that form a sandwiched hydrophobic interaction for the nicotinamide ring, 

exhibited pi-alkyl and alkyl hydrophobic interactions with the propylene group of YD, respectively. 
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Figure 21. YD interacts with the binding site of NNMT. (A) In vitro activity of purified NNMT 

was assessed in the presence of increasing concentrations of YD. Data are reported as a percentage 

of NNMT activity with respect to the control. Histograms represent the mean ± SD of three 

independent experiments. (B) Binding site of hNNMT complexed with S-adenosyl-L-

homocysteine (SAH) and nicotinamide (NCA). C) Docked pose of YD with the highest binding 

score. Hydrogen bonds within the binding site are shown as yellow lines. D) Residues forming 

hydrophobic interactions with YD are shown as grey lines. Among them, previously reported 

conserved aromatic residues (Phe15, Tyr20, Tyr86, and Tyr204) are presented as spheres.     
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2.3.6 Discussion  

Clinically, advanced NSCLC patients who suffer EGFR-TKI resistance currently have limited 

therapeutic options. Improved detection methods for cancer diagnosis are crucial for early and 

reliable prognosis and treatment (Santarelli et al., 2011). Therefore, molecular profiling and gene 

expression analysis are considered useful tools for improving outcomes and minimizing side 

effects. We investigated the expression profiles of NNMT and miR-449a and their possible 

interactions both in vitro and in vivo in EGFR-TKI-resistant NSCLC cells. The association 

between miR-449a and c-MET expression has also been previously elicited in sunitinib-resistant 

renal cell carcinoma (Qu et al., 2016) and amplification of c-MET has been implicated in resistance 

to therapies targeting the EGFR (Zhang et al., 2010). In the present study, we observed that the 

NNMT protein and mRNA were over-expressed, while miR-449a was significantly down-

regulated in EGFR-TKI-resistant NSCLC cells compared with their parental cells, especially with 

H1993, a high-c-MET-expressing NSCLC cell line. Subsequently, further study about the 

plausible association between MET amplification and NNMT/miR-449a expression can be 

potentially needed. We further employed bioinformatics tools and found possible correlations 

between NNMT and miR-449a. Moreover, knockdown of NNMT induced the expression of miR-

449a in drug-resistant NSCLC cells. These findings suggested that the mechanism underlying the 

miR-449a down-regulation might be related to the up-regulated NNMT expression in resistant 

NSCLC cells. It is possible that NNMT-mediated down-regulation of miR-449a is impaired in 

drug-resistant cancer cells.  

The regulation of PTEN expression is a critical strategy for therapeutic sensitivity, and its 

dysregulation is often associated with cancer drug resistance. Our group has newly described a 

significant function of PTEN in regulating tumor progression (Bach et al., 2017a). Moreover, 

variation in NNMT enzyme activity could lead to toxicological and pharmacological consequences. 

In fact, methylation is a fundamental process in the biotransformation of many drugs and 

xenobiotic compounds, and NNMT, which catalyzes the N-methylation of pyridines that are 

structurally related to nicotinamide, has a primary role in detoxifying many xenobiotics 

(Ulanovskaya et al., 2013). Therefore, we employed 5-Aza, a methylation inhibitor, and found that 

it suppressed NNMT expression while inducing the expression of miR-449a in gef-resistant 

NSCLC cells. This finding led us to investigate the methylation status of the PTEN promoter in 

miR-449a-over-expression resistant NSCLC cells. The over-expression of miR-449a was able to 
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suppress the methylation intensity of the PTEN promoter and restore the expression of PTEN in 

EGFR-TKI-resistant NSCLC cells. This result suggests that miR-449a-dominated NNMT 

expression is crucial for PTEN expression in drug-resistant NSCLC cells. In addition, PTEN may 

also exert its role as a tumor suppressor by negatively regulating the PI3K/Akt pathway, which 

determines cell growth, survival and inhibition in both cancer and normal cells (Fry, 2001; 

Stambolic et al., 1998). Thereby, we further employed LY294002, a PI3K inhibitor, and found that 

PI3K suppression by LY294002 treatment suppressed NNMT expression and also restored the 

expression of miR-449a in gef-resistant NSCLC cells. These results imply that constitutive 

activation of the PI3K/Akt pathway is also involved in the control of miR-449a-mediated NNMT 

expression in the resistance of NSCLC cells. Hence, a positive feedback loop between the PTEN-

controlled PI3K/Akt pathway and miR-449a-mediated NNMT expression in drug resistance of 

NSCLC cells seems to be crucial for the enhanced cell proliferation and decreased gef sensitivity. 

Although the role of NNMT in drug resistance has been emerging, there are few reports of NNMT 

inhibitors in cancer cells. Employing cDNA analysis with YD and in vitro results, we found that 

the down-regulation of NNMT by YD enhanced the sensitivity of gef in gef-resistant cells. We 

also found that the expression of miR-449a could be significantly up-regulated by YD, suggesting 

that the growth of gef-resistant NSCLC cells could be reverted by treating EGFR-TKI-resistant 

NSCLC cells with YD. This significant point could be exploited for the future design of novel 

strategies for the prevention or tumor progression and/or treatment of lung cancer using the 

combination of YD and miR-449a. Although studies of the interactions between YD and NNMT 

are limited, we revealed interactions between the active sites of this enzyme with YD. Further 

analyses of NNMT and YD interactions will be essential to design and develop new NNMT 

inhibitors.  

In summary, we suggest that the over-expression of NNMT in gef-resistant cells is caused by the 

deregulation of its positive feedback loop between the PTEN/PI3K/Akt pathway and miR-449a 

and employing YD can overcome this resistance via modulation of NNMT and miR-449a in 

NSCLC (Figure 22). These findings indicate that targeting the NNMT over-expression mechanism 

might be a novel therapeutic strategy in EGFR-TKI-resistant NSCLC patients.  
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Figure 22: Scheme of the mechanism of action EGFR-TKI-resistant NSCLC cells by miR-

449a and NNMT.   
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[Chapter 3] BMP4 is associated with acquired drug 

resistance and regulation of fatty acid metabolism in 

EGFR-mutant non-small cell lung cancer cells 
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3.1 Introduction  

The rapid emergence of resistance to chemotherapy and molecular targeted therapies is currently 

considered a major reason for treatment failure in cancer patients (Diaz Jr et al., 2012; Engelman 

and Settleman, 2008; Holohan et al., 2013). Various molecular mechanisms that contribute to drug 

resistance have been investigated, including those that are both non-mutational (presumably 

epigenetic) and mutational (genetic). Somatic mutations in the epidermal growth factor receptor 

(EGFR) gene such as T790M mutation, deletion in exon 19 or wild-type EGFR amplification 

(Nakata and Gotoh, 2012) are highly correlated to favorable response to the EGFR tyrosine kinase 

inhibitor (EGFR-TKI), gefitinib (Sharma et al., 2007), a pioneer targeted drug that has been used 

as the first-line treatment for patients with EGFR mutations (Mok  et al., 2009). Targeting gene 

aberrances, such as EGFR mutations, has significantly enhanced the prognosis for advanced non-

small cell lung cancer (NSCLC) patients (Maemondo et al., 2010; Mok  et al., 2009). Therefore, 

EGFR mutational status has been considered a significant biomarker and rational target for 

chemotherapy in advanced NSCLC patients (Chan and Hughes, 2015; Gazdar, 2009; Sharma et 

al., 2007).    

Accumulating evidence also suggests that microRNAs (miRNAs) play a significant role in 

epigenetically modulating various phenotypic changes in cancer cells (Bach et al., 2017a; Bach 

and Lee, 2018; Bach et al., 2018b; Cho et al., 2017; Zhou et al., 2017). Indeed, miRNAs may affect 

genetic programs through post-transcriptional silencing of target genes, either by inhibiting the 

translation of target mRNAs or by promoting their degradation (Bartel, 2004, 2009). These actions 

may lead to the regulation of numerous aspects of cancer biology, including drug resistance, 

epithelial-to-mesenchymal transition and metastasis (Bach et al., 2018a; Bartel, 2004, 2009).  

Bone morphogenetic proteins (BMPs) are a family of signaling molecules that belong to the 

transforming growth factor-β (TGF-β) superfamily (Wang et al., 2014). Many processes, such as 

cell differentiation, early development and tumor growth are also dependent on BMP signaling 

(Bach et al., 2018b). Wang et al recently reported that activation of the BMP-BMPR pathway 

conferred resistance to EGFR-TKIs in lung cancer patients harboring EGFR mutations (Wang et 

al., 2015). We have also recently addressed the role of BMPs in cancer and have emphasized their 

function in association with miRNAs, drug resistance and mutations (Bach et al., 2018b). Recent 

studies have also suggested the possibility that small-molecule BMP4 antagonists, such as LDN-
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193189, were able to effectively inhibit the growth of lung cancer cells and chemotherapy-resistant 

cancer cells (Ali et al., 2015; Wang et al., 2015).    

In the present study, we established gefitinib-resistant NSCLC cells to investigate novel 

mechanisms of resistance to EGFR-TKI. In comparison with the gene expression pattern of 

parental NSCLC cells, acquired gefitinib-resistant cell lines displayed that BMP4 gene was up-

regulated in the gefitinib-resistant cell lines. We continuously attempted to elucidate the role of 

BMP4 in EGFR-TKI resistance in NSCLC cells and the dynamic interactions of BMP4 with the 

tumor microenvironment such as miRNA or fatty acids. These findings will highlight potential 

new strategies for the treatment of cancer patients, especially in cases of EGFR-TKI-resistant 

NSCLC by targeting BMP4.  
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3.2 Materials and Methods 

3.2.1 Cancer cell lines and reagents  

H1993 human lung carcinoma cells were obtained from the American Type Culture Collection 

(Manassas, VA, USA). Gefitinib-resistant cells were developed as previously described (Bae et 

al., 2015) and all cells were cultured as previously described (Bach et al., 2015; Bae et al., 2015). 

In brief, gefitinib (gef)-resistant H1993 and erlotinib (erl)-resistant H1993 cells were developed 

from the parental H1993 cells through continuous exposure to gradually increasing drug dosages 

up to 10 µM each of gef and erl. Subsequently, resistant H1993 cells were maintained in medium 

containing 10 µM of gef or erl. LDN-193189 was purchased from Selleckchem (Houston, TX, 

USA).    

 

3.2.2 Establishing stable cell lines  

Murine BMP4 shRNAs (EZWC0CL102, TF306390A, CCN 185819 – A; EZWB0CL101, 

TF306390B, CCN 185818 – B; EZWA0CL101, TF306390C, CCN 185817 – C; EZVZ0CL101, 

TF306390D, CCN 185816 – D) and control shRNA (TR30015, Lot #0116) were purchased from 

Origene (Rockville MD, USA) and introduced into the indicated cells by viral infection. Stable 

cell lines were established following greater than 2 weeks of antibiotic selection according to the 

manufacturer’s instructions.   

 

3.2.3 Microarray expression analysis 

3.2.3.1 RNA quality check  

RNA purity and integrity were evaluated using the ND-1000 Spectrophotometer (NanoDrop, 

Wilmington, USA) and the Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, USA).  

 

3.2.3.2 Affymetrix whole transcript expression arrays  

The Affymetrix Whole Transcript Expression array procedure was executed according to the 

manufacturer’s protocol (GeneChip Whole Transcript PLUS reagent Kit). cDNA was synthesized 

using the GeneChip WT (Whole Transcript) Amplification kit, as described by the manufacturer.  

The sense cDNA was then fragmented and biotin-labeled with TdT (terminal deoxynucleotidyl 

transferase) using the GeneChip WT Terminal labeling kit. 
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Approximately 5.5 μg of labeled DNA target was hybridized to the Affymetrix GeneChip Human 

2.0 ST Array for 16 h at 45°C. Hybridized arrays were washed and stained on a GeneChip Fluidics 

Station 450 and scanned on a GCS3000 Scanner (Affymetrix). Signal values were computed using 

the Affymetrix® GeneChip™ Command Console software. 

 

3.2.3.3 Raw data preparation and statistical analysis  

Raw data were extracted automatically as part of the Affymetrix data extraction protocol using the 

Affymetrix GeneChip® Command Console® Software (AGCC). After importing CEL files, the 

data were summarized and normalized using the robust multi-average (RMA) method within the 

Affymetrix® Expression Console™ Software (EC). We exported results with gene level RMA 

analysis and performed differentially-expressed gene (DEG) analysis. Fold changes were used to 

determine statistical significance of the expression data. For each DEG set, hierarchical cluster 

analysis was performed using complete linkage and Euclidean distance as measures of similarity. 

Gene-Enrichment and Functional Annotation analysis of the list of significant genes was 

performed using Gene Ontology (www.geneontology.org/) and KEGG (www.genome.jp/kegg/). 

All data analysis and visualization of differentially expressed genes was conducted using R 3.1.2 

(www.r-project.org). 

 

3.2.4 Xenograft studies  

All procedures involving animals (BALB/c nude mice, 4 – 6 weeks) were reviewed and approved 

by Seoul National University (permission number: SNU-161117-1).  

For tumorigenicity assays in nude mice, the indicated cells were subcutaneously injected into the 

right axilla of BALB/c nude mice (n = 5) in a total volume of 200 µL of culture medium (5 × 106 

cells). At 40 days (PC9-Gef) and 30 days (H1993-Gef) after inoculation, the mice were humanely 

killed and the tumors were excised and photographed.  

For drug response assays, the indicated cells (5 × 106 cells in 200 µL of medium) were injected 

subcutaneously into the flanks of nude mice and tumors were allowed to grow. When the tumor 

volume reached approximately 100 mm3 (PC9-Gef) or 160 mm3 (H1993-Gef), the mice were 

randomized into vehicle control and treatment groups (n = 5). Then, these mice were treated with 

vehicle or LDN-193189 (4 mg/kg for PC9-Gef, 5 mg/kg for H1993-Gef) for 3 weeks (5 days on, 

https://www.google.co.kr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwj-hs6cqY3MAhXhFqYKHbfTC6sQ7QgIGjAA&url=http%3A%2F%2Fwww.geneontology.org%2F&usg=AFQjCNGgUPK35YeNVlE9kQOZmAIf4NWpiw&sig2=YhCtmO-qfgISyXnXq5y-Lw&bvm=bv.119408272,d.dGo
file:///C:/Users/SKLEE/Desktop/논문%20발표%20관련/Heap%20논문/BMP4-SGER/www.genome.jp/kegg/)
http://www.r-project.org/
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2 days off). Tumor volumes were determined using digital calipers using the formula (L × W × M 

× π)/6 as described previously.(Bae et al., 2015) The body weight of each mouse was also 

monitored for toxicity analyses.    

 

3.2.5 Phospho-antibody array analysis  

Phospho-antibody array analysis was performed using the Proteome Profiler Kit ARY003B (R&D 

Systems) according to the manufacturer’s instructions. Briefly, cells were transfected with siBMP4 

for 48 h. Cells were then lysed and centrifuged at 14,000 × g for 10 minutes. 500 µg of cellular 

extract was then subjected to a protein array. Phosphorylated kinases were identified by incubating 

arrays with biotinylated detection antibodies, streptavidin-HRP antibodies, and chemiluminescent 

detection reagents.  

 

3.2.6 Metabolic analysis  

3.2.6.1 Metabolite extraction 

Metabolites were extracted from cells in 600 μL of a chilled methanol-chloroform mixture (2:1). 

This mixture was vortexed for 30 seconds, frozen on liquid nitrogen for 2 minutes and thawed at 

room temperature for 1.5 min; this process was repeated three times. Then, 200 μL chilled 

chloroform and 200 μL chilled water were added and the mixture was vigorously vortexed and 

then centrifuged at 15,000 x g for 20 min at 4°C. The upper aqueous phase and lower organic 

solvent phase were collected separately and dried with a centrifugal evaporator (Vision). The 

residuals were stored at -20°C until analysis. 

 

3.2.6.2 NMR experiments and statistical analysis  

For lipid analyses, the organic layer samples were dissolved in 500 μL deuterated chloroform and 

transferred into a 5 mm NMR tube. The HSQC NMR spectra were obtained using 800 MHz Bruker 

Avance spectrometers equipped with a cryogenic triple resonance probe at the College of 

Pharmacy, Seoul National University (Seoul, Korea). 2D HSQC spectra were processed and 

analyzed with NMRView J software (One Moon Scientific) to extract quantitative information as 

follows: The integrated peak area of the 2D HSQC spectra were normalized against the total peak 

area and then used for statistical analyses. Metabolite identification was performed using in-house 

and public databases (An et al., 2012).  
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3.2.7 Exosome isolation  

Total exosomes were extracted with Invitrogen Total Exosome Isolation Reagent (Catalog number: 

4478359, publication number: MAN0006949) from Invitrogen (Thermo Fisher Scientific), 

according to the manufacturer’s instructions.    

 

3.2.8 Immunoblot analysis 

Western blot analysis was performed as described previously, using equal amounts of protein from 

each cell lysate (Bach et al., 2017b; Bach et al., 2015; Kim et al., 2017; Um et al., 2016). The 

following antibodies were used: anti-BMP4 (ab39973, Abcam, UK); anti-p53 (DO-1) (sc-126), 

anti-β-actin (C4) (sc-47778), (Santa Cruz Biotechnology, Santa Cruz, CA, USA); anti-p-Smad1/5 

(Ser463/465) (#9516), anti-p-p53 (Ser15) (#9284) (Cell Signaling Technology, Danvers, MA, 

USA), anti-ACSL4 (Invitrogen, CA, USA) (PA5-27137).  

 

3.2.9 Sulforhodamine B assay (SRB)  

PC9-Gef cells and H1993-Gef cells were post-transfected with control or BMP4 siRNA for 48 h, 

then the indicated cells (1 × 104 cells/mL) were seeded in 96-well plates with the indicated 

concentrations of gefitinib and further analyzed as previously described (Bach et al., 2015). 

Similarly, PC9-Gef cells were also post-transfected with miRNA mimic or miR-139-5p for 48 h, 

and then the transfected cells were further analyzed as previously described (Bach et al., 2015). 

 

3.2.10 Combinatorial drug analysis  

The indicated cells were plated in 96-well culture plates and then exposed to various concentrations 

of LDN-193189 and YD (10 nM) at a 1:1 ratio. After 48 h of incubation, cell proliferation was 

evaluated using the SRB assay, as previously described (Bach et al., 2015).  

 

3.2.11 Real-time polymerase chain reaction (PCR)  

Total cell or tumor tissue RNA was extracted with TRI reagent (Invitrogen, Grand Island, NY, 

USA), and then RT-PCR analysis was carried out as described previously.(Bach et al., 2017b; 

Bach et al., 2015) Gene-specific primers for real-time PCR were synthesized by Bioneer 

Corporation (Daejeon, Korea); human ACSL4 sense: 5’-TTCATCTCTTGGACTTTGCTCA-3’; 
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antisense: 5’-TGTACTGTACTGAAGCCCACACTT-3’, human BMP4 sense: 

GGGATGTTCTCCAGATGTTCTT; antisense: TCCACAGCACTGGTCTTGAG. 

 

3.2.12 Transfection of small interfering RNAs and microRNAs 

The siRNAs targeting BMP4 (siBMP4-1: 1012726, siBMP4-2: 1012728, siBMP4-3: 1012733) 

and ACSL4 (siACSL4-1: 1001674, siACSL4-2: 1001681, siACSL4-3: 1001676), as well as the 

negative control siRNA (catalog number: SN-1002), miR-139-5p mimic (mature sequence 5’-

UCUACAGUGCACGUGUCUCCAGU-3’), and miRNA mimic negative control (catalog number: 

SMC-2002) were synthesized by Bioneer Corporation (Daejeon, Korea) and were transfected into 

the cell lines by electroporation using Lipofectamine RNAiMAX (Invitrogen, CA, USA) 

according to the manufacturer’s recommendations. The cells were post-transfected within the 

indicated times and harvested for further analysis.    

 

3.2.13 Colony formation assay  

The indicated cells were seeded in 24-well plates at a density of 200 cells per well. Following an 

overnight incubation of seeded plates, the indicated cells were transfected with the indicated 

siRNA or siRNA control for 48 h and were then further analyzed by colony formation assay as 

described previously (Bach et al., 2018a).  

 

3.2.14 Cell migration and invasion assays  

Cell invasion assays were performed in 24-well Transwell plates with polycarbonate (PVDF) 

filters (8 m pore size, Corning, USA), while changes in cell migration were analyzed using 

Transwell assays without the incorporation of Matrigel. The indicated cells were post-transfected 

with siBMP4 or siRNA control, and then further analyzed using cell migration and invasion assays 

as described previously (Bach et al., 2018a).  

 

3.2.15 Taqman microRNA assay  

To determine the expression of miRNAs in human cancer cells, we used the TaqMan® MiRNA 

Assay kit (Applied Biosystems) (Cat. No. 4427975) according to the manufacturer’s protocol. 

Mature miR-139-5p sequence:  UCUACAGUGCACGUGUCUCCAG (Catalog number: 4427975, 

assay ID: 002289, assay type: TaqmanTM microRNA assay).  
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Mature miR-31-5p sequence: AGGCAAGAUGCUGGCAUAGCU (Catalog number: 4427975, 

assay ID: 002279, assay type: TaqmanTM microRNA assay). All reactions were performed in 

triplicate.  

 

3.2.16 Ex vivo biochemical analysis of tumors 

A portion of the frozen tumor excised from each nude mouse was thawed on ice and homogenized 

using a hand-held homogenizer in Complete Lysis Buffer (Active Motif, Carlsbad, CA, USA) as 

described previously (Bach et al., 2018a). The protein concentrations of the tumor lysates were 

calculated and aliquots were stored at ‒80 ˚C. 

 

3.2.17 Immunohistochemistry  

Immunohistochemical analysis of tumors was carried out as described previously, using the 

indicated antibodies (Bach et al., 2018a).  

 

3.2.18 Ribonucleoprotein immunoprecipitation (RIP) assay   

The RIP-Assay kit for miRNA (MBL) was employed to confirm between miR-139-5p and BMP4 

interaction following the manufacturer’s instructions. Briefly, fresh cellular extracts from PC9-

Gef cells or H1993-Gef cells (106) were co-immunoprecipitated with 20 µg of RIP-certified anti-

EIF2C2/AGO2 mouse monoclonal antibody (MBL) overnight at 4 ˚C, one of the RISC protein 

components, previously conjugated with Sepharose Protein G beads (Amersham Biosciences, GE 

Healthcare). Rabbit IgG was used as negative control. BMP4 and miR-139-5p expression levels 

were evaluated after total RNA isolation from antibody-immobilized Protein G agarose beads-

RNP complexes by real-time PCR (as described in the Materials and Methods Section). Data were 

normalized to control samples from three independent experiments.  

 

3.2.19 Statistical analysis  

The data are presented as the mean ± SD for the indicated number of independently-performed 

experiments. Statistical significance (p < 0.05) was assessed using Student’s t-test. All statistical 

tests were two-sided.   
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3.3. Results  

3.3.1 miR-139-5p is a novel biomarker of EGFR-TKI resistance in EGFR-mutant NSCLC 

cells  

To investigate whether miRNAs are required to establish or maintain gefitinib (gef)-resistance, we 

employed a miRNA array in a primary screen of EGFR mutant NSCLC cells (PC9 cells and PC9-

Gef cells). Within this array, the expression of miR-139-5p, a tumor suppressor (Zhang et al., 

2014b) and a modulator of chemotherapeutic sensitivity of cancer cells (Li et al., 2016), was 

observed to be the most significantly suppressed transcript in PC9-Gef cells compared to the 

parental PC9 cells (Figure 23). In addition, miR-139-5p was previously reported to be able to 

inhibit cell proliferation by targeting insulin-like growth factor 1 receptor (IGF1R) (Xu et al., 2015) 

or c-Met (Sun et al., 2015b) in NSCLC cells. Therefore, we attempted to further elucidate the role 

of miR-139-5p in EGFR-TKI resistance, as its function in tumorigenesis is currently unclear.  
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Figure 23: Heat-map representing changes in expression of top up-regulated and down-

regulated miRNAs in PC9-Gef cells compared to PC9 cells. Heat-map showing relative 

expression between PC9 and PC9-Gef cells groups. Rows represent miRNAs and columns 

represent samples. Yellow blocks represent high expression and blue blocks low expression.   
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A Taqman assay confirmed that miR-139-5p was down-regulated in PC9-Gef cells in both in vitro 

(Figure 24A, left panel) and in tumor tissues in vivo (Figure 24A, right panel). In our previous 

review, we reported a significant relationship between exosomes and miRNAs in the drug 

resistance of cancer cells (Bach et al., 2017a). In the present study, we observed that the expression 

of exosomal miR-139-5p is also down-regulated in PC9-Gef cells compared to PC9 cells (Figure 

24B). Interestingly, the expression of miR-139-5p is similarly down-regulated in other EGFR-

TKI-resistant NSCLC cells, including HCC827-Gef cells (EGFR mutation) versus HCC827 cells 

(EGFR mutation) (Figure 24C, left panel), HCC827-Erl cells versus HCC827 cells (Figure 24C, 

right panel), H1993-Gef cells (EGFR wild-type) versus H1993 cells (EGFR wild-type) (Figure 

24D, left panel), H1993-Erl cells versus H1993 cells (Figure 24D, right panel) and H1993-Gef 

tumor tissues versus H1993 tumor tissues (Figure 24E).  
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Figure 24. The expression of miR-139-5p in PC9-Gef compared to PC9 cells. (A) 

Characterization of PC9 cells or PC9-Gef cells (left panel) and tissues (right panel) for miR-139-

5p expression. miR-139-5p levels were quantified by Taqman assay and normalized to U6 snRNA 

levels. (B) Characterization of total exosome isolation from PC9 cells and PC9-Gef cells for miR-

139-5p. miR-139-5p levels were quantified by Taqman assay as described in Materials and 

Methods. (C, D, E) Characterization of indicated cells (C, D) and tissues (E) for miR-139-5p 

expression. miR-139-5p levels were quantified by Taqman assay as described in Materials and 

Methods.   
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To further identify and validate miRNAs that are specifically affected by yuanhuadine (YD), an 

antitumor agent (Bach et al., 2018a; Bae et al., 2015) we performed a miRNA array with PC9-Gef 

cells in the presence or absence of a 24 h YD treatment. Interestingly, we found that miR-139-5p 

was also up-regulated by YD in PC9-Gef cells (Figure 25). Therefore, miR-139-5p which was 

mostly down-regulated in gef-resistant cell lines can be a novel biomarker in drug resistance cells 

and thereby primarily chose miR-139-5p as a promising candidate biomarker compared to the 

miR-4485.  
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Figure 25: Heat-map showing changes in expression of top up-regulated and down-regulated 

miRNAs in PC9-Gef cells treated with control or YD (10 nM) for 24 h. Heat-map showing 

relative expression between the indicated groups. PC9-Gef cells were treated for 24 h with 10 nM 

YD or vehicle control. Rows represent miRNAs and columns represent samples. Yellow blocks 

represent high expression and blue blocks low expression relative to control cells. 
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Subsequently, we further confirmed the effects of YD on miR-139-5p and observed that YD is 

able to enhance the expression of miR-139-5p not only in PC9-Gef (Figure 26A, left panel) and 

PC9-Erl (Figure 26A, right panel) cells but also in other drug resistant NSCLC cells, including 

HCC827-Gef (Figure 26B, left panel), HCC827-Erl (Figure 26B, right panel), H1993-Gef (Figure 

26C, left panel), H1993-Erl (Figure 26C, right panel), and H1993-Gef tissues in vivo (Figure 26D). 

Taken together, these findings indicated that miR-139-5p might be considered a novel biomarker 

associated with EGFR-TKI resistance in NSCLC cells. In addition, YD, an antitumor agent, could 

effectively modulate the expression of the tumor suppressor miR-139-5p in NSCLC cells with 

acquired resistance to EGFR-TKIs.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



79 

 

 

Figure 26. Effects of YD on miR-139-5p expression in gef-resistant NSCLC cells. (A, B & C) 

The indicated cells were treated with YD for 24 h, and then miR-139-5p levels were analyzed by 

Taqman assay as described in Materials and Methods. (D) Relative expression of miR-139-5p in 

the indicated xenografts. The levels of miR-139-5p were analyzed by Taqman assay as described 

in Materials and Methods. Each assay was performed in triplicate and the expression of miR-139-

5p was normalized to snRNA RNU6B.  
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3.3.2 BMP4 is a candidate biomarker in EGFR-TKI-resistant NSCLC cells  

To identify the candidate gene markers associated with acquired resistance to EGFR-TKIs in 

EGFR-mutant NSCLC cells, we initially performed cDNA arrays in two different groups, as 

depicted in Figure 27. BMP4 was observed to be one of the most overexpressed genes in PC9-Gef 

cells compared to PC9 cells. Furthermore, BMP4 was effectively suppressed by YD (Figure 27, 

left panel) and miR-139-5p (Figure 27, right panel) in PC9-Gef cells (Table 1). We further 

confirmed that BMP4 was up-regulated in PC9-Gef cells compared to parental cells both in vitro 

(Figure 28A) and in tumor tissues in vivo (Figure 28B) at both the protein (upper panel) and mRNA 

levels (lower panel). Interestingly, we also observed that BMP4 was overexpressed in H1993-Gef 

(Figure 28C, left panel) and H1993-Erl cells (Figure 28C, right panel) compared to their parental 

cells.   
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Figure 27. BMP4 is identified by combining target arrays. Heat-map showing relative 

expression among all groups. Left panel, PC9-Gef cells were treated for 24 h with 10 nM YD or 

vehicle control. Right panel, PC9-Gef cells were transfected with miR-139-5p or miRNA mimic 

for 48 h. Rows represent genes and columns represent samples. Yellow blocks represent high 

expression and blue blocks low expression relative to control cells. 
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Figure 28: Characterization of indicated parental or drug-resistant cell lines and tissues for 

BMP4 expression at both the protein and mRNA levels. (A) PC9-Gef cells compared to PC9 

cells in vitro. (B) PC9-Gef cells compared to PC9 cells in vivo. (C) H1993-Gef cells compared to 

H1993 cells in vitro (left panel) and in vivo (right panel).  
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Next, we transfected miR-139-5p into the resistant cells and observed the effects of miR-139-5p 

and/or YD on the expression of BMP4. When PC9-Gef, HCC827-Gef or H1993-Gef cells were 

transduced with exogenous miR-139-5p, the cellular level of miR-139-5p was significantly 

enhanced in these indicated cells (Figure 29A). As shown in Figure 29B, transfection with miR-

139-5p effectively suppressed the expression of BMP4 and co-treatment with YD enhanced this 

suppression. In addition, to determine whether miR-139-5p binds directly to BMP4 mRNA, we 

performed ribonucleoprotein immunoprecipitation assay (RIP assay) to pull down miRNAs 

associated with RNA-induced silencing complex (RISC). An anti-AGO2 antibody was used to 

isolate miRNAs and mRNAs that were incorporated in RISC. In H1993-Gef cells that were stably 

over-expression miR-139-5p, BMP4 mRNA was enriched in RISC as compared with the IgG 

control (Figure 30A). Anti-AGO-2 antibody also significantly enriched miR-139-5p as detected 

by Taqman PCR, compared with NC mimic in PC9-Gef and H1993-Gef cells (Figure 30B), 

indicating that miR-139-5p directly interacts with BMP4 mRNA. The expression of BMP4 was 

also effectively suppressed by YD in in vivo tumor tissues analyzed by real-time PCR (Figure 31A, 

upper panel), immunoblotting (Figure 31A, lower panel) and immunohistochemistry (IHC) 

(Figure 31B). Taken together, these data suggest that BMP4 is a novel marker associated with 

acquired EGFR-TKI resistance in EGFR-mutant NSCLC cells and that BMP4 expression can be 

effectively suppressed by miR-139-5p and/or YD treatment in order to overcome resistance in 

these cells.    
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Figure 29: Effects of miR-139-5p and YD on BMP4 in gef-resistant NSCLC cells. (A) Effects 

of miR-139-5p mimic on miR-139-5p expression in the indicated gef-resistant cell lines. The 

indicated gef-resistant cell lines were cultured in 6-well plates and then transfected with negative 

control mimic or miR-139-5p for 48 h (50 pmole/well). The expression levels of miR-139-5p were 

determined by Taqman assay with specific primers for mature miR-139-5p. Expression levels in 

each sample were normalized to levels of U6 snRNA. (B) The indicated cells were post-transfected 

with miR-139-5p for 24 h. Then, the indicated cells were further treated with YD (10 nM) for 24 

h. The cell lysates were subsequently analyzed by real-time PCR and immunoblotting, as described 

in Materials and Methods.  
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Figure 30: RIP assay of miR-139-5p interaction with BMP4 mRNA. Co-immunoprecipitated 

BMP4 mRNA (A) and miR-139-5p (B) by anti-AGO-2 RIP are shown. The data were normalized 

to β–actin or U6 snRNA, respectively. NC, negative control.  
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Figure 31: Effects of YD on BMP4 ex vivo models.  (A) Relative expression of BMP4 in the 

indicated xenograft tumors. The levels of BMP4 were analyzed by real-time PCR (upper panel) or 

immunoblotting (lower panel), as described in Materials and Methods. (B) Immunohistochemical 

analysis for BMP4 in indicated tumor tissue sections.  
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3.3.3 BMP4 affects the growth of EGFR-TKI-resistant NSCLC cells 

The critical function of BMPs in cancer is still unclear, as discussed in a recent review by our 

group (Bach et al., 2018b). However, in human NSCLC, blockage of BMP signaling is considered 

an effective therapeutic approach for lung cancer patients (Hao et al., 2014). Kim et al recently 

reported that BMP4 depletion might suppress tumorigenesis and metastasis in lung 

adenocarcinoma cells (Kim et al., 2015). Furthermore, the growth and metastasis of lung 

adenocarcinoma was potentiated by BMP4-mediated immunosuppression (Chen et al., 2016). 

Therefore, we determined whether the knockdown of BMP4 by siRNA affects the growth of the 

EGFR-TKI-resistant NSCLC cells. We first measured the knockdown efficiency of various 

siBMP4s and selected specific siRNAs for further study in the resistant cells (Figure 32A and 32B). 

As depicted in Figure 32C, knockdown of BMP4 enhanced the growth-inhibitory activity of 

gefitinib in PC9-Gef and H1993-Gef cells (Figure 32C). In addition, the knockdown of BMP4 also 

significantly suppressed colony formation in PC9-Gef and H1993-Gef cells (Figure 33A). 

Similarly, knockdown of BMP4 also inhibited cell invasion (Figure 33B) and migration (Figure 

33C) in PC9-Gef cells.  
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Figure 32. Effects of BMP4 on the growth of EGFR-TKI-resistant NSCLC cells in vitro. (A 

& B) Confirmation of BMP4 knockdown efficiency at the mRNA (upper panels) and protein levels 

(lower panels) in PC9-Gef (A) and H1993-Gef (B) cells. (C) Cells were transiently post-

transfected with control or BMP4 #2 siRNA for 48 h, and then incubated with the indicated 

concentrations of gef. Cell viability was further assessed by SRB assay as described in Materials 

and Methods. 
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Figure 33. Effects of BMP4 on colony, migration and invasion of EGFR-TKI-resistant 

NSCLC cells. (A) The indicated cells were transiently post-transfected with either scramble 

siRNA or BMP4 #2 siRNA for 48 h, then cultured for colony formation assays as described in 

Materials and Methods. (B & C) PC9-Gef cells were transiently post-transfected with either 

scramble siRNA or BMP4 #2 siRNA for 48 h, then cultured for invasion and migration assays as 

described in Materials and Methods. 
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The in vivo effects of BMP4 on tumor growth were subsequently investigated in BALB/c nude 

mouse xenograft models implanted with gef-resistant NSCLC cells. The gef-resistant cells were 

initially established as stable BMP4-knockout cells. As shown in Figures 34A and 34B, shBMP4-

A and shBMP4-D were the most efficient in knocking down BMP4 expression in PC9-Gef and 

H1993-Gef cells compared to shBMP4-B and shBMP4-C. Mice were then subcutaneously injected 

in the right axilla with empty vector-transfected PC9-Gef cells and H1993-Gef cells, or stable 

BMP4-A or BMP4-D knockout PC9-Gef and H1993-Gef cells. At 40 days (PC9-Gef) and 30 days 

(H1993-Gef) after inoculation, the mice were sacrificed, and the tumors in each mouse were 

excised and photographed. As shown in Figures 35A and 35B, the tumors in the stable BMP4 

knockout group were smaller than those in the vector-treated groups, demonstrating that BMP4 is 

able to enhance the growth of gef-resistant NSCLC cells.  
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Figure 34: Establishing stable knock-down BMP4 cell lines. (A & B) Confirmation of BMP4 

knockdown efficiency by shRNA at both the mRNA (A) and protein (B) levels in stable knockout 

PC9-Gef and H1993-Gef cells as described in Materials and Methods.  
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Figure 35: Effects of BMP4 on the growth of gef-resistant NSCLC cells in vivo models. (A & 

B) Tumor-forming ability of BMP4-silenced gef-resistant NSCLC cells. BALB/c nude mice 

received subcutaneous transplants of PC9-Gef-sh control (n = 5) and PC9-Gef-shBMP4 (shA or 

shD) (n = 5) cells or H1993-Gef-sh control (n = 5) and H1993-Gef-shBMP4 (shA or shD) (n = 5) 

cells. (A) Tumor volumes at the indicated time points. (B) Tumor weights (upper panels) and 

representative photographs 40 days (PC9-Gef) and 30 days (H1993-Gef) after injection (lower 

panels).   
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3.3.4 BMP4 affects cancer cell metabolism via modulation of ACSL4 and p53   

To further investigate the downstream targets of BMP4 and its functional activity in cancer cells, 

a cDNA microarray was performed on BMP4-depleted EGFR-TKI-resistant NSCLC cells. Genes 

associated with cell metabolism were the genes most affected by BMP4 depletion (Figure 36). 

Among these genes, Acyl-CoA synthetase long-chain family member 4 (ACSL4) was highly 

suppressed in PC9-Gef cells (Figure 37A). Previous studies suggested that ACSL enzymatic 

activity plays a significant role in the maintenance of mutant lung cancer; furthermore, fatty acid 

oxidation mediated by ACSL enzymes is required for mutant lung tumorigenesis (Padanad et al., 

2016; Phan et al., 2017). In addition, BMP4 depletion suppresses ACSL4 expression at both the 

mRNA (Figure 37B, upper panels) and protein levels (Figure 37C, lower panels). However, 

ACSL4 knockdown did not affect BMP4 expression at both the mRNA (Figure 38, upper panels) 

and protein levels (Figure 38, lower panels). These data indicate that ACSL4 seems to be one of 

downstream target proteins mediated by BMP4.  
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Figure 36. Effects of BMP4 on top 20 terms in enrichment. Heat-map showing and comparing 

top enriched terms. Enrichment test based on the Gene Ontology (GO, http://geneontology.org/) 

database was conducted using the significant gene list. Significant enrichments are displayed in 

blue (p-value = 0.0001). 
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Figure 37: Effects of BMP4 on ACSL4 in gef-resistant NSCLC cells. (A) Heat-map 

representing changes in expression of top up-regulated and down-regulated genes in PC9-Gef cells 

transfected with control or BMP4 #2 siRNA. (B) PC9-Gef and H1993-Gef cells were transfected 

with control or BMP4 siRNA for 48 h, then cell lysates were subjected to real-time PCR (top 

panels) or immunoblotting (bottom panels). 
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Figure 38: Effects of ACSL4 on BMP4 in gef-resistant NSCLC cells. PC9-Gef and H1993-Gef 

cells were transfected with control or ACSL4 siRNA for 48 h, then cell lysates were subjected to 

real-time PCR (top panels) or immunoblotting (bottom panels). 
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Interestingly, ACSL4 is considered an important enzyme in energy metabolism (Maloberti et al., 

2010; Miyares et al., 2013; Sanchez-Martinez et al., 2015) and BMP4 is also associated with 

oxidative metabolism in cells (Modica and Wolfrum, 2017; Qian et al., 2013; Tang et al., 2016), 

as depicted in Figure 39A. Therefore, we determined whether the effects of BMP4 on the 

production of main energy metabolites were catalyzed by ACSL4. We found that BMP4 depletion 

suppressed the enzymatic activity of ACSL4 and thus restored metabolites, including fatty acids 

(-CH3), triglycerides and cholesterol esters, in the resistant cells (Figure 39B). We also found that 

BMP4 depletion stimulated p-p53 expression, as shown by phosphor-kinase array (Figure 39C). 

This up-regulation of p-p53 (Ser15) was confirmed by Western blot analysis (Figure 39D) in PC9-

Gef cells. Recent findings suggest that the tumor suppressor p53 is also related to the regulation 

of lipid metabolism, including enhancing fatty acid oxidation and suppressing fatty acid synthesis 

(Liang et al., 2013; Liu et al., 2015). Therefore, the activation of p53 expression by BMP4 

depletion might affect lipid metabolism catalyzed by ACSL4. Taken together, BMP4 seems to be 

associated with cancer cell metabolism through the regulation of ACSL4 and the tumor suppressor 

p53.    
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Figure 39: Effects of BMP4 on fatty acid metabolism in gef-resistant NSCLC cells. (A) 

Schematic diagram illustrating the proposed BMP4 pathway modulating energy metabolism 

through ACSL4 and triglycerides. (B) PC9-Gef and H1993-Gef cells were transfected with control 

and BMP4 #2 siRNA for 48 h, and then cell lysates were further processed for metabolic analyses 

as described in Materials and Methods. (C) PC9-Gef cells were transfected with control or siBMP4 

#2 siRNA for 48 h, and cell lysates were subjected to the phosphor-kinase array. p-p53 (Ser15) 

expression levels are indicated. (D) Indicated cells were transfected with either siBMP4 #2 or si 

CTL for 48 h, and then lysates were analyzed for p-p53 and total p53 by immunoblotting.  
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3.3.5 Suppression of BMP signaling inhibits the growth of EGFR-TKI-resistant NSCLC cells 

Fotinos et al recently reported that the suppression of BMP signaling is a valid therapeutic strategy 

in lung cancer (Fotinos et al., 2014) and that the dorsomorphin derivative LDN-193189, a BMP 

type I receptor inhibitor, had significant growth-inhibitory activity against NSCLC cells compared 

to non-transformed cells (Fotinos et al., 2014). Our findings in this study confirm that BMP4 is 

one of the principal paracrine factors that stimulate the growth of drug-resistant cancer cells. To 

further confirm whether knockdown of the BMP-BMPR pathway may suppress the growth of 

drug-resistant cancer cells, the efficacy of LDN-193189 was investigated in tumor growth. LDN-

193189 effectively inhibits the growth of cancer cells (Figure 40A); this effect was in part 

associated with the suppression of Smad1/5 activation (p-Smad1/5) in the resistant cancer cells 

(Figure 40B). Interestingly, we observed that LDN-193189 might stimulate the expression of miR-

139-5p in the drug-resistant NSCLC cells (Figure 41). These findings demonstrated to us a possible 

therapeutic approach using a combination of LDN-193189 and YD, an antitumor agent that may 

potentially induce miR-139-5p expression, in drug-resistant cancer treatment. As shown in Figure 

42, the combination of LDN-193189 and YD enhanced growth inhibition in cancer cells compared 

to treatment with LDN-193189 alone. 
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Figure 40: Effects of LDN-193189 on cell proliferation and BMP pathways in gef-resistant 

NSCLC cells. (A) The indicated cells were treated with LDN-193189 for 72 h and cell 

proliferation was determined by SRB assay. The IC50 values were calculated using the TableCurve 

2D software and the data are presented as the mean ± SD. (B) PC9-Gef cells and H1993-Gef cells 

were treated with the indicated concentrations of LDN-193189 for 24 h, and the cell lysates were 

further analyzed by immunoblotting using β-actin as a loading control. 
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Figure 41: Effects of LDN-193189 on miR-139-5p in gef-resistant NSCLC cells. The indicated 

cells were treated with the indicated concentrations of LDN-193189 for 24 h, and then the cell 

lysates were analyzed by Taqman PCR using U6 snRNA as an internal control. 

 

 

 

 

 

 

 

 

 

 

 



102 

 

 

 

 

 

 

 

 

 

 

 

Figure 42: Effects of LDN-193189 in combination with YD in gef-resistant NSCLC cells. PC9-

Gef cells and H1993-Gef cells were treated with the indicated concentrations of LDN-193189 

either alone or in combination with 10 nM of YD for 48 h. Cell proliferation was determined by 

SRB assay. 
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Notably, LDN-193189 also effectively suppressed tumor growth in nude mice bearing gef-

resistant NSCLC cells in vivo (Figure 43A & B) without any significant change in body weight 

(Figure 43C). The analysis of tumor tissues also revealed suppressed expression of the cell 

proliferation biomarker Ki-67 (Figure 44A) and the up-regulation of miR-139-5p levels (Figure 

44B), as confirmed by consistent findings in in vitro cell culture systems. These data suggest that 

the suppression of endogenous BMP signaling may represent a possible strategy for the treatment 

of drug-resistant NSCLC cells.    
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Figure 43: Effects of LDN-193189 on the gef-resistant NSCLC cells in vivo models. (A) PC9-

Gef cells (6 × 106 cells/mouse) and H1993-Gef cells (5 × 106 cells/mouse) were implanted 

subcutaneously into the flanks of BALB/c-nude mice. Three weeks of dosing with LDN (4 mg/kg 

body weight for PC9-Gef cells or 5 mg/kg body weight for H1993-Gef cells) was initiated when 

the PC9-Gef tumor volumes reached approximately 100 mm3 and H1993-Gef tumor sizes reached 

approximately 170 mm3. The tumor volumes were measured every 3 days (n = 5 mice per group). 

The error bars represent the means ± SD. (B) Tumors were excised from animals on day 24 after 

treatment and tumor weights were measured. (C) Body weights of the mice were monitored during 

the experiments for toxicity.  
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Figure 44: Effects of LDN-193189 on gef-resistant NSCLC cells ex vivo. (A) 

Immunohistochemical analysis of PC9-Gef and H1993-Gef xenograft tumors. Formalin fixed, 

paraffin-embedded tumor sections were blocked and probed with an antibody against Ki-67, which 

was detected using the LSABTM + System-HRP kit (Dako). (B) Taqman PCR analysis of PC9-Gef 

xenograft tumors. The expression levels of miR-139-5p were determined by Taqman PCR analysis 

as described in Materials and Methods.    
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3.4 Discussion  

Recent studies revealed that miRNAs might be applicable as potential biomarkers to predict 

responses to chemotherapy and survival of patients with malignant tumors (Bach et al., 2017a). 

Indeed, down-regulation of miR-139-5p was observed in colorectal cancer (Zhang et al., 2014b), 

hepatocellular carcinoma (HCC) (Wong et al., 2011) and NSCLC (Sun et al., 2015a). BMP4 

genetic variants and protein expression are also highly associated with platinum-based 

chemotherapy response and prognosis in NSCLC (Xian et al., 2014). NSCLC patients with high 

BMP4 expression were more likely to be resistant to chemotherapy than those with low BMP4 

expression (Xian et al., 2014). Recent studies using integrated epigenomics also identified BMP4 

as a modulator of cisplatin sensitivity in gastric cancer (GC) and indicated that its expression status 

may elicit promising biomarkers for cisplatin-resistant GC (Ivanova et al., 2013; Wood, 2012). In 

colorectal cancer, however, BMP4 can stimulate terminal differentiation and increase the response 

to chemotherapy in chemo-resistant colorectal cancer stem cells (CRC-SCs) (Lombardo et al., 

2011). 

In the present study, we found that the expression of miR-139-5p is significantly down-regulated 

in gef-resistant NSCLC cells compared to parental cells, suggesting that dysregulation of miR-

139-5p is involved in the development of drug-resistant lung cancer. The function of miR-139-5p 

in the resistant cancer cells was confirmed by employing the antitumor agent yuanhuadine (YD) 

to effectively up-regulate the expression of miR-139-5p in gef-resistant NSCLC cells. Further 

studies were designed to identify the putative role of miR-139-5p in gef-resistant cancer cells. The 

combination of cDNA profile arrays and miRNA arrays, with YD-induced restoration of miR-139-

5p, led to the novel identification of BMP4 as one of the most overexpressed genes in gef-resistant 

NSCLC cells. These findings suggest that there is an inverse correlation between the expression 

of miR-139-5p and BMP4 levels in EGFR-TKI-resistant NSCLC cells. Therefore, the modulation 

of either miR-139-5p or BMP4 might be a novel strategy to overcome EGFR-TKI-resistance in 

EGFR-mutant NSCLC cells. Indeed, we demonstrated the pro-tumorigenic role of BMP4 through 

knockdown of BMP4 in gef-resistant NSCLC cells. We also revealed that BMP4 regulates ACSL4 

to affect lipid metabolism. The up-regulation of BMP4 and ACSL4 leads to higher energy 

metabolism in resistant cancer cells, enabling cancer cells to enhance cell growth and acquire drug 

resistance. Additionally, the relationship between BMP4 and energy metabolism was also 

confirmed by the enhanced expression of p53 in BMP4-depleted EGFR mutant gef-resistant 
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NSCLC cells (PC9-Gef). Recent findings suggest that activation of the BMP-BMPR pathway may 

confer resistance to EGFR-TKIs in lung cancer patients with EGFR mutations (Wang et al., 2015). 

Subsequently, targeting the BMP pathway with various BMP inhibitors could provide a potential 

therapy for cancer treatment. In this vein, the dorsomorphin derivative LDN-193189 was reported 

to significantly suppress the proliferation of NSCLC cells but not non-transformed cells (Fotinos 

et al., 2014). LDN-193189 was also effective against chemotherapy-resistant epithelial ovarian 

cancer cells (Ali et al., 2015) and enhanced the chemo-sensitivity of Smad4-silenced colorectal 

cancer cells (Voorneveld et al., 2015). Based on these studies, we attempted to determine whether 

LDN-193189 is able to suppress gef-resistant NSCLC tumor growth in vivo. LDN-193189 

effectively suppressed tumor growth in nude mice bearing gef-resistant NSCLC cells. Moreover, 

LDN-193189 also induced the expression of miR-139-5p; these effects were found to be 

synergistic with the effects of YD, suggesting that a therapeutic strategy utilizing both the 

inhibition of BMP4 and induction of miR-139-5p could potentially be of use in the treatment of 

gef-resistant NSCLC. 

In conclusion, BMP4 overexpression is partially associated with gef-resistance in NSCLC cells, 

and BMP4 can be suppressed by miR-139-5p and YD. BMP4 also interacts with ACSL4 and the 

p53 signaling pathway, both of which are highly connected to lipid energy metabolism in cancer 

cells (Figure 45). These findings suggest that BMP4 may be considered a potential prognostic 

biomarker or therapeutic target for patients with gef-resistant NSCLC.             
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Figure 45: Scheme mechanism action of miR-139-5p and BMP4 in gef-resistant NSCLC 

cells.   
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4. Conclusions  

The present study aimed to investigate the novel mechanisms of epidermal growth factor receptor-

tyrosine kinase inhibitor (EGFR-TKI) resistance and finally indicated several possible 

mechanisms that can be used as novel therapeutic targets to overcome acquired gefitinib resistance 

in non-small cell lung cancer (NSCLC) cells. The findings from each study are summarized as 

follows.  

In Chapter 2, Nicotinamide N-methyltransferase (NNMT), a cancer-associated metabolic enzyme, 

is commonly over-expressed in various human tumors. Emerging evidence also suggests a crucial 

loss of function of microRNAs (miRNAs) in modulating tumor progression in response to standard 

therapies. However, their precise roles in regulating the development of drug-resistant 

tumorigenesis are still poorly understood. Herein, we established EGFR-TKI-resistant non-small 

cell lung cancer (NSCLC) models and observed a negative correlation between the expression 

levels of NNMT and miR-449a in tumor cells. Additionally, knockdown of NNMT suppressed p-

Akt and tumorigenesis, while re-expression of miR-449a induced phosphatase and tensin homolog 

(PTEN) and inhibited tumor growth. Furthermore, yuanhuadine (YD), an antitumor agent, 

significantly up-regulated miR-449a levels while critically suppressing NNMT expression. These 

findings suggest a novel therapeutic approach for overcoming EGFR-TKI resistance to NSCLC 

treatment.   

In Chapter 3, in particular, NSCLC cells harboring EGFR mutations are associated with resistance 

development of EGFR tyrosine kinase inhibitors (EGFR-TKIs) treatment. Recent findings suggest 

that bone morphogenetic proteins (BMPs) and miRNAs might act as oncogenes or tumor 

suppressors in the tumor microenvironment. In this study, for the first time, we identified the 

potential roles of BMPs and miRNAs involved in EGFR-TKI resistance by analyzing datasets 

from a pair of parental cells and NSCLC cells with acquired EGFR TKI-resistance. BMP4 was 

observed to be significantly over-expressed in the EGFR-TKI resistant cells, and its mechanism of 

action was strongly associated with the induction of cancer cell energy metabolism through the 

modulation of Acyl-CoA synthetase long-chain family member 4. In addition, miR-139-5p was 

observed to be significantly down-regulated in the resistant NSCLC cells. The combination of 

miR-139-5p and YD, a naturally-derived antitumor agent, synergistically suppressed BMP4 

expression in the resistant cells. We further confirmed that LDN-193189, a small molecule BMP 

receptor 1 inhibitor, effectively inhibited tumor growth in a xenograft nude mouse model 
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implanted with the EFGR-TKI resistant cells. These findings suggest a novel role of BMP4-

mediated tumorigenesis in the progression of acquired drug resistance in EGFR-mutant NSCLC 

cells.        

The present studies are significant based on the identified novel mechanisms of acquired gefitinib 

resistance, and these mechanisms were proven to be potential therapeutic targets to overcome 

gefitinib resistance by the application of the natural product yuanhuadine in NSCLC cells.  
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