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초    록 

 
흑질 구조물인 나이그로좀 1의 자기공명영상은 파킨슨 병의 

생체지표로 사용된다. 이 연구에서는 흑질의 자기화율 지도 가중 

영상(Susceptibility Map Weighted Image, SMWI)에 사용될 수 있는 두 

가지 알고리즘을 제안했다. 우선, 다중 에코 경사 영상(multi-echo 

gradient echo image) 데이터에서 위상 오프셋을 계산하고 수정하는 

방식으로, 다중 에코를 사용하는 다중 채널 위상 조합(Multi-Channel 

Phase Combination using Multi Echo, MCPC-ME)을 제안하였다. 이 

방식의 경우, 모든 에코의 위상 정보를 활용하여 보다 정확한 위상 

오프셋 추정이 가능하며, 특히 저(低) 신호 대 잡음 비(SNR) 영역에서 

정확도가 높았다. 다음으로 흑질의 자기화율 지도 가중 영상을 도출하는 

데 사용되는 자기화율 정량화 영상(Quantitative Susceptibility Map, 

QSM)의 계산을 위해, 심층 신경 네트워크인 QSMnet을 적용하였다. 

이를 이용하여 5.4배 빠른 속도로 나이그로좀 1의 자기화율 정량화 

영상을 얻을 수 있었으며, 그로부터 도출된 자기화율 지도 가중 영상은 

기존 자기화율 지도 가중 영상과 유사한 영상 대비(image contrast)를 

나타내었다. 

 

주요어 : 다중 채널 위상 합성, 자기화율 정량화 영상, 자기화율 지도 

가중 영상, 딥 러닝 

학   번 : 2016-20979 
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Chapter 1. Introduction 
 

 

1.1 Introduction 
 

1.1.1 Parkinson’s disease and SMWI image 

Parkinson’s disease (PD) is a neurodegenerative disorder which 

mainly affects motor function [1]. The cause of Parkinson's disease 

has not yet been fully elucidated. However, many studies reported 

the decline of motor function in the PD patient can be explained by 

lack of dopaminergic cells in the brain [1]. Dopaminergic neurons are 

believed to be involved in the control of voluntary movements and 

behavioral processes [2]. Substantia nigra pars compacta (SNPC) in 

the midbrain is formed of dopaminergic neurons. As the use of MR 

imaging expands in the clinical field, there is an increasing need to 

establish MR imaging protocols visualizing reduction of dopaminergic 

cells in PD patients [3-9]. A few studies suggested visualization of 

the nigrosome 1, a sub-region of substantia nigra (SN), can be an 

MR imaging biomarker for PD [10-15].  
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Figure 1. Substantia nigra (SN) and nigrosome 1 (N1) region are 

depicted on a zoomed SMWI image of a healthy subject. The region 

confined by the blue line is nigrosome 1 region. The slice orientation 

is oblique-coronal.  

 

There exists a susceptibility contrast between nigrosome 1 and the 

other areas in the SN due to the difference in the iron concentration. 

Magnetic susceptibility based imaging, such as T2
*-weighted imaging, 

susceptibility weighted imaging (SWI) and Susceptibility map 

weighted imaging (SMWI), are well-known MR imaging techniques 

that allow visualization of the changes in dopaminergic neurons in 

SNPC [10-21]. In healthy controls, this imaging technique generates 

higher magnetic susceptibility induced tissue contrast between 

nigrosome 1 and the surrounding SN. Cotrarily, the susceptibility-

induced tissue contrast between the two regions is significantly 

reduced in PD patients [15-17].  

Researchers have sought to improve the tissue contrast of utilizing 
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ultra-high field (UHF) MR [15-17]. In studies using UHF MR, the 

nigrosome 1 was clearly delineated with conventional T2
* weighted 

imaging technique. However, the UHF system is not widely used for 

clinical applications so far. In the lower field strength (≤ 3T), because 

of lower susceptibility induced tissue contrast and SNR visualization 

of the SNPC using conventional T2
* weighted imaging technique has 

been limited [10-14]. SMWI has been proposed to visualize SNPC at 

lower field strength [18, 19]. In order to improve the susceptibility 

induced tissue contrast and signal-to-noise ratio (SNR) without 

consuming additional scan time, root sum squared multi-echo 

magnitude image from multi-echo gradient echo (GRE) sequence 

was utilized in SMWI. In addition, the tissue contrast is enhanced by 

the use of a quantitative susceptibility mapping (QSM) mask. The 

QSM mask includes the information of the different susceptibilities of 

nigrosome 1 and the other regions of the SN. As a result, by using 

SMWI technique, one can clearly identify nigrosome 1 region at lower 

field strength [18, 19].  

Our work is aimed to achieve high accuracy and fast generation of 

SMWI image, by improving some steps of the processing. Especially, 

the generation of the QSM mask generation is of interest. The 

detailed procedure of the QSM mask generation includes the 

combination of multi-channel phase images at each echo phase 

images, generation of local field map, QSM processing, thresholding 

and affine mapping [18, 19]. In this work, we suggest methods to 

improve the accuracy of the combination of multi-echo phase data 

and the processing speed of QSM generation. For more accurate 
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estimation of phase offsets in multi-echo GRE data, Multi-Channel 

Phase Combination using all multiple echoes (MCPC-ME) is 

presented. The accuracy of MCPC-ME was compared to the other 

methods. This work is demonstrated in Chapter 2 Phase Combination 

using MCPC-ME. To gain a higher processing speed of SMWI of 

nigrosome 1, we utilized QSMnet to conduct QSM using deep neural 

network, since the QSM reconstruction is the most time-consuming 

step of SMWI processing. The time consumed for the reconstruction 

of QSM and the image quality of QSM and SMWI of nigrosome 1 

generated by QSMnet were investigated. The utilization of QSMnet 

in SMWI processing is presented in Chapter 3 SMWI with iLSQR-

trained QSMnet.  
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Chapter 2. Phase Combination using MCPC-ME  
 

 

2.1 Introduction 
 

When acquired with a phased array coil, calculation of phase offsets 

need to be done before the combination of multi-channel phase data. 

The phase map from each coil is composed of echo-time-dependent 

field inhomogeneity and chemical shift terms and an echo-time-

independent inherent phase offset term. The latter term originates 

from B1 field inhomogeneity, coil geometry, and different receiver 

chain delay which varies in each channel and voxel. Hence, to prevent 

phase distortion from such inconsistencies, the phase offset term 

needs to be removed before combining phase data from multiple 

channels. Several methods have been suggested to estimate the 

phase offsets, such as Multi-Channel Phase Combination using 

Constant offsets (MCPC-C) [22] and Multi-Channel Phase 

Combination using measured 3D phase offsets (MCPC-3D) [23]. In 

this study, a more accurate estimation of phase offsets in multi-echo 

GRE data, Multi-Channel Phase Combination using all multiple 

echoes (MCPC-ME) is presented. The accuracy of each method was 

investigated with multi-echo GRE data. The accuracy was also 

compared under a low SNR simulation.  

 

2.2 Background 
 

2.2.1 Preliminary 

Once phase offsets are calculated, they are subtracted from the 
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phase image of the corresponding coil. If the phase acquired by n-

th coil at position (x, y) and echo time TE is θn, and phase offset is 

θoffset,n, then corrected phase θcorrected,l becomes:  

θcorrected,n(x, y, TE)  = θn(x, y, TE) − θoffset,n(x, y) 

Note that this paper assumes phase offset is constant in time.  

In the case of no noise, the corrected phase θcorrected,n(x, y, TE) 

should be the same between the coils. In the presence of noise, 

multi-channel phase data can be combined as follows: 

θcombined(x, y, TE) =  ∠ ∑ M eiθcorrected,n(x,y,TE)

n

 

 

2.2.2 MCPC-C 

In MCPC-C [22], phase offsets are assumed to be spatially 

invariant. Hence, phase offsets are estimated as the mean phase of a 

center ROI. It is known that the actual phase offset varies with the 

position. This fact leads to the inconsistency between the corrected 

phases of the coils in voxels which are distant from the center.  

 

2.2.3 MCPC-3D 

In MCPC-3D [23], voxel-specific phase offset is estimated. The 

phase of a voxel can be modeled with the time-dependent term 

(2πγ∆B0(x, y)TE) and time-independent term (i.e. phase offset; 

θoffset,n(x, y)). If the phase at position (x, y) at echo time TE1 and TE2 is 

θn(x, y, TE1) and θn(x, y, TE1), then,  
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θn(x, y, TE1) = 2πγ∆𝐵0(𝑥,𝑦)
𝑇𝐸1 + θ𝑅𝑋,𝑙(𝑥,𝑦)

 

θn(x, y, TE2) = 2πγ∆𝐵0(𝑥,𝑦)
𝑇𝐸2 + θ𝑅𝑋,𝑙(𝑥,𝑦)

 . 

When there is no noise, the phase offset θoffset,n(x, y) is simply 

calculated as follows.  

θ𝑜𝑓𝑓𝑠𝑒𝑡,𝑛(𝑥,𝑦)
=

TE1 θn(x, y, TE2) −  TE2θn(x, y, TE1)

TE1 − TE2
 

 

2.2.4 MCPC-ME 

When multi-echo GRE data is acquired, one can use collected 

echoes to improve estimation of phase offsets. Given m echoes, a 

model for the phase in a voxel located in (x, y) and in the n-th coil at 

echo times becomes,  

θn(x, y, TE1)  =  2πγ∆B0(x, y)TEm  + θoffset,n(x, y) 

θn(x, y, TE2)  =  2πγ∆B0(x, y)TEm  + θoffset,n(x, y) 

… 

θn(x, y, TEm)  =  2πγ∆B0(x, y)TEm  +  θoffset,n(x, y) . 

To generate an optimal estimation of the phase offset, a weighted 

least squares error minimization is performed with the weighting 

factors that are inverse of variations of noise in order to calculate the 

phase offset as the best linear unbiased estimator. Since the variation 

of phase noise [24] is proportional to 1/SNR2, SNR2 is chosen as a 

weighting factor of the least square.  

 

 

2.3 Methods 
 

2.3.1 Data acquisition 
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2D multi-echo GRE data were acquired at 3T MRI using a 32 

channel phased array head coil. Scan parameters were: repetition 

time (TR) = 2000 msec, echo time (TE) = 2.7, 5.88, 9.06, 12.24, 

and 15.42 msec, flip angle (FA) = 82°, resolution = 0.9 × 0.9 × 

1.0 mm3, and total acquisition time (TA) = 8:34 minutes. 

 

2.3.2 Data processing 

Phase data were combined by MCPC-C, MCPC-3D, and MCPC-

ME. First and second echoes were chosen to generate a phase offset 

in MCPC-3D. In MCPC-3D and MCPC-ME, phase data were 

temporally unwrapped before the estimation of phase offset. To have 

generality in calculating phase offsets with MCPC-3D, the first and 

second echo were always used, because they have the lowest noise 

level. Also, phase unwrapping was done by voxel-level temporal 

unwrapping with first and second echo phase data.  

After evaluating the phase offsets, the results were filtered using 

a 5x5 median filter. The input data for the median filter (i.e. local 5x5 

matrix) were columnized and phase maps were unwrapped. MCPC-

3D and MCPC-ME without the median filter were also tested. 

 

2.3.3 Data analysis 

In order to quantify the quality of the phase coherence of each result, 

a Q factor (Q factor =  
|Σ𝑒𝑖𝜃𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑|

Σ|𝑀𝑒𝑖𝜃|
) [25], was calculated for every 

voxel. Q factor is a measure of how coherent the phase offset 
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subtracted phases are. Higher Q factor means high coherence of the 

corrected multi-channel phases. SNR was calculated using the 

magnitude of the complex combined results:  

𝑀𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑠𝑢𝑚 = |∑ 𝑀𝑒𝑖(𝜃𝑙−𝜃𝑅𝑋,𝑙)

𝑙

| . 

 

2.4 Results 
 

The original phase map, at the fifth echo, is presented in Figure 2.1.  

  

Figure 2.1 Phase image without subtracting phase offsets (at 

TE=15.42 msec, coil 1, 4, 7, 10) 

 

Next, phase offset map and the phase offset corrected map for each 

method are shown. Figure 2.2 is the phase offset map by MCPC-C, 

which is constant over each channel, due to the assumption of 

spatially invariant phase offset.  
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Figure 2.2 Phase offsets calculated with MCPC-C (coil 1, 4, 7, 10) 

 

Figure 2.3 is the phase offset corrected map by MCPC-C. Corrected 

phase maps have similar values at the center among the channels, but 

shows lack of consistency in other areas.  

 

  

Figure 2.3 Phase images subtracted by phase offsets calculated with 

MCPC-C (at TE=15.42 msec, coil 1, 4, 7, 10) 
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Figure 2.4 and 2.5 is phase offset map and corrected phase map by 

MCPC-3D. The phase offsets are spatially varying and the corrected 

phase map has good consistency among channels. In Figure 2.5, some 

in-brain areas that seem very noisy are called as “poles” at that 

channel, the in-brain regions with low SNR in magnitude image.  

 

  

Figure 2.4 Phase offsets calculated with MCPC-3D (median filtered, 

coil 1, 4, 7, 10) 

 



 

 12 

  

Figure 2.5 Phase images subtracted by phase offsets calculated with 

MCPC-3D (using median filtered phase offsets, at TE=15.42 msec, 

coil 1, 4, 7, 10) 

 

Figure 2.6 and 2.7 is phase offset map and corrected phase map by 

MCPC-ME. MCPC-ME has similar phase offsets with MCPC-3D but 

with less noise, and it shows better consistency among channels in 

corrected phase maps.  
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Figure 2.6 Phase offsets calculated with MCPC-3D (median filtered, 

coil 1, 4, 7, 10) 

 

  

Figure 2.7 Phase images subtracted by phase offsets calculated with 

MCPC-3D (using median filtered phase offsets, at TE=15.42 msec, 

coil 1, 4, 7, 10) 

 

In Figure 2.8, phase offset maps of a representative slice by MCPC-

3D and MCPC-ME, without and with median filtering are compared. 

Without median filtering, a map with MCPC-3D is noisier. 
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Figure 2.8 Representative phase offset map of MCPC-3D and 

MCPC-ME, without and with median filtering (a) MCPC-3D without 

median filtering, (b) MCPC-ME without median filtering, (c) MCPC-

3D with median filtering, and (d) MCPC-ME with median filtering (at 

coil 1) 

 

Phase offset subtracted and combined phase maps by MCPC-C, 

MCPC-3D, and MCPC-ME, both without and with median filtering 

are compared in Figure 2.9.  
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Figure 2.9 Combined phase image after subtraction of phase offsets 

estimated by (a) MCPC-C, (b) MCPC-3D (no filtering), (c) 

MCPC-ME (no filtering) (d) MCPC-3D (median filtered) and (e) 

MCPC-ME (median filtered) (at TE=15.42 msec) 

 

The Q factor map of each method is presented in Figure 2.10. 

MCPC-C is less effective in areas away from the center. And while 

the other methods show relatively low Q factor in the center, median 

filtered MCPC-ME showed highest Q factor value in the center.  
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Figure 2.10 Q factor map of (a) MCPC-C, (b) MCPC-3D (no 

filtering), (c) MCPC-ME (no filtering) (d) MCPC-3D (median 

filtered) and (e) MCPC-ME (median filtered) 

 

Q factor histograms of in-brain voxels are plotted in Figure 2.11. 

The average Q factor for MCPC-C was 0.643 and MCPC-3D and 

MCPC-ME without filtering were 0.954 and 0.979, respectively. 

After median filtering, these values changed to 0.981 and 0.986, 

respectively. Hence the MCPC-ME shows higher Q values than 

MCPC-3D although the improvement is relatively small.  
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Figure 2.11 Q factor histogram of in-brain voxels 

 

2.5 Discussion 
 

MCPC-ME is started from the speculation that it is natural to utilize 

information from all echoes to increase the accuracy of phase 

calculation under the circumstance with the noise. To test the effects 

of the noise level in each method, Gaussian noise at 3 different levels 

was added to uncombined channel data. To quantitatively measure 

the effect of noise level on phase offset calculation, SNR of combined 

magnitude image at second echo was inspected. This result is shown 

in Figure 2.12. The effect of MCPC-ME becomes larger when the 

SNR of the image becomes lower. For example, the SNR in MCPC-

ME was larger by 56.3% (without the median filter; 19.6% with 

median filter) than MCPC-3D when the SNR is under 100 (Figure 
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2.12).  

 

 

  

Figure 2.12 SNR change with Gaussian noise addition 

 

The limitation of this work is that phase unwrapping sometimes fails 

with simple phase unwrapping algorithm provided by MATLAB, 

especially in later echoes. Failure in phase unwrapping leads to an 

inaccurate calculation of phase offsets. Utilization of more elaborate 

phase unwrapping methods will prevent the issue. However, it is 

likely to fail on unwrapping in frontal areas of the brain, due to their 

extreme B0 inhomogeneity.  

The work is applicable to all kinds of multi-echo multi-channel 

phase data with linear phase accumulation to improve the accuracy 

of phase offset calculation, especially when there are not enough SNR.  
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Chapter 3. SMWI with iLSQR-trained QSMnet  

 

 

3.1 Introduction 
 

In the SMWI processing, QSM reconstruction for the QSM mask 

generation is the most time-consuming step. QSM estimates 

susceptibility source distribution from local field map [26]. Local 

field map is a phase map induced by the convolution of the 

susceptibility source and dipole kernel. By duality, Fourier transform 

of susceptibility can be calculated from Fourier transform of local 

field map divided by Fourier transform of dipole kernel. However, 

because Fourier transform of dipole kernel has zeros on the “magic 

angle” surface (i.e., 54˚ with respect to the main magnetic field), 

calculation of susceptibility map has an ill-posed problem [26]. 

Several algorithms have been introduced to solve the problem in the 

QSM. Calculation of susceptibility through multiple orientation 

sampling (COSMOS) is a method to overcome the lack of information 

on zero cone surface by acquiring multiple orientation data with 

respect to the main magnetic field [27]. Requiring extra scan time, 

such strategy demands more cost and may provoke patients' 

inconvenience.  

In order to solve the ill-posed problem in the single orientation QSM 

data, algorithms that iteratively search the solution that satisfies the 

data consistency between the local field map and the dipole 

convolution of susceptibility map and the prior knowledge are widely 
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used [28-30]. For instance, iLSQR exploits the prior knowledge that 

first order derivatives are not necessarily zero at zero cone surface 

when iteratively estimating susceptibility map [28, 29]. These sorts 

of strategies require longer calculation time because of their iterative 

behavior. Recently, a method named QSMnet which utilizes U-net 

[31] structure to conduct QSM reconstruction has been proposed 

[32]. This deep neural network was trained with local field maps and 

the corresponding COSMOS results. Compared with conventional 

QSM reconstruction algorithms, QSMnet showed faster 

reconstruction time and higher consistency among orientations.  

In our work, we utilized QSMnet to conduct QSM using deep neural 

network to gain higher processing speed of SMWI of nigrosome 1. 

However, QSMnet is not directly applicable to the QSM 

reconstruction of the SMWI data due to the difference in the 

resolution and the orientation. In addition, the data for the imaging of 

substantia nigra lack of data size along the z-direction, and the 

orientation of each data is different from one another. Since the data 

were different from the original QSMnet training set data, the data 

and QSMnet have to be modified for appropriate training. Therefore, 

QSMnet layers and training sets are modified according to the data 

characteristic and the deep neural network are trained. The time 

consumed for the reconstruction of QSM and the image quality of 

QSM and SMWI of nigrosome 1 generated by QSMnet were 

investigated with test set data.  
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3.2 Methods 
 

3.2.1 Data acquisition 

All MR scans were conducted on 3T clinical MR scanners using 32-

channels received phased-array head coil. This study was approved 

by the Institutional Review Board, and all participants provided 

written informed consent. 

 

 

Figure 3.1 (a) Sagittal view of the image to show the oblique-coronal 

orientation of the imaging slab, Multi-Planar Reformatted with 

respect to the scanner coordinates. (b) Imaging plane view. Both 

images are root sum squared multi-echo magnitude image of each 

echo of GRE image.  

 

For train and test of QSMnet, data from two distinct MRI scanners 

and imaging parameters were used. Out of the total 62 subjects, 44 

subjects were scanned with Siemens scanner (3T Skyra). The other 

18 subjects were obtained from Philips scanner (3T Achieva).  

For both data acquisitions, 3D multi-echo GRE sequence was used. 
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The data were acquired with a single orientation. Spatial resolution 

was 0.5 × 0.5 × 1.0 mm3, and field of view was 192 × 192 × 32 

mm3. In order to minimize the partial volume effect imaging plane was 

aligned with ‘oblique-coronal’ line (dotted red line in Figure 3.1 (a)). 

The typical acquired image is shown in Figure 3.1 (b).  

Specific scan parameters were as follows: 

(Siemens 3T Scanner) 

TR = 88 ms, TE = 12, 24, 36, 48, 60, 72 ms, FA = 10°, readout 

bandwidth = 100 Hz/pixel, GRAPPA acceleration factor = 2 and 

acquisition time (TA) = 7:30. 

 

(Phillips 3T Scanner) 

TR = 48 ms, TE = 14, 27, 40 ms, FA = 20°, and readout 

bandwidth = 100 Hz/pixel, SENSE acceleration factor = 2, and 

TA = 4:15.  

 

3.2.2 QSMnet  

 

Figure 3.2 Summary of the modified QSMnet structure. The basic 
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structure is the same as QSMnet [32], but the innermost layers are 

not included.  

 

To conduct deep learning-based image to image operation, QSMnet 

[32], which is a modified version of U-net [31] structure with 3D 

inputs and outputs, was utilized. Detailed network architecture used 

in our study is illustrated in Figure 3.2. The network was modified to 

exclude the innermost convolution, deconvolution and feature 

concatenation layers with 512 channels.  

Same loss function which proposed by Yoon et al. was used for 

QSMnet training [32]. The loss function is represented as follows,  

Loss = w1 ∙ (𝑚𝑜𝑑𝑒𝑙 𝑙𝑜𝑠𝑠) +  𝑤2 ∙ (𝐿1 𝑙𝑜𝑠𝑠) + 𝑤3 ∙ (𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑙𝑜𝑠𝑠) 

= w1 ‖𝑑 ∗ 𝜒 − 𝑑 ∗ 𝑦‖1 + 𝑤2 ‖𝜒 − 𝑦‖1 + 𝑤3 (‖|∇d ∗ χ| − |∇d ∗ y|‖
1

+ ‖|∇χ| −  |∇y|‖
1

) 

w1, w2 and w3: weighting factors, d: dipole kernel, 

χ: output of QSMnet, y: output label 

The loss function was the sum of the model loss, L1 loss and 

gradient loss multiplied by weighting factors. The model loss is a 

term that imposes the numerically computed local field map from the 

QSM results, i.e., it matches dipole convolution of QSMnet outputs 

and output labels. The L1 loss is a term that matches the QSMnet 

outputs and the output labels. Gradient loss is a term that matches 

the edge information of the numerically computed local field maps and 

the QSM maps.  Weighting factors are the contributions of the 

respective loss functions to the total loss function. The network was 
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implemented with TensorFlow [33] and trained on an NVIDIA 

1080TI GPU. Batch size was 5 and training epochs were set to be 

100. 

 

3.2.3 Data processing  

To solve inverse problem of the QSM for mask generation, phase 

images were calculated. Phase data obtained with multi-receive 

channel head coils were combined by applying MCPC-C to the raw 

data for the Siemens system [22]. For the Phillips system, the multi-

channel combined DICOM data were used.  

QMSnet was trained with 3D patches from local field map and the 

corresponding QSM results. In order to apply QSMnet network, 

training datasets for SN images were modified and had different 

features with those of previous work reported by Yoon et al [32]. 

Because the data was acquired with single orientation COSMOS was 

not applicable. Therefore, iLSQR results were used as the training 

label. Since the matrix size in the z-direction is relatively smaller 

than the other directions, the training patch had size limitation along 

the z-direction. The images were resampled to enlarge the patch 

size along the z-direction. In order to solve the problem with 

incoherent image orientations between the subjects, local field maps 

with various orientations were retrospectively generated for training. 

QSMnet estimates the QSM map from the local field map which 

appears as a convolution of susceptibility and the dipole kernel. Since 

the dipole kernel is formed according to the orientation with respect 
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to the main magnetic field, it is hard to guarantee the convergence of 

the network if the orientation is not consistent. One of the strategies 

was to let the network learn the relationship of local field map and 

QSM with various orientations by providing a sufficient number of the 

images. This strategy was accomplished by retrospectively 

generating local field map with various orientations from the acquired 

data. Also during training, dipole kernel according to the orientation 

was accounted in loss function. This is expected to help the network 

to learn dipole deconvolution according to each data’s orientation.  

 

 

Figure 3.3 Summary of the data processing pipeline. Detailed 

explanation about QSMnet is described in section 3.2.2. 

 

The data processing pipeline is presented in Figure 3.3. GRE phase 

data were spatially unwrapped with MRPhaseUnwrap function 

provided in STI Suite v2.2 [34]. To generate local field map, 

HARPERELLA [34] and iHARPERELLA [34] were applied to 

unwrapped phase data from Siemens and Philips scanner, 
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respectively. QSM images were generated by applying iLSQR 

algorithm [28] (error tolerance: 0.01, threshold k-space regions: 

0.1). Local field map and QSM images were sinc-interpolated along 

the z-direction with resampling factor = 2. Regions with errors in 

QSM images were discarded manually. Then the QSM data and the 

corresponding local field maps at remaining regions from 57 subjects 

(42 from Siemens and 15 from Philips scanner) were dissected into 

48 × 48 × 32 voxel-sized patches for train label and train input 

respectively. Centers of the patches along the x- and y-directions 

were 24 voxels apart. Along the z-direction, patches were generated 

with 2 different ways based on the matrix size. When the matrix size 

was larger than 32, two patches were generated. While the matrix 

size was smaller than 32 one patch was generated. To discard the 

data with inaccurate QSM estimation, Fourier transform of dipole 

kernel with respect to the orientation of each patch was generated. 

Fourier transformed dipole kernel was multiplied by Fourier 

transform of the iLSQR result. Then the result was inverse Fourier 

transformed and compared with the original local field map. If the 

portion of the voxels with error rate under 50% was less than 30%, 

the corresponding patch was discarded. For data augmentation, dipole 

kernel corresponding to the rotated orientation along the x-, y-, and 

z-axis of the actual scanner with ±5°from the original orientation 

was calculated and the kernel was convoluted to the QSM patches to 

calculate local field maps. This step included formerly discarded 

patches because local field map is calculated regardless of the 

numerically mismatching original local field map. To make the input 
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patches have comparable signal intensity range with the label patches, 

the intensity of the input patches were multiplied by 3.   

 

3.2.4 Data Analysis 

For the evaluation of QSMnet results, five datasets which were not 

used for the training were used as the test sets. For each subject, 32 

or 48 consecutive slices including SN were selected. Then, the 

selected slices from each subject were put into the trained QSMnet. 

The time consumed for QSMnet with TensorFlow [33] using NVIDIA 

1080TI GPU was inspected and compared with the time consumed 

for iLSQR algorithm with the same local field map in MATLAB 

(R2014b, 64bit) on Ubuntu. The QSM images generated by iLSQR 

algorithm and QSMnet were compared.  

To generate SMWI results, QSMnet outputs and iLSQR labels were 

made into susceptibility mask (Smask) using the following equation:  

S𝑚𝑎𝑠𝑘(χ)  =  {

        0                   𝑖𝑓 χ > χ𝑡ℎ

      
χ𝑡ℎ − χ

χ𝑡ℎ
       𝑖𝑓 0 < χ <  χ𝑡ℎ

         1                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

χth is a paramagnetic threshold value and was chosen to be 1, as 

optimized in the previous study [19].  

SMWI is produced by multiplication of root sum squared multi-echo 

GRE magnitude image and the power of the generated mask. 

SMWI = (Smask)m  ×  GREmagnitude 

The exponent of the Susceptibility mask (m) was chosen to be 4, 

also as optimized in the previous study [19]. The SWMI images 

generated by QSMnet and iLSQR outputs were compared. For 
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quantitative evaluation, nigrosome 1 and the other regions of 

substantia nigra of healthy subjects were manually drawn on SMWI 

images made from iLSQR results. Then, contrat-to-noise ratio (CNR) 

was calculated as the ratio between the mean of nigrosome 1 area 

and the mean of the other regions of the substantia nigra in the SMWI 

images. The CNR was calculated for each healthy subject. The left 

and right regions were considered separately. The statistical 

significance of the difference of the CNRs was determined by paired 

samples t-test. 

 

3.3 Results 
  

Obtained three dimensional multi-echo GRE data were processed 

according to the data processing pipeline shown in Figure 3.3. The 

total training time of QSMnet was about 25.5 hours. The processing 

time for the 24 slices SMWI image was reduced by 48.1 sec (59 sec 

with iLSQR method; 10.9 sec with QSMnet).  
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Figure 3.4 QSM result from iLSQR and QSMnet of a healthy subject 

from Siemens scanner. (a) QSM result from iLSQR, (b) QSM result 

of the same slice from QSMnet, (c) zoomed QSM result from iLSQR, 

(d) zoomed QSM result from QSMnet, and (e) intensity plot at a 42-

nd cross-sectional line of (c) and (d). The cross-sectional line is 

indicated as a dotted line on (c) and (d). (f) The difference of the 

two cross-sectional intensity 

 

Figures 3.4 (a) and (b) show typical QSM result reconstructed with 

iLSQR and QSMnet. A slice which includes SN and nigrosome 1 was 

selected for comparing results. Figures 3.4 (c) and (d) are the 

expanded images of the white box in Figures 3.4 (a) and (b) to show 

the susceptibility induced tissue contrast between nigrosome 1 and 

the other regions of substantia nigra more closely. The QSM results 

from QSMnet showed similar tissue contrast with results from iLSQR. 

Signal intensity plots along with the dotted black line in Figures 3.4 

(c) and (d) are shown in Figure 3.4(e). When the signal intensities 

of QSM maps from QSMnet and iLSQR were plotted, all of the signal 

plots demonstrated a similar shape but different magnitudes. The 

dynamic range of the signal intensity from QSMnet is smaller than 

that from iLSQR. Especially, the voxels with negative susceptibility 

values always had lower values in the iLSQR results than that from 

QSMnet. The difference of the signal intensities between the two 

methods are shown in Figure 3.4(f). The mean value of the absolute 

of the intensity difference between the methods of the region near 

nigrosome 1 was 0.0152.  
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Figure 3.5 QSM results of three test dataset from the two scanners. 

Subject 1-3: healthy, Siemens scanner, subject 4: healthy, Philips 

scanner, subject 5: Parkinson’s disease, Philips scanner. The slices 

are zoomed to view substantia nigra and nigrosome 1. Subject 1 is 
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the same data in Figure 3.4. From the three different subjects, QSM 

results from iLSQR (left), QSM results from QSMnet (middle), and 

the difference maps, which are QSMnet results subtracted by iLSQR 

results (right) are indicated.  

 

All QSM results from the test dataset are shown in Figure 3.5. In 

Figure 3.5, subject 1-3 showed a slightly weaker contrast in overall 

QSMnet results than in iLSQR results, as mentioned in Figure 3.4. In 

contrast, the subject 4 and 5 showed a stronger contrast in QSMnet 

results than in iLSQR results.  
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Figure 3.6 SMWI result from iLSQR and QSMnet of a healthy subject 

from Siemens scanner. (a) SMWI made from iLSQR, (b) SMWI result 

of the same slice made from QSMnet, (c) zoomed SMWI result from 

iLSQR, (d) zoomed SMWI result from QSMnet, and (e) intensity plot 

at a cross-sectional line of (c) and (d). The cross-sectional line is 

indicated as a dotted line on (c) and (d). (f) The difference of the 

two cross-sectional intensity 

 

SMWI images generated by using QSM masks from iLSQR and 

QSMnet are shown in Figure 3.6. The images and plots were made 

with the same slice and cross-sectional line as in Figure 3.4. 

Throughout the Figures 7(a)-(d), no significant differences 

appeared on the overall images nor the zoomed images near 

substantia nigra and nigrosome 1. In Figures 7(e), the plot from 

SMWI by iLSQR and QSMnet showed good agreement. In Figure 

3.6(f), the plot of the cross-sectional intensities from the two 

methods had little difference while QSMnet had smaller intensity 

usually. The mean value of the absolute of the cross-sectional 

intensity difference near the nigrosome 1 region (figure 3.6(f)) is 

8.3063.  
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Figure 3.7 SMWI results of three test dataset from the two scanners. 

Subject 1-3: healthy, Siemens scanner, subject 4: healthy, Philips 
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scanner, subject 5: Parkinson’s disease, Philips scanner. The slices 

are zoomed to view substantia nigra and nigrosome 1. Subject 1 is 

the same data in Figure 3.6. From the three different subjects, SMWI 

results made from iLSQR (left), SMWI results made from QSMnet 

(middle), and the difference maps, which are absolute of QSMnet 

results subtracted by iLSQR results multiplied by 5 (right) are 

indicated.  

 

SMWI images made from the QSM results of Figure 3.5 are 

presented in Figure 3.7. The difference map was the absolute of the 

difference multiplied by 5. In Figure 3.7, subject 1-3 showed similar 

or higher intensities in substantia nigra from QSMnet results than 

from iLSQR results. In contrast, the subject 4 and 5 showed similar 

or lower intensities in substantia nigra from QSMnet results than 

from iLSQR results.  

For the images of Figure 3.7, the mean of CNR calculated from each 

pair of ROIs was 1.4382 for SMWI from iLSQR and 1.4257 for SMWI 

from QSMnet. The p-value of the difference of the eight pairs of CNR 

values were 0.7237, i.e., no significant difference was found between 

the CNRs of the SMWI images from iLSQR and QSMnet.  

 

3.4 Discussion 
 

In this work, we demonstrated the utilization of QSMnet to produce 

the susceptibility mask used in SMWI of nigrosome 1. The processing 

time was 5.4 times faster with QSMnet than with iLSQR. The 

comparison was not done under equal condition since QSMnet was 

implemented with python and was run on GPU while iLSQR was 
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implemented with MATLAB and was run on CPU. However, QSMnet 

has a good capacity of parallelization, which would be considered in 

the comparison.  

The QSM and SMWI images produced by iLSQR and QSMnet were 

compared. In Figure 3.4 (a) and (b), (b) showed a slightly weak 

contrast than (a) did. The relationship also appeared in Figure 3.4 

(e), where QSMnet intensity was higher than iLSQR for negative 

intensities and lower than iLSQR for positive. The same relationship 

was found in subject 1 to 3 in Figure 3.5. In contrast, the subject 4 

and 5 in Figure 3.5 showed a reversed relationship: the contrast of 

the QSMnet images of subject 4 and 5 were stronger than the iLSQR 

images. The reason for this is, as shown in Figure 3.5, that the QSM 

contrasts generated by iLSQR algorithm varied with respect to the 

scanner. QSMnet would have been trained to produce intermediate 

results for both scanner images.  

As in Figure 3.6 and 8, the SMWI results showed less prominent 

relationship than the QSM results, regardless of the MR scanner. The 

average value of absolute of difference of a cross-sectional line near 

nigrosome 1 (see Figure 3.4 (f)) was 10.1% to the highest value of 

iLSQR in QSM, while it was 8.3% in SMWI. We conjectured that the 

SMWI showed similar contrast than QSM because of the way the 

susceptibility mask is generated. First, the susceptibility mask is 0 

to 1, so the error is confined to a restricted range. Also, negative 

QSM values were transformed into 1 in QSM mask domain, regardless 

of the QSM value. Thus, the errors in the QSM value under 0 could 

not propagate into the SMWI image.  
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In this work, the training dataset differs from the previous QSMnet 

study [32] in some respects. The most critical difference was the 

slice orientation. QSMnet was originally targeted to conduct dipole 

deconvolution to the data to a fixed orientation (axial), while the data 

for substantia nigra SMWI imaging were acquired with their 

orientation not fixed at a certain angle (oblique-coronal). QSMnet 

does not explicitly take account of the input image orientation. One 

possible approach to overcome the orientation inconsistency issue is 

to reslice the images to have consistent orientations. This approach 

was not utilized in this study because the FOV along the z-direction 

could not be enough for the reslicing and the reslicing also requires 

additional processing time. The other strategy, which we utilized, was 

to have sufficient amount of data with various orientation in the test 

set in order to help the network learn the relationship of local field 

map and QSM with various orientations. The substantia nigra image, 

fortunately, is acquired in a certain range of orientation. The QSM 

data was convoluted by dipole kernel with only ±5˚ rotation 

according to the main magnetic field to produce a local field map for 

the data augmentation. Such rotation in slice orientation may affect 

little on the contrast of the local field map. This fact would have 

contributed to the network being successfully trained with the limited 

amount of data. The exact effect of the data augmentation to the 

QSMnet training has to be examined in future studies. 

Another challenge in QSMnet training was lack of the data along the 

z-direction, allowing only small patch size. By the interpolation along 

the z-direction, the patch size was increased from 16 to 32. This 
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step is still practical for the actual application since the slices are 

gained with anisotropic resolution in actual application scan (i.e., 

coarser resolution in the z-direction) to achieve sufficient SNR in 

the limited scan time. We used the anisotropic patch size of 48 × 48 

× 32. Since the volume of the patch was still 28% of that was used 

in the original QSMnet paper, the innermost layers with 512 channels 

were deleted from QSMnet structure to decrease the degree of 

freedom.  

Since QSMnet is a deep neural network architecture, it is hard to 

characterize the exact working mechanism of the layers. Thus, we 

could not confirm that QSMnet actually conducts the dipole 

deconvolution. In order to help the network to learn based on the 

physical model, the convolution of dipole kernel was used in the 

model loss term [32]. Nonetheless, this cannot guarantee the dipole 

deconvolution of the network because the loss function is only applied 

when training. Further validation has to be done before the utilization 

of QSMnet for SMWI processing.  

For training, we used both data from the two distinct scanners with 

different scan parameters. We supposed that the vendors and scan 

parameters would have little influence on the training accuracy since 

the target of the training is the relationship between the local field 

map and the QSM map, which is independent of the scanner. However, 

we found slightly different relationships between the QSM maps from 

QSMnet and iLSQR of the test data from the different datasets. 

Therefore, the effect of the scanner and the scan parameter in the 

training set to the results of the QSMnet should be examined.  
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In the training set, there were data of patients with Parkinson's 

disease. Therefore, some data's nigrosome 1 contrasts were affected 

by the disease. We speculated that the visibility of nigrosome 1 will 

not affect the QSMnet learning the QSM reconstruction because the 

relationship between the local field map and QSM remains the same 

regardless of the disease. However, the consequences should be 

investigated in the future studies. Brain abnormalities or 

susceptibility that are not trained by QSMnet (i.e., susceptibility 

values under -0.2 or over 0.2 ppm) can produce an unexpected 

artifact in QSM result. The artifacts caused by the data from various 

types of disease need to be examined.  

The QSMnet trained in this work can be applied to the data with a 

resolution lower or equal to 0.5 × 0.5 × 0.5 mm3. In the case of the 

lower resolution data, an appropriate interpolation had to be done. 

The effect of the interpolation to the result also needs a close 

investigation. Because of the feature concatenation layers, the 

number of the slices has to be at least 8. The input data is limited to 

the data with oblique-coronal orientation.  

In conclusion, the replacement of the conventional iterative QSM 

algorithm with QSMnet can enhance the processing speed of SMWI 

with similar contrast. Since QSM is the most time-consuming step of 

SMWI processing, QSMnet can help to achieve a higher processing 

speed of SMWI. SMWI images made from the QSM mask from 

QSMnet showed similarity with the original SMWI images. The 

application of QSMnet will be helpful when processing a massive 

amount of data or may contribute to the development of an online 
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reconstruction of SWMI. 



 

 42 

Chapter 4. Conclusion  
 

 

In this work, two algorithms were introduced to improve SMWI 

imaging of substantia nigra. In Chapter 2, MCPC-ME, which 

calculates the phase offsets from all echoes were suggested. It 

provided a more accurate estimation of voxel-wise phase offsets, 

particularly in low SNR. In Chapter 3, we applied QSMnet, a deep 

neural network for QSM reconstruction, to produce QSM mask used 

in SMWI. Since the work showed the similar contrast in SMWI results 

with 5.4 times faster speed, it can help when a large amount of data 

is to be processed or may contribute to the development of an on-

scanner reconstruction of SWMI. Combination of MCPC-ME and 

QSMnet is not covered in this work, but both can be applied to the 

reconstruction of SMWI.  
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Abstract 

An Improved SMWI Processing of  

Substantia Nigra Using  

Accurate Phase Combination and  

Deep Neural Network Based QSM 
 

Minju Jo 

Dept. of Electrical and Computer Engineering 

The Graduate School 

Seoul National University 
 

 Visibility of nigrosome 1, a subregion of substantia nigra is used as 

an MR imaging biomarker of Parkinson’s disease. In this work, we 

introduced two algorithms for SMWI imaging of substantia nigra. First, 

we suggested Multi-Channel Phase Combination using Multi-Echo 

(MCPC-ME), a strategy to calculate and correct phase offsets in 

multi-echo GRE data. MCPC-ME provided a more accurate 

estimation of voxel-wise phase offsets particularly in low SNR 

regions by utilizing phase information from all echoes. Second, we 

applied QSMnet, a deep neural network for QSM reconstruction, to 

produce QSM image used in SMWI processing. QSM of nigrosome 1 

was reconstructed to have comparable SMWI contrast with 5.4 times 

faster reconstruction speed compared to the conventional QSM 

reconstruction algorithm. 

 

Keywords : Multi-channel Phase Combine, QSM, SMWI, Deep neural 
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