ccreative

 commons

 commons}
$\begin{array}{lllllllllll}\text { C } & \mathrm{O} & \mathrm{M} & \mathrm{M} & \mathrm{O} & \mathrm{N} & \mathrm{S} & \mathrm{D} & \mathrm{E} & \mathrm{E} & \mathrm{D}\end{array}$

저작자표시-비영리-변경금지 2.0 대한민국
이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

- 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건 을 명확하게 나타내어야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 숩게 요약한 것입니다.

$$
\text { Disclaimer } \square
$$

c)Collection

Ph.D. Dissertation of Pharmacy

Structure-Activity Relationship Investigation of Potent Human Glutaminyl Cyclase Inhibitor Based on Pharmacophoric Regions

July 2018

Graduate School of Seoul National University
College of Pharmacy
Medicinal Chemistry Major

Ngo Thi Hong Van

Structure-Activity Relationship Investigation of Potent Human Glutaminyl Cyclase Inhibitor Based on Pharmacophoric Regions

Advisor Professor Lee Jeewoo

Submitted to the Faculty of the College of Pharmacy in Partial Fulfillment of the Requirement for the Degree of DOCTOR OF PHILOSOPHY July 2018
Pharmaceutical Chemistry Major, College of Pharmacy, Graduate School of Seoul National University, Seoul, Korea

Ngo Thi Hong Van
A Dissertation Approved on
July 2018
by the following Dissertation Committee

Chair \qquad (Seal)

Vice Chair \qquad (Seal)

Examiner \qquad (Seal)

Examiner \qquad (Seal)

Examiner (Seal)

Abstract

Alzheimer's disease (AD) is consider as a disorder of progressives, unremitting, neurodegenerative which cause loss of memory and severely causing cognitive ability. Until now, reduce the level of the formation of neurotoxic $A \beta$ species in brain is consider as priority pathology of AD treatment. Recent studies show PyroglutamateAbeta ($\mathrm{pE}-\mathrm{A} \beta$) which express highly abundant in the brains of AD is rapid aggregation and more toxicity than $\mathrm{A} \beta$. $\mathrm{pE}-\mathrm{A} \beta$ is product of a substrate aminoterminally truncated $A \beta$ beginning at glutamate 3 or 11 which catalyzed by Glutaminyl Cyclase (QC).

Recent clinical studies show that QC could be an alternative therapeutic target to treat AD. Our research group focus on investigation and development a series of QC inhibitors with an extended pharmacophoric scaffold, modification in B and C region. In this work, firstly we researched on the structure activity relationship (SAR) of analogues mimic Arg region. Most compounds in this series exhibited potent activity in vitro. The selected compound with $\mathrm{IC}_{50}<10 \mathrm{nM}$ was subjected to in vivo test. The result show that addition of aminoethyl group to 2 -aminopyridine ring slightly improved the in vitro activity up to 2.5 -fold. And the molecular docking studies present compound 202 as a potential candidate since it forms an additional hydrophobic interaction in the $h \mathrm{QC}$ active site.

From the aforementioned result, in part 2, we continued to develop novel QC inhibitors that contain 3-aminoaklyloxy-4-methoxyphenyl and 4aminoalkyloxyphenyl group to replace the above designed pharmacophore. Some novel inhibitors were identified based on the IC_{50} value. They were further studied for in vitro toxicity and in vivo activity. The result showed that inhibitors $\mathbf{5 1} \& 53$ displayed the most potent $\mathrm{A} \beta_{\mathrm{N} 3 \mathrm{pE}-40}$-lowering effect in vivo acute model with reasonable BBB penetration, without showing cytotoxicity and hERG inhibition. Among two compound, we chosen compound $\mathbf{5 3}$ as subject of modeling analysis. The salt bridge interaction and hydrogen bonding in the active site explain its high potency. This compound having favorable BBB penetration could be serve as potential candidate for anti-Alzheimer's agents.

Last but not least, we find out that the dimethoxy group in C region is not stable and cause toxicity to liver metabolism and the modification in B region increase the in vitro activity. Hence, we continued to introduce novel heterocyclic in C region and the linker between $\mathrm{B} \& \mathrm{C}$ region together. However, compare with the parent

compound, heterocyclic in C region reduced remarkable the affect biological activity, especially the ring of indole, benzofuran, benzooxazole, benzothiazole from 2.0 to 6.0 fold. The addition of some ring to B region interestingly slightly increase the in vitro affect. This result suggests us valuable information for our effort in lead optimization to identify QC inhibitors with better penetration and in vivo activity.

Keyword: Alzheimer Disease, Glutaminyl Cyclase, $\mathrm{A} \beta, h \mathrm{QC}$, pyroglutamate;

Table of Contents

Abstract i
Table of contents iii
List of figure v
List of scheme vi
List of table vii
I. Introduction 1
1.Alzheimer's disease 1
1.1. Stage of AD 1
1.2. The risk of AD 2
2. Genetic factors in $A D$ 3
2.1. $\mathrm{A} \beta$ in AD 3
2.2. APP in AD 5
2.3. TAU in AD 6
3. QC in AD 8
3.1. Pyroglutamate in AD 8
3.2. Glutaminyl Cyclase (QC) 9
3.2. Some QC inhibitors - promising treatment strategy 12
II. Potentials anti-Alzheimer's agents: SAR of Arg-mimetic region (Part I) 14

1. Design and Pharmacophore 14
2. Result and Discussion 15
2.1 Chemistry 15
2.2 In vitro assay 19
2.3 In vivo activity 25
2.4 Molecular modeling 26
3. Conclusion 28
4. Experimental 29
4.1 Chemistry 29
4.1.1 General 29
4.1.2 General Procedure 29
4.1.3 Intermediate compounds 32
4.1.4 Final compounds 61
4.2. Molecular modeling 76
III. SAR Investigation of Phe-Arg mimetic region of Human Glutaminyl Cyclase (Part II) 78
5. Design and Pharmacophore 78
6. Result and Discussion 79
2.1 Chemistry 79
2.2 In vitro assay 82
2.3 In vivo activity 85
2.4 Molecular modeling 87
7. Conclusion 89
8. Experimental 89
4.1 Chemistry 89
4.1.1 General 89
4.1.2 General Procedure 89
4.1.3 Intermediate compounds 90
4.1.4 Final compounds 99
4.2. Molecular modeling 107
IV. SAR Modification of Heterocyclic in C- region with Urea type (Part III). 109
9. Design and Pharmacophore 109
10. Result and Discussion 110
2.1 Chemistry 110
2.2 In vitro assay 116
11. Conclusion 125
12. Experimental 126
4.1 Chemistry 126
4.1.1 General 126
4.1.2 General Procedure 126
4.2. Compound 130
4.2.1. Intermediate compounds 130
4.2.2. Final compounds 158
References 180
Abstract (Korean) 187
Acknowledgement 189

List of figure

Figure 1: Estimated number of AD in 2050 1
Figure 2: The progression of AD pathology and symptoms 1
Figure 3: AD's prevalence and cost to medicare and mediaid in USA 2017 2
Figure 4: Factors of AD 3
Figure 5: Pathways leading to plaques and tangles form the basis of the amyloid- β theory of Alzheimer's disease 4
Figure 6: The process of APP 5
Figure 7: Structure of TAU 6
Figure 8: TAU in AD 7
Figure 9: Pyrogulatame formation under enzyme Glutaminyl Cyclase 7
Figure 10: Toxicity of soluble $\mathrm{pE}-\mathrm{A} \beta$ and $\mathrm{A} \beta$ 8
Figure 11: Severe pathological consequence of $A \beta$ 9
Figure 12: Structures of human QC bound to imidazole-derived inhibitors 11
Figure 13: Proposed catalysis mechanism of human QC 11
Figure 14: Reported QC inhibitors 12
Figure 1.1: Representative structures of QC inhibitors 14
Figure 1.2: Binding modes of compound 202 in $h \mathrm{QC}$ 27
Figure 1.3: Refined structure of compound 202 docked with $h \mathrm{QC}$ 28
Figure 2.1: Representative QC inhibitors 78
Figure 2.2: Design rationale for QC inhibitors with novel templates 79
Figure 2.3: Sequential docking and refinement of compound 53 in $h \mathrm{QC}$ 87
Figure 2.4: Docked and refined structure of compound 53 in $h \mathrm{QC}$ 88
Figure 3.1: Binding complex of compound 1 and $h \mathrm{QC}$ acitive site 109
Figure 3.2: Urea and Thiurea QC inhibitors effects 109

List of Scheme

Scheme 1.1. Synthesis of piperidine derivatives 15
Scheme 1.2. Synthesis of piperazine derivatives 16
Scheme 1.3. Synthesis of 4-alkylpiperidine, 4-alkylpiperazine and 4-amidoalkyl D- region fragments 17
Scheme 1.4. Synthesis of 4-carboxamidopiperidine fragment and 2-aminopyridyl moiety 18
Scheme 1.5. Synthesis of final compounds 19
Scheme 2.1. 3-aminoalkyloxy-4-methoxy-1-nitrobenzene fragments 80
Scheme 2.2. 4-aminoalkyloxy-1-nitrobenzene fragment 81
Scheme 2.3. Synthesis of final compound of Phe-Arg mimetic region 81
Scheme 3.1. Synthesis of 3-methyl-5-nitroindazole derivatives 110
Scheme 3.2. Synthesis of 5-nitro indazole derivatives 111
Scheme 3.3. Synthesis of 3-methyl-6-nitroindazole derivatives 112
Scheme 3.4. Synthesis of 6-nitroindazole derivatives 113
Scheme 3.5. Synthesis of 5-nitroindole derivatives 113
Scheme 3.6. Synthesis of benzofuran derivatives 114
Scheme 3.7. Synthesis of benzooxazole and benzothiazole derivatives 115
Scheme 3.8. Synthesis of final compounds 116

List of Table

Table 1.1. IC_{50} values for the inhibition of $h \mathrm{QC}$ by Group I (piperazine and piperidi ne) compounds 20

Table 1.2. IC_{50} values for the inhibition of $h \mathrm{QC}$ by Group II (amido compounds) 22
Table 1.3. IC_{50} values for the inhibition of $h \mathrm{QC}$ by Group III compounds......... 23
Table 1.4. IC_{50} values for the inhibition of $h \mathrm{QC}$ by Group IV compounds 24
Table 1.5. QC inhibition in acute model-based studies in vivo 26
Table 2.1. IC_{50} values for the inhibition of $h \mathrm{QC}$ by 3-aminoalkyloxy-4-methoxy-1nitrobenzene compounds ... 83
Table 2.2. IC_{50} values for inhibition of $h \mathrm{QC}$ by 4-aminoalkyloxy-1nitrobenzene compounds 84

Table 2.3. Studies of in vitro toxicity, permeability, and in vivo QC inhibition in acute model 86

Table 3.1. IC_{50} values for inhibition of $h \mathrm{QC}$ by N -substituted urea compounds of 5-amino-3 methylindazole derivatives
Table 3.2. IC_{50} values for inhibition of $h \mathrm{QC}$ by N -substituted urea compounds of 5aminoindazole derivatives
Table 3.3. IC_{50} values for inhibition of $h \mathrm{QC}$ by N -substituted urea compounds of 5-amino-2,3-dimethylindazole derivative
Table 3.4. IC_{50} values for inhibition of $h \mathrm{QC}$ by N -substituted urea compounds 6-amino-3-methylindazole derivatives 119

Table 3.5. IC_{50} values for inhibition of $h \mathrm{QC}$ by N -substituted urea compounds of 6aminoindazole derivatives 120
Table 3.6. IC_{50} values for inhibition of $h \mathrm{QC}$ by N -substituted urea compounds of 6-amino-2,3-dimethylindazole derivatives 121
Table 3.7. IC_{50} values for inhibition of $h \mathrm{QC}$ by N -substituted urea compounds of 6-amino-3-methylindazole derivative with benzimidazole at A region 122
Table 3.8. IC_{50} values for inhibition of $h \mathrm{QC}$ by N -substituted urea compounds of 6-amino-3-methylindazole derivatives with benzimidazole at A region 122
Table 3.9. IC_{50} values for inhibition of $h \mathrm{QC}$ by N -substituted urea compounds of 5aminoindole derivatives

IATONAL LINIVERSITY

Table 3.10. IC_{50} values for inhibition of $h \mathrm{QC}$ by N -substituted urea compounds of benzofuran, benzooxazole, and benzothiazole derivatives 124

1. Introduction

1. Alzheimer's Disease

Alzheimer's disease (AD) is a progressives, unremitting, neurodegenerative disorder that affects wide areas of the cerebral cortex and hippocampus ${ }^{(1)}$. It was firstly reported by Dr. Alzherimer in German in 1907 in 51-year-old woman with strong feeling of jealousy toward her husband and other person ${ }^{(2)}$. up to now, It is estimated that there were 46.8 million people worldwide living with dementia in 2015 and will be reach 3 times greater in $2050{ }^{(3)}$. It is worsen
 over time.

Figure 1: Estimated number of AD in $2050^{(3)}$

AD is officially listed as the $6^{\text {th }}$ leading cause of death in US ${ }^{(4)}$. It is also estimated that the number of people age 65 and older with AD will nearly triple from 5.3 million to nearly 13.8 million by 2050 all over the world ${ }^{(5)}$. For example, Indonesia, the world's $4^{\text {th }}$ most populated country, estimated in 2015 over 550,000 people with AD and will rise quarter to nearly 2.3 million in 2030. The Republic of Korea, a high income country, between 2000 and 2015, was the $4^{\text {th }}$ fastest rate of ageing in the world, and have nearly 480,000 people with AD in 2015 and will be increase about triple in $2030^{(3)}$.

1.1.Stage of AD

In its early stages, memory loss is mild, but with latestage Alzheimer's, individuals lose the ability to carry on a conversation and respond to their environment.

Figure 2: The progression of AD pathology and symptoms ${ }^{(6)}$

1.2. The risk factors of AD

There are two kind of risk factors:

- The $1^{\text {st }}$ is the non-genetic risk factor such as: age, sex, alcohol consumption, depression, etc. Most AD patient are 65 and older-third of people age 85 and older have $\mathrm{AD}^{(7,8) .}$
- The second factor related to the genetic one, i.e. APP, PS-1, PS-2, APOE, CTNNA3, GAB2,PVRL2,TOMM40, APOC1 which are considered as reason of $\mathrm{AD}^{(9)}$

AD treatment in present

Until now, it has no current cure, but treatments for symptoms are available, or delay its onset, and prevent it from developing. Hence, AD is the most expensive disease, take America as example, in 2017, the direct costs to American society of caring for AD patients and other dementias are nearly $\$ 259$ billion. Estimating that Medicare spending on AD patients will increase about quarter in 2050, nearly $\$ 570$ billion. It means one in every $\$ 3$ of total Medicare spending.

Figure 3: Alzheimer's prevalence and cost to medicare and mediaid in USA $2017{ }^{(10)}$

In the base opinion, the global costs of dementia increase 35.4% from \$ 604 billion to $\$ 818$ billion in 2015, nearly 1.01% of global GDP. But the most proportion of costs incurred in high income contries (nearly 80%) and other low and middle income countries is too small. The main reason for expensive spending is that there is currently no cure
for AD , thus AD should be suggest to use medical support and medication in order to reduce and slow down the progression of the AD developing.

Unfortunately, up to day, in order to face with AD, it is used drug and non-drug treatment to improve cognitive and behavioral symptoms.

- For treating cognitive - FDA has approved two type of medications:

Cholinesterase inhibitors (Donepezil (Aricept),

Rivastigmine (Exelon), Galatamine (RazadyneMenantine (Namenda) ${ }^{(11)}$

- For treating behaviors and sleep changes: mostly base on non-drug approaches before introducing medication since up to now no drug are specially approved by FDA to treat behavioral dementia symptoms.

In recent research, there is supposed that AD is thought to be related with twoprolonged attach on the brain, adding to degeneration of nature neurons, disruption of the neurogenic niches in the brain. ${ }^{(12)}$

Figure 4: Factors of AD

Most of studies agreed that the accumulation of insoluble forms of amyloid- $\beta(A \beta)$ in plaques in extracellular spaces, walls of bloods vessels ${ }^{13,} 14$ and aggregation of the microtubule protein tau in neurofibrillary tangles in neurons are main factors of AD. ${ }^{15,16}$ Microtubuleassociated protein tau is a major antigenic component of paired helical filaments in Alzheimer disease ${ }^{17}$

2. Genetic factors in AD

2.1. $A \beta$ in $A D$

Step 1: Amyloid- $\beta(\mathrm{A} \beta$) is cleaved from amyloid precursor protein (APP; step 1) and is released into the extracellular milieu - by a process that is unclear - as diffusible oligomers ($\mathrm{A} \beta \mathrm{o}$) .

Step 2: A β o can be cleared by mechanisms that involve APOE or can be taken up by astrocytes via low- density lipoprotein receptor ${ }^{-}$related protein 1 (LRP1; step 2).

Step 3: A β o can also aggregate in the intercellular space to form fibrillary constructs, which in turn assemble into plaques (step 3).

Step 4: $A \beta$ plaques can be cleared from the brain via degradation by endocytic or phagocytic clearance (in macrophages and microglia), or by endoproteases from astrocytes (such as insulin- degrading enzyme (IDE), neprolysin (NEP) and matrix metalloproteinase (MMP); step 4).

Figure 5: Pathways leading to plaques and tangles form the basis of the amyloid- β theory of Alzheimer's disease ${ }^{18}$.

Step 5: However, some conformational oligomers that dissociate from $A \beta$ fibrils and plaques may not be cleared and are toxic to adjacent synapses (step 5), it disrupt the signal transmit from one synapse to the other as well as immune the surrounding neuron and around blood vessels in the brain cause blood loss call CAA

Step 6: Tau damage occurs in neurons and is mediated by the development of tau- positive neurofibrillary tangles (which extend into the dendrites; step 6).
Step 7: Fibrillar tau can be released and taken up by healthy neurons, triggering tau damage in the uptaking cell (step 7). In addition, $A \beta$ oligomers might drive α^{-}synuclein aggregation in the plaques. Besides $A \beta$ oligomers, mitochondrial damage or dysfunction might also be involved in the neurodegenerative process.
Hence, it is important to monitor and reduce the level of Ab in brain to cure AD.

2.2. APP in $A D$

APP gene is located on chromosome 21 in humans with 3 major isoforms ${ }^{19}$. It is suggested that protein and mRNA levels of KPI (Kunitz Protease Inhibitor)containing APP isoforms are elevated in AD brain

Figure 6: The process of APP ${ }^{23}$ and associated with increase A β deposition ${ }^{20}$. APP belongs to a protein family that includes APP-like protein 1 (APLP1) and 2 (APLP2) in mammals ${ }^{21,22 .}$

APP, type I transmembrane protein, is synthesized in the endoplasmic reticulum (ER), transported through Golgi apparatus to the TGN (trans-Golgi-networkn) ${ }^{24,} 25$.

α-secretase \& sAPP α

APP in the cell surface is cleavage by α-secretase at cleavage site (at the Lys16-Leu17 bond) to generate sAPP $\alpha-$ a large soluble ectodomain or $\alpha \mathrm{CTF}^{26 .}$ or reinternalized via and endosomal lysosomal degradation ${ }^{27,28}$. Most of APP's normal function is mediated by sAPP α. sAPP α have role in neuronal plasticity and for the early CNS development, protective against excitotoxicity, regulate neural stem cell proliferation, inhibit stress-induced CDK5 activation, join in neuroprotective reagent-mediated excitoprotection ${ }^{29,30}$.

B-secretase \& sAPP β

APP is cleavage at β-site location, Asp 1 and Glu 11, by β-secretase, BACE1 to release $\operatorname{sAPP} \beta$ and β CTF $^{31 .}$ sAPP β differs from sAPP α by lacking A $\beta 1-16$ region at its carboxyl-terminus, have function as death receptor 6 ligand, mediate axonal pruning, neuronal cell death, rescue gene expression of thrasthyretin and Klotho ${ }^{32,33 .}$
γ-secretase \& its fragments
In APP process, APP α CTF and β CTF are further cleaved by γ-secretase complex at one of several sites varying from +40 to +44 to generate $A \beta$ peptides (1-40 \& 1-42: most common)
γ-secretase \& γ-processing
APP α CTF and β CTF are then cleaved by γ-secretase to obtain p 83 and $\mathrm{A} \beta$. p83 is believed have no important role since degraded rapidly.

Meanwhile, overproduction of $\mathrm{A} \beta$ is suggest as result in neurodegenerative cascade, synaptic dysfunction, neuron loss in affected area of brain will be discussed later ${ }^{34}$. Meanwhile, γ-secretase activity to reside in a high molecular weight complex consisting of at least four compnents: Presenilin (PS, PS1, PS2), Niscastrin, anterior pharynx-defective1 (APH-1), Presenilin enhancer-2 (PEN-2) ${ }^{35,36 .}$

PS1:

+ located on chromosome 14 (14q24.3);
+ mutation in PS1 count for greater percentage of EOAD case about 18-50\% ${ }^{37}$
+ can be substantial variation in age of on set (mean 45.5 years old)
+ severity of disease (after diagnosis: live about 8.4 year more)
+ mutation in PS1 could cause the secretase activity of γ-secretase and increase the ratio of $A \beta 42$ to $A \beta 40$.

PSEN 2:

+ located on chromosome 1(1q31-q42)
+ PSEN2-related AD is rare compared PSEN1
+ higher age of onset (about 53.7 year old), live longer after diagnosis (10.6 years)

2.3. TAU IN AD

Tau is a cytosolic protein encoded by a gene on chromosome 17 (17q21),have > 100 kb and 16 exons

Normally, Tau proteins interact with tubulin, make microtubules stable and promote the assembly of tubulin into microtubules. They are the product of alternative splicing from a single gene call "MAPT" (microtubule-associated protein tau). When tau proteins are defective, they no longer stabilize microtubules properly. They are capable of aggregating and fibrillating to form NFTs, another pathological hallmark of $A D$

Figure 7: Structure of TAU ${ }^{39}$

3. $\mathbf{Q C}$ in AD

3.1.Pyrutamate in AD

Glutamin (Gln)

pyroglutamic acid (pGlu) (5-oxo-L-proline)

glutamic acid (Glu)

Figure 9: Pyrogulatame formation under enzyme Glutaminyl Cyclase ${ }^{43}$

Pyroglutamate-Abeta ($\mathrm{pE}-\mathrm{A} \beta$), hightly abundant in the brains of AD are type of $N-$ truncated $\mathrm{A} \beta$ forms containing an N-terminal pyroglutamate at position 3 or 11 in $\mathrm{A} \beta$. Due to their increase hydrophobicity, $\mathrm{pE}-\mathrm{A} \beta$ product are prone to rapid aggregation

INTRODUCTION

and are much more resistant to proteolytic degradation and causing exacerbated neurotoxicity. Moreover, $\mathrm{pE}-\mathrm{A} \beta$ is considered more neurotoxic than $\mathrm{A} \beta_{1-40}$ and $\mathrm{A} \beta_{1-}$ 42 and promote the formation of amyloid and tau plaques. The formation of the pyroglutamate from the N-terminal glutamate of $\mathrm{A} \beta$ is catalyzed by glutaminyl cyclase (QC)

Figure 10: Toxicity of soluble $\mathrm{pE}-\mathrm{A} \beta$ and $\mathrm{A} \beta$

N -truncated pyroglutamate $\mathrm{A} \beta 3-42$ are more toxic as compared to full-length $A \beta 1-42$ due to reduced neutralization via plaque formation (figure 10) ${ }^{44}$. Figure 10A Monomers and low- and high-molecular weight aggregates of $\mathrm{A} \beta 1-42$ (blue) are in equilibrium and are toxic as long as they stay soluble Once high-molecular weight aggregates are formed, they rapidly react into highly ordered and insoluble, non-toxic fibrils $A \beta$ found in plaques. Therefore, although soluble low- and high molecular weight oligomers are toxic, it can be non-toxicity by forming monomers and/or fibrils. As A $\beta 1-42$ is a physiological peptide, which is continuously generated also in healthy individuals, plaque formation may be one way to neutralize full-length $A \beta$ during the prodromal stage of the disease. Meanwhile, figure 10B displayed soluble monomers, low- and high-molecular weight aggregates of N -truncated pyroglutamate $\mathrm{A} \beta 3-42$ are in disequilibrium and are toxic. High-molecular weight aggregates also can be neutralized by plaque formation to be nontoxic. However, the process is significant
slower tendency as compared to full-length $\mathrm{A} \beta$, because the fibrillation process is unordered forming only amorphous fibrils. As a result, the level of soluble low- and high-molecular weight aggregates of N-truncated $A \beta$ variants increase over time.

Hence, the novel $\mathrm{pE}-\mathrm{A} \beta$ has altered biochemical properties with severe pathological consequences. Such as increase hydrophobicity; neurological deficits as show in figure 11 ; thereby $\mathrm{pE}-\mathrm{A} \beta$ playing a major role in AD . Therefore, if GC was inhibited, the $\mathrm{pE}-\mathrm{Ab}$ formation will be decreased

Figure 11: Severe pathological consequence of $A \beta$

3.2. Glutaminyl Cyclase (QC)

QC (QCs, EC 2.3.2.5) have been identified in both animal and plant such as ${ }^{45-47}$. GC is widely distributed in mammalian brain with expression in hippocampus and cortex ${ }^{48-49}$.

Two types of QCs have been defined thus far. Type I QCs were found in plants and in several pathogenic bacteria and human parasites, while type II QCs were mainly identified in the neuroendocrine tissues of mammals ${ }^{50-52}$.

Papaya QC (pQC) is the best-known type I QC. This enzyme was first discovered in the latex of the tropical plant Carica papaya ${ }^{53}$.

Structure of human QC

Overall Structure. The mature domain (residues 33-361) of human QC was shown to possess glutaminyl and glutamyl cyclase in physiological substrate of $h \mathrm{QC}$. Structure of $\boldsymbol{h} \mathbf{Q C}$. (A) A ribbon diagram of the overall structure of human QC. The central six -strands are colored orange. The helices located on the top, bottom, and

INTRODUCTION

edge are colored cyan, magenta, and yellow, respectively. The zinc ion is shown as a yellow sphere. The zinc-coordinated residues, Arg-54 (genetic mutation to Trp residue occurred frequently in adult women with osteoporosis), and a sulfate ion are depicted with a ball-and-stick model. The coils and loops adjacent to the catalytic center are painted green, whereas those distant from the active site are colored gray. Gray dots represent the disordered region of residues 183-188. (B) A topology diagram of the human QC structure. The color codes for secondary structural elements are identical to those in A. (C) A stereo-view of the human QC catalytic region. The active-site residues in conformation-A are shown and labeled. Possible hydrogen and coordination bonds are represented with dotted lines colored cyan and yellow, respectively. The green dotted lines depict the possibly unusual hydrogen bonds between D305 and E201 (3.06 Å) and between D305 and D248 (2.53 A). ${ }^{54}$

In the past, there are two possible mechanism of $h \mathrm{QC}$ catalysis.
First, the catalysis of the formation of a covalent intermediate could happen. At the beginning, a nucleophilic residue attacks the γ-amide group of N -terminal glutaminyl form acyl-enzyme intermediate and release ammonia. Then α-amino group of glutamine attack nucleophile the γ-carbonyl.

The second proposal ones is based on non-covalent reaction catalyzied by $h \mathrm{QC}$.
Catalytic cycle of $\boldsymbol{h} \mathbf{Q C}$ catalyzing N-terminal glutaminyl substrates. First step is the formation of the Michaelis-Menten complex via binding of the substrate. Thereby it showes the coordinated water molecule and occupies the fourth coordination site of the catalytic zinc. The catalytic Zn ion acts as a Lewis acid, pulls out electrons from the γ-carbonyl moiety of the N -terminal glutamine, hence activating the γ carbonyl carbon electrophile. Moreover, Glu201 activates via acid-base catalysis the α-amino group, which in turn gets more nucleophilic. Afterwards, the α-amino group performs a nucleophilic attack on the γ-carbonyl carbon, forming to a short-lived tetrahedral intermediate. Then, an intrinsic proton transfer to the potential leaving group via a conserved hydrogen bond network is performed to subsequently release ammonia and the product.

More detail, Huang et al. also propose detail substrate specificity of $h \mathrm{QC}$ and its structural relationship.

Figure 12: Structures of human QC bound to imidazole-derived inhibitors.

The
Zn -binding environment of the freeform human QC. The $2 F \mathrm{o}-\mathrm{Fc}$ electron density maps (contoured at 1.0) (gray) corresponding to the water molecules inside the active-site pocket are shown. Representations of the models, hydrogen bonds, and coordination bonds are identical to those in Fig. 1C. ($B-D$) Structures of $h \mathrm{QC}$ bound to 1-
vinylimidazole ($1.68-\AA$ A resolution), 1-benzylimidazole ($1.64-\AA$ resolution), and N-acetylhistamine ($1.56-\AA$ A resolution), respectively. The $2 F \mathrm{o}-F \mathrm{c}$ maps (contoured at 1.0) (magenta) for the inhibitors are overlaid with the final refined models. Distances for enzyme-inhibitor interaction are indicated in \AA.

The conserved Glu201 plays as the general base and acid to transfer a proton from the amino group of the substrate (blue) to the leaving amino group on the scissile -amide. The zinc ion polarizes the amide carbonyl group of the substrate and

 His 330 Glu' 202

Figure 13. Proposed catalysis mechanism of human QC. simultaneously
stabilizes the oxyanion formed by the nucleophilic attack of the -nitrogen. Asp-248 probably stabilizes the leaving -amide amino group during the catalysis process. In the mechanism of glutamyl cyclase activity, this leaving amino group is replaced by a hydroxyl group, and the reaction is good at pH 6.0 (Figure 13).

QC have important role in the production of $\mathrm{A} \beta_{\mathrm{pE} 3}$, i.e: injection of $\mathrm{A} \beta_{3-40}$ cause to significant level of $\mathrm{A} \beta_{\mathrm{pE} 3-40^{50 .}}$ Beside, in order to study the effect of ectopic $h \mathrm{QC}$ overexpression, 5XFAD mice was crossed with the transgenic mice expressing $h \mathrm{QC}$ 5XFAD $/ h$ QC bigenic mice showed remarkable increased levels of TBS-, SDS- and formic acid soluble $\mathrm{A} \beta_{\mathrm{pE} 3-42}$. Effect of endogenous QC was verified by generating 5XFAD/QC-KO mice. 5XFAD/QC-KO mice showed a worthy reduction in $\mathrm{A} \beta_{\mathrm{pE} 3-42}$ levels ${ }^{55,56}$.

Involvement of hQC activity in the formation of pyroglutamyl peptides. By the inhibition of QC in neuronal cellsof the central nervous system of AD patients would suppress the formation of N -terminal of N -terminal glutamyl cyclization. Thus, QC is a key factor in monitor $\mathrm{A} \beta_{\mathrm{pE} 3-\mathrm{x}}$ level in vivo.

3.3. Some QC inhibitors - promising treatment strategy

PBD150 JMC (2206) 664

JMC (2009) 7069

JMC (2017) 6664

JMC (2013) 6613

HVH-341 (JMC (2017), 2573-2590)
hQC $\mathrm{IC}_{50}=4.5 \mathrm{nM}$
in vivo (ip): 54.7% inh. of $h Q C_{\text {N3pE-42 }}$
Figure 14: Reported QC inhibitors

As mentioned, in present QC is becoming promising strategy in treatment of AD . Take PQ-912 as example, the product is developed by Probiodrug, has well tolerated and metabolically stability for patients ${ }^{57}$. Base on the good result, it is now in phase II of clinical ${ }^{58}$. Also our previous researched compound HVH $341{ }^{59}$ has potent in vitro activity. The two different transgenic model mice of AD, APP/PS1, and 5xFAD showed that it not only reduced the brain concentration of $\mathrm{pE}-\mathrm{A} \beta$ and total $\mathrm{A} \beta$ in $\mathrm{APP} / \mathrm{PS} 1$ mice but also restored cognitive function in 5 xFAD mice.

1. Design and Pharmacophore

Previously reported QC inhibitors have three pharmacophores designated the A-, Band C-regions, as shown in Figure 1.1. ${ }^{60,61}$ The A-region contains a zinc-binding motif (ZBM), the B-region contains a hydrogen bond donor, and the C-region contains an aromatic ring that mimics the Phe side chain at the penultimate position to the N-terminus of the substrate $\mathrm{A} \beta_{3 \mathrm{E}-42}$. Inspired by these findings, our group previously investigated a series of QC inhibitors with an extended scaffold based on the N-terminal tripeptide (Glu-Phe-Arg) of $\mathrm{A} \beta_{3 \mathrm{E}-42}$, and identified an additional pharmacophore, the D-region, which mimics the binding interaction of the guanidine moiety of Arg. ${ }^{59}$ The newly developed QC inhibitors display improved potency, 5 to 40 -fold increases, compared to the previously reported inhibitor $\mathbf{1}$. According to our molecular modeling studies, the Arg mimetic D-region forms strong interactions with the carboxylate group of Glu327, supporting our hypothesis that the additional pharmacophore provides an extra binding interaction.

$1 *-\mathrm{CH}_{3}$
2

3

4 (PQ912)

Figure 1.1: Representative structures of QC inhibitors
Although compound $\mathbf{2}$ was the most potent inhibitor in our previous study $\left(\mathrm{IC}_{50}=0.7\right.$ nM for $h \mathrm{QC}$), it displayed moderate efficacy in an in vivo model, likely due to the low blood-brain barrier (BBB) penetration, whereas compound $\mathbf{3}$ showed a better in vivo efficacy, reducing the brain concentrations of $A \beta$ and restoring cognitive functions in AD mice. Based on these findings, we aim to develop a library of D-region-modified analogues with improved potency and BBB penetration. All compounds in this series have the same scaffolds in the A-, B-, and C-regions, but they contain various moieties, including substituted piperazines, 2 -aminopyridines,

PART 1- POTENTIALS ANTI ALZHEIMER'S AGENTS: SAR OF ARG-MIMETIC REGION

anilines, and phenyl group derivatives, in the D-region. We also synthesized a group of compounds that contain a phenyl and a benzyl linker group between the C- and Dregions to study the conformational effect of modifications at this specific position. We evaluated the QC inhibitory activity in vitro and the in vivo activity of several selected compounds; we also analyzed the specific binding interactions between the selected inhibitor and the QC active site by performing molecular docking studies.

2. Result and discussion

2.1. Chemistry

A library of 46 compounds with modifications in the D-region was synthesized. We first synthesized the C/D-region, 4-alkyl(or aryl)oxy-3methoxyaniline fragment, and then coupled them to 3-(5-methyl- 1 H -imidazol-1-yl)propan-1-amine, which represents the A-region, to obtain the final compounds.

Scheme 1.1. Synthesis of piperidine derivatives. Reagents and conditions: (a) PhTf_{2}, LDA, THF, $-78^{\circ} \mathrm{C}$, overnight; (b) phenylboronic acids, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{MeCN}, \mathrm{Na}_{2} \mathrm{CO}_{3}$, reflux, overnight; (c) 2-bromo-5-nitroanisole, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, TMEDA, CuI, DMF, $90{ }^{\circ} \mathrm{C}$, 24 h ; (d) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, \mathrm{rt}, 2 \mathrm{~h}$; (e) 4-nitroguaiacol, DEAD, PPh_{3}, DCM, r.t., 3 h.

For the synthesis of the 4-phenylpiperidine D-region fragments (Scheme 1.1), the protected piperdin-4-one (5) was converted to the corresponding triflate $\mathbf{6},{ }^{62}$ which underwent the Suzuki coupling reaction with phenylboronic acid derivatives to afford compounds 7 and $\mathbf{8}$, respectively. ${ }^{63}$ The phenol 7 was reacted with 2-bromo-5-nitroanisole through the Ullmann reaction to generate the 4phenyltetrahydropyridine $9 .{ }^{64}$ The double bond of compound $\mathbf{8}$ was carefully reduced to piperidine $\mathbf{1 0}$ and then coupled with 4-nitroguaiacol in the Mitsunobu reaction to afford 4-phenylpiperidine $\mathbf{1 1}$.

Scheme 1.2. Synthesis of piperazine derivatives. Reagents and conditions: (a) $\mathrm{Boc}_{2} \mathrm{O}$, DCM, r.t., overnight; (b) $\mathrm{HCHO}, \mathrm{HCOOH}$, reflux, overnight; (c) 2-bromo-5nitroanisole, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, TMEDA, CuI, DMF, $90{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$; (d) t-butyl piperazine-1carboxylate, $\mathrm{BINAP}, \mathrm{PhCH}_{3}, \mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{NaOtBu}, 100^{\circ} \mathrm{C}, 15 \mathrm{~min}$; (e) $\mathrm{LiAlH}_{4}, \mathrm{THF}$, $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (f) 4-nitroguaiacol, DEAD, PPh_{3}, DCM, r.t., 3 h.

For the synthesis of 4-phenylpiperazine fragments (Scheme 1.2), 4-(piperazin-1-yl)phenol $\mathbf{1 2}$ was protected by a Boc group or reductively methylated to yield compound $\mathbf{1 3}$ or $\mathbf{1 4}$, respectively, which underwent the Ullmann coupling reaction with 2-bromo-5-nitroanisole to afford compounds 15 and 16. Methyl 3bromobenzoate 17 was reacted with N-Boc piperazine under Buchwald-Hartwig conditions ${ }^{65}$ to yield compound 18, whose ester underwent reduction followed by the Mitsunobu reaction with 4-nitroguaiacol to produce compound $\mathbf{2 0}$.

For the synthesis of 4-alkylpiperidine, 4-alkylpiperazine and 4-amidoalkyl D-region fragments (Schemes 1.3), 4-nitroguaiacol 21 was condensed with 1-Boc-4-(2-hydroxyethylpiperidine) using the Mitsunobu reaction to yield 4-ethylpiperazine derivative 28. The Williamson reaction of compound 21 with dibromoalkanes followed by N-alkylation with the corresponding piperazine derivatives produced 4alkylpiperazine derivatives $\mathbf{2 9 - 3 8}$, respectively. For 4-oxopiperidine and piperazine derivatives, the acids ($\mathbf{3 9}$ and $\mathbf{4 1}$) were obtained by the hydrolysis of corresponding esters ($\mathbf{2 5}$ and 26), which were prepared by the O-alkylation of compound 21. Meanwhile, acid 40 was synthesized from the corresponding alcohol 27 through the unwanted β-elimination of 3-bromopropanoate during the O -alkylation with compound 21. The acids (39-41) were converted to acyclic and cyclic amides (42-51) by coupling with the corresponding amines, respectively. The N-Boc piperidine and piperazine derivatives $(\mathbf{2 8} \mathbf{- 3 1}, \mathbf{4 6}$, and $\mathbf{4 9}$) were deprotected to provide the corresponding amines (52-57), which underwent N-alkylation or N-acetylation to afford compounds 58-72, respectively.

Scheme 1.3. Synthesis of 4-alkylpiperidine, 4-alkylpiperazine and 4-amidoalkyl Dregion fragments Reagents and conditions: (a) $\mathrm{Br}\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{Br}$ or $\mathrm{Br}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OH}$ or $\mathrm{Br}\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{COOCH}_{3}, \mathrm{Cs}_{2} \mathrm{CO}_{3}$, DMF, $100{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (b) piperazine derivatives, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, DMF, $70^{\circ} \mathrm{C}$, 30 min ; (c) 1-Boc-4-(2-hydroxyethyl)piperazine, DEAD, PPh_{3}, DCM, r.t., overnight; (d) $\mathrm{NaOH}, \mathrm{MeOH}$, reflux, 1 h ; (e) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, \mathrm{H}_{2} \mathrm{SO}_{4}$, acetone, $\mathrm{H}_{2} \mathrm{O}$, r.t., overnight; (f) $\mathrm{EDC} \cdot \mathrm{HCl}, \mathrm{HOBt}, \mathrm{DCM}, \mathrm{NH}_{3}\left(\right.$ or $\mathrm{NH}\left(\mathrm{CH}_{3}\right)_{2} \cdot \mathrm{HCl}, 1$-Boc-4piperidinamine, 1-Boc piperazine), MC, r.t., overnight; (g) TFA, DCM, r.t., overnight; (h) $\mathrm{RBr}, \mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, 100^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (i) acetyl chloride, TEA, DCM, r.t., 1 h (for compound 62).

The 4-carboxamidopiperidine fragment $\mathbf{7 5}$ was synthesized from compound 21 in 3 steps (Scheme 1.4). For the syntheses of 4-alkyl-2-aminopyridine fragments (Scheme 4), 2-amino-4-picoline 76 was protected and then alkylated with O-TBS 3bromopropanol to generate compound 78. After deprotection of compound 78, the Mitsunobu reaction was performed with 4-nitroguaiacol followed by N -alkylation with the corresponding alkyl iodides to generate compounds $\mathbf{8 0 - 8 2}$, respectively.

Scheme 1.4. Synthesis of 4-carboxamidopiperidine fragment and 2-aminopyridyl moiety. Reagents and conditions: (a) 2-(2-bromoethyl)isoindoline-1,3-dione, $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, $100{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (b) $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, EtOH, r.t., overnight; (c) 1-Boc piperidine-4carboxylic acid, $\mathrm{EDC} \cdot \mathrm{HCl}, \mathrm{HOBt}, \mathrm{DCM}$, r.t., overnight; (d) $\mathrm{Boc}_{2} \mathrm{O}$, t-BuOH, r.t., overnight; (e) $\mathrm{Br}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OTBS}$, n-BuLi, THF, $-78^{\circ} \mathrm{C}$; (f) TBAF, THF, r.t., 2 h , then 4-nitroguaiacol, DEAD, $\mathrm{PPh}_{3}, \mathrm{DCM}$; (g) RI, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (or NaH), DMF, heat.

The synthesis of the final compounds is described in Scheme 1.5. The 4nitroguaiacol fragments prepared above were reduced by either reacting them with zinc powder in acidic medium or hydrogenation to yield the corresponding anilines 83-125, respectively. All synthesized anilines were coupled in situ with 3-(5-methyl1 H -imidazol-1-yl)propan-1-amine ${ }^{66}$ via isothiocyanate to provide the final thioureas 162, 171-175, 179-182, and 196, as well as the precursors that were converted to the final compounds 160-161, 166-168, 170, 177, 184-186, 188-191, 193-195, 199-203, and 205 by Boc deprotection, 164-165, 176, 187, 192, and 204 by TBS deprotection and 163 and 169 by benzoyl deprotection, respectively. The amide final compounds 178 and 181 were synthesized from ester 157 by condensation with the corresponding amines. The 1-alkyl-4-phenylpiperazines containing the final compounds 197-198 were prepared from compound $\mathbf{1 9 5}$ by N -alkylation followed by deprotection.

Scheme 1.5. Synthesis of final compounds. Reagents and conditions: (a) $\mathrm{Zn}, \mathrm{MeOH}$, AcOH , r.t., 2 h ; (b) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{MeOH}$, r.t., 3 h ; (c) 3-(5-methyl- 1 H -imidazol-1-yl)propan-1-amine, TCDI, TEA, DCM, r.t., overnight; (d) TFA, DCM, r.t., overnight; (e) $\mathrm{RBr}, \mathrm{NaH}, \mathrm{DMF}, 0^{\circ} \mathrm{C}$ to $100{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (f) $\mathrm{HCl}, \mathrm{MeOH}$, r.t., overnight or TFA: $\mathrm{H}_{2} \mathrm{O}$ (9:1), DCM, r.t., overnight; (g) $\mathrm{NaOH}, \mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}$, reflux, 30 min ; (h) NH_{3} or $\mathrm{NH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{MeOH}$, rt, overnight.

2.2. In vitro assay

We performed QC activity assays using a fluorogenic substrate, Gln-AMC (L-glutamine 7-amido-4-methylcoumarin), and pyroglutamyl peptidase (pGAP) as an auxiliary enzyme ${ }^{67}$ to evaluate the ability of the D-region-modified library to inhibit QC. We first investigated a group of compounds containing the modified piperazine ring in the D-region and summarized their structures and in vitro inhibition as Group I in Table 1. The incorporation of a methyl group at the 2- or 3-position of the piperazine ($\mathbf{1 6 0}$ and 161) led to a slight reduction in activity, probably due to steric hindrance. Among the $4-N$ substituted piperazine analogues (162-175), compounds with a relatively small sized substituent displayed slightly better activity than REGION
compounds with aromatic and heteroaromatic rings. Specifically, compounds with an alkylamine substituent ($\mathbf{1 6 7}$ and 170) appeared to be the most potent of the Group I compounds, with IC_{50} values of 3.8 and 3.6 nM , respectively, suggesting that their terminal amino groups may be involved in an additional ionic interaction. When we varied the length of the spacer between the piperazine substituent and the C-ring oxygen (compounds $\mathbf{1 6 3 - 1 6 8}, \mathrm{n}=1$ to 3), we did not observe any particular trend in the inhibitory effect, suggesting that specific interactions, such as the ionic interaction inside the binding pocket, may be more important than steric effects. The 4-phenyl (171), benzyl (172) and pyrimidine (173-175) derivatives showed moderate inhibition $\left(\mathrm{IC}_{50}=12\right.$ to 21.6 nM$)$, and the introduction of a halogen at the 5 -position of the pyrimidine further reduced the activity. The two piperidine surrogates ($\mathbf{1 7 6}$ and 177) were slightly less active than the corresponding piperazine derivatives ($\mathbf{1 6 3}$ and 166).

Table 1.1. IC_{50} values for the inhibition of $h \mathrm{QC}$ by Group I (piperazine and piperidine) compounds

Compound	R	n	$\mathrm{IC}_{50}(\mathrm{nM})^{\mathrm{a}}$	
1	*-Me	0	$29.2^{\text {b }}$	
2		2	$0.7{ }^{\text {c }}$	
160		2	5.8	(± 1.0)
161		2	9.9	(± 0.7)
162		2	30.8	(± 4.2)
163		2	7.4	(± 1.2)
164		3	23.5	(± 9.8)
165		4	4.8	(± 1.0)
166		2	7.5	(± 6.8)
167		3	3.8	(± 1.9)

168
${ }^{\text {a }}$ Values indicate the means of at least three experiments; ${ }^{\text {b }}$

Next, we examined the amidoalkyl derivatives in the D-region since the aminoalkyl derivatives showed potent inhibitory activity in our previous study. ${ }^{59}$ As described in Table 1.2, compounds with a primary amide (178-180), tertiary amide (181-183) and piperazinyl amide (184-186) appeared to be less potent than the previously reported aminoalkyl derivatives, probably due to the decreased basicity of the amide nitrogen that is thought to be involved in the salt bridge interaction with the enzyme. The amide surrogate of 4-aminoethylpiperazinyl derivative (188) exhibited a comparable activity to the compound without the amide group (166) because both compounds contain the terminal amine. Among the N-(piperidin-4yl)amido derivatives (189-194), the N-(aminoethyl)piperidinyl derivative (193) was the most potent in the series, with an IC_{50} of 4.5 nM . In addition, (piperidin-4yl)carbamoyl derivative 190 exhibited comparable activity, even without the 4aminoethyl group $\left(\mathrm{IC}_{50}=5.5 \mathrm{nM}\right)$, whereas its reverse amide (194) showed reduced inhibition $\left(\mathrm{IC}_{50}=15.7 \mathrm{nM}\right)$. Interestingly, the length of the spacer between the C -
region oxygen and the D-region ($\mathrm{n}=1$ to 3) appears to affect the inhibitory activity of compounds within this series; compounds with the ethylene spacer ($\mathrm{n}=2$) generally displayed better potency, likely due to the location of the amide nitrogen.

Table 1.2. IC_{50} values for the inhibition of $h \mathrm{QC}$ by Group II (amido compounds)

${ }^{\text {a }}$ Values indicate the means of at least three experiments.

Next, we modified the linker that connects the C- and the D-regions to confer a rigid conformation and evaluated the inhibitory activity of these derivatives (Table 1.3). In general, compounds in this series displayed slightly decreased activity compared to the compounds with a flexible linker. The piperidine analogue 195 and the piperazine analogues $\mathbf{1 9 9}, \mathbf{2 0 0}$, and 202 displayed similar inhibitory activities. Compounds with a benzyl linker (201 and 202) showed a comparable activity to the compounds with a phenyl linker. Overall, the conformational rigidity between the two regions did not appear to have a significant impact on QC inhibition.

Table 3. IC_{50} values for the inhibition of $h \mathrm{QC}$ by Group III compounds

Compound

201

202

11.5
6.2
${ }^{a}$ Values indicate the means of at least three experiments.

Finally, we evaluated the inhibitory activity of analogues containing the 2aminopyridine group containing and summarized these results in Table 1.4. The 2aminoethylamino substituent in compound $\mathbf{2 0 5}$ improved the inhibitory activity $\left(\mathrm{IC}_{50}\right.$ $=1.8 \mathrm{nM})$ compared to its parent compound $3\left(\mathrm{IC}_{50}=4.2 \mathrm{nM}\right)$, which was also observed with the piperidine derivatives. In contrast, the 2-methylamino pyridine derivative (203) and the 2-hydroxyethylamino pyridine derivative (204) exhibited slightly decreased activity compared to compound $\mathbf{3}$.

Table 1.4. IC_{50} values for the inhibition of $h \mathrm{QC}$ by Group IV compounds

Compound

[^0]
2.3. In vivo activity

Based on the in vitro QC inhibition data, we selected 20 compounds with IC_{50} values less than 10 nM for further in vivo studies. We first screened these compounds at one fixed concentration $(10 \mu \mathrm{M})$ in an immortalized hippocampal neuronal cell line (HT-22) to evaluate cytotoxicity, and found that none of the compounds, with the exception of compound $\mathbf{1 7 0}$, were cytotoxic. We successively injected human $A \beta_{3-40}(5 \mu \mathrm{~g})$ and each compound ($25 \mathrm{mg} / \mathrm{kg}$) into deep cortical/hippocampal tissues of ICR mice (male, six weeks old) by intracerebroventricular (icv) administration to assess the in vivo activity of the selected compounds. We measured the levels of human $A \beta_{\mathrm{N} 3 \mathrm{PE}-40}$ in the brain extracts of these mice on the next day to determine the QC inhibitory activity. As described in Table 1.5, compounds 185, 190, 199 and 202 appeared to suppress the formation of $\mathrm{A} \beta_{\mathrm{N} 3 \mathrm{PE}-40}$ by 13.5% to 30% compared to the vehicle control. In particular, compound 202, which showed the potent inhibition in vitro with an IC_{50} value of 6.2 $n M$, exhibited the most potent $A \beta_{\mathrm{N} 3 \mathrm{pE}-40-42}$ lowering effects (30\%). Because compound 202 contains a benzylic linker with a piperidine moiety, this potent in vivo activity may be attributed to its high BBB penetration.

We performed a parallel artificial membrane permeability assay (PAMPA) ${ }^{68}$ that can be translated to the ability of the compounds to penetrate the blood-brain barrier (BBB). The four most active compounds in vivo 185, 190, 199, and 202, showed reasonable permeability, with a range of 4.9-5.8 for $-\operatorname{logPe}$, supporting the hypothesis that the in vivo activity of these compounds resulted from good BBB penetration and QC inhibition. In contrast, the compounds that showed potent in vitro activity but were ineffective in vivo, such as $\mathbf{1 6 7}, \mathbf{1 6 8}, 188,204$ and 205, exhibited very low permeability $(-\log \mathrm{Pe}=10)$.

We performed an h ERG channel assay for all compounds to assess potential drug toxicity. Although compounds $\mathbf{1 8 5}$ and $\mathbf{1 9 0}$ slightly inhibited the h ERG channel by less than 5%, compounds 199 and 202 moderately inhibited the h ERG channel by 52.8% and 40.1%, respectively, at $10 \mu \mathrm{M}$. Although compound 202 moderately inhibited the h ERG channel, overall, this compound exhibited potent in vitro and in vivo activities and good brain penetration; therefore, we decided to perform a molecular docking study with compound 202.

Table 1.5. QC inhibition in acute model-based studies in vivo ${ }^{\mathrm{a}}$

	In vitro $\mathrm{IC}_{50}(\mathrm{nM})$	Cytotoxicity at $10 \mu \mathrm{M}$ $(\%$ of control) $)$	\% inhibition of human $\mathrm{A}_{\mathrm{N} 3 \mathrm{pE}-40}$ formation (icv)	PAMPA $(-\operatorname{logPe})$	hERG FP at $10 \mu \mathrm{M}$ $(\%$ inhibition $)$
$\mathbf{1 6 0}$	5.8	~ 100	3.01	5.8	33.4
$\mathbf{1 6 1}$	9.9	~ 100	NE^{b}	5.3	2.5
$\mathbf{1 6 3}$	7.4	~ 100	NE	6.0	9.7
$\mathbf{1 6 5}$	4.8	~ 100	NT		8.7
$\mathbf{1 6 6}$	7.5	~ 100	5.43	NT	
$\mathbf{1 6 7}$	3.8	~ 100	NE	5.7	2.5
$\mathbf{1 6 8}$	9.7	~ 100	NE	10.0	28.9
$\mathbf{1 7 0}$	3.6	51.1	NT	10.0	21.1
$\mathbf{1 7 6}$	9.0	~ 100	0.19	NT	NT
$\mathbf{1 8 5}$	7.7	~ 100	18.7	6.7	8.2
$\mathbf{1 8 6}$	7.0	~ 100	8.07	5.7	1.7
$\mathbf{1 8 8}$	7.8	~ 100	NE	5.7	1.9
$\mathbf{1 9 0}$	5.5	~ 100	13.5	10.0	14.0
$\mathbf{1 9 3}$	4.5	~ 100	NE	5.6	5.0
$\mathbf{1 9 5}$	8.5	~ 100	NE	6.4	17.8
$\mathbf{1 9 9}$	9.4	~ 100	16.1	5.6	39.7
$\mathbf{2 0 0}$	9.9	~ 100	NE	4.9	52.8
$\mathbf{2 0 2}$	6.2	~ 100	30.0	5.6	72.8
$\mathbf{2 0 4}$	8.7	~ 100	NE	5.8	40.1
$\mathbf{2 0 5}$	1.8	~ 100	NE	10.0	44.4

${ }^{\text {a }}$ Five microliters of human $\mathrm{A} \beta_{3-40}$ in $\operatorname{PBS}(1 \mu \mathrm{~g} / \mu \mathrm{L})$ were injected into the deep cortical/hippocampal tissues of 5-week-old ICR mice ($25 \mathrm{~g}, \mathrm{n}=4$, males) using a stereotaxic frame to induce acute $\mathrm{A} \beta$ toxicity. Test compounds were administered via an icv. A sandwich ELISA was performed to quantify the brain $\mathrm{A} \beta_{\mathrm{N} 3 \mathrm{pe}-40}$ level; ${ }^{\mathrm{b}} \mathrm{NE}$ $=$ not effective; ${ }^{\mathrm{c}} \mathrm{NT}=$ not tested.

2.4. Molecular modeling

We performed sequential molecular modeling studies using the X-ray crystal structure of $h \mathrm{QC}(\mathrm{PDB} \text { id: } 3 \mathrm{PBB})^{69}$ to investigate the interactions between $h \mathrm{QC}$ and compound 202. The initial docking study was conducted using the piperidine
protonated form of compound 202 at pH 7.4 , utilizing Glide SP (Standard Precision). The presence of the 5-methyl imidazole in the A-region chelated zinc and formed an H-bond with the indole NH of Trp329, as well as several hydrophobic interactions with Leu249, Trp207, and Ile321. The thiourea group in the B-region contributed to the appropriate positioning of the C -region phenyl ring for the hydrophobic interaction with Tyr299. Interestingly, the phenyl ring located between the C - and D regions participated in a hydrophobic interaction with Pro324. The piperidine ring of the D-region participated in a hydrophobic interaction with Pro326 (Figure 1.2A).

Figure 1.2. Binding modes of compound 202 in $h \mathrm{QC}$ after (A) Glide SP docking, (B) QPLD, (C) local optimization, and (D) Monte Carlo minimization. Binding modes of the protonated form of compound 202 are shown in each step. Interactions with Glu327 are highlighted in red-dotted boxes, and the distances between Glu327 and the terminal N from the D-region of the ligands are marked with black dashed lines.

Subsequently, we performed Glide QM-Polarized Ligand Docking (QPLD) in Maestro. The piperidine ring in the D-region moved toward Glu327 of the $h \mathrm{QC}$ active site (Figure 1.2B). The local optimization refinement further shifted the Glu327 side chain toward the piperidine ring of compound 202 (Figure 1.2C). We conducted Monte Carlo minimization to identify the global minimum (Figure 1.2D). This type of sequential optimization of the protein-ligand complexes induced a remarkable change in the orientation of the Glu327 side chain, leading to the formation of a salt bridge interaction, along with the H -bond with the D-region of compound 202. Overall, the A-region maintained its binding position and interactions throughout the optimization procedure, whereas the phenyl ring in the C-region formed an additional H -bond with Tyr299. Moreover, the phenyl ring located between the C- and D-regions showed additional $\pi-\pi$ interactions with Phe325
(Figure 1.3).

Figure 1.3. Refined structure of compound 202 docked with $h \mathrm{QC}$. (A) Binding interactions of compound 202 at the active site of the $h \mathrm{QC}$. Compound 202 is displayed as sticks with magenta carbon atoms, and Zn^{2+} is depicted as a purple ball. The interacting residues are depicted as light blue sticks. Hydrogen bonds are depicted as black dashed lines. (B) A 2D representation of the interactions of compound $\mathbf{2 0 2}$ with the active site residues of $h \mathrm{QC}$. Hydrophobic interactions are marked in light brown. Hydrogen bonds are shown as red-dotted arrows with the indicated directionality. The $\pi-\pi$ stacking interaction is marked as a blue disc and arrow, and the salt bridge interaction is displayed as blue wedged line.

3. Conclusion

In the present study, we synthesized and evaluated the biological activity of the D-region-modified analogues based on the previously developed lead compounds $\mathbf{2}$ and 3. In general, the modification of the piperazinyl group maintained or slightly reduced QC inhibition in vitro compared to its parent compound 2, and the rigidification of the linker between the C- and D-regions did not appear to affect biological activity. Compared to the lead compound $\mathbf{3}$, the addition of an aminoethyl group to the 2 -aminopyridine ring of the D-region slightly improved the in vitro activity up to 2.5 -fold. When we tested compounds with low IC_{50} values ($<10 \mathrm{nM}$) in mice, four compounds with high membrane penetration $(-\operatorname{logPe}=4.9$ to 5.8$)$ displayed good in vivo activity. In particular, compound 202 reduced $A \beta_{N 3 P E-40}$ formation in the brain by 30% compared to the vehicle-treated control. According to the molecular docking study of compound 202, the benzyl linker between the C- and

D-regions participated in an additional hydrophobic interaction with Phe325 in the active site. We believe that our SAR studies added valuable information regarding the D-region pharmacophore, and we will continue our efforts in lead optimization to identify QC inhibitors with better penetration and in vivo activity without any potential toxicity.

4. Experimental

4.1. Chemistry

4.1.1. General

All chemical reagents were commercially available. Silica gel column chromatography was performed on silica gel 60, 230-400 mesh, Merck. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a a JEOL JNM-LA 300 at 300 MHz , Bruker Analytik, DE/AVANCE Digital 400 at 400 MHz , a Bruker Analytik, DE/AVANCE Digital 500 at 500 MHz , and a JEOL JNM-ECA-600 at 600 MHz . Mass spectra were recorded on a VG Trio-2 GC-MS instrument and a 6460 Triple Quad LC-MS instrument. Melting points were determined on a melting point Buchi B-540 apparatus and are uncorrected. All final compounds were assessed for purity by high performance liquid chromatography (HPLC) on Agilent 1120 Compact LC (G4288A) system via the following conditions. Column: Agilent TC-C18 column ($4.6 \mathrm{~mm} \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$). Mobile phase A: MeOH , Mobile phase B: 0.1% TFA in water (v / v) in 30 min . Wavelength: 254 nM . Flow: $0.7 \mathrm{~mL} / \mathrm{min}$. According to the HPLC analyses, all final compounds showed a purity of $\geq 95 \%$.

4.1.2. General procedure

4.1.2.1. Suzuki coupling (Procedure 1)

A solution containing the triflate compound (1.0 equiv) and boronic compound (1.0 equiv) in acetonitrile and sodium carbonate (1.5 equiv) was added to a dried two-neck flask. Then, the mixture was degassed and back-filled with dry nitrogen before a suspension of tetrakis(triphenylphosphine)palladium(0) ($5 \% \mathrm{~mol}$) in acetonitrile was added. The reaction was refluxed overnight, then cooled to room temperature, quenched with water, extracted with EtOAc (2x 50 mL), dried over MgSO_{4}, and concentrated. The concentrate was purified by silica gel chromatography with EA:nhexane to obtain the product.

A dried two-neck flask was charged with aryl halide (1 equiv), phenol compound (1 equiv), cesium carbonate (2 equiv) and N, N^{\prime}-dimethylethylenediamine (0.2 equiv) in anhydrous DMF. The reaction was degassed and back-filled with dry nitrogen before CuI (0.1 equiv) in DMF was added. The reaction was stirred at $90-100^{\circ} \mathrm{C}$ for 24 h , cooled to room temperature, quenched with NaHCO_{3} and extracted with EtOAc (2x 50 mL). The organic layer was washed with water 3 times, dried over MgSO_{4}, and concentrated. The concentrate was purified by silica gel chromatography with EtOAc:n-hexane to obtain the desired product.

4.1.2.3. Mitsunobu reaction (Procedure 3)

Triphenylphosphine (1.3 equiv) was added to a solution of 4-nitroguanicol (1.0 equiv) in DCM under a nitrogen atmosphere, followed by the addition of a primary alcohol (1.2 equiv) and a solution of diethyl azodicarboxylate (1.3 equiv) in DCM. After the solution was stirred for 30 minutes at room temperature, the reaction was poured onto a column of silica and was eluted with EtOAc: n-hexane to yield the desired product.

4.1.2.4. Reduction (Procedure 4)

Procedure 4.1: AcOH (5 equiv) and Zn dust (5 equiv) were added to a solution of a nitro compound in $\mathrm{MeOH}(10 \mathrm{~mL})$ at room temperature. The reaction mixture was stirred at room temperature for 30 minutes and then filtered through a celite filter. The filtrate was portioned between $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $\mathrm{DCM}(30 \mathrm{~mL})$. The organic layer was separated, dried over MgSO_{4}, concentrated, and purified by column chromatography to provide the product.
Procedure 4.2: The nitro compound or alkene derivative was dissolved in MeOH (or mixture of MeOH and THF) and then $10 \% \mathrm{Pd} / \mathrm{C}$ was added. The mixture was stirred at room temperature under hydrogen gas until all starting material was consumed (confirmed by TCL). The crude mixture was filtered through celite filter, washed with $\mathrm{MeOH}(3 \times 50 \mathrm{~mL})$ and then concentrated. The product was subjected to the next step without further purification.

4.1.2.5. Williamson reaction (Procedure 5)

Alkyl halide (4.0 equiv) was added to a suspension of 4-nitroguanicol (1.0 equiv) and cesium carbonate (2.0 equiv) in anhydrous DMF. The reaction mixture was heated to $100^{\circ} \mathrm{C}$ for 1 hour and then cooled to room temperature before being quenched with
water. The mixture was extracted with $\mathrm{EtOAc}(2 \times 50 \mathrm{~mL}$). The organic layer was washed with water 3 times, dried with MgSO_{4} and concentrated. The concentrate was purified by column chromatography to obtain the product.

4.1.2.6. Boc protection and deprotection

Procedure 6.1: Triethylamine (1.2 equiv) and di-tert-butyl dicarbonate (2.5 equiv) in DCM were added to a suspension of the starting amine material (1.0 equiv) in DCM in an ice bath. The mixture was stirred at room temperature until starting material was consumed (confirmed by TLC). Water was added to the mixture and subsequently extracted with DCM. The organic layer was washed with a 10% aqueous NaHCO_{3} solution, water and brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by flash chromatography to obtain the desired product.

Procedure 6.2: Trifluoroacetic acid (10 equiv) was added to the solution of the bocprotected compound (1.0 equiv) in DCM (DCM:TFA $=1: 1(\mathrm{v} / \mathrm{v})$). Then, the mixture was stirred at room temperature until the starting material was consumed and evaporated. The residue was dissolved in MeOH and purified on an ion-exchange column to obtain the desired product or subjected to the next step without further purification.

4.1.2.7. TBDMS deprotection (Procedure 7)

A solution of conc. $\mathrm{HCl}(0.1 \mathrm{~mL})$ was added to the solution of t-butyl dimethyl silyl ether dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$. The mixture was stirred at room temperature overnight and then concentrated. The concentrate was dissolved in MC and washed with water. The organic layer was concentrated to obtain the desired product or purified by flash chromatography.

4.1.2.8. Thiourea coupling (Procedure 8)

A solution of the amine (1.0 equiv) in anhydrous DCM was added to a solution of 1,1 '-thiocarbonyldiimidazole (1.02 equiv) in anhydrous DCM in a dropwise manner under nitrogen gas at room temperature. The reaction mixture was stirred at room temperature until the starting material was consumed. Then, the solution of 3-(5-methyl-1 H-imidazol-1-yl)propan-1-amine (1.1 equiv) in anhydrous DCM was added
dropwise, followed by the addition of triethylamine (3.0 equiv), and stirred at room temperature until the reaction was complete (monitored with TLC). The mixture was washed with water 2 times, the combined organic layer was dried over MgSO_{4}, concentrated, and purified by column chromatography.

4.1.2.9. EDC coupling (Procedure 9)

EDC.HCl (1.1 equiv) and N, N-diisopropylethylamine (2.2 equiv) were added to a solution of the amine compound (1.0 equiv), acid compound (1.0 equiv) and HOBt (1.1 equiv) in DCM. The mixture was stirred for 24 hours at room temperature under nitrogen. The solvent was removed in vacuo and the residue purified by column chromatography on silica gel eluted with $\mathrm{DCM}: \mathrm{MeOH}$ to produce the desired compound.

4.1.2.10. N-Alkylation (Procedure 10)

A mixture of the alkyl halide, nitrogen-containing compound and excess base (NaH for compounds $\mathbf{8 0}$ and $\mathbf{8 1}, \mathrm{Cs}_{2} \mathrm{CO}_{3}$ for other compounds) in DMF was stirred at 60 ${ }^{\circ} \mathrm{C}$ for 30 min . The reaction was quenched with water and extracted with EA. The organic layer was washed with water and brine, concentrated and purified by column chromatography.

4.1.3. Intermediate compound

4.1.3.1. tert-Butyl 4-(((trifluoromethyl)sulfonyl)oxy)-3,6-dihydropyridine-1(2H)carboxylate (6). tert-Butyl 4-oxopiperidine-1-carboxylate (1 eq) was added slowly to solution of LDA (1.1 eq) in THF at $-78{ }^{\circ} \mathrm{C}$. The resulting solution was warmed to room temperature and stirred for 30 min . The solution was cooled to $-78{ }^{\circ} \mathrm{C}$ again and a solution N-phenyltrifluromethanesulfonimide (1.05 eq) in THF was added slowly. The solution was warmed to room temperature and allowed to stir for 2 more hours. The reaction was quenched with water $(50 \mathrm{~mL})$. Aqueous extraction was performed with EA ($2 \times 50 \mathrm{~mL}$), dried over MgSO_{4} and dried under vacuum rotation to get crude oil (51%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.80-5.72(\mathrm{~m}, 1 \mathrm{H}), 4.06-4.02(\mathrm{~m}, 2 \mathrm{H}), 3.63$ (t, $J=5.60 \mathrm{~Hz}, 2 \mathrm{H}), 2.48-2.40(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H})$. REGION
4.1.3.2. tert-Butyl 4-(4-hydroxyphenyl)-3,6-dihydropyridine-1(2H)-carboxylate (7). Prepare from compound $\mathbf{6}$ following the general procedure $\mathbf{1}$ to get product (86%). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 2 \mathrm{H})$, $5.89(\mathrm{~s}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=2.73 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{t}, J=5.67 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{t}, J=5.67 \mathrm{~Hz}$, $2 \mathrm{H}), 1.48$ ($\mathrm{s}, 9 \mathrm{H}$).
4.1.3.3. tert-Butyl 4-(3-(hydroxymethyl)phenyl)-5,6-dihydropyridine-1(2H)carboxylate (8). From compound 6, procedure 1; white solid. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.37-7.27(\mathrm{~m}, 4 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=5.55 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{br}, 2 \mathrm{H})$, $3.61(\mathrm{t}, J=5.40 \mathrm{~Hz}, 2 \mathrm{H}), 2.51(\mathrm{br}, 2 \mathrm{H}), 1.69(\mathrm{t}, J=5.85 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.4. tert-Butyl 4-(4-(2-methoxy-4-nitrophenoxy)phenyl)-3,6-dihydropyridine$1(2 \mathrm{H})$-carboxylate (9). Prepare from compound 7 following the general procedure 2 to get product (75\%).
4.1.3.5. tert-Butyl 4-(3-(hydroxymethyl)phenyl)piperidine-1-carboxylate (10). From compound 8, procedure 4.2; yield 99%, white solid. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.22-7.12 (m, 4H), $4.69(\mathrm{~s}, 2 \mathrm{H}), 4.23(\mathrm{br}, 2 \mathrm{H}), 2.80(\mathrm{t}, J=11.73 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{tt}, J$ $=12.09,3.87 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.6. tert-Butyl 4-(3-((2-methoxy-4-nitrophenoxy)methyl)phenyl)piperidine-1carboxylate (11). From compound 10, procedure 3; yield 64\%, light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85(\mathrm{dd}, J=8.79,2.55 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=2.55 \mathrm{~Hz}$, $1 \mathrm{H}), 7.36-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.52 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~s}$, $2 \mathrm{H}), 4.23(\mathrm{br}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{t}, J=12.09 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{t}, J=12.27 \mathrm{~Hz}, 1 \mathrm{H})$, 1.84-1.79 (m, 2H), 1.68-1.57 (m, 2H), 1.48 (s, 9H).
4.1.3.7. tert-Butyl 4-(4-hydroxyphenyl)piperazine-1-carboxylate (13). Prepare from commercially available 4-(1-piperazinyl)phenol $\mathbf{1 2}$ following the general procedure 6.1 to collect desired product (98%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.86-6.82$ (m , $2 \mathrm{H}), 6.79-6.75(\mathrm{~m}, 2 \mathrm{H}), 3.58(\mathrm{t}, J=4.95 \mathrm{~Hz}, 4 \mathrm{H}), 3.00(\mathrm{t}, J=4.95 \mathrm{~Hz}, 4 \mathrm{H}), 1.48(\mathrm{~s}$, 9H). REGION
4.1.3.8. 4-(4-Methylpiperazin-1-yl)phenol (14). A solution of 4-(1piperazinyl)phenol $\mathbf{1 2}$ in formic acid and formaldehyde ($1: 1, \mathrm{v} / \mathrm{v}$) was refluxed overnight. Then mixture was basified by dilute bicarbonate solution. DCM work-up to get crude white solid (49%). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.86-6.83(\mathrm{~m}, 2 \mathrm{H})$, 6.77-6.74 (m, 2H), 3.11 (t, $J=4.95 \mathrm{~Hz}, 4 \mathrm{H}), 2.60(\mathrm{t}, J=4.95 \mathrm{~Hz}, 4 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$.
4.1.3.9. tert-Butyl 4-(4-(2-methoxy-4-nitrophenoxy)phenyl)piperazine-1-carboxylate (15). Prepared from compound $\mathbf{1 3}$ following the general procedure 2 to afford yellow solid (63\%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{~d}, J=2.55 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{dd}, J=$ $2.76,8.97 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.93(\mathrm{~m}, 4 \mathrm{H}), 6.76(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 3.61$ (t, $J=4.92 \mathrm{~Hz}, 4 \mathrm{H}), 3.14(\mathrm{t}, J=4.95 \mathrm{~Hz}, 4 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.10. 1-(4-(2-Methoxy-4-nitrophenoxy)phenyl)-4-methylpiperazine (16). Prepare from compound 14 following the general procedure 2 to get titled product 125 mg (43%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{~d}, J=2.55 \mathrm{~Hz}, 1 \mathrm{H}$), 7.78 (dd, $J=2.67$, $8.79 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.96(\mathrm{~m}, 4 \mathrm{H}), 6.75(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{t}, J=$ $4.95 \mathrm{~Hz}, 4 \mathrm{H}), 2.60(\mathrm{t}, J=4.95 \mathrm{~Hz}, 4 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H})$.
4.1.3.11. tert-Butyl 4-(3-(methoxycarbonyl)phenyl)piperazine-1-carboxylate (18). A mixture of tert-butyl piperazine-1-carboxylate (1.0 eq), $\mathbf{1 7}$ (1.0 eq.$)$, BINAP ($5 \% \mathrm{~mol}$) and sodium tert-butoxide (3.0 eq) were placed in two neck round bottom flask. Then anhydrous toluene was added to the mixture. The mixture was degassed and backfilled with dry nitrogen gas before suspension of palladium (II) acetate ($5 \% \mathrm{~mol}$) in dry toluene was added. The mixture reaction was stirred at $100^{\circ} \mathrm{C}$ for 15 min , cooled to room temperature, quenched by water. Normal extraction and purification was applied to get white solid, yield 30%. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59(\mathrm{~s}, 1 \mathrm{H})$, $7.54(\mathrm{~d}, J=7.68 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=8.04 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.25 \mathrm{~Hz}, 1 \mathrm{H}), 3.91$ $(\mathrm{s}, 3 \mathrm{H}), 3.59(\mathrm{t}, J=4.95 \mathrm{~Hz}, 4 \mathrm{H}), 3.18(\mathrm{t}, J=5.31 \mathrm{~Hz}, 4 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.12. tert-Butyl 4-(3-(hydroxymethyl)phenyl)piperazine-1-carboxylate (19). The solution of $\mathbf{1 8}$ (1.0 eq.) in THF was cooled in ice bath. Then LAH (2.0 eq) was added slowly in the solution. After stirring 30 min the mixture reaction was applied Fisher work-up, concentrated to get white solid, yield 88%. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ REGION
$7.25(\mathrm{t}, J=7.89 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~s} .1 \mathrm{H}), 6.89-6.85(\mathrm{~m}, 2 \mathrm{H}), 4.66(\mathrm{~s}, 2 \mathrm{H}), 3.58(\mathrm{t}, J=$ $4.77 \mathrm{~Hz}, 4 \mathrm{H}), 3.15(\mathrm{t}, J=5.13 \mathrm{~Hz}, 4 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.13. tert-Butyl 4-(3-((2-methoxy-4-nitrophenoxy)methyl)phenyl)piperazine-1carboxylate (20). From compound 19, procedure 3, yield 66%, light yellow. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{dd}, J=8.79,2.58 \mathrm{~Hz}, 1 \mathrm{H}$), 7.76 (d, $J=2.37 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$ $(\mathrm{t}, J=7.71 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.88(\mathrm{~m}, 4 \mathrm{H}), 5.21(\mathrm{~s}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{t}, J=4.41$ $\mathrm{Hz}, 4 \mathrm{H}), 3.15$ (t, $J=4.20 \mathrm{~Hz}, 4 \mathrm{H}), 1.48$ (s, 9H).
4.1.3.14. 1-(2-Bromoethoxy)-2-methoxy-4-nitrobenzene (22). From 1,2dibromoethane and 21, procedure 5, yield 73%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92$ $(\mathrm{dd}, J=8.97,2.58 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=2.73 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 4.44$ (t, $J=6.39 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{t}, J=6.39 \mathrm{~Hz}, 2 \mathrm{H})$.
4.1.3.15. 1-(3-Bromopropoxy)-2-methoxy-4-nitrobenzene (23). Prepare from commercially available 21 following the general procedure 5 to get product as pale solid (67%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92(\mathrm{dd}, J=2.55,8.61 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}$, $J=2.37 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{t}, J=5.85 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H})$, $3.66(2 \mathrm{H}, 6.21 \mathrm{~Hz}, 2 \mathrm{H}), 2.44$ (quintet, $J=7.14 \mathrm{~Hz}, 2 \mathrm{H})$.
4.1.3.16. 1-(4-Bromobutoxy)-2-methoxy-4-nitrobenzene (24). Prepare from commercially available 21 and dibromobutane following the general procedure 5 to get product (85%). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{dd}, J=2.76,8.97 \mathrm{~Hz}, 1 \mathrm{H})$, $7.52(\mathrm{~d}, J=2.55 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{t}, J=5.88 \mathrm{~Hz}, 2 \mathrm{H}), 3.94$ ($\mathrm{s}, 3 \mathrm{H}$), $3.53(\mathrm{t}, J=6.39 \mathrm{~Hz}, 2 \mathrm{H}), 2.08-2.03(\mathrm{~m}, 4 \mathrm{H})$
4.1.3.17. Methyl 2-(2-methoxy-4-nitrophenoxy)acetate (25). Prepare from commercial compound 4-nitro guaiacol 21 following the general procedure 5 to get product as a pale yellow solid (90\%). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89$ (dd, $J=$ $2.55,8.79 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=2.58 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 2 \mathrm{H})$, 3.98 (s, 3H), 3.82 (s, 3H). REGION
4.1.3.18. Methyl 4-(2-methoxy-4-nitrophenoxy)butanoate (26). Prepare from 4nitroguaiacol 21 following the general procedure 5 to afford product as a pale yellow solid (99%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91(\mathrm{dd}, J=2.58,8.97 \mathrm{~Hz}, 1 \mathrm{H}$), 7.74 (d, $J=2.58 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{t}, J=6.21 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H})$, $3.70(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 2.25$ (quintet, $J=6.57 \mathrm{~Hz}, 2 \mathrm{H})$.
4.1.3.19. 3-(2-Methoxy-4-nitrophenoxy)propan-1-ol (27). From compound 21, procedure 5; yield 74%, light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91$ (dd, J $=8.97,2.55 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=2.58 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{t}, J$ $=6.06 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{q}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 2.14$ (quintet, $J=5.67 \mathrm{~Hz}$, $2 \mathrm{H})$.
4.1.3.20. t-Butyl 4-(2-(2-methoxy-4-nitrophenoxy)ethyl)piperidine-1-carboxylate (28). Prepare from 4-nitroguaiacol 21 following the general procedure 3 to get a yellow oil (90%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91$ (dd, $J=2.58,8.79 \mathrm{~Hz}, 1 \mathrm{H}$), $7.75(\mathrm{~d}, J=2.55 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.08(\mathrm{~m}, 4 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H})$, 2.72 (t, $J=12.45 \mathrm{~Hz}, 2 \mathrm{H}), 1.87(\mathrm{q}, J=6.42 \mathrm{~Hz}, 2 \mathrm{H}), 1.75-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$, 1.23-1.14 (m, 2H).
4.1.3.21. tert-Butyl 4-(2-(2-methoxy-4-nitrophenoxy)ethyl)piperazine-1-carboxylate (29). From tert-butyl piperazine-1-carboxylate and compound 22, procedure 10, yield 92%, orange solid. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{dd}, J=8.97,2.55 \mathrm{~Hz}, 1 \mathrm{H})$, 7.75 (d, $J=2.58 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{t}, J=6.03 \mathrm{~Hz}, 2 \mathrm{H}), 3.94$ (s, 3H), $3.46(\mathrm{t}, J=4.77 \mathrm{~Hz}, 4 \mathrm{H}), 2.91(\mathrm{t}, J=5.85 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{t}, J=4.95 \mathrm{~Hz}, 4 \mathrm{H})$, 1.46 ($\mathrm{s}, 9 \mathrm{H}$).
4.1.3.22. tert-Butyl 4-(3-(2-methoxy-4-nitrophenoxy)propyl)piperazine-1carboxylate (30). Prepare from 23 following the general procedure 10 to afford white solid (70%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91(\mathrm{dd}, J=2.55,8.97 \mathrm{~Hz}, 1 \mathrm{H}$), 7.74 (d, $J=2.55 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{t}, J=6.60 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H})$, $3.45(\mathrm{t}, J=4.77 \mathrm{~Hz}, 4 \mathrm{H}), 2.56(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{t}, J=4.59 \mathrm{~Hz}, 4 \mathrm{H}), 2.09$ (quintet, $J=6.60 \mathrm{~Hz}, 2 \mathrm{H}$), $1.46(\mathrm{~s}, 9 \mathrm{H})$. REGION
4.1.3.23. tert-Butyl 4-(4-(2-methoxy-4-nitrophenoxy)butyl)piperazine-1-carboxylate (31). Prepare from 24 following the general procedure 5 to get product $(76 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91(\mathrm{dd}, J=2.58,8.79 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=3.18 \mathrm{~Hz}$, $1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{t}, J=6.42 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{t}, J=$ $4.95 \mathrm{~Hz}, 4 \mathrm{H}$), 2.42-2.37 (m, 6H), 1.95 (quintet, $J=6.57 \mathrm{~Hz}, 2 \mathrm{H}$), 1.71 (quintet, $J=$ $6.96 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.24. tert-Butyl 4-(2-(2-methoxy-4-nitrophenoxy)ethyl)-3-methylpiperazine-1carboxylate (32). From tert-butyl-3-methylpiperazine-1-carboxylate and compound 22, procedure 10, yield 63%, light yellow oil.
4.1.3.25. tert-Butyl 4-(2-(2-methoxy-4-nitrophenoxy)ethyl)-2,6-dimethylpiperazine-1-carboxylate (33). From compound 22, procedure 10, white solid. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{dd}, J=8.97,2.55 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=2.55 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}$, $J=8.79 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{t}, J=5.85 \mathrm{~Hz}, 2 \mathrm{H}), 4.13-4.05(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{t}$, $J=6.03 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{~d}, J=11.16 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{dd}, J=11.34,4.38 \mathrm{~Hz}, 2 \mathrm{H}), 1.46$ ($\mathrm{s}, 9 \mathrm{H}$), $1.26(\mathrm{~d}, J=6.96 \mathrm{~Hz}, 6 \mathrm{H})$.
4.1.3.26. 1-(2-(2-Methoxy-4-nitrophenoxy)ethyl)-4-phenylpiperazine (34). From 1phenylpiperazine and compound 22, procedure 10, yield 99%, light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{dd}, J=8.97,2.76 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=2.55 \mathrm{~Hz}$, $1 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 2 \mathrm{H}), 6.96-6.93(\mathrm{~m}, 3 \mathrm{H}), 6.87(\mathrm{t}, J=7.32 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{t}, J=6.06$ $\mathrm{Hz}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{t}, J=4.95 \mathrm{~Hz}, 4 \mathrm{H}), 2.96(\mathrm{t}, J=6.24 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{t}, J=$ $4.95 \mathrm{~Hz}, 4 \mathrm{H})$.
4.1.3.27. 1-Benzyl-4-(2-(2-methoxy-4-nitrophenoxy)ethyl)piperazine (35). Prepare from 22 following the general procedure 5 to give product as yellow solid $(70 \%) .{ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.91(\mathrm{dd}, J=2.58,8.97 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=2.73 \mathrm{~Hz}$, $1 \mathrm{H}), 7.32-7.23(\mathrm{~m}, 5 \mathrm{H}), 6.92(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{t}, J=6.24 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{~s}$, $3 \mathrm{H}), 3.51(\mathrm{~s}, 2 \mathrm{H}), 2.91(\mathrm{t}, J=6.21 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{br}, 4 \mathrm{H}), 2.50(\mathrm{br}, 4 \mathrm{H})$.
4.1.3.28. 2-(4-(2-(2-Methoxy-4-nitrophenoxy)ethyl)piperazin-1-yl)pyrimidine (36). From 2-(piperazin-1-yl)pyrimidine and compound 22, procedure 10, yield 70%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.31(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.90(\mathrm{dd}, J=8.8,2.6 \mathrm{~Hz}, 1 \mathrm{H})$, REGION
$7.75(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{t}, J$ $=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{t}, J=5.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.94(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{t}$, $J=5.0 \mathrm{~Hz}, 4 \mathrm{H})$.
4.1.3.29. 5-Fluoro-2-(4-(2-(2-methoxy-4-nitrophenoxy)ethyl)piperazin-1yl)pyrimidine (37). From compound 22, procedure 10
4.1.3.30. 5-Chloro-2-(4-(2-(2-methoxy-4-nitrophenoxy)ethyl)piperazin-1yl)pyrimidine (38). From 5-chloro-2-(piperazin-1-yl)pyrimidine and compound 22, procedure 10, yield 57%. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22(\mathrm{~s}, 2 \mathrm{H}), 7.90(\mathrm{dd}, J=$ $8.80,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=2.60 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.80 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{t}, J=$ $6.00 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{t}, J=5.00 \mathrm{~Hz}, 4 \mathrm{H}), 2.94(\mathrm{t}, J=6.00 \mathrm{~Hz}, 2 \mathrm{H}), 2.67$ (t, $J=5.00 \mathrm{~Hz}, 4 \mathrm{H}$).
4.1.3.31. 2-(2-Methoxy-4-nitrophenoxy)acetic acid (39). Prepare from 25 following hydrolysis reaction in solution of NaOH to get a yellow oil as product $(88 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{dd}, J=2.76,8.97 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=2.58 \mathrm{~Hz}$, $1 \mathrm{H}), 6.89(\mathrm{~d}, J=9.00 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H})$.
4.1.3.32. 3-(2-Methoxy-4-nitrophenoxy)propanoic acid (40). The cooled solution of 27 in acetone was added slow excess of solution $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in sulfuric acid. The mixture reaction was stirred room temperature overnight, extraced by EA. The organic layer was collected, washed by dilute bicarbonate solution, concentrated and purified by silica gel to get light yellow solid, yield 68%. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90$ (dd, $J=8.97,2.73 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=2.55 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{t}$, $J=6.39 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{t}, J=6.21 \mathrm{~Hz}, 2 \mathrm{H})$.
4.1.3.33. 4-(2-Methoxy-4-nitrophenoxy)butanoic acid (41). Prepare from compound 26 following the hydrolysis reactin to give product as light yellow solid $(58 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91(\mathrm{dd}, J=2.55,8.97 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=2.55 \mathrm{~Hz}$, $1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{t}, J=6.24 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{t}, J=$ $7.14 \mathrm{~Hz}, 2 \mathrm{H}$), 2.32 (quintet, $J=6.78 \mathrm{~Hz}, 2 \mathrm{H}$). REGION
4.1.3.34. 3-(2-Methoxy-4-nitrophenoxy)propanamide (42). From compound 40 and solution of NH_{3} in THF, procedure 9 , yield 42%, light yellow solid. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{dd}, J=8.79,2.58 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=2.55 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(8.97$ $\mathrm{Hz}, 1 \mathrm{H}), 4.40(\mathrm{t}, J=6.03 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 2.81(\mathrm{t}, J=6.03 \mathrm{~Hz}, 2 \mathrm{H})$.
4.1.3.35. 4-(2-Methoxy-4-nitrophenoxy)butanamide (43). Prepare from compound 41 following the general procedure 9 to afford the desired product (70\%). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{dd}, J=2.73,8.97 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=2.73 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}$, $J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 5.62-5.38(\mathrm{br}, 2 \mathrm{H}), 4.21(\mathrm{t}, J=6.06 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{t}$, $J=7.32 \mathrm{~Hz}, 2 \mathrm{H}$), 2.26 (quintet, $J=6.24 \mathrm{~Hz}, 2 \mathrm{H}$).
4.1.3.36. 3-(2-Methoxy-4-nitrophenoxy)-N,N-dimethylpropanamide (44). From compound 40 and dimethylamine, procedure 9 , yield 45%, light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91(\mathrm{dd}, J=8.97,2.76 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=2.58 \mathrm{~Hz}$, $1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H})$, $2.98(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H})$.
4.1.3.37. 4-(2-Methoxy-4-nitrophenoxy)-N,N-dimethylbutanamide (45). Prepare from compound $\mathbf{4 1}$ following the general procedure 9 to give desired product (38% yield). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{dd}, J=2.73,8.97 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=2.73 \mathrm{~Hz}$, $1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{t}, J=6.24 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{~s}, 3 \mathrm{H})$, $2.95(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{t}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 2.25$ (quintet, $J=6.27 \mathrm{~Hz}, 2 \mathrm{H})$.
4.1.3.38. tert-Butyl 4-(2-(2-methoxy-4-nitrophenoxy)acetyl)piperazine-1-carboxylate (46). Prepare from 39 following the general procedure 9 to furnish the product as white foam (87%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89(\mathrm{dd}, J=2.55,8.79 \mathrm{~Hz}, 1 \mathrm{H}$), $7.77(\mathrm{~d}, J=2.58 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~s}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.58-$ $3.36(\mathrm{~m}, 4 \mathrm{H}), 3.44-3.40(\mathrm{~m}, 4 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.39. tert-Butyl 4-(3-(2-methoxy-4-nitrophenoxy)propanoyl)piperazine-1carboxylate (47). From compound 40 and N -Bocpiperazine, procedure 9 ; yield 76%, light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91(\mathrm{dd}, J=8.79,2.55 \mathrm{~Hz}, 1 \mathrm{H})$, $7.74(\mathrm{~d}, J=2.55 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{t}, J=6.75 \mathrm{~Hz}, 2 \mathrm{H}), 3.93$ (s, 3H), 3.52 (br, 4H), 3.45-3.41 (m, 4H), $2.93(\mathrm{t}, J=6.78 \mathrm{~Hz}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H})$. REGION
4.1.3.40. tert-Butyl 4-(4-(2-methoxy-4-nitrophenoxy)butanoyl)piperazine-1carboxylate (48). Prepare from compound 41 following the general procedure 9 to give desired product (32% yield) as a light yellow solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 7.91(\mathrm{dd}, J=2.55,8.79 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=2.58 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.97 \mathrm{~Hz}$, $1 \mathrm{H}), 4.22(\mathrm{t}, J=6.21 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{t}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{~m}, 6 \mathrm{H})$, $2.59(\mathrm{t}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 2.25$ (quintet, $J=6.60 \mathrm{~Hz}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.41. tert-Butyl 4-(2-(2-methoxy-4-nitrophenoxy)acetamido)piperidine-1carboxylate (49). Prepare from 39 following the general procedure 9 to get the product as a white foam (84%). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93$ (dd, $J=2.55$, $8.76 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=2.55 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{br}, 1 \mathrm{H}), 4.58$ $(\mathrm{s}, 2 \mathrm{H}), 4.03-4.00(\mathrm{~m}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 2.92(\mathrm{t}, J=11.34 \mathrm{~Hz}, 2 \mathrm{H}), 1.95-1.92(\mathrm{~m}$, $2 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.41-1.37(\mathrm{~m}, 2 \mathrm{H})$.
4.1.3.42. tert-Butyl 4-(3-(2-methoxy-4-nitrophenoxy)propanamido)piperidine-1carboxylate (50). Prepare from 40 following the general procedure 9 to give desired product (76%) as a light yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{dd}, J=$ $2.55,8.79 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=2.55 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{br}$, $1 \mathrm{H}), 4.39(\mathrm{t}, J=5.85 \mathrm{~Hz}, 2 \mathrm{H}), 3.93-3.92(\mathrm{~m}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{t}, J=7.32 \mathrm{~Hz}$, $2 \mathrm{H}), 2.75(\mathrm{t}, J=5.67 \mathrm{~Hz}, 2 \mathrm{H}), 1.89-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.33-1.32(\mathrm{~m}, 2 \mathrm{H})$.
4.1.3.43. tert-Butyl 4-(4-(2-methoxy-4-nitrophenoxy)butanamido)piperidine-1carboxylate (51). From compound 41 and 1-Bocpiperidin-4-amine, procedure 9, yield 94%, light yellow solid.
4.1.3.44. 1-(2-(2-Methoxy-4-nitrophenoxy)ethyl)piperazine (52). From compound 29, procedure 6.2, yield 85%.
4.1.3.45. 1-(3-(2-Methoxy-4-nitrophenoxy)propyl)piperazine.trifluoroacetic acid (53). Prepare from 30 following the general procedure 6.2 to give a pale yellow oil (93\%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93(\mathrm{dd}, J=2.58,8.79 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J$ $=2.58 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{t}, J=5.49 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H})$, 3.64-3.49 (m, 8H), $3.53(\mathrm{t}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 2.37$ (quintet, $J=6.60 \mathrm{~Hz}, 2 \mathrm{H}$). REGION
4.1.3.46. 1-(4-(2-Methoxy-4-nitrophenoxy)butyl)piperazine (54). Prepare from 31 following the general procedure 6.2 to give a pale yellow oil (95\%). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{dd}, J=2.22,8.79 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=2.19 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}$, $J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{t}, J=6.06 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.25-3.22(\mathrm{~m}, 4 \mathrm{H}), 2.84-$ $2.81(\mathrm{~m}, 4 \mathrm{H}), 2.64(\mathrm{t}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 1.95-1.90$ (quintet, $J=4.95 \mathrm{~Hz}, 2 \mathrm{H}), 1.75$ (quintet, $J=6.96 \mathrm{~Hz}, 2 \mathrm{H}$).
4.1.3.47. 4-(2-(2-Methoxy-4-nitrophenoxy) ethyl) piperidine (55). Prepare from 28 following the general procedure 6.2 to give a pale yellow oil (90%). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{dd}, J=2.76,8.97 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=2.76 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}$, $J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{t}, J=6.75 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{~d}, J=12.27 \mathrm{~Hz}, 2 \mathrm{H})$, $2.72-2.62(\mathrm{~m}, 2 \mathrm{H}), 1.87(\mathrm{q}, J=6.57 \mathrm{~Hz}, 2 \mathrm{H}), 1.81-1.73(\mathrm{~m}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.23-$ 1.14 ($\mathrm{m}, 2 \mathrm{H}$).
4.1.3.48. 2-(2-Methoxy-4-nitrophenoxy)-1-(piperazin-1-yl)ethan-1-one (56). Prepare from 46 following the general procedure 6.2 to get desired product as a pale yellow semi liquid (98%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 8.98$ (br, 1 H), 7.87 (dd, $J=2.73$, $8.97 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=2.55 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 3.90$ $(\mathrm{s}, 3 \mathrm{H}), 3.66-3.64(\mathrm{~m}, 4 \mathrm{H}), 3.20-3.16(\mathrm{~m}, 4 \mathrm{H})$
4.1.3.49. 2-(2-Methoxy-4-nitrophenoxy)-N-(piperidin-4-yl)acetamide (57). Prepare from 49 following the general procedure 6.2 to get desired product as a pale yellow semi liquid (95%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93$ (dd, $J=2.55,8.97 \mathrm{~Hz}, 1 \mathrm{H}$), $7.80(\mathrm{~d}, J=2.55 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{br}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 3.98$ $(\mathrm{s}, 3 \mathrm{H}), 3.95-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.09-3.05(\mathrm{~m}, 2 \mathrm{H}), 2.75(\mathrm{t}, J=11.52 \mathrm{~Hz}, 2 \mathrm{H}), 1.96-1.92$ (m, 2H), 1.44-1.35 (m, 2H).
4.1.3.50. 2-(4-(2-(2-Methoxy-4-nitrophenoxy)ethyl)piperazin-1-yl)ethyl 4methoxybenzoate (58). From 2-bromoethyl 4-methoxybenzoate and compound 52, procedure 10, light yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~d}, J=8.97 \mathrm{~Hz}$, $2 \mathrm{H}), 7.89(\mathrm{dd}, J=8.79,2.58 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=2.55 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.90(\mathrm{~m}, 3 \mathrm{H})$, $4.43(\mathrm{t}, J=6.03 \mathrm{~Hz}, 2 \mathrm{H}), 4.24(\mathrm{t}, J=6.03 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{t}$, $J=6.06 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{t}, J=6.06 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{br}, 8 \mathrm{H})$.
4.1.3.51. tert-Butyl 2-(4-(2-(2-methoxy-4-nitrophenoxy)ethyl)piperazin-1yl)ethylcarbamate (59). From 2-(boc-amino)ethyl bromide and compound 52, procedure 10, yield 33%, white solid.
4.1.3.52. 2-(2-(4-(2-(2-Methoxy-4-nitrophenoxy)ethyl)piperazin-1-yl)ethoxy)ethyl 4methoxybenzoate (60). From 2-(2-bromoethoxy)ethyl 4-methoxybenzoate and compound 52, procedure 10, light yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}$, $J=8.79 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{dd}, J=9.00,2.58 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=2.55 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-$ $6.89(\mathrm{~m}, 3 \mathrm{H}), 4.44(\mathrm{t}, J=4.92 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{t}, J=6.03 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.85$ (s, 3H), $3.78(\mathrm{t}, J=4.95 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{t}, J=5.67 \mathrm{~Hz}, 2 \mathrm{H}), 2.87(\mathrm{t}, J=6.21 \mathrm{~Hz}, 2 \mathrm{H})$, $2.62(\mathrm{br}, 10 \mathrm{H})$.
4.1.3.53. tert-Butyl 2-(2-(4-(2-(2-methoxy-4-nitrophenoxy)ethyl)piperazin-1yl)ethoxy)ethylcarbamate (61). From tert-butyl N-(2-(2bromoethoxy)ethyl)carbamate and compound 52, procedure 10, light yellow oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89(\mathrm{dd}, J=8.79,2.58 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=2.76 \mathrm{~Hz}$, $1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{br}, 1 \mathrm{H}), 4.24(\mathrm{t}, J=6.21 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H})$, $3.58(\mathrm{t}, J=5.67 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{t}, J=4.95 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{q}, J=4.92 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{t}$, $J=6.03 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{br}, 4 \mathrm{H}), 2.59(\mathrm{t}, J=5.70 \mathrm{~Hz}, 6 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.54. 1-(4-(2-(2-Methoxy-4-nitrophenoxy)ethyl)piperazin-1-yl)ethanone (62). The solution of $\mathbf{5 2}$ in DCM was added excess acetyl chloride and TEA at $0-5^{\circ} \mathrm{C}$. The mixture reaction was stirred at room temperature for 1 h , then diluted with DCM and quenched by water. The organic layer was washed with water, concentrated and purified by silica gel to get light yellow solid, yield 93%.
4.1.3.55. 1-(2-((tert-Butyldimethylsilyl)oxy)ethyl)-4-(3-(2-methoxy-4nitrophenoxy)propyl)piperazine (63). Prepare from 53 following the general procedure 10 to afford red solid (65%). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{dd}, J=$ $2.60,8.96 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=2.56 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.96 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{t}, J=$ $6.56 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{t}, J=6.36 \mathrm{~Hz}, 2 \mathrm{H}), 2.53-2.49(\mathrm{~m}, 12 \mathrm{H}), 2.06$ (quintet, $J=6.80 \mathrm{~Hz}, 2 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H})$. REGION
4.1.3.56. tert-Butyl (2-(4-(3-(2-methoxy-4-nitrophenoxy)propyl)piperazin-1yl)ethyl)carbamate (64). Prepare from 53 following the general procedure 10 to afford red solid $(47 \%) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{dd}, J=2.58,8.79 \mathrm{~Hz}$, $1 \mathrm{H}), 7.74(\mathrm{~d}, J=2.58 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{br}, 1 \mathrm{H}), 4.20(\mathrm{t}, J=$ $6.39 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{q}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 2.58-2.51(\mathrm{~m}, 12 \mathrm{H}), 2.10$ (quintet, 2 H), $1.45(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.57. tert-Butyl (2-(4-(4-(2-methoxy-4-nitrophenoxy)butyl)piperazin-1$y l$)ethyl)carbamate (65). Prepare from 54 following the general procedure 10 to afford yellow semi solid (38\%).
4.1.3.58. 1-(2-((tert-Butyldimethylsilyl)oxy)ethyl)-4-(4-(2-methoxy-4nitrophenoxy)butyl)piperazine (66). Prepare from 54 following the general procedure 10 to afford yellow semi solid (40%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88$ (dd, $J=$ $2.52,8.96 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=2.52 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.92 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{t}, J=$ $6.64 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{t}, J=6.40 \mathrm{~Hz}, 2 \mathrm{H}), 2.52-2.49(\mathrm{~m}, 10 \mathrm{H}), 2.40(\mathrm{t}, J=$ $7.16 \mathrm{~Hz}, 2 \mathrm{H}$), 1.92 (quintet, $J=4.95 \mathrm{~Hz}, 2 \mathrm{H}$), 1.69 (quintet, $J=6.36 \mathrm{~Hz}, 2 \mathrm{H}$), 0.86 ($\mathrm{s}, 9 \mathrm{H}$) , $0.03(\mathrm{~s}, 6 \mathrm{H})$.
4.1.3.59. 1-(2-(tert-Butyldimethylsilyloxy) ethyl)-4-(2-(2-methoxy-4-nitrophenoxy) ethyl) piperidine (67). Prepare from 55 following the general procedure 10 to afford a yellow semi solid (42%). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{dd}, J=2.73,8.97 \mathrm{~Hz}$, $1 \mathrm{H}), 7.68(\mathrm{~d}, J=2.55 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.06(\mathrm{~m}, 4 \mathrm{H}), 3.88(\mathrm{~s}$, $3 \mathrm{H}), 3.74(\mathrm{t}, J=4.77 \mathrm{~Hz}, 2 \mathrm{H}) 2.72-2.62(\mathrm{~m}, 2 \mathrm{H}), 1.87(\mathrm{q}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.71-1.67$ $(\mathrm{m}, 3 \mathrm{H}), 1.21-1.13(\mathrm{~m}, 4 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H})$
4.1.3.60. tert-Butyl 2-(4-(2-(2-methoxy-4-nitrophenoxy)ethyl)piperidin-1yl)ethylcarbamate (68). Prepare from 55 following the general procedure 10 to afford yellow semi solid (43%). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{dd}, J=2.55,8.79 \mathrm{~Hz}$, $1 \mathrm{H}), 7.75(\mathrm{~d}, J=2.55 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~s}, \mathrm{NH}), 4.16(\mathrm{t}, J=$ $6.24 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{br}, 2 \mathrm{H}), 2.47(\mathrm{t}, J=6.06 \mathrm{~Hz}, 2 \mathrm{H}), 2.03-1.99(\mathrm{~m}, 2 \mathrm{H})$, 1.87 (quintet, $J=6.42 \mathrm{~Hz}, 4 \mathrm{H}), 1.77-1.73(\mathrm{~m}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.40-1.35(\mathrm{~m}, 2 \mathrm{H})$. REGION
4.1.3.61. 1-(4-(2-((tert-Butyldimethylsilyl)oxy)ethyl)piperazin-1-yl)-2-(2-methoxy-4-nitrophenoxy)ethan-1-one (69). Prepare from 56 following the general procedure 10 to get $353 \mathrm{mg}(78 \%)$ of white solid. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{dd}, J=2.55$, $9.00 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=2.76 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 2 \mathrm{H}), 3.90$ $(\mathrm{s}, 3 \mathrm{H}), 3.71(\mathrm{t}, J=5.88 \mathrm{~Hz}, 2 \mathrm{H}),, 3.57-3.49(\mathrm{~m}, 2 \mathrm{H}), 3.53-3.50(\mathrm{~m}, 2 \mathrm{H}), 2.50-2.42$ (m, 6H), $0.80(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H})$.
4.1.3.62. tert-Butyl (2-(4-(2-(2-methoxy-4-nitrophenoxy)acetyl)piperazin-1$y l$)ethyl)carbamate (70). Prepare from 56 following the general procedure $\mathbf{1 0}$ to give a white solid (31%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89(\mathrm{dd}, J=2.58,8.97 \mathrm{~Hz}, 1 \mathrm{H}$), $7.77(\mathrm{~d}, J=2.55 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.61-$ $3.58(\mathrm{~m}, 4 \mathrm{H}), 3.24-3.20(\mathrm{~m}, 2 \mathrm{H}), 2.46-2.43(\mathrm{~m}, 6 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$
4.1.3.63. N-(1-(2-((tert-Butyldimethylsilyl)oxy)ethyl)piperidin-4-yl)-2-(2-methoxy-4nitrophenoxy)acetamide (71). Prepare from 57 following the general procedure 10 to give an opaque semi liquid (45%). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{dd}, J=2.40$, $8.79 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=2.37 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{br}, 1 \mathrm{H}), 4.51$ $(\mathrm{s}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.88-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{t}, J=6.21 \mathrm{~Hz}, 2 \mathrm{H}), 2.82-2.78(\mathrm{~m}, 2 \mathrm{H})$, $2.51(\mathrm{t}, J=6.24 \mathrm{~Hz}, 2 \mathrm{H}), 1.87-1.82(\mathrm{~m}, 4 \mathrm{H}), 1.49-1.46(\mathrm{~m}, 2 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}$, $6 \mathrm{H})$
4.1.3.64. tert-Butyl (2-(4-(2-(2-methoxy-4-nitrophenoxy)acetamido)piperidin-1yl)ethyl)carbamate (72). Prepare from 57 following the general procedure 5 to get pale semi solid (51%). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{dd}, J=2.37,8.97 \mathrm{~Hz}$, $1 \mathrm{H}), 7.80(\mathrm{~d}, J=2.40 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{br}, 1 \mathrm{H}), 4.93(\mathrm{br}, 1 \mathrm{H})$, $4.57(\mathrm{~s}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.94-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{q}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 2.83-2.79(\mathrm{~m}$, $2 \mathrm{H}), 2.47(\mathrm{t}, J=6.06 \mathrm{~Hz}, 2 \mathrm{H}), 2.19(\mathrm{t}, J=10.80 \mathrm{~Hz}, 2 \mathrm{H}), 1.96-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.52-$ $1.46(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.65. 2-(2-(2-methoxy-4-nitrophenoxy)ethyl)isoindoline-1,3-dione (73). Prepare from 4-nitroguaiacol 21 following the general procedure 5 to afford product as a white solid (87%). ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85-7.83(\mathrm{~m}, 3 \mathrm{H}), 7.73-7.71(\mathrm{~m}$, $2 \mathrm{H}), 7.68(\mathrm{~d}, J=2.76 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.15$ (d, $J=6.42 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$. REGION
4.1.3.66. 2-(2-methoxy-4-nitrophenoxy)ethanamine (74). Prepare from 73 (530 mg , $1.55 \mathrm{mmol})$ was dissolved in 5 mL mixture of ethanol and dichloromethane $(4 / 1=$ $\mathrm{v} / \mathrm{v}), \mathrm{N}_{2} \mathrm{H}_{4} . \mathrm{H}_{2} \mathrm{O}(0.3 \mathrm{~mL}, 6.2 \mathrm{mmol})$ was added dropwise. The mixture was stirred at room temperature for 2 hours. A white precipitate formed. The precipitation was removed by vacuum filtration through a filter. The solid was wash with EtOH (20 mL $x 3$). The filtrate was collected and concentrated by rotary evaporation and purified by column chromatography $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=1 / 9\right)$ to give desired product as yellow solid (78\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{dd}, J=2.80,8.72 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}$, $J=2.60 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.92 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{t}, J=5.32 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H})$, $3.06(\mathrm{t}, J=5.32 \mathrm{~Hz}, 2 \mathrm{H})$.
4.1.3.67. t-Butyl 4-(2-(2-methoxy-4-nitrophenoxy)ethylcarbamoyl)piperidine-1carboxylate (75). Prepare from 74 following the general procedure 9 to afforded the desired amide (84%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89(\mathrm{dd}, J=2.56,8.92 \mathrm{~Hz}, 1 \mathrm{H})$, $7.74(\mathrm{~d}, J=2.56 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.96 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{br}, \mathrm{NH}) 4.19(\mathrm{t}, J=5.08$ $\mathrm{Hz}, 2 \mathrm{H}$), 4.16 (br, 2H), 3.93 ($\mathrm{s}, 3 \mathrm{H}$), 3.73 (q, $J=5.36 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{t}, J=11.72 \mathrm{~Hz}$, $2 \mathrm{H}), 2.27-2.20(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.68. tert-Butyl 4-methylpyridin-2-ylcarbamate (77). From 2-amino-4-picoline 76, procedure 6.1, yield 77%, white solid. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.46(\mathrm{~s}, 1 \mathrm{H})$, $8.14(\mathrm{~d}, J=5.13 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=5.13 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.54$ (s, 9H).
4.1.3.69. tert-Butyl 4-(4-(tert-butyldimethylsilyloxy)butyl)pyridin-2-ylcarbamate (78). From compound 77, yield 94%, white solid. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08$ $(\mathrm{d}, J=5.13 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{br}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=5.31,1.47 \mathrm{~Hz}, 1 \mathrm{H})$, $3.58(\mathrm{t}, J=6.42 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{t}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 1.73-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.46(\mathrm{~m}$, $2 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H})$.
4.1.3.70. tert-Butyl 4-(4-(2-methoxy-4-nitrophenoxy)butyl)pyridin-2-ylcarbamate (79). Compound 78 was first de protected group by tetra-n-butylammonium fluoride in THF then following the general procedure 3 to get light yellow solid product, yield $74 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.13(\mathrm{~d}, J=5.13 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{dd}, J=8.79$, $2.58 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=2.55 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{br}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.97$ REGION
$\mathrm{Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=5.13,1.47 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{t}, J=6.03 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 2.70$ $(\mathrm{t}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 1.95-1.84(\mathrm{~m}, 4 \mathrm{H}), 1.53(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.71. tert-Butyl (4-(4-(2-methoxy-4-nitrophenoxy)butyl)pyridin-2$y l)$ (methyl)carbamate (80). Prepare from 79 following the general procedure 10 to afford pale yellow solid (64%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.27(\mathrm{~d}, J=5.13 \mathrm{~Hz}$, $1 \mathrm{H}), 7.91(\mathrm{dd}, J=2.76,9.15 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=2.85 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 6.89-$ $6.86(\mathrm{~m}, 3 \mathrm{H}), 4.11(\mathrm{t}, J=6.42 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{t}, J=7.71$ $\mathrm{Hz}, 2 \mathrm{H}), 1.93-1.84(\mathrm{~m}, 4 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.72. tert-Butyl (4-(4-(2-methoxy-4-nitrophenoxy)butyl)pyridin-2$y l)$ (methyl)carbamate (81). Prepare from 79 following the general procedure 10 to afford pale yellow solid (53\%).
4.1.3.73. tert-Butyl (2-((tert-butoxycarbonyl)amino)ethyl)(4-(4-(2-methoxy-4-nitrophenoxy)butyl)pyridin-2-yl)carbamate (82). Prepare from 79 following the general procedure 10 to afford red solid product (52%). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.25(\mathrm{~d}, J=4.95 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=1.47,5.13 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J$ $=8.40 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~d}, J=2.58 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dd}, J=2.55,8.43 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{t}, J$ $=6.60 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{t}, J=6.03 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{t}, J=6.42 \mathrm{~Hz}, 2 \mathrm{H}), 2.68$ $(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 1.83-1.79(\mathrm{~m}, 4 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.74. tert-Butyl 4-(4-(4-amino-2-methoxyphenoxy)phenyl)-3,6-dihydropyridine$1(2 \mathrm{H})$-carboxylate (83). Prepare from compound 9 following the general procedure 4.1 to get product as opaque solid (65%). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27(\mathrm{~d}, J=$ $8.61 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 2 \mathrm{H}), 6.36(\mathrm{~d}, J=2.55 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{dd}, J=2.55$, $8.43 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 5.93-5.90(\mathrm{~m}, 1 \mathrm{H}), 4.05-4.02(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.64$ (t, $J=6.69 \mathrm{~Hz}, 2 \mathrm{H}), 2.48-2.45(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.75. tert-Butyl 4-(3-((4-amino-2-methoxyphenoxy)methyl)phenyl)piperidine-1carboxylate (84). From compound 11, procedure 4.1; yield 93%, red solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H})$, $6.32(\mathrm{~d}, J=2.55 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{dd}, J=8.40,2.55 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 2 \mathrm{H}), 4.22(\mathrm{br}$,
$2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.75(\mathrm{t}, J=13.17 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{tt}, J=12.06,1 \mathrm{H}), 1.83-1.79(\mathrm{~m}$, $2 \mathrm{H}), 1.69-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.76. tert-Butyl 4-(3-((4-amino-2-methoxyphenoxy)methyl)phenyl)piperazine-1carboxylate (85). From compound 20, procedure 4.1, yield 78\%, red solid.
4.1.3.77. tert-Butyl 4-(4-(4-amino-2-methoxyphenoxy)phenyl)piperidine-1carboxylate (86). Prepare from compound 9 following the general procedure 4.2 to get product as red semi solid (81%). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.08-7.05$ (m, $3 \mathrm{H}), 6.85(\mathrm{~d}, J=8.64 \mathrm{~Hz}, 2 \mathrm{H}), 6.36(\mathrm{~d}, J=2.58 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{dd}, J=2.76,8.43 \mathrm{~Hz}$, $1 \mathrm{H}), 4.20(\mathrm{t}, J=10.08 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{t}, J=11.52 \mathrm{~Hz}, 2 \mathrm{H}), 2.58-2.53$ $(\mathrm{m}, 1 \mathrm{H}), 1.81(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.78. tert-Butyl 4-(4-(4-amino-2-methoxyphenoxy)phenyl)piperazine-1carboxylate (87). Prepared from compound 15 following the general producer 4.2 to afford a red solid (99%). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.84-6.80(\mathrm{~m}, 4 \mathrm{H}), 6.79(\mathrm{~d}, \mathrm{~J}$ $=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=2.40 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{dd}, J=2.55,8.40 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}$, $3 \mathrm{H}), 3.58(\mathrm{t}, J=4.95 \mathrm{~Hz}, 4 \mathrm{H}), 3.03(\mathrm{t}, J=4.56 \mathrm{~Hz}, 4 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.79. 3- Methoxy-4-(4-(4-methylpiperazin-1-yl)phenoxy)aniline (88). Prepare from compound 16 following the general procedure 4.2 to get titled product as red solid (96%).
4.1.3.80. Methyl 2-(4-amino-2-methoxyphenoxy)acetate (89). Prepare from compound 25 following the general procedure 4.2 to to afford desired product as yellow solid (99\%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.77$ (d, $J=8.40 \mathrm{~Hz}, 1 \mathrm{H}$), 6.29 (s, $1 \mathrm{H}), 6.20(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$.
4.1.3.81. tert-Butyl 4-(2-(4-amino-2-methoxyphenoxy)ethyl)-3-methylpiperazine-1carboxylate (90). From compound 32, procedure 4.2, yield 99\%, pink oil.
4.1.3.82. tert-Butyl 4-(2-(4-amino-2-methoxyphenoxy)ethyl)-2,6-dimethylpiperazine-1-carboxylate (91). From compound 33, procedure 4.2; yield 99\%, pink solid. REGION
4.1.3.83. 3-Methoxy-4-(2-(4-phenylpiperazin-1-yl)ethoxy)aniline (92). From compound 34, procedure 4.2 , yield 92%, red solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.26(\mathrm{t}, J=7.97 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=7.86 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{t}, J=7.32 \mathrm{~Hz}, 1 \mathrm{H}), 6.77$ $(\mathrm{d}, J=8.25 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=2.55 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=8.25,2.37 \mathrm{~Hz}, 1 \mathrm{H}), 4.11$ $(\mathrm{t}, J=6.03 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{t}, J=4.95 \mathrm{~Hz}, 4 \mathrm{H}), 2.86(\mathrm{t}, J=6.21 \mathrm{~Hz}, 2 \mathrm{H})$, $2.75(\mathrm{t}, J=4.95 \mathrm{~Hz}, 4 \mathrm{H})$.
4.1.3.84. 4-(2-(4-Benzylpiperazin-1-yl)ethoxy)-3-methoxyaniline (93). Prepare from 35 following the general procedure 4.2 to afford desired product (94%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.74(\mathrm{~d}, J=8.25 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 6.21$ $(\mathrm{d}, J=8.25 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{t}, J=5.85 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 2 \mathrm{H}), 2.81(\mathrm{t}, J=$ $6.21 \mathrm{~Hz}, 2 \mathrm{H}$), 2.60 (br, 4H), 2.51 (br, 4H).
4.1.3.85. 3-Methoxy-4-(2-(4-(pyrimidin-2-yl)piperazin-1-yl)ethoxy)aniline (94). From compound 36, procedure 4.2, yield 77%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.31$ $(\mathrm{d}, J=4.80 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=8.40 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{t}, J=4.80 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=$ $4.60 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=8.40,2.60 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{t}, J=6.00 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{t}, J=$ $5.00 \mathrm{~Hz}, 4 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.84(\mathrm{t}, J=6.00 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{t}, J=5.00 \mathrm{~Hz}, 4 \mathrm{H})$.
4.1.3.86. 4-(2-(4-(5-Fluoropyrimidin-2-yl)piperazin-1-yl)ethoxy)-3-methoxyaniline (95). From compound 37, procedure 4.2, yield 67%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.19(\mathrm{~s}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=8.40 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=2.64 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=8.20$, $2.60 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{t}, J=6.00 \mathrm{~Hz}, 2 \mathrm{H}), 3.81-3.77(\mathrm{~m}, 7 \mathrm{H}), 2.83(\mathrm{t}, J=6.00 \mathrm{~Hz}, 2 \mathrm{H})$, $2.64(\mathrm{t}, J=5.04 \mathrm{~Hz}, 4 \mathrm{H})$.
4.1.3.87. 4-(2-(4-(5-Chloropyrimidin-2-yl)piperazin-1-yl)ethoxy)-3-methoxyaniline (96). From compound 38, procedure 4.2, yield 36%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.21(\mathrm{~s}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=8.40 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=2.64 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=8.24$, $2.60 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{t}, J=6.00 \mathrm{~Hz}, 2 \mathrm{H}), 3.81-3.77(\mathrm{~m}, 7 \mathrm{H}), 2.83(\mathrm{t}, J=6.00 \mathrm{~Hz}, 2 \mathrm{H})$, $2.64(\mathrm{t}, J=5.00 \mathrm{~Hz}, 4 \mathrm{H})$.
4.1.3.88. 3-(4-Amino-2-methoxyphenoxy)propanamide (97). From compound 42, procedure 4.2, yield 66%, red solid. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.79(\mathrm{~d}, J=8.43$
$\mathrm{Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=2.55 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{dd}, J=8.25,2.58 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{br}, 2 \mathrm{H})$, $4.15(\mathrm{t}, J=5.49 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.68(\mathrm{t}, J=5.49 \mathrm{~Hz}, 2 \mathrm{H})$.
4.1.3.89. 4-(4-Amino-2-methoxyphenoxy)butanamide (98). Prepare from compound 43 and solution of NH_{3} in THF following the general procedure 4.2, (96%). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.75(\mathrm{~d}, J=8.40 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=2.55 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dd}, J$ $=2.73,8.40 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{br}, \mathrm{NH}), 5.27(\mathrm{br}, \mathrm{NH}), 4.00(\mathrm{t}, J=6.03 \mathrm{~Hz}, 2 \mathrm{H}), 3.80$ $(\mathrm{s}, 3 \mathrm{H}), 2.49(\mathrm{t}, J=6.93 \mathrm{~Hz}, 2 \mathrm{H}), 2.14$ (quintet, $J=5.85 \mathrm{~Hz}, 2 \mathrm{H}$).
4.1.3.90. 3-(4-Amino-2-methoxyphenoxy)-N,N-dimethylpropanamide (99). From compound 44 , procedure 4.2 , yield 88%, red solid. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $6.79(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=2.55 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{dd}, J=8.25,2.55 \mathrm{~Hz}, 1 \mathrm{H})$, $4.27(\mathrm{t}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{t}, J=7.35 \mathrm{~Hz}$, $2 \mathrm{H})$.
4.1.3.91. 4-(4-Amino-2-methoxyphenoxy)-N,N-dimethylbutanamide (100). Prepare from compound 45 following the general procedure 4.2 to afford product $(97 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.75(\mathrm{~d}, J=8.22 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=2.55 \mathrm{~Hz}, 1 \mathrm{H}), 6.22$ $(\mathrm{dd}, J=2.73,8.40 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{t}, J=6.21 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{~s}, 3 \mathrm{H}), 2.94$ ($\mathrm{s}, 3 \mathrm{H}$), $2.56(\mathrm{t}, J=7.50 \mathrm{~Hz}, 2 \mathrm{H}), 2.12$ (quintet, $J=7.68 \mathrm{~Hz}, 2 \mathrm{H})$.
4.1.3.92. tert-Butyl 4-(2-(4-amino-2-methoxyphenoxy)acetyl)piperazine-1carboxylate (101). From compound 46, procedure 4.2, yield 95% as red solid.
4.1.3.93. tert-Butyl 4-(3-(4-amino-2-methoxyphenoxy)propanoyl)piperazine-1carboxylate (102). From compound 47, procedure 4.2, yield 88%, red solid.
4.1.3.94. tert-Butyl 4-(4-(4-amino-2-methoxyphenoxy)butanoyl)piperazine-1carboxylate (103). Prepare from compound 48 following the general procedure 4.2 to afford product $(99 \%) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.74(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H})$, $6.30(\mathrm{~d}, J=2.58 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{dd}, J=2.58 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{t}, J=5.85 \mathrm{~Hz}, 2 \mathrm{H}), 3.80$ $(\mathrm{s}, 3 \mathrm{H}), 3.59-3.51(\mathrm{~m}, 4 \mathrm{H}), 3.45-3.41(\mathrm{~m}, 4 \mathrm{H}), 2.58(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 2.12$ (quintet, $J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H})$. REGION
4.1.3.95. tert-Butyl 4-(2-(4-amino-2-methoxyphenoxy)acetamido)piperidine-1carboxylate (104). Prepare from 49 following the general procedure 4.2 to afford a red solid (86%). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.16(\mathrm{br}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.43 \mathrm{~Hz}$, $1 \mathrm{H}), 6.29(\mathrm{~d}, J=2.55 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dd}, J=2.37,8.25 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 3.98-$ $3.88(\mathrm{~m}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.93(\mathrm{t}, J=12.63 \mathrm{~Hz}, 2 \mathrm{H}), 1.92-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}$, $9 \mathrm{H}), 1.36-1.33(\mathrm{~m}, 2 \mathrm{H})$
4.1.3.96. tert-Butyl 4-(3-(4-amino-2-methoxyphenoxy)propanamido)piperidine-1carboxylate (105). Prepare from 50 following the general procedure 4.2 to afford product, yield (89%). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.76(\mathrm{~d}, J=8.40 \mathrm{~Hz}, 1 \mathrm{H}), 6.30$ $(\mathrm{d}, J=2.58 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dd}, J=2.37,8.22 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{t}, J=5.67 \mathrm{~Hz}, 2 \mathrm{H}), 4.01-$ $3.98(\mathrm{~m}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.93(\mathrm{t}, J=11.55 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{t}, J=5.67 \mathrm{~Hz}, 2 \mathrm{H}), 1.92-$ $1.87(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.35-1.31(\mathrm{~m}, 2 \mathrm{H})$.
4.1.3.97. tert-Butyl 4-(4-(4-amino-2-methoxyphenoxy)butanamido)piperidine-1carboxylate (106). From compound 51, procedure 4.2, yield 90%, red solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.70(\mathrm{~d}, J=8.32 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=2.48 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{dd}, J$ $=8.40,2.52 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=7.68 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.87(\mathrm{~m}, 5 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.80$ ($\mathrm{t}, J=11.92 \mathrm{~Hz}, 2 \mathrm{H}$), $2.37(\mathrm{t}, J=7.08 \mathrm{~Hz}, 2 \mathrm{H}), 2.06$ (quintet, $J=6.40 \mathrm{~Hz}, 2 \mathrm{H}), 1.81$ (br, 2H), 1.43 ($\mathrm{s}, 9 \mathrm{H}$), 1.23-1.17 (m, 2H).
4.1.3.98. 2-(4-(2-(4-Amino-2-methoxyphenoxy)ethyl)piperazin-1-yl)ethyl 4methoxybenzoate (107). From compound 52, procedure 4.2, yield 62%, pink oil.
4.1.3.99. tert-Butyl 2-(4-(2-(4-amino-2-methoxyphenoxy)ethyl)piperazin-1yl)ethylcarbamate (108). From compound 59, procedure 4.2, yield 99%, pink solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.74(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=2.58 \mathrm{~Hz}, 1 \mathrm{H})$, $6.20(\mathrm{dd}, J=8.43,2.58 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 4.06(\mathrm{t}, J=6.03 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, $3.22(\mathrm{br}, 2 \mathrm{H}), 2.80(\mathrm{t}, J=6.03 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{br}, 4 \mathrm{H}), 2.47(\mathrm{br}, 6 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.100. 2-(2-(4-(2-(4-Amino-2-methoxyphenoxy)ethyl)piperazin-1-yl)ethoxy)ethyl 4-methoxybenzoate (109). From compound 60, procedure 4.2, pink oil. REGION
4.1.3.101. tert-Butyl 2-(2-(4-(2-(4-amino-2-methoxyphenoxy)ethyl)piperazin-1yl)ethoxy)ethylcarbamate (110). From compound 61, procedure 4.2, yield 80\%, pink oil.
4.1.3.102. 1-(4-(2-(4-Amino-2-methoxyphenoxy)ethyl)piperazin-1-yl)ethanone (111). From compound 62, procedure 4.2, yield 99%, red solid. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.74(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=2.37 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=8.34,2.37$ $\mathrm{Hz}, 1 \mathrm{H}), 4.06(\mathrm{t}, J=5.67 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{t}, J=4.56 \mathrm{~Hz}, 4 \mathrm{H}), 3.49(\mathrm{t}, J=$ $4.95 \mathrm{~Hz}, 4 \mathrm{H}), 2.80(\mathrm{t}, J=5.85 \mathrm{~Hz}, 2 \mathrm{H}), 2.61-2.53(\mathrm{~m}, 4 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H})$.
4.1.3.103. 4-(3-(4-(2-((tert-Butyldimethylsilyl)oxy)ethyl)piperazin-1-yl)propoxy)-3methoxyaniline (112). Prepare from 63 following the general procedure 4.2 to afford red solid (80%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.69(\mathrm{~d}, J=8.22 \mathrm{~Hz}, 1 \mathrm{H}$), $6.24(\mathrm{~d}, J$ $=2.58 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{dd}, J=2.04,7.99 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{t}, J=5.57 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}$, $3 \mathrm{H}), 3.72(\mathrm{t}, J=6.57 \mathrm{~Hz}, 2 \mathrm{H}), 2.49-2.45(\mathrm{~m}, 12 \mathrm{H}), 1.95(\mathrm{q}, J=7.86 \mathrm{~Hz}, 2 \mathrm{H}), 0.83(\mathrm{~s}$, $9 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H})$.
4.1.3.104. tert-Butyl (2-(4-(3-(4-amino-2-methoxyphenoxy)propyl)piperazin-1yl)ethyl)carbamate (113). Prepare from 64 following the general procedure 4.2 to afford red solid (92%). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.75(\mathrm{~d}, J=6.57 \mathrm{~Hz}, 1 \mathrm{H}), 6.29$ $(\mathrm{d}, J=2.55 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{dd}, J=2.61,8.85 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{br}, 1 \mathrm{H}), 3.97(\mathrm{t}, J=6.39$ $\mathrm{Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.21-3.18(\mathrm{~m}, 2 \mathrm{H}), 2.46-2.40(\mathrm{~m}, 12 \mathrm{H}), 1.96$ (quintet, $J=7.14$ $\mathrm{Hz}, 2 \mathrm{H}), 1.45$ (s, 9H).
4.1.3.105. tert-Butyl (2-(4-(4-(4-amino-2-methoxyphenoxy)butyl)piperazin-1yl)ethyl)carbamate (114). Prepare from 65 following the general procedure 4.2 to afford red solid (91%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.71(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 6.28$ $(\mathrm{d}, J=2.37 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dd}, J=2.55,8.43 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{br}, \mathrm{NH}), 3.93(\mathrm{t}, J=6.60$ $\mathrm{Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{q}, J=6.66 \mathrm{~Hz}, 2 \mathrm{H}), 2.44-2.34(\mathrm{~m}, 12 \mathrm{H}), 1.76$ (quintet, J $=7.14 \mathrm{~Hz}, 2 \mathrm{H}$), 1.67 (quintet, $J=6.96 \mathrm{~Hz}, 2 \mathrm{H}$), $1.43(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.106. 4-(4-(4-(2-((tert-Butyldimethylsilyl)oxy)ethyl)piperazin-1-yl)butoxy)-3methoxyaniline (115). Prepare from 66 following the general procedure 4.2 to afford red solid (91%). REGION
4.1.3.107. 4-(2-(1-(2-(tert-Butyldimethylsilyloxy)ethyl)piperidin-4-yl)ethoxy)-3methoxyaniline (116). Prepare from 67 following the general procedure 4.2 to afford a red solid (73%). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.72(\mathrm{~d}, J=8.40 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}$, $J=2.55 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{dd}, J=2.55,8.40 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{t}, J=6.78 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H}), 3.78(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 2.51(\mathrm{br}, 2 \mathrm{H}), 2.07(\mathrm{br}, 2 \mathrm{H}), 1.73-1.63(\mathrm{~m}, 6 \mathrm{H}), 1.20-$ $1.13(\mathrm{~m}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H})$
4.1.3.108. tert-Butyl 2-(4-(2-(4-amino-2-methoxyphenoxy)ethyl)piperidin-1yl)ethylcarbamate (117). Prepare from 68 following the general procedure 4.2 to afford a red solid (75%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.73(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}$), $6.29(\mathrm{~d}, J=2.55 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{dd}, J=2.40,8.40 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{br}, 2 \mathrm{H}), 2.90(\mathrm{br}, 2 \mathrm{H}), 2.46(\mathrm{br}, 2 \mathrm{H}), 2.05(\mathrm{br}, 2 \mathrm{H}), 1.73-1.63(\mathrm{~m}$, $5 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.25-1.14(\mathrm{~m}, 2 \mathrm{H})$
4.1.3.109.

2-(4-Amino-2-methoxyphenoxy)-1-(4-(2-((tert-butyldimethylsilyl)oxy)ethyl)piperazin-1-yl)ethan-1-one (118). Prepare from 69 following the general procedure 4.2 to afford as red solid $(91 \%) .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 6.75(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=2.55 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{dd}, J=2.58,8.43$ $\mathrm{Hz}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{t}, J=6.06 \mathrm{~Hz}, 2 \mathrm{H}), 3.57-3.54(\mathrm{~m}, 4 \mathrm{H}), 2.48-$ $2.41(\mathrm{~m}, 6 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H})$.
4.1.3.110. tert-Butyl (2-(4-(2-(4-amino-2-methoxyphenoxy)acetyl)piperazin-1yl)ethyl)carbamate (119). Prepare from 70 following the general procedure 4.2 to afford as an red solid (61%). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.78(\mathrm{~d}, J=8.40 \mathrm{~Hz}, 1 \mathrm{H})$, $6.27(\mathrm{~d}, J=2.48 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{dd}, J=2.64,8.48 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{br}, 1 \mathrm{H}), 4.59(\mathrm{~s}$, $2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.64-3.60(\mathrm{~m}, 4 \mathrm{H}), 3.21-3.19(\mathrm{~m}, 2 \mathrm{H}), 2.44-2.41(\mathrm{~m}, 6 \mathrm{H}), 1.43(\mathrm{~s}$, 9H)
4.1.3.111.

2-(4-Amino-2-methoxyphenoxy)-N-(1-(2-((tert-butyldimethylsilyl)oxy)ethyl)piperidin-4-yl)acetamide (120). Prepare from 71 following the general procedure 4.2 to afford red solid (86%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.78(\mathrm{~d}, J=8.48 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=2.52 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{dd}, J=2.52,8.48$ $\mathrm{Hz}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 3.81-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{t}, J=5.32 \mathrm{~Hz}, 2 \mathrm{H})$, $2.74-2.67(\mathrm{~m}, 4 \mathrm{H}), 1.88-1.85(\mathrm{~m}, 4 \mathrm{H}), 1.32-1.25(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H})$. REGION
4.1.3.112. tert-Butyl (2-(4-(2-(4-amino-2-methoxyphenoxy)acetamido)piperidin-1$y l$)ethyl)carbamate (121). Prepare from 72 following the general procedure 4.2 to afford red solid (96%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.10(\mathrm{br}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.40$ $\mathrm{Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=2.55 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dd}, J=2.58,8.43 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{br}, 1 \mathrm{H})$, $4.43(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.82-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{q}, J=6.66 \mathrm{~Hz}, 2 \mathrm{H}), 2.82-2.79(\mathrm{~m}$, $2 \mathrm{H}), 2.46(\mathrm{t}, J=5.88 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{t}, J=10.80 \mathrm{~Hz}, 2 \mathrm{H}), 1.94-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.49-$ $1.46(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.113. tert-Butyl 4-(2-(4-amino-2-methoxyphenoxy)ethylcarbamoyl)piperidine-1-carboxylate (122). Prepare from 75 following the general procedure 4.2 to give product (99%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 6.74(\mathrm{~d}, J=8.40 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J$ $=2.45 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{dd}, J=2.55,8.52 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=13.25 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{t}$, $J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{br}, 2 \mathrm{H}), 2.41-2.35(\mathrm{~m}$, $1 \mathrm{H}), 1.74(\mathrm{~d}, J=12 \mathrm{~Hz}, 2 \mathrm{H}), 1.59-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.114. tert-Butyl (4-(4-(4-amino-2-methoxyphenoxy)butyl)pyridin-2$y l)$ (methyl)carbamate (123). Prepare from 80 following the general procedure 4.2 to afford a red solid (93%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.26(\mathrm{~d}, J=5.13 \mathrm{~Hz}, 1 \mathrm{H})$, $7.49(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=5.13 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.25 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=2.58$ $\mathrm{Hz}, 1 \mathrm{H}), 6.22(\mathrm{dd}, J=2.76,8.43 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{t}, J=6.45 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.38$ $(\mathrm{s}, 3 \mathrm{H}), 2.66(\mathrm{t}, J=7.53 \mathrm{~Hz}, 2 \mathrm{H}), 1.82-1.80(\mathrm{~m}, 4 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.115. tert-Butyl (4-(4-(4-amino-2-methoxyphenoxy)butyl)pyridin-2-yl)(2-((tertbutyldimethylsilyl)oxy)ethyl)carbamate (124). Prepare from 81 following the general procedure 4.2 to afford a red solid $(91 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.25(\mathrm{~d}, 1 \mathrm{H}$, $J=5.10 \mathrm{~Hz}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=5.13 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 6.31$ $(\mathrm{d}, J=2.55 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dd}, J=2.55,8.40 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{t}, J=6.39 \mathrm{~Hz}, 2 \mathrm{H}), 3.94$ $(\mathrm{t}, J=5.67 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{t}, J=6.42 \mathrm{~Hz}, 2 \mathrm{H}), 2.68-2.65(\mathrm{~m}, 2 \mathrm{H}), 1.83-$ $1.79(\mathrm{~m}, 4 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 6 \mathrm{H})$.
4.1.3.116. tert-Butyl (4-(4-(4-amino-2-methoxyphenoxy)butyl)pyridin-2-yl)(2-((tertbutoxycarbonyl)amino)ethyl)carbamate (125). Prepare from 82 following the general procedure 4.2 to afford 60 mg as red solid (90%). REGION
4.1.3.117. tert-Butyl 4-(2-(4-(3-(3-(1H-imidazol-1-yl)propyl)thioureido)-2-methoxyphenoxy)ethyl)-3-methylpiperazine-1-carboxylate (126). From compound $\mathbf{9 0}$, procedure 8 , yield 51%, pink oil.
4.1.3.118. tert-Butyl 4-(2-(2-methoxy-4-(3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thioureido)phenoxy)ethyl)-2,6-dimethylpiperazine-1-carboxylate (127). From compound 91, procedure 8 , yield 50%, white solid.
4.1.3.119. tert-Butyl 2-(4-(2-(2-methoxy-4-(3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thioureido)phenoxy)ethyl)piperazin-1-yl)ethylcarbamate (128). From compound 108, procedure 8, yield 68%, white solid. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.55(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=0.93 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.25 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.69(\mathrm{~m}, 3 \mathrm{H})$, $5.90(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{t}, J=6.03 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}$, $3 \mathrm{H}), 3.66(\mathrm{q}, J=6.39 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{br}, 2 \mathrm{H}), 2.86(\mathrm{t}, J=6.03 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{br}, 4 \mathrm{H})$, 2.46 (br, 6H), 2.18 (d, $J=1.11 \mathrm{~Hz}, 3 \mathrm{H}), 2.05$ (quintet, $J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.120. tert-Butyl (2-(4-(3-(2-methoxy-4-(3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thioureido)phenoxy)propyl)piperazin-1-yl)ethyl)carbamate (129). Prepare from 113 following the general procedure $\mathbf{8}$ to afford the desired product as off white solid (63%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=$ $2.55 \mathrm{~Hz}, 1 \mathrm{H}), 6.67-6.63(\mathrm{~m}, 3 \mathrm{H}), 6.09(\mathrm{br}, 1 \mathrm{H}), 4.92(\mathrm{br}, 1 \mathrm{H}), 4.04(\mathrm{t}, J=6.57 \mathrm{~Hz}$, $2 \mathrm{H}), 3.87(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.62-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.17-3.13(\mathrm{~m}, 2 \mathrm{H})$, 2.53-2.49 (m, 12H), 2.12 (s, 3H), 1.99-1.97 (m, 4H), $1.38(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.121. tert-Butyl (2-(4-(4-(2-methoxy-4-(3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thioureido)phenoxy)butyl)piperazin-1-yl)ethyl)carbamate (130). Prepare from 114 following the general procedure $\mathbf{8}$ to afford the desired product as off white solid (40%). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=$ $8.43 \mathrm{~Hz}, 1 \mathrm{H}), 6.71-6.66(\mathrm{~m}, 3 \mathrm{H}), 4.94(\mathrm{br}, \mathrm{NH}), 4.04(\mathrm{t}, J=6.42 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{t}, J$ $=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{q}, J=7.53 \mathrm{~Hz}, 2 \mathrm{H}), 3.18(\mathrm{q}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H})$, $2.45-2.37(\mathrm{~m}, 12 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.04$ (quintet, $J=7.32 \mathrm{~Hz}, 2 \mathrm{H}$), 1.83 (quintet, $J=$ $6.96 \mathrm{~Hz}, 2 \mathrm{H}), 1.67-1.62$ (quintet, $J=7.14 \mathrm{~Hz}, 2 \mathrm{H}$), 1.42 (s, 9 H). REGION
4.1.3.122. tert-Butyl 2-(2-(4-(2-(2-methoxy-4-(3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thioureido)phenoxy)ethyl)piperazin-1-yl)ethoxy)ethylcarbamate (131). From compound 110, procedure 8, yield 50%, white solid. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.71-6.66(\mathrm{~m}, 3 \mathrm{H}), 5.87$ $(\mathrm{s}, 1 \mathrm{H}), 5.16(\mathrm{br}, 1 \mathrm{H}), 4.12(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H})$, $3.63(\mathrm{q}, ~ J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.49(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.27(\mathrm{q}, J$ $=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{br}, 4 \mathrm{H}), 2.56(\mathrm{t}, J=5.7 \mathrm{~Hz}, 6 \mathrm{H}), 2.15$ (d, $J=0.9 \mathrm{~Hz}, 3 \mathrm{H}$), 2.02 (quintet, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), $1.42(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.123. tert-Butyl 2-(4-(2-(2-methoxy-4-(3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thioureido)phenoxy)ethyl)piperidin-1-yl)ethylcarbamate (132). Prepare from 117 following the general procedure $\mathbf{8}$ to afford the desired product as an off white solid (62%). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58(\mathrm{~s}, \mathrm{NH}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{~d}$, $J=8.22 \mathrm{~Hz}, 1 \mathrm{H}), 6.73-6.71(\mathrm{~m}, 3 \mathrm{H}), 5.58(\mathrm{br}, \mathrm{NH}), 5.18(\mathrm{br}, \mathrm{NH}), 4.05(\mathrm{t}, J=6.60$ $\mathrm{Hz}, 2 \mathrm{H}), 3.90(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{q}, J=6.42 \mathrm{~Hz}, 2 \mathrm{H}), 3.28(\mathrm{br}$, $2 \mathrm{H}), 3.03$ (br, 2H), 2.95 (br, 2H), 2.52 (br, 2H), 2.17 (d, $J=0.93 \mathrm{~Hz}, 3 \mathrm{H}), 2.09-2.02$ $(\mathrm{m}, 4 \mathrm{H}), 1.81-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.69-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.124. tert-Butyl 4-(2-(2-methoxy-4-(3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thioureido)phenoxy)acetyl)piperazine-1-carboxylate (133). From compound 101 , procedure $\mathbf{8}$; yield 74%, white solid.
4.1.3.125. tert-Butyl 4-(3-(2-methoxy-4-(3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thioureido)phenoxy)propanoyl)piperazine-1-carboxylate (134). From compound $\mathbf{1 0 2}$, procedure $\mathbf{8}$, yield 71%, white solid.
4.1.3.126. tert-Butyl 4-(4-(2-methoxy-4-(3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thioureido)phenoxy)butanoyl)piperazine-1-carboxylate (135). Prepare from compound $\mathbf{1 0 3}$ following the general procedure 8 to afford product $(54 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.22 \mathrm{~Hz}, 1 \mathrm{H}), 6.74-$ $6.68(\mathrm{~m}, 3 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{t}, J=6.03 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{t}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 3.83$ $(\mathrm{s}, 3 \mathrm{H}), 3.69(\mathrm{q}, J=6.39 \mathrm{~Hz}, 2 \mathrm{H}), 3.63-3.59(\mathrm{~m}, 2 \mathrm{H}), 3.46-3.41(\mathrm{~m}, 6 \mathrm{H}), 2.58(\mathrm{t}, J=$ $6.96 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{t}, J=7.50 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{~d}, J=0.90 \mathrm{~Hz}, 3 \mathrm{H}), 2.07$ (quintet, $J=$ $6.96 \mathrm{~Hz}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H})$. REGION
4.1.3.127. tert-Butyl (2-(4-(2-(2-methoxy-4-(3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thioureido)phenoxy)acetyl)piperazin-1-yl)ethyl)carbamate (136). Prepare from 119 following the general procedure 8 to afford the desired product as an off white solid (44%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~d}$, $J=8.40 \mathrm{~Hz}, 1 \mathrm{H}), 6.74-6.70(\mathrm{~m}, 3 \mathrm{H}), 6.08(\mathrm{br}, 1 \mathrm{H}), 4.90(\mathrm{br}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 2 \mathrm{H}), 3.92$ $(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.67-3.49(\mathrm{~m}, 6 \mathrm{H}), 3.22(\mathrm{q}, J=6.36 \mathrm{~Hz}, 2 \mathrm{H}), 2.49-$ $2.45(\mathrm{~m}, 6 \mathrm{H}), 2.18(\mathrm{~d}, J=0.90 \mathrm{~Hz}, 3 \mathrm{H}), 2.07$ (quintet, $J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.128. tert-Butyl 4-(2-(2-methoxy-4-(3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thioureido)phenoxy)acetamido)piperidine-1-carboxylate (137). Prepare from 104 following the general procedure $\mathbf{8}$ to afford afford the desired product as off white solid (64\%).
4.1.3.129. tert-Butyl 4-(3-(2-methoxy-4-(3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thioureido)phenoxy)propanamido)piperidine-1-carboxylate
(138). Prepare from 105 following the general procedure 8 to afforded product (76%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 6.88-6.85(\mathrm{~m}, 2 \mathrm{H})$, 6.77-6.74 (m, 2H), $6.64(\mathrm{~d}, J=7.68 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{br}, 1 \mathrm{H}), 4.29(\mathrm{t}, J=5.70 \mathrm{~Hz}, 2 \mathrm{H})$, $3.94-3.93(\mathrm{~m}, 5 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{q}, J=5.85 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{t}, J=12.81 \mathrm{~Hz}, 2 \mathrm{H})$, $2.69(\mathrm{t}, J=5.88 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.12$ (quintet, $J=6.75 \mathrm{~Hz}, 2 \mathrm{H}), 1.92(\mathrm{t}, J=$ $12.63 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.30-1.25(\mathrm{~m}, 2 \mathrm{H})$.
4.1.3.130. tert-Butyl 4-(4-(2-methoxy-4-(3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thioureido)phenoxy)butanamido)piperidine-1-carboxylate (139). From compound 106, procedure 8 , yield 30%, white solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.59(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.07 \mathrm{~Hz}, 1 \mathrm{H}), 6.74-6.70(\mathrm{~m}, 3 \mathrm{H}), 5.93(\mathrm{t}, J=$ $6.42 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~d}, J=7.89 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{t}, J=5.87 \mathrm{~Hz}, 2 \mathrm{H}), 4.07-3.98(\mathrm{~m}, 3 \mathrm{H})$, $3.90(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{q}, J=6.42 \mathrm{~Hz}, 2 \mathrm{H}), 2.83(\mathrm{t}, J=11.92$ $\mathrm{Hz}, 2 \mathrm{H}), 2.39(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 2.17-2.13(\mathrm{~m}, 5 \mathrm{H}), 2.06$ (quintet, $J=6.96 \mathrm{~Hz}, 2 \mathrm{H}$), 1.87 (br, 2H), $1.45(\mathrm{~s}, 9 \mathrm{H}), 1.25-1,21(\mathrm{~m}, 2 \mathrm{H})$.
4.1.3.131. tert-Butyl (2-(4-(2-(2-methoxy-4-(3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thioureido)phenoxy)acetamido)piperidin-1-yl)ethyl)carbamate (140). Prepare from $\mathbf{1 2 1}$ following the general procedure $\mathbf{8}$ to afford the desired product as REGION
an off white solid (28\%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H})$, $6.89(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 6.72-6.70(\mathrm{~m}, 3 \mathrm{H}), 5.93(\mathrm{br}, 1 \mathrm{H}), 4.93(\mathrm{br}$, $1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 3.94(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.87-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{q}$, $J=6.66 \mathrm{~Hz}, 2 \mathrm{H}), 3.20-3.17(\mathrm{~m}, 2 \mathrm{H}), 2.78-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{t}, J=5.97 \mathrm{~Hz}, 2 \mathrm{H})$, $2.18(\mathrm{~s}, 3 \mathrm{H}), 2.06-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.80(\mathrm{~m}, 2 \mathrm{H}) 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.41-1.37(\mathrm{~m}, 2 \mathrm{H})$.
4.1.3.132. tert-Butyl 4-(2-(2-methoxy-4-(3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thioureido)-phenoxy)ethylcarbamoyl)piperidine-1-carboxylate (141). Prepare from 122 following the general procedure $\mathbf{8}$ to afford the desired product as an off white solid (48%). ${ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.59(\mathrm{~d}, J=0.90 \mathrm{~Hz}, 1 \mathrm{H})$, $6.97(\mathrm{~d}, J=6.00 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=2.10,8.10 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}$, $1 \mathrm{H}), 4.12-4.02(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{t}, J=7.50 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{t}, J=6.90 \mathrm{~Hz}$, $2 \mathrm{H}), 3.56(\mathrm{t}, J=5.43 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{br}, 2 \mathrm{H}), 2.42-2.33(\mathrm{~m}, 3 \mathrm{H}), 2.22(\mathrm{~d}, J=0.93 \mathrm{~Hz}$, $3 \mathrm{H}), 2.08$ (quintet, $J=7.50 \mathrm{~Hz}, 2 \mathrm{H}$), $1.75-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}$, 9H).
4.1.3.133. tert-Butyl 4-(4-(2-methoxy-4-(3-(3-(5-methyl-1H-imidazol-1-yl) propyl) thioureido) phenoxy)phenyl)piperazine-1-carboxylate (142). Prepared from compound 87 following the general producer $\mathbf{8}$ to afford an off white solid (72%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 6.97-6.89(\mathrm{~m}, 4 \mathrm{H}), 6.82-6.79$ $(\mathrm{m}, 2 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{dd}, J=2.19,8.19 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{br}, 1 \mathrm{H}), 3.92(\mathrm{t}, J=6.96$ $\mathrm{Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{q}, J=7.68 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{t}, J=4.95 \mathrm{~Hz}, 4 \mathrm{H}), 3.09(\mathrm{t}, J$ $=4.92 \mathrm{~Hz}, 4 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.08$ (quintet, $J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H})$
4.1.3.134. tert-Butyl 4-(4-(2-methoxy-4-(2-((3-(5-methyl-1H-imidazol-1-yl)propyl)amino)-2-thioxoethyl)phenoxy)phenyl)-3,6-dihydropyridine-1(2H)carboxylate (143). Prepare from compound 83 following the general procedure 8 to get desired product as off white solid (42%). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75$ (s, $1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.64 \mathrm{~Hz}, 2 \mathrm{H}), 6.95-6.87(\mathrm{~m}, 4 \mathrm{H}), 6.73(\mathrm{~d}, J=8.61 \mathrm{~Hz}$, $2 \mathrm{H}), 6.16(\mathrm{br}, 1 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H}), 4.07-4.05(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{t}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}$, $3 \mathrm{H}), 3.69$ (t, $J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{t}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 2.50-2.47(\mathrm{~m}, 2 \mathrm{H}), 2.19$ (s, 3 H), 2.10-2.05 (quintet, $J=7.50 \mathrm{~Hz}, 2 \mathrm{H}$), 1.49 (s, 9 H) REGION
4.1.3.135. tert-Butyl 4-(4-(2-methoxy-4-(3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thioureido)phenoxy)phenyl)piperidine-1-carboxylate (144). Prepare from compound 86 following the general procedure 8 to get desired product as an off white solid (44%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=$ $8.61 \mathrm{~Hz}, 2 \mathrm{H}), 6.93-6.89(\mathrm{~m}, 3 \mathrm{H}), 6.84(\mathrm{~d}, J=2.22 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.58 \mathrm{~Hz}, 2 \mathrm{H})$, $6.07(\mathrm{br}, 1 \mathrm{H}), 4.25-4.21(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.65$ $(\mathrm{m}, 2 \mathrm{H}), 2.79-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.62-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.10-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.83-$ $1.79(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.136. tert-Butyl 4-(3-((2-methoxy-4-(3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thioureido)phenoxy)methyl)phenyl)piperazine-1-carboxylate (145). From compound 85 , procedure 8 , yield 56%, white solid.
4.1.3.137. tert-Butyl 4-(3-((2-methoxy-4-(3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thioureido)phenoxy)methyl)phenyl)piperidine-1-carboxylate (146). From compound 84, procedure 8; yield 72%, white solid. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.57(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{t}, J=7.14 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=$ $8.25 \mathrm{~Hz}, 1 \mathrm{H}), 6.73-6.67(\mathrm{~m}, 3 \mathrm{H}), 5.93(\mathrm{brt}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 4.22(\mathrm{br}, 2 \mathrm{H}), 3.89(\mathrm{t}, J$ $=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{q}, J=7.68 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{t}, J=11.52 \mathrm{~Hz}, 2 \mathrm{H})$, $2.66(\mathrm{tt}, J=12.09,3.48,1 \mathrm{H}), 2.16(\mathrm{~d}, 0.93 \mathrm{~Hz}, 3 \mathrm{H}), 2.04$ (quintet, $J=7.14 \mathrm{~Hz}, 2 \mathrm{H}$), 1.83-1.79 (m, 2H), 1.66-1.55 (m, 2H), $1.48(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.138. tert-Butyl (4-(4-(2-methoxy-4-(3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thioureido)phenoxy)butyl)pyridin-2-yl)(methyl)carbamate (147). Prepare from 123 following the general procedure $\mathbf{8}$ to afford the desired product as off white solid $(58 \%) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.25(\mathrm{~d}, J=5.13 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H})$, $7.53(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 6.86-6.82(\mathrm{~m}, 2 \mathrm{H}), 6.72-6.70(\mathrm{~m}, 3 \mathrm{H}), 5.97(\mathrm{br}, 1 \mathrm{H}), 4.04$ (t, $J=5.61 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{q}, J=6.60 \mathrm{~Hz}, 2 \mathrm{H})$, $3.38(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{t}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.09$ (quintet, $J=7.32 \mathrm{~Hz}, 2 \mathrm{H}$), $1.87-1.82(\mathrm{~m}, 4 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.139. tert-Butyl (2-((tert-butoxycarbonyl)amino)ethyl)(4-(4-(2-methoxy-4-(3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thioureido)phenoxy)butyl)pyridin-2-
$y l)$ carbamate (148). Prepare from $\mathbf{1 2 5}$ following the general procedure $\mathbf{8}$ to afford the REGION
desired product as off white solid (56%). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.24(\mathrm{~d}, 1 \mathrm{H}$, $J=5.13 \mathrm{~Hz}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{~m}, 3 \mathrm{H}), 6.21$ (br, 1H), $5.95(\mathrm{br}, 1 \mathrm{H}), 4.06(\mathrm{t}, 2 \mathrm{H}, J=6.21 \mathrm{~Hz}), 4.00(\mathrm{t}, 2 \mathrm{H}, J=4.23 \mathrm{~Hz}), 3.91(\mathrm{t}$, $2 \mathrm{H}, J=7.14 \mathrm{~Hz}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{q}, 2 \mathrm{H}, J=6.42 \mathrm{~Hz}), 3.40(\mathrm{q}, 2 \mathrm{H}, J=5.31 \mathrm{~Hz})$, $2.71(\mathrm{t}, 2 \mathrm{H}, J=7.32 \mathrm{~Hz}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.07$ (quintet, $2 \mathrm{H}, J=7.32 \mathrm{~Hz}$), 1.87-1.83 (m, $4 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.140. 1-(4-(3-(4-(2-((tert-Butyldimethylsilyl)oxy)ethyl)piperazin-1-yl)propoxy)-3-methoxyphenyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (149). Prepare from 112 following the general procedure $\mathbf{8}$ to afford the desired product as off white solid (37\%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.79$ $\mathrm{Hz}, 1 \mathrm{H}), 6.74(\mathrm{~m}, 3 \mathrm{H}), 6.06(\mathrm{br}, 1 \mathrm{H}), 4.11(\mathrm{t}, J=6.24 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{t}, J=7.14 \mathrm{~Hz}$, $2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{t}, J=6.03 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{q}, J=6.03 \mathrm{~Hz}, 2 \mathrm{H}), 2.61-2.55(\mathrm{~m}$, $8 \mathrm{H}), 2.08-2.01(\mathrm{~m}, 8 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 6 \mathrm{H})$.
4.1.3.141. 1-(4-(4-(4-(2-((tert-Butyldimethylsilyl)oxy)ethyl)piperazin-1-yl)butoxy)-3-methoxyphenyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (150). Prepare from 115 following the general procedure $\mathbf{8}$ to afford the desired product as off white solid (50%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=$ $8.22 \mathrm{~Hz}, 1 \mathrm{H}), 6.68-6.65(\mathrm{~m}, 3 \mathrm{H}), 5.91(\mathrm{br}, 1 \mathrm{H}), 4.00(\mathrm{t}, J=6.42 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{t}, J=$ $7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{t}, J=6.39 \mathrm{~Hz} .2 \mathrm{H}), 3.64-3.57(\mathrm{~m}, 2 \mathrm{H}), 2.51-2.35$ $(\mathrm{m}, 12 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.04$ (quintet, $J=4.95 \mathrm{~Hz}, 2 \mathrm{H}), 1.83$ (quintet, $J=6.36 \mathrm{~Hz}$, $2 \mathrm{H}), 1.65-1.62(\mathrm{~m}, 2 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 6 \mathrm{H})$
4.1.3.142. 1-(4-(2-(1-(2-(tert-Butyldimethylsilyloxy)ethyl)piperidin-4-yl)ethoxy)-3-methoxyphenyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (151). Prepare from 116 following the general procedure $\mathbf{8}$ to afford the desired product as off white solid (41%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54(\mathrm{br}, \mathrm{NH}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=$ $8.25 \mathrm{~Hz}, 1 \mathrm{H}) 6.73-6.70(\mathrm{~m}, 3 \mathrm{H}), 5.93(\mathrm{br}, \mathrm{NH}), 4.05(\mathrm{t}, J=6.60 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{t}, J=$ $7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.85-3.78(\mathrm{~m}, 4 \mathrm{H}), 3.67(\mathrm{q}, J=7.68 \mathrm{~Hz}, 2 \mathrm{H}), 3.03(\mathrm{br}$, $2 \mathrm{H}), 2.60(\mathrm{br}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.09-2.02(\mathrm{~m}, 3 \mathrm{H}), 1.81-1.70(\mathrm{~m}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H})$, 0.05 ($\mathrm{s}, 6 \mathrm{H}$).
4.1.3.143. 1-(4-(2-(4-(2-((tert-Butyldimethylsilyl)oxy)ethyl)piperazin-1-yl)-2-oxoethoxy)-3-methoxyphenyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (152). Prepare from 118 following the general procedure 8 to afford the desired product as an off white solid (70%). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.28$ $(\mathrm{s}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 6.71-6.63(\mathrm{~m}, 3 \mathrm{H}), 6.13(\mathrm{br}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H}), 3.86$ $(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{t}, J=5.85 \mathrm{~Hz}, 2 \mathrm{H}), 3.59-3.49(\mathrm{~m}, 6 \mathrm{H}), 2.50-$ $2.45(\mathrm{~m}, 6 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.04$ (quintet, $J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H})$.
4.1.3.144. N-(1-(2-((tert-Butyldimethylsilyl)oxy)ethyl)piperidin-4-yl)-2-(2-methoxy-4-(3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thioureido)phenoxy)acetamiden (153).
Prepare from $\mathbf{1 2 0}$ following the general procedure $\mathbf{8}$ to afford the desired product as off white solid (38\%).
4.1.3.145. tert-Butyl (2-((tert-butyldimethylsilyl)oxy)ethyl)(4-(4-(2-methoxy-4-(3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thioureido)phenoxy)butyl)pyridin-2-
$y l)$ carbamate (154). Prepare from 124 following the general procedure 8 to afford the desired product as an off white solid (56%). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.25(\mathrm{~d}, J$ $=5.13 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 6.86-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.73-6.69$ $(\mathrm{m}, 3 \mathrm{H}), 5.90(\mathrm{br}, 1 \mathrm{H}), 4.08(\mathrm{t}, J=6.57 \mathrm{~Hz}, 2 \mathrm{H}), 4.04(\mathrm{t}, J=6.03 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{t}, J$ $=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{t}, J=6.21 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{q}, J=6.87 \mathrm{~Hz}, 2 \mathrm{H}), 2.69$ $(\mathrm{t}, J=7.68 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.07$ (quintet, $J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 1.88-1.81(\mathrm{~m}, 4 \mathrm{H})$, $1.51(\mathrm{~s}, 9 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 6 \mathrm{H})$.
4.1.3.146.

2-(4-(2-(2-Methoxy-4-(3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thioureido)phenoxy)ethyl)piperazin-1-yl)ethyl4-methoxybenzoate (155). From compound 107, procedure 8, yield 68%, white solid.
4.1.3.147.

2-(2-(4-(2-(2-Methoxy-4-(3-(3-(5-methyl-1H-imidazol-1yl)propyl)thioureido)phenoxy)ethyl) piperazin-1-yl)ethoxy)ethyl 4-methoxybenzoate (156). From compound 109, procedure 8, white solid.
4.1.3.148. Methyl 2-(2-methoxy-4-(3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thioureido)-phenoxy)acetate (157). Prepare from compound $\mathbf{8 9}$ following the general procedure 8 afford the desired product as white solid (60%). ${ }^{1} \mathrm{H}$ NMR 60 REGION
($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 6.83-6.77(\mathrm{~m}, 2 \mathrm{H}), 6.73-6.70(\mathrm{~m}, 2 \mathrm{H})$, $6.15(\mathrm{br}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H}), 3.92(\mathrm{t}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.70$ $(\mathrm{q}, J=6.42 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{~d}, J=0.75 \mathrm{~Hz}, 3 \mathrm{H}), 2.10$ (quint, $J=7.14 \mathrm{~Hz}, 2 \mathrm{H})$.
4.1.3.149. tert-Butyl (2-(4-(4-(2-methoxy-4-(3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thioureido)phenoxy)phenyl)piperazin-1-yl)ethyl)carbamate (158). Prepared from compound 195 following the general producer 10 to afford a white solid (45\%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 6.96-6.88(\mathrm{~m}$, $5 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{dd}, J=2.55,8.58 \mathrm{~Hz}$, $1 \mathrm{H}), 6.14(\mathrm{br}, 1 \mathrm{H}), 3.93(\mathrm{t}, J=6.78 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{q}, J=6.78 \mathrm{~Hz}, 2 \mathrm{H})$, $3.26-3.24(\mathrm{t}, J=5.97 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{t}, J=4.77 \mathrm{~Hz}, 4 \mathrm{H}), 2.63(\mathrm{t}, J=4.77 \mathrm{~Hz}, 4 \mathrm{H})$, $2.54(\mathrm{t}, J=5.85 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.09$ (quintet, $J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$
4.1.3.150. 1-(4-(4-(4-(2-((tert-Butyldimethylsilyl)oxy)ethyl)piperazin-1-yl)phenoxy)-3-methoxyphenyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (159). Prepared from compound 195 following the general producer 10 to afford a white solid (34\%). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 6.92-6.88(\mathrm{~m}, 4 \mathrm{H}), 6.82-$ $6.74(\mathrm{~m}, 3 \mathrm{H}), 6.68(\mathrm{dd},, J=2.22,8.07 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{br}, 1 \mathrm{H}), 3.93(\mathrm{t}, J=7.14 \mathrm{~Hz}$, $2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{t}, J=6.21 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{q}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 3.17(\mathrm{t}, J=$ $4.56 \mathrm{~Hz}, 4 \mathrm{H}), 2.70(\mathrm{t}, J=4.77 \mathrm{~Hz}, 4 \mathrm{H}), 2.60(\mathrm{t}, J=6.39 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.09$ (quintet, $J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H})$

4.1.4. Final compounds

4.1.4.1. 1-(3-Methoxy-4-(2-(2-methylpiperazin-1-yl)ethoxy)phenyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (160). Starting with compound 126 as following the general procedure $\mathbf{6 . 2}$, compound 160 was obtained as a white solid, 42% yield, $\mathrm{mp}=77-78{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=$ $8.43 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.73(\mathrm{~m}, 3 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{t}, J=6.42 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{t}, J=$ $6.96 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{q}, J=7.53 \mathrm{~Hz}, 2 \mathrm{H}), 3.22-3.13(\mathrm{~m}, 1 \mathrm{H}), 2.93-2.78$ $(\mathrm{m}, 5 \mathrm{H}), 2.56-2.41(\mathrm{~m}, 3 \mathrm{H}), 2.18(\mathrm{~d}, J=0.93 \mathrm{~Hz}, 3 \mathrm{H}), 2.05(\mathrm{p}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 1.08$ (d, $J=5.88 \mathrm{~Hz}, 3 \mathrm{H}$). MS (ESI) $m / z 447[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) m / z calc. for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$447.2542, found: 447.2535. Anal. HPLC $97.7 \%\left(\mathrm{R}_{\mathrm{t}}=3.45\right.$ min).
4.1.4.2. 1-(4-(2-(3,5-Dimethylpiperazin-1-yl)ethoxy)-3-methoxyphenyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (161). Starting with compound 127 as following the general procedure 6.2, compound 161 was obtained as white solid, 78% yield, $\mathrm{mp}=58-59{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.60(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.61$ $\mathrm{Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=2.37 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=8.43,2.40 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H})$, $4.14(\mathrm{t}, J=5.13 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{t}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{t}, J=6.96 \mathrm{~Hz}$, $2 \mathrm{H}), 3.11(\mathrm{br}, 4 \mathrm{H}), 2.84(\mathrm{t}, J=5.31 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{~d}, J=0.90 \mathrm{~Hz}, 3 \mathrm{H}), 2.08-1.94(\mathrm{~m}$, 4H), $1.16(\mathrm{~d}, J=6.21 \mathrm{~Hz}, 6 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 461[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) m / z calc. for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 461.2699$, found: 461.2705. Anal. HPLC $95.7 \%\left(\mathrm{R}_{\mathrm{t}}=3.48\right.$ min).
4.1.4.3. 1-(4-(2-(4-Acetylpiperazin-1-yl)ethoxy)-3-methoxyphenyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (162). Starting with compound 111 as following the general procedure 8, compound 162 was obtained as white solid, 87% yield, mp $=55-56{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=9.15$ $\mathrm{Hz}, 1 \mathrm{H}), 6.75-6.72(\mathrm{~m}, 3 \mathrm{H}), 5.97(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{t}, J=5.89 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{t}, J=7.14$ $\mathrm{Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.69-3.62(\mathrm{~m}, 4 \mathrm{H}), 3.49(\mathrm{t}, J=4.95 \mathrm{~Hz}, 2 \mathrm{H}), 2.87(\mathrm{t}, J=5.67$ $\mathrm{Hz}, 2 \mathrm{H}), 2.60(\mathrm{t}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{t}, J=5.10 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H})$, $2.05(\mathrm{p}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 475[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) m / z calc. for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$475.2492, found: 475.2495. Anal. HPLC $96.7 \%\left(\mathrm{R}_{\mathrm{t}}=3.76\right.$ min).
4.1.4.4. 1-(4-(2-(4-(2-Hydroxyethyl)piperazin-1-yl)ethoxy)-3-methoxyphenyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (163). An excess solution of $10 \% \mathrm{NaOH}$ was added in solution of $\mathbf{1 5 5}$ in $\mathrm{MeOH}(10 \mathrm{~mL})$. The mixture was heated to reflux for 30 minutes, diluted with DCM, washed with water. The organic layer was concentrated, purified by column chromatography to afford compound 163 as a white solid, 35% yield, $\mathrm{mp}=64-65^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~s}$, $1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.72(\mathrm{~m}, 3 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{t}, J=6.06 \mathrm{~Hz}$, $2 \mathrm{H}), 3.89(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.69-3.60(\mathrm{~m}, 4 \mathrm{H}), 2.87(\mathrm{t}, J=5.85 \mathrm{~Hz}$, $2 \mathrm{H}), 2.63-2.54(\mathrm{~m}, 10 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{p}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{MS}$ (ESI) $\mathrm{m} / \mathrm{z} 477$ $[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) m/z calc. for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$477.2647, found: 477.2633. Anal. HPLC 98.5\% ($\left.\mathrm{R}_{\mathrm{t}}=3.63 \mathrm{~min}\right)$.

PART 1- POTENTIALS ANTI ALZHEIMER'S AGENTS: SAR OF ARG-MIMETIC REGION
4.1.4.5. 1-(4-(3-(4-(2-Hydroxyethyl)piperazin-1-yl)propoxy)-3-methoxyphenyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (164). Starting with compound 149 as following the general procedure $\mathbf{7}$, compound $\mathbf{1 6 4}$ was obtained as off white solid, 47% yield, $\mathrm{mp}=78-79^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.58(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=$ $8.50 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=2.15,8.50 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 4.05(\mathrm{t}, J=$ $6.05 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{t}, J=7.20 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{t}, J=6.00 \mathrm{~Hz}, 2 \mathrm{H}), 3.60$ $(\mathrm{t}, J=6.35 \mathrm{~Hz}, 2 \mathrm{H}), 2.58-2.55(\mathrm{~m}, 8 \mathrm{H}), 2.54(\mathrm{t}, J=6.00 \mathrm{~Hz}, 4 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.06$ (p, $J=7.10 \mathrm{~Hz}, 2 \mathrm{H}$), 1.97 (p, $J=6.95 \mathrm{~Hz}, 2 \mathrm{H}$). MS (ESI) $\mathrm{m} / \mathrm{z} 491[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) calc. for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{~S}$ [M+H] ${ }^{+} 491.2799$, found 491.2795. Anal. HPLC 100\% ($\mathrm{R}_{\mathrm{t}}=2.95 \mathrm{~min}$).
4.1.4.6. 1-(4-(4-(4-(2-Hydroxyethyl)piperazin-1-yl)butoxy)-3-methoxyphenyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (165). Starting with compound 150 as following the general procedure 7 , compound 165 was obtained desired product as a white solid, 84% yield, $\mathrm{mp}=58-59^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.59(\mathrm{~s}, 1 \mathrm{H})$, $6.95(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{dd}, J=2.22,8.43 \mathrm{~Hz}, 1 \mathrm{H})$, $6.66(\mathrm{~s}, 1 \mathrm{H}), 4.03(\mathrm{t}, J=6.45 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{t}$, $J=6.03 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{t}, J=6.78 \mathrm{~Hz}, 2 \mathrm{H}), 2.54-2.41(\mathrm{~m}, 12 \mathrm{H}), 2.22(\mathrm{~d}, J=0.90 \mathrm{~Hz}$, $3 \mathrm{H}), 2.05(\mathrm{p}, J=4.95 \mathrm{~Hz}, 2 \mathrm{H}), 1.79-1.73(\mathrm{~m}, 4 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 505[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) calc. for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 505.2955$, found 505.2957. Anal. HPLC 98.4% ($\left.\mathrm{R}_{\mathrm{t}}=2.99 \mathrm{~min}\right)$.
4.1.4.7. 1-(4-(2-(4-(2-Aminoethyl)piperazin-1-yl)ethoxy)-3-methoxyphenyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (166). Starting with compound 128 as the general procedure 6.2, compound 166 was obtained as white solid, 85% yield, $\mathrm{mp}=$ $81-82{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.59(\mathrm{~d}, J=0.93 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.43$ $\mathrm{Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=2.40 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=8.40,2.37 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H})$, $4.14(\mathrm{t}, J=5.49 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{t}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{t}, J=6.75 \mathrm{~Hz}$, $2 \mathrm{H}), 2.82(\mathrm{t}, J=5.49 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{t}, J=6.60 \mathrm{~Hz}, 2 \mathrm{H}), 2.68$ (br, 4H), 2.55 (br, 4H), $2.47(\mathrm{t}, J=6.42 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{~d}, J=0.93 \mathrm{~Hz}, 3 \mathrm{H}), 2.03(\mathrm{p}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{MS}$ (ESI) $m / z 476[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) m / z calc. for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{~N}_{7} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 476.2808$, found: 476.2823. Anal. HPLC $96.5 \%\left(\mathrm{R}_{\mathrm{t}}=3.52 \mathrm{~min}\right)$.
4.1.4.8. 1-(4-(3-(4-(2-Aminoethyl)piperazin-1-yl)propoxy)-3-methoxyphenyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (167). Starting with compound 129 as REGION
following the general procedure 6.2, compound 167 was obtained as a red solid, 65% yield, $\mathrm{mp}=107-108{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.58(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=$ $8.55 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=2.05 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=2.25,8.35 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}$, $1 \mathrm{H}), 4.03(\mathrm{t}, 2 \mathrm{H}, J=6.20 \mathrm{~Hz}), 3.98(\mathrm{t}, J=7.20 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{t}, J=6.60$ $\mathrm{Hz}, 2 \mathrm{H}), 2.74(\mathrm{t}, J=6.70 \mathrm{~Hz}, 2 \mathrm{H}), 2.59-2.55(\mathrm{~m}, 8 \mathrm{H}), 2.48-2.44(\mathrm{~m}, 4 \mathrm{H}), 2.23(\mathrm{~s}$, $3 \mathrm{H}), 2.09(\mathrm{p}, J=7.10 \mathrm{~Hz}, 2 \mathrm{H}), 1.99(\mathrm{p}, J=6.95 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 490[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) calc. for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{~N}_{7} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 490.2959$, found 490.2968. Anal. HPLC $100 \%\left(\mathrm{R}_{\mathrm{t}}=2.87 \mathrm{~min}\right)$.
4.1.4.9. 1-(4-(4-(4-(2-Aminoethyl)piperazin-1-yl)butoxy)-3-methoxyphenyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (168). Starting from compound 130 as following the general procedure 6.2, compound 168 was obtained as a white solid, 71% yield, $\mathrm{mp}=131-132{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.59(\mathrm{~d}, J=0.90 \mathrm{~Hz}$, $1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.31 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=2.40 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{dd}, J=2.58,6.03 \mathrm{~Hz}$, $1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 4.03(\mathrm{t}, J=5.88 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, $3.59(\mathrm{q}, J=6.42 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{t}, J=6.60 \mathrm{~Hz}, 2 \mathrm{H}), 2.53-2.47(\mathrm{br}, 12 \mathrm{H}), 2.22(\mathrm{~d}, J=$ $1.11 \mathrm{~Hz}, 3 \mathrm{H}$), 2.03 (p, $J=7.50 \mathrm{~Hz}, 2 \mathrm{H}$), 1.77-1.67 (m, 4H). MS (ESI) m/z 504 $[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) calc. for $\mathrm{C}_{25} \mathrm{H}_{41} \mathrm{~N}_{7} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 504.3115$, found 504.3127. Anal. HPLC 99.5\% ($\mathrm{R}_{\mathrm{t}}=2.99 \mathrm{~min}$).
4.1.4.10. 1-(4-(2-(4-(2-(2-Hydroxyethoxy)ethyl)piperazin-1-yl)ethoxy)-3-methoxyphenyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (169). Starting with compound 156 as following the experiment procedure used for compound 163 to obtained compound 169 as a white solid, 50% yield, $\mathrm{mp}=64-65^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.66(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=2.19 \mathrm{~Hz}, 1 \mathrm{H})$, $6.75(\mathrm{dd}, J=8.43,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{t}, J=5.31 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{t}, J=$ $7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{t}, J=4.92 \mathrm{~Hz}, 4 \mathrm{H}), 3.62-3.52(\mathrm{~m}, 4 \mathrm{H}), 2.87(\mathrm{t}, J=$ $5.31 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{br}, 10 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{p}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ $521[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) m / z calc. for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 521.2905$, found: 521.2896. Anal. HPLC $99.3 \% ~\left(R_{t}=3.09 \mathrm{~min}\right)$.
4.1.4.11.

1-(4-(2-(4-(2-(2-Aminoethoxy)ethyl)piperazin-1-yl)ethoxy)-3-methoxyphenyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (170). Starting with compound 131 as following the general procedure 6.2, compound $\mathbf{1 7 0}$ was REGION
obtained as white solid, 73% yield, $\mathrm{mp}=57-58{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ $7.60(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=2.73 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=8.43$, $2.37 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 4.14(\mathrm{t}, J=5.49 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.81$ $(\mathrm{s}, 3 \mathrm{H}), 3.63-3.57(\mathrm{~m}, 4 \mathrm{H}), 3.50(\mathrm{t}, J=5.13 \mathrm{~Hz}, 2 \mathrm{H}), 2.84-2.80(\mathrm{~m}, 4 \mathrm{H}), 2.61(\mathrm{br}$, $10 \mathrm{H}), 2.22(\mathrm{~d}, J=0.93 \mathrm{~Hz}, 3 \mathrm{H}), 2.03(\mathrm{p}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 520[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) m / z calc. for $\mathrm{C}_{25} \mathrm{H}_{41} \mathrm{~N}_{7} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 520.3070$, found: 520.3076. Anal. HPLC 96.1\% ($\left.\mathrm{R}_{\mathrm{t}}=3.35 \mathrm{~min}\right)$.
4.1.4.12. 1-(3-Methoxy-4-(2-(4-phenylpiperazin-1-yl)ethoxy)phenyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (171). Starting with compound 92 as following the general procedure 8, compound 171 was obtained as white solid, 50% yield, $\mathrm{mp}=$ $64-65^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=7.97 \mathrm{~Hz}, 2 \mathrm{H}), 7.00-$ $6.92(\mathrm{~m}, 4 \mathrm{H}), 6.83(\mathrm{t}, J=6.15 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{dd}, J=8.40,2.73 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H})$, $4.19(\mathrm{t}, J=5.31 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{t}, J=6.57 \mathrm{~Hz}$, $2 \mathrm{H}), 3.20(\mathrm{t}, J=4.95 \mathrm{~Hz}, 4 \mathrm{H}), 2.88(\mathrm{t}, J=5.52 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{t}, J=4.95 \mathrm{~Hz}, 4 \mathrm{H})$, $2.22(\mathrm{~d}, J=0.93 \mathrm{~Hz}, 3 \mathrm{H}), 2.03(\mathrm{p}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 509[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) m / z calc. for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$509.2699, found: 509.2693. Anal. HPLC $96.9 \%\left(\mathrm{R}_{\mathrm{t}}=3.81 \mathrm{~min}\right)$.
4.1.4.13. 1-(4-(2-(4-Benzylpiperazin-1-yl)ethoxy)-3-methoxyphenyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (172). Starting with compound 93 as following the general procedure 8, compound 172 was obtained as a white solid, 47% yield, $\mathrm{mp}=$ $78-80{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 5 \mathrm{H}), 6.96(\mathrm{~d}, \mathrm{~J}$ $=8.58 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=0.75 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{dd}, J=2.37,8.40 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}$, $1 \mathrm{H}), 4.14(\mathrm{t}, J=5.49 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{t}, J=5.49$ $\mathrm{Hz}, 2 \mathrm{H}), 3.53(\mathrm{~s}, 2 \mathrm{H}), 2.83(\mathrm{t}, J=5.49 \mathrm{~Hz}, 2 \mathrm{H}), 2.66-2.53(\mathrm{~m}, 8 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.05$ (p, J = 7.14 Hz, 2H). MS (FAB) $m / z 523[M+H]^{+}$. HRMS (FAB) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$523.2855, found: 523.2861. Anal. HPLC $95.7 \%\left(\mathrm{R}_{\mathrm{t}}=3.32\right.$ min).
4.1.4.14. 1-(3-Methoxy-4-(2-(4-(pyrimidin-2-yl)piperazin-1-yl)ethoxy)phenyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (173). Starting with compound 94 as following the general procedure 8, compound 173 was obtained as white solid, 94% yield, $\mathrm{mp}=71-72{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.31(\mathrm{~d}, J=4.74 \mathrm{~Hz}, 2 \mathrm{H}), 7.77$ REGION
$(\mathrm{s}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-6.74(\mathrm{~m}, 3 \mathrm{H}), 6.50(\mathrm{t}, J=4.74$ $\mathrm{Hz}, 1 \mathrm{H}), 6.08(\mathrm{br}, 1 \mathrm{H}), 4.25-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.95-3.80(\mathrm{~m}, 9 \mathrm{H}), 3.66(\mathrm{dd}, J=13.74$, $6.60 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{t}, J=5.85 \mathrm{~Hz}, 2 \mathrm{H}), 2.75-2.60(\mathrm{~m}, 4 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.13-1.97$ $(\mathrm{m}, 2 \mathrm{H})$. MS (ESI) $m / z 511[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) m / z calc. for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+} 511.2604$, found: 511.2609. Anal. HPLC $97.5 \%\left(\mathrm{R}_{\mathrm{t}}=3.58 \mathrm{~min}\right)$.
4.1.4.15.

1-(4-(2-(4-(5-Fluoropyrimidin-2-yl)piperazin-1-yl)ethoxy)-3-methoxyphenyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (174). Starting with compound 95 as following the general procedure 8 , compound 174 was obtained as white solid, 78% yield, $\mathrm{mp}=71-72^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.20(\mathrm{~s}, 2 \mathrm{H})$, $7.79(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 6.95-6.87(\mathrm{~m}, 1 \mathrm{H}), 6.80-6.68(\mathrm{~m}, 3 \mathrm{H}), 6.10(\mathrm{br}, 1 \mathrm{H}), 4.25-$ $4.13(\mathrm{~m}, 2 \mathrm{H}), 3.95-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.82-3.75(\mathrm{~m}, 4 \mathrm{H}), 3.72-3.60(\mathrm{~m}, 2 \mathrm{H})$, 2.95-2.85 (m, 2H), 2.70-2.60 (m, 4H), 2.18 ($\mathrm{s}, 3 \mathrm{H}$), 2.13-1.97 (m, 2H). MS (ESI) m / z $529[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) m/z calc. for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{FN}_{8} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 529.2509$, found: 529.2508. Anal. HPLC $97.3 \%\left(R_{t}=3.56 \mathrm{~min}\right)$.
4.1.4.16. 1-(4-(2-(4-(5-Chloropyrimidin-2-yl)piperazin-1-yl)ethoxy)-3-methoxyphenyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (175). Starting with compound 96 as following the general procedure 8 , compound 175 was obtained as white solid, 35% yield, $\mathrm{mp}=87-88^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22(\mathrm{~s}, 2 \mathrm{H})$, $7.72(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-6.72(\mathrm{~m}, 3 \mathrm{H}), 6.04(\mathrm{br}, 1 \mathrm{H})$, $4.18(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~m}, 2 \mathrm{H}), 3.83-3.80(\mathrm{~m}, 7 \mathrm{H}), 3.65(\mathrm{~m}, 2 \mathrm{H}), 2.89(\mathrm{t}, J=$ $5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{t}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 545$ $[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) m/z calc. for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{ClN}_{8} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 545.2214$, found: 545.2220. Anal. HPLC $99.0 \% ~\left(R_{t}=3.73 \mathrm{~min}\right)$.
4.1.4.17. 1-(4-(2-(1-(2-Hydroxyethyl)piperidin-4-yl)ethoxy)-3-methoxyphenyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (176). Starting with compound 151 as following the general procedure 7, compound 176 was obtained as a pale red solid, 62% yield, $\mathrm{mp}=62-63^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.58(\mathrm{~d}, J=1.11 \mathrm{~Hz}, 1 \mathrm{H})$, $6.95(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=2.19 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=2.40,8.43 \mathrm{~Hz}, 1 \mathrm{H})$, $6.66(\mathrm{~s}, 1 \mathrm{H}), 4.05(\mathrm{t}, J=6.21 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{t}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.67$ $(\mathrm{t}, J=6.24 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(\mathrm{t}, J=6.78 \mathrm{~Hz}, 2 \mathrm{H}), 2.98-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{t}, J=6.21$ $\mathrm{Hz}, 2 \mathrm{H}), 2.21(\mathrm{~d}, J=1.08 \mathrm{~Hz}, 3 \mathrm{H}), 2.14-1.98(\mathrm{~m}, 5 \mathrm{H}), 1.79-1.68(\mathrm{~m}, 4 \mathrm{H}), 1.37-1.28$ REGION
$(\mathrm{m}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) m / z 476[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 476.2690, found: 476.2677. Anal. HPLC $100.0 \%\left(R_{t}=2.96 \mathrm{~min}\right)$.
4.1.4.18. 1-(4-(2-(1-(2-Aminoethyl)piperidin-4-yl)ethoxy)-3-methoxyphenyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (177). Starting with compound 132 as following the general procedure 6.2, compound 177 was obtained as an off white solid, 76% yield, $\mathrm{mp}=76-77{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.58(\mathrm{~d}, J=1.08$ $\mathrm{Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=2.19 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=2.40,8.43$ $\mathrm{Hz}, 1 \mathrm{H}), 6.66(\mathrm{t}, J=2.55 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{t}, J=6.42 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{t}, J=7.14 \mathrm{~Hz}$, $2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{br}, 2 \mathrm{H}), 2.78(\mathrm{t}, J=6.42 \mathrm{~Hz}, 2 \mathrm{H})$, $2.45(\mathrm{t}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(\mathrm{~d}, J=1.11 \mathrm{~Hz}, 3 \mathrm{H}), 2.04-1.98(\mathrm{~m}, 5 \mathrm{H}), 1.79-1.68(\mathrm{~m}$, $4 \mathrm{H}), 1.37-1.28(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 475[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) calc. for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 475.2850$, found 475.2837. Anal. HPLC 99.5\% $\left(\mathrm{R}_{\mathrm{t}}=2.89\right.$ min).
4.1.4.19. 2-(2-Methoxy-4-(3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thioureido)phenoxy)acetamide (178). Starting with compound 157 as following the reaction with NH_{3} to obtained compound $\mathbf{1 7 8}, 62 \%$ yield, $\mathrm{mp}=147-149{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=2.37 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dd}$, $J=2.40,8.61 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 4.00(\mathrm{t}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}$, $3 \mathrm{H}), 3.61(\mathrm{t}, J=6.78 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{~d}, J=0.90 \mathrm{~Hz}, 3 \mathrm{H}), 2.08(\mathrm{p}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H})$. MS (FAB) $m / z 378[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 378.1600 found: 378.1604 . Anal. HPLC $97.0 \%\left(\mathrm{R}_{\mathrm{t}}=3.99 \mathrm{~min}\right)$.
4.1.4.20.

3-(2-Methoxy-4-(3-(3-(5-methyl-1H-imidazol-1-
yl)propyl)thioureido)phenoxy)propanamide (179). Starting with compound 97 as following the general procedure 8, compound 179 was obtained as white solid, 78% yield, $\mathrm{mp}=115-117{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.64(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=$ $8.58 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=2.37 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=8.43,2.40 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}$, $1 \mathrm{H}), 4.24(\mathrm{t}, J=6.24 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{t}, J=7.14$ $\mathrm{Hz}, 2 \mathrm{H}), 2.67(\mathrm{t}, J=6.24 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{~d}, J=0.93 \mathrm{~Hz}, 3 \mathrm{H}), 2.03(\mathrm{p}, J=7.14 \mathrm{~Hz}$, 2 H). MS (ESI) $m / z 392[\mathrm{M}+\mathrm{H}]^{+}$. MS (HRMS) calc. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 392.1751, found 392.1750. Anal. HPLC $99.2 \%\left(R_{t}=3.22 \mathrm{~min}\right)$.
4.1.4.21.

4-(2-Methoxy-4-(3-(3-(5-methyl-1H-imidazol-1yl)propyl)thioureido)phenoxy)butanamide (180). Starting with compound 98 as following the general procedure 8, compound 180 was obtained as white solid, 20% yield, $\mathrm{mp}=158-160{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.56(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=$ $8.61 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{t}, J=6.24$ $\mathrm{Hz}, 2 \mathrm{H}), 3.96(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{t}, J=6.78 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{t}, J=$ $7.32 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.04(\mathrm{p}, J=7.32 \mathrm{~Hz}, 4 \mathrm{H}) . \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 406$ $[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$406.1913, found: 406.1907. Anal. HPLC $99.6 \%\left(R_{t}=3.32 \mathrm{~min}\right)$.
4.1.4.22.

2-(2-Methoxy-4-(3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thioureido)phenoxy)-N,N-dimethylacetamide (181). Starting with compound 157 as following the reaction with dimethylamine, compound 181 was obtained as a white solid, 78% yield, $\mathrm{mp}=120-122^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ $\delta 7.91(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=2.16 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=8.56 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H})$, 6.73 (dd, $J=8.52,2.40 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~s}, 2 \mathrm{H}), 4.03(\mathrm{t}, J=7.20 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$, $3.61(\mathrm{t}, J=6.88 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~d}, J=0.76 \mathrm{~Hz}, 3 \mathrm{H}), 2.07$ (p, $J=7.00 \mathrm{~Hz}, 2 \mathrm{H}$). MS (ESI) $m / z 406[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+} 406.1907$, found 406.1908. Anal. HPLC $95.0 \%\left(\mathrm{R}_{\mathrm{t}}=4.06 \mathrm{~min}\right)$.
4.1.4.23. 3-(2-Methoxy-4-(3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thioureido)phenoxy)-N,N-dimethylpropanamide (182). Starting with compound 99 as following the general procedure 8 , compound 182 was obtained as white solid, 63% yield, $\mathrm{mp}=181-183{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{HNMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57(\mathrm{~s}, 1 \mathrm{H})$, $7.36(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=7.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H})$, $6.68(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 2.88$ (t, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), $2.15(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.02(\mathrm{p}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) m / z$ $420[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) calc. for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 420.2064$, found 420.2065. Anal. HPLC $97.4 \%\left(R_{t}=4.56 \mathrm{~min}\right)$.
4.1.4.24.

4-(2-Methoxy-4-(3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thioureido)phenoxy)-N,N-dimethylbutanamide (183). Starting with compound $\mathbf{1 0 0}$ as following the general procedure 8 , compound 183 was obtained as REGION
white solid, 60% yield, $\mathrm{mp}=70-72{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59(\mathrm{~s}, 1 \mathrm{H})$, $7.38(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.25 \mathrm{~Hz}, 1 \mathrm{H}), 6.74-6.69(\mathrm{~m}, 3 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 4.14(\mathrm{t}, J=$ $6.24 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{q}, J=6.21 \mathrm{~Hz}, 2 \mathrm{H}), 3.02$ (s, 3H), $2.95(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{t}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{~d}, J=0.90 \mathrm{~Hz}, 3 \mathrm{H}), 2.14(\mathrm{p}, J=$ $6.78 \mathrm{~Hz}, 2 \mathrm{H}$), $2.09(\mathrm{p}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{FAB}) m / z 434[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 434.2226$, found: 434.2228. Anal. HPLC 98.6% $\left(\mathrm{R}_{\mathrm{t}}=3.40 \mathrm{~min}\right)$.
4.1.4.25. 1-(3-Methoxy-4-(2-oxo-2-(piperazin-1-yl)ethoxy)phenyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (184). Starting with compound 133 as following the general procedure 6.2, compound 184 was obtained as white solid, 34% yield, mp $=124-125^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=$ $8.43 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=2.22 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{dd}, J=8.07,2.37 \mathrm{~Hz}$, $1 \mathrm{H}), 6.21(\mathrm{t}, J=7.14 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 2 \mathrm{H}), 3.90(\mathrm{t}, J=7.35 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$, $3.65(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.39-3.55(\mathrm{~m}, 4 \mathrm{H}), 2.88-2.84(\mathrm{~m}, 4 \mathrm{H}), 2.18(\mathrm{~d}, J=0.75 \mathrm{~Hz}$, $3 \mathrm{H}), 2.03(\mathrm{p}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H})$. MS (ESI) $\mathrm{m} / \mathrm{z} 447[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calc. for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+447.2173$, found 447.2165 . Anal. HPLC $95.7 \%\left(\mathrm{R}_{\mathrm{t}}=4.34 \mathrm{~min}\right)$.
4.1.4.26. 1-(3-Methoxy-4-(3-oxo-3-(piperazin-1-yl)propoxy)phenyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (185). Starting with compound 134 as following the general procedure 6.2, compound 185 was obtained as white solid, 31% yield, mp $=155-157{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 1 \mathrm{H})$, $6.93(\mathrm{~d}, J=3.00 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{dd}, J=8.40,2.37 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{t}, J=$ $6.24 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.57(\mathrm{~m}, 6 \mathrm{H}), 2.97(\mathrm{t}, J=$ $4.95 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{t}, J=5.85 \mathrm{~Hz}, 4 \mathrm{H}), 2.22(\mathrm{~d}, 1.11 \mathrm{~Hz}, 3 \mathrm{H}), 2.04(\mathrm{p}, J=7.14 \mathrm{~Hz}$, 2H). MS (ESI) $m / z 461[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calc. for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 461.2329, found 461.2323. Anal. HPLC $95.0 \%\left(R_{t}=3.15 \mathrm{~min}\right)$.
4.1.4.27. 1-(3-Methoxy-4-(4-oxo-4-(piperazin-1-yl)butoxy)phenyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (186). Starting with compound 135 as following the general procedure 6.2 , compound 186 was obtained as a white solid, 39% yield, $\mathrm{mp}=91-93{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.59(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.61 \mathrm{~Hz}$, $1 \mathrm{H}), 6.92(\mathrm{~d}, J=2.37 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{dd}, J=2.37,8.61 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 4.06(\mathrm{t}$, $J=6.21 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{t}, J=7.50 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.61-3.55(\mathrm{~m}, 6 \mathrm{H}), 2.80-$ REGION
$2.77(\mathrm{~m}, 4 \mathrm{H}), 2.61(\mathrm{t}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{~d}, J=0.93 \mathrm{~Hz}, 3 \mathrm{H}), 2.08(\mathrm{p}, J=6.78$ $\mathrm{Hz}, 4 \mathrm{H}$). MS (FAB) $m / z 475[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+} 475.2491$, found: 475.2483. Anal. HPLC $95.5 \%\left(\mathrm{R}_{\mathrm{t}}=3.43 \mathrm{~min}\right)$.
4.1.4.28. 1-(4-(2-(4-(2-Hydroxyethyl)piperazin-1-yl)-2-oxoethoxy)-3-methoxyphenyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (187). Starting with compound 152 as following the general procedure 7 , compound 187 was obtained as a white solid, 44% yield, $\mathrm{mp}=90-91^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ $7.59(\mathrm{~s}, 1 \mathrm{H}), 6.87-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{dd}, J=2.52,9.03 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 4.41$ $(\mathrm{s}, 2 \mathrm{H}), 3.98(\mathrm{t}, J=7.23 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{t}, J=6.03 \mathrm{~Hz}, 2 \mathrm{H}), 3.59-3.55$ $(\mathrm{m}, 2 \mathrm{H}), 2.87(\mathrm{t}, J=5.13 \mathrm{~Hz}, 4 \mathrm{H}), 2.52-2.48(\mathrm{~m}, 6 \mathrm{H}), 2.21(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.02$ $(\mathrm{p}, \quad J=6.96 \mathrm{~Hz}, \quad 2 \mathrm{H}), \quad \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 491[\mathrm{M}+\mathrm{H}]^{+} . \quad \mathrm{HRMS}(\mathrm{ESI})$ calc. for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 491.2435$, found 491.2456. Anal. HPLC 97.5\% $\left(\mathrm{R}_{\mathrm{t}}=2.99\right.$ min).
4.1.4.29. 1-(4-(2-(4-(2-Aminoethyl)piperazin-1-yl)-2-oxoethoxy)-3-methoxyphenyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (188). Starting with compound 136 as following the general procedure 6.2, compound 188 was obtained as a white solid, 24% yield, $\mathrm{mp}=79-81^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.58(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=$ $2.28 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.52 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=2.28,8.48 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}$, $1 \mathrm{H}), 4.78(\mathrm{~s}, 2 \mathrm{H}), 3.99(\mathrm{t}, J=7.16 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.61-3.59(\mathrm{~m}, 6 \mathrm{H}), 2.76(\mathrm{t}$, $J=6.44 \mathrm{~Hz}, 2 \mathrm{H}), 2.51(\mathrm{t}, J=3.16 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{t}, J=4.68 \mathrm{~Hz}, 4 \mathrm{H}), 2.21(\mathrm{~d}, J=$ $0.96 \mathrm{~Hz}, 3 \mathrm{H}$), $2.07(\mathrm{p}, J=5.44 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 490[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) calc. for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{~N}_{7} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 490.2595$, found 490.2595. Anal. HPLC $98.8 \%\left(\mathrm{R}_{\mathrm{t}}=\right.$ $2.87 \mathrm{~min})$.
4.1.4.30.

2-(2-Methoxy-4-(3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thioureido)phenoxy)-N-(piperidin-4-yl)acetamide (189). Starting with compound 177 as following the general procedure 6.2, compound 189 was obtained as a white solid, 41% yield, $\mathrm{mp}=57-58{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.59(\mathrm{~d}$, $J=1.11 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=2.40 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{dd}, J=$ $2.40,8.43 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 4.00(\mathrm{t}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$, $3.84-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{t}, J=6.78 \mathrm{~Hz}, 2 \mathrm{H}), 3.05(\mathrm{~d}, J=12.81 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{t}, J=$ $11.91 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{~d}, J=1.08 \mathrm{~Hz}), 2.06(\mathrm{p}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 1.88-1.84(\mathrm{~m}, 2 \mathrm{H})$, 1.50-1.42 (m, 2H). MS (ESI) $m / z 461[\mathrm{M}+\mathrm{H}]^{+} . \quad$ HRMS (ESI) calc.

PART 1- POTENTIALS ANTI ALZHEIMER'S AGENTS: SAR OF ARG-MIMETIC REGION
for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 461.2329$, found 461.2318. Anal. HPLC 98.5\% $\left(\mathrm{R}_{\mathrm{t}}=2.96\right.$ min).
4.1.4.31.

3-(2-Methoxy-4-(3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thioureido)phenoxy)- N-(piperidin-4-yl)propanamide (190). Starting with compound 138 as following the general procedure 6.2, compound 190 was obtained as a white solid, 24% yield, $\mathrm{mp}=89-90^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.58(\mathrm{~s}$, $1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=2.19 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=2.37,8.61 \mathrm{~Hz}$, $1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 4.25(\mathrm{t}, J=6.03 \mathrm{~Hz}, 2 \mathrm{H}), 4.06-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{t}, J=7.32 \mathrm{~Hz}$, $2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.08-3.03(\mathrm{~m}, 2 \mathrm{H}), 2.71-2.60(\mathrm{~m}, 4 \mathrm{H})$, $2.21(\mathrm{~d}, J=0.93 \mathrm{~Hz}, 3 \mathrm{H}), 2.05(\mathrm{p}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 1.88-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.41(\mathrm{~m}$, $2 \mathrm{H})$. MS (FAB) $m / z 475[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 475.2491, found: 475.2477. Anal. HPLC $97.8 \%\left(R_{t}=3.91 \mathrm{~min}\right)$.
4.1.4.32.

4-(2-Methoxy-4-(3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thioureido)phenoxy)-N-(piperidin-4-yl)butanamide (191). Starting with compound 139 as following the general procedure 6.2, compound 191 was obtained as white solid, 87% yield, $\mathrm{mp}=97-98{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.58(\mathrm{~d}, J$ $=0.90 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{dd}, J=8.43,2.40 \mathrm{~Hz}$, $1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{t}, J=6.06 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{t}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, $3.79-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{t}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 3.08(\mathrm{dt}, J=9.90,2.94 \mathrm{~Hz}, 2 \mathrm{H}), 2.72$ $(\mathrm{td}, J=12.09,2.04 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.10-$ 1.99 (m, 4H), 1.88 (d, $J=10.08 \mathrm{~Hz}, 2 \mathrm{H}), 1.41$ (qt, $J=11.70,2.91 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{MS}$ (ESI) $\mathrm{m} / \mathrm{z} 489[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calc. for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 489.2642$, found 489.2659. Anal. HPLC $98.5 \%\left(R_{t}=3.52 \mathrm{~min}\right)$.
4.1.4.33. N-(1-(2-Hydroxyethyl)piperidin-4-yl)-2-(2-methoxy-4-(3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thioureido)phenoxy)acetamide (192). Starting with compound 153 as following the general procedure 7, compound 192 was obtained as a white solid, 41% yield, $\mathrm{mp}=104-106{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.05$ $(\mathrm{d}, J=2.19 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=8.40 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{dd}, J=2.37,8.43 \mathrm{~Hz}, 1 \mathrm{H}), 6.66$ ($\mathrm{s}, 1 \mathrm{H}$), 4.49 ($\mathrm{s}, 2 \mathrm{H}), 4.00(\mathrm{t}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 1 \mathrm{H}), 3.85-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.69$ $(\mathrm{t}, J=6.06 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{t}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{~d}, J=12.09 \mathrm{~Hz}), 2.54(\mathrm{t}, J=6.06$ $\mathrm{Hz}, 2 \mathrm{H}), 2.22(\mathrm{~d}, J=0.72 \mathrm{~Hz}, 3 \mathrm{H}), 2.16-2.13(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{p}, J=7.32 \mathrm{~Hz}), 1.88-$ REGION
$1.82(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.54(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / z 505[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) calc. for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 505.2592$, found 505.2583. Anal. HPLC $100.0 \%\left(\mathrm{R}_{\mathrm{t}}=2.97\right.$ min).
4.1.4.34. N-(1-(2-Aminoethyl)piperidin-4-yl)-2-(2-methoxy-4-(3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thioureido)phenoxy)acetamide (193). Starting with compound 140 as following the general procedure 6.2, compound 193 was obtained as a white solid, 77% yield, $\mathrm{mp}=125-126^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.06$ $(\mathrm{d}, J=1.75 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.55 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=2.15,8.50 \mathrm{~Hz}, 1 \mathrm{H}), 6.66$ $(\mathrm{s}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 3.99(\mathrm{t}, J=7.20 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.79-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.59$ $(\mathrm{t}, J=6.60 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{~d}, J=11.35 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{t}, J=6.55 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{t}, J$ $=6.60 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.19-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{p}, J=7.10 \mathrm{~Hz}, 2 \mathrm{H}), 1.89-1.87$ $(\mathrm{m}, 2 \mathrm{H}), 1.62(\mathrm{q}, J=8.95 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) m / z 504[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) calc. for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{~N}_{7} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$504.2751, found 504.2750. Anal. HPLC $100.0 \%\left(\mathrm{R}_{\mathrm{t}}=2.80\right.$ min).
4.1.4.35.

N-(2-(2-Methoxy-4-(3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thioureido)phenoxy)-ethyl)piperidine-4-carboxamide (194). Starting with compound 141 as following the general procedure 6.2, compound 194 was obtained as a white solid, 54% yield. ${ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.51(\mathrm{~d}, J=1.29 \mathrm{~Hz}, 1 \mathrm{H})$, $6.89(\mathrm{~d}, J=2.40 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{dd}, J=2.40,8.61 \mathrm{~Hz}, 1 \mathrm{H})$, $6.57(\mathrm{~s}, 1 \mathrm{H}), 3.98(\mathrm{t}, J=5.67 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{t}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.52-$ $3.41(\mathrm{~m}, 4 \mathrm{H}), 3.28-3.24(\mathrm{~m}, 2 \mathrm{H}), 2.89(\mathrm{td}, J=12.27 \mathrm{~Hz}, 3.66, \mathrm{~Hz}, 2 \mathrm{H}), 2.41-2.38(\mathrm{~m}$, $1 \mathrm{H}), 2.13(\mathrm{~d}, J=0.90 \mathrm{~Hz}, 3 \mathrm{H}), 1.99$ (quint, $J=6.75 \mathrm{~Hz}, 2 \mathrm{H}), 1.83-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.76-$ $1.71(\mathrm{~m}, 2 \mathrm{H})$. MS (FAB) $m / z 475[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+} 475.2491$, found: 475.2491. Anal. HPLC $99.6 \%\left(\mathrm{R}_{\mathrm{t}}=4.29 \mathrm{~min}\right)$.
4.1.4.36. 1-(3-Methoxy-4-(4-(piperazin-1-yl)phenoxy)phenyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (195). Starting with compound 142 as following the general producer 6.2, compound 195 was obtained as a white solid, 69% yield, $\mathrm{mp}=$ $88-90{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=2.37 \mathrm{~Hz}, 1 \mathrm{H})$, 6.92-6.89 (m, 2H), 6.86-6.81 (m, 3H), $6.76(\mathrm{dd}, J=2.55,8.58 \mathrm{~Hz}, 1 \mathrm{H}) 6.66(\mathrm{~s}, 1 \mathrm{H})$, $4.01(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{t}, J=6.54 \mathrm{~Hz}, 2 \mathrm{H}), 3.06-3.02(\mathrm{~m}, 4 \mathrm{H})$, 2.97-2.85 (m, 4H), $2.22(\mathrm{~s}, \quad 3 \mathrm{H}), 2.07(\mathrm{p}, \quad J=6.96 \mathrm{~Hz}, \quad 2 \mathrm{H})$.

MS (ESI) m/z $481[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) calc. for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 481.2380$, found 481.2394. Anal. HPLC $96.6 \%\left(\mathrm{R}_{\mathrm{t}}=2.91\right.$ min).
4.1.4.37. 1-(3-Methoxy-4-(4-(4-methylpiperazin-1-yl)phenoxy)phenyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (196). Starting with compound 88 as following the general producer 8, compound 196 was obtained as a white solid, 49% yield, $\mathrm{mp}=104-106{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=$ $2.37 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.84-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.79$ (dd, $J=2.37,8.43 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{t}, J=7.23 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{t}, J=6.93$ $\mathrm{Hz}, 2 \mathrm{H}), 3.14(\mathrm{t}, J=4.95 \mathrm{~Hz}, 4 \mathrm{H}), 2.66(\mathrm{t}, J=4.95 \mathrm{~Hz}, 4 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~d}, J$ $=0.90 \mathrm{~Hz}, 3 \mathrm{H}), 2.10(\mathrm{p}, J=6.78 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) m / z 495[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) calc. for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{6} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 495.2537$, found 495.2532. Anal. HPLC 99.8\% $\left(\mathrm{R}_{\mathrm{t}}=\right.$ 2.99 min).
4.1.4.38. 1-(4-(4-(4-(2-Hydroxyethyl)piperazin-1-yl)phenoxy)-3-methoxyphenyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (197). Starting with compound 159 as following the general producer 7, compound 197 was obtained as a white solid, 89% yield, $\mathrm{mp}=66-67{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=$ $2.19 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.82-6.77(\mathrm{~m}, 3 \mathrm{H}), 4.07(\mathrm{t}, J=$ $7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{t}, J=5.52 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.24-3.22(\mathrm{~m}, 6 \mathrm{H}), 3.04(\mathrm{t}, J=$ $4.56 \mathrm{~Hz}, 4 \mathrm{H}), 2.91(\mathrm{t}, J=5.67 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{~d}, J=0.90 \mathrm{~Hz}, 3 \mathrm{H}), 2.11(\mathrm{p}, J=7.32$ $\mathrm{Hz}, 2 \mathrm{H}$). MS (ESI) $m / z 525[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) calc. for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 525.2642, found 525.2633. Anal. HPLC $96.3 \%\left(R_{t}=2.92 \mathrm{~min}\right)$.
4.1.4.39. 1-(4-(4-(4-(2-Aminoethyl)piperazin-1-yl)phenoxy)-3-methoxyphenyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (198). Starting with compound 158 as following the general producer 6.2, compound 198 was obtained as a white solid, 75% yield, m.p $=75-77{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=$ $2.37 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.84-6.81(\mathrm{~m}, 3 \mathrm{H}), 6.79(\mathrm{dd}, J=2.22,8.43 \mathrm{~Hz}, 1 \mathrm{H})$, $6.66(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{t}, J=7.50 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.13(\mathrm{t}$, $J=5.10 \mathrm{~Hz}, 4 \mathrm{H}), 2.82(\mathrm{t}, J=6.39 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{t}, J=5.13 \mathrm{~Hz}, 4 \mathrm{H}), 2.53(\mathrm{t}, J=6.60$ $\mathrm{Hz}, 2 \mathrm{H}), 2.22(\mathrm{~d}, J=0.90 \mathrm{~Hz}, 3 \mathrm{H}), 2.07(\mathrm{p}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H})$. MS (ESI) $m / z 524[\mathrm{M}+\mathrm{H}]^{+} . \quad$ HRMS (ESI) calc. for
$\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{~N}_{7} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$524.2802, found 524.2808. Anal. HPLC 99.5\% $\left(\mathrm{R}_{\mathrm{t}}=2.75\right.$ min).
4.1.4.40. 1-(3-Methoxy-4-(4-(1,2,3,6-tetrahydropyridin-4-yl)phenoxy)phenyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (199). Starting with compound 143 as following the general procedure 6.2, compound 199 was obtained as a white solid, 91% yield, $\mathrm{mp}=95-97{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=$ $8.79 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=2.40 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 1 \mathrm{H}), 6.84-6.80(\mathrm{~m}, 3 \mathrm{H})$, $6.67(\mathrm{~s}, 1 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{t}, J=6.78 \mathrm{~Hz}$, $2 \mathrm{H}), 3.44(\mathrm{q}, J=3.12 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{t}, J=5.88 \mathrm{~Hz}, 2 \mathrm{H}), 2.47-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.23(\mathrm{~d}$, $J=0.93 \mathrm{~Hz}, 3 \mathrm{H}), 2.08(\mathrm{p}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) m / z 478[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{HRMS}$ (ESI) calc. for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 478.2271$, found 478.2288 . Anal. HPLC $98.6 \%\left(\mathrm{R}_{\mathrm{t}}=\right.$ 2.91 min).
4.1.4.41. 1-(3-Methoxy-4-(4-(piperidin-4-yl)phenoxy)phenyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (200). Starting with compound 144 as following the general procedure 6.2, compound 200 was obtained as a white solid, 61% yield, mp $=87-89{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.15-7.12(\mathrm{~m}, 3 \mathrm{H}), 6.94(\mathrm{~d}$, $J=8.40 \mathrm{~Hz}, 1 \mathrm{H}), 6.82-6.80(\mathrm{~m}, 3 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{t}, J=7.28 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}$, $3 \mathrm{H}) 3.63(\mathrm{t}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 3.14-3.11(\mathrm{~m}, 2 \mathrm{H}), 2.74-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.64-2.62(\mathrm{~m}$, $1 \mathrm{H}), 2.23(\mathrm{~d}, J=0.64 \mathrm{~Hz}, 3 \mathrm{H}), 2.14-2.00(\mathrm{~m}, 4 \mathrm{H}), 1.63-1.57(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ $480[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) calc. for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 480.2428$, found 480.2424. Anal. HPLC $97.7 \%\left(R_{t}=2.90 \mathrm{~min}\right)$.
4.1.4.42. 1-(3-Methoxy-4-(3-(piperazin-1-yl)benzyloxy)phenyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (201). Starting with compound 145 as following the general procedure 6.2, compound 201 was obtained as a white solid, 75% yield, mp $=106-108{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=7.86 \mathrm{~Hz}, 1 \mathrm{H})$, $7.06(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=7.89 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.90(\mathrm{~m}, 3 \mathrm{H}), 6.71(\mathrm{dd}, J=7.89,1.83$ $\mathrm{Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 3.96(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{t}, J$ $=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 3.13(\mathrm{t}, J=4.38,4 \mathrm{H}), 2.96(\mathrm{t}, J=5.31 \mathrm{~Hz}, 4 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{p}$, $J=7.14 \mathrm{~Hz}, 2 \mathrm{H}$). MS (ESI) $m / z 495[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) calc. for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+} 495.2537$ found 495.2542. Anal. HPLC $95.0 \%\left(\mathrm{R}_{\mathrm{t}}=3.15 \mathrm{~min}\right)$.

PART 1- POTENTIALS ANTI ALZHEIMER'S AGENTS: SAR OF ARG-MIMETIC REGION
4.1.4.43. 1-(3-Methoxy-4-(3-(piperidin-4-yl)benzyloxy)phenyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (202). Starting with compound 146 as following the general procedure 6.2, compound 202 was obtained as a white solid, 68% yield, mp $=166-167{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.58(\mathrm{~d}, J=1.08 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.26$ $(\mathrm{m}, 3 \mathrm{H}), 7.19(\mathrm{tt}, J=6.24 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=2.37 \mathrm{~Hz}$, $1 \mathrm{H}), 6.72(\mathrm{dd}, J=8.43,2.37 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}$, $3 \mathrm{H}), 3.59(\mathrm{t}, J=6.78 \mathrm{~Hz}, 2 \mathrm{H}), 3.25(\mathrm{br}, 1 \mathrm{H}), 3.21(\mathrm{br}, 1 \mathrm{H}), 2.84(\mathrm{td}, J=12.45,2.94$ $\mathrm{Hz}, 2 \mathrm{H}), 2.74(\mathrm{tt}, J=11.91,3.66 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~d}, J=0.90 \mathrm{~Hz}, 3 \mathrm{H}), 2.03(\mathrm{p}, J=7.14$ $\mathrm{Hz}, 2 \mathrm{H}), 1.90-1.86(\mathrm{br}, 2 \mathrm{H}), 1.75(\mathrm{p}, J=8.40,3.84 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 494[\mathrm{M}+$ $\mathrm{H}]^{+}$. HRMS (FAB) calc. for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$494.2584, found 494.2595. Anal. HPLC $97.7 \%\left(\mathrm{R}_{\mathrm{t}}=3.18 \mathrm{~min}\right)$.
4.1.4.44. 1-(3-Methoxy-4-(4-(2-(methylamino)pyridin-4-yl)butoxy)phenyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (203). Starting with compound 147 as following the general procedure 6.2, compound 203 was obtained as a white solid, 83% yield, $\mathrm{mp}=56-58^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.79(\mathrm{~d}, J=4.95 \mathrm{~Hz}, 1 \mathrm{H})$, 7.59 (d, $J=0.90 \mathrm{~Hz}, 1 \mathrm{H}), 6.93$ (d, $J=8.79 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=2.55 \mathrm{~Hz}, 1 \mathrm{H}), 6.75$ (dd, $J=2.37,8.01 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 6.45(\mathrm{dd}, J=1.29,5.31 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~s}$, $1 \mathrm{H}), 4.04(\mathrm{t}, J=5.64 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{t}, J=6.57$ $\mathrm{Hz}, 2 \mathrm{H}), 2.82(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{t}, J=7.29 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(\mathrm{~d}, J=0.90 \mathrm{~Hz}, 3 \mathrm{H}), 2.07(\mathrm{p}, J$ $=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 1.80-1.78(\mathrm{~m}, 4 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 483[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) calc. for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 483.2537$, found 483.2534. Anal. HPLC $99.2 \%\left(\mathrm{R}_{\mathrm{t}}=2.96 \mathrm{~min}\right)$.
4.1.4.45.

1-(4-(4-(2-((2-Hydroxyethyl)amino)pyridin-4-yl)butoxy)-3-methoxyphenyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (204). Starting with compound 154 as following the general procedure 7, compound 204 was obtained as a white solid, 68% yield, $\mathrm{mp}=103-104{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ $\delta 7.79(\mathrm{~d}, J=5.28 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 6.93-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.75(\mathrm{dd}, J=2.55,9.12$ $\mathrm{Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=5.31 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{t}, J=5.97 \mathrm{~Hz}$, $2 \mathrm{H}), 3.97(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{t}, J=5.49 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(\mathrm{q}, J=$ $6.87 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{t}, J=5.49 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{~d}, J=0.90 \mathrm{~Hz}, 3 \mathrm{H}), 2.02$ (p, J = 6.96 Hz, 2H), $1.79(\mathrm{~m}, 4 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) m / z 513[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) calc. for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$513.2642, found 513.2633. Anal. HPLC 98.1\% $\left(\mathrm{R}_{\mathrm{t}}=2.95\right.$ min).
4.1.4.46. 1-(4-(4-(2-((2-Aminoethyl)amino)pyridin-4-yl)butoxy)-3-methoxyphenyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (205). Starting with compound as 148 following the general procedure 6.2, compound 205 was obtained as a white solid, 46% yield, $\mathrm{mp}=100-102{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO) $\delta 9.51(\mathrm{br}, 1 \mathrm{H})$, $7.82(\mathrm{~d}, 1 \mathrm{H}, J=5.05 \mathrm{~Hz}), 7.76(\mathrm{br}, 1 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~d}, 1 \mathrm{H}, J=$ $9.05 \mathrm{~Hz}), 6.76(\mathrm{~d}, 1 \mathrm{H}, J=8.15 \mathrm{~Hz}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 6.33-6.27(\mathrm{~m}, 3 \mathrm{H}), 3.93(\mathrm{t}, 2 \mathrm{H}, J=$ $5.55 \mathrm{~Hz}), 3.89(\mathrm{t}, 2 \mathrm{H}, J=7.05 \mathrm{~Hz}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{q}, J=5.34 \mathrm{~Hz}, 2 \mathrm{H}), 3.19(\mathrm{q}$, $2 \mathrm{H}, J=6.20 \mathrm{~Hz}), 2.66(\mathrm{t}, 2 \mathrm{H}, J=6.25 \mathrm{~Hz}), 2.47-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{p}$, $2 \mathrm{H}, J=7.00 \mathrm{~Hz}$), 1.68-1.61 (m, 4H). MS (ESI) $m / z 512[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) calc. for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{~N}_{7} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$512.2802, found 512.2800. Anal. HPLC $97.1 \%\left(\mathrm{R}_{\mathrm{t}}=2.80\right.$ min).

4.2. Molecular Modeling

The X-ray crystal structure of human glutaminyl cyclase (PDB ID: 3PBB) [39] was prepared using the Protein Preparation Wizard in Maestro v.10.2 (Schrödinger, LLC, New York, NY, USA). During the preparation process, bond orders were assigned, zero-order bonds to Zn^{2+} were created, and hydrogen atoms were added. All hydrogen atoms were energy minimized with the optimized potential for liquid simulation (OPLS) 2005 force field. The protonation states of the ligand molecules were predicted using the pKa prediction module in ACD/I-Lab web server (ACD/Labs, Toronto, ON, Canada). The 3D structure of compound 202 was generated by LigPrep v.3.4 in Maestro and the resulting structure was energy minimized in implicit solvent with OPLS 2005 force field in Maestro. The prepared ligand molecules were docked to hQC using Glide v.6.7 in Maestro. The grid for the active site was generated using the centroid of the co-crystallized ligand, PBD150, and the grid box size was set as default. The metal coordination constraint was set to the tetrahedral geometry for $\mathbf{Z n}^{2+}$. Glide SP docking was performed with the maximum number of 30 poses per ligand. The resulting top 5 poses of compound $\mathbf{2 0 2}$ were selected and used for the following QM-Polarized Ligand Docking (QPLD) process. The partial charges of the docked ligands were calculated using Jaguar with the option of accurate QM level. Then, the ligands with the updated charges were re-docked using Glide extra precision (XP). The protein-ligand complex obtained from QPLD was used for further optimization by the Refine Protein-Ligand Complex module in Prime v.4.0 in Maestro. Protein
residues within $5 \AA$ of the docked ligand were minimized by local optimization refinement. The side chain conformations of the selected protein residues were predicted and minimized along with the docked ligand during this process. The resulting structures were further energy minimized using Monte Carlo sampling algorithm in Maestro in 2500 steps. All figures of the molecular structures were generated using PyMOL software (http://www.pymol.org). All computational studies were performed on an Intel Xeon Octa-Core 2.67 GHz workstation with Linux CentOS release 6.7.

1. Design and Pharmacophore

Previously reported QC inhibitors were developed by a pharmacophore design based on the N-terminal structure of its substrate $\mathrm{A} \beta_{3-42}$. The representative inhibitors developed by Probiodrug (1, 2), ${ }^{60,61,70, ~} \mathrm{Wu}$ and colleagues (3) ${ }^{71}$ and our research group (4) ${ }^{59,66,72}$ are shown in Figure 2.1. Naturally occurring inhibitors ${ }^{73,74}$ and other small molecule inhibitors developed by the fragment-based approach ${ }^{75}$ were also reported; however, these inhibitors demonstrated only modest activity. Currently, PQ912, developed by Probiodrug, is undergoing a clinical trial, and it has exhibited favorable safety and tolerability. More importantly, PQ912 demonstrated a slight improvement in synaptic and neurological functions in patients with AD in a recently completed phase IIa clinical trial ${ }^{76,77}$ supporting that QC is a potential therapeutic target for the treatment of $A D$.

1

3

2

4

Figure 2.1. Representative QC inhibitors.

The Probiodrug compound 1 contains three key pharmacophores derived from the N-terminal Glu-Phe moiety of $\mathrm{A} \beta_{3 \mathrm{E}-42}{ }^{60,61}$ The 5-methylimidazole ring (red) mimics the N-terminal carboxylic acid as a zinc-binding motif. The distal NH of thiourea (blue) serves as a hydrogen bond donor, mimicking the first peptide bond from the N-terminus. The phenyl ring (green) mimics the Phe side chain at the penultimate position to the N-terminus. Inspired by this approach, we had previously developed a series of QC inhibitors (template A), with an extended scaffold as described in Figure 2.2. ${ }^{59,72}$ The scaffold contains an additional pharmacophore that mimics the binding interaction of the guanidine side chain of Arg at the

PART I1-SAR Investigation of Phe-Arg mimetic region of Human Glutaminyl

 Cyclaseantepenultimate position to the N-terminus. The newly developed QC inhibitors displayed much improved potency with a range of 5 to 40 -fold more potent inhibition than 1. Specifically, compound 4 not only exhibited potent inhibition without cytotoxicity but also significantly reduced the brain concentrations of $\mathrm{pE}-\mathrm{A} \beta$ and total $\mathrm{A} \beta$ while restoring cognitive functions in an AD animal model. The molecular modeling analysis of $\mathbf{4}$ indicated that the 2-aminopyridine moiety showed strong interactions with the carboxylate group of Glu327 in the QC binding site.

A
R = Arg mimetic

B

C

Figure 2.2. Design rationale for QC inhibitors with novel templates

In this study, we investigated a series of 3-aminoalkyloxy-4-methoxyphenyl (template B) and 4-aminoalkyloxyphenyl (template C) surrogates as variants of template A . We anticipate that these templates would provide useful information to optimize the position of Arg-mimetic region (from template B) and to identify the significance of the 3-methoxy group (from template C) for QC inhibition. We evaluated the human QC inhibitory activity of the synthesized compounds in vitro and selected several potent inhibitors $\left(\mathrm{IC}_{50}<10 \mathrm{nM}\right)$. We further tested these compounds for in vitro toxicity/permeability and in vivo activity in acute AD model mice. Finally, a molecular modeling study was performed to analyze the specific binding interactions in the QC active site.

2. Results and discussion

2.1. Chemistry

In general, the final thiourea compounds were synthesized by the coupling reaction between 3-(5-methyl-1H-imidazol-1-yl)propan-1-amine and aniline

PART I1-SAR Investigation of Phe-Arg mimetic region of Human Glutaminyl Cyclase
intermediates obtained by the reduction of nitro fragments prepared in Schemes 2.1 and 2.2.

The synthesis of the 3-aminoalkyloxy-4-methoxy-1-nitrobenzene fragments is described in Scheme 2.1. Starting from 5-nitroguaiacol (5), the Mitsunobu reaction or Williamson reaction incorporated N-protected aminoalkyl moieties into the phenolic position to provide 6-17. Among them, the N-Boc protected amino (6-12) and phthalimide protected amino $(\mathbf{1 3}, \mathbf{1 4})$ intermediates were directly employed for the thiourea coupling. The bromides $\mathbf{1 5 - 1 7}$ were reacted with N-Boc piperazine to give 22-24. After deprotection, the free amines $(\mathbf{1 8}, \mathbf{2 1})$ were converted to the N methylpiperidine (19) and dimethylamino (29) analogues by reductive amination, respectively. Meanwhile, the amines $(\mathbf{2 0}, \mathbf{2 1})$ were protected with a Boc group and then N-methylated to afford the corresponding N-Boc methylamino (27, 28) analogues.

Scheme 2.1. 3-aminoalkyloxy-4-methoxy-1-nitrobenzene fragments. Reagents and conditions: (a) N-Boc ethanolamine, N-Boc piperidine derivatives or tert-butyl (4-(2-hydroxyethyl)pyridin-2-yl)carbamate, DEAD, PPh_{3}, DCM, r.t., overnight; (b) alkyl halides, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, 100{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (c) TFA, DCM; (d) $\mathrm{ZnCl}_{2}, \mathrm{HCHO}, \mathrm{NaBH}_{3} \mathrm{CN}$, MeOH , r.t., overnight; (e) $\mathrm{N}_{2} \mathrm{H}_{4} . \mathrm{H}_{2} \mathrm{O}$, EtOH, r.t., overnight; (f) $\mathrm{Boc}_{2} \mathrm{O}$, TEA, DCM; (g) $\mathrm{CH}_{3} \mathrm{I}, \mathrm{NaH}, \mathrm{THF}, 0^{\circ} \mathrm{C}$ for 27, 28; (h) N-Boc piperazine, DMF, TEA, $60^{\circ} \mathrm{C}, 2 \mathrm{~h}$.

The synthesis of 4-aminoalkyloxy-1-nitrobenzene fragment is shown in Scheme 2.2. The N-Boc aminoalkyloxy analogues (32,33) were prepared from 4nitrophenol (30) by alkylation reactions. The N-Boc amido analogues (37, 38, 42, 43,

PART I1-SAR Investigation of Phe-Arg mimetic region of Human Glutaminyl

 Cyclase50) were synthesized from 4-nitrobenzoic acid (34), 2-(4-nitrophenoxy)acetic acid, (35) or 4-nitro cinnamic acid (36), by coupling with the corresponding amines. The N -aminoethyl piperazinyl (40) and piperidinyl (47-49) analogues were prepared from the corresponding piperazine (39) and piperazine (44-46) precursors by alkylation with tert-butyl (2-iodoethyl)carbamate.

Scheme 2.2.4-aminoalkyloxy-1-nitrobenzene fragment. Reagents and conditions: (a) alkyl halide, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, DMF, heat; (b) N-Boc piperazine, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, DMF, heat; (c) $\mathrm{RNH}_{2}, \mathrm{EDC}, \mathrm{HOBt}, \mathrm{DCM}$; (d) TFA, DCM; (e) tert-Butyl (2-iodoethyl)carbamate, $\mathrm{NaH}, \mathrm{DMF}, 0^{\circ} \mathrm{C}$ to r.t., 2 h .

32, 33, 37, 38, 40
42, 43, 47-50
Scheme 2.3. Synthesis of final compound of Phe-Arg mimetic region. Reagents and conditions: (a) $\mathrm{Pd}, \mathrm{H}_{2}, \mathrm{MeOH}$; (b) $\mathrm{Zn}, \mathrm{AcOH}, \mathrm{MeOH}$; (c) 3-(5-methyl-1H-imidazol-1-yl)propan-1-amine, TCDI, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}$, r.t., overnight; (d) TFA, DCM, $0^{\circ} \mathrm{C}$ to r.t.,

PART I1-SAR Investigation of Phe-Arg mimetic region of Human Glutaminyl Cyclase

overnight; (e) $\mathrm{N}_{2} \mathrm{H}_{4} . \mathrm{H}_{2} \mathrm{O}$, EtOH, r.t., overnight; (f) 2-chloropyrimidine, TEA, EtOH, reflux, 2 days.

The synthesis of the final thiourea compounds is illustrated in Scheme 2.3. The synthesized anilines were reduced either by hydrogenation or by zinc in acetic acid to provide the corresponding amines, which were then coupled with 3-(5-methyl$1 H$-imidazol-1-yl)propan-1-amine by previous method ${ }^{59}$ to afford the corresponding thioureas. Finally, the deprotection of N-Boc and N-phthalimide provided the final 3-aminoalkyloxy-4-methoxyphenyl (51-66) and 4-aminoalkyloxyphenyl (68-78) derivatives, respectively. The pyrimidine $\mathbf{6 7}$ was synthesized from amine 53 by reacting with 2-chloropyrimidine.

2.2. In vitro QC Inhibition

As previously reported, to evaluate the human QC inhibition of the synthesized compounds we performed the QC activity assays employing a fluorogenic substrate, Gln-AMC (L-glutamine 7-amido-4-methylcoumarin), and pyroglutamyl peptidase (pGAP) as an auxiliary enzyme. ${ }^{67}$

First, we investigated a series of 3-aminoalkyloxy-4-methoxyphenyl analogues represented as template B (Table 2.1). The primary amine derivatives (5153) exhibited similarly potent inhibition regardless of the length of linkers with a range of $\mathrm{IC}_{50}=7.9-9.0 \mathrm{nM}$, which were 3.5 -fold more potent than the parent $\mathbf{1}$. The secondary amine derivatives $(\mathbf{5 4}, \mathbf{5 5})$ were found approximately 3 -fold less active than the corresponding primary amines $(\mathbf{5 2}, \mathbf{5 3})$. The tertiary amine derivative (56) showed poor inhibition compared to the corresponding secondary derivative (55). Next, we examined the cyclic amine derivatives. The piperazine derivatives (57-59) also displayed reasonable inhibitory effect regardless of the linker length. The piperidine derivatives ($60-62$) exhibited better activity than those of piperazine derivatives, and they showed similar IC_{50} values compared to the primary amine derivatives (51-53). However, the N-methylation of the piperidine (63) resulted in the loss of activity. Because the previously developed 2 -aminopyridine derivatives (template A, Figure 2) showed promising activities both in in vitro $\left(\mathrm{IC}_{50}=4.5 \mathrm{nM}\right.$ for 4) and in vivo, we also examined the 2-aminopyridine analogues (64-66). Unfortunately, these compounds were found to be less potent than their 3-methoxyphenyl-4-aminoalkyloxy counter parts (template A). When the

PART I1- SAR Investigation of Phe-Arg mimetic region of Human Glutaminyl Cyclase
aminopyridine group was replaced with a 2 -aminopyrimidine (67), the compound showed similar inhibition as the aminopyridine analogue 66.

Table 2.1. IC_{50} values for the inhibition of $h \mathrm{QC}$ by 3-aminoalkyloxy-4-methoxy-1nitrobenzene compounds

PART I1-SAR Investigation of Phe-Arg mimetic region of Human Glutaminyl Cyclase

67

$4 \quad 15.2$
(± 2.0)
${ }^{\text {a }}$ The values indicate the mean of at least three experiments. ${ }^{\text {b }}$ Refs. 14 and 18

Next, we examined a series of 4-aminoalkyloxyphenyl analogues, in which the 3-methoxy group was removed and only contained the substituent at the 4 position and was represented as template C (Table 2.2). We first tested compounds 68 and 69, which were most potent when they contained the 3-methoxy group. ${ }^{59}$ However, it was found that compounds 68 and 69 were much less active, by 27-and 5.5 -fold respectively, than their previously reported 3-methoxy counterparts, suggesting that the 3-methoxy group represents an important binding interaction for inhibitory effect. We also examined inhibition of compounds 70-72 with an amido linker to compare the structure-activity relationship of the previously developed derivatives containing a 3 -methoxy group. ${ }^{71}$ These compounds appeared to maintain similar activity compared to the previously reported compounds, ${ }^{71}$ while the N aminoethyl piperidine derivative (72) was found to be more potent than that of $\mathbf{7 0}$, suggesting that the presence of an additional amide group may aid extra binding interactions and that the terminal amino group may serve as an Arg-mimetic. However, shortening or rigidifying the linker group mostly resulted in the loss of activity, as demonstrated in 73 and 74 (a 2-fold reduction than compounds 69 and 72, respectively). As a bioisostere of methyleneoxy group in the linker, we also tested the cinnamic linker surrogates (75-78). Although compounds containing the cinnamic linker appeared to be slightly less active than the corresponding alkyloxy derivatives, the addition of an N-aminoethyl group to compound $\mathbf{7 5}$ increased the activity 3-fold to give potent inhibitor 76 with an $\mathrm{IC}_{50}=6.4 \mathrm{nM}$, again suggesting that the terminal amino group likely served as an Arg-mimetic group to interact with QC.

Table 2.2. IC_{50} values for inhibition of $h \mathrm{QC}$ by 4-aminoalkyloxy-1-nitrobenzene compounds

Cpd\#	R	$\mathrm{IC}_{50}(\mathrm{nM})^{\mathrm{a}}$

68
${ }^{\mathrm{a}}$ The values indicate the mean of at least three experiments.

2.3. In vivo activity

Based on the in vitro QC inhibition of the synthesized compounds, we selected eight of the most potent inhibitors with IC_{50} values less than 10 nM for further evaluation. We first examined cytotoxicity by incubating HT-22 cells, an immortalized hippocampal neuronal cell line, with $10 \mu \mathrm{M}$ of each compound, and performed MTT assays. All tested compounds were not cytotoxic, demonstrating normal cell viability. We also evaluated the ability of h ERG channel blocking for all

PART II- SAR Investigation of Phe-Arg mimetic region of Human Glutaminyl Cyclase

compounds to assess drug toxicity. All compounds showed moderate $(35.1 \%, 62)$ to low inhibition $(2.8 \%, \mathbf{5 3})$ at $10 \mu \mathrm{M}$, indicating that they pose a marginal to low risk for cardiotoxicity. To evaluate the ability of the compounds to penetrate the bloodbrain barrier (BBB), we carried out a parallel artificial membrane permeability assay (PAMPA). Six compounds, 51-53 and 60-62, showed reasonable permeability, with a range of 5.0-5.9 for $-\operatorname{logPe}$. Interestingly, all of the primary amine (51-53) and piperidine (60-62) derivatives showed reasonable values for BBB penetration regardless of the length of the carbon linker, whereas the N-aminoethyl derivatives, 72 and 76, exhibited very low permeability ($-\log \mathrm{Pe}=10$ and 9.0).

Table 2.3. Studies of in vitro toxicity, permeability, and in vivo QC inhibition in acute model

	in vitro IC_{50} (nM)	cytotoxicity at $10 \mu \mathrm{M}$ (\% of control)	h ERG assay (10 $\mu \mathrm{M}$, \% inhibition)	PAMPA (-logPe)	\% inhibition of human $\mathrm{A} \beta_{\mathrm{N} 3 \mathrm{pE}-40}$ formation (icv) ${ }^{\text {a }}$
51	7.9	~ 100	15.3	5.7	35.3
52	9.0	~ 100	8.8	5.6	12.8
53	8.8	~ 100	2.8	5.9	36.6
60	7.3	~ 100	14.9	5.3	1.8
61	8.8	~ 100	25.6	5.0	5.5
62	7.9	~ 100	35.1	5.7	14.4
72	7.9	~ 100	19.9	10.0	NE
76	6.4	~ 100	7.2	9.0	22.9

a $5 \mu \mathrm{~L}$ of human $\mathbf{A} \beta_{3-40}$ in PBS $(1 \mu \mathrm{~g} / \mu \mathrm{L})$ was injected into the deep cortical/hippocampus to 5 weeks old ICR mice ($25 \mathrm{~g}, \mathrm{n}=4$, male) using a stereotaxic frame to induce acute $A \beta$ toxicity. Test compounds were administrated via icv injection. Sandwich ELISA was performed for the quantification of the brain $\mathrm{A} \beta_{\mathrm{N} 3 \mathrm{pE}}$ 40

Finally, we tested each compound in acute AD model mice to evaluate QC inhibition in vivo. We first injected human $\mathrm{A} \beta_{3-40}(5 \mu \mathrm{~g})$ and each compound (25 $\mathrm{mg} / \mathrm{kg}$) successively into deep cortical/hippocampal tissues of ICR mice (male, six weeks old) by intracerebroventricular (icv) administration. On the next day, we measured the levels of human $\mathrm{A} \beta_{\mathrm{N} 3 \mathrm{pE}-40}$ in the brain extracts of each mouse to determine the QC inhibitory activity. As described in Table 2.3, compounds 51-53,

PART I1-SAR Investigation of Phe-Arg mimetic region of Human Glutaminyl Cyclase

62 and 76 suppressed the formation of $A \beta_{\mathrm{N} 3 \mathrm{EE}-40}$ by 12.8% to 36.6% compared to the vehicle control. In particular, compounds 51 and 53, with in vitro IC_{50} values of 7.9 and 8.8 nM , exhibited the most potent $\mathrm{A} \beta_{\mathrm{N} 3 \mathrm{PE}-40}$-lowering effects by 35.3 and 36.6% reduction, respectively, indicating that the specific inhibition of QC resulted in the reduced brain levels of $\mathrm{A} \beta_{\mathrm{N} 3 \mathrm{pE}-40}$. Overall, these two compounds exhibited potent in vitro and in vivo QC inhibitory activities and good brain penetration without potential toxicity.

2.4. Molecular modeling

To evaluate the binding interactions between the $h \mathrm{QC}$ and the potent inhibitor 53, we carried out the sequential docking studies using X-ray crystal structure of $h \mathrm{QC}$ (PDB id: 3PBB). ${ }^{69}$ For the initial docking study, the protonated amine form of $\mathbf{5 3}$ at pH 7.4 was used and placed into a Glide SP (Standard Precision).

The result exhibited that the $N-3$ nitrogen of the 5-methyl imidazole chelated with zinc and formed a hydrogen bonding with Trp329. Additionally, the 5-methyl group occupied a hydrophobic pocket composed of Trp207, Leu249, Ile303, Ile321, and Phe325. The thiourea group caused the appropriate positioning of the phenyl ring for the hydrophobic interaction with Ile303, while the methoxy oxygen on the phenyl ring formed a hydrogen bond with Tyr299 (Figure 2.3).

Figure 2.3. Sequential docking and refinement of $\mathbf{5 3}$ in $h \mathrm{QC}$.
(A) Glide SP docking, (B) QPLD, (C) Local optimization, and (D) Monte Carlo minimization. Binding modes of $\mathbf{5 3}$ in protonated form were shown in each step. The distances between Glu327 and the terminal N from D-region of the ligands were revealed in black dashed lines.

Afterwards, Glide QM-Polarized Ligand Docking (QPLD) in Maestro was implemented, and the result showed the amino group in the side chain shifted toward Glu327 of the $h \mathrm{QC}$ active site (Figure 2.3B). The local optimization refinement was

PART I1- SAR Investigation of Phe-Arg mimetic region of Human Glutaminyl Cyclase

conducted, and the result displayed the bended Glu327 side chain, and constituted a salt bridge with the amino group of 53 (Figure 2.3C). To search for the global minimum, we performed a Monte Carlo minimization (Figure 2.3D). This type of sequential optimization for the protein-ligand complexes formed hydrogen bonding as well as salt bridge interactions, along with the H -bonding with the phenyl ring of 53 (Figure 2.3).

Accordingly, the imidazole ring formed $\pi-\pi$ interactions with $\operatorname{Trp} 329$, and the thiourea group showed a hydrogen bond with Gln304 while the dimethoxyphenyl group formed a H -bonding interaction and $\pi-\pi$ interaction with Phe325. Moreover, the protonated amine group located in the side chain displayed a salt bridge interaction with Glu327 and H-bonding with Pro326 and Glu327. Overall, we believe that switching the substituents in the 3 -and 4 -positions did not alter the binding interactions significantly, partly due to the flexibility of the 4-aminoalkoxy chain, which is also supported by the SAR found in the analogues with rigid and short linkers.

Figure 2.4. Docked and refined structure of $\mathbf{5 3}$ in $h \mathrm{QC}$.
(A) Binding interactions of $\mathbf{5 3}$ at the active site of the $h \mathrm{QC}$. Ligand is displayed as sticks with cyan carbon atoms, and Zn^{2+} is in purple ball. The interacted residues are shown in light blue sticks. Hydrogen bonds are described as black dashed lines. (B) 2D illustration of the binding interactions between 53 with $h \mathrm{QC}$. Hydrophobic interactions are indicated in light brown. Hydrogen bonds are exposed as red- and green-dotted point with the directionality. The $\pi-\pi$ stacking interaction is signified in purple disc and arrow, and the salt bridge interaction is displayed as purple wedge line.

3. Conclusion

In this study, we investigated a series of QC inhibitors containing 4-aminoalkyloxy-3-methoxyphenyl and 3-aminoalkyloxyphenyl groups as Phe-Arg mimetics of $A \beta_{3-42}$. The primary amines (51-53) and 4-piperidinyl (57-59) derivatives exhibited potent QC inhibition, demonstrating 3-4 fold more potent activity than the parent inhibitor $\mathbf{1}$ by Probiodrug. Further in vivo studies revealed that inhibitors 51 and $\mathbf{5 3}$ displayed the most potent $\mathrm{A} \beta_{\mathrm{N} 3 \mathrm{pE}-40}$-lowering effects with 35.3 and 36.6% in vivo, respectively, with reasonable BBB penetration, which also corresponded to their in vitro potency. The molecular modeling analysis of $\mathbf{5 3}$ indicated that the salt bridge interaction and the hydrogen bonding of the protonated amine group with Glu327 and Pro326 provided a high potency compared to the parent inhibitor 1. Given the potent QC inhibitory effect, favorable BBB penetration, and the toxicity profile, we believe that compound $\mathbf{5 3}$ may serve as a potential candidate for anti-Alzheimer's agents.

4. Experimental

4.1. Chemistry

4.1.1. General

All chemical reagents were commercially available. Melting points were determined on a melting point Buchi B-540 apparatus and are uncorrected. Silica gel column chromatography was performed on silica gel 60, 230-400 mesh, Merck. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a a JEOL JNM-LA 300 at 300 MHz , Bruker Analytik, DE/AVANCE Digital 400 at 400 MHz , a Bruker Analytik, DE/AVANCE Digital 500 at 500 MHz , and a JEOL JNM-ECA-600 at 600 MHz . Mass spectra were recorded on a VG Trio-2 GC-MS instrument and a 6460 Triple Quad LC-MS instrument. All final compounds were assessed for purity by high performance liquid chromatography (HPLC) on Agilent 1120 Compact LC (G4288A) system via the following conditions. Column: Agilent TC-C18 column ($4.6 \mathrm{~mm} \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$). Mobile phase A: MeOH , Mobile phase B: $0.1 \% \mathrm{TFA}$ in water (v / v) in 30 min . Wavelength: 254 nM . Flow: $0.7 \mathrm{~mL} / \mathrm{min}$. According to the HPLC analyses, all final compounds showed a purity of $\geq 95 \%$.

4.1.2. General procedure

4.1.2.1. Mitsunobu reaction (Procedure 1)

PART I1-SAR Investigation of Phe-Arg mimetic region of Human Glutaminyl Cyclase

Triphenylphosphine (1.3 eq) was added under nitrogen to a solution of 5nitroguaiacol (1.0 eq) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, followed by adding alcohol (1.2 eq) and a solution of diethyl azodicarboxylate (1.3 eq) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After the solution was stirred for 30 min at room temperature, the reaction was poured onto a column of silica and was eluted with EtOAc / n-hexane to give desired product.

4.1.2.2. Williamson reaction (Procedure 2)

Alkyl halide (4.0 eq) was added to a suspension of 5-nitroguaiacol or 4-nitrophenol (1.0 eq) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(2.0 \mathrm{eq})$ in anhydrous DMF. The reaction mixture was heated to $100{ }^{\circ} \mathrm{C}$ for 1 h and then cooled to room temperature before quenched by $\mathrm{H}_{2} \mathrm{O}$. The mixture was extracted with EtOAc ($2 \times 50 \mathrm{~mL}$). The organic layer was washed by $\mathrm{H}_{2} \mathrm{O}$ three times, dried by MgSO_{4} and concentrated. This concentration was then purified by column chromatography to get product.

4.1.2.3. Deprotection of phthalimide group (Procedure 3)

Hydrazine monohydrate was added to a solution of phthalimide compound in ethanol and stirred at room temperature overnight. The precipitate was filtered and washed with EtOH . The filtrate was collected and concentrated in vacuo. The residue was then purified by $\mathrm{PLC}\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give product.

4.1.2.4. N-Alkylation (Procedure 4)

A mixture of alkyl halide, amine, and excess base in DMF was stirred at $60^{\circ} \mathrm{C}$ for 30 min . The mixture reaction was quenched by $\mathrm{H}_{2} \mathrm{O}$ and extracted by EtOAc several times. The combined organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine and concentrated in vacuo. The residue was purified by column chromatography.

4.1.2.5. Boc protection (Procedure 5)

To a suspension of starting material amine (1.0 eq) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added triethylamine (1.2 eq) and di-tert-butyl dicarbonate (2.5 eq) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under ice bath. The mixture was stirred at room temperature until starting material was consumed, by checking with TLC. The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ several times. The combined organic layers were washed with 10% aqueous NaHCO_{3}

PART I1-SAR Investigation of Phe-Arg mimetic region of Human Glutaminyl Cyclase

solution, $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by flash chromatography to get the desired product.

4.1.2.6. Boc deprotection (Procedure 6)

Trifluoroacetic acid (10 eq) was added to the solution of Boc-protected compound (1.0 eq) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{DCM}: T F A=1: 1(\mathrm{v} / \mathrm{v}))$. Then, the mixture was stirred at room temperature until the starting material consumed and evaporated. The residue was dissolved in MeOH and purified by ion-exchange column to get desired product or carried to the next step without further purification.

4.1.2.7. Reductive methylation of amine (Procedure 7)

To a stirred solution of amine (1 eq) in $\mathrm{MeOH}(5 \mathrm{~mL})$ containing 37% aqueous formaldehyde (3 eq) at room temperature was added a solution of sodium cyanoborohydride (1 eq) and zinc chloride (0.5 eq) in MeOH (5 mL). After the reaction mixture was stirred at room temperature for overnight, the solution was taken up in $0.1 \mathrm{~N} \mathrm{NaOH}(10 \mathrm{~mL})$, and most of the MeOH was evaporated under reduced pressure. After the aqueous solution was extracted with EtOAc ($20 \mathrm{~mL} \times 3$), the combined extracts were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over MgSO_{4} and evaporated until dry. The residue was distilled in vacuo to give the desired product.

4.1.2.8. EDC coupling (Procedure 8)

1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide HCl (EDC-HCl, 1.1 eq) and $\mathrm{N}, \mathrm{N}-$ diisopropylethylamine (2.2 eq) were added to a solution of amine (1.0 eq), acid (1.0 eq) and 1-hydroxybenzotriazole ($\mathrm{HOBt}, 1.1 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture was stirred for 24 h at room temperature under nitrogen. The solvent was removed in vacuo and the residue purified by column chromatography on silica gel, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ to provide the desired compound.

4.1.3. Intermediate compounds

4.1.3.1. tert-Butyl (2-(2-methoxy-5-nitrophenoxy)ethyl)carbamate (6). The title compound was prepared from 5-nitroguaiacol (5) according to procedure $\mathbf{1}$ as a yellow solid in 99% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{dd}, J=8.97,2.55 \mathrm{~Hz}$,

PART I1-SAR Investigation of Phe-Arg mimetic region of Human Glutaminyl Cyclase
$1 \mathrm{H}), 7.76(\mathrm{~d}, J=2.58 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{br}, \mathrm{NH}), 4.15(\mathrm{t}, J=$ $5.31 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{q}, J=5.49 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.2. tert-Butyl 4-(2-(2-methoxy-5-nitrophenoxy)ethyl)piperidine-1-carboxylate (7). The title compound was prepared from compound 5 according to procedure $\mathbf{1}$ as a yellow oil in 63% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{dd}, J=8.97,2.58 \mathrm{~Hz}$, $1 \mathrm{H}), 7.73(\mathrm{~d}, J=2.55 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.17(\mathrm{~m}, 3 \mathrm{H}), 3.96(\mathrm{~s}$, $3 \mathrm{H}), 2.72(\mathrm{t}, J=11.73 \mathrm{~Hz}, 2 \mathrm{H}), 1.85-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H})$, $1.46-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.30(\mathrm{~m}, 2 \mathrm{H})$.
4.1.3.3. tert-Butyl 4-(3-(2-methoxy-5-nitrophenoxy)propyl)piperidine-1-carboxylate (8). The title compound was prepared from compound 5 according to procedure $\mathbf{1}$ as a yellow oil in 76% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{dd}, J=8.97,2.73 \mathrm{~Hz}$, $1 \mathrm{H}), 7.73(\mathrm{~d}, J=2.73 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.05(\mathrm{~m}, 4 \mathrm{H}), 3.96(\mathrm{~s}$, $3 \mathrm{H}), 3.48(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{t}, J=12.06 \mathrm{~Hz}, 2 \mathrm{H}), 1.95(\mathrm{p}, J=6.60 \mathrm{~Hz}, 2 \mathrm{H}), 1.72(\mathrm{~d}, J=$ $13.53 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.45-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.17-1.11(\mathrm{~m}, 2 \mathrm{H})$.
4.1.3.4. tert-Butyl 4-(4-(2-methoxy-5-nitrophenoxy)butyl)piperidine-1-carboxylate (9). The title compound was prepared from compound 5 according to procedure $\mathbf{1}$ as a brown oil in 63% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.92(\mathrm{dd}, J=8.79,2.55 \mathrm{~Hz}$, $1 \mathrm{H}), 7.73(\mathrm{~d}, J=2.76 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.06(\mathrm{~m}, 4 \mathrm{H}), 3.96(\mathrm{~s}$, $3 \mathrm{H}), 2.71(\mathrm{t}, J=12.09 \mathrm{~Hz}, 2 \mathrm{H}), 1.91(\mathrm{p}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.51-$ $1.47(\mathrm{~m}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.35-1.28(\mathrm{~m}, 2 \mathrm{H}), 1.15-1.02(\mathrm{~m}, 2 \mathrm{H})$.
4.1.3.5. tert-Butyl (4-(2-(2-methoxy-5-nitrophenoxy)ethyl)pyridin-2-yl)carbamate (10). The title compound was prepared from compound 5 according to procedure 1 as a yellow solid in 59% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.17(\mathrm{~d}, J=5.13 \mathrm{~Hz}$, $1 \mathrm{H}), 7.94-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=2.55 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{br}, \mathrm{NH}), 6.94(\mathrm{dd}, J=5.13$, $1.47 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{t}, J=6.78 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.19$ (t, $J=6.78 \mathrm{~Hz}, 2 \mathrm{H}), 1.53(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.6. tert-Butyl (4-(3-(2-methoxy-5-nitrophenoxy)propyl)pyridin-2-yl)carbamate (11). The title compound was prepared from compound 5 according to procedure 2 as a yellow solid in 65% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.15(\mathrm{~d}, J=5.10 \mathrm{~Hz}$,

PART I1-SAR Investigation of Phe-Arg mimetic region of Human Glutaminyl Cyclase
$1 \mathrm{H}), 7.93(\mathrm{dd}, J=8.79,2.55 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=2.58 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~s}$, $1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=5.13,2.28 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{t}, J=6.24 \mathrm{~Hz}$, $2 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{p}, J=6.24 \mathrm{~Hz}, 2 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.7. tert-Butyl (4-(4-(2-methoxy-5-nitrophenoxy)butyl)pyridin-2-yl)carbamate (12). The title compound was prepared from compound 5 according to procedure 2 as a yellow solid in 65% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11(\mathrm{~d}, J=5.31 \mathrm{~Hz}$, $1 \mathrm{H}), 7.92$ (dd, $J=8.97,2.76 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{br}, \mathrm{NH}), 7.72(\mathrm{~d}, J=2.55 \mathrm{~Hz}, 1 \mathrm{H}), 7.21$ (br, NH), $6.91(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=4.95,1.47 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{t}, J=6.06$ $\mathrm{Hz}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{t}, J=7.68 \mathrm{~Hz}, 2 \mathrm{H}), 1.89-1.81(\mathrm{~m}, 4 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.8. 2-(3-(2-Methoxy-5-nitrophenoxy)propyl)isoindoline-1,3-dione (13). The title compound was prepared from compound $\mathbf{5}$ according to procedure $\mathbf{2}$ as a yellow solid in 61% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90-7.81(\mathrm{~m}, 3 \mathrm{H}), 7.75-7.61(\mathrm{~m}, 3 \mathrm{H})$, $6.84(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{t}, J=6.03 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~d}, J=6.60 \mathrm{~Hz}, 2 \mathrm{H}), 3.73$ (s, 3H), $2.31(\mathrm{p}, J=6.24 \mathrm{~Hz}, 2 \mathrm{H})$.
4.1.3.9. 2-(4-(2-Methoxy-5-nitrophenoxy)butyl)isoindoline-1,3-dione (14). The title compound was prepared from compound $\mathbf{5}$ according to procedure $\mathbf{2}$ as a yellow solid in 94% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{dd}, J=8.97,2.55 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-$ $7.81(\mathrm{~m}, 2 \mathrm{H}), 7.75-7.69(\mathrm{~m}, 3 \mathrm{H}), 6.90(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.10(\mathrm{~m}, 2 \mathrm{H}), 3.94$ $(\mathrm{s}, 3 \mathrm{H}), 3.81-3.77(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.91(\mathrm{~m}, 4 \mathrm{H})$.
4.1.3.10. 2-(2-Bromoethoxy)-1-methoxy-4-nitrobenzene (15). The title compound was prepared from compound $\mathbf{5}$ according to procedure $\mathbf{2}$ as a yellow solid in 73% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{dd}, J=8.76,2.55 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=$ $2.58 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{t}, J=6.42 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.72$ (t, $J=6.21 \mathrm{~Hz}, 2 \mathrm{H}$).
4.1.3.11. 2-(3-Bromopropoxy)-1-methoxy-4-nitrobenzene (16). The title compound was prepared from compound 5 according to procedure 2 as a yellow solid in 71% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{dd}, J=8.97,2.58 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=$ $2.58 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.76 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.80$ (t, $J=6.21 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{p}, J=6.06 \mathrm{~Hz}, 2 \mathrm{H})$.

PART I1-SAR Investigation of Phe-Arg mimetic region of Human Glutaminyl Cyclase
4.1.3.12. 2-(4-Bromobutoxy)-1-methoxy-4-nitrobenzene (17). The title compound was prepared from compound 5 according to procedure 2 as a yellow solid in 63% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{dd}, J=8.97,2.55 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=$ $2.58 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{t}, J=5.85 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}) 3.53$ $(\mathrm{t}, J=6.24 \mathrm{~Hz}, 2 \mathrm{H}), 2.10-2.05(\mathrm{~m}, 4 \mathrm{H})$.
4.1.3.13. 4-(4-(2-Methoxy-5-nitrophenoxy)butyl)piperidine (18). The title compound was prepared from compound 7 according to procedure 6 as a red solid in 75% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.91$ (dd, $J=8.97,2.76 \mathrm{~Hz}, 1 \mathrm{H}$), 7.76 (d, $J=2.58$ $\mathrm{Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{t}, J=5.85 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.06-3.02$ $(\mathrm{m}, 2 \mathrm{H}), 2.65-2.56(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.74(\mathrm{~m}, 5 \mathrm{H}), 1.29-1.18(\mathrm{~m}, 2 \mathrm{H})$.
4.1.3.14. 4-(2-(2-Methoxy-5-nitrophenoxy)ethyl)-1-methylpiperidine (19). The title compound was prepared from compound $\mathbf{1 8}$ according to procedure $\mathbf{7}$ as a white solid in 45% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93(\mathrm{dd}, J=8.40,2.58 \mathrm{~Hz}, 1 \mathrm{H}), 7.73$ $(\mathrm{d}, J=2.73 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{t}, J=6.60 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H})$, $3.12(\mathrm{~d}, J=11.88 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{t}, J=9.90 \mathrm{~Hz}, 2 \mathrm{H}), 1.89-1.83(\mathrm{~m}, 4 \mathrm{H})$, $1.56-1.47(\mathrm{~m}, 3 \mathrm{H})$
4.1.3.15. 3-(2-Methoxy-5-nitrophenoxy)propan-1-amine (20). The title compound was prepared from compound $\mathbf{1 3}$ according to procedure $\mathbf{3}$ as a light yellow solid in 94% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87(\mathrm{dd}, J=8.43,2.43 \mathrm{~Hz}, 1 \mathrm{H}$), 7.72 $(\mathrm{d}, J=2.43 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.46 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{t}, J=5.82 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H})$, $2.62(\mathrm{t}, J=6.12 \mathrm{~Hz}, 2 \mathrm{H}), 1.98-1.88(\mathrm{~m}, 2 \mathrm{H})$.
4.1.3.16. 4-(2-Methoxy-5-nitrophenoxy)butan-1-amine (21). The title compound was prepared from compound $\mathbf{1 4}$ according to procedure $\mathbf{3}$ as a white solid in 85% yield. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{dd}, J=8.40,2.40 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=2.40 \mathrm{~Hz}$, $1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.88 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{t}, J=5.80 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{t}, J=$ $6.68 \mathrm{~Hz}, 2 \mathrm{H}), 2.00-1.83(\mathrm{~m}, 4 \mathrm{H})$
4.1.3.17. tert-Butyl 4-(2-(2-methoxy-5-nitrophenoxy)ethyl)piperazine-1-carboxylate (22). The title compound was prepared from compound 15 according to procedure 4 as a white solid in 75% yield. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{dd}, J=8.40,2.58$

PART I1-SAR Investigation of Phe-Arg mimetic region of Human Glutaminyl Cyclase
$\mathrm{Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=2.58 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{t}, J=5.85 \mathrm{~Hz}$, $2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{t}, J=4.95 \mathrm{~Hz}, 4 \mathrm{H}), 2.90(\mathrm{t}, J=5.85 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{t}, J=4.74$ $\mathrm{Hz}, 4 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.18. tert-Butyl 4-(3-(2-methoxy-5-nitrophenoxy)propyl)piperazine-1carboxylate (23). The title compound was prepared from compound 16 according to procedure 4 as a white solid in 89% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92$ (dd, J $=9.15,2.55 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=2.19 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=9.15 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{t}, J$ $=6.57 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{t}, J=4.95 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{t}, J=6.60 \mathrm{~Hz}, 4 \mathrm{H}), 2.41$ (t, $J=4.95 \mathrm{~Hz}, 4 \mathrm{H}), 2.08(\mathrm{p}, J=6.78 \mathrm{~Hz}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.19. tert-Butyl 4-(4-(2-methoxy-5-nitrophenoxy)butyl)piperazine-1-carboxylate (24). The title compound was prepared from compound 17 according to procedure 4 as a white solid in 75% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{dd}, J=8.97,2.55$ $\mathrm{Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=2.55 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=6.96 \mathrm{~Hz}$, $2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{t}, J=5.13 \mathrm{~Hz}, 4 \mathrm{H}), 2.45-2.37(\mathrm{~m}, 6 \mathrm{H}), 1.96(\mathrm{p}, J=6.75 \mathrm{~Hz}$, $2 \mathrm{H}), 1.74(\mathrm{p}, J=7.89 \mathrm{~Hz}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.20. tert-Butyl (2-(2-methoxy-5-nitrophenoxy)ethyl)carbamate (25). The title compound was prepared from compound $\mathbf{2 0}$ according to procedure $\mathbf{5}$ as an opaque semi-solid in 72% yield, which was used for the next step without further purification.
4.1.3.21. tert-Butyl (3-(2-methoxy-5-nitrophenoxy)propyl)carbamate (26). The title compound was prepared from compound 21 according to procedure 5 as a white solid in 62% yield, which was used for the next step without further purification.
4.1.3.22. tert-Butyl (2-(2-methoxy-5-nitrophenoxy)ethyl)(methyl)carbamate (27). The title compound was prepared from compound $\mathbf{2 5}$ according to procedure $\mathbf{4}$ as a light yellow solid in 51% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87$ (dd, $J=8.46$, $2.40 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=2.43 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{t}, J=6.03$ $\mathrm{Hz}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 2.92(\mathrm{t}, J=6.12 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.44$ ($\mathrm{s}, 9 \mathrm{H}$).

PART I1-SAR Investigation of Phe-Arg mimetic region of Human Glutaminyl Cyclase
4.1.3.23. tert-Butyl (3-(2-methoxy-5-nitrophenoxy)propyl)(methyl)carbamate (28). The title compound was prepared from compound 26 according to procedure 4 as a light yellow solid in 55% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{dd}, J=8.79$, $2.73 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=2.73 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{t}, J=6.21$ $\mathrm{Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{t}, J=6.12 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.87(\mathrm{~m}, 4 \mathrm{H}), 1.44$ (s, 9H).
4.1.3.24. 4-(2-Methoxy-5-nitrophenoxy)-N,N-dimethylbutan-1-amine (29). The title compound was prepared from compound 21 according to procedure 7 as a red semisolid in 21% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93$ (dd, $J=8.97,2.73 \mathrm{~Hz}, 1 \mathrm{H}$), $7.74(\mathrm{~d}, J=2.58 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{t}, J=6.24 \mathrm{~Hz}, 2 \mathrm{H}), 3.96$ $(\mathrm{s}, 3 \mathrm{H}), 2.62(\mathrm{t}, J=8.61 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 6 \mathrm{H}), 1.95(\mathrm{p}, J=6.60 \mathrm{~Hz}, 2 \mathrm{H}), 1.82(\mathrm{p}, J=$ $7.32 \mathrm{~Hz}, 2 \mathrm{H})$.
4.1.3.25. 1-(2-Bromoethoxy)-4-nitrobenzene (31). The title compound was prepared from compound $\mathbf{3 0}$ according to procedure $\mathbf{2}$ as a yellow solid in 64% yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl3) $\delta 8.20(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{~m}, 2 \mathrm{H}), 4.36(\mathrm{~d}, J=6.03 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{~d}$, $J=6.24 \mathrm{~Hz}, 2 \mathrm{H})$.
4.1.3.26. tert-Butyl 4-(2-(4-nitrophenoxy)ethyl)piperazine-1-carboxylate (32). The title compound was prepared from compound 31 according to procedure $\mathbf{4}$ as a white solid in 61% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.19(2 \mathrm{H}, \mathrm{m}), 6.97(2 \mathrm{H}, \mathrm{m}), 4.19$ ($\mathrm{t}, J=5.67 \mathrm{~Hz}, 2 \mathrm{H}$), $3.45(\mathrm{~m}, 4 \mathrm{H}), 2.85(\mathrm{t}, J=5.70 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{~m}, 4 \mathrm{H}), 1.45(\mathrm{~s}$, $9 \mathrm{H})$.
4.1.3.27. tert-Butyl (4-(4-(4-nitrophenoxy)butyl)pyridin-2-yl)carbamate (33). The title compound was prepared from compound $\mathbf{3 0}$ according to procedure $\mathbf{2}$ as a white solid in 91% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.19$ (d, $J=9.15 \mathrm{~Hz}, 2 \mathrm{H}$), 8.11$8.09(\mathrm{~m}, 2 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=9.15 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{dd}, J=5.73,1.47 \mathrm{~Hz}, 1 \mathrm{H})$, $4.06(\mathrm{t}, J=5.67 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{t}, J=6.06 \mathrm{~Hz}, 2 \mathrm{H}), 1.86-1.81(\mathrm{~m}, 4 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.28. tert-Butyl 4-(2-(4-nitrophenoxy)acetyl)piperazine-1-carboxylate (37). The title compound was prepared from compound $\mathbf{3 5}$ according to procedure $\mathbf{8}$ as a yellow solid in 81% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.17(\mathrm{~d}, J=9.33 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}$,

PART I1-SAR Investigation of Phe-Arg mimetic region of Human Glutaminyl Cyclase
$J=9.33 \mathrm{~Hz}, 2 \mathrm{H}), 4.75(\mathrm{~s}, 2 \mathrm{H}), 3.53-3.49(\mathrm{~m}, 2 \mathrm{H}), 3.46-3.43(\mathrm{~m}, 2 \mathrm{H}), 3.40-3.34(\mathrm{~m}$, 4H), 1.39 ($\mathrm{s}, 9 \mathrm{H}$).
4.1.3.29. tert-Butyl (E)-4-(3-(4-nitrophenyl)acryloyl)piperazine-1-carboxylate (38). The title compound was prepared from commercial available 36 according to procedure 8 as a white solid in 80% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.25(\mathrm{~d}, J=$ $8.79 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=15.36 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=15.57$ $\mathrm{Hz}, 1 \mathrm{H}), 3.72-3.64(\mathrm{~m}, 4 \mathrm{H}), 3.42-3.36(\mathrm{~m}, 4 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.30. (E)-3-(4-Nitrophenyl)-1-(piperazin-1-yl)prop-2-en-1-one (39). The title compound was prepared from compound $\mathbf{3 8}$ according to procedure $\mathbf{6}$ as a yellow oil in 94% yield. ${ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.27(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=$ $8.58 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=15.57 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=15.57 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.95(\mathrm{~m}$, $4 \mathrm{H}), 3.39-3.22(\mathrm{~m}, 4 \mathrm{H})$.
4.1.3.31. tert-Butyl (E)-(2-(4-(3-(4-nitrophenyl)acryloyl)piperazin-1$y l) e t h y l) c a r b a m a t e ~(40) . ~ T h e ~ t i t l e ~ c o m p o u n d ~ w a s ~ p r e p a r e d ~ f r o m ~ c o m p o u n d ~ 39 ~$ according to procedure 4 as a pale yellow solid in 54% yield. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.27(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 2 \mathrm{H}), 7.72-7.65(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{~d}, J=15.57 \mathrm{~Hz}, 1 \mathrm{H})$, 3.76-3.66 (m, 4H), $3.27(\mathrm{q}, J=5.31 \mathrm{~Hz}, 2 \mathrm{H}), 2.53-2.47(\mathrm{~m}, 6 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.32. tert-Butyl 4-(4-nitrobenzamido)piperidine-1-carboxylate (41). The title compound was prepared from compound $\mathbf{3 4}$ according to procedure $\mathbf{8}$ as a white solid in 80% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{~d}, J=$ $8.79 \mathrm{~Hz}, 2 \mathrm{H}), 6.18(\mathrm{~d}, J=7.50 \mathrm{~Hz}, \mathrm{NH}), 4.15-4.10(\mathrm{~m}, 3 \mathrm{H}), 2.94(\mathrm{t}, J=12.24 \mathrm{~Hz}$, $2 \mathrm{H}), 2.06(\mathrm{t}, J=4.59 \mathrm{~Hz}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.42-1.39(\mathrm{~m}, 2 \mathrm{H})$.
4.1.3.33. tert-Butyl 4-(2-(4-nitrophenoxy)acetamido)piperidine-1-carboxylate (42). The title compound was prepared from compound 35 according to procedure $\mathbf{8}$ as a white solid in 82% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.25(\mathrm{~d}, J=9.15 \mathrm{~Hz}, 2 \mathrm{H})$, $7.02(\mathrm{~d}, J=9.33 \mathrm{~Hz}, 2 \mathrm{H}), 6.32(\mathrm{br}, \mathrm{NH}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 4.13-4.09(\mathrm{~m}, 3 \mathrm{H}), 2.88(\mathrm{t}, J=$ $12.09 \mathrm{~Hz}, 2 \mathrm{H}), 1.93-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.38-1.33(\mathrm{~m}, 2 \mathrm{H})$.

PART I1-SAR Investigation of Phe-Arg mimetic region of Human Glutaminyl Cyclase
4.1.3.34. tert-Butyl (E)-4-(3-(4-Nitrophenyl)acrylamido)piperidine-1-carboxylate (43). The title compound was prepared from compound 36 according to procedure 8 as a white solid in 83% yield. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.25(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 2 \mathrm{H})$, $7.70(\mathrm{~d}, J=15.36 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{~d}, J=15.57 \mathrm{~Hz}, 1 \mathrm{H})$, $5.76(\mathrm{~d}, J=7.89 \mathrm{~Hz}, \mathrm{NH}), 4.13(\mathrm{~m}, 3 \mathrm{H}), 2.93(\mathrm{t}, J=11.73 \mathrm{~Hz}, 2 \mathrm{H}) .2 .05-1.98(\mathrm{~m}$, $2 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.36-1.32(\mathrm{~m}, 2 \mathrm{H})$.
4.1.3.35. 4-Nitro-N-(piperidin-4-yl)benzamide (44). The title compound was prepared from compound 41 according to procedure $\mathbf{6}$ as a pale yellow oil in 89% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.31(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(\mathrm{~d}, J=8.79 \mathrm{~Hz}$, $2 \mathrm{H}), 6.05(\mathrm{~d}, J=7.89 \mathrm{~Hz}, \mathrm{NH}), 4.14-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.16(\mathrm{td}, J=12.45,2.55 \mathrm{~Hz}, 2 \mathrm{H})$, $2.81(\mathrm{dt}, J=12.27,2.55 \mathrm{~Hz}, 2 \mathrm{H}), 2.08-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.38(\mathrm{~m}, 2 \mathrm{H})$.
4.1.3.36. 2-(4-Nitrophenoxy)-N-(piperidin-4-yl)acetamide (45). The title compound was prepared from compound $\mathbf{4 2}$ according to procedure $\mathbf{6}$ as a a brown semi-solid in 92% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.25(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=9.03$ $\mathrm{Hz}, 2 \mathrm{H}$), 6.32 (br, NH), 4.54 (s, 2H), 4.13-4.09 (m, 1H), 3.16-3.10 (m, 2H), 2.78 (t, J $=12.09 \mathrm{~Hz}, 2 \mathrm{H}), 2.00-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.39(\mathrm{~m}, 2 \mathrm{H})$.
4.1.3.37. (E)-3-(4-Nitrophenyl)-N-(piperidin-4-yl)acrylamide (46). The title compound was prepared from compound $\mathbf{4 3}$ according to procedure $\mathbf{6}$ as a yellow solid in 94% yield. ${ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.27(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 2 \mathrm{H}$), 7.80 (d, $J=8.79 \mathrm{~Hz}, 2 \mathrm{H}$), $7.65(\mathrm{~d}, J=15.93 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=15.90 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-4.01$ $(\mathrm{m}, 1 \mathrm{H}), 3.53-3.43(\mathrm{~m}, 2 \mathrm{H}), 3.19(\mathrm{dt}, J=12.99,3.12 \mathrm{~Hz}, 2 \mathrm{H}), 2.18-2.14(\mathrm{~m}, 2 \mathrm{H})$, 1.79-1.65 (m, 2H).
4.1.3.38. tert-Butyl (2-(4-(4-nitrobenzamido)piperidin-1-yl)ethyl)carbamate (47). The title compound was prepared from compound $\mathbf{4 4}$ according to procedure $\mathbf{4}$ as an opaque semi-solid in 51% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.31(\mathrm{~d}, J=8.61 \mathrm{~Hz}$, $2 \mathrm{H}), 7.93$ (d, $J=8.79 \mathrm{~Hz}, 2 \mathrm{H}), 6.07(\mathrm{~d}, J=8.07 \mathrm{~Hz}, \mathrm{NH}), 4.98(\mathrm{br}, \mathrm{NH}), 4.02-3.95$ $(\mathrm{m}, 1 \mathrm{H}), 3.24(\mathrm{q}, J=6.69 \mathrm{~Hz}, 2 \mathrm{H}), 2.93-2.90(\mathrm{~m}, 2 \mathrm{H}), 2.51(\mathrm{t}, J=6.06 \mathrm{~Hz}, 2 \mathrm{H}), 2.26$ $(\mathrm{t}, J=11.55 \mathrm{~Hz}, 2 \mathrm{H}), 2.08-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$.

PART I1-SAR Investigation of Phe-Arg mimetic region of Human Glutaminyl Cyclase
4.1.3.39. tert-Butyl (2-(4-(2-(4-nitrophenoxy)acetamido)piperidin-1$y l) e t h y l) c a r b a m a t e ~(48) . ~ T h e ~ t i t l e ~ c o m p o u n d ~ w a s ~ p r e p a r e d ~ f r o m ~ c o m p o u n d ~ 45 ~$ according to procedure 4 as a red semi-solid in 55% yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.24(\mathrm{~d}, J=9.15 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=9.15 \mathrm{~Hz}, 2 \mathrm{H}), 6.38(\mathrm{br}, \mathrm{NH}), 5.12(\mathrm{br}, \mathrm{NH})$, $4.53(\mathrm{~s}, 2 \mathrm{H}), 3.94-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.25-3.23(\mathrm{~m}, 2 \mathrm{H}), 2.93-2.91(\mathrm{~m}, 2 \mathrm{H}), 2.54-2.51(\mathrm{~m}$, $2 \mathrm{H}), 2.24-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H})$.
4.1.3.40. tert-Butyl (E)-(2-(4-(3-(4-nitrophenyl)acrylamido)piperidin-1yl)ethyl)carbamate (49). The title compound was prepared from compound 46 according to procedure 4 as a pale yellow solid in 21% yield. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.27(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=15.90 \mathrm{~Hz}$, $1 \mathrm{H}), 6.79(\mathrm{~d}, J=15.72 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.43(\mathrm{~m}, 2 \mathrm{H}), 2.93-2.87(\mathrm{~m}$, $2 \mathrm{H}), 2.55-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.42-2.39(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.55(\mathrm{~m}, 2 \mathrm{H})$, 1.42 ($\mathrm{s}, 9 \mathrm{H}$).
4.1.3.41. tert-Butyl (4-((2-(4-nitrophenoxy)acetamido)methyl)pyridin-2$y l)$ carbamate (50). The title compound was prepared from compound 35 according to procedure $\mathbf{8}$ as a white solid in 65% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.24(\mathrm{~d}$, $J=9.15 \mathrm{~Hz}, 2 \mathrm{H}), 8.19(\mathrm{~d}, J=5.31 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=9.15 \mathrm{~Hz}, 2 \mathrm{H})$, $6.87(\mathrm{dd}, J=5.31,1.47 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 4.53(\mathrm{~d}, J=6.03 \mathrm{~Hz}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H})$.

4.1.4. Final compounds

4.1.4.1. General procedure for final compound

All nitro compounds were reduced by either hydrogenation using $10 \% \mathrm{Pd} / \mathrm{C}$ or zinc powder in acidic medium to obtain the corresponding amines, respectively. The amines were converted into the isothiocyanates by 1,1 '-thiocarbonyldiimidazole (1.02 eq) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and then coupled with 3-(5-methyl-1 H -imidazol-1-yl)propan-1-amine (1.1 eq) to afford the corresponding thiourea, respectively. The Boc deprotection by following the general procedure 6 provided the final compounds.
4.1.4.2. N-(3-(2-Aminoethoxy)-4-methoxyphenyl)-N'-(3-(5-methyl-1H-imidazol-1yl)propyl)thiourea (51). $\mathrm{mp}=58-59{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{~s}, 1 \mathrm{H})$, $7.37(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 6.78-6.72(\mathrm{~m}, 3 \mathrm{H}), 5.93(\mathrm{br}, 1 \mathrm{H}), 4.02(\mathrm{t}, J=$ $5.13 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{q}, J=6.24 \mathrm{~Hz}, 2 \mathrm{H}), 3.14$ (t, $J=5.13 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{~d}, J=0.93 \mathrm{~Hz}, 3 \mathrm{H}), 2.09(\mathrm{p}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{FAB})$

PART I1-SAR Investigation of Phe-Arg mimetic region of Human Glutaminyl Cyclase
$m / z 364[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 364.1807$, found: 364.1818. Anal. HPLC $99.33 \% ~\left(R_{t}=3.723 \mathrm{~min}\right)$.
4.1.4.3. N-(3-(3-Aminopropoxy)-4-methoxyphenyl)-N'-(3-(5-methyl-1H-imidazol-1yl)propyl)thiourea (52). $\mathrm{mp}=154-155^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79$ (br, $1 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 6.88-6.85(\mathrm{~m}, 1 \mathrm{H}), 6.76-6.72(\mathrm{~m}, 3 \mathrm{H}), 6.10(\mathrm{br}, 1 \mathrm{H}), 4.09(\mathrm{t}, J=$ $6.03 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{q}, J=6.24 \mathrm{~Hz}, 2 \mathrm{H}), 2.93$ $(\mathrm{t}, J=6.60 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{~d}, J=0.90 \mathrm{~Hz}, 3 \mathrm{H}), 2.09-1.92(\mathrm{~m}, 4 \mathrm{H}) . \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 378$ $[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 378.1964$, found: 378.1972. Anal. HPLC $99.53 \% ~\left(R_{t}=3.641 \mathrm{~min}\right)$
4.1.4.4. N-(3-(4-Aminobutoxy)-4-methoxyphenyl)- N^{\prime}-(3-(5-methyl-1H-imidazol-1yl)propyl)thiourea (53). $\mathrm{mp}=55-56{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{br}, 1 \mathrm{H})$, $7.43(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-6.70(\mathrm{~m}, 3 \mathrm{H}), 6.00(\mathrm{br}, 1 \mathrm{H}), 4.00(\mathrm{t}, J=$ $6.60 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{q}, J=6.42 \mathrm{~Hz}, 2 \mathrm{H}), 2.79$ (t, $J=6.78 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{~d}, J=0.90 \mathrm{~Hz}, 3 \mathrm{H}), 2.09(\mathrm{p}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 1.92(\mathrm{p}, J$ $=6.78 \mathrm{~Hz}, 2 \mathrm{H}), 1.66-1.59(\mathrm{~m}, 2 \mathrm{H})$. MS (FAB) $\mathrm{m} / \mathrm{z} 392[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 392.2120$, found: 392.2127. Anal. HPLC 100.00% ($\mathrm{R}_{\mathrm{t}}=3.199 \mathrm{~min}$).
4.1.4.5. $\quad N$-(4-Methoxy-3-(3-(methylamino)propoxy)phenyl)-N'-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (54). $\mathrm{mp}=88-89^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.42(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=8.43,2.37 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=$ $2.19 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.09(\mathrm{br}, 1 \mathrm{H}), 4.07(\mathrm{t}, J=6.24 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{t}, J=6.96$ $\mathrm{Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{q}, J=6.60 \mathrm{~Hz}, 2 \mathrm{H}), 2.83(\mathrm{t}, J=6.57 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{~s}$, $3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.09-2.02(\mathrm{~m}, 4 \mathrm{H}) . \mathrm{MS}$ (ESI) $\mathrm{m} / \mathrm{z} 392[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 392.2115$, found 392.2097. Anal. HPLC $98.5 \%\left(\mathrm{R}_{\mathrm{t}}=3.222\right.$ min).
4.1.4.6. $\quad N$-(4-Methoxy-3-(4-(methylamino)butoxy)phenyl)-N’-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (55). $\mathrm{mp}=76-77^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ $7.43(\mathrm{~d}, J=0.93 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=2.40 \mathrm{~Hz}, 1 \mathrm{H}), 6.69$ $(\mathrm{dd}, J=8.61,2.37 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 3.92-3.85(\mathrm{~m}, 4 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{t}, J=$ $6.96 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{t}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~d}, J=0.90 \mathrm{~Hz}, 3 \mathrm{H}), 1.93$

PART II-SAR Investigation of Phe-Arg mimetic region of Human Glutaminyl Cyclase
(p, $J=7.14 \mathrm{~Hz}, 2 \mathrm{H}$), 1.75-1.58 (m, 4H). MS (ESI) $m / z 406[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 406.2271$, found 406.2262. Anal. HPLC $97.6 \%\left(\mathrm{R}_{\mathrm{t}}\right.$ $=3.012 \mathrm{~min}$).
4.1.4.7. $N-(3-(4-(D i m e t h y l a m i n o) b u t o x y)-4-m e t h o x y p h e n y l)-N ’-(3-(5-m e t h y l-1 H-$ imidazol-1-yl)propyl)thiourea (56). $\mathrm{mp}=51-52^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ $7.58(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=2.40 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=8.58$, $2.55 \mathrm{~Hz}, 1 \mathrm{H}) .6 .66(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{t}, J=6.06 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{t}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 3.82$ $(\mathrm{s}, 3 \mathrm{H}), 3.61(\mathrm{t}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{t}, J=7.71 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 6 \mathrm{H}), 2.21(\mathrm{~d}, J=$ $0.90 \mathrm{~Hz}, 3 \mathrm{H}), 2.05(\mathrm{p}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 1.81-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.67(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}$ (FAB) $m / z 420[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 420.2428$, found: 420.2438 . Anal. HPLC $98.23 \%\left(R_{t}=3.454 \mathrm{~min}\right)$.
4.1.4.8. N-(4-Methoxy-3-(2-(piperazin-1-yl)ethoxy)phenyl)-N’-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (57). $\mathrm{mp}=71-72{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ $7.59(\mathrm{~s}, 1 \mathrm{H}), 6.79-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{dd}, J=8.43,2.37 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 4.14$ $(\mathrm{t}, J=5.49 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{q}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H})$, $2.88(\mathrm{t}, J=4.92 \mathrm{~Hz}, 4 \mathrm{H}), 2.82(\mathrm{t}, J=5.49 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{t}, J=4.95 \mathrm{~Hz}, 4 \mathrm{H}), 2.22(\mathrm{~d}$, $J=1.08 \mathrm{~Hz}, 3 \mathrm{H}), 2.05(\mathrm{p}, J=6.78 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 433[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 433.2380$, found: 433.2370. Anal. HPLC $99.30 \%\left(R_{t}=4.101 \mathrm{~min}\right)$.
4.1.4.9. N-(4-Methoxy-3-(3-(piperazin-1-yl)propoxy)phenyl)-N’-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (58). $\mathrm{mp}=58-59{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ $7.59(\mathrm{~d}, J=0.90 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.58 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=2.37 \mathrm{~Hz}, 1 \mathrm{H}), 6.77$ $(\mathrm{dd}, J=8.40,2.37 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 4.05(\mathrm{t}, J=6.03 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{t}, J=6.96$ $\mathrm{Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{t}, J=6.75 \mathrm{~Hz}, 2 \mathrm{H}), 2.87(\mathrm{t}, J=4.95 \mathrm{~Hz}, 4 \mathrm{H}), 2.57-2.49$ $(\mathrm{m}, 6 \mathrm{H}), 2.22(\mathrm{~d}, J=1.11 \mathrm{~Hz}, 3 \mathrm{H}), 2.07-1.96(\mathrm{~m}, 4 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 447[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 447.2537$, found: 447.2534. Anal. HPLC $99.32 \% ~\left(\mathrm{R}_{\mathrm{t}}=3.799 \mathrm{~min}\right)$.
4.1.4.10. N-(4-Methoxy-3-(4-(piperazin-1-yl)butoxy)phenyl)-N’-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (59). $\mathrm{mp}=82-83^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ $7.59(\mathrm{~s}, 1 \mathrm{H}), 6.95-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.77(\mathrm{dd}, J=8.40,2.37 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 4.03$

PART I1-SAR Investigation of Phe-Arg mimetic region of Human Glutaminyl Cyclase
$\left(\mathrm{t}_{\mathrm{s}} J=6.03 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.99(\mathrm{t}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H})$, $2.92(\mathrm{t}, J=4.92 \mathrm{~Hz}, 4 \mathrm{H}), 2.50-2.41(\mathrm{~m}, 6 \mathrm{H}), 2.22(\mathrm{~d}, J=1.11 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{p}, J=$ $7.50 \mathrm{~Hz}, 2 \mathrm{H}), 1.80(\mathrm{p}, J=6.21 \mathrm{~Hz}, 2 \mathrm{H}), 1.69-1.61(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 461$ $[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 461.2693$, found: 461.2705. Anal. HPLC $99.69 \% ~\left(R_{t}=3.701 \mathrm{~min}\right)$.
4.1.4.11. N-(4-Methoxy-3-(2-(piperidin-4-yl)ethoxy)phenyl)-N’-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (60). $\mathrm{mp}=83-84^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ $7.59(\mathrm{~d}, J=1.11 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=2.19 \mathrm{~Hz}, 1 \mathrm{H}), 6.77$ (dd, $J=8.43,2.40 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{t}, J=5.85 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{t}, J=7.14$ $\mathrm{Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{t}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 3.07-3.02(\mathrm{~m}, 2 \mathrm{H}), 2.65(\mathrm{td}, J=10.08$, $3.84 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{~d}, J=0.93 \mathrm{~Hz}, 3 \mathrm{H}), 2.07(\mathrm{p}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 1.80-1.74(\mathrm{~m}, 4 \mathrm{H})$, 1.73-1.72 (m, 1H), 1.23-1.11 (m, 2H). MS (FAB) m/z $432[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$432.2433, found: 432.2426. Anal. HPLC $95.47 \%\left(R_{t}=4.070 \mathrm{~min}\right)$.
4.1.4.12. N-(4-Methoxy-3-(3-(piperidin-4-yl)propoxy)phenyl)- N '-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (61). $\mathrm{mp}=49-50{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ $7.60(\mathrm{~d}, J=1.11 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.58 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=2.40 \mathrm{~Hz}, 1 \mathrm{H}), 6.76$ (dd, $J=8.43,2.40 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 3.98(\mathrm{t}, J=6.39 \mathrm{~Hz}, 4 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.61$ (t, $J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 3.11-3.07(\mathrm{~m}, 2 \mathrm{H}), 2.69(\mathrm{td}, J=12.27,2.58 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{~d}, J$ $=0.93 \mathrm{~Hz}, 3 \mathrm{H}), 2.07(\mathrm{p}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 1.86-1.76(\mathrm{~m}, 5 \mathrm{H}), 1.44-1.37(\mathrm{~m}, 2 \mathrm{H})$, 1.25-1.12 (m, 2H). MS (FAB) m/z $446[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 446.2589$, found: 446.2595. Anal. HPLC $96.06 \%\left(\mathrm{R}_{\mathrm{t}}=4.066\right.$ min).
4.1.4.13. N-(4-Methoxy-3-(4-(piperidin-4-yl)butoxy)phenyl)-N’-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (62). $\mathrm{mp}=64-65^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ $7.50(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=2.19 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{dd}, J=8.40$, $2.37 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{t}, J=6.21 \mathrm{~Hz}, 4 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{t}, J=6.96$ $\mathrm{Hz}, 2 \mathrm{H}), 2.99-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{t}, J=12.45 \mathrm{~Hz}, 2 \mathrm{H}), 2.14(\mathrm{~d}, J=0.93 \mathrm{~Hz}, 3 \mathrm{H})$, $1.98(\mathrm{p}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 1.67-1.63(\mathrm{~m}, 5 \mathrm{H}), 1.40-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.25-1.18(\mathrm{~m}, 2 \mathrm{H})$, 1.11-1.03 (m, 2H). MS (FAB) m/z $460[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) m / z calcd for

PART I1-SAR Investigation of Phe-Arg mimetic region of Human Glutaminyl Cyclase
$\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$460.2746, found: 460.2744. Anal. HPLC 98.64\% $\left(\mathrm{R}_{\mathrm{t}}=3.851\right.$ min).
4.1.4.14. $\quad N$-(4-Methoxy-3-(2-(1-methylpiperidin-4-yl)ethoxy)phenyl)-N'-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (63). $\mathrm{mp}=71-72{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.58(\mathrm{~s}, 1 \mathrm{H}), 6.95-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.77(\mathrm{dd}, J=8.40,2.55 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}$, $1 \mathrm{H}), 4.04(\mathrm{t}, J=6.06 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{t}, J=7.50 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{t}, J=7.14$ $\mathrm{Hz}, 2 \mathrm{H}), 2.88(\mathrm{~d}, J=10.26 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~d}, J=0.90 \mathrm{~Hz}, 3 \mathrm{H}), 2.08-$ $2.00(\mathrm{~m}, 4 \mathrm{H}), 1.80-1.71(\mathrm{~m}, 4 \mathrm{H}), 1.33-1.29(\mathrm{~m}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 446[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 446.2584$, found: 446.2581. Anal. HPLC $98.99 \%\left(\mathrm{R}_{\mathrm{t}}=4.109 \mathrm{~min}\right)$.
4.1.4.15. N-(3-(2-(2-Aminopyridin-4-yl)ethoxy)-4-methoxyphenyl)-N'-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (64). $\mathrm{mp}=66-67{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ $\delta 7.77$ (d, $J=5.31 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 6.96-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.78(\mathrm{dd}, J=8.61,2.37$ $\mathrm{Hz}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{dd}, J=5.52,1.47 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{t}, J=6.60$ $\mathrm{Hz}, 2 \mathrm{H}), 3.98(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{t}, J=6.21 \mathrm{~Hz}, 2 \mathrm{H}), 2.98(\mathrm{t}, J=$ $6.39 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{~d}, J=0.75 \mathrm{~Hz}, 3 \mathrm{H}), 2.06(\mathrm{p}, J=6.93 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z}$ $441[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) $m /$ calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S} z[\mathrm{M}+\mathrm{H}]^{+} 441.2067$, found: 441.2067. Anal. HPLC $99.52 \%\left(R_{t}=3.967 \mathrm{~min}\right)$.
4.1.4.16. $\quad N$-(3-(3-(2-Aminopyridin-4-yl)propoxy)-4-methoxyphenyl)- N '-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (65). $\mathrm{mp}=76-77{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.75(\mathrm{~d}, J=5.24 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}) .6 .97(\mathrm{~d}, J=8.56 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}$, $J=2.16 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=8.52,2.36 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=4.28 \mathrm{~Hz}$, $1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 3.99-3.94(\mathrm{~m}, 4 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{t}, J=6.88 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{t}$, $J=7.43 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{~d}, J=0.72 \mathrm{~Hz}, 3 \mathrm{H}), 2.08-2.00(\mathrm{~m}, 4 \mathrm{H}) . \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 455$ $[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 455.2224$, found: 455.2223. Anal. HPLC $96.06 \% ~\left(R_{t}=3.979 \mathrm{~min}\right)$.
4.1.4.17. N-(3-(4-(2-Aminopyridin-4-yl)butoxy)-4-methoxyphenyl)-N'-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (66). $\mathrm{mp}=63-64{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.91(\mathrm{~d}, J=5.49 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-$ $6.73(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=2.19 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=5.49 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 5.94$ (br, NH), $3.98(\mathrm{t}, J=6.06 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{q}, J$

PART I1-SAR Investigation of Phe-Arg mimetic region of Human Glutaminyl Cyclase
$=6.60 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{t}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{~d}, J=0.72 \mathrm{~Hz}, 3 \mathrm{H}), 2.09(\mathrm{p}, J=7.32$ $\mathrm{Hz}, 2 \mathrm{H}), 1.85-1.80(\mathrm{~m}, 4 \mathrm{H})$. MS (FAB) $\mathrm{m} / \mathrm{z} 469[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 469.2380$, found: 469.2385. Anal. HPLC $98.26 \%\left(\mathrm{R}_{\mathrm{t}}=4.017\right.$ min).
4.1.4.18. N-(4-Methoxy-3-(4-(pyrimidin-2-ylamino)butoxy)phenyl)-N'-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (67). To a solution of 53 (1 eq) in EtOH was added 2-chloropyrimidine (2 eq) and triethylamine (2.5 eq). The mixture was refluxed for 2 days, then solvent was removed by evaporation. The residue was purified by column chromatography $\left(\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give white solid, 35% yield. $\mathrm{mp}=50-51^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.26(\mathrm{~d}, J=4.74 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 6.88$ $(\mathrm{d}, J=8.61 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-6.68(\mathrm{~m}, 3 \mathrm{H}), 6.52(\mathrm{t}, J=4.77 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{br}, 1 \mathrm{H}), 5.35$ (br, 1H), $4.03(\mathrm{t}, J=6.21 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{q}, J$ $=6.42 \mathrm{~Hz}, 2 \mathrm{H}), 3.52(\mathrm{q}, J=6.60 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{~d}, J=0.93 \mathrm{~Hz}, 3 \mathrm{H}), 2.09(\mathrm{p}, J=7.32$ $\mathrm{Hz}, 2 \mathrm{H}), 1.99(\mathrm{p}, J=7.86 \mathrm{~Hz}, 2 \mathrm{H}), 1.85(\mathrm{p}, J=6.78 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 470$ $[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~N}_{7} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 470.2338$, found: 470.2340. Anal. HPLC $96.60 \% ~\left(R_{t}=4.414 \mathrm{~min}\right)$.
4.1.4.19. N-(4-(2-(Piperazin-1-yl)ethoxy)phenyl)-N'-(3-(5-methyl-1H-imidazol-1yl)propyl)thiourea (68). $\mathrm{mp}=85-86{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.58(\mathrm{~s}, 1 \mathrm{H})$, $7.17(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{t}, J=5.31 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{t}, J=6.96$ $\mathrm{Hz}, 2 \mathrm{H}), 3.60(\mathrm{t}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 2.87(\mathrm{~m}, 4 \mathrm{H}), 2.81(\mathrm{t}, J=5.70 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{~m}$, $4 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 403[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} 403.2275$, found: 403.2282. Anal. HPLC $98.22 \%\left(\mathrm{R}_{\mathrm{t}}=\right.$ 2.893 min).
4.1.4.20. N-(4-(4-(2-Aminopyridin-4-yl)butoxy)phenyl)-N’-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (69). $\mathrm{mp}=58-59{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ $7.75(\mathrm{~d}, J=5.49 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.97$ $\mathrm{Hz}, 2 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{dd}, J=5.31,1.47 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 3.99-3.97(\mathrm{~m}$, $4 \mathrm{H}), 3.60(\mathrm{t}, J=6.39 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{t}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{p}, J=$ $6.96 \mathrm{~Hz}, 2 \mathrm{H}$), 1.78-1.75 (m, 4H). MS (FAB) $\mathrm{m} / \mathrm{z} 439[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}$439.2275, found: 439.2268. Anal. HPLC $99.67 \%\left(\mathrm{R}_{\mathrm{t}}\right.$ $=2.957 \mathrm{~min}$)

PART I1-SAR Investigation of Phe-Arg mimetic region of Human Glutaminyl Cyclase
4.1.4.21. $\quad N$-(4-(2-Oxo-2-(piperazin-1-yl)ethoxy)phenyl)- N^{\prime}-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (70). $\mathrm{mp}=95-96{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ $7.59(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 4.82$ $(\mathrm{s}, 2 \mathrm{H}), 3.99(\mathrm{t}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 3.60-3.50(\mathrm{~m}, 6 \mathrm{H}), 2.85-2.77(\mathrm{~m}, 4 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H})$, $2.07(\mathrm{p}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 417[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$417.2067, found: 417.2066. Anal. HPLC 96.16\% $\left(\mathrm{R}_{\mathrm{t}}=2.936\right.$ $\min)$.
4.1.4.22. N-(4-(2-Oxo-2-(piperidin-4-ylamino)ethoxy)phenyl)-N’-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (71). $\mathrm{mp}=98-99{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.59(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 4.50$ $(\mathrm{s}, 2 \mathrm{H}), 3.99(\mathrm{t}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 3.91-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{t}, J=6.06 \mathrm{~Hz}, 2 \mathrm{H}), 3.08-$ $3.04(\mathrm{~m}, 2 \mathrm{H}), 2.71(\mathrm{t}, J=12.27 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{p}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 1.87-$ $1.83(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.45(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 431[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 431.2224$, found: 431.2246. Anal. HPLC 100.00% ($\mathrm{R}_{\mathrm{t}}=2.947 \mathrm{~min}$).
4.1.4.23. N-(4-(2-((1-(2-Aminoethyl)piperidin-4-yl)amino)-2-oxoethoxy)phenyl)-N'-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (72). $\mathrm{mp}=73-74{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.76 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.76 \mathrm{~Hz}, 2 \mathrm{H})$, $6.66(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 3.99(\mathrm{t}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 3.79-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{t}, J=$ $6.66 \mathrm{~Hz}, 2 \mathrm{H}), 2.88-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.75-2.71(\mathrm{t}, J=6.78 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{t}, J=6.75 \mathrm{~Hz}$, $2 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.14-2.11(\mathrm{~m}, 2 \mathrm{H}), 2.05-2.01(\mathrm{p}, J=6.93 \mathrm{~Hz}, 2 \mathrm{H}), 1.86-1.82(\mathrm{~m}$, $2 H$), $1.65(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 474[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{~N}_{7} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$474.2646, found: 474.2662. Anal. HPLC 98.75\% $\left(\mathrm{R}_{\mathrm{t}}=2.779\right.$ min).
4.1.4.24. N-(4-(2-(((2-Aminopyridin-4-yl)methyl)amino)-2-oxoethoxy)phenyl)-N’-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (73). $\mathrm{mp}=90-91{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.79(\mathrm{~d}, J=5.49 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.98 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}$, $J=8.97 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{dd}, J=5.31,1.53 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 4.60$ (s, 2H), $4.34(\mathrm{~s}, 2 \mathrm{H}), 4.00(\mathrm{t}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(\mathrm{t}, J=6.06 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{~d}, J=$ $0.93 \mathrm{~Hz}, 3 \mathrm{H}), 2.05(\mathrm{p}, J=6.66 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 454[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB)

PART I1-SAR Investigation of Phe-Arg mimetic region of Human Glutaminyl Cyclase
m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{7} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 454.2020$, found: 454.2046. Anal. HPLC 98.24\% $\left(\mathrm{R}_{\mathrm{t}}=4.023 \mathrm{~min}\right)$
4.1.4.25. $\quad N$-(4-((1-(2-Aminoethyl)piperidin-4-yl)carbamoyl)phenyl)- N '-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (74). $\mathrm{mp}=91-92{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.81(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~s}$, $1 \mathrm{H}), 4.01(\mathrm{t}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 3.87-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 2.99-2.95$ $(\mathrm{m}, 2 \mathrm{H}), 2.75(\mathrm{t}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{t}, J=6.87 \mathrm{~Hz}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.16-2.14$ $(\mathrm{m}, 2 \mathrm{H}), 2.10(\mathrm{t}, J=6.93 \mathrm{~Hz}, 2 \mathrm{H}), 1.95-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.65(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{FAB})$ $m / z 444[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{~N}_{7} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} 444.2540$, found: 444.2557. Anal. HPLC $99.61 \% ~\left(R_{t}=3.661 \mathrm{~min}\right)$.
4.1.4.26. N-((E)-4-(3-oxo-3-(piperazin-1-yl)prop-1-en-1-yl)phenyl)-N'-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (75). mp $=112-113{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.63-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.57(\mathrm{~d}, J=15.36 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~d}$, $J=15.39 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.68-3.59(\mathrm{~m}, 6 \mathrm{H}), 2.84-$ $2.80(\mathrm{~m}, 4 \mathrm{H}), 2.23(\mathrm{~d}, J=0.93 \mathrm{~Hz}, 3 \mathrm{H}), 2.09(\mathrm{p}, J=6.75 \mathrm{~Hz}, 2 \mathrm{H}), \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z}$ $413[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} 413.2118$, found: 413.2111. Anal. HPLC $96.61 \% ~\left(R_{t}=2.938 \mathrm{~min}\right)$.
4.1.4.27. $\quad N-((E)-4-(3-(4-(2-a m i n o e t h y l) p i p e r a z i n-1-y l)-3-o x o p r o p-1-e n-1-$ yl)phenyl)- N^{\prime}-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (76). $\mathrm{mp}=66-67^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.63(\mathrm{~m}, 3 \mathrm{H}), 7.57(\mathrm{~d}, J=15.36 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J$ $=8.61 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=15.39 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H})$, 3.68-3.64 (m, 4H), 3.61 (t, J=6.57 Hz, 2H), 2.84-2.81 (m, 4H), 2.52-2.48 (m, 4H), $2.23(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{p}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{FAB}) m / z 456[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{~N}_{7} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} 456.2540$, found: 456.2518. Anal. HPLC 98.74% $\left(\mathrm{R}_{\mathrm{t}}=2.943 \mathrm{~min}\right)$.
4.1.4.28. N-((E)-4-(3-oxo-3-(piperidin-4-ylamino)prop-1-en-1-yl)phenyl)-N'-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (77). $\mathrm{mp}=76-77{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.40(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H})$, $6.57(\mathrm{~d}, J=15.70 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{t}, J=7.50 \mathrm{~Hz}, 2 \mathrm{H}), 3.78-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{t}, J=$ $6.69 \mathrm{~Hz}, 2 \mathrm{H}), 3.07-3.03(\mathrm{~m}, 2 \mathrm{H}), 2.70-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.23(\mathrm{~d}, J=0.93 \mathrm{~Hz}, 3 \mathrm{H}), 2.09$ (p, $J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 1.93-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.55(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 427$
$[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{5} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} 427.2275$, found: 427.2277. Anal. HPLC $98.19 \%\left(R_{t}=2.602 \mathrm{~min}\right)$.
4.1.4.29. $\quad N-(E)-(4-(3-(4-(2-A m i n o e t h y l) p i p e r a z i n-1-y l)-3-o x o p r o p-1-e n-1-$ yl)phenyl)- N^{\prime}-(3-(5-methyl-1H-imidazol-1-yl)propyl)thiourea (78). $\mathrm{mp}=80-81{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.62(\mathrm{~d}, J=8.45 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=$ $15.40 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.50 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=15.40 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H})$, $4.02(\mathrm{t}, J=7.15 \mathrm{~Hz}, 2 \mathrm{H}), 3.76-3.72(\mathrm{~m}, 5 \mathrm{H}), 3.62-3.55(\mathrm{~m}, 2 \mathrm{H}), 2.83(\mathrm{t}, J=6.25 \mathrm{~Hz}$, $2 \mathrm{H}), 2.52-2.40(\mathrm{~m}, 6 \mathrm{H}), 2.23(\mathrm{~d}, J=1.00 \mathrm{~Hz}, 3 \mathrm{H}), 2.10(\mathrm{p}, J=7.05 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{MS}$ (FAB) $m / z 456[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (FAB) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{~N}_{7} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} 456.2540$, found: 456.2518 . Anal. HPLC $97.30 \%\left(R_{t}=2.863 \mathrm{~min}\right)$.

4.2. Molecular Modeling

The X-ray crystal structure of the human glutaminyl cyclase (PDB ID: 3PBB) ${ }^{26}$ was prepared via the Protein Preparation Wizard in Maestro v.10.2 (Schrödinger, LLC, New York, NY, USA). During the preparation process, bond orders were assigned, zero-order bonds to Zn^{2+} were generated, and hydrogen atoms were added. The entire hydrogen atoms were energy minimized with the optimized potential for liquid simulation (OPLS) 2005 force field. The protonation states of the ligand molecules were forecasted by the pKa prediction module in ADMET Predictor ${ }^{\mathrm{TM}}$ (Simulations Plus, Lancaster, CA, USA). The 3D structure of $\mathbf{5 3}$ was created by LigPrep v.3.4 in Maestro and the resulting structure was energy minimized in implicit solvent with OPLS 2005 force field in Maestro. The prepared ligand molecules were docked to the $h \mathrm{QC}$ with Glide v.6.7 in Maestro. The grid for the active site was generated through the centroid of the co-crystallized ligand, PBD150, and the grid box size was selected as default. Metal coordination constraint was set as tetrahedral geometry for the Zn^{2+}. Glide SP docking was completed with the maximum number of 30 poses per ligand. The resulting best pose of $\mathbf{5 3}$ were chosen and conducted for the subsequent QMPolarized Ligand Docking (QPLD) procedure. The partial charges of the docked ligands were analyzed by Jaguar with the option of accurate QM level. Then, the ligands accompanied with the updated charges were re-docked using Glide extra precision (XP). The protein-ligand complex obtained from the QPLD was taken for further optimization by Refine Protein-Ligand Complex module in Prime v.4.0 in Maestro. Protein residues within $5 \AA$ of the docked ligand were minimized by local

PART II- SAR Investigation of Phe-Arg mimetic region of Human Glutaminyl Cyclase
optimization refinement. The side chain conformations of the selected protein residues were predicted and minimized along with the docked ligand during this process. The results were further energy minimized using Monte Carlo sampling algorithm in 2500 steps in Maestro.
All the molecular graphic figures were generated by PyMOL software (http://www.pymol.org). All computational studies were undertaken on an Intel Xeon Octa-Core 2.67 GHz workstation with Linux CentOS release 6.7.

1. Design and Pharmacophore

Figure 3.1: Binding complex of compound $\mathbf{1}$ and $h \mathrm{QC}$ acitive site
The parent compound $\mathbf{1}$ may have 4 conformations: cis-cis; trans-trans; transcis and cis-trans in order to interact with $h \mathrm{QC}$ active site. Base of the binding complex of compound 1 with hQC active site (Figure 3.1), we know that it interacts with $h \mathrm{QC}$ by trans-cis conformation; Hence, to make easy to have trans-cis conformation, we introduced a substituent group at B region that produce the compound with potent in vitro activity from 3-22 fold better then parent compound 1. Unfortunately, their in vivo assays exhibited less potent due to low brain permeability.

Figure 3.2: Urea and Thiurea QC inhibitors effects
So we changed from thiourea type to Urea type in order to improve BBB penetration (Figure 3.2). The in vitro results prove that these compounds had
comparable activity as well as good BBB penetration. However, they are not stable in metabolism due to the dimethoxy group at C region ${ }^{78}$. In the fact, Oxygen in heterocyclic at C/D region have hydrogen bonding with $h \mathrm{QC}$ active site, having an important function in pharmacophore. So in this series we anticipate that bioisomer in C region would maintain the hydrogen bonding also keep compound stable in metabolism.

Based on our previous study, compound 4 have $\mathrm{IC}_{50}=162 \mathrm{nM}$, decrease nearly 5.5 -fold less than the compound $\mathbf{1}$. However, when B region was substituted by different group R, it showed significantly increase the QC inhibition activity. Also, the docking study of PQ912 ${ }^{79}$ which was developed by Probiodrug exhibited the Zinc binding motif between benzimidazole and Zinc of $h \mathrm{QC}$ active site. Hence, we continued to survey the modification of C / D region with heterocyclic ring with different substituted group at B region as well as the A region with normal 5-methyl imidazole and novel benzimidazole. We anticipated that these modifications could provide useful information for the investigation of Phe-Agr mimetic region.

2. Result and discussion

2.1. Chemistry

Scheme 3.1. Synthesis of 3-methyl-5-nitroindazole derivatives. Reagents and conditions : (a) HNO_{3}, c. $\mathrm{H}_{2} \mathrm{SO}_{4},-15{ }^{\circ} \mathrm{C}, 20 \mathrm{mins}$; (b) $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, EtOH, reflux, o.n.;
(c) $\mathrm{Boc}_{2} \mathrm{O}$, DMAP, DCM; (d) halide alkyl, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, DMF; (e) N-methylpiperazine, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, DMF (for 7); (f) $\mathrm{Pd} / \mathrm{C}, \mathrm{H} 2, \mathrm{MeOH}$; (g) aldehyde or ketone derivatives, $\mathrm{NaBH}_{3} \mathrm{CN}$, AcOH, MeOH , o.n; (h) 2-nitrobenzenesulfonyl chloride, TEA, DCM, 0 ${ }^{\circ} \mathrm{C}$-r.t., 4 h; (i) cyclopentylmethanol, DEAD, $\mathrm{Ph}_{3} \mathrm{P}$, DCM, r.t, o.n.; (k) thiophenol, $\mathrm{K}_{2} \mathrm{CO}_{3}$, ACN , r.t., o.n.

First for synthesis the 3-methyl-5-nitroindazole fragments which was showed in scheme 3.1, 2'-fluoro-acetophenone was nitration via electrophile substitution in fuming nitric acid and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ at $-42{ }^{\circ} \mathrm{C}$ to obtain compound 2^{80}. Nitro compound was intramolecular cyclized in excess hydrazine to produce 5-indazole derivative $\mathbf{3}^{81}$. Compound $\mathbf{3}$ was protected by Boc-group then reduce to obtain intermediate 9. Meanwhile it also underwent Williamson reaction and N -alkylation to achieve intermediate 5-8. All of these intermediates were subjected for reduction to get the corresponding amine $\mathbf{1 0 - 1 3}$. The primary amine $\mathbf{9 - 1 3}$ underwent directly reductive amination with different aldehyde or ketone to obtain secondary amine ${ }^{82}$ 18, 20-21, 23-27, 29. In order to obtain intermediate 19, 22, 28 with cyclopentylmethyl substituent, their corresponding primary amine were firstly protected with 2-nitrobenzensulfonyl chloride ${ }^{81}$, then alkylation amine group by Mitsunobu reaction to obtaine 16-17.1. the nitrobenzensulfomide removed easily with soft nucleophiles via Meisenheimer complexes to give the corresponding secondary amines ${ }^{83}$.

Scheme 3.2. Synthesis of 5-nitro indazole derivatives. Reagents and conditions: (a) halide alkyl, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, DMF; (b) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{MeOH}$; (c) aldehyde or ketone derivatives, $\mathrm{NaBH}_{3} \mathrm{CN}, \mathrm{AcOH}, \mathrm{MeOH}$, o.n.

Meanwhile, 5-indazole without the 3-methyl group derivatives were synthesized as in scheme 3.2. N-alkylation of 5-nitro-indazole to achieve intermediate 31, 32 which were reduced to get corresponding amine 33, 34. The primary amines were reacted with 4-fluorobenzyaldehyde and cyclohexanone to produce 35-38.

39
(a) or (b)

40: $R_{1}=-B o c, R_{2}=(n o)$
41: $R_{1}=-\mathrm{CH}_{3}, \mathrm{R}_{2}=$ (no)
42: $\mathrm{R}_{1}=-\mathrm{N}$-methylpiperazyl,
$R_{2}=$ (no)
43: $R_{1}=-3$-aminopyrid-4-ylbutyl,
$R_{2}=(n o)$
44: $\mathrm{R}_{1}=$ (no), $\mathrm{R}_{2}=-\mathrm{CH}_{3}$

(e) $\begin{aligned} & \text { 50: } R_{1}=-\mathrm{Boc} \\ & 51: R_{1}=-C H_{3}\end{aligned}$

51: $\mathrm{R}_{1}=-\mathrm{CH}_{3}$

45: $R_{1}=-B o c, R_{2}=$ (no)
46: $\mathrm{R}_{1}=-\mathrm{CH}_{3}, \mathrm{R}_{2}=$ (no)
47: $\mathrm{R}_{1}=-\mathrm{N}$-methylpiperazyl,
$R_{2}=$ (no)
48: $R_{1}=-3$-aminopyrid-4-ylbutyl
$R_{2}=(n o)$
49: $\mathrm{R}_{1}=(n o), \mathrm{R}_{2}=-\mathrm{CH}_{3}$
(d)

54: $R_{1}=-B o c, R_{2}=$ (no), $R_{3}=$-cyclohexyl
55: $R_{1}=-B o c, R_{2}=$ (no), $R_{3}=$-cyclopentylmethyl
56: $R_{1}=-B o c, R_{2}=$ (no), $R_{3}=-4$-fluorobenzyl
57: $R_{1}=-B o c, R_{2}=$ (no), $R_{3}=-3$-pyridylmethyl
58: $R_{1}=-B o c, R_{2}=$ (no), $R_{3}=-N$-methylpiperazyl
59: $\mathrm{R}_{1}=-\mathrm{CH}_{3}, \mathrm{R}_{2}=$ (no), $\mathrm{R}_{3}=$-cyclohexyl
60: $R_{1}=-\mathrm{CH}_{3}, R_{2}=$ (no), $\mathrm{R}_{3}=$-cyclopentylmethyl
61: $R_{1}=-\mathrm{CH}_{3}, \mathrm{R}_{2}=$ (no), $\mathrm{R}_{3}=-4$-fluorobenzyl
62: $\mathrm{R}_{1}=-\mathrm{CH}_{3}, \mathrm{R}_{2}=$ (no), $\mathrm{R}_{3}=-3$-pyridylmethyl
63: $R_{1}=-\mathrm{CH}_{3}, \mathrm{R}_{2}=$ (no), $\mathrm{R}_{3}=-\mathrm{N}$-methylpiperazyl
64: $\mathrm{R}_{1}=-\mathrm{CH}_{3}, \mathrm{R}_{2}=$ (no), $\mathrm{R}_{3}=$-cyclobutyl
65: $R_{1}=-\mathrm{CH}_{3}, \mathrm{R}_{2}=$ (no), $\mathrm{R}_{3}=$-cyclopentylmethyl
66: $R_{1}=$ (no), $R_{2}=-\mathrm{CH}_{3}, R_{3}=-4$-fluorobenzyl
67: $R_{1}=$ (no), $R_{2}=-\mathrm{CH}_{3}, R_{3}=-3$-pyridylmethyl

Scheme 3.3. Synthesis of 3-methyl-6-nitroindazole derivatives. Reagents and conditions: (a) $\mathrm{Boc}_{2} \mathrm{O}$, DMAP, DCM; (b) alkyl halide, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, DMF; (c) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$, MeOH ; (d) aldehyde or ketone derivatives, $\mathrm{NaBH}_{3} \mathrm{CN}, \mathrm{AcOH}, \mathrm{MeOH}$, o.n.; (e) 2nitrobenzenesulfonyl chloride, TEA, DCM, $0{ }^{\circ} \mathrm{C}$-r.t., 4h; (f) cyclopentylmethanol, DEAD, $\mathrm{Ph}_{3} \mathrm{P}$, DCM, r.t, o.n.; (g) thiophenol, $\mathrm{K}_{2} \mathrm{CO}_{3}$, ACN , r.t., o.n.

Scheme 3.3 showed the synthesis of 3-methylindazole-6-yl derivative. 3-methyl-6-nitroindazole 39 reacted with $\mathrm{Boc}_{2} \mathrm{O}$ or alkyl halide to achieve $\mathbf{4 0 - 4 4}$ which was reduced in hydrogenation to obtain primary amine of 45-49. The primary amine underwent the reduction amination with aldehyde or ketone to produce secondary amine of 54, 56-59, 61-64, 66-67. Meanwhile, primary amine 45-46 was reacted with 2-nitrobenzensulfonyl chloride then Mitsunobu reaction with cyclopentylmethanol to produce 52-53. The protected group of nitrobenzensulfonyl was removed by thiol to obtain the corresponding secondary amine 54, $\mathbf{6 0}$.

N -(4-fluorobenzyl)-indazol-6-amine-1-yl derivatives were synthesized as scheme 3.4. 6-nitroindazole reacted with $\mathrm{Boc}_{2} \mathrm{O}$ or N -alkylation of alkyl halide, then reduced in hydrogenation to obtain corresponding primary amine 72-74. The amine then underwent reductive amination with 4-fluorobenzaldehyde to get the secondary amine of 75-77

Scheme 3.4. Synthesis of 6-nitroindazole derivatives. Reagents and conditions: (a) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{DCM}$; (b) alkyl halide, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, DMF; (c) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{MeOH}$; (d) 4fluorobenzaldehyde, $\mathrm{NaBH}_{3} \mathrm{CN}$, AcOH , MeOH , o.n.

Scheme 3.5. Synthesis of 5-nitroindole derivatives. Reagent and conditions: (a) allyl bromide, t-BuOK, DMF, $30 \mathrm{~min}, 0{ }^{\circ} \mathrm{C}-$ r.t, 18 h ; (b) $\mathrm{Boc}_{2} \mathrm{O}$, DMAP, DCM; (c) t$\mathrm{Bu}_{4} \mathrm{NBr}, \mathrm{TEA}, \mathrm{Pd}(\mathrm{OAc})_{2}$, xantphos, DMF, reflux, 48h; (d) TFA, MC; (e) alkyl halide, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, DMF; (f) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{MeOH}$; (g) aldehyde or ketone derivatives, $\mathrm{NaBH}_{3} \mathrm{CN}$, $\mathrm{AcOH}, \mathrm{MeOH}$, o.n.; (h) 2-nitrobenzenesulfonyl chloride, TEA, DCM, $0^{\circ} \mathrm{C}$-r.t., 4h; (i) cyclopentylmethanol, DEAD, $\mathrm{Ph}_{3} \mathrm{P}$, DCM, r.t, o.n.; (k) thiophenol, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{ACN}$, r.t., o.n.

5-indole derivatives were produced as in scheme 3.5. 2-chloro-4-nitroaniline 78 firstly was alkylated and Boc protection to achieve intermediate 80. The compound was intramolecular cyclized via Buchward Hardwig reaction to get 5indole $81{ }^{84}$.

108: $X=O ; Y=\mathrm{CCOOC}_{2} \mathrm{H}_{5}$
109: $\mathrm{X}=\mathrm{CCOOC}_{2} \mathrm{H}_{5} ; \mathrm{Y}=\mathrm{O}$
(c) \uparrow

106: $\mathrm{R}_{1}=-\mathrm{OH} ; \mathrm{R}_{2}=-\mathrm{CHO}$

105
(q)

110: $\mathrm{X}=\mathrm{O} ; \mathrm{Y}=\mathrm{CCH}_{3}$
111: $\mathrm{X}=\mathrm{CCH}_{3} ; \mathrm{Y}=\mathrm{O}$

107: $\mathrm{R}_{1}=-\mathrm{CHO} ; \mathrm{R}_{2}=-\mathrm{OH}$

Scheme 3.6. Synthesis of benzofuran derivatives. Reagents and conditions: (a) $\mathrm{BH}_{3}-$ THF, $0^{\circ} \mathrm{C}$-rt; (b) MnO_{2}, DCM; (c) $\mathrm{N}_{2} \mathrm{CHCO}_{2} \mathrm{Et}, \mathrm{HBF}_{4} . \mathrm{Et}_{2} \mathrm{O}, \mathrm{DCM}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}, \mathrm{c} . \mathrm{H}_{2} \mathrm{SO}_{4}$; (d) i. DIBAL, toluene; ii. $\mathrm{I}_{2}, \mathrm{Ph}_{3} \mathrm{P}$, Imidazole, DCM, r.t., 1 h; iii. NaBH_{4}, diglyme, r.t., 2h; (d) $\mathrm{SnCl}_{2}, \mathrm{c} . \mathrm{HCl}, \mathrm{EtOH}$, reflux, 2 h ; (e) aldehyde or ketone derivatives, $\mathrm{NaBH}_{3} \mathrm{CN}$, $\mathrm{AcOH}, \mathrm{MeOH}$, o.n.

The Boc group of compound was removed by TFA in MC then followed by N -alkylate to achieve 83-84. Also, $\mathbf{8 5}$ was obtained from N -alkylation of 5nitroindole 82. These nitro intermediates were reduced in hydrogenation to get the primary amine of $\mathbf{8 6 - 8 8}$ which were not only protected with 2-nitrobenzensulfonyl before substituted with cyclopentylmethyl, but also underwent the reductive amination with aldehyde or ketone derivative to introduce intermediate 95-103.

For synthesis of 5/6-benzofuran derivatives as in scheme 3.6, 4/5-nitrobenzoic acid was reduced in BH_{3} then oxidized by MnO_{2} to achieve intermediate 106-107. The benzaldehyde intermediates were intra molecular cyclized by diazo derivatives ${ }^{85}$, then underwent the reduction and Appel reaction to provide primary amine 110-111. These primary amines were subjected for reductive amination to achieve secondary amine of 112-114.

$$
\begin{array}{ll}
\text { 125: } X=O ; Y=N & \text { 127: } X=S ; Y=N \\
\text { 126: } X=N ; Y=O & \text { 128: } X=N ; Y=S
\end{array}
$$

$$
\begin{array}{ll}
\text { 129: } X=O ; Y=N & \text { 131: } X=S ; Y=N \\
\text { 130: } X=N ; Y=O & \text { 132: } X=N ; Y=S
\end{array}
$$

(e) $\quad \downarrow(\mathrm{g})$

117: $X=O ; Y=N$
118: $X=N ; Y=O$
119: $X=S ; Y=N$
120: $X=N ; Y=S$
(a)

121: $X=O ; Y=N$
122: $X=N ; Y=O$
123: $X=S ; Y=N$
124: $X=N ; Y=S$

133: $\mathrm{X}=\mathrm{O} ; \mathrm{Y}=\mathrm{N} ; \mathrm{R}=$-cyclohexyl
134: $X=O ; Y=N ; R=$-cyclopentylmethyl
135: $X=O ; Y=N ; R=-4$-fluorobenzyl
136: $\mathrm{X}=\mathrm{N} ; \mathrm{Y}=\mathrm{O} ; \mathrm{R}=$-cyclohexyl 137: $X=N ; Y=O ; R=$-cyclopentylmethyl
138: $\mathrm{X}=\mathrm{N} ; \mathrm{Y}=\mathrm{O} ; \mathrm{R}=-4$-fluorobenzyl
139: $\mathrm{X}=\mathrm{S} ; \mathrm{Y}=\mathrm{N} ; \mathrm{R}=$-cyclohexyl 140: $X=S ; Y=N ; R=$-cyclopentylmethyl
141: $X=S ; Y=N ; R=-4$-fluorobenzyl
142: $X=N ; Y=S ; R=$-cyclohexyl 143: $X=N ; Y=S ; R=$-cyclopentylmethyl
144: $X=N ; Y=S ; R=-4$-fluorobenzyl

Scheme 3.7. Synthesis of benzooxazole and benzothiazole derivatives. Reagents and conditions: (a) triethyl orthoformate, $80^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (b) $\mathrm{Pd} / \mathrm{C}, \mathrm{H} 2, \mathrm{MeOH}$; (c) SnCl_{2}, c. $\mathrm{HCl}, \mathrm{EtOH}$, reflux, 2h; (d) aldehyde or ketone derivatives, $\mathrm{NaBH}_{3} \mathrm{CN}, \mathrm{AcOH}$, MeOH , o.n.; (e) 2-nitrobenzenesulfonyl chloride, TEA, DCM, $0{ }^{\circ} \mathrm{C}$-r.t., 4 h ; (f) cyclopentylmethanol, DEAD, $\mathrm{Ph}_{3} \mathrm{P}$, DCM, r.t, o.n.; (g) thiophenol, $\mathrm{K}_{2} \mathrm{CO}_{3}$, ACN , r.t., o.n.

Benzothiazole and benzoxazole were synthesized as in scheme 3.7, nitrophenol derivatives $\mathbf{1 1 5 - 1 1 6}$ were cyclized intra molecular in triethyl orthoformate to achieve heterocyclic $\mathbf{1 1 7 - 1 2 0}$. These intermediates were reduced by hydrogenation or tinc chloride to obtain corresponding amine 121-124. The primary amine underwent reductive amination with aldehyde or ketone or via Mitsunobu reaction for cyclopentylmethyl to produce secondary amine of 133-144.

For achieve the final compound as showed in scheme 3.8, secondary amines were coupled with Azide derivative via Aza Wittig coupling ${ }^{86}$ to have final compounds of 173-178; 180-186; 193-199; 202-205; 217-240 and other precursors of $\mathbf{1 4 5 - 1 6 8}$. All of the precursors were removed the protected group to have to obtain the remaining final compounds of $\mathbf{1 6 9 - 1 7 2} ; \mathbf{1 7 9} ; \mathbf{1 8 7 - 1 9 2} ; \mathbf{2 0 0 - 2 0 1} ; 206-216$.

Scheme 3.8. Synthesis of final compounds. Reagents and conditions: (a) azide derivatives, $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{CO}_{2}$, toluene, reflux, o.n.; (b) TFA, DCM, r.t., o.n.

2.2.In vitro assay

We performed QC activity assays using a fluorogenic substrate, Gln-AMC (Lglutamine 7-amido-4-methylcoumarin), and pyroglutamyl peptidase (pGAP) as an auxiliary enzyme ${ }^{67}$ to evaluate the ability of the D-region-modified library to inhibit QC. We first investigated a group of compounds containing 5-amino-3methylindazole derivatives in D-region Table 3.1.
Table 3.1. IC_{50} values for inhibition of $h \mathrm{QC}$ by N -substituted urea compounds of 5-amino-3-methylindazole derivatives.

Comp ound	R_{1}	R_{2}	$\mathrm{IC}_{50}(\mathrm{nM})^{\mathrm{a}}$	
Parent compound	H	162		
$\mathbf{1 6 9}$	H		107	(± 37.8)
$\mathbf{1 7 0}$	H		2.3	(± 0.7)

$\mathbf{1 7 1}$
${ }^{\mathrm{a}}$ The values indicate the mean of at least three experiments.
This is result of in vitro of 3-methyl-5-indazole derivatives, It showed that biosteroisomer derivatives increase in vitro activity. When B region was substituted by different group to have a trans-cis conformation, the compound activity increases significantly about 9-70 fold. Especially, compound $\mathbf{1 7 0}$ with cyclohexyl at B region is the most potent in this series. It suggested that substituent groups at \mathbf{B} region made compound easier to having binding complex with $h \mathrm{QC}$ active side and nitrogen on heterocyclic had H -bond also. When addition methyl group at position 1 of indazole, compound 173-179 also have comparable activity. Furthermore, when B region was substituent ground and D region was moiety of methyl-piperazylethyl and 2-aminopyridylbutyl, which moiety in our previous study displayed potent activity due to terminally amine position, compounds less activity compare with the abovementioned compound.

However, in table 2, 5-indazole without methyl group at position 3, and position 1 was propyl or isobutyl and B region was substituted by cyclohexyl and 4fluorobenzyl. The compounds showed less comparable with compounds in previous table. May be the steric bulk at position 1 affect to H -bonding between Nitrogen and $h \mathrm{QC}$ active site. However, interestingly compound $\mathbf{1 8 1}$ with 4-fluorobenzyl at B-

PART III- SAR MODIFICATION OF HETEROCYCLICS IN C REGION WITH UREA TYPE

region and isopropyl at position 1 have better activity than compound $\mathbf{1 8 3}$ with isobutyl at position 1 about 3.8 fold.

Table 3.2. IC_{50} values for inhibition of $h \mathrm{QC}$ by N -substituted urea compounds of 5aminoindazole derivatives
Compound
${ }^{a}$ The values indicate the mean of at least three experiments.

We also consider the effect of Nitrogen at position 2 by survey 2,3-dimethylindazole-5-yl derivatives in table 3.3. Unfortunately, these compound also exhibited less activity. Even when, 3-aminopyridylmethyl-substitued B region compound 186 displayed weak activity with $\mathrm{IC}_{50}=210 \mathrm{nM}$.

Next, we examined series of 6-amino-3-methylindazole as shown in table 3.4. Firstly, the compounds in this series also showed good activity as compound of 1-methyl-indazole-5-yl derivatives. When substituted B region with different cyclic group, their activity increase from 3-50 fold compared with compound 4. Also, addition methyl group at position 1, these compound 193-198 had comparable activity with IC_{50} of 2.3 to 9.8 nM , except compound 197 with B region substituted by 3-pyridymethyl displayed weak activity with IC_{50} of 65.9 nM . Moreover, when surveyed D-region with moieties of N-methylpiperazylethyl and 2-aminopyridyl-4ylbutyl, the compound 199-200 showed less activity compare with compound of methyl substituents with IC_{50} of 71.2 and 20.4 nM , respectively.

Table 3.3. IC_{50} values for inhibition of $h \mathrm{QC}$ by N -substituted urea compounds of 5-amino-2,3-dimethylindazole derivative

Compound	R_{2}	$\mathrm{IC}_{50}(\mathrm{nM})^{\mathrm{a}}$	
184		31.7	(± 3.8)
185		22.7	(± 2.4)
186		210	(± 161)

${ }^{a}$ The values indicate the mean of at least three experiments.

In previous series, compound 190 and 196 with 4-fluorobenzyl at B region showed comperable potent in indazole series with IC_{50} of 11.1 and 2.3 nM , respectively. Hence, in table 3.5, we examined the compound with B region is 4fluorobenzyl and modified the C-linker of 1 -substitued groups. Unfortunately, the activity of these compounds $\mathbf{2 0 1} \mathbf{- 2 0 3}$ showed moderate potent of IC_{50} from 29.0 to 66.2 nM .

Table 3.4. IC_{50} values for inhibition of $h \mathrm{QC}$ by N -substituted urea compounds 6-amino-3-methylindazole derivatives

Comp ound	R_{1}	R_{2}	$\mathrm{IC}_{50}(\mathrm{nM})^{\mathrm{a}}$	
$\mathbf{1 8 7}$	H	H	141	(± 55.1)
$\mathbf{1 8 8}$	H	$*$	3.2	(± 2.4)

PART III- SAR MODIFICATION OF HETEROCYCLICS IN C REGION WITH UREA TYPE
$\mathbf{1 8 9}$
${ }^{\mathrm{a}}$ The values indicate the mean of at least three experiments.

Table 3.5. IC_{50} values for inhibition of $h \mathrm{QC}$ by N -substituted urea compounds of 6aminoindazole derivatives

Compound	R_{1}	R_{2}	$\mathrm{IC}_{50}(\mathrm{nM})^{\mathrm{a}}$	
$\mathbf{2 0 1}$	H		66.2	(± 16.4)

202 Me
${ }^{\text {a }}$ The values indicate the mean of at least three experiments.

For survey the 2,3-dimethyl derivative with B region is 4-fluorobenzyl and 3pyridylmethyl, IC_{50} of these compound showed less active as corresponding compound of 5-indazole as showed in table 3.6. Interestingly, compound 204 with 4fluorobenzyl at B-region is more active 3-times than compound 205 with 3pyridylmethyl at B region.

Table 3.6. IC_{50} values for inhibition of $h \mathrm{QC}$ by N -substituted urea compounds of 6-amino-2,3-dimethylindazole derivatives
Compound
${ }^{a}$ The values indicate the mean of at least three experiments.

In order to optimize A region with benzimidazole, table 3.7 and table 3.8 displayed QC inhibitory activity of compounds of 5/6-indazole with different group at B region. The IC_{50} results display less activity compare with those of imidazole in A region, regardless of the steric hindrance with IC_{50} of 24.6-76.1 nM.

Meanwhile, 6-indazole derivatives compound 211-216, table 3.8, also have the similar weak activity as 5-indazole derivatives. Compound 215 with 4fluorobenzyl at B region once again displayed potent activity than others compound in this series.

Table 3.7. IC_{50} values for inhibition of $h \mathrm{QC}$ by N -substituted urea compounds of 6-amino-3-methylindazole derivative with benzimidazole at A region
Compound
${ }^{a}$ The values indicate the mean of at least three experiments.
We also surveyed C-region with indole derivatives as in table 3.9, in which there was only one Nitrogen atom on heterocyclic ring. Unfortunately, although all of these compound 217-225 showed increased inhibitory activity 2-4 fold compare with leading compound $\mathbf{4}$, their activity much weaker compare with compound of indazole derivatives. This result could exhibited the important of hydrogen bonding between C-region and $h \mathrm{QC}$ active site.

Table 3.8. IC_{50} values for inhibition of $h \mathrm{QC}$ by N -substituted urea compounds of 6-amino-3-methylindazole derivatives with benzimidazole at A region

Compound	R	$\mathrm{IC}_{50}(\mathrm{nM})^{\mathrm{a}}$	
$\mathbf{2 1 1}$	$*-$	35.4	(± 8.0)

PART III- SAR MODIFICATION OF HETEROCYCLICS IN C REGION WITH UREA TYPE

212		53.5	(± 5.9)
213		57.2	(± 7.9)
214		30.0	(± 3.2)
215		18.8	(± 6.9)
216		74.6	(± 1.3)

${ }^{a}$ The values indicate the mean of at least three experiments.

Table 3.9. IC_{50} values for inhibition of $h \mathrm{QC}$ by N -substituted urea compounds of 5aminoindole derivatives

Cpd.	R_{1}	R_{2}	R_{3}	$\mathrm{IC}_{50}(\mathrm{nM})^{\mathrm{a}}$	
217	Me	H		49.5	(± 5.9)
218	Me	H		74.6	(± 14.9)
219	Me	H		61.2	(± 4.2)
220	Me	Me		48.1	(± 7.2)
221	Me	Me		41.9	(± 10.0)
222	Me	Me		41.7	(± 7.7)
223	-	H		35.9	(± 8.4)
224	\cdots	H		60.3	(± 5.8)

225
${ }^{\text {a }}$ The values indicate the mean of at least three experiments.

Finally we also considered C region with benzofuran, benzooxazole, benzothiazole derivatives $\mathbf{2 2 6} \mathbf{- 2 2 8}$ as showed in table $\mathbf{3 . 1 0}$ in order to continuously evaluate the important of biosteroisomer in this series. The in vitro result displayed the weak activity compared with those of indazole derivative. Even, compound with 4-fluorobenzyl at B region also decreased activity significantly, especially compound 228 of 6-aminobenzofuran derivative was the weakest inhibitory activity with IC_{50} of 113 nM .

Table 3.10. IC_{50} values for inhibition of $h \mathrm{QC}$ by N -substituted urea compounds of benzofuran, benzooxazole and benzothiazole derivatives
Compound

	X	Y	R	IC_{50}	
229	O	N		33.5	(± 1.2)
230	O	N		59.4	(± 12.4)
231	O	N		26.9	(± 3.4)
232	N	O		47.7	(± 13.4)
233	N	O		32.9	(± 1.9)
234	N	O		39.5	(± 6.9)
235	S	N		50.2	(± 2.9)
236	S	N		47.3	(± 6.2)
237	S	N		37.5	(± 0.7)
238	N	S		47.1	(± 4.9)
239	N	S		35.6	(± 0.7)
240	N	S		38.2	(± 0.8)

${ }^{a}$ The values indicate the mean of at least three experiments.

3. Conclusion

In this part, we continued to synthesize and evaluate the biological activity of Cregion with heterocyclic ring base on the binding complex of parent compound 1 and $h \mathrm{QC}$ active site of $\mathbf{7 2}$ compounds. In general, most of them were showed less activity compare with our previous study derivative. Compound with indazole at C region

PART III- SAR MODIFICATION OF HETEROCYCLICS IN C REGION WITH

 UREA TYPEhad better activity than those of indole, benzooxazole, benzothiazole, benzofuran fragment. This suggested that the C region interact with $h \mathrm{QC}$ active site by H -bond play an important role. Furthermore, when we changed the A region from imidazole derivatives to benzimidazole derivates, $h \mathrm{QC}$ inhibitory activity reduced remarkably. We needed to evaluate in vivo and acute AD model test of 10 potent compound for further discovery.

4. Experimental

4.1. Chemistry

4.1.1. General

All chemical reagents were commercially available. Melting points were determined on a melting point Buchi B-540 apparatus and are uncorrected. Silica gel column chromatography was performed on silica gel 60, 230-400 mesh, Merck. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a a JEOL JNM-LA 300 at 300 MHz , Bruker Analytik, DE/AVANCE Digital 400 at 400 MHz , a Bruker Analytik, DE/AVANCE Digital 500 at 500 MHz , and a JEOL JNM-ECA-600 at 600 MHz . Mass spectra were recorded on a VG Trio-2 GC-MS instrument and a 6460 Triple Quad LC-MS instrument. All final compounds were assessed for purity by high performance liquid chromatography (HPLC) on Agilent 1120 Compact LC (G4288A) system via the following conditions. Column: Agilent TC-C18 column ($4.6 \mathrm{~mm} \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$). Mobile phase A: MeOH , Mobile phase B: 0.1% TFA in water (v / v) in 30 min . Wavelength: 254 nM . Flow: $0.7 \mathrm{~mL} / \mathrm{min}$. According to the HPLC analyses, all final compounds showed a purity of $\geq 95 \%$.

4.1.2. General procedure

4.1.2.1. Produce 1- Nitration

To a mechanically stirred slurry of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(93-98 \%, 360 \mathrm{~mL})$ at $-42{ }^{\circ} \mathrm{C}$ were added dropwise 2'fluoro-acetophenone $45(90.0 \mathrm{~g}, 652 \mathrm{mmol})$ and a solution of fuming nitric acid (53.1 mL) in conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(129 \mathrm{~mL})$. The slurry was stirred for 30 min at $-42^{\circ} \mathrm{C}$. The mixture was slowly poured onto 1.3 kg of ice. To the mixture was added water $(1 \mathrm{~L})$. The product precipitated out of solution. After all of the ice melted, the product was collected via filtration. The solid was dissolved with EtOAc. The organic layer was washed with $5 \% \mathrm{Na}_{2} \mathrm{CO}_{3}(2 \times 300 \mathrm{~mL})$, water (300 mL), and brine
(300 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. It was filtered, the filtrate was concentrated to give compound

4.1.2.2. Procedure 2- indazole cyclisation

To a solution of 2-fluoroacetophenone derivatives ($14.48 \mathrm{mmol}, 1.0$ equiv) in ethylene glycol (10 mL) was added hydrazine monohydrate ($15.06 \mathrm{mmol}, 1.04$ equiv) at $25{ }^{\circ} \mathrm{C}$. After 2 h at $25^{\circ} \mathrm{C}$, the reaction was heated to $165^{\circ} \mathrm{C}$ and stirred until complete by TLC. After cooled to $25^{\circ} \mathrm{C}$, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x). The combined organic layers were washed with saturated aqueous NaHCO_{3} and dried over MgSO_{4}. After filtration and concentration in vacuo, the residue was purified via flash column chromatography on silica gel to indazole analogs.

4.1.2.3. Procedure 3 - Reductive amination

To a solution of $10 \% \underline{\mathrm{AcOH}}$ in MeOH was added the $\mathrm{SM}(1$ equiv) and dry acetone or aldehyde (0.90 equiv). The solution was stirred at RT 1 h , after which time it was cooled to $0^{\circ} \mathrm{C}$ and treated with NaCNBH_{3} (1.5 equiv). The reaction was stirred at RT for 5 h . The mixture was concentrated and the residue brought to $\mathrm{pH}=$ 10 using $\mathrm{Na}_{2} \mathrm{CO}_{3}$. The mixture was extracted with EtOAc and the organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to dryness. The crude material was purified by silica gel column chromatography ($2 \% \mathrm{MeOH} / \mathrm{DCM}$) to provide the product as a yellow solid.

4.1.2.4. Procedure 4

Procedure 4.1. The primary amine in DMC was all nitrobenzensulfonyl chloride (1.3 equiv) and TEA (2.0 equiv). Then the mixture was stirred at r.t until SM was consumed (by TCL). The mixture was pour into water and extracted by DCM (50 mL x 3 times). The combined organics were wash with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to dryness and purified by silia gel column chromatography to provide the product.

Procedure 4.2. Solution of nitrobenzensulfonyl compound (1 equiv.) in DCM (10 mL) was add thiophenol (1.3 equiv.) and potassium carbonate (3 equiv.). The mixture was stirred at r.t. overnight then quenched with brine and extracted with DCM (3 time x
$50 \mathrm{~mL})$. The combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated and purified by silica gel column chromatography to get the desired product.

4.1.2.5. Procedure 5-Reduction

Procedure 5.1. BH3 reduction: To a 0.24 M THF suspension of the SM (1 equiv) at 0 ${ }^{\circ} \mathrm{C}$ was added $\mathrm{BH}_{3}-\mathrm{THF}$ (3 equiv). The reaction mixture was stirred under Ar at r.t for 66 h then quenched by addition of $\mathrm{EtOH}(15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and stirred an additional 15 min . The mixture was poured into $\mathrm{H}_{2} \mathrm{O}$ and extracted with DCM. The combined organics were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to provide the crude product as a white solid.

Procedure 5.2: Hydrogenation

The nitro compound or alkene derivative was dissolved in MeOH (or mixture of MeOH and THF) and then $10 \% \mathrm{Pd} / \mathrm{C}$ was added. The mixture was stirred at room temperature under hydrogen gas until all starting material was consumed (confirmed by TCL). The crude mixture was filtered through celite filter, washed with MeOH (3 x 50 mL) and then concentrated. The product was subjected to the next step without further purification.

Procedure 5.3: Zinc powder reduction

AcOH (5 equiv) and Zn dust (5 equiv) were added to a solution of a nitro compound in $\mathrm{MeOH}(10 \mathrm{~mL})$ at room temperature. The reaction mixture was stirred at room temperature for 30 minutes and then filtered through a celite filter. The filtrate was portioned between $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $\mathrm{DCM}(30 \mathrm{~mL})$. The organic layer was separated, dried over MgSO_{4}, concentrated, and purified by column chromatography to provide the product.

4.1.2.6. Procedure 6

The entire two-step, one-pot reaction can be accomplished in less than 1 h . For each experiment, $\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}$ was added to the aldehyde $(1 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. A solution of ethyl diazoacetate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was introduced into the reaction mixture as the evolution of N_{2} gas permitted (ca. 3-6 min addition time) and the reaction was not allowed to go above $38^{\circ} \mathrm{C}$. Once gas evolution ceased, the reaction mixture was
concentrated by rotary evaporator and $\mathrm{H}_{2} \mathrm{SO}_{4}(0.3$ to 0.5 mL$)$ was added to the mixture while stirring. After 5 to 10 min , the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 to 10 mL) and the $\mathrm{H}_{2} \mathrm{SO}_{4}$ was quenched with solid NaHCO_{3}. The mixture was then filtered through silica gel (1 g), and concentrated by rotary evaporator to give an oil, which slowly crystallized under high vacuum.

4.1.2.7. Procedure 7 - Benzooxazole

According to a procedure, the corresponding 2-aminophenol (5 mmol) and triethyl orthoformate (15 mL) was refluxed for 4 h . After cooling to room temperature, the remaining triethyl orthoformate was removed under reduced pressure and the residue was purified by column chromatography to yield the desired substituted benzoxazole

4.1.2.8. Mitsunobu reaction (Procedure 8)

Triphenylphosphine (1.3 equiv) was added to a solution of 4-nitroguanicol (1.0 equiv) in DCM under a nitrogen atmosphere, followed by the addition of a primary alcohol (1.2 equiv) and a solution of diethyl azodicarboxylate (1.3 equiv) in DCM. After the solution was stirred for 30 minutes at room temperature, the reaction was poured onto a column of silica and was eluted with EtOAc: n-hexane to yield the desired product.

4.1.2.9. Boc protection and deprotection

Procedure 9.1: Triethylamine (1.2 equiv) and di-tert-butyl dicarbonate (2.5 equiv) in DCM were added to a suspension of the starting amine material (1.0 equiv) in DCM in an ice bath. The mixture was stirred at room temperature until starting material was consumed (confirmed by TLC). Water was added to the mixture and subsequently extracted with DCM. The organic layer was washed with a 10% aqueous NaHCO_{3} solution, water and brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by flash chromatography to obtain the desired product.

Procedure 9.2: Trifluoroacetic acid (10 equiv) was added to the solution of the bocprotected compound (1.0 equiv) in DCM (DCM:TFA $=1: 1(\mathrm{v} / \mathrm{v})$). Then, the mixture was stirred at room temperature until the starting material was consumed and evaporated. The residue was dissolved in MeOH and purified on an ion-exchange
column to obtain the desired product or subjected to the next step without further purification.

4.1.2.10 Procedure 10-Azide coupling reaction

Procedure 10: Amine derivative (1 equiv), triphenylphosphine (1.1 equiv), 1-(3-azidopropyl)-5-methyl- 1 H -imidazole (1.1 equiv) were dissolve in toluene (5 mL). The solution was degas then refluxed under CO_{2} condition overnight. The mixture was cooled down and evaporated to remove toluene. The residue was purified by $\mathrm{DCM} / \mathrm{MeOH}$ to get the product

4.1.2.11. Procedure $11-N$-alkylation

A mixture of the alkyl halide, nitrogen-containing compound and excess base in DMF was stirred at $60^{\circ} \mathrm{C}$ for 30 min . The reaction was quenched with water and extracted with EA. The organic layer was washed with water and brine, concentrated and purified by column chromatography.

4.2. Compound

4.2.1. Intermediate

4.2.1.1. 1-(2-Fluoro-5-nitrophenyl)ethan-1-one (02). Starting with compound 01 following the general procedure 01, compound $\mathbf{0 2}$ was obtained as yellow solid, yield $75 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.80(\mathrm{dd}, J=2.91,6.03 \mathrm{~Hz}, 1 \mathrm{H}$), $8.44-8.38(\mathrm{~m}$, $1 \mathrm{H}), 7.37(\mathrm{t}, J=9.33 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}, J=4.77 \mathrm{~Hz}, 3 \mathrm{H})$.
4.2.1.2. 3-Methyl-5-nitro-1H-indazole (03). Starting with compound $\mathbf{0 2}$ following the general procedure $\mathbf{0 2}$, compound $\mathbf{0 3}$ was obtained as yellow solid, yield $84 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 13.30(\mathrm{~s}, \mathrm{NH}), 8.76(\mathrm{~s}, 1 \mathrm{H}), 8.18$ (dd, $J=2.01,9.15 \mathrm{~Hz}$, $1 \mathrm{H}), 7.63(\mathrm{~d}, J=9.15 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H})$.
4.2.1.3. tert-Butyl 3-methyl-5-nitro-1H-indazole-1-carboxylate (04). Starting with compound 03 following the general procedure 9.1 , compound $\mathbf{0 4}$ was obtained as yellow solid, yield 85%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.61(\mathrm{~d}, J=2.01 \mathrm{~Hz}, 1 \mathrm{H})$, $8.40(\mathrm{dd}, J=9.36,2.22 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=9.36 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 9 \mathrm{H})$.

PART III- SAR MODIFICATION OF HETEROCYCLICS IN C REGION WITH UREA TYPE
4.2.1.4. 1,3-Dimethyl-5-nitro-1H-indazole (05). Starting with compound 03 following the general procedure 11, compound $\mathbf{0 5}$ was obtained as pale solid, yield $77 \% .^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.66(\mathrm{~d}, J=2.04 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{dd}, J=2.19$, $9.15 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=9.15 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 9 \mathrm{H})$.

4.2.1.5. 3-Methyl-1-(2-(4-methylpiperazin-1-yl)ethyl)-5-nitro-1H-indazole

(06).

Starting with compound $\mathbf{0 3}$ following the general procedure 11, compound $\mathbf{0 6}$ was obtained as yellow solid, yield 65%. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.65(\mathrm{~d}, J=2.01$ $\mathrm{Hz}, 1 \mathrm{H}), 8.24(\mathrm{dd}, J=9.15,2.19 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=9.15 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{t}, J=6.87$ $\mathrm{Hz}, 2 \mathrm{H}), 2.86(\mathrm{t}, J=6.78 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{br}, 4 \mathrm{H}), 2.41(\mathrm{br}, 4 \mathrm{H}), 2.26(\mathrm{~s}$, $3 \mathrm{H})$.
4.2.1.6. tert-Butyl
(4-(4-(3-methyl-5-nitro-1H-indazol-1-yl)butyl)pyridin-2$y l)$ carbamate (07). Starting with compound 03 following the general procedure 11, compound 07 was obtained as yellow solid, yield 88%. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.65(\mathrm{~d}, J=2.01 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{dd}, J=9.15,1.32 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=4.74 \mathrm{~Hz}$, $1 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=9.15 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dd}, J=5.13,1.47 \mathrm{~Hz}$, $1 \mathrm{H}), 4.35(\mathrm{t}, J=6.93 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 2,62(\mathrm{t}, J=7.62 \mathrm{~Hz}, 2 \mathrm{H}), 1.96$ (quintet, $J=7.86 \mathrm{~Hz}, 2 \mathrm{H}), 1.74-1.58(\mathrm{~m}, 2 \mathrm{H}) .1 .53(\mathrm{~s}, 9 \mathrm{H})$.
4.2.1.7. 2,3-Dimethyl-5-nitro-2H-indazole (08). Starting with compound 03 following the general procedure 11, compound $\mathbf{0 8}$ was obtained as yellow solid, yield 20%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.67(\mathrm{dd}, J=2.01,0.57 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{dd}, J=$ $9.33,2.19 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=9.15,0.54 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H})$.
4.2.1.8. tert-Butyl 5-amino-3-methyl-1H-indazole-1-carboxylate (09). Starting with compound $\mathbf{0 4}$ following the general procedure 5.2, compound $\mathbf{0 9}$ was obtained as red solid, yield 96%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 6.92$ (dd, $J=8.79,2.19 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=1.83 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}$, 9H).
4.2.1.9. 1,3-Dimethyl-1H-indazol-5-amine (10). Starting with compound 05 following the general procedure 5.2, compound $\mathbf{1 0}$ was obtained as pink solid, yield 99%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.13(\mathrm{~d}, J=9.33 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.83(\mathrm{~m}, 2 \mathrm{H})$, 3.92 (s, 3H), 2.46 (s, 3H).
4.2.1.10. 3-Methyl-1-(2-(4-methylpiperazin-1-yl)ethyl)-1H-indazol-5-amine
(11). Starting with compound 06 following the general procedure 5.2 , compound 11 was obtained as red solid, yield 90%. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.19(\mathrm{~d}, J=9.33$ $\mathrm{Hz}, 1 \mathrm{H}), 6.86-6.84(\mathrm{~m}, 2 \mathrm{H}), 4.37(\mathrm{t}, J=7.35 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{br}, 2 \mathrm{H}), 2.82(\mathrm{t}, J=7.35$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.56 (br, 4H), 2.47 (s, 3H), 2.44 (br, 4H), 2.27 (s, 3H).
4.2.1.11. tert-Butyl (4-(4-(5-amino-3-methyl-1H-indazol-1-yl)butyl)pyridin-$2-y l$)carbamate (12). Starting with compound 07 following the general procedure 5.2, compound 12 was obtained as red solid, yield 94%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.33(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=4.74 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=9.45 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.95(\mathrm{~m}, 2 \mathrm{H})$, $6.86-6.82(\mathrm{~m}, 2 \mathrm{H}), 4.26(\mathrm{t}, J=6.78 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{br}, 2 \mathrm{H}), 2.59(\mathrm{t}, J=7.86 \mathrm{~Hz}, 2 \mathrm{H})$, $2.48(\mathrm{~s}, 3 \mathrm{H}), 1.93-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H})$.
4.2.1.12. 2,3-Dimethyl-2H-indazol-5-amine (13). Starting with compound 08 following the general procedure 5.2 , compound $\mathbf{1 3}$ was obtained as red solid, yield $99 \% .^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~d}$, $J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H})$.
4.2.1.13. tert-Butyl 3-methyl-5-((2-nitrophenyl)sulfonamido)-1H-indazole-1carboxylate (14). Starting with compound 09 following the general procedure 4.1, compound 14 was obtained as pale solid, yield 76%. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.00(\mathrm{~d}, J=7.89 \mathrm{~Hz}, 1 \mathrm{H}), 7.89-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.75-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.51(\mathrm{~m}, 2 \mathrm{H})$, $7.26(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 9 \mathrm{H})$.
4.2.1.14. $\quad N$-(2,3-Dimethyl-2H-indazol-5-yl)-2-nitrobenzenesulfonamide (15). Starting with compound 10 following the general procedure 4.1, compound $\mathbf{1 5}$ was obtained as pale solid, yield 71%.
4.2.1.15. tert-Butyl 5-((N-(cyclopentylmethyl)-2-nitrophenyl)sulfonamido)-3-methyl-1H-indazole-1-carboxylate (16). Starting with compound 14 following the general procedure 8, compound 16 was obtained as red solid, yield 53%. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, J=8.80 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.41-$ $7.36(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{dd}, J=1.60,8.85 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=7.70 \mathrm{~Hz}, 2 \mathrm{H})$, $2.52(\mathrm{~s}, 3 \mathrm{H}), 1.87-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 9 \mathrm{H}), 1.65-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.51-1.47(\mathrm{~m}, 2 \mathrm{H})$, 1.33-1.23 (m, 4H).

PART II1- SAR MODIFICATION OF HETEROCYCLICS IN C REGION WITH UREA TYPE
4.2.1.16. N-(cyclopentylmethyl)-N-(2,3-dimethyl-2H-indazol-5-yl)-2nitrobenzenesulfonamide (17). Starting with compound 15 following the general procedure 08, compound 17 was obtained as pale red solid, yield 64%.
4.2.1.17. tert-Butyl 5-(cyclohexylamino)-3-methyl-1H-indazole-1-carboxylate (18). Starting with compound 09 following the general procedure 03 , compound 18 was obtained as pale red solid, yield 65%. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~d}, J=$ $8.40 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dd}, J=2.40,8.97 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=2.19 \mathrm{~Hz}, 1 \mathrm{H}), 3.34-3.27$ $(\mathrm{m}, 1 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 2.10-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.76(\mathrm{~m}, 2 \mathrm{H} 0,1.67(\mathrm{~s}, 9 \mathrm{H}), 1.65-1.60$ $(\mathrm{m}, 2 \mathrm{H}), 1.48-1.30(\mathrm{~m}, 3 \mathrm{H}), 1.26-1.16(\mathrm{~m}, 3 \mathrm{H})$.
4.2.1.18. tert-Butyl 5-((cyclopentylmethyl)amino)-3-methyl-1H-indazole-1carboxylate (19). Starting with compound 16 following the general procedure 4.2, compound 19 was obtained as opaque solid, yield 77%. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.87(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=2.40,8.97 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=2.19 \mathrm{~Hz}$, $1 \mathrm{H}), 3.73$ (br, NH), 3.08 (d, $J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 2.24-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.90-$ $1.80(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 9 \mathrm{H}), 1.67-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.33-1.23(\mathrm{~m}, 2 \mathrm{H})$
4.2.1.19. tert-Butyl 5-(4-fluorobenzylamino)-3-methyl-1H-indazole-1carboxylate (20). Starting with compound 09 following the general procedure 03, compound 20 was obtained as red crude solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89(\mathrm{~d}$, $J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.87(\mathrm{dd}, J=8.76,2.19$ $\mathrm{Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=2.04 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~s}, 2 \mathrm{H}), 4.08(\mathrm{~s}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}$, $9 \mathrm{H})$.
4.2.1.20. N-Cyclohexyl-1,3-dimethyl-1H-indazol-5-amine (21). Starting with compound $\mathbf{1 0}$ following the general procedure 03, compound 21 was obtained as red solid, yield 66%. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.15(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}$, $J=2.19,8.97 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=1.83 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.31-3.25(\mathrm{~m}, 1 \mathrm{H})$, $2.49(\mathrm{~s}, 3 \mathrm{H}), 2.11-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.56(\mathrm{~m}, 3 \mathrm{H}), 1.46-1.34(\mathrm{~m}$, $2 \mathrm{H}), 1.29-1.15(\mathrm{~m}, 3 \mathrm{H})$.
4.2.1.21. N-(Cyclopentylmethyl)-2,3-dimethyl-2H-indazol-5-amine

Starting with compound 17 following the general procedure 4.2, compound 22 was obtained as opaque solid, yield 75%.

PART III- SAR MODIFICATION OF HETEROCYCLICS IN C REGION WITH UREA TYPE
4.2.1.22. N-(4-Fluorobenzyl)-1,3-dimethyl-1H-indazol-5-amine (23). Starting with compound $\mathbf{1 0}$ following the general procedure 03, compound $\mathbf{2 3}$ was obtained as pink solid, yield $67 \% .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{dd}, J=8.43,5.49 \mathrm{~Hz}$, $2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{dd}, J=8.97,2.19 \mathrm{~Hz}, 1 \mathrm{H})$, $6.68(\mathrm{~d}, J=2.01 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~s}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H})$.
4.2.1.23. 1,3-Dimethyl-N-(pyridin-3-ylmethyl)-1H-indazol-5-amine (24).

Starting with compound $\mathbf{1 0}$ following the general procedure 03, compound $\mathbf{2 4}$ was obtained as pink solid, yield 58%. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.62(\mathrm{~s}, 1 \mathrm{H}), 8.48$ $(\mathrm{s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.89 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 1 \mathrm{H}), 6.78$ $(\mathrm{d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$.
4.2.1.24. N-Cyclobutyl-1,3-dimethyl-1H-indazol-5-amine (25). Starting with compound 10 following the general procedure 03, compound 25 was obtained as opaque solid, yield 57%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.13(\mathrm{~d}, J=8.85 \mathrm{~Hz}, 1 \mathrm{H})$, $6.76(\mathrm{~d}, J=8.80 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=1.55 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H})$, 2.47 ($\mathrm{s}, 3 \mathrm{H}$), 2.45-2.39 (m, 2H), 1.85-1.76 (m, 4H).
4.2.1.25. N-Cyclopentyl-1,3-dimethyl-1H-indazol-5-amine (26). Starting with compound $\mathbf{1 0}$ following the general procedure $\mathbf{0 3}$, compound $\mathbf{2 6}$ was obtained as pale red solid, yield 77%. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.12(\mathrm{~d}, J=8.80 \mathrm{~Hz}, 1 \mathrm{H}), 6.78$ (dd, $J=1.55,8.85 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.84-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{~s}$, $3 \mathrm{H})$, 2.07-2.01 (m, 2H), 1.73-1.58 (m, 4H), 1.52-1.47 (m, 2H).
4.2.1.26. N-Cyclohexyl-2,3-dimethyl-2H-indazol-5-amine (27). Starting with compound $\mathbf{1 3}$ following the general procedure $\mathbf{0 3}$, compound 27 was obtained as red solid, yield 35%. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{~d}, J=9.10 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J$ $=8.75 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 3.28-3.22(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 2.10-2.07$ $(\mathrm{m}, 2 \mathrm{H}), 1.77-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.24(\mathrm{~m}, 2 \mathrm{H}), 1.21-1.14(\mathrm{~m}, 3 \mathrm{H})$.
4.2.1.27. N-(4-Fluorobenzyl)-2,3-dimethyl-2H-indazol-5-amine (28). Starting with compound $\mathbf{1 3}$ following the general procedure 03, compound $\mathbf{2 8}$ was obtained as red solid, yield $50 \% .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.39(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 7.31$ (dd, $J=8.61,5.67 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{dd}, J=9.15,2.19 \mathrm{~Hz}, 1 \mathrm{H}), 6.35$ (d, $J=2.01 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~s}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$.

PART III- SAR MODIFICATION OF HETEROCYCLICS IN C REGION WITH UREA TYPE
4.2.1.28. 2,3-Dimethyl-N-(pyridin-3-ylmethyl)-2H-indazol-5-amine (29). Starting with compound $\mathbf{1 3}$ following the general procedure 03, compound $\mathbf{2 9}$ was obtained as dark solid, yield 29%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.52(\mathrm{~s}, 1 \mathrm{H}), 8.47$ $(\mathrm{s}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.26 \mathrm{~Hz}, 1 \mathrm{H}), 6.74$ $(\mathrm{d}, J=9.18,2.40 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~d}, J=2.01 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.35$ (s, 3H).
4.2.1.29. 5-Nitro-1-propyl-1H-indazole (31). Starting with compound 30 following the general procedure 11, compound $\mathbf{3 1}$ was obtained as yellow solid, yield $77 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.71(\mathrm{~d}, J=1.96 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{dd}, J=2.08$, $9.20 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=9.24 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{t}, J=7.00 \mathrm{~Hz}, 2 \mathrm{H})$, 2.01-. 91 (p, m, 2H), $0.93(\mathrm{t}, J=7.48 \mathrm{~Hz}, 3 \mathrm{H})$.
4.2.1.30. 1-Isobutyl-5-nitro-1H-indazole (32). Starting with compound 30 following the general procedure 11, compound 32 was obtained as yellow solid, yield $51 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.71(\mathrm{~d}, J=2.01 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{dd}, J=8.52$, $2.01 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=0.72 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=9.15 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=7.32$ $\mathrm{Hz}, 2 \mathrm{H}), 2.34$ (hept, $J=6.78 \mathrm{~Hz}, 1 \mathrm{H}), 0.92(\mathrm{~d}, J=6.60 \mathrm{~Hz}, 6 \mathrm{H})$.
4.2.1.31. \quad-Propyl-1H-indazol-5-amine (33). Starting with compound 31 following the general procedure 5.2, compound 33 was obtained as red solid, yield $88 \% .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{~d}, J=0.75 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.79 \mathrm{~Hz}$, $1 \mathrm{H}), 6.91(\mathrm{dd}, J=0.75,2.01 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dd}, J=2.19,8.79 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{t}, J=$ $6.93 \mathrm{~Hz}, 2 \mathrm{H}), 1.96-84(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=7.32 \mathrm{~Hz}, 3 \mathrm{H})$.
4.2.1.32. \quad-Isobutyl-1H-indazol-5-amine (34). Starting with compound 32 following the general procedure 5.2, compound 34 was obtained as red solid, yield 92%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76(\mathrm{~d}, J=0.72 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.79 \mathrm{~Hz}$, $1 \mathrm{H}), 6.91(\mathrm{~d}, J=1.47 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=8.79,2.19 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=7.35 \mathrm{~Hz}$, $2 \mathrm{H}), 3.57(\mathrm{br}, 2 \mathrm{H}), 2.29$ (hept, $J=6.96 \mathrm{~Hz}, 1 \mathrm{H}), 0.88(\mathrm{~d}, J=6.78 \mathrm{~Hz}, 6 \mathrm{H})$.
4.2.1.33. N-Cyclohexyl-1-propyl-1H-indazol-5-amine (35). Starting with compound 33 following the general procedure $\mathbf{3}$, compound $\mathbf{3 5}$ was obtained as red solid, yield 59%. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{~d}, J=0.72 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J$ $=9.51 \mathrm{~Hz}, 1 \mathrm{H}), 6.78-6.75(\mathrm{~m}, 2 \mathrm{H}), 4.26(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{br}, \mathrm{NH}), 3.27-$
$3.20(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{p}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 1.78-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.67-$ $1.62(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.09(\mathrm{~m}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.32 \mathrm{~Hz}, 3 \mathrm{H})$.
4.2.1.34. N-(4-Fluorobenzyl)-1-propyl-1H-indazol-5-amine (36). Starting with compound 33 following the general procedure 3, compound $\mathbf{3 6}$ was obtained as red solid, yield: 84%. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{~d}, J=0.93 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-$ 7.35 (m, 2H), $7.23(\mathrm{~s}, 1 \mathrm{H}), 7.07-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{dd}, J=8.79,2.19 \mathrm{~Hz}, 1 \mathrm{H}), 6.76$ $(\mathrm{d}, J=1.65 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~s}, 2 \mathrm{H}), 4.27(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 1.92(\mathrm{hex}, J=6.96 \mathrm{~Hz}$, $2 \mathrm{H}), 0.91(\mathrm{t}, J=7.32 \mathrm{~Hz}, 3 \mathrm{H})$.
4.2.1.35. N-Cyclohexyl-1-isobutyl-1H-indazol-5-amine (37). Starting with compound 34 following the general procedure 3, compound 37 was obtained as red solid, yield 87%. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~d}, J=0.72 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J$ $=8.61 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H})$, $3.21-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.23$ (hept, $J=6.78 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{~d}, J=12.45 \mathrm{~Hz}, 2 \mathrm{H}), 1.71-$ $1.56(\mathrm{~m}, 3 \mathrm{H}), 1.36-1.06(\mathrm{~m}, 5 \mathrm{H}), 0.83(\mathrm{~d}, J=6.60 \mathrm{~Hz}, 6 \mathrm{H})$.
4.2.1.36. N-(4-Fluorobenzyl)-1-isobutyl-1H-indazol-5-amine (38). Starting with compound 34 following the general procedure $\mathbf{3}$, compound 38 was obtained as red solid, yield 75%. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{~d}, J=0.93 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-$ $7.33(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{dd}, J=8.79,2.22$ $\mathrm{Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=1.65 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H}), 4.08(\mathrm{~d}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{br}$, $1 \mathrm{H}), 2.29$ (hept, $J=6.78 \mathrm{~Hz}, 1 \mathrm{H}), 0.69(\mathrm{~d}, J=6.78 \mathrm{~Hz}, 6 \mathrm{H})$.
4.2.1.37. tert-Butyl 3-methyl-6-nitro-1H-indazole-1-carboxylate (40). Starting with compound 39 following the general procedure 9.1 , compound 40 was obtained as yellow solid, yield 94%. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.03(\mathrm{~d}, J=1.62 \mathrm{~Hz}, 1 \mathrm{H})$, $8.18(\mathrm{dd}, J=8.61,2.01 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{dd}, J=8.79,0.72 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 1.76$ (s, 9H).
4.2.1.38. 1,3-Dimethyl-6-nitro-1H-indazole (41). Starting with compound 39 following the general procedure 11, compound 41 was obtained as yellow solid, yield 78\%.
4.2.1.39. 3-Methyl-1-(2-(4-methylpiperazin-1-yl)ethyl)-6-nitro-1H-indazole (42). Starting with compound 39 following the general procedure 11, compound 42

PART III- SAR MODIFICATION OF HETEROCYCLICS IN C REGION WITH

 UREA TYPEwas obtained as yellow solid, yield 54%. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.42(\mathrm{~d}, \mathrm{~J}=$ $1.47 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{dd}, J=8.79,1.83 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{t}, J=$ $6.57 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{t}, J=6.42 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{br}, 4 \mathrm{H}), 2.41(\mathrm{br}, 4 \mathrm{H})$, 2.67 ($\mathrm{s}, 3 \mathrm{H}$).
4.2.1.40. tert-Butyl (4-(4-(3-methyl-6-nitro-1H-indazol-1-yl)butyl)pyridin-2$y l)$ carbamate (43). Starting with compound 39 following the general procedure 11, compound $\mathbf{4 2}$ was obtained as yellow solid, yield 76%.
4.2.1.41. tert-Butyl (4-(4-(3-methyl-6-nitro-1H-indazol-1-yl)butyl)pyridin-2$y l)$ carbamate (43). Starting with compound 39 following the general procedure 11, compound $\mathbf{4 3}$ was obtained as yellow solid, yield $57 \% .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.32(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=1.50 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=5.10 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{dd}, J=8.80$, $1.80 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.80 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=5.10 \mathrm{~Hz}, 1 \mathrm{H}), 4.37$ (t, $J=7.05 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{t}, J=7.90 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 1.95$ (quintet, $J=7.50$ $\mathrm{Hz}, 2 \mathrm{H}$), 1.65 (quintet, $J=7.50 \mathrm{hz}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H})$.
4.2.1.42. 2,3-Dimethyl-6-nitro-2H-indazole (44). Starting with compound 39 following the general procedure 11, compound 43 was obtained as yellow solid, yield 59\%.
4.2.1.43. tert-Butyl 6-amino-3-methyl-1H-indazole-1-carboxylate (45). Starting with compound 40 following the general procedure 5.2, compound 45 was obtained as red solid, yield 98%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38(\mathrm{~d}, J=8.43 \mathrm{~Hz}$, $1 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 6.65(\mathrm{dd}, J=8.43,2.01 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 2 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}$, 9 H).
4.2.1.44. 1,3-Dimethyl-1H-indazol-6-amine (46). Starting with compound 41 following the general procedure 5.2, compound 46 was obtained as red solid, yield 93\%.
4.2.1.45. 3-Methyl-1-(2-(4-methylpiperazin-1-yl)ethyl)-1H-indazol-6-amine (47). Starting with compound 42 following the general procedure 5.2 , compound 47 was obtained as red solid, yield 83%. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{~d}, J=9.15$ $\mathrm{Hz}, 1 \mathrm{H}), 6.54-6.51(\mathrm{~m}, 2 \mathrm{H}), 4.03(\mathrm{t}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{br}, 2 \mathrm{H}), 2.81(\mathrm{t}, J=7.68$ Hz, 2H), 2.58 (br, 4h), 2.47 (br, 7H), 2.82 (s, 3H).

PART III- SAR MODIFICATION OF HETEROCYCLICS IN C REGION WITH UREA TYPE
4.2.1.46. tert-Butyl (4-(4-(6-amino-3-methyl-1H-indazol-1-yl)butyl)pyridin-$2-y l)$ carbamate (48). Starting with compound 43 following the general procedure 5.2, compound 48 was obtained as red solid, yield 78%. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.32(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=4.95 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 6.72$ $(\mathrm{d}, J=5.13 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{dd}, J=8.61,1.83 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=1.80 \mathrm{~Hz}, 1 \mathrm{H}), 4.17$ $(\mathrm{t}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{br}, 2 \mathrm{H}), 2.64(\mathrm{t}, J=7.50 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 1.89$ (quintet, $J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 1.70-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H})$.
4.2.1.47. 2,3-Dimethyl-2H-indazol-6-amine (49). Starting with compound 44 following the general procedure 5.2, compound 49 was obtained as red solid, yield $89 \% .^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{dd}, J=8.79,0.75 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dd}, J=$ $1.83,0.57 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{dd}, J=8.79,2.01 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{br}, 2 \mathrm{H}), 2.52$ (s, 3H).
4.2.1.48. tert-Butyl 3-methyl-6-((2-nitrophenyl)sulfonamido)-1H-indazole-1carboxylate (50). Starting with compound 45 following the general procedure 4.1, compound $\mathbf{5 0}$ was obtained as pale semi solid, yield 62%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{~d}, J=1.47 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.20$ (dd, $J=1.83,8.61 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~m}, 9 \mathrm{H})$.

4.2.1.49. N-(1,3-Dimethyl-1H-indazol-6-yl)-2-nitrobenzenesulfonamide (51).

 Starting with compound $\mathbf{4 6}$ following the general procedure 4.1 , compound 51 was obtained as pale red solid, yield 74%. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88-7.79(\mathrm{~m}$, $2 \mathrm{H}), 7.70-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=1.11 \mathrm{~Hz}$, $1 \mathrm{H}), 6.84(\mathrm{~d}, J=1.83 \mathrm{~Hz}, 1 \mathrm{H}), 8.43 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H})$4.2.1.50. tert-Butyl 6-((N-(cyclopentylmethyl)-2-nitrophenyl)sulfonamido)-3-methyl-1H-indazole-1-carboxylate (52). Starting with compound 50 following the general procedure 08, compound 52 was obtained as yellow solid, yield $63 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.62-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.48-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.22$ $(\mathrm{dd}, J=1.83,8.43 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=7.68 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 1.94-1.89(\mathrm{~m}$, $1 \mathrm{H}), 1.75-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~s}, 9 \mathrm{H}), 1.59-1.49(\mathrm{~m}, 4 \mathrm{H}), 1.36-1.30(\mathrm{~m}, 2 \mathrm{H})$.
4.2.1.51. N-(Cyclopentylmethyl)-N-(1,3-dimethyl-1H-indazol-6-yl)-2nitrobenzenesulfonamide (53). Starting with compound 51 following the general procedure 08, compound $\mathbf{5 3}$ was obtained as yellow solid, yield 56%. ${ }^{1}$ H NMR (300

PART III- SAR MODIFICATION OF HETEROCYCLICS IN C REGION WITH UREA TYPE
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.32(\mathrm{~m}, 2 \mathrm{H}), 6.85$ (dd, $J=1.65,8.58 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{br}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~d}, J=7.68 \mathrm{~Hz}, 2 \mathrm{H})$, $2.53(\mathrm{~s}, 3 \mathrm{H}), 1.93-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.55(\mathrm{~s}, 9 \mathrm{H}), 1.52-1.42(\mathrm{~m}, 2 \mathrm{H})$, $1.40-1.30(\mathrm{~m}, 2 \mathrm{H})$.
4.2.1.52. tert-Butyl 6-(cyclohexylamino)-3-methyl-1H-indazole-1-carboxylate (54). Starting with compound 45 following the general procedure 3, compound 54 was obtained as red solid, yield 59%. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{~d}, J=8.43$ $\mathrm{Hz}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 6.55(\mathrm{dd}, J=2.01,8.58 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{br}, \mathrm{NH}), 3.37-3.30(\mathrm{~m}$, $1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.12-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 9 \mathrm{H}), 1.68-1.61(\mathrm{~m}$, $1 \mathrm{H}), 1.42-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.25-1.18(\mathrm{~m}, 3 \mathrm{H})$.
4.2.1.53. tert-Butyl 6-((cyclopentylmethyl)amino)-3-methyl-1H-indazole-1carboxylate (55). Starting with compound 52 following the general procedure 4.2, compound 55 was obtained as pale yellow solid, yield 68%. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{dd}, J=2.01,8.61 \mathrm{~Hz}, 1 \mathrm{H})$, $4.05(\mathrm{~s}, \mathrm{NH}), 3.12(\mathrm{~d}, J=5.13 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.25-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.83$ (m, 2H), $1.70(\mathrm{~s}, 9 \mathrm{H}), 1.68-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.32-1.23(\mathrm{~m}, 2 \mathrm{H})$.
4.2.1.54. tert-Butyl 6-(4-fluorobenzylamino)-3-methyl-1H-indazole-1carboxylate (56). Starting with compound 45 following the general procedure 3, compound 56 was obtained as red solid, yield 75%. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.38 (d, $J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.32$ (m, 2H), 7.28 (s, 1H), 7.08-7.01 (m, 2H), 6.01 (dd, $J=8.91,2.31 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~s}, 2 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 9 \mathrm{H})$.
4.2.1.55. tert-Butyl 3-methyl-6-(pyridin-3-ylmethylamino)-1H-indazole-1carboxylate (57). Starting with compound 45 following the general procedure 3, compound 57 was obtained as red solid, yield 61%. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.66(\mathrm{~d}, J=2.01 \mathrm{~Hz}, 1 \mathrm{H}), 8.56(\mathrm{dd}, J=4.74,1.65 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{td}, J=8.07 \mathrm{~Hz}, 1 \mathrm{H})$, 7.39 (d, $J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 1 \mathrm{H}), 6.63(\mathrm{dd}, J=8.43,2.01 \mathrm{~Hz}, 1 \mathrm{H}), 4.46$ $(\mathrm{s}, 2 \mathrm{H}), 4.41(\mathrm{br}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 9 \mathrm{H})$.
4.2.1.56. tert-Butyl 3-methyl-6-((1-methylpiperidin-4-yl)amino)-1H-indazole1 -carboxylate (58). Starting with compound 45 following the general procedure 3, compound 58 was obtained as red solid, yield 61%.

PART III- SAR MODIFICATION OF HETEROCYCLICS IN C REGION WITH UREA TYPE
4.2.1.57. N-Cyclohexyl-1,3-dimethyl-1H-indazol-6-amine (59). Starting with compound 46 following the general procedure $\mathbf{3}$, compound $\mathbf{5 9}$ was obtained as red solid, yield $53 \% .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{~d}, J=8.60 \mathrm{~Hz}, 1 \mathrm{H}), 6.41$ (dd, $J=1.84,8.60 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=1.60 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.35-3.28(\mathrm{~m}, 1 \mathrm{H})$, $2.43(\mathrm{~s}, 3 \mathrm{H}), 2.11-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.34(\mathrm{~m}$, $2 \mathrm{H}), 1.28-1.13(\mathrm{~m}, 3 \mathrm{H})$.
4.2.1.58. $\quad N$-(Cyclopentylmethyl)-1,3-dimethyl-1H-indazol-6-amine (60).

Starting with compound 53 following the general procedure 4.2, compound $\mathbf{6 0}$ was obtained as pale yellow solid, yield 86%. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~d}, J=$ $8.61 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{dd}, J=1.83,8.61 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=1.65 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}$, $3 \mathrm{H}), 3.10(\mathrm{~d}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.26-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.81(\mathrm{~m}, 2 \mathrm{H})$, 1.69-1.58 (m, 4H), 1.34-1.23 (m, 2H).
4.2.1.59. N-(4-Fluorobenzyl)-1,3-dimethyl-1H-indazol-6-amine (61). Starting with compound 46 following the general procedure 3 , compound 61 was obtained as red solid, yield 92%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.08-7.01(\mathrm{~m}$, $2 \mathrm{H}), 6.49(\mathrm{dd}, J=8.61,1.83 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~d}, J=1.65 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 4.23(\mathrm{~s}$, $1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H})$.
4.2.1.60. 1,3-Dimethyl-N-(pyridin-3-ylmethyl)-1H-indazol-6-amine (62).

Starting with compound 46 following the general procedure 3, compound 62 was obtained as red solid, yield $88 \% .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.68(\mathrm{~d}, J=1.83 \mathrm{~Hz}$, $1 \mathrm{H}), 8.55(\mathrm{dd}, J=4.95,1.65 \mathrm{~Hz}, 1 \mathrm{H}), 7.73$ (dt-like, $J=7.68 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=$ $8.61 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=8.43,4.77 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{dd}, J=8.41,2.04 \mathrm{~Hz}, 1 \mathrm{H}), 6.27$ $(\mathrm{d}, J=1.83 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=4.59 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}$, $3 \mathrm{H})$.
4.2.1.61. 1,3-Dimethyl-N-(1-methylpiperidin-4-yl)-1H-indazol-6-amine (63). Starting with compound 46 following the general procedure 3 , compound 63 was obtained as red solid, yield 71%.
4.2.1.62. N-Cyclobutyl-1,3-dimethyl-1H-indazol-6-amine (64). Starting with compound 46 following the general procedure 3, compound $\mathbf{6 4}$ was obtained as red solid, yield $76 \%{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{dd}$,

PART III- SAR MODIFICATION OF HETEROCYCLICS IN C REGION WITH UREA TYPE
$J=8.61,1.65 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=1.65 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$, 2.52-2.46 (m, 2H), 2.46 (s, 3H), 1.90-1.82 (m, 2H).
4.2.1.63. N-Cyclopentyl-1,3-dimethyl-1H-indazol-6-amine (65). Starting with compound 46 following the general procedure 3, compound 65 was obtained as red solid, yield $81 \% .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{dd}$, $J=8.58,1.83 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=1.65 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$, $2.46(\mathrm{~s}, 3 \mathrm{H}), 2.11-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.43(\mathrm{~m}, 6 \mathrm{H})$.
4.2.1.64. N-(4-Fluorobenzyl)-2,3-dimethyl-2H-indazol-6-amine (66). Starting with compound 49 following the general procedure 3 , compound 66 was obtained as red solid, yield: 94%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-34(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{dd}, J=$ $8.79,0.54 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.69(\mathrm{~m}, 2 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{dd}, J=8.61,1.83 \mathrm{~Hz}, 1 \mathrm{H})$, $4.33(\mathrm{~s}, 2 \mathrm{H}), 4.07(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H})$.
4.2.1.65. 2,3-Dimethyl-N-(pyridin-3-ylmethyl)-2H-indazol-6-amine (67).

Starting with compound 49 following the general procedure 3, compound 67 was obtained as white solid, yield $87 \% .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.66(\mathrm{~s}, 1 \mathrm{H}), 8.51$ (d, $J=4.77 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=7.68 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.23$ $(\mathrm{m}, 1 \mathrm{H}), 6.53-6.50(\mathrm{~m}, 2 \mathrm{H}), 4.40(\mathrm{~s}, 2 \mathrm{H}), 4.12(\mathrm{br}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H})$.
4.2.1.66. tert-Butyl 6-nitro-lH-indazole-1-carboxylate (69). Starting with compound 68 following the general procedure 9.1, compound 69 was obtained as white solid, yield 78%.
4.2.1.67. 1-Methyl-6-nitro-1H-indazole (70). Starting with compound 68 following the general procedure 11, compound 70 was obtained as white solid, yield 61%.
4.2.1.68. 6-Nitro-1-propyl-1H-indazole (71). Starting with compound 68 following the general procedure 11, compound $\mathbf{7 1}$ was obtained as yellow solid, yield 81%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.37(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=0.72 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{dd}$, $J=1.88,8.96 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=9.04 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{t}, J=7.08 \mathrm{~Hz}, 2 \mathrm{H}), 2.03-1.94$ (m, 2H), $0.95(\mathrm{t}, J=7.44 \mathrm{~Hz}, 3 \mathrm{H})$.

PART III- SAR MODIFICATION OF HETEROCYCLICS IN C REGION WITH UREA TYPE
4.2.1.69. tert-Butyl 6-amino-1H-indazole-1-carboxylate (72). Starting with compound 69 following the general procedure 5.2, compound 72 was obtained as red solid, yield 88%.
4.2.1.70. 1-Methyl-1H-indazol-6-amine (73). Starting with compound 70 following the general procedure 5.2, compound 73 was obtained as red solid, yield 85%.
4.2.1.71. l-Propyl-1H-indazol-6-amine (74). Starting with compound 71 following the general procedure 5.2, compound $\mathbf{7 4}$ was obtained as red solid, yield $83 \% .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{~d}, J=0.75 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=9.18 \mathrm{~Hz}$, $1 \mathrm{H}), 6.50-6.4(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{t}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 1.90-1.78(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{t}, J=7.32$ Hz, 3H).
4.2.1.72. tert-Butyl 6-(4-fluorobenzylamino)-1H-indazole-1-carboxylate (75). Starting with compound $\mathbf{7 2}$ following the general procedure $\mathbf{3}$, compound $\mathbf{7 5}$ was obtained as red solid, yield $84 \% .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~d}, J=0.54 \mathrm{~Hz}$, $1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.07-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.63(\mathrm{dd}, J=$ $8.58,2.01 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 1.67(\mathrm{~s}, 9 \mathrm{H})$.
4.2.1.73. N-(4-Fluorobenzyl)-1-methyl-1H-indazol-6-amine (76). Starting with compound 73 following the general procedure $\mathbf{3}$, compound 76 was obtained as red solid, yield 57%.
4.2.1.74. N-(4-Fluorobenzyl)-1-propyl-1H-indazol-6-amine (77). Starting with compound $\mathbf{7 4}$ following the general procedure $\mathbf{3}$, compound 77 was obtained as red solid, yield $51 \% .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{~d}, J=0.72 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$ $(\mathrm{d}, J=8.61 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=5.49,8.79 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{t}, J=8.61 \mathrm{~Hz}, 2 \mathrm{H}), 6.52$ $(\mathrm{dd}, J=2.04,8.61 \mathrm{~Hz}, 1 \mathrm{H}), 6.3(\mathrm{~s}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 2 \mathrm{H}), 4.17(\mathrm{t}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 1.88-$ $1.79(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=7.32 \mathrm{~Hz}, 3 \mathrm{H})$.
4.2.1.75. N-Allyl-2-chloro-4-nitroaniline (79). Starting with compound 78 following the general procedure $\mathbf{3}$, compound 79 was obtained as yellow solid, yield $55 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.20(\mathrm{~d}, J=2.58 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{dd}, J=2.55$, $9.15 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 5.96-5.84(\mathrm{~m}, 1 \mathrm{H}), 5.30-5.23(\mathrm{~m}, 2 \mathrm{H}), 3.96-$ 3.91 ($\mathrm{m}, 2 \mathrm{H}$).

PART III- SAR MODIFICATION OF HETEROCYCLICS IN C REGION WITH UREA TYPE
4.2.1.76. tert-Butyl allyl(2-chloro-4-nitrophenyl)carbamate (80). Starting with compound 79 following the general procedure 9.1, compound 80 was obtained as white solid, yield $69 \% .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{~d}, J=2.35 \mathrm{~Hz}, 1 \mathrm{H})$, $8.10(\mathrm{dd}, J=2.40,8.65 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 5.89-5.81(\mathrm{~m}, 1 \mathrm{H}), 5.10-5.04(\mathrm{~m}, 2 \mathrm{H})$, $4.36(\mathrm{br}, 1 \mathrm{H}), 4.02(\mathrm{br}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H})$.
4.2.1.77. tert-Butyl 3-methyl-5-nitro-1H-indole-1-carboxylate (81). Starting with compound $\mathbf{8 0}$ following the general procedure 6 , compound 81 was obtained as yellow solid, yield 24%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.51(\mathrm{~s}, \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{dd}, J$ $=2.04,8.40 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 2.31(\mathrm{~d}, J=0.90 \mathrm{~Hz}$, 3 H), 1.97 ($\mathrm{s}, 9 \mathrm{H}$).
4.2.1.78. 1-Methyl-5-nitro-1H-benzo[d]imidazole (83). Starting with compound 82 following the general procedure $\mathbf{3}$, compound $\mathbf{8 3}$ was obtained as yellow solid, yield 35%.
4.2.1.79. 1,3-Dimethyl-5-nitro-1H-indole (84). Starting with compound 81 following the general procedure 9.2 and 11, compound $\mathbf{8 4}$ was obtained as yellow solid, yield 76%. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.52(\mathrm{~d}, J=2.19 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{dd}$, $J=2.22 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.40 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~d}, J=$ $1.08 \mathrm{~Hz}, 3 \mathrm{H})$.
4.2.1.80. 5-Nitro-1-propyl-1H-indole (85). Starting with compound 82 following the general procedure 11, compound 85 was obtained as white solid, yield $73 \% .^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.59(\mathrm{~d}, J=2.19 \mathrm{~Hz}, 1 \mathrm{H}$), 8.13 (dd, $J=2.19$, $8.97 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=3.30 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{dd}, J=0.90$, $3.30 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 1.95-1.83(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.32 \mathrm{~Hz}, 3 \mathrm{H})$
4.2.1.81. 1-Methyl-1H-indol-5-amine (86). Starting with compound 83 following the general procedure 5.2, compound $\mathbf{8 6}$ was obtained as red solid, yield 93%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.12(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{dd}, J=3.12 \mathrm{~Hz}$, $1 \mathrm{H}), 6.69(\mathrm{dd}, J=2.19,8.61 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{dd}, J=0.72,2.91 \mathrm{~Hz}, 1 \mathrm{H})$
4.2.1.82. 1,3-Dimethyl-1H-indol-5-amine (87). Starting with compound $\mathbf{8 4}$ following the general procedure 5.2 , compound $\mathbf{8 7}$ was obtained as red solid, yield

PART III- SAR MODIFICATION OF HETEROCYCLICS IN C REGION WITH

 UREA TYPE$91 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.07(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=2.19 \mathrm{~Hz}$, $1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{dd}, J=2.01,8.43 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H})$.
4.2.1.83. 1-Propyl-1H-indol-5-amine (88). Starting with compound $\mathbf{8 5}$ following the general procedure 5.2, compound $\mathbf{8 8}$ was obtained as red semi solid, yield 95%. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.15(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=3.12$ $\mathrm{Hz}, 1 \mathrm{H}), 6.93(\mathrm{dd}, J=3.60,1.83 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{dd}, J=2.19,8.61 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{dd}$, $J=0.72,3.12 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 1.89-1.77(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=7.32$ $\mathrm{Hz}, 3 \mathrm{H})$.
4.2.1.84. N-(1-Methyl-1H-indol-5-yl)-2-nitrobenzenesulfonamide

Starting with compound 86 following the general procedure 4.1, compound 89 was obtained as red solid, yield 81%. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{dd}, J=1.08$, $8.04 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{dd}, J=1.29,7.71 \mathrm{~Hz}, 1 \mathrm{H}), 7.60\left(\mathrm{td}, J_{\mathrm{d}}=1.47, J_{\mathrm{t}}=7.86 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $7.42\left(\mathrm{td}, J_{\mathrm{d}}=1.29, J_{\mathrm{t}}=7.68 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.34(\mathrm{~d}, J=2.19 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{br}, \mathrm{NH}), 7.12$ (d, $J=8.61 \mathrm{~Hz}, 1 \mathrm{H}), 9.99-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.33(\mathrm{~d}, J=3.12 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$.
4.2.1.85. N-(1,3-Dimethyl-1H-indol-5-yl)-2-nitrobenzenesulfonamide (90). Starting with compound 87 following the general procedure 4.1 , compound 90 was obtained as pale solid, yield 78%. ${ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{dd}, J=1.29,8.07$ $\mathrm{Hz}, 1 \mathrm{H}), 7.70\left(\mathrm{td}, J_{d}=1.47 \mathrm{~Hz}, J_{\mathrm{t}}=7.89 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.63(\mathrm{dd}, J=1.47,7.71 \mathrm{~Hz}, 1 \mathrm{H})$, $7.48\left(\mathrm{td}, J_{d}=1.26 \mathrm{~Hz}, J_{\mathrm{t}}=7.68 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.32(\mathrm{~d}, J=2.01 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 7.10$ $(\mathrm{d}, J=8.58 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=2.19,8.61 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.20$ (s, 3H).

4.2.1.86. 2-Nitro-N-(1-propyl-1H-indol-5-yl)benzenesulfonamide

Starting with compound 88 following the general procedure 4.1, compound 91 was obtained as yellow solid, yield 75%. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{dd}, J=1.29$, $7.86 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{dd}, J=1.44,7.86 \mathrm{~Hz}, 1 \mathrm{H}), 7.67\left(\mathrm{td}, J_{d}=1.47 \mathrm{~Hz}, J_{t}=7.71 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 7.51\left(\mathrm{td}, J_{d}=1.29 \mathrm{~Hz}, J_{\mathrm{t}}=7.71 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.40(\mathrm{~d}, J=2.01 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=$ $8.79 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=3.12 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{dd}, J=2.01,8.61 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{dd}, J$ $=0.72,3.09 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 1.89-1.77(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=7.32$ $\mathrm{Hz}, 3 \mathrm{H})$.
4.2.1.87. N-(Cyclopentylmethyl)-N-(1-methyl-1H-indol-5-yl)-2nitrobenzenesulfonamide (92). Starting with compound 89 following the general

PART III- SAR MODIFICATION OF HETEROCYCLICS IN C REGION WITH UREA TYPE
procedure 08, compound $\mathbf{9 2}$ was obtained as yellow solid, yield 63%. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=2.04 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.20$ $(\mathrm{d}, J=8.79 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=3.12 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=2.01,8.79 \mathrm{~Hz}, 1 \mathrm{H}), 6.4$ $(\mathrm{d}, J=2.94 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~d}, J=7.68 \mathrm{~Hz}, 2 \mathrm{H}), 1.94-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.68-$ $1.57(\mathrm{~m}, 4 \mathrm{H}), .47-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.26(\mathrm{~m}, 2 \mathrm{H})$.
4.2.1.88. N-(Cyclopentylmethyl)-N-(1,3-dimethyl-1H-indol-5-yl)-2-
nitrobenzenesulfonamide (93). Starting with compound 90 following the general procedure 08, compound 93 was obtained asred solid, yield 67%. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.57-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{~d}, J=8.58 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dd}$, $J=2.01,8.79 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=7.68 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~d}$, $J=0.90 \mathrm{~Hz}, 3 \mathrm{H}), 1.92-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.48-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.25$ (m, 2H)

4.2.1.89. N-(Cyclopentylmethyl)-2-nitro-N-(1-propyl-1H-indol-5-

yl)benzenesulfonamide (94). Starting with compound 91 following the general procedure 08, compound 94 was obtained as white solid, yield 49%. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 1 \mathrm{H}), 7.06$ $(\mathrm{d}, J=3.12 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{dd}, J=2.01,8.61 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=3.09 \mathrm{~Hz}, 1 \mathrm{H}), 4.00$ (t, $J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~d}, J=7.68 \mathrm{~Hz}, 2 \mathrm{H}), 1.86-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.53(\mathrm{~m}, 4 \mathrm{H})$, $1.43-1.39(\mathrm{~m}, 2 \mathrm{H}), .29-1.26(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=7.32 \mathrm{~Hz}$, $3 \mathrm{H})$.
4.2.1.90. N-Cyclohexyl-1-methyl-1H-indol-5-amine (95). Starting with compound 86 following the general procedure 3 , compound 95 was obtained as red solid, yield 41%. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.06(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J$ $=2.94 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=2.19 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{dd}, J=2.22,8.91 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}$, $J=2.37 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.23-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.97(\mathrm{~m}, 2 \mathrm{H}), .72-.67(\mathrm{~m}, 2 \mathrm{H} 0$, $1.60-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.24(\mathrm{~m}, 2 \mathrm{H}), 1.20-1.01(\mathrm{~m}, 3 \mathrm{H})$.
4.2.1.91. N-(Cyclopentylmethyl)-1-methyl-1H-indol-5-amine (96). Starting with compound 92 following the general procedure 4.2, compound 96 was obtained as white solid, yield $89 \% .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.12(\mathrm{~d}, J=8.72 \mathrm{~Hz}, 1 \mathrm{H})$, $6.92(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=2.12 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{dd}, J=2.12,10.80 \mathrm{~Hz}, 1 \mathrm{H})$, $6.28(\mathrm{~d}, J=2.88 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{~d}, J=7.16 \mathrm{~Hz}, 2 \mathrm{H}), 2.21-2.14(\mathrm{~m}$, $1 \mathrm{H}), .86-.78(\mathrm{~m}, 2 \mathrm{H}), 1.66-.49(\mathrm{~m}, 4 \mathrm{H}), 1.31-1.22(\mathrm{~m}, 2 \mathrm{H})$.
4.2.1.92. N-(4-Fluorobenzyl)-1-methyl-1H-indol-5-amine (97). Starting with compound 86 following the general procedure 3 , compound 97 was obtained as red solid, yield 45%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28(\mathrm{dd}, J=5.52,8.61 \mathrm{~Hz}, 2 \mathrm{H}), 6.97$ (t, $J=8.58 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~s}, \mathrm{NH}), 6.52-6.46(\mathrm{~m}, 2 \mathrm{H}), 6.40-6.33(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{~s}, 2 \mathrm{H})$, $3.66(\mathrm{~s}, 3 \mathrm{H})$.
4.2.1.93. N-Cyclohexyl-1,3-dimethyl-1H-indol-5-amine (98). Starting with compound 87 following the general procedure 3 , compound $\mathbf{9 8}$ was obtained as red solid, yield 58%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.07(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J$ $=2.04 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{dd}, J=2.22,8.61 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.31-3.23$ $(\mathrm{m}, 1 \mathrm{H}), 2.23(\mathrm{~d}, J=0.93 \mathrm{~Hz}, 3 \mathrm{H}), 2.10-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.60$ $(\mathrm{m}, 1 \mathrm{H}), 1.42-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.19-1.07(\mathrm{~m}, 3 \mathrm{H})$

4.2.1.94. N-(Cyclopentylmethyl)-1,3-dimethyl-1H-indol-5-amine

(99).

Starting with compound 93 following the general procedure 4.2, compound 99 was obtained as white solid, yield 80%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.08(\mathrm{~d}, J=8.61$ $\mathrm{Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=2.01 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{dd}, J=2.01,8.61 \mathrm{~Hz}, 1 \mathrm{H})$, $3.64(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{~d}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.21-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.78(\mathrm{~m}$, $2 \mathrm{H}), 1.66-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.31-1.23(\mathrm{~m}, 2 \mathrm{H})$.
4.2.1.95. N-(4-Fluorobenzyl)-1,3-dimethyl-1H-indol-5-amine (100). Starting with compound $\mathbf{8 7}$ following the general procedure 3 , compound $\mathbf{1 0 0}$ was obtained as red solid, yield 63%. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{dd}, J=5.49,8.61 \mathrm{~Hz}$, $2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{t}, J=8.64 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H})$, $4.33(\mathrm{~s}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H})$.
4.2.1.96. N-Cyclohexyl-1-propyl-1H-indol-5-amine (101). Starting with compound $\mathbf{8 8}$ following the general procedure $\mathbf{3}$, compound $\mathbf{1 0 1}$ was obtained as red solid, yield $54 \% .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.15(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J$ $=3.09 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=2.19 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{dd}, J=2.40,8.79 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}$, $J=3.12 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.28-3.21(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{t}, J=4.56 \mathrm{~Hz}$, $2 \mathrm{H}), 2.12-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.23(\mathrm{~m}, 2 \mathrm{H})$, 1.19-1.09 (m, 3H), 0.96-0.86 (m, 5H).
4.2.1.97. N-(Cyclopentylmethyl)-1-propyl-1H-indol-5-amine (102). Starting with compound 94 following the general procedure 4.2 , compound 102 was obtained as white solid, yield $76 \% .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.09(\mathrm{~d}, J=8.58 \mathrm{~Hz}, 1 \mathrm{H})$, $6.93(\mathrm{~d}, J=2.97 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=2.01 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{dd}, J=2.19,8.79 \mathrm{~Hz}, 1 \mathrm{H})$, $6.23(\mathrm{dd}, J=0.75,2.94 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{t}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 3.00(\mathrm{~d}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H})$, 2.17-2.05 (m, 1H), 1.82-1.70 (m, 4H), 1.60-1.45 (m, 4H), 1.24-1.16 (m, 2H), $0.86(t$, $J=7.32 \mathrm{~Hz}, 3 \mathrm{H})$.
4.2.1.98. N-(4-Fluorobenzyl)-1-propyl-1H-indol-5-amine (103). Starting with compound 88 following the general procedure 3 , compound 103 was obtained as red solid, yield 70%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33(\mathrm{dd}, J=5.67,8.61 \mathrm{~Hz}, 2 \mathrm{H}), 7.10$ $(\mathrm{d}, J=8.79 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.92(\mathrm{~m}, 3 \mathrm{H}), 6.76(\mathrm{~d}, J=2.19 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{dd}, J=2.37$, $8.61 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=2.37 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~s}, 2 \mathrm{H}), 3.96(\mathrm{t}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 1.80-$ $1.73(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{t}, J=7.32 \mathrm{~Hz}, 3 \mathrm{H})$.
4.2.1.99. 2-(Hydroxymethyl)-5-nitrophenol (105). Starting with compound 104 following the general procedure 5.1, compound 105 was obtained as yellow solid, yield 77%. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{dd}, J=8.43,2.19 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J$ $=2.40 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H})$.
4.2.1.100. 2-Hydroxy-4-nitrobenzaldehyde (106). Starting with compound $\mathbf{1 0 5}$ in DCM was added five times molar MnO_{2}. The mixture reaction was stirred overnight at room temperature. Then, the solid was filtered off, the filtrate was concentrated and purified by silica gel column to get aldehyde derivative 106 was obtained as yellow solid, yield 84%. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.13(\mathrm{~s}, 1 \mathrm{H})$, 10.03 ($\mathrm{s}, 1 \mathrm{H}$), 7.85-7.76 (m, 3H).
4.2.1.101. Ethyl 5-nitrobenzofuran-3-carboxylate (108). Starting with compound $\mathbf{1 0 6}$ (1.0 equiv) in DCM was added solution $\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}$ (1.0 equiv) under nitrogen atmosphere at $0{ }^{\circ} \mathrm{C}$, followed by adding dropwise solution of ethyl diazoacetate (1.3 equiv). Once gas evolution ceased, the reaction mixture was concentrated and added concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ (about 0.5 mL). After 10 min stirring, the mixture was diluted with DCM, quenched with solution bicarbonate. The organic layer was collected, dried, concentrated and purified by silica gel column to afford ester benzofuran compound as borrow solid, yield: 60%. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

PART III- SAR MODIFICATION OF HETEROCYCLICS IN C REGION WITH UREA TYPE
$\delta 8.95(\mathrm{~d}, J=2.50 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{dd}, J=9.10,2.35 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J$ $=9.10 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{q}, J=7.15 \mathrm{~Hz}, 2 \mathrm{H}), 1.44(\mathrm{t}, J=7.10 \mathrm{~Hz}, 3 \mathrm{H})$.
4.2.1.102. Ethyl 6-nitrobenzofuran-3-carboxylate (109). Starting with compound $\mathbf{1 0 7}$ following the procedure as compound $\mathbf{1 0 8}$ to get product as yellow solid, yield 48%. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.46(\mathrm{~s}, 1 \mathrm{H}), 8.44(\mathrm{dd}, J=1.83,0.36$ $\mathrm{Hz}, 1 \mathrm{H}), 8.27(\mathrm{dd}, J=8.61,2.01 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{q}, J=6.96$ $\mathrm{Hz}, 2 \mathrm{H}), 1.42(\mathrm{t}, J=7.14 \mathrm{~Hz}, 3 \mathrm{H})$.
4.2.1.103. 3-Methylbenzofuran-5-amine (110). Starting with compound $\mathbf{1 0 8}$ (1.0 equiv) in toluene was added dropwise solution 1M DIBAL (1.05 equiv) in hexane under nitrogen atmosphere at $0^{\circ} \mathrm{C}$. After 2 h of stirring at room temperature, the mixture was cooled again to $0^{\circ} \mathrm{C}$ and taken play Fisher work-up. After work up, the solution was concentrated to have alcohol compound and used for next step without purification.
A mixture of alcohol, $\mathrm{Ph}_{3} \mathrm{P}$, imidazole and I_{2} in DCM was stirred for 1 h . Then the mixture was loaded directly in silica gel column to get designed iodine derivative.
The iodine derivative in diethylene glycol was added slowly NaBH_{4} while stirring. Then the mixture was risen up to $40^{\circ} \mathrm{C}$ for 2 h . After that, the mixture was cooled to room temperature, quenched with water, extracted with DCM. The organic layer was washed with water and brine, dried and concentrated to get designed product.
These nitro derivative (1.0 equiv) in ethanol was added 1-2 drops concentrated HCl and $\mathrm{SnCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$ (5.0 equiv). The mixture reaction was refluxed for 2 h , quenched with concentrated carbonate and extracted by EA. The organic layer was washed with water, dried with MgSO_{4}, concentrated and used for next step without purification as yellow solid, yield 48%.
4.2.1.104. 3-Methylbenzofuran-6-amine (111). Starting with compound $\mathbf{1 0 9}$ following the procedure of compound $\mathbf{1 1 0}$ to get product as red solid, yield 42%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25(\mathrm{~d}, J=8.07 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{q}, J=1.29 \mathrm{~Hz}, 1 \mathrm{H}), 6.75$ (d, $J=1.83 \mathrm{~Hz}, 1 \mathrm{H}), 6.62$ (dd, $J=8.04,1.83 \mathrm{~Hz}, 1 \mathrm{H}), 3.69$ (brs, 2H), 2.16 (d, $J=$ $1.29 \mathrm{~Hz}, 3 \mathrm{H})$.
4.2.1.105. N-Cyclohexyl-3-methylbenzofuran-5-amine (112). Starting with compound $\mathbf{1 1 0}$ following the general procedure 03, compound $\mathbf{1 1 2}$ was obtained to get product as red solid, yield 42%.
4.2.1.106. N-(4-Fluorobenzyl)-3-methylbenzofuran-5-amine (113). Starting with compound $\mathbf{1 1 0}$ following the general procedure $\mathbf{0 3}$, compound $\mathbf{1 1 3}$ was obtained as red solid, yield 53%.
4.2.1.107. N-(4-Fluorobenzyl)-3-methylbenzofuran-6-amine (114). Starting with compound $\mathbf{1 1 1}$ following the general procedure $\mathbf{0 3}$, compound $\mathbf{1 1 4}$ was obtained as red solid, yield $40 \% .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{q}, J$ $=1.29 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{~d}, J=2.04 \mathrm{~Hz}, 1 \mathrm{H}), 6.61-6.56(\mathrm{~m}, 1 \mathrm{H}), 4.32$ (s, 2H), $4.09(\mathrm{~s}, 1 \mathrm{H}), 2,15(\mathrm{~d}, J=1.29 \mathrm{~Hz}, 3 \mathrm{H})$.
4.2.1.108. 5-Nitrobenzo[d]oxazolem (117), Starting with compound 115 (5 mmol) and triethyl orthoformate (15 mL) was refluxed for 4 h . After cooling to room temperature, the remaining triethyl orthoformate was removed under reduced pressure and the residue was purified by columnchromatography to yield the desired substituted benzoxazole as white solid, yield $61 \%{ }^{1} \mathrm{H}(300 \mathrm{MHz}, \mathrm{DMSO}) \delta 9.01$ (s, $1 \mathrm{H}), 8.68(\mathrm{~d}, J=2.19 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{dd}, J=2.19,8.97 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.97 \mathrm{~Hz}$, $1 \mathrm{H})$.
4.2.1.109. $\quad 6$-Nitrobenzo[d]oxazole (118). Starting with compound $\mathbf{1 1 6}(5 \mathrm{mmol})$ and triethyl orthoformate (15 mL) was refluxed for 4 h . After cooling to room temperature, the remaining triethyl orthoformate was removed under reduced pressure and the residue was purified by columnchromatography to yield the desired substituted benzoxazole as white solid, yield 63%.
4.2.1.110. Benzo[d]oxazol-5-amine (121). Starting with compound $\mathbf{1 1 7}$ following the general procedure 5.2, compound 121 was obtained to get product as red solid, yield 95%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97(\mathrm{~s}, 1 \mathrm{H}), 1.04(\mathrm{~d}, J=8.55$ $\mathrm{Hz}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.50 \mathrm{~Hz}, 1 \mathrm{H})$.
4.2.1.111. Benzo[d]oxazol-6-amine (122). Starting with compound $\mathbf{1 1 8}$ following the general procedure 5.2, compound $\mathbf{1 2 2}$ was obtained to get product as red semi solid, yield 95%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=$ $8.50 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=2.05,8.40 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{br}$, 2NH)

PART III- SAR MODIFICATION OF HETEROCYCLICS IN C REGION WITH UREA TYPE
4.2.1.112. Benzo[d]oxazol-5-amine (123). Starting with compound 119 (1.0 equiv) in ethanol was added 1-2 drops concentrated HCl and $\mathrm{SnCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$ (5.0 equiv). The mixture reaction was refluxed for 2 h , quenched with concentrated carbonate and extracted by EA. The organic layer was washed with water, dried with MgSO_{4}, concentrated to obtanined compound $\mathbf{1 2 3}$ as red solid, yield 87%.
4.2.1.113. Benzo[d]thiazol-6-amine (124). Starting with compound 120 (1.0 equiv) in ethanol was added 1-2 drops concentrated HCl and $\mathrm{SnCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$ (5.0 equiv). The mixture reaction was refluxed for 2 h , quenched with concentrated carbonate and extracted by EA. The organic layer was washed with water, dried with MgSO_{4}, concentrated to obtanined compound $\mathbf{1 2 4}$ as red solid, yield 91%. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO) $\delta 8.88(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.25 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.61 \mathrm{~Hz}$, 1H), 5.40 (s, 2H).
4.2.1.114. $\quad N$-(Benzo[d]oxazol-5-yl)-2-nitrobenzenesulfonamide (125). Starting with compound $\mathbf{1 2 1}$ following the general procedure 4.1, compound $\mathbf{1 2 5}$ was obtained as pale semi solid, yield 71%.
4.2.1.115. $\quad N$-(Benzo[d]oxazol-6-yl)-2-nitrobenzenesulfonamide (126). Starting with compound 122 following the general procedure 4.1, compound 126 was obtained as pale semi solid, yield 65%.
4.2.1.116. $\quad N$-(Benzo[d]thiazol-5-yl)-2-nitrobenzenesulfonamide (127). Starting with compound 123 following the general procedure 4.1, compound 127 was obtained as red solid, yield 43%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.01(\mathrm{~s}, 1 \mathrm{H}), 7.94-$ $7.82(\mathrm{~m}, 4 \mathrm{H}), 7.68(\mathrm{td}, J=7.68,1.44 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.38(\mathrm{dd}, J=$ $8.61,2.19 \mathrm{~Hz}, 1 \mathrm{H})$,
4.2.1.117. $\quad N$-(Benzo[d]thiazol-6-yl)-2-nitrobenzenesulfonamide (128). Starting with compound $\mathbf{1 2 3}$ following the general procedure 4.1, compound 127 was obtained as red crude solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, ~ D M S O$) $\delta 10.96$ (br, 1H), 9.29 (s, $1 \mathrm{H}), 8.30-8.26(\mathrm{~m}, 1 \mathrm{H}), 8.14-7.76(\mathrm{~m}, 5 \mathrm{H}), 7.29(\mathrm{dd}, J=8.97 .2 .19 \mathrm{~Hz}, 1 \mathrm{H})$.

4.2.1.118. N-(Benzo[d]oxazol-5-yl)-N-(cyclopentylmethyl)-2-

nitrobenzenesulfonamide (129). Starting with compound $\mathbf{1 2 5}$ following the general procedure 8, compound 129 was obtained as white solid, yield 75%.

PART III- SAR MODIFICATION OF HETEROCYCLICS IN C REGION WITH UREA TYPE
4.2.1.119. N-(Benzo[d]oxazol-6-yl)-N-(cyclopentylmethyl)-2-
nitrobenzenesulfonamide (130). Starting with compound 126 following the general procedure 8, compound 130 was obtained as white solid, yield 65%.
4.2.1.120. $\quad N$-(Benzo[d]thiazol-5-yl)-N-(cyclopentylmethyl)-2nitrobenzenesulfonamide (131). Starting with compound 127 following the general procedure 8, compound 131 was obtained as red solid, yield 89%. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 9.03(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=2.37,1 \mathrm{H}), 9.13(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.58(\mathrm{~m}$, $2 \mathrm{H}), 7.51-7.39(\mathrm{~m}, 3 \mathrm{H}), 3.79(\mathrm{~d}, J=7.68 \mathrm{~Hz}, 2 \mathrm{H}), 1.90$ (quintet, $J=7.35 \mathrm{~Hz}, 1 \mathrm{H}$), $1.66-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.52-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.23(\mathrm{~m}, 2 \mathrm{H})$.

4.2.1.121. N-(Benzo[d]thiazol- 6 -yl)-N-(cyclopentylmethyl)-2-

nitrobenzenesulfonamide (132). Starting with compound 128 following the general procedure 8, compound $\mathbf{1 3 2}$ was obtained as red solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.05(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.64 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=2.01 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.59(\mathrm{~m}$, $2 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{dd}, J=8.49,2.01 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=7.68 \mathrm{~Hz}, 2 \mathrm{H})$, $1.96-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.52-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.25(\mathrm{~m}, 2 \mathrm{H})$.
4.2.1.122. N-Cyclohexylbenzo[d]oxazol-5-amine (133). Starting with compound 121 following the general procedure 3, compound $\mathbf{1 3 3}$ was obtained as red solid, yield $43 \% .{ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 1 \mathrm{H})$, $6.87(\mathrm{~d}, J=2.37 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{dd}, J=2.19,8.61 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{br}, \mathrm{NH}), 3.23-3.16$ $(\mathrm{m}, 1 \mathrm{H}), 2.04-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.38-1.26(\mathrm{~m}, 2 \mathrm{H}), 1.18-1.02(\mathrm{~m}, 3 \mathrm{H})$.
4.2.1.123. N-(Fyclopentylmethyl)benzo[d]oxazol-5-amine (134). Starting with compound 129 following the general procedure 4.2, compound 134 was obtained as white solid, yield 43%.
4.2.1.124. N-(4-Fluorobenzyl)benzo[d]oxazol-5-amine (135). Starting with compound $\mathbf{1 2 1}$ following the general procedure 3, compound $\mathbf{1 3 5}$ was obtained as red solid, yield 56%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 3 \mathrm{H})$, $7.04(\mathrm{tt}, J=2.01,8.79 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=2.40 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=2.40,8.79 \mathrm{~Hz}$, $1 \mathrm{H}), 4.31$ ($\mathrm{s}, 2 \mathrm{H}$).
4.2.1.125. N-Cyclohexylbenzo[d]oxazol-6-amine (136). Starting with compound 122 following the general procedure 3, compound 136 was obtained as

PART III- SAR MODIFICATION OF HETEROCYCLICS IN C REGION WITH UREA TYPE
red solid, yield $56 \% .{ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 1 \mathrm{H})$, $6.70(\mathrm{~d}, J=2.19 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{dd}, J=2.19,8.58 \mathrm{~Hz}, 1 \mathrm{H}), 3.28-3.17(\mathrm{~m}, 1 \mathrm{H}), 2.08-$ $2.00(\mathrm{~m}, 2 \mathrm{H}), 1.79-.63(\mathrm{~m}, 3 \mathrm{H}), 1.43-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.09(\mathrm{~m}, 3 \mathrm{H})$.
4.2.1.126. N-(Cyclopentylmethyl)benzo[d]oxazol-6-amine (137). Starting with compound 130 following the general procedure 4.2 , compound 137 was obtained as white solid, yield 43\%.
4.2.1.127. N-(4-Fluorobenzyl)benzo[d]oxazol-6-amine (138), Starting with compound 122 following the general procedure 3, compound $\mathbf{1 3 8}$ was obtained as pale solid, yield 56%. ${ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 1 \mathrm{H})$, 7.35 (dd, $J=5.49,8.61 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{tt}, J=2.01,8.61 \mathrm{~Hz}, 2 \mathrm{H}), 6.71-6.6(\mathrm{~m}, 2 \mathrm{H})$, 4.23 ($\mathrm{s}, 2 \mathrm{H}$).
4.2.1.128. N-Cyclohexylbenzo[d]thiazol-5-amine (139). Starting with compound $\mathbf{1 2 3}$ following the general procedure $\mathbf{3}$, compound $\mathbf{1 3 9}$ was obtained as red solid, yield: 91%. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.88(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.76$ $\mathrm{Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=2.40 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{dd}, J=8.58,2.19 \mathrm{~Hz}, 1 \mathrm{H}), 3.38-3.29(\mathrm{~m}$, $1 \mathrm{H}), 2.15-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.48-1.12(\mathrm{~m}, 4 \mathrm{H})$.
4.2.1.129. N-(Cyclopentylmethyl)benzo[d]thiazol-5-amine (140). Starting with compound 131 following the general procedure 4.2 , compound 140 was obtained as red solid, yield 47%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.89(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.58$ $\mathrm{Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=2.37 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=8.61,2.40 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 1 \mathrm{H})$, 3.11 ($\mathrm{d}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}$), 2.28-2.15 (m, 1H), 1.89-1.80 (m, 2H), 1.69-1.54 (m, 4H), 1.33-1.25 (m, 2H).
4.2.1.130. N-(4-Fluorobenzyl)benzo[d]thiazol-5-amine (141). Starting with compound 123 following the general procedure 3, compound 141 was obtained as red solid, yield 91%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.89(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.61$ $\mathrm{Hz}, 1 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=2.19 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{dd}$, $J=8.61,2.37 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 4.25(\mathrm{~s}, 1 \mathrm{H})$.
4.2.1.131. N-Cyclohexylbenzo[d]thiazol-6-amine (142). Starting with compound 124 following the general procedure $\mathbf{3}$, compound $\mathbf{1 4 2}$ was obtained as red solid, yield 18%. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.63(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.97$

PART III- SAR MODIFICATION OF HETEROCYCLICS IN C REGION WITH UREA TYPE
$\mathrm{Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=2.22 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{dd}, J=8.79,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.35-3.26(\mathrm{~m}, 1 \mathrm{H})$, 2.11-2.07 (m, 2H), 1.80-1.13 (m, 8H).
4.2.1.132. N-(Cyclopentylmethyl)benzo[d]thiazol-6-amine (143). Starting with compound 132 following the general procedure 4.2, compound 143 was obtained as red solid, yield $70 \% .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.62(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.79$ $\mathrm{Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=2.37 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=8.76,2.37 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 1 \mathrm{H})$, $3.06(\mathrm{~d}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 2.18$ (hept, $J=7.50 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.51$ (m, 4H), 1.30-1.22 (m, 2H).
4.2.1.133. N-(4-Fluorobenzyl)benzo[d]thiazol-6-amine (144). Starting with compound 124 following the general procedure 3 , compound 144 was obtained as red solid, yield 27%. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.67(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.79$ $\mathrm{Hz}, 1 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.02(\mathrm{~m}, 3 \mathrm{H}), 6.84(\mathrm{dd}, J=8.79,2.40 \mathrm{~Hz}, 1 \mathrm{H}), 4.37$ ($\mathrm{s}, 2 \mathrm{H}$), 4.28 ($\mathrm{s}, 1 \mathrm{H}$).
4.2.1.134. tert-Butyl 3-methyl-5-(3-(3-(5-methyl-1H-imidazol-1-yl)propyl)ureido)-1H-indazole-1-carboxylate (145). Starting with compound 09 following the general procedure 10 , compound 145 was obtained as white solid, yield $50 \% .{ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98-7.90(\mathrm{~m}, 3 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=1.83$, $8.97 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 5.84(\mathrm{t}, J=6.03 \mathrm{~Hz}, \mathrm{NH}), 4.00(\mathrm{t}, J=6.75 \mathrm{~Hz}, 2 \mathrm{H}), 3.26$ (q, $J=6.24 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{p}, J=6.42 \mathrm{~Hz}, 2 \mathrm{H}), 1.70(\mathrm{~s}$, $9 \mathrm{H})$.
4.2.1.135. tert-Butyl 5-(1-cyclohexyl-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)ureido)-3-methyl-1H-indazole-1-carboxylate (146). Starting with compound 18 following the general procedure 10, compound 146 was obtained as white semi solid, yield 56%. ${ }^{1} \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.14(\mathrm{~d}, J=8.65 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ $(\mathrm{s}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 4.48-4.43(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{t}, J=5.55$ $\mathrm{Hz}, \mathrm{NH}), 3.79(\mathrm{t}, J=7.10 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{q}, J=6.40 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}$, $3 \mathrm{H}), 1.89-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.87(\mathrm{p}, J=6.80 \mathrm{~Hz}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 9 \mathrm{H}), 1.57-1.53(\mathrm{~m}, 3 \mathrm{H})$, $1.42-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.00-0.93(\mathrm{~m}, 2 \mathrm{H}), 0.85-0.82(\mathrm{~m}, 1 \mathrm{H})$.
4.2.1.136. tert-Butyl 5-(1-(cyclopentylmethyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)ureido)-3-methyl-1H-indazole-1-carboxylate (147). Starting with compound 19 following the general procedure 10, compound 147 was obtained as

PART III- SAR MODIFICATION OF HETEROCYCLICS IN C REGION WITH UREA TYPE
white semid solid, yield 55%. ${ }^{1} \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{~d}, J=8.65 \mathrm{~Hz}, 1 \mathrm{H})$, $7.46(\mathrm{~d}, J=1.45 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.31(\mathrm{~m}, 2 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 4.10(\mathrm{t}, J=5.55 \mathrm{~Hz}, \mathrm{NH})$, $3.80(\mathrm{t}, J=7.15 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{~d}, J=7.70 \mathrm{~Hz}, 2 \mathrm{H}), 3.17(\mathrm{q}, J=6.50 \mathrm{~Hz}, 2 \mathrm{H}), 2.58$ $(\mathrm{s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.97-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{p}, J=6.90 \mathrm{~Hz}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 9 \mathrm{H}), 1.63-$ $1.59(\mathrm{~m}, 4 \mathrm{H}), 1.48-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.22(\mathrm{~m}, 4 \mathrm{H})$.
4.2.1.137. tert-Butyl 5-(1-(4-fluorobenzyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)ureido)-3-methyl-1H-indazole-1-carboxylate (148). Starting with compound 20 following the general procedure 10, compound 148 was obtained as white solid. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H})$, 7.20-7.15 (m, 2H), 7.12 (dd, $J=8.79,1.83 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{t}, J=8.61 \mathrm{~Hz}, 2 \mathrm{H}), 6.57$ $(\mathrm{s}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 2 \mathrm{H}), 4.34(\mathrm{t}, J=5.85 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{t}, J=7.50 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{q}, J=$ $6.39 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.83$ (quintet, $J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 1.71(\mathrm{~s}, 9 \mathrm{H})$.
4.2.1.138. tert-Butyl (4-(4-(3-methyl-5-(3-(3-(5-methyl-1H-imidazol-1-yl)propyl)ureido)-1H-indazol-1-yl)butyl)pyridin-2-yl)carbamate (149). Starting with compound 12 following the general procedure 10, compound 149 was obtained as white solid, yield 56%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05(\mathrm{~d}, J=5.13 \mathrm{~Hz}, 1 \mathrm{H}), 7.72$ $(\mathrm{s}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.24-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=5.13$ $\mathrm{Hz}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 5.32(\mathrm{t}, J=6.96 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{t}, J=6.96 \mathrm{~Hz}$, $2 \mathrm{H}), 3.93(\mathrm{t}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{q}, J=6.42 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{t}, J=7.50 \mathrm{~Hz}, 2 \mathrm{H})$, $2.52(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.89(\mathrm{~m}, 4 \mathrm{H}), 1.66-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 1 \mathrm{H})$.
4.2.1.139. tert-Butyl 3-methyl-6-(3-(3-(5-methyl-1H-imidazol-1-yl)propyl)ureido)-1H-indazole-1-carboxylate (150). Starting with compound 45 following the general procedure 10 , compound 150 was obtained as white solid, yield 66%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.19(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{~h}), 7.48-7.45(\mathrm{M}, 2 \mathrm{~h})$, $7.31-7.28(\mathrm{~m}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{t}, J=4.95 \mathrm{~Hz}, \mathrm{NH}), 4.00(\mathrm{t}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H})$, $3.27(\mathrm{q}, J=5.31 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{p}, J=6.24 \mathrm{~Hz}, 2 \mathrm{H}), 1.67$ (s, 9H).
4.2.1.140. tert-Butyl 6-(1-cyclohexyl-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)ureido)-3-methyl-1H-indazole-1-carboxylate (151). Starting with compound 54 following the general procedure 10, compound 151 was obtained as white solid, yield $60 \% .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.61$ $\mathrm{Hz}, 1 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=1.62,8.22 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 4.52-4.44(\mathrm{~m}$,

PART III- SAR MODIFICATION OF HETEROCYCLICS IN C REGION WITH UREA TYPE
$1 \mathrm{H}), 3.91(\mathrm{t}, J=6.21 \mathrm{~Hz}, \mathrm{NH}), 3.82(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.18(\mathrm{q}, J=6.78 \mathrm{~Hz}, 2 \mathrm{H})$, $2.61(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.83(\mathrm{p}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 1.75-1.72(\mathrm{~m}$, $2 \mathrm{H}), 1.71(\mathrm{~s}, 9 \mathrm{H}), 1.68-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.11-1.00(\mathrm{~m}, 2 \mathrm{H}), 0.90-$ $0.82(\mathrm{~m}, 1 \mathrm{H})$.
4.2.1.141. tert-Butyl 6-(1-(cyclopentylmethyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)ureido)-3-methyl-1H-indazole-1-carboxylate (152). Starting with compound 55 following the general procedure 10, compound 152 was obtained as white semi solid, yield 59%. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J$ $=8.30 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.25 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{t}, J=5.55$ $\mathrm{Hz}, 1 \mathrm{H}), 3.82(\mathrm{t}, J=7.20 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{~d}, J=7.65 \mathrm{~Hz}, 2 \mathrm{H}), 3.18(\mathrm{q}, J=6.45 \mathrm{~Hz}$, $2 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{~s}, 3 \mathrm{H}), 2.02-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.87(\mathrm{p}, J=6.95 \mathrm{~Hz}, 2 \mathrm{H}), 1.68(\mathrm{~s}$, $9 \mathrm{H}), 1.65-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.48-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.22(\mathrm{~m}, 4 \mathrm{H})$.
4.2.1.142. tert-Butyl 6-(1-(4-fluorobenzyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)ureido)-3-methyl-1H-indazole-1-carboxylate (153). Starting with compound 56 following the general procedure 10, compound 153 was obtained as white semi solid, yield 51%.
4.2.1.143. tert-Butyl 3-methyl-6-(3-(3-(5-methyl-1H-imidazol-1-yl)propyl)-1-(pyridin-3-ylmethyl)ureido)-1H-indazole-1-carboxylate (154). Starting with compound 57 following the general procedure 10, compound 154 was obtained as white semi solid, yield 53%.
4.2.1.144. tert-Butyl 3-methyl-6-(3-(3-(5-methyl-1H-imidazol-1-yl)propyl)-1-(1-methylpiperidin-4-yl)ureido)-1H-indazole-1-carboxylate (155). Starting with compound 58 following the general procedure $\mathbf{1 0}$, compound $\mathbf{1 5 5}$ was obtained as off white solid, yield 55%. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.40$ $\mathrm{Hz}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J=2.01,8.40 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 4.56-4.49(\mathrm{~m}$, $1 \mathrm{H}), 4.07(\mathrm{t}, J=4.95 \mathrm{~Hz}, \mathrm{NH}), 3.80(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{q}, J=6.60 \mathrm{~Hz}, 2 \mathrm{H})$, $2.87-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.79(\mathrm{~m}, 4 \mathrm{H}), 1.68$ $(\mathrm{s}, 9 \mathrm{H}), 1.50-1.43(\mathrm{~m}, 2 \mathrm{H})$.
4.2.1.145. tert-Butyl (4-(4-(3-methyl-6-(3-(3-(5-methyl-1H-imidazol-1-yl)propyl)ureido)-1H-indazol-1-yl)butyl)pyridin-2-yl)carbamate (156). Starting with compound 58 following the general procedure 10, compound 156 was obtained as
white solid, yield 44%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.34(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.85$ $\mathrm{Hz}, 1 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~d}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.58 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.96$ $(\mathrm{m}, 2 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 6.76 \mathrm{dd}, J=8.61 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{t}, 1 \mathrm{H}), 4.25(\mathrm{t}, J=6.96 \mathrm{~Hz}$, $2 \mathrm{H}), 3.98(\mathrm{t}, J=6.75 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{q}, J=5.31 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{t}, J=7.68 \mathrm{~Hz}, 2 \mathrm{H})$, $2.49(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.02-1.90(\mathrm{~m}, 4 \mathrm{H}), 1.69-2.58(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H})$.
4.2.1.146. tert-Butyl 6-(1-(4-fluorobenzyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)ureido)-1H-indazole-1-carboxylate (157). Starting with compound 75 following the general procedure 10 , compound 157 was obtained as white solid, yield $22 \% .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{~d}, J=0.75 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~d}$, $J=7.41 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{dd}, J=8.43,1.86 \mathrm{~Hz}, 1 \mathrm{H})$, 6.97-6.92 (m, 2H), $6.69(\mathrm{~s}, 1 \mathrm{H}), 4.90(\mathrm{~s}, 2 \mathrm{H}), 4.35(\mathrm{t}, J=5.67 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{t}, J=$ $7.32 \mathrm{~Hz}, 2 \mathrm{H}), 3.23(\mathrm{q}, J=6.21 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.89$ (quintet, $J=6.96 \mathrm{~Hz}, 2 \mathrm{H}$), 1.67 ($\mathrm{s}, 9 \mathrm{H}$).
4.2.1.147. tert-Butyl 5(6)-((3-cyclobutyl-3-(1,3-dimethyl-1H-indazol-5-yl)ureido)methyl)-1H-benzo[d]imidazole-1-carboxylate (158). Starting with compound 25 following the general procedure 10, compound 158 was obtained as white solid, yield $52 \% .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.35,7.84(\mathrm{~d}, J=6.90 \mathrm{~Hz}, 1 \mathrm{H})$, 8.32, $7.82(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.36,7.34(\mathrm{~d}, J=2.25 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.21(\mathrm{~m}$, $1 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 1 \mathrm{H}), 5.13-5.05(\mathrm{~m}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=6.05 \mathrm{~Hz}, 2 \mathrm{H}), 4.37(\mathrm{t}, J=4.75$ $\mathrm{Hz}, \mathrm{NH}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.09(\mathrm{~s}, 2 \mathrm{H} 0,1.79-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~s}$, $9 \mathrm{H}), 1.59-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.34(\mathrm{~m}, 2 \mathrm{H})$.
4.2.1.148. tert-Butyl 5(6)-((3-cyclopentyl-3-(1,3-dimethyl-1H-indazol-5-yl)ureido)methyl)-1H-benzo[d]imidazole-1-carboxylate (159). Starting with compound 26 following the general procedure 10, compound 159 was obtained as white solid, yield $55 \% .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.35,7.82(\mathrm{~s}, 1 \mathrm{H}), 8.32,7.84$ $(\mathrm{d}, J=8.55 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.33,7.31(\mathrm{~d}, J=2.22 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=$ $5.07 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.12(\mathrm{~m}, \mathrm{H}), 4.92-4.88(\mathrm{~m}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.35(\mathrm{t}$, $J=5.70 \mathrm{~Hz}, \mathrm{NH}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H} 0,1.90-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~s}, 9 \mathrm{H}), 1.52-$ 1.43 (m, 4H), 1.28-1.22 (m, 2H)
4.2.1.149. tert-Butyl 5(6)-((3-cyclohexyl-3-(1,3-dimethyl-1H-indazol-5-yl)ureido)methyl)-1H-benzo[d]imidazole-1-carboxylate (160). Starting with compound 21 following the general procedure 10, compound 160 was obtained as

PART III- SAR MODIFICATION OF HETEROCYCLICS IN C REGION WITH UREA TYPE
white solid, yield $54 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.35,7.84(\mathrm{~s}, 1 \mathrm{H}), 8.34,7.87$ (d, $J=7.89 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.19-$ $7.13(\mathrm{~m}, 2 \mathrm{H}), 4.59-4.51(\mathrm{~m}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=5.70 \mathrm{~Hz}, 2 \mathrm{H}), 4.33(\mathrm{t}, J=4.95 \mathrm{~Hz}, \mathrm{NH})$, $3.98(\mathrm{~s}, 3 \mathrm{H}), 2.55,2.52(\mathrm{~s}, 3 \mathrm{H}), 1.95-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.68,1.65(\mathrm{~s}$, $9 \mathrm{H}), 1.53-1.34(\mathrm{~m}, 3 \mathrm{H}), 1.09-1.00(\mathrm{~m}, 2 \mathrm{H}), 0.93-0.81(\mathrm{~m}, 1 \mathrm{H})$.
4.2.1.150. tert-Butyl 5-((3-(cyclopentylmethyl)-3-(1,3-dimethyl-1H-indazol-5-yl)ureido)methyl)-1H-benzo[d]imidazole-1-carboxylate (161). Starting with compound 22 following the general procedure 10, compound 161 was obtained as white solid, yield 54%.
4.2.1.151. tert-Butyl 5-((3-(1,3-dimethyl-1H-indazol-5-yl)-3-(4-fluorobenzyl)ureido)methyl)-1H-benzo[d]imidazole-1-carboxylate (162). Starting with compound $\mathbf{2 3}$ following the general procedure $\mathbf{1 0}$, compound 162 was obtained as white solid, yield 45%.
4.2.1.152. tert-Butyl 5(6)-((3-cyclobutyl-3-(1,3-dimethyl-1H-indazol-6-yl)ureido)methyl)-1H-benzo[d]imidazole-1-carboxylate (163). Starting with compound 64 following the general procedure 10, compound 163 was obtained as white solid, yield $74 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.38,8.35(\mathrm{~s}, 1 \mathrm{H}), 7.87-7.85$ $(\mathrm{m}, 1 \mathrm{H}), 7.71-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.87(\mathrm{~m}, 1 \mathrm{H})$, 5.11-5.05 (m, 1H), 4.47-4.43 (m, 3H), 3.99, 3.99 ($\mathrm{s}, 3 \mathrm{H}$), 2.56, 2.56 ($\mathrm{s}, 3 \mathrm{H}$), 2.17-2.09 (m, 2H), 1.83-1.74 (m, 2H), 1.69-1.68 (s, 9H), 1.49-1.42 (m, 2H).
4.2.1.153. tert-Butyl 5(6)-((3-cyclopentyl-3-(1,3-dimethyl-1H-indazol-6-yl)ureido)methyl)-1H-benzo[d]imidazole-1-carboxylate (164). Starting with compound 65 following the general procedure 10, compound 164 was obtained as off-white solid, yield 52%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.38,8.34(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~s}$, $1 \mathrm{H}), 7.70-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.13(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.87(\mathrm{~m}, 1 \mathrm{H})$, 5.11-5.05 (m, 1), 4.47-4.43 (m, 3H), 4.00, $3.99(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 2.17-2.09(\mathrm{~m}$, $2 \mathrm{H}), 1.83-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.69,1.68(\mathrm{~s}, 9 \mathrm{H}), 1.61-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.42(\mathrm{~m}, 2 \mathrm{H})$.
4.2.1.154. tert-Butyl 5(6)-((3-cyclohexyl-3-(1,3-dimethyl-1H-indazol-6-yl)ureido)methyl)-1H-benzo[d]imidazole-1-carboxylate (165). Starting with compound 59 following the general procedure 10, compound 165 was obtained as white solid, yield $42 \% .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.38,7.70(\mathrm{~s}, 1 \mathrm{H}), 8.34,7.85$

PART III- SAR MODIFICATION OF HETEROCYCLICS IN C REGION WITH UREA TYPE
$(\mathrm{d}, J=11.16 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.17-$ $7.12(\mathrm{~m}, 1 \mathrm{H}), 6.95-6.92(\mathrm{~m}, 1 \mathrm{H}), 4.46,4.44(\mathrm{~d}, J=5.31 \mathrm{~Hz}, 2 \mathrm{H}), 4.40-4.32(\mathrm{~m}, 1 \mathrm{H})$, $3.99,3.98(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 1.93-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~s}, 9 \mathrm{H})$, $1.65-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.14-1.06(\mathrm{~m}, 2 \mathrm{H}), 0.97-0.88(\mathrm{~m}, 1 \mathrm{H})$.
4.2.1.155. tert-Butyl 5 (6)-((3-(cyclopentylmethyl)-3-(1,3-dimethyl-1H-indazol-6-yl)ureido)methyl)-1H-benzo[d]imidazole-1-carboxylate (166). Starting with compound 60 following the general procedure 10 , compound 166 was obtained as white solid, yield 55%. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.38,8.35(\mathrm{~s}, 1 \mathrm{H}), 7.88-7.86$ $(\mathrm{m}, 1 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.97(\mathrm{~m}, 1 \mathrm{H}), 4.71-4.61(\mathrm{~m}, \mathrm{NH})$, $4.51(\mathrm{~d}, J=5.31 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~d}, J=7.86 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.10-$ $2.04(\mathrm{~m}, 1 \mathrm{H}), 1.0-1.68(\mathrm{~m}, 4 \mathrm{H}), 1.61(\mathrm{~s}, 9 \mathrm{H}), 1.49-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.25(\mathrm{~m}, 4 \mathrm{H})$.
4.2.1.156. tert-Butyl 5(6)-((3-(1,3-dimethyl-1H-indazol-6-yl)-3-(4-fluorobenzyl)ureido)methyl)-1H-benzo[d]imidazole-1-carboxylate (167). Starting with compound 61 following the general procedure 10, compound 167 was obtained as white crude solid. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.39,8.35(\mathrm{~s}, 1 \mathrm{H}), 7.91-7.87(\mathrm{~m}$, $1 \mathrm{H}), 7.70-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.02-6.92(\mathrm{~m}, 3 \mathrm{H}), 6.85-6.80(\mathrm{~m}, 1 \mathrm{H})$, $4.92(\mathrm{~s}, 2 \mathrm{H}), 4.72-4.66(\mathrm{~m}, 1 \mathrm{H}), 4.54,4.52(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{~s}$, $3 \mathrm{H}), 1.69$ ($\mathrm{s}, 9 \mathrm{H}$).
4.2.1.157. tert-Butyl 5 (6)-((3-(1,3-dimethyl-1H-indazol-6-yl)-3-(1-methylpiperidin-4-yl)ureido)methyl)-1H-benzo[d]imidazole-1-carboxylate (168). Starting with compound 63 following the general procedure 10, compound 168 was obtained as white solid, yield 48%. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.36(7.83)(\mathrm{s}, 1 \mathrm{H})$, 8.32 (7.85) (d, $J=8.40 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.10(\mathrm{~m}, 3 \mathrm{H}), 6.91$ (6.84) $(\mathrm{dd}, J=1.65,8.43 \mathrm{~Hz}, 1 \mathrm{H}), 4.59-4.51(\mathrm{~m}, 1 \mathrm{H}), 4.44(4.42)(\mathrm{s}, 2 \mathrm{H}), 3.95$ (3.94) (s, $3 \mathrm{H}), 2.82-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.11-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.80(\mathrm{~m}$, $2 \mathrm{H}), 1.66(\mathrm{~s}, 9 \mathrm{H}), 1.50-1.41(\mathrm{~m}, 2 \mathrm{H})$.

4.2.2. Final

4.2.2.1. 1-(3-(5-Methyl-1H-imidazol-1-yl)propyl)-3-(3-methyl-1H-indazol-5-yl)urea (169). Starting with compound 145 following the general procedure 9.2 , compound 169 was obtained as white solid, yield $70 \%, \mathrm{mp}=90-91{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.72(\mathrm{~d}, J=1.11 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=0.75,8.79 \mathrm{~Hz}, 1 \mathrm{H})$, $7.27(\mathrm{dd}, J=1.83,8.79 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 4.03(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.25(\mathrm{t}, J=$

PART II1- SAR MODIFICATION OF HETEROCYCLICS IN C REGION WITH UREA TYPE
$6.78 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~d}, J=0.93 \mathrm{~Hz}, 3 \mathrm{H}), 2.00(\mathrm{p}, J=6.78 \mathrm{~Hz}, 2 \mathrm{H})$. MS (ESI) $\mathrm{m} / \mathrm{z} 313[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) calc. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 313.1771$, found 313.1776. Anal. HPLC $100.0 \%\left(\mathrm{R}_{\mathrm{t}}=3.222\right.$ min).
4.2.2.2. 1-Cyclohexyl-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)-1-(3-methyl-1H-indazol-5-yl)urea (170). Starting with compound 146 following the general procedure 9.2, compound 170 was obtained as white solid, yield $71 \%, \mathrm{mp}=103-104$ ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{MeOD}\right) \delta 7.54-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{~d}, J=10.44 \mathrm{~Hz}, 1 \mathrm{H})$, $6.61(\mathrm{~s}, 1 \mathrm{H}), 4.44-4.35(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{t}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 3.11(\mathrm{t}, J=6.60 \mathrm{~Hz}, 2 \mathrm{H})$, $2.55(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~d}, J=0.93 \mathrm{~Hz}, 3 \mathrm{H}), 1.96-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.72(\mathrm{~m}, 4 \mathrm{H}), 1.58-$ $1.53(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.28(\mathrm{~m}, 2 \mathrm{H}), 1.12-1.00(\mathrm{~m}, 2 \mathrm{H}), 0.93-0.85(\mathrm{~m}, 1 \mathrm{H})$. MS (ESI) $m / z 395[\mathrm{M}+\mathrm{H}]^{+} . \quad$ HRMS (ESI) calc. for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 395.2554$, found 395.2544. Anal. HPLC $95.1 \%\left(\mathrm{R}_{\mathrm{t}}=4.161\right.$ min).
4.2.2.3. 1-(Cyclopentylmethyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)-1-(3-methyl-1H-indazol-5-yl)urea (171). Starting with compound 147 following the general procedure 9.2, compound 171 was obtained as white solid, yield $75 \%, \mathrm{mp}=$ $80-81{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}(500 \mathrm{MHz}, \mathrm{MeOD}) \delta 7.61(\mathrm{~d}, J=1.25 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.75 \mathrm{~Hz}$, $1 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=1.75 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{t}, J=7.15 \mathrm{~Hz}, 2 \mathrm{H})$, 3.65 (d, $J=7.65 \mathrm{~Hz}, 2 \mathrm{H}), 3.12(\mathrm{t}, J=6.70 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.02$ (p, $J=7.50 \mathrm{~Hz}, 2 \mathrm{H}), 1.98(\mathrm{p}, J=6.70 \mathrm{~Hz}, 2 \mathrm{H}), 1.71-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.50(\mathrm{~m}, 2 \mathrm{H})$, 1.28-1.20 (m, 4H). MS (ESI) $m / z 395[\mathrm{M}+\mathrm{H}]^{+} . \quad$ HRMS (ESI) calc. for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 395.2554$, found 395.2567. Anal. HPLC $97.6 \%\left(\mathrm{R}_{\mathrm{t}}=4.548\right.$ min).
4.2.2.4. 1-(4-Fluorobenzyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)-1-(3-methyl-1H-indazol-5-yl)urea (172). Starting with compound 147 following the general procedure 9.2, compound 172 was obtained as white solid, yield 45%. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=1.29 \mathrm{~Hz}, 1 \mathrm{H})$, 7.21-7.17 (m, 2H), 6.97-6.90 (m, 3H), $6.69(\mathrm{~s}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 2 \mathrm{H}), 4.34(\mathrm{t}, J=5.85 \mathrm{~Hz}$, $1 \mathrm{H}), 3.83(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.21(\mathrm{q}, J=6.60 \mathrm{~Hz}, 2 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~d}, J=$ $0.90 \mathrm{~Hz}, 3 \mathrm{H}$), 1.88 (quintet, $J=6.60 \mathrm{~Hz}, 2 \mathrm{H}$). HRMS (ESI) calc. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{FN}_{6} \mathrm{O}$ [M $+\mathrm{H}]^{+}$421.2147, found 421.2161.

PART II1- SAR MODIFICATION OF HETEROCYCLICS IN C REGION WITH UREA TYPE
4.2.2.5. 1-(1,3-Dimethyl-1H-indazol-5-yl)-3-(3-(5-methyl-1H-imidazol-1-
yl)propyl)urea (173). Starting with compound 10 following the general procedure 10, compound $\mathbf{1 7 3}$ was obtained as white solid, yield 63%. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=0.90 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.25 \mathrm{~Hz}, 1 \mathrm{H}), 7.15$ $(\mathrm{dd}, J=8.79,1.83 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 5.59(\mathrm{t}$-like, 1 H$), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{t}, J=$ $6.96 \mathrm{~Hz}, 2 \mathrm{H}), 3.23(\mathrm{q}, J=6.39 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~d}, J=0.75 \mathrm{~Hz}, 3 \mathrm{H}), 1.95$ (quintet, $J=6.78 \mathrm{~Hz}, 2 \mathrm{H}$). HRMS (ESI) calc. for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{6} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$327.1928, found 327.1934.

4.2.2.6. 1-Cyclohexyl-1-(1,3-dimethyl-1H-indazol-5-yl)-3-(3-(5-methyl-1H-

 imidazol-1-yl)propyl)urea (174). Starting with compound 21 following the general procedure 10, compound $\mathbf{1 7 4}$ was obtained as white solid, yield 41%. ${ }^{1}$ H NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~d}, J=1.65 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H})$, 7.07 (dd, $J=8.79,1.83 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{tt}, J=12.09,3.48 \mathrm{~Hz}, 1 \mathrm{H}), 4.01$ $(\mathrm{s}, 3 \mathrm{H}), 3.90(\mathrm{t}, J=5.85 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{t}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 3.11(\mathrm{q}, J=6.21 \mathrm{~Hz}, 2 \mathrm{H})$, $2.55(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.89-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.79$ (quintet, $J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 1.69(\mathrm{~d}$, $J=12.99 \mathrm{~Hz}, 2 \mathrm{H}), 1.53(\mathrm{~d}, J=12.65 \mathrm{~Hz}, 1 \mathrm{H}), 1.45-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.04-0.97(\mathrm{~m}, 2 \mathrm{H})$, 0.90-0.81 (m, 1H). HRMS (ESI) calc. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{6} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 409.2710$, found 409.2711 .4.2.2.7. 1-(Cyclopentylmethyl)-1-(1,3-dimethyl-1H-indazol-5-yl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)urea (175). Starting with compound 22 following the general procedure 10 , compound 175 was obtained as white solid, yield $68 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47(\mathrm{~d}, J=1.83 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 1 \mathrm{H}), 7.31$ $(\mathrm{s}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=8.79,1.83 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 4.16(\mathrm{t}, J=5.85 \mathrm{~Hz}, 1 \mathrm{H}), 4.03$ (s, 3H), $3.81(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{~d}, J=7.71 \mathrm{~Hz}, 2 \mathrm{H}), 3.16(\mathrm{q}, J=6.39 \mathrm{~Hz}, 2 \mathrm{H})$, $2.57(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.05-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.84$ (quintet, $J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 1.70-$ $1.65(\mathrm{~m}, 4 \mathrm{H}), 1.55-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.24(\mathrm{~m}, 2 \mathrm{H})$. HRMS (ESI) calc. for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{~N}_{6} \mathrm{O}$ $[M+H]^{+} 410.2739$, found 410.2755 .
4.2.2.8. 1-(1,3-Dimethyl-1H-indazol-5-yl)-1-(4-fluorobenzyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)urea (176). Starting with compound 23 following the general procedure 10, compound 176 was obtained as white solid, yield 85%. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=6.03 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=$ $8.43,5.49 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.89(\mathrm{~m}, 3 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 2 \mathrm{H}), 4.20(\mathrm{t}, J=6.06 \mathrm{~Hz}$, $1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{t}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 3.18(\mathrm{q}, J=6.42 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H})$,

PART III- SAR MODIFICATION OF HETEROCYCLICS IN C REGION WITH UREA TYPE
$2.11(\mathrm{~s}, 3 \mathrm{H}), 1.88-1.82(\mathrm{~m}, 2 \mathrm{H})$. HRMS (ESI) calc. for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{FN}_{6} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$ 435.2303, found 435.2314.
4.2.2.9. 1-(1,3-Dimethyl-1H-indazol-5-yl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)-1-(pyridin-3-ylmethyl)urea (177). Starting with compound 24 following the general procedure 10, compound 177 was obtained as white solid, yield 68%. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.48(\mathrm{~d}, J=3.09 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=7.68 \mathrm{~Hz}, 1 \mathrm{H})$, $7.35(\mathrm{~s}, 1 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{dd}, J=8.04,4.92 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{dd}, J=8.79$, $1.83 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 2 \mathrm{H}), 4.25(\mathrm{t}-\mathrm{like}, 1 \mathrm{H}), 3.81(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H})$, $3.17(\mathrm{q}, J=6.39 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.87-1.82(\mathrm{~m}, 2 \mathrm{H})$. HRMS (ESI) calc. for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{7} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 418.2350$, found 418.2344.
4.2.2.10. 1-(3-Methyl-1-(2-(4-methylpiperazin-1-yl)ethyl)-1H-indazol-5-yl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)urea (178). Starting with compound 11 following the general procedure 10 , compound 178 was obtained as white solid, yield $59 \%{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66(\mathrm{~d}, J=1.47 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{~d}$, $J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=8.97,2.04 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 5.33(\mathrm{t}$, $1 \mathrm{H}), 4.40(\mathrm{t}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{t}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{q}, J=6.03 \mathrm{~Hz}, 2 \mathrm{H})$, $2.83(\mathrm{t}, J=7.32 \mathrm{~Hz} .2 \mathrm{H}), 2.55(\mathrm{br}, 4 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{br}, 4 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.19$ (s, 3H), 1.96 (quintet, $J=6.60 \mathrm{~Hz}, 2 \mathrm{H}$).). HRMS (ESI) calc. for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{~N}_{8} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$ 439.2928, found 439.2925.
4.2.2.11. 1-(1-(4-(2-Aminopyridin-4-yl)butyl)-3-methyl-1H-indazol-5-yl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)urea (179). Starting with compound 149 following the general procedure 9.2 , compound 179 was obtained as white solid, yield $91 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87(\mathrm{~d}, J=5.85 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.44$ (s, $1 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 6.39(\mathrm{dd}, J=5.31,1.47 \mathrm{~Hz}, 1 \mathrm{H})$, $6.15(\mathrm{~s}, 1 \mathrm{H}), 5.46(\mathrm{brt}, 1 \mathrm{H}), 4.27(\mathrm{t}, J=6.75 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{t}, J=6.78 \mathrm{~Hz}, 2 \mathrm{H}), 3.24$ $(\mathrm{q}, J=6.06 \mathrm{~Hz}, 2 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{t}, J=7.50 \mathrm{~Hz}, 2 \mathrm{H}), 1.99-1.83(\mathrm{~m}, 4 \mathrm{H}), 1.61-$ $1.51(\mathrm{~m}, 2 \mathrm{H})$. HRMS (ESI) calc. for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{8} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 461.2772$, found 461.2789.
4.2.2.12. 1-Cyclohexyl-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)-1-(1-propyl-1H-indazol-5-yl)urea (180). Starting with compound 35 following the general procedure 10, compound 180 was obtained as white solid, yield $51 \%, \mathrm{mp}=53-54^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~d}, J=0.90 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=1.29 \mathrm{~Hz}, 1 \mathrm{H})$, $7.43(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=1.83,8.79 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H})$,

PART III- SAR MODIFICATION OF HETEROCYCLICS IN C REGION WITH

 UREA TYPE4.49-4.41 (m, 1H), $4.36(\mathrm{t}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{t}, J=5.94 \mathrm{~Hz}, \mathrm{NH}), 3.79(\mathrm{t}, J=$ $7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{q}, J=6.45 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{~d}, J=0.90 \mathrm{~Hz}, 3 \mathrm{H}), 2.00(\mathrm{p}, J=7.14$ $\mathrm{Hz}, 2 \mathrm{H}), 1.88-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{p}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 1.73-65(\mathrm{~m}, 2 \mathrm{H}), .54-1.50(\mathrm{~m}$, $1 \mathrm{H}), \quad 1.44-1.31 \quad(\mathrm{~m}, \quad 2 \mathrm{H}), \quad 1.06-0.98 \quad(\mathrm{~m}, \quad 2 \mathrm{H}), \quad 0.89-0.77(\mathrm{~m}, \quad 1 \mathrm{H})$. MS (ESI) $m / z 423[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) calc. for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{~N}_{6} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+} 423.2867$, found 423.2880 . Anal. HPLC $95.4 \%\left(\mathrm{R}_{\mathrm{t}}=7.379 \mathrm{~min}\right)$.
4.2.2.13. 1-(4-Fluorobenzyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)-1-(1-propyl-1H-indazol-5-yl)urea (181). Starting with compound $\mathbf{3 6}$ following the general procedure 10, compound 181 was obtained as white solid, yield 54%. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{~d}, J=0.93 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=1.29$ $\mathrm{Hz}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 7.22-1.17(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{dd}, J=8.79,2.04 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.92$ (m, 2H), $6.69(\mathrm{~s}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 2 \mathrm{H}), 4.33(\mathrm{t}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{t}, J=5.88 \mathrm{~Hz}$, $1 \mathrm{H}), 3.82(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.20(\mathrm{q}, J=6.21 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{~d}, J=0.90 \mathrm{~Hz}, 3 \mathrm{H})$, 1.98 (hex, $J=7.32 \mathrm{~Hz}, 2 \mathrm{H}$), 1.87 (quintet, $J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=7.32 \mathrm{~Hz}, 3 \mathrm{H}$). HRMS (ESI) calc. for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{FN}_{6} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 449.2460$, found 449.2471.

4.2.2.14. $\quad 1$-Cyclohexyl-1-(1-isobutyl-1H-indazol-5-yl)-3-(3-(5-methyl-1H-

imidazol-1-yl)propyl)urea (182). Starting with compound 37 following the general procedure 10, compound $\mathbf{1 8 2}$ was obtained as white solid, yield 78\%. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~d}, J=0.93 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=1.29 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.79$ $\mathrm{Hz}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{dd}, J=8.61,1.83 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 4.44(\mathrm{tt}, J=$ $12.09,3.66 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=5.34 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{t}, J=5.67 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{t}, J=$ $7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.11(\mathrm{q}, J=6.78 \mathrm{~Hz}, 2 \mathrm{H}), 2.35$ (hept, $J=6.60 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~d}, J=$ $0.72 \mathrm{~Hz}, 3 \mathrm{H}), 1.88-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.69(\mathrm{~d}, J=13.38 \mathrm{~Hz}, 2 \mathrm{H}), 1.52(\mathrm{~d}, J=12.84 \mathrm{~Hz}$, $1 \mathrm{H}), 1.44-1.31$ (qt-like, 2H), 1.05-0.94 (m, 2H), 0.95 (d, $J=6.60 \mathrm{~Hz}, 6 \mathrm{H}), 0.90-0.77$ (dt-like, 1H). HRMS (ESI) calc. for $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{~N}_{6} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 437.3023$, found 437.3036.

4.2.2.15. 1-(4-Fluorobenzyl)-1-(1-isobutyl-1H-indazol-5-yl)-3-(3-(5-methyl-

1H-imidazol-1-yl)propyl)urea (183). Starting with compound 38 following the general procedure 10 , compound 183 was obtained as white solid, yield: 62%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88(\mathrm{~d}, J=0.72 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.10$ $(\mathrm{m}, 2 \mathrm{H}), 6.93-6.85(\mathrm{~m}, 3 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}), 4.18(\mathrm{t}, J=6.33 \mathrm{~Hz}, 1 \mathrm{H}), 4.09$ $(\mathrm{t}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.13(\mathrm{q}, J=6.42 \mathrm{~Hz}, 2 \mathrm{H}), 2.26$ (hept, $J=6.60 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~d}, J=0.72 \mathrm{~Hz}, 3 \mathrm{H}), 1.80(q u i n t e t, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 0.87(\mathrm{~d}$,
$J=6.60 \mathrm{~Hz}, 6 \mathrm{H}$). HRMS (ESI) calc. for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{FN}_{6} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 436.2616$, found 436.2612.

4.2.2.16. \quad-Ccyclohexyl-1-(2,3-dimethyl-2H-indazol-5-yl)-3-(3-(5-methyl-

1H-imidazol-1-yl)propyl)urea (184). Starting with compound 27 following the general procedure 10 , compound 184 was obtained as white solid, yield $56 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=1.29$ $\mathrm{Hz}, 1 \mathrm{H}), 6.93(\mathrm{dd}, J=8.97,1.83 \mathrm{hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{tt}, J=12.06,3.48 \mathrm{~Hz}$, $1 \mathrm{H}), 4.11(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{t}, J=5.67 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{t}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 3.11(\mathrm{q}, J=$ $6.21 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.86-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.77$ (quintet, $J=7.14$ $\mathrm{Hz}, 2 \mathrm{H}), 1.72-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{~d}, J=12.99 \mathrm{~Hz}, 1 \mathrm{H}), 1.44-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.06-1.03$ $(\mathrm{m}, 2 \mathrm{H}), 0.90-0.82(\mathrm{~m}, 1 \mathrm{H})$. HRMS (ESI) calc. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{6} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$409.2710, found 409.2723.

4.2.2.17. 1-(2,3-Dimethyl-2H-indazol-5-yl)-1-(4-fluorobenzyl)-3-(3-(5-

 methyl-1H-imidazol-1-yl)propyl)urea (185). Starting with compound 28 following the general procedure 10 , compound 185 was obtained as white solid, yield $55 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}$), $7.29(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=8.40$, $5.49 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=1.47 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{t}, J=8.61 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{dd}, J=8.79$, $2.01 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 2 \mathrm{H}), 4.29(\mathrm{t}, J=6.06 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 3 \mathrm{H}), 3.79$ $(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.17(\mathrm{q}, J=6.60 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~d}, J=0.72 \mathrm{~Hz}, 3 \mathrm{H})$, 1.83 (quintet, $J=7.32 \mathrm{~Hz}, 2 \mathrm{H}$). HRMS (ESI) calc. for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{FN}_{6} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$ 425.2303, found 425.2304.4.2.2.18. 1-(2,3-Dimethyl-2H-indazol-5-yl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)-1-(pyridin-3-ylmethyl)urea (186). Starting with compound 29 following the general procedure 10, compound 186 was obtained as white solid, yield 28%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.48(\mathrm{~d}, J=3.30 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=1.26$ $\mathrm{Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{dd}, J=$ $8.97,2.04 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 2 \mathrm{H}), 4.56(\mathrm{t}, J=5.85 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~s}, 3 \mathrm{H})$, 3.96 (t, $J=6.93 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{q}, J=6.21 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~d}, J=0.90 \mathrm{~Hz}$, 3 H), 1.90 (quintet, $J=6.96 \mathrm{~Hz}, 2 \mathrm{H}$).
4.2.2.19. 1-(3-(5-Methyl-1H-imidazol-1-yl)propyl)-3-(3-methyl-1H-indazol6 -yl)urea (187). Starting with compound 150 following the general procedure 9.2, compound 187 was obtained as white solid, yield 69%, $\mathrm{mp}=$ over $200^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR

PART III- SAR MODIFICATION OF HETEROCYCLICS IN C REGION WITH

 UREA TYPE(300 MHz, MeOD) $\delta 7.76(\mathrm{~d}, J=1.08 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.79 \mathrm{~Hz}$, $1 \mathrm{H}), 6.88(\mathrm{dd}, J=1.83,8.61 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 4.03(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{t}$, $J=6.78 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~d}, J=0.93 \mathrm{~Hz}, 3 \mathrm{H}), 2.01(\mathrm{p}, J=6.78 \mathrm{~Hz}, 2 \mathrm{H})$. $\mathrm{MS}(\mathrm{ESI}) m / z 313[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) calc. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$313.1771, found 313.1792. Anal. HPLC $100.0 \%\left(\mathrm{R}_{\mathrm{t}}=3.339\right.$ min).
4.2.2.20. 1-Cyclohexyl-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)-1-(3-methyl-1H-indazol-6-yl)urea (188). Starting with compound 151 following the general procedure 9.2 , compound 188 was obtained as white solid, yield $71 \%, \mathrm{mp}=$ $73-74{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.14$ $(\mathrm{s}, 1 \mathrm{H}), 6.88(\mathrm{dd}, J=1.47,8.22 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 4.50-4.41(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{t}, J=$ $6.42 \mathrm{~Hz}, \mathrm{NH}), 3.82(\mathrm{t}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 3.20(\mathrm{q}, J=6.60 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 2.11$ $(\mathrm{d}, J=0.75 \mathrm{~Hz}, 3 \mathrm{H}), 1.90-1.81(\mathrm{~m}, 4 \mathrm{H}), 1.72-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.44-$ $1.36(\mathrm{~m}, 2 \mathrm{H}), 1.10-1.03(\mathrm{~m}, 2 \mathrm{H}), 0.92-0.83(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 395[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) calc. for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 395.2554$, found 395.2577. Anal. HPLC $96.6 \%\left(\mathrm{R}_{\mathrm{t}}=4.163 \mathrm{~min}\right)$.
4.2.2.21. 1-(Cyclopentylmethyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)-1-(3-methyl-1H-indazol-6-yl)urea (189). Starting with compound 152 following the general procedure 9.2 , compound 189 was obtained as white solid, yield $77 \%, \mathrm{mp}=$ $80-81{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{MeOD}\right) \delta 7.79(\mathrm{~d}, J=8.45 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.34$ $(\mathrm{s}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.35 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{t}, J=7.15 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{~d}, J=$ $7.65 \mathrm{~Hz}, 2 \mathrm{H}), 3.13(\mathrm{t}, J=6.55 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{p}, J=5.70$ $\mathrm{Hz}, 2 \mathrm{H}), 1.86(\mathrm{p}, J=6.70 \mathrm{~Hz}, 2 \mathrm{H}), 1.86-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.51-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.23$ (m, 4H). MS (ESI) $m / z 395[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) calc. for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 395.2554$, found 395.2554. Anal. HPLC $95.2 \%\left(\mathrm{R}_{\mathrm{t}}=4.726\right.$ min).
4.2.2.22. 1-(4-Fluorobenzyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)-1-(3-methyl-1H-indazol-6-yl)urea (190). Starting with compound 153 following the general procedure 9.2, compound 190 was obtained as white solid, yield $93 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=8.25$ $\mathrm{Hz}, 2 \mathrm{H}), 6.94-6.88(\mathrm{~m}, 3 \mathrm{H}), 6.78(\mathrm{~d}, \mathrm{~J}=8.61 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 4.83(\mathrm{~s}, 2 \mathrm{H}), 4.37$
(br, 1H), $3.84(\mathrm{t}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 3.25(\mathrm{q}, J=5.88 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}$, $3 \mathrm{H}), 2.02-1.92(\mathrm{~m}, 2 \mathrm{H})$.
4.2.2.23. tert-Butyl 3-methyl-6-(pyridin-3-ylmethylamino)-1H-indazole-1carboxylate (191). Starting with compound 154 following the general procedure 9.2, compound 191 was obtained as white solid, yield: 91%. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.42(\mathrm{br}, 2 \mathrm{H}), 7.62-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{br}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.43 \mathrm{~Hz}$, $1 \mathrm{H}), 6.70(\mathrm{br}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{t}, J=6.78 \mathrm{~Hz}, 2 \mathrm{H}), 3.29(\mathrm{q}, J=6.03 \mathrm{~Hz}, 2 \mathrm{H})$, $2.46(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.95$ (quintet, $J=6.78 \mathrm{~Hz}, 2 \mathrm{H}$). HRMS (ESI) calc. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{7} \mathrm{O}[\mathrm{M}+\mathrm{H}]+404.2193$, found 404.2210.
4.2.2.24. 3-(3-(5-Methyl-1H-imidazol-1-yl)propyl)-1-(3-methyl-1H-indazol-6-yl)-1-(1-methylpiperidin-4-yl)urea (192). Starting with compound 155 following the general procedure 9.2 , compound 192 was obtained as white solid, yield $91 \%, \mathrm{mp}$ $=182-183{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}, \mathrm{MeOH}) \delta 7.80(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=$ $1.11 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=0.90 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=1.62,8.58 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~s}$, $1 \mathrm{H}), 4.43-4.35(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{t}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 3.12(\mathrm{t}, J=6.39 \mathrm{~Hz}, 2 \mathrm{H}), 2.86-2.82$ $(\mathrm{m}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~d}, J=0.93 \mathrm{~Hz}, 3 \mathrm{H}), 2.12-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.75(\mathrm{~m}$, $4 \mathrm{H}), \quad 1.49-1.41 \quad(\mathrm{~m}, \quad 2 \mathrm{H}) . \quad \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 410[\mathrm{M}+\mathrm{H}]^{+} . \quad$ HRMS (ESI) calc. for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~N}_{7} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 410.2663$, found 410.2686. Anal. HPLC $97.5 \%\left(\mathrm{R}_{\mathrm{t}}=3.055\right.$ min).

4.2.2.25. 1-(1,3-Dimethyl-1H-indazol-6-yl)-3-(3-(5-methyl-1H-imidazol-1-

yl)propyl)urea (193). Starting with compound 46 following the general procedure 10 , compound 193 was obtained as white solid, yield $73 \%, \mathrm{mp}=77-78{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.13(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 1 \mathrm{H})$, $6.80(\mathrm{~s}, 1 \mathrm{H}), 6.66(\mathrm{dd}, J=1.47,8.40 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{t}, J=4.95 \mathrm{~Hz}, \mathrm{NH}), 4.00(\mathrm{t}, J=$ $6.57 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{q}, J=5.67 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.02$ $(\mathrm{p}, \quad J=6.21 \mathrm{~Hz}, \quad 2 \mathrm{H}) . \quad \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 327[\mathrm{M}+\mathrm{H}]^{+} . \quad$ HRMS (ESI) calc. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 327.1928$, found 327.1949. Anal. HPLC $100.0 \%\left(\mathrm{R}_{\mathrm{t}}=3.459\right.$ min).
4.2.2.26. $\quad 1$-Cyclohexyl-1-(1,3-dimethyl-1H-indazol-6-yl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)urea (194). Starting with compound 59 following the general procedure 10, compound 194 was obtained as white solid, yield $65 \%, \mathrm{mp}=91-92^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=$

PART III- SAR MODIFICATION OF HETEROCYCLICS IN C REGION WITH UREA TYPE
$1.11 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=1.65,8.43 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 4.51-4.43(\mathrm{~m}, 1 \mathrm{H}), 4.01$ $(\mathrm{s}, 3 \mathrm{H}), 3.94(\mathrm{t}, J=6.03 \mathrm{~Hz}, \mathrm{NH}), 3.81(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.18(\mathrm{q}, J=6.78 \mathrm{~Hz}, 2 \mathrm{H})$, $2.58(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~d}, J=0.90 \mathrm{~Hz}, 3 \mathrm{H}), 1.93-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{p}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H})$, $1.77-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.11-1.00(\mathrm{~m}, 2 \mathrm{H}), 0.94-$ $0.85 \quad(\mathrm{~m}, \quad 1 \mathrm{H}) . \quad \mathrm{MS}(\mathrm{ESI}) m / z 409[\mathrm{M}+\mathrm{H}]^{+} . \quad$ HRMS (ESI) calc. for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{~N}_{6} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 409.2710$, found 409.2718. Anal. HPLC 95.9\% $\left(\mathrm{R}_{\mathrm{t}}=5.209\right.$ \min).
4.2.2.27. $\quad 1$-(Cyclopentylmethyl)-1-(1,3-dimethyl-1H-indazol-6-yl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)urea (195). Starting with compound 60 following the general procedure 10 , compound 195 was obtained as white solid, yield $75 \%, \mathrm{mp}$ $=71-72{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.69(\mathrm{~d}, J=8.22 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H})$, $7.16(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{dd}, J=1.65,8.43 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{t}, J=4.59 \mathrm{~Hz}, \mathrm{NH})$, $4.00(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~d}, J=7.71 \mathrm{~Hz}, 2 \mathrm{H}), 3.21(\mathrm{q}, J=6.78 \mathrm{~Hz}$, $2 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~d}, J=0.72 \mathrm{~Hz}, 3 \mathrm{H}), 2.03-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{p}, J=7.14 \mathrm{~Hz}$, $2 \mathrm{H}), 1.69-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.25(\mathrm{~m}, 2 \mathrm{H})$. MS (ESI) $m / z 409[\mathrm{M}+\mathrm{H}]^{+} . \quad$ HRMS (ESI) calc. for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{~N}_{6} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 409.2710$, found 409.2726. Anal. HPLC 97.4\% $\left(\mathrm{R}_{\mathrm{t}}=5.281\right.$ min).
4.2.2.28. 1-(1,3-Dimethyl-1H-indazol-6-yl)-1-(4-fluorobenzyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)urea (196). Starting with compound 61 following the general procedure 10 , compound 196 was obtained as white solid, yield $30 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61(\mathrm{dd}, J=8.43,0.54 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 7.23-7.18$ $(\mathrm{m}, 2 \mathrm{H}), 6.98-6.92(\mathrm{~m}, 3 \mathrm{H}), 6.75(\mathrm{dd}, J=8.43,1.83 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 4.87(\mathrm{~s}$, $2 \mathrm{H}), 4.28(\mathrm{t}, J=5.85 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.21(\mathrm{q}, J=$ $6.24 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~d}, J=0.90 \mathrm{~Hz}, 3 \mathrm{H}), 1.87$ (quintet, $J=7.14 \mathrm{~Hz}, 2 \mathrm{H}$). HRMS (ESI) calc. for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{FN}_{6} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 435.2303$, found 435.2313.

4.2.2.29. 1-(1,3-Dimethyl-1H-indazol-6-yl)-3-(3-(5-methyl-1H-imidazol-1-

yl)propyl)-1-(pyridin-3-ylmethyl)urea (197). Starting with compound 62 following the general procedure 10, compound 197 was obtained as white solid, yield 24%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.50(\mathrm{~d}, J=4.95 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{~s}, 1 \mathrm{H}), 7.67$ (dt-like, 8.01 $\mathrm{Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=7.89,2.76 \mathrm{~Hz}, 1 \mathrm{H})$, $6.97(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{dd}, J=8.40,1.44 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 2 \mathrm{H}), 4.32$ (t-like, $1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{t}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 3.21(\mathrm{q}, J=6.60 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{ds}, 3 \mathrm{H})$,

PART II1- SAR MODIFICATION OF HETEROCYCLICS IN C REGION WITH UREA TYPE
$2.12\left(\mathrm{~s}, 3 \mathrm{H}\right.$), 1.87 (quintet, $J=6.96 \mathrm{~Hz}, 2 \mathrm{H}$). HRMS (ESI) calc. for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{7} \mathrm{O}[\mathrm{M}+$ $H]^{+} 418.2350$, found 418.2365 .
4.2.2.30. 1-(1,3-Dimethyl-1H-indazol-6-yl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)-1-(1-methylpiperidin-4-yl)urea (198). Starting with compound 63 following the general procedure 10, compound 198 was obtained as white solid, yield $35 \%, \mathrm{mp}>200^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~s}$, $1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 4.48-4.40(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~s}$, $1 \mathrm{H}), 3.84(\mathrm{t}, J=4.95 \mathrm{~Hz}, \mathrm{NH}), 3.75(\mathrm{t}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(\mathrm{q}, J=6.60 \mathrm{~Hz}, 2 \mathrm{H})$, 2.77-2.73 (m, 2H), $2.50(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.04-1.97(\mathrm{~m}, 5 \mathrm{H}), 1.78-1.73(\mathrm{~m}, 4 \mathrm{H})$, 1.42-1.34 (m, 2H). HRMS (ESI) calc. for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{~N}_{7} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 423.2747$.
4.2.2.31. 1-(3-Methyl-1-(2-(4-methylpiperazin-1-yl)ethyl)-1H-indazol-6-yl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)urea (199). Starting with compound 47 following the general procedure 10, compound 199 was obtained as white solid, yield $51 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H})$, $6.79(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{dd}, J=8.40,2.13 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{t}, 1 \mathrm{H}), 4.38(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H})$, 3.98 (t, $J=6.78 \mathrm{~Hz}, 2 \mathrm{H}$), $3.26(\mathrm{q}, J=5.85 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{t}, J=6.93 \mathrm{~Hz}, 2 \mathrm{H}), 2.57$ (br, 4H), $2.50(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{br}, 4 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.05-1.99(\mathrm{~m}, 2 \mathrm{H})$.). HRMS (ESI) calc. for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{~N}_{8} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 439.2928$, found 439.2949.
4.2.2.32. 1-(1-(4-(2-Aminopyridin-4-yl)butyl)-3-methyl-1H-indazol-6-yl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)urea (200). Starting with compound 156 following the general procedure 9.2 , compound 200 was obtained as white solid, yield $97 \% .^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.27(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=5.31 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~s}$, $1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 6.65(\mathrm{dd}, J=8.43,1.47 \mathrm{~Hz}$, $1 \mathrm{H}), 6.41(\mathrm{~d}, J=4.32 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 6.06(\mathrm{t}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 4.23(\mathrm{t}, J=$ $7.32 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{t}, J=6.60 \mathrm{~Hz}, 2 \mathrm{H}), 3.23(\mathrm{q}, J=5.88 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 2.46$ (t, $J=7.71 \mathrm{~Hz}, 2 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.97$ (quintet, $J=6.21 \mathrm{~Hz}, 2 \mathrm{H}), 1.90-1.83(\mathrm{~m}, 2 \mathrm{H})$, 1.59 (quintet, $J=6.96 \mathrm{~Hz}, 2 \mathrm{H}$).). HRMS (ESI) calc. for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{8} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$ 461.2772, found 461.2765.
4.2.2.33. 1-(4-Fluorobenzyl)-1-(1H-indazol-6-yl)-3-(3-(5-methyl-1H-
imidazol-1-yl)propyl)urea (201). Starting with compound 157 following the general procedure 9.2, compound 201 was obtained as white solid, yield 93%. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 7.20-7.15(\mathrm{~m}$,

PART II1- SAR MODIFICATION OF HETEROCYCLICS IN C REGION WITH UREA TYPE
$2 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.96-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{dd}, J=8.61,1.83 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H})$, $4.84(\mathrm{~s}, 2 \mathrm{H}), 4.33(\mathrm{br}, 1 \mathrm{H}), 3.86(\mathrm{t}, J=6.78 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{q}, J=6.39 \mathrm{~Hz}, 2 \mathrm{H}), 2.13$ $(\mathrm{s}, 3 \mathrm{H}), 1.91$ (quintet, $J=6.57 \mathrm{~Hz}, 2 \mathrm{H}$).). HRMS (ESI) calc. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{FN}_{6} \mathrm{O}[\mathrm{M}+$ $\mathrm{H}]^{+} 407.1990$, found 407.2004.
4.2.2.34. 1-(4-Fluorobenzyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)-1-(1-methyl-1H-indazol-6-yl)urea (202). Starting with compound 76 following the general procedure 10, compound 202 was obtained as white solid, yield 43%. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{~d}, J=0.75 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H})$, 7.23-7.18 (m, 2H), 7.02 (s, 1H), 6.98-6.92 (m, 2H), $6.80(\mathrm{~d}, J=8.40,1.62 \mathrm{~Hz}, 1 \mathrm{H})$, $6.68(\mathrm{~s}, 1 \mathrm{H}), 4.87(\mathrm{~s}, 2 \mathrm{H}), 4.30(\mathrm{t}, J=5.85 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{t}, J=7.14 \mathrm{~Hz}$, $2 \mathrm{H}), 3.22(\mathrm{q}, J=6.78 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.88$ (quintet, $J=6.96 \mathrm{~Hz}, 2 \mathrm{H})$.). HRMS (ESI) calc. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{FN}_{6} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 421.2147$, found 421.2159 .

4.2.2.35. 1-(4-Fluorobenzyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)-1-(1-

 propyl-1H-indazol-6-yl)urea (203). Starting with compound 77 following the general procedure 10, compound 203 was obtained as white solid, yield 57%. ${ }^{1} \mathrm{H}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{~d}, J=0.93 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{dd}$, $J=5.49,8.79 \mathrm{~Hz}, 2 \mathrm{H}), 9.94-6.88(\mathrm{~m}, 3 \mathrm{H}), 6.81(\mathrm{dd}, J=1.83,8.61 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~s}$, $1 \mathrm{H}), 4.83(\mathrm{~s}, 1 \mathrm{H}), 4.25(\mathrm{t}, J=5.16 \mathrm{~Hz}, \mathrm{NH}), 4.20(\mathrm{t}, J=6.78 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{t}, J=$ $7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.23(\mathrm{q}, J=6.78 \mathrm{~Hz}, 2 \mathrm{H}) 2.10(\mathrm{~d}, J=0.93 \mathrm{~Hz}, 3 \mathrm{H}), 1.87-1.78(\mathrm{~m}, 4 \mathrm{H} 0$, $0.84(\mathrm{t}, \quad J=7.32 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 449[\mathrm{M}+\mathrm{H}]^{+} . \quad$ HRMS (ESI) calc. for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{FN}_{6} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 449.2460$, found 449.2471 . Anal. HPLC $95.6 \%\left(\mathrm{R}_{\mathrm{t}}=4.317\right.$ min).4.2.2.36. 1-(2,3-Dimethyl-2H-indazol-6-yl)-1-(4-fluorobenzyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)urea (204). Starting with compound 66 following the general procedure 10, compound 204 was obtained as white solid, yield $41 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 2 \mathrm{H})$, 6.94-6.88 (m, 2H), $6.69(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=8.79,1.65 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 2 \mathrm{H}), 4.45(\mathrm{t}$, $J=5.49 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{t}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 3.19(\mathrm{q}, J=6.24 \mathrm{~Hz}, 2 \mathrm{H})$, $2.60(\mathrm{~s}, 3 \mathrm{H}), 1.86$ (quintet, $J=7.14 \mathrm{~Hz}, 2 \mathrm{H}$). HRMS (ESI) calc. for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{FN}_{6} \mathrm{O}$ [M $+\mathrm{H}]^{+} 435.2303$, found 435.2314.
4.2.2.37. 1-(2,3-Dimethyl-2H-indazol-6-yl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)-1-(pyridin-3-ylmethyl)urea (205). Starting with compound 67 following

PART III- SAR MODIFICATION OF HETEROCYCLICS IN C REGION WITH

 UREA TYPEthe general procedure 10 , compound 205 was obtained as white solid, yield $37 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.46(\mathrm{br}, 1 \mathrm{H}), 8.40(\mathrm{br}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.68 \mathrm{~Hz}, 1 \mathrm{H})$, $7.56(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H})$, $6.67(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 2 \mathrm{H}), 4.49(\mathrm{t}, J=5.67 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~s}, 3 \mathrm{H}), 3.83$ (t, $J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 3.20(\mathrm{q}, J=6.21 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 1.88$ (quintet, $J=6.96$ $\mathrm{Hz}, 2 \mathrm{H})$.
4.2.2.38. 3-((1H-Benzo[d]imidazol-5-yl)methyl)-1-cyclobutyl-1-(1,3-dimethyl-1H-indazol-5-yl)urea (206). Starting with compound 158 following the general procedure 9.2, compound 206 was obtained as white solid, yield $88 \%, \mathrm{mp}=$ $140-11{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{MeOD}\right) \delta 8.09(\mathrm{~s}, 1 \mathrm{H} 0,7.57-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{~d}$, $J=7.89 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=2.01,8.79 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.43 \mathrm{~Hz}$, $1 \mathrm{H}), 4.95-4.92(\mathrm{~m}, 1 \mathrm{H}), 4.37(\mathrm{~s}, 2 \mathrm{H}), 3.99(\mathrm{~m}, 3 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H} 0,2.12-2.09(\mathrm{~m}, 2 \mathrm{H})$, 1.82-1.75 (m, 2H), 1.59-1.42 (m, 2H). MS (ESI) $m / z 389[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) calc. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 389.2084$, found 389.2099. Anal. HPLC $100.0 \% ~\left(R_{t}=7.708 \mathrm{~min}\right)$.
4.2.2.39. 3-((1H-Benzo[d]imidazol-5-yl)methyl)-1-cyclopentyl-1-(1,3-dimethyl-1H-indazol-5-yl)urea (207). Starting with compound 159 following the general procedure 9.2, compound 207 was obtained as white solid, yield $71 \%, \mathrm{mp}=$ $137-138{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{~d}$, $J=8.58 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=1.83,8.79 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.25 \mathrm{~Hz}, 1 \mathrm{H}), 4.97-$ $4.86(\mathrm{~m}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.46$ $(\mathrm{m}, ~ 4 \mathrm{H}), 1.29-1.25(\mathrm{~m}, 2 \mathrm{H}) . \quad \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 403[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) calc. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 403.2241$, found 403.2263. Anal. HPLC $100.0 \%\left(\mathrm{R}_{\mathrm{t}}=4.268\right.$ min).
4.2.2.40. 3-((1H-Benzo[d]imidazol-5-yl)methyl)-1-cyclohexyl-1-(1,3-dimethyl-1H-indazol-5-yl)urea (208). Starting with compound 160 following the general procedure 9.2, compound 208 was obtained as white solid, yield $72 \%, \mathrm{mp}=$ $150-151{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{MeOD}\right) \delta 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{~s}$, $1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=1.65,8.79 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~s}$, $2 \mathrm{H}), 4.35-4.31(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 1.93-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.72(\mathrm{~m}$, $2 \mathrm{H}), 1.55-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.08-1.03(\mathrm{~m}, 2 \mathrm{H}), 0.90-0.86(\mathrm{~m}, 1 \mathrm{H})$. MS (ESI) $m / z 417[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI)
calc.
for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 417.2397$, found 417.2409. Anal. HPLC $100.0 \%\left(\mathrm{R}_{\mathrm{t}}=4.851\right.$ min).
4.2.2.41. 3-((1H-Benzo[d]imidazol-5-yl)methyl)-1-(cyclopentylmethyl)-1-(1,3-dimethyl-1H-indazol-5-yl)urea (209). Starting with compound 161 following the general procedure 9.2, compound 209 was obtained as white solid. ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=1.38 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{br}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=$ $8.70 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=8.70,1.80 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.22 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{t}, J=$ $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=5.46 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~d}, J=7.80 \mathrm{~Hz}, 2 \mathrm{H}), 2.52$ $(\mathrm{s}, 3 \mathrm{H}), 2.03-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.44(\mathrm{~m}, 2 \mathrm{H})$, 1.28-1.24 (m, 2H). HRMS (ESI) calc. for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{6} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 417.2397$, found 417.2399.
4.2.2.42. 3-((1H-Benzo[d]imidazol-5-yl)methyl)-1-(1,3-dimethyl-1H-indazol-5-yl)-1-(4-fluorobenzyl)urea (210). Starting with compound 162 following the general procedure 9.2, compound 210 was obtained as white solid, yield $79 \% .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{br}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=1.32 \mathrm{~Hz}, 1 \mathrm{H}), 7.22$ $(\mathrm{d}, J=8.70 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=8.22,5.46 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.28 \mathrm{~Hz}, 1 \mathrm{H}), 6.97$ $(\mathrm{dd}, J=8.70,1.86 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{t}, J=8.58 \mathrm{~Hz}, 2 \mathrm{H}), 4.86(\mathrm{~s}, 2 \mathrm{H}), 4.66(\mathrm{t}, J=6.00$ $\mathrm{Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=5.94 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H})$. HRMS (ESI) calc. for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{FN}_{6} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 443.1990$, found 443.1999.
4.2.2.43. 3-((1H-Benzo[d]imidazol-5-yl)methyl)-1-cyclobutyl-1-(1,3-
dimethyl-1H-indazol-6-yl)urea (211). Starting with compound 163 following the general procedure 9.2, compound 211 was obtained as white solid, yield 89%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.25 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 2 \mathrm{H})$, $7.14(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=8.22 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{dd}, J=8.43,1.47 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-4.98$ $(\mathrm{m}, 1 \mathrm{H}), 4.66(\mathrm{t}, J=5.85 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=5.67 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 2.54(\mathrm{~s}$, $3 H), 2.17-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.38(\mathrm{~m}, 2 \mathrm{H})$. HRMS (ESI) calc. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{6} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 389.2084$, found 389.2100.
4.2.2.44. 3-((1H-Benzo[d]imidazol-5-yl)methyl)-1-cyclopentyl-1-(1,3-dimethyl-1H-indazol-6-yl)urea (212). Starting with compound 164 following the general procedure 9.2, compound 212 was obtained as white solid, yield $98 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.25 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=9.15$ $\mathrm{Hz}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=0.93 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{dd}, J=8.22,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.91$

PART II1- SAR MODIFICATION OF HETEROCYCLICS IN C REGION WITH UREA TYPE
$(\mathrm{dd}, J=8.25,1.47 \mathrm{~Hz}, 1 \mathrm{H}), 4.94-4.83(\mathrm{~m}, 1 \mathrm{H}) .4 .62(\mathrm{t}, J=5.49 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=$ $5.85 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.46(\mathrm{~m}, 4 \mathrm{H}), 1.40-$ $1.26(\mathrm{~m}, 2 \mathrm{H})$. HRMS (ESI) calc. for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{6} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 403.2241$, found 403.2259.
4.2.2.45. 3-((1H-Benzo[d]imidazol-5-yl)methyl)-1-cyclohexyl-1-(1,3-
dimethyl-1H-indazol-6-yl)urea (213). Starting with compound 165 following the general procedure 9.2, compound 213 was obtained as white solid, yield $75 \%, \mathrm{mp}=$ $133-134{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.25 \mathrm{~Hz}, 1 \mathrm{H})$, $7.51(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.25 \mathrm{~Hz}, 1 \mathrm{H}), 6.91$ (dd, $J=1.65,8.40 \mathrm{~Hz}, 1 \mathrm{H}), 4.56-4.48(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~s}$, $3 \mathrm{H}), 1.95-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.30(\mathrm{~m}, 2 \mathrm{H})$, 1.13-1.02 (m, 2H), 0.89-0.84 (m, 1H). MS (ESI) $m / z 417[M+H]^{+}$. HRMS (ESI) calc. for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 417.2397$, found 417.2428. Anal. HPLC 95.4\% $\left(\mathrm{R}_{\mathrm{t}}=5.061\right.$ min).
4.2.2.46. 3-((1H-Benzo[d]imidazol-5-yl)methyl)-1-(cyclopentylmethyl)-1-(1,3-dimethyl-1H-indazol-6-yl)urea (214). Starting with compound 166 following the general procedure 9.2, compound 214 was obtained as white solid, yield $70 \%, \mathrm{mp}=$ $122-123{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H})$, $7.55-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.25 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.40 \mathrm{~Hz}, 1 \mathrm{H})$, $4.68(\mathrm{t}, J=4.59 \mathrm{~Hz}, \mathrm{NH}), 4.48(\mathrm{~d}, J=5.88 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~d}, J=7.50$ $\mathrm{Hz}, 2 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.10-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.52-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.30-$ $1.26 \quad(\mathrm{~m}, \quad 4 \mathrm{H}) . \quad \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 417[\mathrm{M}+\mathrm{H}]^{+} . \quad$ HRMS (ESI) calc. for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 417.2397$, found 417.2424. Anal. HPLC $100.0 \%\left(\mathrm{R}_{\mathrm{t}}=5.173\right.$ min).
4.2.2.47. 3-((1H-Benzo[d]imidazol-5-yl)methyl)-1-(1,3-dimethyl-1H-indazol-6-yl)-1-(4-fluorobenzyl)urea (215). Starting with compound 167 following the general procedure 9.2, compound 215 was obtained as white solid. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.97 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{dd}$, $J=8.25,5.49 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.25 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{t}, J=8.61 \mathrm{~Hz}$, $2 \mathrm{H}), 6.81(\mathrm{~d}, J=8.40 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 2 \mathrm{H}), 4.79(\mathrm{t}, J=5.67 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=$ $5.67 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H})$.
4.2.2.48. 3-((1H-Benzo[d]imidazol-5-yl)methyl)-1-(1,3-dimethyl-1H-indazol-6-yl)-1-(1-methylpiperidin-4-yl)urea (216). Starting with compound 168 following

PART III- SAR MODIFICATION OF HETEROCYCLICS IN C REGION WITH UREA TYPE
the general procedure 9.2, compound 216 was obtained as white solid, yield 51%, mp $=74-75{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}, \mathrm{MeOH}) \delta 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H})$, $7.50(\mathrm{~d}, J=8.25 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=0.90 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=1.26$, $8.40 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{dd}, J=1.65,8.40 \mathrm{~Hz}, 1 \mathrm{H}), 4.47-4.42(\mathrm{~m}, 1 \mathrm{H}), 4.37(\mathrm{~s}, 2 \mathrm{H}), 3.94$ (s, 3H), 2.88-2.84 (m, 2H), 2.50 (s, 3H), 2.19 (s, 3H), 2.15-2.12 (m, 2H), 1.92-1.87 $(\mathrm{m}, 2 \mathrm{H}), \quad 1.53-1.41(\mathrm{~m}, 2 \mathrm{H})$. MS (ESI) $\mathrm{m} / \mathrm{z} 432[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) calc. for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{7} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 432.2506$, found 432.2540. Anal. HPLC $97.5 \%\left(\mathrm{R}_{\mathrm{t}}=3.055\right.$ min).

4.2.2.49. 1-Cyclohexyl-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)-1-(1-

methyl-1H-indol-5-yl)urea (217). Starting with compound 95 following the general procedure 10, compound 217 was obtained as white solid, yield $56 \%, \mathrm{mp}=51-52{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~d}, J=1.65 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 1 \mathrm{H})$, $7.12(\mathrm{~d}, J=3.12 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=2.01,8.61 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{dd}, J$ $=0.72,3.12 \mathrm{~Hz}, 1 \mathrm{H}), .4 .48-4.40(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{t}, J=5.70 \mathrm{~Hz}, \mathrm{NH}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.77$ $(\mathrm{t}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 3.12(\mathrm{q}, J=6.60 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{~d}, J=0.93 \mathrm{~Hz}, 3 \mathrm{H}), 1.89-1.85$ $(\mathrm{m}, 2 \mathrm{H}), 1.82(\mathrm{p}, J=6.78 \mathrm{~Hz}, 2 \mathrm{H}), 1.72-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.30$ (m, 2H0, 1.09-0.97 (m, 2H), 0.88-0.80 (m, 1H). MS (ESI) m/z $394[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) calc. for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 394.2601$, found 394.2613. Anal. HPLC $99.5 \%\left(\mathrm{R}_{\mathrm{t}}=5.339 \mathrm{~min}\right)$.
4.2.2.50. 1-(Cyclopentylmethyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)-1-(1-methyl-1H-indol-5-yl)urea (218)). Starting with compound 96 following the general procedure 10, compound 218 was obtained as white solid, yield $56 \%, \mathrm{mp}=$ $66-67{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43(\mathrm{~d}, J=1.65 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.61$ $\mathrm{Hz}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=3.12 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{dd}, J=1.83,8.40 \mathrm{~Hz}, 1 \mathrm{H})$, $6.67(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=3.09 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{t}, J=5.67 \mathrm{~Hz}, \mathrm{NH}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.79$ (t, $J=7.35 \mathrm{~Hz}, 2 \mathrm{~h}), 3.66(\mathrm{~d}, J=7.50 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{q}, J=6.60 \mathrm{~Hz}, 2 \mathrm{H}), 2.09(\mathrm{~d}, J=$ $0.72 \mathrm{~Hz}, 3 \mathrm{H}), 2.04-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{p}, J=6.75 \mathrm{~Hz}, 2 \mathrm{H} 0,1.65-1.57(\mathrm{~m}, 4 \mathrm{H}), 1.48-$ $1.42(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.20(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 394[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) calc. for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 394.2601$, found 394.2596. Anal. HPLC $100.0 \%\left(\mathrm{R}_{\mathrm{t}}=5.480\right.$ min).
4.2.2.51. 1-(4-Fluorobenzyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)-1-(1-methyl-1H-indol-5-yl)urea (219). Starting with compound 97 following the general procedure 10, compound 219 was obtained as white solid, yield $51 \%, \mathrm{mp}=55-56^{\circ} \mathrm{C}$.

PART II1- SAR MODIFICATION OF HETEROCYCLICS IN C REGION WITH

 UREA TYPE${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{dd}, J=5.49,8.58 \mathrm{~Hz}, 2 \mathrm{H})$, $7.10(\mathrm{~d}, J=3.12 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{t}, J=8.79 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{dd}, J=2.01 \mathrm{~Hz}, 1 \mathrm{H}), 6.67$ $(\mathrm{s}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=3.12 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 2 \mathrm{H}), 4.27(\mathrm{t}, J=5.94 \mathrm{~Hz}, \mathrm{NH}), 3.78(\mathrm{~s}$, $3 \mathrm{H} 0,3.75(\mathrm{t}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 3.18(\mathrm{q}, J=6.57 \mathrm{~Hz}, 2 \mathrm{H}), 2.09(\mathrm{~d}, J=0.90 \mathrm{~Hz}, 3 \mathrm{H})$, $1.86(\mathrm{p}, J=7.50 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 420[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) calc. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{FN}_{5} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 420.2194$, found 420.2195. Anal. HPLC $95.6 \%\left(\mathrm{R}_{\mathrm{t}}=4.317\right.$ min
4.2.2.52. $\quad 1$-Cyclohexyl-1-(1,3-dimethyl-1H-indol-5-yl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)urea (220). Starting with compound 98 following the general procedure 10, compound 220 was obtained as white solid, yield $55 \%, \mathrm{mp}=79-80^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{~s}, 1 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.89(\mathrm{~m}, 2 \mathrm{H})$, $6.71(\mathrm{~s}, 1 \mathrm{H}), 4.48-4.40(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{t}, J=5.04 \mathrm{~Hz}, \mathrm{NH}), 3.81(\mathrm{t}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H})$, $3.75(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{q}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.86(\mathrm{~m}, 2 \mathrm{H})$, $1.80(\mathrm{p}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 1.71-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.36(\mathrm{~m}, 2 \mathrm{H})$, 1.16-1.07 (m, 2H), 0.85-0.81 (m, 1H). MS (ESI) $m / z 408[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) calc. for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 408.2758$, found 408.2764. Anal. HPLC 96.9\% $\left(\mathrm{R}_{\mathrm{t}}=6.637\right.$ min).
4.2.2.53. 1-(Cyclopentylmethyl)-1-(1,3-dimethyl-1H-indol-5-yl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)urea (221). Starting with compound 99 following the general procedure 10, compound 221 was obtained as white solid, yield 51%, mp $=53-53{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.55 \mathrm{~Hz}$, $1 \mathrm{H}), 7.00(\mathrm{dd}, J=1.70,8.45 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{t}, J=5.65 \mathrm{~Hz}$, NH), $3.80(\mathrm{t}, J=7.25 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~d}, J=7.70 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{q}, J=$ $6.35 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.03-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{p}, J=6.75 \mathrm{~Hz}, 2 \mathrm{H})$, $1.65-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.47-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.23(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 408[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) calc. for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 408.2758$, found 408.2765. Anal. HPLC $98.6 \%\left(\mathrm{R}_{\mathrm{t}}=6.982 \mathrm{~min}\right)$.
4.2.2.54. 1-(1,3-Dimethyl-1H-indol-5-yl)-1-(4-fluorobenzyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)urea (222). Starting with compound 100 following the general procedure 10, compound 222 was obtained as white solid, yield $51 \%, \mathrm{mp}=$ $71-72{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~s}, 1 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 4 \mathrm{H}), 6.89(\mathrm{t}, J=$ $8.79 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{dd}, J=1.83,8.40 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{~s}$, $2 \mathrm{H}), 4.25(\mathrm{t}, J=5.67 \mathrm{~Hz}, \mathrm{NH}), 3.79(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{q}, J=$

PART III- SAR MODIFICATION OF HETEROCYCLICS IN C REGION WITH UREA TYPE
$6.39 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{p}, J=6.60 \mathrm{~Hz}, 2 \mathrm{H})$. $\mathrm{MS}(\mathrm{ESI}) m / z 434[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) calc. for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{FN}_{5} \mathrm{O}[\mathrm{M}+\mathrm{H}]+434.2351$, found 434,2363 . Anal. HPLC $99.6 \%\left(\mathrm{R}_{\mathrm{t}}=5.012\right.$ min).
4.2.2.55. 1-Cyclohexyl-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)-1-(1-propyl-1H-indol-5-yl)urea (223). Starting with compound 101 following the general procedure 10, compound 223 was obtained as white solid, yield $51 \%, \mathrm{mp}=44-45^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~d}, J=1.76 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.60 \mathrm{~Hz}, 1 \mathrm{H})$, $7.25(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=3.08 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=1.88,8.56 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H})$, $6.49(\mathrm{~d}, J=3.08 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.40(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{t}, J=7.12 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{t}, J=$ $5.76 \mathrm{~Hz}, \mathrm{NH}), 3.77(\mathrm{t}, J=7.36 \mathrm{~Hz}, 2 \mathrm{H}), 3.12(\mathrm{q}, J=6.52 \mathrm{~Hz}, 2 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.92-$ $1.85(\mathrm{~m}, 4 \mathrm{H}), 1.81(\mathrm{p}, J=6.76 \mathrm{~Hz}, 2 \mathrm{H}), 1.69-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.43-$ $1.32(\mathrm{~m}, 2 \mathrm{H}), 1.10-1.00(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{t}, J=7.44 \mathrm{~Hz}, 3 \mathrm{H}), 0.87-0.81(\mathrm{~m}, 1 \mathrm{H})$. MS (ESI) $m / z 422[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) calc. for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 422.2914$, found 422.2929. Anal. HPLC $98.7 \%\left(\mathrm{R}_{\mathrm{t}}=7.266\right.$ min).
4.2.2.56. 1-(Cyclopentylmethyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)-1-(1-propyl-1H-indol-5-yl)urea (224). Starting with compound 102 following the general procedure 10, compound 224 was obtained as white solid, yield $56 \%, \mathrm{mp}=$ $52-53{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.43(\mathrm{~d}, J=1.83 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.61$ $\mathrm{Hz}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=3.09 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=2.01,8.61 \mathrm{~Hz}, 1 \mathrm{H})$, $6.67(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=3.12 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{t}, J=5.67 \mathrm{~Hz}, \mathrm{NH}), 4.10(\mathrm{t}, J=6.96 \mathrm{~Hz}$, $2 \mathrm{H}), 3.79(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~d}, J=7.68 \mathrm{~Hz}, 2 \mathrm{H}), 3.16(\mathrm{q}, J=6.60 \mathrm{~Hz}, 2 \mathrm{H})$, $2.09(\mathrm{~d}, J=1.11 \mathrm{~Hz}, 3 \mathrm{H}), 1.88-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.68-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.60-1.42(\mathrm{~m}, 2 \mathrm{H})$, $1.27(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=7.32 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 422[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) calc. for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 422.2914$, found 422.2930. Anal. HPLC $100.0 \%\left(\mathrm{R}_{\mathrm{t}}=7.708 \mathrm{~min}\right)$.
4.2.2.57. 1-(4-Fluorobenzyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)-1-(1-propyl-1H-indol-5-yl)urea (225). Starting with compound $\mathbf{1 0 3}$ following the general procedure 10, compound 225 was obtained as white solid, yield $58 \%, \mathrm{mp}=73-74{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~d}$, $J=3.12 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{t}, J=8.76 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{dd}, J=2.01,8.58 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~s}$,

PART III- SAR MODIFICATION OF HETEROCYCLICS IN C REGION WITH UREA TYPE
$1 \mathrm{H}), 6.42(\mathrm{~d}, J=2.37 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 2 \mathrm{H}), 4.31(\mathrm{t}, J=4.59 \mathrm{~Hz}, \mathrm{NH}), 4.07(\mathrm{t}, J=$ $7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.19(\mathrm{q}, J=6.57 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{~d}, J=0.90$ $\mathrm{hz}, 3 \mathrm{H} 0,1.88-1.77(\mathrm{~m}, 4 \mathrm{H}), 0.95(\mathrm{t}, J=7.35 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 448[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) calc. for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{FN}_{5} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 448.2507$, found 448.2520. Anal. HPLC $100.0 \%\left(\mathrm{R}_{\mathrm{t}}=4.851 \mathrm{~min}\right)$.
4.2.2.58. $\quad 1$-Cyclohexyl-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)-1-(3-methylbenzofuran-5-yl)urea (226). Starting with compound 112 following the general procedure 10, compound 226 was obtained as white solid, yield $42 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=8.61,2.19$ $\mathrm{Hz}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 4.49-4.41(\mathrm{tt}-\mathrm{like}, 1 \mathrm{H}), 3.89(\mathrm{t}-\mathrm{like}, 1 \mathrm{H}), 3.77(\mathrm{t}, J=7.32 \mathrm{~Hz}$, $2 \mathrm{H}), 3.12(\mathrm{q}, J=6.42 \mathrm{~Hz}, 2 \mathrm{H}), 2.23(\mathrm{~d}, J=1.11 \mathrm{~Hz}, 3 \mathrm{H}), 2.09(\mathrm{~d}, J=0.72 \mathrm{~Hz}, 3 \mathrm{H})$, $1.89-1.78(\mathrm{~m}, 4 \mathrm{H}), 1.70(\mathrm{~d}, J=12.27 \mathrm{~Hz}, 2 \mathrm{H}), 1.54(\mathrm{~d}-\mathrm{like}, 1 \mathrm{H}), 1.45-1.32(\mathrm{~m}, 2 \mathrm{H})$, 1.07-0.99 (m, 2H), 0.92-0.78 (m, 1H). HRMS (ESI) calc. for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 395.2442, found 395.2448.
4.2.2.59. 1-(4-Fluorobenzyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)-1-(3-methylbenzofuran-5-yl)urea (227). Starting with compound 113 following the general procedure 10, compound 227 was obtained as white solid, yield 51%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44(\mathrm{~d}, J=1.08 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.58 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$ $(\mathrm{s}, 1 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 3 \mathrm{H}), 6.92(\mathrm{t}, J=8.61 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{dd}, J=8.61,2.19 \mathrm{~Hz}, 1 \mathrm{H})$, $6.68(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 2 \mathrm{H}), 4.19(\mathrm{t}, J=5.70 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.17(\mathrm{q}$, $J=6.21 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{~d}, J=1.29 \mathrm{~Hz}, 3 \mathrm{H}), 2.10(\mathrm{~d}, J=0.90 \mathrm{~Hz}, 3 \mathrm{H}), 1.84$ (quintet, $J=7.14 \mathrm{~Hz}, 2 \mathrm{H}$). HRMS (ESI) calc. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{FN}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 421.2034$, found 421.2048.
4.2.2.60. 1-(4-Fluorobenzyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)-1-(3-methylbenzofuran-6-yl)urea (228). Starting with compound 114 following the general procedure 10, compound 228 was obtained as white solid, yield $22 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41(\mathrm{~d}, J=8.22 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{q}, J=1.11 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-$ $7.10(\mathrm{~m}, 3 \mathrm{H}), 7.05(\mathrm{~d}, J=1.47 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-6.79(\mathrm{~m}, 4 \mathrm{H}), 4.76$ (s, 2H), 4.23 (t-like, $1 \mathrm{H}), 3.77$ (t-like, 2H), 3.13 (q, $J=5.88 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{~d}, J=1.29 \mathrm{~Hz}, 3 \mathrm{H}), 2.06$ (s, 3 H), 1.81-1.74 (m, 2H). HRMS (ESI) calc. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{FN}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$421.2034, found 421.2043.

PART III- SAR MODIFICATION OF HETEROCYCLICS IN C REGION WITH UREA TYPE
4.2.2.61. $\quad 1$-(Benzo[d]oxazol-5-yl)-1-cyclohexyl-3-(3-(5-methyl-1H-imidazol-$1-y l) p r o p y l) u r e a(229)$. Starting with compound 133 following the general procedure 10, compound 229 was obtained as white solid, yield $55 \%, \mathrm{mp}=84-85^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=1.83 \mathrm{~Hz}$, $1 \mathrm{H}),(\mathrm{s}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=2.01,8.58 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 4.47-4.396(\mathrm{~m}, 1 \mathrm{H}), 3.80$ $(\mathrm{t}, J=4.95 \mathrm{~Hz}, \mathrm{NH}), 3.77(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.13(\mathrm{q}, J=6.57 \mathrm{~Hz}, 2 \mathrm{H}), 2.07(\mathrm{~d}, J=$ $0.93 \mathrm{~Hz}, 3 \mathrm{H}), 1.86-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{p}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 1.70-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.53-$ $1.49(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.01-0.93(\mathrm{~m}, 2 \mathrm{H}), 0.88-0.78(\mathrm{~m}, 1 \mathrm{H})$. MS (ESI) $m / z 382[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) calc. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 328.2238$, found 382.2251. Anal. HPLC $96.1 \%\left(\mathrm{R}_{\mathrm{t}}=4.279\right.$ min).

4.2.2.62. 1-(Benzo[d]oxazol-5-yl)-1-(cyclopentylmethyl)-3-(3-(5-methyl-1H-

 imidazol-1-yl)propyl)urea (230). Starting with compound 134 following the general procedure 10, compound 230 was obtained as white solid, yield $57 \%, \mathrm{mp}=60-61^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.65-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{dd}$, $J=2.01,8.40 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 4.14(\mathrm{t}, J=5.04 \mathrm{~Hz}, \mathrm{NH}), 3.81(\mathrm{t}, J=7.14 \mathrm{~Hz}$, $2 \mathrm{H}), 3.67(\mathrm{~d}, J=7.68 \mathrm{~Hz}, 2 \mathrm{H}), 3.18(\mathrm{q}, J=6.78 \mathrm{~Hz}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.98-1.93(\mathrm{~m}$, $1 \mathrm{H}), .87(\mathrm{p}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 1.65-1.57(\mathrm{~m}, 4 \mathrm{H}), 1.50-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.19(\mathrm{~m}$, $2 \mathrm{H})$ MS (ESI) $m / z 382[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) calc. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 382.2238$, found 382.2250. Anal. HPLC $95.6 \%\left(\mathrm{R}_{\mathrm{t}}=4.337\right.$ min).4.2.2.63. $\quad 1$-(Benzo[d]oxazol-5-yl)-1-(4-fluorobenzyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)urea (231). Starting with compound 135 following the general procedure 10, compound 231 was obtained as white solid, yield $51 \%, \mathrm{mp}=74-75^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=$ $2.01 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=5.31,8.61 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J=2.01,8.40$ $\mathrm{Hz}, 1 \mathrm{H}), 6.94(\mathrm{tt}, J=2.19,8.61 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 4.83(\mathrm{~s}, 2 \mathrm{H}), 4.16(\mathrm{t}, J=4.95$ $\mathrm{Hz}, \mathrm{NH}), 3.82(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{q}, J=6.78 \mathrm{~Hz}, 2 \mathrm{H}), 2.10(\mathrm{~d}, J=0.90 \mathrm{~Hz}$, $3 \mathrm{H}), 1.90(\mathrm{p}, J=6.96 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 408[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) calc. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{FN}_{5} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 408.1830$, found 408.1841. Anal. HPLC 96.1\% $\left(\mathrm{R}_{\mathrm{t}}=4.279\right.$ min).
4.2.2.64. $\quad 1$-(Benzo[d]oxazol-6-yl)-1-cyclohexyl-3-(3-(5-methyl-1H-imidazol1 -yl)propyl)urea (232). Starting with compound $\mathbf{1 3 6}$ following the general procedure 176

10, compound 232 was obtained as white solid, yield $45 \%, \mathrm{mp}=96-97^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=1.65 \mathrm{~Hz}$, $1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=1.83,8.25 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 4.46-4.35(\mathrm{~m}, 1 \mathrm{H})$, $3.81(\mathrm{t}, J=6.03 \mathrm{~Hz}, \mathrm{NH}), 3.75(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.12(\mathrm{q}, J=6.57 \mathrm{~Hz}, 2 \mathrm{H}), 2.05$ $(\mathrm{s}, 3 \mathrm{H}), 1.84-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{p}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.47$ $(\mathrm{m}, \quad 1 \mathrm{H}), \quad 1.39-.26 \quad(\mathrm{~m}, \quad 2 \mathrm{H}), \quad 1.01-0.92 \quad(\mathrm{~m}, \quad 2 \mathrm{H}), \quad 0.89-0.73 \quad(\mathrm{~m}, \quad 1 \mathrm{H})$. MS (ESI) $m / z 382[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI)
calc.
for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 382.2238$, found 382.2248. Anal. HPLC 97.1\% $\left(\mathrm{R}_{\mathrm{t}}=4.270\right.$ min).
4.2.2.65. $\quad 1$-(Benzo[d]oxazol-6-yl)-1-(cyclopentylmethyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)urea (233). Starting with compound 137 following the general procedure 10, compound 233 was obtained as white solid, yield $55 \%, \mathrm{mp}=130-131$ ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.40 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J$ $=1.83 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=2.01,8.43 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{t}, j$ $=5.85 \mathrm{~Hz}, \mathrm{NH}), 3.77(\mathrm{t}, j=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{~d}, j=7.68 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{q}, J=6.78$ $\mathrm{Hz}, 2 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.97-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{p}, J=6.75 \mathrm{~Hz}, 2 \mathrm{H}), 1.61-1.53(\mathrm{~m}$, $4 \mathrm{H}), 1.48-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.21-1.16(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 382[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{HRMS}$ (ESI) calc. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 382.2238$, found 382.2250. Anal. HPLC 95.6\% $\left(\mathrm{R}_{\mathrm{t}}=\right.$ 4.334 min).

4.2.2.66. $\quad 1$-(Benzo[d]oxazol-6-yl)-1-(4-fluorobenzyl)-3-(3-(5-methyl-1H-

imidazol-1-yl)propyl)urea (234). Starting with compound 138 following the general procedure 10, compound 234 was obtained as white solid, yield $55 \%, \mathrm{mp}=48-49^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H})$, 7.18 (dd, $J=5.49,8.43 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{dd}, J=1.83,8.22 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 4.83$ ($\mathrm{s}, 2 \mathrm{H} 0,4.18(\mathrm{t}, J=6.03 \mathrm{~Hz}, \mathrm{NH}), 3.83(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.12(\mathrm{q}, J=6.42 \mathrm{~Hz}$, $2 \mathrm{H}), 2.11(\mathrm{~d}, J=0.72 \mathrm{~Hz}, 3 \mathrm{H}), 1.88(\mathrm{p}, J=6.57 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 408[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI) calc. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{FN}_{5} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 408.1830$, found 408.1837.
4.2.2.67. 1-(Benzo[d]thiazol-5-yl)-1-cyclohexyl-3-(3-(5-methyl-1H-imidazol1 -yl)propyl)urea (235). Starting with compound 139 following the general procedure 10, compound 235 was obtained as white solid, yield 67%. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 9.10(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.43 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=1.83 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~s}$, $1 \mathrm{H}), 7.22(\mathrm{dd}, J=8.43,2.01 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{tt}, J=12.06,3.69 \mathrm{~Hz}, 1 \mathrm{H})$,

PART III- SAR MODIFICATION OF HETEROCYCLICS IN C REGION WITH UREA TYPE
$3.92(\mathrm{t}, J=5.49 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{t}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{q}, J=6.21 \mathrm{~Hz}, 2 \mathrm{H}), 2.11(\mathrm{~s}$, $3 \mathrm{H}), 1.92(\mathrm{~d}, J=12.99 \mathrm{~Hz}, 2 \mathrm{H}), 1.88-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~d}, J=13.17 \mathrm{~Hz}, 2 \mathrm{H}), 1.56$ $(\mathrm{d}, J=12.45 \mathrm{~Hz}, 1 \mathrm{H}), 1.47-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{qd}, J=12.27,3.66 \mathrm{~Hz}, 2 \mathrm{H}), 0.90-$ $0.80(\mathrm{~m}, 1 \mathrm{H})$.
4.2.2.68. $\quad 1$-(Benzo[d]thiazol-5-yl)-1-(cyclopentylmethyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)urea (236). Starting with compound 140 following the general procedure 10, compound 236 was obtained as white solid, yield 71%. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.07(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.58 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=1.83 \mathrm{~Hz}, 1 \mathrm{H})$, $7.31-7.28(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{t}-\mathrm{like}, 1 \mathrm{H}), 3.79(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{~d}$, $J=7.68 \mathrm{~Hz}, 2 \mathrm{H}), 3.16(\mathrm{q}, J=6.06 \mathrm{~Hz}, 2 \mathrm{H}), 2.10(\mathrm{~d}, J=0.57 \mathrm{~Hz}, 3 \mathrm{H}), 2.01-1.94(\mathrm{~m}$, $1 \mathrm{H}), 1.83$ (quintet, $J=7.14 \mathrm{~Hz}, 2 \mathrm{H}$), 1.70-1.55 (m, 4H), 1.50-1.45 (m, 2H), 1.27-1.23 (m, 2H). HRMS (ESI) calc. for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{5} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} 398.2009$, found 398.2020.
4.2.2.69. $\quad 1$-(Benzo[d]thiazol-5-yl)-1-(4-fluorobenzyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)urea (237). Starting with compound 141 following the general procedure 10, compound 237 was obtained as white solid, yield 58%. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.06(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.40 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=2.01 \mathrm{~Hz}, 1 \mathrm{H})$, 7.31 (s, 1H), 7.22-7.18 (dd, $J=8.43,7.29 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{dd}, J=8.40,2.04 \mathrm{~Hz}, 2 \mathrm{H})$, $6.68(\mathrm{~s}, 1 \mathrm{H}), 4.89(\mathrm{~s}, 2 \mathrm{H}), 4.29(\mathrm{t}, J=5.88 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{q}$, $J=6.60 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.88$ (quintet, $J=7.14 \mathrm{~Hz}, 2 \mathrm{H}$). HRMS (ESI) calc. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{FN}_{5} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} 424.1602$, found 424.1609.
4.2.2.70. 1-(Benzo[d]thiazol-6-yl)-1-cyclohexyl-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)urea (238). Starting with compound 142 following the general procedure 10, compound 238 was obtained as white solid, yield 64%. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\left.\mathrm{CDCl}_{3}\right) \delta 9.099 \mathrm{~s}, 1 \mathrm{H}\right), 8.18(\mathrm{~d}, J=8.40 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=1.83 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~s}$, $1 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{tt}, J=8.22,3.27 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{t}, J=6.60$ $\mathrm{Hz}, 1 \mathrm{H}), 3.80(\mathrm{t}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 3.16(\mathrm{q}, J=6.57 \mathrm{~Hz}, 2 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.71$ $(\mathrm{m}, 6 \mathrm{H}), 1.56(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.47-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.10-0.97(\mathrm{~m}, 2 \mathrm{H}), 0.89-0.80$ ($\mathrm{m}, 1 \mathrm{H}$). HRMS (ESI) calc. for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{5} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} 398.2009$, found 398.2023.
4.2.2.71. $\quad 1$-(Benzo[d]thiazol-6-yl)-1-(cyclopentylmethyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)urea (239). Starting with compound 143 following the general procedure 10, compound 239 was obtained as off-white solid, yield 73%. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.04(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=2.01 \mathrm{~Hz}$,

PART II1-SAR MODIFICATION OF HETEROCYCLICS IN C REGION WITH UREA TYPE
$1 \mathrm{H}), 7.34(\mathrm{dd}, J=8.61,2.19 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 4.17(\mathrm{t}, J=5.85 \mathrm{~Hz}$, $1 \mathrm{H}), 3.79(\mathrm{t}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{~d}, J=7.77 \mathrm{~Hz}, 2 \mathrm{H}), 3.16(\mathrm{q}, J=6.24 \mathrm{~Hz}, 2 \mathrm{H})$, $2.10(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.83$ (quintet, $J=6.96 \mathrm{~Hz}, 2 \mathrm{H}), 1.62-1.54(\mathrm{~m}, 4 \mathrm{H})$, 1.50-1.47 (m, 2H), 1.27-1.24 (m, 2H). HRMS (ESI) calc. for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{5} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}$ 398.2009, found 398.2020.
4.2.2.72. 1-(Benzo[d]thiazol-6-yl)-1-(4-fluorobenzyl)-3-(3-(5-methyl-1H-imidazol-1-yl)propyl)urea (240). Starting with compound 144 following the general procedure 10, compound 240 was obtained as white solid, yield 49%. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.04(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.58 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=2.01 \mathrm{~Hz}, 1 \mathrm{H})$, $7.32(\mathrm{~s}, 1 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 3 \mathrm{H}), 6.99-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 4.87(\mathrm{~s}, 2 \mathrm{H}), 4.34(\mathrm{t}$, $J=5.67 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{t}, J=7.20 \mathrm{~Hz}, 2 \mathrm{H}), 3.23(\mathrm{q}, J=6.78 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H})$, 1.88 (quintet, $J=6.96 \mathrm{~Hz}, 2 \mathrm{H}$). HRMS (ESI) calc. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{FN}_{5} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}$ 424.1602, found 424.1614 .

References

1. Colin L. Masters et al, Nature review disease primers, 2015, 56
2. A. Über eine eigenartige Erkrankung der Hirnrinde Allgemeine Zeitschrift fur P sychiatrie und Psychisch-gerichtliche Medizin. 1907, Jan ; 64, 146-148
3. World Alzheimer report 2016
4. Kochanek KD, Murphy SL, Xu JQ, Tejada,Vera B. Deaths: Final Data for 201
5. Villemagne VL, Burnham S, Bourgeat P, Brown B, Ellis KA, Salvado O, et al. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alz heimer's disease: A prospective cohort study. Lancet Neurol, 2013, 12(4):35767
6. www.preventad.com/ad symptom.html
7. alz.org/alzheimers_disease_causes_risk_factors.asp
8. Dorothy P. Rice, ScD(Hon); Howard M. Fillit, MD; Wendy Max, PhD; David S . Knopman, MD; John R. Lloyd, BS; and Sandeep Duttagupta, PhD, Prevalence , Costs, and Treatment of Alzheimer's Disease and Related Dementia: A Manag ed Care Perspective, The American Journal of Managed Care, Vol. 7, No. 8
9. Iketa et al, Risk factors for Alzheimer's disease, Brain Nerve. 2010, Jul; 62(7):6 79-90
10. Costs of Alzheimer's to medicare and Medicaid, USA 2017
11. Rogers SL, Friedhoff LT. The efficacy and safety of donepezil in patients with Alzheimer's disease: results of a US multicentre, randomized, double-blind, placebo-controlled trial. The Donepezil Study Group. Dementia, 1996; 7:293303
12. Crews, L., Rockenstein, E. and Masliah, E. APP transgenic modeling of Alzhei mer's disease: mechanisms of neurodegeneration and aberrant neurogenesis. Br ain Struct. Funct., 2010, 214, 111-126
13. Glenner, G. G. \& Wong, C. W. Alzheimer's disease: initial report of the purific ation and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 1984, 120, 885-890
14. C. L. Masters et al, Amyloid plaque core protein in Alzheimer disease and Do wn syndrome. Proc. Natl Acad. Sci. USA 82, 1985, 4245-4249
15. Grundke-Iqbal, I. et al. Abnormal phosphorylation of the microtubuleassociated protein tau in Alzheimer cytoskeletal pathology. Proc. Natl Acad. Sci. USA 83, 1986, 4913-4917
16. Ihara, Y., Nukina, N., Miura, R. \& Ogawara, M. Phosphorylated tau protein is i ntegrated into paired helical filaments in Alzheimer's disease. J. Biochem. (Tok уо) 99, 1986, 1807-1810
17. Kosik KS. et al, Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease, Proc. Natl Acad. S ci. USA 83, 1986, 4044-4048
18. Colin L. Masters, Randall Bateman, Kaj Blennow, Christopher C. Rowe, Reisa A. Sperling and Jeffrey L. Cummings, Alzheimer's disease, Nature Reviews, Disease Primers, 2015, Vol. 1
19. Goate A et al, Segregation of a missense mutation in the amyloid precursor pro tein gene with familial AD, Nature, 1991, 349, 704-706
20. Menendez-Gonzaltes M et al, APP processing and the APP- KPI domain involvement in the amyloid cascade, Neurodegener Dis, 2005, 2, 277-283
21. Wasco W et al, Identification of a mouse brain cDNA that encodes a protein re lated to the AD-associated amyloid beta protein precursor, Proc Natl Acad Sic USA, 1992, 89, 10758-10762
22. Wasco et al, Isolation and characterizarion of APLP2 encodding a homologue of the AD's associated amyloide be protein precursor, Naat Genet, 1993, 5, 95100
23. Can Zhang et al, Natural Compounds That Modulate BACE1- processing of Amyloid-beta Precursor Protein in Alzheimer's Disease, Discovery medicine, 2012
24. Xu H et al, Generation of Alzhimer beta - amyloid protein in the TGN in the apparent absence of vesicle formation, Proc Natl AxD Acid USA, 1997, 94, 3748-3752
25. Green field JP et al, Endoplasmic reticulum and TGN generate distinct populat ionin Alzheimer beta-amyloid peptides, Proc Natl Acad Sci USA, 1999, 96, 742 -747
26. Sisodia SS et al, Beta-amyloid precursor protein cleavage by a membranebound protease, Proc Natl Acad Sci USA, 1992, 89, 6075-6079
27. Nordstedt C, Caporaso GL, Thyberg J, Gandy SE, Greengard P: Identification of the Alzheimer beta/A4 amyloid precursor protein in clathrin- coated vesicles purified from PC12 cells. J Biol Chem, 1993, 268:608-612
28. Furukawa K, Sopher BL, Rydel RE, Begley JG, Pham DG, Martin GM, Fox M , Mattson MP: Increased activity-regulating and neuroprotective efficacy of alpha-secretase- derived secreted amyloid precursor protein conferred by a Cterminal heparin-binding domain, J Neurochem, 1996, 67:1882-1896
29. Ohsawa I, Takamura C, Morimoto T, Ishiguro M, Kohsaka S: Amino-terminal region of secreted form of amyloid precursor protein stimulates proliferation of neural stem cells, Eur J Neurosci, 1999, 11:1907-1913
30. Caporaso GL, Takei K, Gandy SE, Matteoli M, Mundigl O, Greengard P, DeC amilli P: Morphologic and biochemical analysis of the intracellular trafficking o f the Alzheimer beta/A4 amyloid precursor protein, J Neurosci, 1994, 14:31223138
31. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R: β-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE, Science, 1999, 286:735-741
32. Nikolaev A, McLaughlin T, O'Leary DD, et al: APP binds DR6 to trigger axon pruning and neuron death via distinct caspases, Nature, 2009, 457:981-989
33. Li H, Wang B, Wang Z, Guo Q, Tabuchi K, Hammer RE, Sudhof TC, Zheng H: Soluble amyloid precursor protein (APP) regulates transthyretin and Klotho gene expression without rescuing the essential function of APP, Proc Natl Acad Sci USA, 2010, 107:17362-17367
34. Shankar GM et al, AD: synaptic dysfunction and Abeta, Mol Neurodegener, 20 09, 4, 48
35. Kimberly WT, LaVoie MJ, Ostaszewski BL, Ye W, Wolfe MS, Selkoe DJ: Ga mma-secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2, Proc Natl Acad Sci, USA, 2003, 100:6382-6387.
36. Takasugi N, Tomita T, Hayashi I, Tsuruoka M, Niimura M, Takahashi Y, Thin akaran G, Iwatsubo T: The role of presenilin cofactors in the gammasecretase c omplex, Nature, 2003, 422:438-441
37. M. Cruts, C. M. van Duijn, H. Backhovens et al., Estimation of the genetic con tribution of presenilin-1 and -2 mutations in a population-based study of presenile AD, Human Molecular Genetics, 1998, vol. 7, no. 1, pp. 43-51
38. S. Jayadev, J. B. Leverenz, E. Steinbart et al., Alzheimer's disease phenotypes and genotypes associated with mutations in presenilin 2, 2010, Brain, vol. 133, no. 4, pp. 1143-1154
39. Goedert M, Spillantini MG, Jakes R, et al, Multiple isoforms of human microt ubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease, Neuron, 1989, 3:519e526
40. Brunden KR, Trojanowski JQ, Lee VM. Advances in tau-focused drug discovery for AD and related tauopathies, Nat Rev Drug Discov, 2009; 8(10):78 3-793.97
41. Busciglio J, Lorenzo A, Yeh J, Yankner BA, Beta-amyloid fibrils induce tau phosphorylation and loss of microtubule binding, Neuron., 1995, Apr; 14(4):87 9-88
42. Ferreira A, Lu Q, Orecchio L, Kosik KS, Selective phosphorylation of adult ta u isoforms in mature hippocampal neurons exposed to fibrillar A beta, Mol Cell Neurosci. 1997; 9(3): 220-34
43. A.P. Gunn et al., Pyroglutamate-A β : Role in the natural history of AD , The international Journal of Biochemistry \& CellBiology , 2010,42, 1915-1918
44. Bouter Y, Dietrich K, wittnam JL, Rezaei-Ghaleh N, Pillot T, PapotCouturier S, Lefebvre T, Sprenger F, wirths O, Zweckstetter M, Bayer TA, N truncated amyloid beta (Abeta) 4-42 forms stable aggregates and induces acute and long-lasting behavioral deficits, Acta Neuropathol, 2013, 126:189-205
45. Fisher, WH , Proc. Natl. Acad. Sci. USA 84, 1987, 3628-2632
46. Busby, W.H.J, et al, J. Biol. Chem, 1987, 262, 853808536
47. Oberg, L.A., et al, Eur. J. Biochem, 1998, 258, 214-222
48. Pohl, T., Zimmer, M., Mugele, K. \& Spiess, J. Primary structure and functional expression of a glutaminyl cyclase. Proc. Natl. Acad. Sci. USA 88, 1991, 10059 -10063
49. Sykes, P.A., Watson, S.J., Temple, J.S. \& Bateman, R.C.J. Evidence for tissuespecific forms of glutaminyl cyclase. FEBS Lett., 1999, 455, 159-161
50. Bateman, R. C., Jr., A spectrophotometric assay for glutaminylpeptide cyclizing enzymes. J. Neurosci. Methods, 1989, 30, 23-28
51. Pohl, T., Zimmer, M., Mugele, K. \& Spiess, J, Primary structure and functiona 1 expression of a glutaminyl cyclase. Proc. Natl Acad. Sci. USA 88, 1991, 10059 -10063
52. Bockers, T. M., Kreutz, M. R. \& Pohl, T., Glutaminyl-cyclase expression in bovine/porcine hypothalamus and pituitary. J. Neuroendocrinol. 1995, 7, 445453
53. Messer, Enzymatic cyclization of L-glutamine and L-glutaminyl peptides. Nature, 1963, 197, 1299
54. Kai-Fa Huang, Yi-Liang Liu, Wei-Ju Cheng, Tzu-Ping Ko, \& Andrew H.J. Wang, Crystal Structure of human glutaminyl cyclase, an enzyme responsible for protein N-terminal pyroglutamate formation, PNAS, 2005, vol. 102, 1311713122
55. He W. Barrow, Biochemistry, 1999, 38, 10871
56. Nusshaum J.M., Schilling S., Nature, 2012, 85,651
57. Igne Lues et al, A phase 1 study to evaluate the safety and pharmacokinetics of PQ912, a glutaminyl cyclase inhibitor, in healthy subjects, Alzheimer's \& Deme ntia: Translational Research \& Clinical Interventions, 2015, Volume 1, Issue 3, 182-195
58. https://www.alzforum.org/therapeutics/pq912
59. Hoang, V. H.; Tran, P. T.; Cui, M.; Ngo, V. T.; Ann, J.; Park, J.; Lee, J.; Choi, K.; Cho, H.; Kim, H.; Ha, H. J.; Hong, H. S.; Choi, S.; Kim, Y. H.; Lee, J. J. Me d. Chem. 2017, 60, 2573
60. Buchholz, M.; Heiser, U.; Schilling, S.; Niestroj, A. J.; Zunkel, K.; Demuth, H. U. J. Med. Chem. 2006, 49, 664
61. Buchholz, M.; Hamann, A.; Aust, S.; Brandt, W.; Bohme, L.; Hoffmann, T.; S chilling, S.; Demuth, H. U.; Heiser, U. J. Med. Chem. 2009, 52, 7069
62. Murakami, K.; Sasano, Y.; Tomizawa, M.; Shibuya, M.; Kwon, E.; Iwabuchi, Y. J. Am. Chem. Soc. 2014, 136, 17591
63. Levell, J.; Astles, P.; Eastwood, P.; Cairns, J.; Houille, O.; Aldous, S.; Merrim an, G.; Whiteley, B.; Pribish, J.; Czekaj, M.; Liang, G.; Maignan, S.; Guilloteau , J. P.; Dupuy, A.; Davidson, J.; Harrison, T.; Morley, A.; Watson, S.; Fenton, G .; McCarthy, C.; Romano, J.; Mathew, R.; Engers, D.; Gardyan, M.; Sides, K.; Kwong, J.; Tsay, J.; Rebello, S.; Shen, L.; Wang, J.; Luo, Y.; Giardino, O.; Lim , H. K.; Smith, K.; Pauls, H. Bioorg. Med. Chem. 2005, 13, 2859
64. Altman, R. A.; Shafir, A.; Choi, A.; Lichtor, P. A.; Buchwald, S. L. J. Org. Ch em. 2008, 73, 284
65. Salituro, F. G.; Saunders, J. O.; Yan, S.; Google Patents: 2010
66. Tran, P. T.; Hoang, V. H.; Thorat, S. A.; Kim, S. E.; Ann, J.; Chang, Y. J.; Na m, D. W.; Song, H.; Mook-
Jung, I.; Lee, J.; Lee, J. Bioorg. Med. Chem. 2013, 21, 3821
67. Schilling, S.; Hoffmann, T.; Wermann, M.; Heiser, U.; Wasternack, C.; Demut h, H. U. Anal. Biochem. 2002, 303, 49
68. Hwang, J. Y.; Huang, W.; Arnold, L. A.; Huang, R.; Attia, R. R.; Connelly, M. ; Wichterman, J.; Zhu, F.; Augustinaite, I.; Austin, C. P.; Inglese, J.; Johnson, R . L.; Guy, R. K. J. Biol. Chem. 2011, 286, 11895
69. Huang, K. F.; Liaw, S. S.; Huang, W. L.; Chia, C. Y.; Lo, Y. C.; Chen, Y. L.; Wang, A. H. J. Biol. Chem. 2011, 286, 12439
70. Daniel Ramsbeck, Mirko Buchholz, Birgit Koch, Livia Böhme, Torsten Hoff m ann, HansUlrich Demuth, and Ulrich Heiser, Structure-Activity Relationships of Benzimidazole-Based Glutaminyl Cyclase Inhibitors Featuring, J. Med. Chem, 2013, 56, 6613-6625
71. Li, M.; Dong, Y.; Yu, X.; Li, Y.; Zou, Y.; Zheng, Y.; He, Z.; Liu, Z.; Quan, J.; Bu, X.; Wu, H. J. Med. Chem. 2017, 60, 6664
72. Ngo, V.T.H.; Hoang, V-H.; Tran, P-T.; Ann, J.; Cui, M.; Park, G.; Choi, S.; Lee, J.; Kim, H.; Ha, H-J.; Choi, K.; Kim, Y-H.; Lee, J. Bioorg. Med. Chem. 2018, 26, 1035
73. Hielscher-Michael, S.; Griehl, C.; Buchholz, M.; Demuth, H-U.; Arnold, N.; Wessjohann, L. A. Mar, Drugs 2016, 14, 203
74. Li, M.; Dong, Y.; Yu, X.; Zou, Y.; Zheng, Y.; Bu, X.; Quan, J.; He, Z.; Wu, H. Bioorg. Med. Chem. 2016, 24, 2280
75. Szaszkó, M.; Hajdú, I.; Flachner, B.; Dobi, K.; Magyar, C.; Simon, I.; Lörincz, Z.; Kapui, Z.; Pázmány, T.; Cseh, S.; Dormán, G. Mol. Divers 2017, 21, 175
76. Safety and tolerability of PQ912 in subjects with early alzheimer's disease (sap hir), https://clinicaltrials.gov/ct2/show/NCT02389413
77. New alzheimer's drug shows safety, hints of efficacy in phase 2 , https://www.a lzforum.org/news/research-news/new-alzheimers-drug-shows-safety-hints-efficacy-phase-2
78. The Metablism of 4-methoxy- β-chloro styrene by Liver Microsomal Monooxygenase, B.Mansour and V. Ullrich, Biochemical Pharmacology. Vol. 28, pp. 2321-2326
79. Torsten Hoffmann, Antje Meyer, Ulrich Heiser, Stephan Kurat, Livia Böhme, Martin Kleinschmidt, Karl-Ulrich Bühring, Birgit Hutter-Paier, Martina Farcher, Hans-Ulrich Demuth, Inge Lues, Stephan Schilling, Glutaminyl Cyclase Inhibitor PQ912 Improves Cognition in Mouse Models of Alzheimer's Disease Studies on Relation to Effective Target Occupancy, J Pharmacol Exp Ther, 2017, 362: 119-130
80. PCT Int. Appl., 2013028670, 28 Feb 2013
81. PCT Int. Appl., 2010046780, 29 Apr 2010
82. Patent Reference: WO2007084786, page 112
83. Toshiyuki K., Tohru Fukuyama, https://doi.org/10.1002/047084289X.rn00466
84. M. E. Dudley, M. M. Morshed, M. M. Hossain, A Convenient Method of Synt hesizing 3-Ethoxycarbonylbenzofurans from Salicylaldehydes and Ethyl Diazoacetate, Synthesis, 2006, 1711-1714.,
85. S. H. Cho, J. Y. Kim, S. Y. Lee, S. Chang, Angew. Chem. Int. Ed., 2009, 48, 91 27-9130
86. Diego Carnaroglio1, Katia Martina1, Giovanni Palmisano, Andrea Penoni, Claudia Domini, and Giancarlo Cravotto, One-pot sequential synthesis of isocyanates and urea derivatives via a microwave-assisted Staudinger-azaWittig reaction, , Beilstein J. Org. Chem. 2013, 9, 2378-2386.

알츠하이머 병 (Alzheimer 's disease, AD)은 기억력 상실과 인지력을 심각하게 저하시키는 지속적이고, 끊임 없는 신경 퇴행성의 장애로 간주된다. 지금까지 뇌에서 신경 독성 $\mathrm{A} \beta$ 종의 형성 수준을 낮추는 것이 AD 치료의 우선적인 병리학으로 간주되고 있다. 최근 연구사례들에 따르면 AD 환자의 뇌에서 과도하게 발현되어 농도가 높아진 pyroglutamate $(\mathrm{pE}-\mathrm{A} \beta)$ 는 $\mathrm{A} \beta$ 보다 빠르게 응집되고 더 큰 독성을 갖고 있다고 한다. $\mathrm{pE}-\mathrm{A} \beta$ 는 Glutaminyl Cyclase (QC) 라는 효소에 의해 Amino-terminally 절단된 $\mathrm{A} \beta$ 의 glutamate 3 또는 11 을 기질로 하여 cyclization 이 촉매작용이 일어나서 만들어진 생성물이다.

최근 임상 연구에 따르면 QC 는 AD 치료에 대한 대체적 치료표적이 될 수 있음을 보여주고 있다. 우리 연구 그룹에서는 일련의 QC 저해제의 연구 개발, 특히 기존의 저해제를 기준으로 B-region 과 C-region 에서의 구조적 변형을 통해 좀더 확장된 구조에 초점을 맞추고 있다. 이 연구에는 저희는 우선 Arg region 을 모방한 유사체의 구조 활성 관계 (SAR)에 대해 연구했다. Arg region 시리즈에서 대부분의 화합물들은 in-vitro 실험에서 우수한 활성을 보여주었다. 그중 $\mathrm{IC}_{50}<10 \mathrm{nM}$ 의 우수한 활성을 화합물들을 선별하여 in-vivo 실험을 진행하였다. 그 결과 2-aminopyridi 에 aminoethyl 을 도입한 경우 in-vitro 실험에서 약 2.5 배의 활성이 증가됨을 보였다. 그리고 분자 도킹 모델 연구를 통해 화합물 202 가 hQC 의 active site 에 추가적인 hydrophobic interation 을 보여줌으로써 QC 저해제로서 유력한 후보로 기대된다.

앞서 언급된 결과들을 바탕으로 part2 에서는 위에서 설계한 약리활성 구조를 대체하기 위해 3-alinoalaklyloxy-4-methoxyphele 및 4-aminoalkoxheyphel 을 포함한 새로운 QC 저해제를 계속해서 개발하였다. IC50 값을 기반으로 활성이 우수한 화합물들을 식별하였다. 그렇게 선별된 화합물들은 in vitro 독성과 in
vivo 활성을 추가로 진행하였다. 그 결과 QC 저해제 51 과 53 은 BBB 투과가 가능한 in vivo 급성 모델에서 우수한 $\mathrm{A} \beta_{\mathrm{N} 3 \mathrm{pE}-40}$-Lowering Effect 를 나타냈고, cytotoxicity 와 hERG 저해를 나타내지 않았다. 두 화합물 중 모델 분석의 대상으로 화합물 53 을 선택했다. 모델 결과 53 의 우수한 효과는 활성부위에서의 염다리효과와 수소결합이라고 설명할 수 있다. BBB 의 투과가 더 양호한 이 화합물은 Anti-Alzheimer 에이전트의 잠재적 후보가 될 수 있을 것이다

마지막으로 중요한 것은 C 지역의 dimethoxy 이 안정적이지 않고 간 신진대사에 독성을 일으키며 B-region 의 변형은 in-vitro 활성을 증가시킨다는 것을 발견했다. 따라서, 새로운 heterocyclic 을 C-region 과 B-region 과 C-region 의 연결 고리에 계속 도입했다. 그러나, 모 화합물과 비교하여, C 영역의 헤테로 고리, 특히 인돌, 벤조 퓨란, 벤조 옥사졸, 벤조 티아졸의 고리들은 활성을 2.0 ~ 6.0 배 감소시킨 다는 것을 보였다. 흥미롭게도 일부의 고리 구조들은 B 영역에 도입되었을 때 in vitro 활성이 약간 증가함을 보였다. 이러한 결과들은 잠재적인 독성이 없고 우수한 투과력과 활성을 갖는 QC 저해제의 개발에 있어 선도물질 최적화에 귀중한 정보를 줄것이라고 생각한다.

키워드: Alzheimer Disease, Glutaminyl Cyclase, $\mathrm{A} \beta, h \mathrm{QC}$, pyroglutamate;

Acknowledgement

Firstly, I would like to express my deeply thankful gratitude my advisor Professor Lee Jeewoo, Lab of Medicinal Chemistry, College of Pharmacy, Seoul National University (SNU) for giving the opportunity to work in very interesting topic of Biochemistry. During my doctoral period, thanks to his continuous support, his patience, and his numerous ideas, I step by step having better understanding of Biochemistry area as well as my Ph.D research. With immense knowledge he always give me detail and useful instruction as well as helped me to solve the difficult problems on time.

Secondly, I would like to give special thanks to Professor Sun Choi at College of Pharmacy and Graduate School of Pharmaceuticals Sciences, Ewha Woman University for deep investigation about molecular modeling for my research. I also would like to thank you Medifron DBT Co., Ltd. in Asan areas for help us in bioactivities studies of this dissertation. Without their supports I could not complete my Ph.D research.

I would like to express my grate thank to Dr. Sung-Eun Kim, Dr. Tae-Hwan Ha, Dr. Ho-Shin Kim for their help during the initial time when I arrived Korea and Lab lacking many knowledge about the science as well as experiment. I specially thank Dr. Phuong-Thao Tran, Dr. Hai-Van Hoang for their great help not only in my research but also in Korean life during my Ph.D life. I could not forget to thank my lab mates for interesting and funny discussion, for useful labmeeting which have a lot of valuable knowledge and experience: Suyoung Yoon, Sunho Lee, Changhoon Kim, Mannkyu Hong, Jisu Beak, Yura Ko, Dal-so Cho, Chi-mie Kang, Sa-gang Kim, Dongxu and my Vietnamese labmate: Cong-Truong Nguyen, Van-Manh Nguyen. Thank you Aeran Jung, you are nice and sweet young sister when let me stay in your house when I first came Korea. Espeacially, thank you Dr. Jihae Ahn, you are very kind-hearted friend and great sis though sometime you are very strict.

I also want to express my special thanks to the past and present staff of College of Pharmacy, Seoul National University for supporting my academic work.

I would like to thank you for all Vietnamese students in Seoul National University for their supports, encouragements, interested to me during five years. You are always with me in all sportive and artistic activities regardless my fastidious and
conceited behaviors. I also want to thank you all members of VSAK who give me a lot of worthy and interesting memories.

I would like to express my great thank to my Vietnamese friends though living very far away from Seoul, you are always ready to listen and give my meaningful advices.

Last but not least, from my depth of heart, I give my special thanks and honorable respects to my Great family: thank you My sweet and lovely Dad and Mom, you are always behind me through I always made you have to worried about; Thank you my Big sisters and Big brother, without you guy I could not mature as I am today; Thank you my adorable and lovely nephews for their so sweet encouragements and interesting stories that make me overcome the difficult time. Thank YOU for always silent behind me.

THANK YOU ALL!!!

[^0]: ${ }^{a}$ Values indicate the means of at least three experiments; ${ }^{\text {b }}$ Ref.[31]

