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Abstract 

 

 Deep Learning is one of the most successful methods in the artificial intelligence field. Both 

mature of machine learning algorithm and the development of GPU contribute to the triumph of 

many deep learning applications. When the deep learning applications became more heavily, the 

more requirement for the accessing in the DRAM also increase. Recent DRAM generation met the 

problem to control the influence of refresh power in the total power consumption of the DRAM. 

A novel idea [8] proposed a method to sacrifice a little accuracy in Convolutional Neural Network 

but it helps to save at least 70% percent of refresh power consumption. However, in the paper, the 

authors only show the prediction of the amount of saving power without real estimation. In this 

thesis, the real estimate of Bit Transpose Unit, which is an important part to work with approximate 

data. The modification in the DRAM architecture also displayed and estimated in the real 

simulation. A solution also proposed to overcome some problem of Bit Transpose Unit. The real 

estimation received from the simulation in both McSimA+ and DRAMSim2 simulations give an 

evidence for the real operation of the idea in [8]. 
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Chapter 1: Introduction 

 

    In the recent year, deep learning proves the outstanding ability in many difficult problems. One 

of the prevalent problems is image classification problem. Many researchers tried to propose 

various kind of neural networks to solve these problems. The most successful network is 

Convolutional Neural Network (CNN), which is proposed by Yann LeCun in 1998 in computer 

vision community. The network achieved the very high accuracy in MNIST dataset. The successful 

of CNN is extend with the work of Alex Krizhevsky in 2012. He proved deep neural network is 

possible to train and the network gains the highest accuracy in ImageNet competition at this time. 

The research community is inspired by the success of the deep neural network, so many different 

kinds of the neural network are presented to improve accuracy in the ImageNet dataset. For 

example, VGG and GoogleNet in 2014 and 2015 subsequently. 

 With the mature of deep learning application, the accessing to the DRAM also increase with 

very high speed. More accessing on the DRAM brings more power for ACTIVATE/PRECHARGE 

and dynamic power. The power for these operations accounts for 50% power for the DRAM 

operation [8]. In [8], the authors proposed the novel idea to save power in the DRAM by using 

different refresh rate.  

 My thesis is organized as follow. Chapter 2 summarized all necessary background for my work. 

It includes background about Convolutional Neural Network, basic knowledge of DRAM and the 

architecture of McSimA+ and DRAMSim2 simulations. In chapter 3, I explain how to evaluate 

the actual running power of DRAM with the Bit Transpose Unit for the idea in [8]. Many various 
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version to work with Bit Transpose Unit is proposed. Chapter 4 is the simulation result and the 

explanation for the result in each case. Chapter 5 is the conclusion and future works.  
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Chapter 2: Background 

 

    In this chapter, I will cover some important background which is crucial to understand my work 

in next chapter. The core topic in the chapter includes the background of Convolutional Neural 

Network (CNN), Dynamic Random Access Memory (DRAM) architecture and Mcsim, 

DRAMSim2 simulators.  

2.1. Convolutional Neural Network 

     In the section, the background of CNN will be summarized. The CNN is introduced first time 

by Yann LeCun in 1998. In the paper [1], he proposed a network to classify handwriting digit 

numbers (MNIST dataset) in ten classes from zero to nine. The structure of the network is shown 

in the figure below.

 

Figure 1: Architecture of LeNet-5, a Convolutional Neural Network [1] 

 From figure 1, the architecture of a CNN use an image as input with the size is 32x32. This 

layer also calls visible layer. In the next hidden layer, the author used six different kernels to create 

six feature maps. Each feature map is created by multiply a kernel (5x5) with input images. The 

output from convolution layer becomes input for next subsampling (pooling) layer. Most popular 
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pooling method is max-pooling or average-pooling. The output of pooling layer is six feature maps 

with the size of 14x14. The similar process is applied with one convolutional and one subsampling 

layer subsequently. Two next layers are two fully connected layers. Output layer is the fully 

connected layer with ten neurons corresponding to ten classes which are needed to classify.  

 Three important characteristics contributed to the success of Convolutional Neural Network is:  

 Use one kernel for all receptive region in each input feature maps. It helped to reduce the 

number of parameters, so reducing the training time. Furthermore, using one kernel have 

to increase the stability of network because we want the convolutional network to classify 

correctly when the object is translated, rotated. 

 The appearance of pooling layer also helps to increase the stability of the network. Then, 

it contributed to the success of CNN. 

 CNN consists of many hidden layers, so it can attract the high abstract level of the object, 

which has a major influence on the final result.  

2.2. AlexNet, VGG, and GoogleNet 

    In the previous section, we have introduced a very famous Convolutional Neural Network 

(LeNet5). The network is very successful in MNIST dataset. However, in ImageNet competition, 

the network is not enough and a new requirement of a very deep network appears. ImageNet 

dataset includes over 1.3 million images in training set belong to 1000 classes. Therefore, a good 

neural network classifier must have the ability to capture the complex distribution of data in the 

dataset. This requirement leads to the appearance of the deep neural network. In theory, the deep 

neural network is the potential solution for the complicated problem such as ImageNet 

competition. But in practice, training a deep neural network is very slow and spend a lot of time. 
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Researchers also met an obstacle when they trained the deep neural network is the overfitting 

problem. All of these problems prevent the development of the deep neural network for a long 

time. 

 

Figure 2: The architecture of AlexNet [2] 

 Fortunate, in 2012, Alex Krizhevsky has proved that a deep neural network (AlexNet) can be 

trained in an acceptable time. He used two synchronized GPU to accelerate training speed. 

Furthermore, he also proposed to use Local Normalization which helps to overcome overfitting 

problem. An output from the network became the winner in ImageNet competition in 2012 with 

very high accuracy. The success of the network shocked research community and it is the start 

event for the explosive in the growing of using the deep neural network in many research field, 

especially in image classification problem.  

    In 2014, Karen Simonyan presented a highest deep neural network at this time. The architecture 

of the network is shown in figure 3. A visible characteristic of the VGG network is the increasing 

many hidden layers when compared with the network of Alex Krizhevsky. Nevertheless, the 

important attribute of the VGG net is that its use 3x3 kernel for all convolutional layers. VGG 

received accuracy higher than AlexNet and one critical conclusion from the achievement of VGG 
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is that the success of Convolutional Neural Network depends on the number of hidden layers in 

the network. 

 

Figure 3: VGG19 Architecture [5] 

 Following the success of VGG net, Christian Szegedy introduced a very impressive network in 

2015, which is called GoogleNet. The network has a strange structure when comparing with all 

convolutional neural network before. The structure of the network can see in [4]. The core item in 

the GoogleNet is the inception module, which is displayed in figure 4. Inception module is a 

combination of various kernel sizes. The advantage of inception module is the invariant of the 

classifier with the changing of scale, position in the image because the module uses different size 

of the kernel, so the inception module can attract the same feature with varying size in the same or 

different location. GoogleNet is the accumulation of many inception modules and it has 22 hidden 

layers. It is very impressive when comparing with VGG which has only 12 hidden layers. 

However, the number of GoogleNet’s parameters is fewer than the VGG net. The evidence from 
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GoogleNet proves that deep architecture plays an important role in the success of Convolutional 

Neural Network. 

 

Figure 4: Inception Module [4] 

2.3. Different Refresh Rate Solution 

    In [8], authors proposed a new memory architecture to reduce the power consumption by refresh 

operations by slowing down the refresh rate. The data is transposed to a two-dimensional array 

with the first row contains all the highest bit of all elements in the array. The significance of each 

row decreases from row 0 to the row 31. The refresh period (in milliseconds) is increased linearly 

as the row number increases: 

𝑅𝑃(𝑛) =  {
64                                            𝑓𝑜𝑟 0 ≤ 𝑛 ≤ 8

(𝑛 − 9) ∗ 𝑖𝑛𝑐𝑟 + 𝑜𝑓𝑓𝑠𝑒𝑡      𝑓𝑜𝑟 9 ≤ 𝑛 ≤ 31
 

where RP(n) represents the refresh period of the n-th row and two parameters, incr and offset, are 

chosen experimentally.  
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2.4. McSimA+ and DRAMSim2 Simulations 

    In this section, we cover briefly some important information about McSimA+  and DRAMSim2 

Simulations.  

2.4.1. McSimA+ Simulation 

    McSimA+ is an application-level+ simulator, offering a middle ground between a full-system 

simulator and an application-level simulator. It is an event-driven many core application-level 

simulator. The simulation uses Intel’s PinTool to interpret the binary instructions of any custom 

application running on the system. Binary instructions extracted by PinTool are used as input for 

a so-called PinTool Simulator (PTS). A PTS simulates an entire system, including processor cores, 

L1/L2 cache, directory, memory controller, etc. Many parameters of the system like queueing 

modes etc. can be modified. McSimA+ as PTS does not model the entire main memory hardware 

part but assumes fixed latencies for memory transactions and thus power/timing estimates are not 

as accurate as DRAMSim2.  

    The execution of the program in McSimA+ includes: 

 A shell file links the program to be executed (stream.cc) to the interpreter (PinTool) 

 McSimA+ simulates the program’s execution 

 McSimA+ and DRAMSim2 provide log files 

2.4.2. DRAMSim2 Simulation 

    The simulation use clock-cycle simulator of the entire hardware architecture of DDR2/DDR3 

main memory including the memory controller. Input for the simulation can either be trace files or 

other system/application simulators. Memory transaction processing is based on a general model 

of DDRx DRAM memory controller (patent). Datasheet parameters of existing DDR2/DDR3 
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chips can be used for simulation. Power/timing estimates are more accurate than McSimA+ since 

all transactions are processed entirely and no fixed bandwidth or timing is assumed.  
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Chapter 3: Bit Transpose Unit 

 

In chapter 2, we have summarized all necessary background. In this chapter, I will show detail 

about how to implement bit transpose unit (BTU) and how to use BTU in McSimA+ and 

DRAMSim2 simulations.  

3.1. Overall Computer Architecture with Bit Transpose Unit. 

In the section, we introduce the position of bit transpose unit in general computer architecture 

and the function of bit transpose unit, which is shown in figure 5  

 

Figure 5: Overall Architecture with Bit Transpose Unit 

 First, CPU sends an instruction. If the L2 cache is miss, data will be read from DRAM. In this 

situation, Memory Controller will detect the requirement data from the L2 cache to know what the 

kind of data is. If the data is approximate, the reading and writing operation to DRAM will execute 
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through Bit Transpose Unit. From the above figure, the location of bit transpose unit is between 

Memory Controller and DRAM. In the next section, the detail operation of Bit Transpose Unit will 

be introduced.  

 To more details, the hybrid architecture for approximate memory is shown in figure 6. 

 

Figure 6: Hybrid Architecture for Approximate Memory [8] 

3.2. Bit Transpose Unit  

The detailed structure of Bit Transpose Unit (BTU) is displayed in the section. Firstly, we will 

concentrate on the relation between L2 cache and Bit Transpose Unit to understand why BTU’s 

size is 32𝑥512. Second, the condition which is used to classify data between precise and 

approximation by Memory Controller also explains in detail.  
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Figure 7: L2 Cache 

 As we know, each cache line has size is 512 bits or 64 bytes. Therefore, if we use 32 bits data, 

then each cache line contains 16 data elements. For simplicity, we will illustrate the reorganization 

with one cache line as in figure 7. Each cache row will transpose to become a column. 

 

Figure 8: Convert 32 Cache Lines to Two-Dimensional Data 
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In the next step, we use the reorganization method in figure 8 for 32 subsequent cache lines. 

With cache line 0, we have data in a column with index from 0 to 15. Data in cache line 1 have the 

indices from 16 to 31. The same situation for other cache lines. After the process is finished, we 

have a column with the indices from 0 to 511. The column is two-dimensional array and size is 

 512 × 32. The explanation is summarized in figure 8. The two-dimensional array is transposed 

to another 32 × 512 two-dimensional array (figure 10). The new 32 × 512 array has the property 

that the row 0 is the highest bit of all 512 elements in the before array. The row 1 has the second 

highest bit and so on. The 32𝑥512 array has a critical advantage is that all equal high priority bit 

is put in the same row, so we can use different refresh rate for different rows depend on the 

important properties of each row.   

 

Figure 9: Convert Data in a Cache Row to a Column 
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From now, we will call the 32×512 array is a block for simplicity. When the data is approximate 

data, if L2 need to store data in DRAM, it will send data to bit transpose unit before sending data 

to DRAM. Similarly, when L2 need some approximate data from DRAM, data must be read to bit 

transpose unit before transferring data to L2 cache.  

    So, we have completed explaining how data from the L2 cache is transferred to Bit Transpose 

Unit. In the next step, we will focus on how Memory Control separates precise and approximate 

data. Actually, Memory Controller depends on the highest bit in the address of data to classify 

which kind of data. If highest bit is 1, then data is approximate. Otherwise, if highest bit is 0, data 

belongs the precise. From figure 11, it is obvious that if data is precise, the L2 cache will contact 

directly with the DRAM. However, if data is approximate, L2 cache need to contact with DRAM 

through Bit Transpose Unit. In the next section, we will introduce specifically the structure of 

DRAM to store both approximate and precise data.  

 

Figure 10: Transpose Data from 512x32 to 32x512 
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3.3. DRAM Architecture with Approximate and Precise Data 

    To suit the requirement of using both approximate and precise data in DRAM, we allocate data 

in DRAM in two channels. Channel 0 stores approximate data and channel 1 will be used to store 

precise data. Hence, L2 will read and write with approximate data only on channel 0 of DRAM. 

The main reason why we need to separate in two different channels because we can use different 

refresh rate in the different channel. By using different refresh rate in approximate data, we can 

save a lot of power when DRAM operates. If we use only one channel to store both approximate 

and precise data, it will become laboriously to control refresh rate in each row of DRAM. Another 

advantage of using two channels in DRAM is that we can exploit the locality of data in the precise 

data channel. This attribute is very useful characteristic of the much deep learning application.  

Figure 11: Memory Controller Control the Interaction between L2 Cache and DRAM 

Bit Transpose Unit 

DRAM 

(Approx. Channel) 

L2 Cache 

Memory Controller 

Highest 

Bit 

0 1 

DRAM 

(Precise Channel) 
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Figure 12: Precise Memory in DRAM 

    Note that because our target is to reduce power with reasonable accuracy, so in my work, I 

decided to employ approximate data channel for feature map in CNN network and the precise data 

channel store weight value of kernel. It is motivated by the fact that weight value in the kernel is 

applied for many positions in feature map, so it has a lot of influence on the output of the 

convolutional operation. Nonetheless, the value of feature map has smaller effect on the output’s 

result than weight’s value because CNN network has the ability to tolerate some inaccurate value 

from input feature maps. Furthermore, some pooling network, which usually uses max pooling, 

also helps the CNN network again unpredicted data created by using very high refresh rate on the 

lowest bit of data.  

    In figure 14, the architecture of DRAM is displayed. In channel 1, the structure of DRAM is 

similar to the normal DRAM. It also uses normal refresh rate (64ms) for every row in DRAM. 

However, in channel 0, the structure of DRAM is very different when compares with the normal 
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DRAM. DRAM is stored by each block (32×512) and each row in each block has different refresh 

rate followed by the ideal in [8]. 

 

Figure 13: Approximate Memory in DRAM [8] 
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Figure 14: Detail of DRAM Architecture with Approximate Data 



26 
 

 By using block structure to store approximate data, DRAM can use different refresh rate for 

each row. Hence, DRAM can save power with the method. However, the organization method also 

has another disadvantage is that when only one L2 cache line needs to read data from DRAM, 

DRAM still need to read all 32 rows in a corresponding block. It is obvious that when the situation 

occurred, DRAM will waste a lot of power in the ACTIVATE/PRECHARGED operations.     

3.4. Hit/Miss Criterion of Bit Transpose Unit.  

    In this section, the criterion of accessing hit/miss operation of Bit Transpose Unit is established. 

Because the condition has a direct effect on evaluation the operation of Bit Transpose Unit, we 

will explain in detail how the criterion is created.  

    First, we recall that data, which is stored in Bit Transpose Unit, has related directly with the data 

in the L2 cache, so to understand about how data is ordered in Bit Transpose Unit, we need to 

know about the position of data in L2 Cache. For example, assume that data is read from row 0 in 

DRAM to L2 cache. Then, cache line 0 consists 16 subsequent data elements with column address 

from 0 to 15. Similarly, cache line 1 also includes next 16 elements with column address from 16 

to 31 in the same row 0. The same process is applied to other cache lines 2 to 31 and finally, we 

have a two-dimensional array (or block) with size 32×512. Figure 15 illustrates the above idea. 

 

Figure 15: Store Data from DRAM to L2 Cache 
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 It is obviously 32 consecutive cache lines include 512 subsequent elements in the same row in 

the DRAM. Therefore, after transpose operation, Bit Transpose Unit still includes 512 successive 

elements. Trivially, when the L2 cache is a miss, it will need to read data from DRAM. If data is 

precise, DRAM will return directly data to L2 cache. However, if data is approximate, we need to 

check whether or not data is stored in Bit Transpose Unit. If Bit Transpose Unit consists necessary 

data, it will return data to L2 cache. In this case, we call Bit Transpose Unit is hit. Otherwise, we 

need to read data from DRAM to Bit Transpose Unit and return data to L2 cache, so we will call 

Bit Transpose Unit is miss in this situation. From above reasons, we need a condition to check 

whether or not requirement data from L2 cache exists in Bit Transpose Unit. We use a global 

variable called buffer to store the address of the first element in Bit Transpose Unit. Then, we 

compare requirement data’s address with the address of the first element. The row address and 

column address is used to compare. The comparing condition is shown below. 

𝑟𝑜𝑤𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑑𝑎𝑡𝑎
= 𝑟𝑜𝑤𝑏𝑢𝑓𝑓𝑒𝑟 

             𝑐𝑜𝑙𝑢𝑚𝑛𝑏𝑢𝑓𝑓𝑒𝑟 ≤ 𝑐𝑜𝑙𝑢𝑚𝑛𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑑𝑎𝑡𝑎
  

&& 𝑐𝑜𝑙𝑢𝑚𝑛𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑑𝑎𝑡𝑎
< 𝑐𝑜𝑙𝑢𝑚𝑛𝑏𝑢𝑓𝑓𝑒𝑟 + 512 

 Why we have 512 in our condition? The reason is that Bit Transpose Unit includes 512 

subsequent elements from the same row in DRAM. The row compares condition detects the new 

necessary element belong to the same row with other elements in Bit Transpose Unit. Hence, if a 

new requirement element has the address satisfies the above condition, the Bit Transpose Unit is 

hit. Otherwise, Bit Transpose Unit will miss and it needs to read data from DRAM to return value 

to L2 cache.  
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3.5. Reading/Writing Operation with Bit Transpose Unit 

    The section will clarify the operation of Bit Transpose Unit. Furthermore, we also show the 

advantage and disadvantage of the proposed method. Based on the disadvantage of this method, 

we propose a different way in section 3.6 to overcome the problems.  

    Bit Transpose Unit includes two main operations: Reading and Writing operation. First, we talk 

about reading operation of Bit Transpose Unit. Second, the writing operation will be introduced.  

    The reading operation occurs when L2 cache needs to read data from DRAM. When L2 cache 

needs to read data, we have three cases need to control.  

1. If data is precise, DRAM will return data immediately to L2 cache. 

2. If data is approximate and Bit Transpose Unit is hit. In the case, Bit Transpose Unit will 

return data directly to the L2 cache. 

3. This is the worst case, data is approximate and Bit Transpose Unit is miss. In this situation, 

DRAM will send data to Bit Transpose Unit and Bit Transpose Unit will transfer data to 

the L2 cache. 

In our explanation, we will focus only on case 2 and case 3. Case 1 is obviously for every normal 

DRAM, so we will omit it in our clarification. Of course, cases 1 still exists in my implementation, 

which is demonstrated in Chapter 4.  

    When Bit Transpose Unit operates for the first time, the buffer always misses. This is obviously 

because at this time, we did not have any data in the buffer and we need to read data from DRAM 

to transfer it to the L2 cache. In the next operation, we based on the hit/miss condition in section 

3.4 to detect whether or not Bit Transpose Unit is hit or miss. If the condition is satisfied, Bit 
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Transpose Unit returns data immediately to L2 cache. However, if the Bit Transpose Unit is a miss, 

it is the worst case and we need to execute following steps: 

1. Step1: Write back all data from Bit Transpose Unit to the corresponding location in the 

DRAM. The step is required because we need to release data in the Bit Transpose Unit 

to have space to store new data from DRAM. Of course, we write entire a block data 

(32x512) to DRAM.  

2. Step2: Read the corresponding block data from DRAM to Bit Transpose Unit. We read 

a block (32x512) from DRAM. After finishing reading data to Bit Transpose Unit, the 

necessary data will be transferred to L2 cache. 

Figure 16 shows the operation of step1. 

 

Figure 16: Step1 in Reading Operation 

 Data in the Bit Transpose Unit will be written to the corresponding address location in the 

DRAM.  
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In figure 17, we use the address of required data to determine the necessary block data in 

DRAM. After knowing the exact position of the block, we will transfer data in the block to the Bit 

Transpose Unit.  

 

 

 

 

 

 

 

 Until now, we completed explaining the reading operation of Bit Transpose Unit. In the next 

clarification steps, we will concentrate on exemplifying the writing operation of the Unit. Likewise 

reading operation, writing operation also includes 3 situations as following: 

1. Writing precise data from the L2 cache to DRAM. In the situation, data will be written 

normally to the normal location of the DRAM, which is the channel 1 in the DRAM. 

2. Writing approximate data and Bit Transpose Unit is hit. In this case, we only write data 

from the L2 cache to the suitable position in the Bit Transpose Unit.  

3. The worst case when data is approximate data and Bit Transpose Unit is miss. We must 

execute two steps in the case. First, we need to write back all data from Bit Transpose Unit 

to DRAM. The step is the same step1 in the reading operation. Second, we will write data 

Bit Transpose 

Unit 

⋯ ⋯ ⋯ 

512 

32 ⋯ 

⋯ ⋯ ⋯ ⋯ 

⋯ 

⋯ 

⋯ ⋯ ⋯ ⋯ ⋯ 

⋯ ⋯ ⋯ ⋯ ⋯ 

 

Figure 17: Step2 in Reading Operation of Bit Transpose Unit 
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from L2 cache to the Bit Transpose Unit. Note that we need to write entirely a block, which 

consists the writing requirement data to the Bit Transpose Unit.  

Obviously, for the first time of the operation, if the reading operation is activated, the following 

reading or writing operation will check the hit/miss condition as section 3.4. However, if the 

writing is the first operation of the Bit Transpose Unit, then the writing operation is miss trivially 

and in this case, we only need to write data directly from L2 cache to the Bit Transpose Unit. 

Because case1 and case2 in the writing operation are very easy to understand, so we illustrate only 

the case3 in figure 18. The step1 of the writing operation is similar with the step1 of the reading 

operation (figure 16). Therefore, we will not display it in here. Figure 18 shows approximate data 

wrote from L2 cache to the Bit Transpose Unit. In figure 18, we assumed that we need to write 

data in the cache line 50 in the L2 cache. However, because our proposed architecture for the Bit 

Transpose Unit, we need to write all data from cache line 32 to the cache line 63 to the Bit 

Transpose Unit. Of course, it is the waste operation but it helps to preserve the consistency of data 

between the Bit Transpose Unit and the data architecture in the DRAM (channel 0). 

 

 

 

 

 

 

 

Bit Transpose Unit 

Cache line 0 

Cache line 1

 … 

 Cache line 31

 Cache line 32 

Cache line 33 

… 

 Cache line 63 
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 … 

 … 

 

Transpose 

 … 
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Figure 18: Step2 in the Writing Operation of Bit Transpose Unit 
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 Note that in our implementation, we assume that the transpose data from 32 cache lines in the 

L2 cache to Bit Transpose Unit is completed. We did not implement the step in our simulation for 

simplicity. From the above presentation of the reading/writing operation of the Bit Transpose Unit, 

we summarize the advantage and disadvantage when using Bit Transpose Unit. 

 First, the advantage of Bit Transpose Unit is that if the Unit is hit in the reading or writing 

operation, we can save power, reduce bandwidth, latency, and also increase IPC because 

we don’t need to go to the DRAM to access necessary data. Moreover, Bit Transpose Unit 

is the intermediate steps which help to store data in a kind suitable for the approximate data 

block in the DRAM because data from the L2 cache is transformed before sending to the 

Bit Transpose Unit. 

 Second, the disadvantage of Bit Transpose Unit is that when the buffer is a miss, both the 

reading and writing operations need to write back data from the Bit Transpose Unit to the 

appropriate location in DRAM before reading necessary data from DRAM or writing data 

from L2 cache to the Bit Transpose Unit. The obvious consequence is that both the latency 

and the bandwidth increase because we need to write back data from the Bit Transpose 

Unit to the DRAM.  

In the next section, we proposed a solution to overcome the drawback of using one Bit 

Transpose Unit.  

3.6. Reading/Writing Operation with Two Bit Transpose Units 

    In section 3.5, we have seen that when the Bit Transpose Units missed, we incurred the 

disadvantage from the writeback data from the Bit Transpose Unit to the DRAM. To overcome 

the problem, we proposed a solution by using two isolated Bit Transpose Units. One Bit Transpose 
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Unit uses for the reading operation. Another uses for the writing operation. When we use two Bit 

Transpose Units, we need some modifications for the operation of each buffer. In addition, we also 

need to control the coherence between the reading buffer and the writing buffer. To easy for 

understanding, the structure of two Bit Transpose Unit is displayed in figure 19. Comparing with 

the figure 13, an additional buffer is attached in the architecture. The reading and writing operation 

is divided into the two isolated buffers. First, we talk about the reading operation. From the figure 

19, the reading operation still includes three cases as explaining in section 3.5. The case1 and case2 

are similarly with case1 and case2 of the reading operation in section 3.5, so we will not mention 

it again in the section. We will focus on the case3 because of some modification with the operation 

of Bit Transpose Units. For simplification, we annotate the Bit Transpose Unit with the reading 

operation is Reading Buffer and another is Writing Buffer. Now, in cases3 of the reading operation, 

the Reading Buffer is a miss, so we need to read approximate data from the DRAM. In section 3.5, 

because we have only one buffer working for both reading and writing, hence we need to release 

the space of the buffer before we read or write data to the buffer. However, in this section, we use 

a separate buffer for reading operation and we don’t need to do the work. But two cases still exist 

and need to control by our implementation.  

 Case1: New requirement reading data doesn’t exist in the Writing Buffer. In the case, the 

Reading Buffer plays a simple by reading directly necessary approximate data from the 

DRAM to the buffer without worry about the correctness of the data.  

 Case2: It is not the expectation cases. In this case, the reading data exist in the Writing 

Buffer, so to preserve the consistency of the data, we need to execute the two following 

steps: 
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1. Step1: Writing the data from the Writing Buffer to the correct position in the 

DRAM. 

2. Step2: Reading the necessary data from the same location in the DRAM to the 

Reading Buffer and send this data from the buffer to the L2 cache.  

The above implementation protects the coherence in the operation between the two buffers. In 

the next steps, we explain the operation of the Writing Buffer in the writing work. In the writing 

operation, we also have three cases as in section 3.5. All the three cases are same with three cases 

in the writing operation of section 3.5. Therefore, we did not talk again about it.  

 

 

 

 

 

 

 

 

 

 

Now, we sum up the advantage of the operation with the work of two buffers. 
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Memory Controller 
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Figure 19: Two Bit Transpose Units Architecture 
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 It is easy to see that with the work of two buffers, we can save a lot of active power because 

we did not need to release the buffer space every time the buffer is missed. We only 

incurred small drawback when the data need to move in the Reading buffer is coherent 

with the data in the Writing Buffer.  

 The proposed two buffers solution increases the IPC and reduce latency and bandwidth. 

All of the above advantages of two buffers solutions will be proved in Chapter 4.  

3.7. Two-Bit Transpose Units with Truncated Data 

    In all previous section, we use data with 32 bits both for precise and approximate data. However, 

in many application, 32 bits are too big and we did not need very high accuracy data. For this 

reason, in the section, we will two Bit Transpose Units with truncated data. We have used the 

various number of the truncated data from 8 bits data to the 20 bits data. The accuracy and the 

power of our simulation with the truncated data will be shown in Chapter 4. The important core in 

the section is that we will concentrate on the effect of truncated data on the structure of the Bit 

Transpose Unit and the DRAM architecture.  

    First, we will talk about the effect on the size of the Bit Transpose Unit. For easy to image, we 

assumed that truncated data is 16 bits. Then, the size of Bit Transpose Unit became 16×512. The 

reduction in the size of the Bit Transpose Unit caused by the decreasing of the number of bit in the 

truncated data. In this situation, we only care about the 16 highest bits in the data and omit other 

lower bits. The size of old and new Bit Transpose Units are presented in figure 20. When data 

from L2 cache need to store in the Bit Transpose Unit, L2 cache data still need to be reorganized 

to a two-dimensional array with size 512×32. After the transpose operation, the array has the size 

of 32×512. However, in the current, the size of Bit Transpose Units is only 16×512, so we only 
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transfer only first 16 rows in the 32×512 array. Because first 16 rows consist of 16 highest bits for 

all 512 elements in the array, the data in the Bit Transpose Units include all 16 highest bit data.  

    Another effect of the truncated data is that it also changes the architecture of the DRAM. In 

figure 14, the data is stored in the DRAM architecture by each block 32×512 to match with the 

size of data in the Bit Transpose Units. Nonetheless, the current size of the buffer is only 16×512, 

so we need to reduce the size of the data block in the DRAM. The data block in DRAM has size 

only 16×512. The changing of DRAM architecture is shown in figure 21. 

 

 

 

 

 

 

 

 Overall, the reduced number of bits in truncated data has the direct influence on the size of Bit 

Transpose Units and the size of the data block in the DRAM.  

Bit Transpose Unit 
Bit Transpose Unit 

512 

32 

Previous Bit Transpose Unit 

512 

16 

Current Bit Transpose Unit 

 

Figure 20: Bit Transpose Unit w/ and w/o Truncated Data 



37 
 

 

Figure 21: DRAM Architecture with Truncated Data 

 

 By using the truncated data, we have following advantages: 

 Reduce power which is used by Bit Transpose Units.  

 Reduce latency, bandwidth, and dynamic power when the Bit Transpose Units are miss 
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Chapter 4: Experiments and Results 

 

    The chapter has a mission to check the results of simulation for different proposed methods. 

It is also the evidence to prove the advantage of using two Bit Transpose Units with or without 

truncated data. In section 4.1 and 4.2 we explain how to modify the McSimA+ simulation and 

DRAMSim2 simulation to work with precise and approximate data. The next section 4.3, shows 

the result of running 3D_CNN network and VGG network for only precise data. Section 4.4 

deserves for the running the two above networks with the one Bit Transpose Unit. Section 4.5 

displays a different kind of powers for the two Bit Transpose Units solutions. The subsequent 

section 4.6 concentrates on the results for two Bit Transpose Units with the various number of 

truncated data. Section 4.7 compares the simulation results for open-page policy and close-page 

policy in the DRAM. Finally, we introduced the estimation for the power, which is used by Bit 

Transpose Units and also the area of the corresponding Bit Transpose Unit in section 4.8.  

    In each section, we will explain what the reason is for the many different types of powers.  

Figure 18 shows the overview of the integration between two simulators. Application in the 

figure is some Deep Learning network such as GoogleNet, VGGNet, AlexNet and ResNet. The 

Bit Transpose Unit is added in McSimA+ simulator and contribute as a bridge between L2 cache 

and DRAMSim2 simulator. Hit condition block will check whether data exists in the Bit Transpose 

Unit or approximate region in DRAM. If hit condition is miss, data will be transferred between Bit 

Transpose Unit and approximate memory through addTransact() function.  
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Figure 22: McSimA+ and DRAMSim2 Integration 

4.1. Modification in McSimA+ 

    Before going further in the section, we must recall from the section 3.2 that Memory 

Controller classifies the kind of data based on the highest bit in the correlated data’s address. To 

achieve the target is separating between precise and approximate data, we must change the malloc 

function in the McSimA+ simulation. By changing the malloc function, we imply the position of 

data will be stored in the DRAM. The function has the mission to decide which part of the DRAM 

is chosen to store data. The implementation of new malloc function (we call it to distinguish with 

the original malloc function in the McSimA+ simulation) includes two part. In the first part, malloc 

function will allocate data normally for precise data and data is stored in the channel 1 of the 

DRAM. In the second part, it needs to allocate memory for approximate data, so the highest bit in 

the data’s address need change from 0 to 1. We use a simple Macro function for the mission of 

activating the highest bit in the address. Parallel with the malloc function, we also modify the free 
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function to match with the change in the in malloc function. In the new free function, we will 

deallocate memory both for precise and approximate data.  

Another modification in the McSimA+ is that we need to create a link between the McSimA+ 

simulation and DRAMSim2 simulation. Recall from the section 2.4, McSimA+ based on the 

events to run the simulation. Events are processed whenever they occur (timestamps). On the other 

hand, DRAMSim2 simulation depends on the clock to run. Commands are processed cycle-by-

cycle. Because the difference in the simulation method, when we tried to integrate both the 

simulation, we met the problem that clock information is missing: transactions could be added to 

DRAMSim2, but they would not be processed without the clock. For this reason, to make the 

McSimA+ work together with DRAMSim2, we used a solution to overcome the problem by the 

Memory Controller in McSimA+ has to create events constantly to emulate clock cycle. 

Transactions are forwarded to DRAMSim2 and a callback function fires every time a transaction 

is completed. Because callbacks will only return address and type of data, a Local Queue Element 

(LQE) needs to be saved in the PTS Memory Controller. Using the address field (and write/read 

Boolean), the corresponding LQE will be searched for and sent back to the PTS Directory and 

deleted.  

4.2. Modification in the DRAMSim2 Simulation 

 To use the DRAM with both precise and approximate data in the simulation, we need many 

modifications in the DRAMSim2 simulation. Here, it is the necessary modification in the 

DRAMSim2 simulation.  

 Separate two channel in the DRAM. Channel 0 is used for the approximate data and precise 

data deploy the channel 1 in the DRAM.  
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 Modification in PTS Memory Controller to add Bit Transpose Unit and make it work with 

the new architecture of the DRAM. 

 Change the write and read functions in the DRAMSim2 simulation to work in both case 

with precise and approximate data. 

 Implement condition for hit/miss state of Bit Transpose Unit.  

 Aligned the address, which is sent from McSimA+ simulation. 

We will explain each modification in the DRAMSim2 simulation in the detail. First, we need to 

isolate a different kind of data in the different channel of the DRAM. To achieve our target, we 

need to control the channel bit in the data’s address. Because we want channel 0 to store 

approximate data and channel 1 for precise data, so I wrote a function to set the channel’s bit in 

the data’s address before the address is sent to the Memory Controller in the DRAM. Then, 

Memory Controller can choose the suitable location for each kind of data.  

Second, the core of my implementation is the modification in the DRAM Memory Controller. In 

the DRAM Memory Controller, I changed the process_event function in the Memory Controller. 

The operation of Bit Transpose Unit is added in the process_event function. Depending on one or 

two Bit Transpose Units in our simulation, we have written the different version of modification 

to match with the requirements. In the original version, the process_event function only works 

with the precise data. But, at the current time, the function must control its operation with both 

approximate and precise data. Its operation also relied upon on the state of the Bit Transpose Unit 

is hit or miss. The detail of Bit Transpose Unit is introduced in detail in section 3.5, 3.6, and 3.7.  

Two functions read_complete and write_complete also need to modify. In the normal operation, 

these functions will return data from DRAM to the Directory when the reading or writing operation 
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is completed. However, because now we need to aligned data’s address before sending the 

command to the DRAM, we must check the existence of address in the Local Queue Event. If the 

address exists in the Queue, the value of data will be returned to the Directory. Otherwise, the 

program will appear errors and stop working.  

Another contribution to my work is to implement condition to check when the Bit Transpose Unit 

is hit or miss. Two functions are used to detect the state of the Bit Transpose Unit. The first function 

is  is_approx function. If the return value of the function is 1, the data is approximate and will use 

the is_valid function to know whether the Bit Transpose Unit is hit or miss with the reading/writing 

operations. When the return value of the is_approx function is 0, data will be read or written 

directly with the DRAM through the channel 1. The condition for checking the status of the Bit 

Transpose Unit is described in section 3.4. 

Finally, the data’s address must be aligned before sending to the DRAM Memory Controller. It 

became an advantage when we need to write or read a block of data (32x512) to/from the DRAM.  

4.3. Simulation with Precise Data 

    In the section, the simulation result for 3D_CNN and VGG networks is collected. We use the 

results in the section as the baseline for comparing with the operation of one or two Bit Transpose 

Units and with two Bit Transpose Unit plus truncated data. The environment of our simulation is 

Centos7. Every simulation is run on the computer core i5 3.2GHz and 4Gb memory.  

    First, it is the result of running 3D_CNN network. 
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Network Average 
Power 
(mW) 

Background Dynamic Refresh IPC Bandwidth 

(GS/s) 

Buffer 
Hit Rate 

Precise 
Data  

2083 1491 167 425 1.795 0.244 0% 

Table 1: 3D_CNN Power with Precise Data 

 Second, the running result of VGG is shown in the figure below 

Network Average 
Power 
(mW) 

Background Dynamic Refresh IPC Bandwidth 

(GS/s) 

Buffer 
Hit Rate 

Precise 
Data  

1778 1273 80 425 1.283 0.15 0% 

Table 2: VGG Power with Precise Data 

4.4. Simulation with Bit Transpose Unit 

 In the section, the result for running two above network with the Bit Transpose Unit is 

summarized.  

 3D_CNN 

Network Average 
Power 
(mW) 

Background Dynamic Refresh IPC Bandwidth 

(GS/s) 

Buffer 
Hit Rate 

Precise 
Data  

2083 1491 167 425 1.795 0.244 0% 

1 Bit 
Transpose 

Unit 

1835 1540 166 129 1.786 0.243 94.88% 

Table 3: 3D_CNN Power using Single Bit Transpose Unit 

 VGG 

Network Average 
Power 
(mW) 

Background Dynamic Refresh IPC Bandwidth 

(GS/s) 

Buffer 
Hit Rate 
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Precise 
Data  

1778 1273 80 425 1.283 0.15 0% 

1 Bit 
Transpose 

Unit 

1634 1371 134 129 1.226 0.275 96.72% 

 

Table 4: VGG Power using Single Bit Transpose Unit 

 The results from two above tables show that all aspect operation of the DRAM is reduced with 

the operation of the Bit Transpose Unit. The reduction in the quality of DRAM’s operation caused 

by the overhead writing operation from the Bit Transpose Unit to the DRAM every time the buffer 

is miss. This is the drawback of using the Bit Transpose Unit. Even only one element from L2 

cache needs to be read or write, all elements in the buffer block must write to the DRAM. 

Furthermore, the structure of approximate data in DRAM require will must open all 32 consecutive 

rows in the DRAM to write a block of data to the DRAM. All these above reasons lead to the bad 

result of the DRAM’s operation with the Bit Transpose Unit 

4.5. Simulation with Two Bit Transpose Units 

    To overcome the problem with one Bit Transpose Unit, we proposed to use two separate Bit 

Transpose Units for the reading and writing operations. The detail of the solution depicted in 

section 3.6. 

 3D_CNN 

Network Average 
Power 
(mW) 

Background Dynamic Refresh IPC Bandwidth 

(GS/s) 

Buffer 
Hit Rate 

Precise 
Data  

2083 1491 167 425 1.795 0.244 0% 

1 Bit 
Transpose 

Unit 

1835 1540 166 129 1.786 0.243 94.88% 
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2 Bit 
Transpose 

Units 

1834 1540 166 129 1.786 0.243 94.88% 

Table 5: 3D_CNN Power using Double Bit Transpose Units 

 VGG 

Network Average 
Power 
(mW) 

Background Dynamic Refresh IPC Bandwidth 

(GS/s) 

Buffer 
Hit Rate 

Precise 
Data  

1778 1273 80 425 1.283 0.15 0% 

1 Bit 
Transpose 

Unit 

1634 1371 134 129 1.226 0.275 96.72% 

 

2 Bit 
Transpose 

Units 

1507 1290 88 129 1.286 0.156 96.72% 

Table 6: VGG Power using Double Bit Transpose Units 

 It is obvious to see that when using two Bit Transpose Units, all characteristics of DRAM’s 

operation is improved. The reason is that when using two separate buffers, we don’t need to write 

data from the buffer to the DRAM every time the buffer is miss. We only need to write buffer 

when requirement data from the Reading Buffer exists in the Writing Buffer. In this situation, we 

need to write data from the Writing Buffer to the DRAM before reading the corresponding data to 

the Reading Buffer to protect the consistency of data.  

4.6. Simulation Two Bit Transpose Units plus Truncated Data 

    As explained in section 3.7, using the truncated data will help to save both the power and 

improve the operation of the DRAM. The prediction is proved by the result in the section. In the 

section, we run our simulation with various kind of truncated data. Truncated data includes 8 bits, 

9 bits, 12 bits, 16 bits, 20 bits. The result is similar our prediction in section 3.7. When we use the 
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truncated data, we reduce the number of writes and read with the approximate data from the 

DRAM. Furthermore, if the Bit Transpose Units are a miss, the number of 

ACTIVATE/PRECHARGED also reduced because we don’t need to open 32 rows as in the 

normal two Bit Transpose Units simulation. 

 VGG 

Network Average 
Power 
(mW) 

Background Dynamic Refresh IPC Bandwidth 
(GS/s) 

Buffer 
Hit Rate 

Precise 
Data 

1778 1273 80 425 1.283 0.15 0% 

1 Bit 
Transpose 

Unit 

1634 1371 134 129 1.226 0.275 96.72% 
 

2 Bit 
Transpose 

Units 

1507 1290 88 129 1.286 0.156 96.72% 

2 Bit 
Transpose 
Units 20 
bits Data 

1445 1253 64 128 1.313 0.108 96.72% 

2 Bit 
Transpose 
Units 16 
bits Data 

1423 1240 56 128 1.320 0.092 96.72% 

2 Bit 
Transpose 
Units 12 
bits Data 

1402 1227 47 127 1.332 0.076 96.72% 

2 Bit 
Transpose 

Units 9 
Bits Data 

1377 1218 41 119 1.338 0.064 96.72% 

2 Bit 
Transpose 

Units 8 
Bits Data 

1359 1214 39 106 1.341 0.059 96.72% 

Table 7: VGG Power using Double Bit Transpose Units and Truncated Data 
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4.7. Open-page Policy versus Close-page Policy 

 The section shows the influence of two kind of polices in the operation of the DRAM. The 

results are shown in the following tables.  

 Two Bit Transpose Units Simulation 

Network Average 
Power 
(mW) 

Background Dynamic Refresh IPC Bandwidth 
(GS/s) 

Buffer 
Hit Rate 

2 Bit 
Transpose 

Units 
(Open-
Page) 

1507 1290 88 129 1.286 0.156 96.72% 

2 Bit 
Transpose 

Units 
(Close-
Page) 

1563 1335 99 129 1.232 0.149 96.72% 

Table 8: Compare VGG Power between Two Policies 

 

 Two Bit Transpose Units with 9 bits truncated data 

Network Average 
Power 
(mW) 

Background Dynamic Refresh IPC Bandwidth 
(GS/s) 

Buffer 
Hit Rate 

2 Bit 
Transpose 

Units 9 
bits Data 
(Open-
Page) 

1377 1218 41 119 1.338 0.064 96.72% 

2 Bit 
Transpose 

Units 9 
bits Data 
(Close-
Page) 

1376 1215 43 119 1.334 0.064 96.72% 

Table 9: Compare VGG Power between Two Policies and 9 bits Truncated Data 
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 Two Bit Transpose Units with 8 bits truncated data 

Network Average 
Power 
(mW) 

Background Dynamic Refresh IPC Bandwidth 
(GS/s) 

Buffer 
Hit Rate 

2 Bit 
Transpose 

Units 8 
bits Data 
(Open-
Page) 

1359 1214 39 106 1.341 0.059 96.72% 

2 Bit 
Transpose 

Units 8 
bits Data 
(Close-
Page) 

1355 1209 40 106 1.338 0.059 96.72% 

Table 10: Compare VGG Power between Two Policies and 8 bits Truncated Data 

 The results prove that almost aspect of the DRAM’s operation is the same for both open-page 

and close-page policies. Note that the average power and background power in close-page policy 

is smaller than open-page policy because, in the close-page policy, a row is closed after write or 

read data from it. It is matched with our DRAM architecture, which requires opening all rows in a 

block to read data from a block to the Bit Transpose Unit.  

4.8. Estimate Bit Transpose Power and Area  

    In the section, we will estimate the Bit Transpose Unit power and area for all cases in section 

4.4, 4.5, and 4.6. First, the simulation condition is collected as following: 

 CPU frequency is 3.0 GHz 

 30 timestamp for one clock 

 # of time stamp: 36866978940 

 #of hit/miss: 3677967/124557 
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Figure 23: Energy for 45nm CMOS process [9] 

 Based on the above simulation conditions, the second step is estimate the power of Bit 

Transpose Unit.  

 Time for one stamp is: 

𝑡𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 =

1
3 . 10−9

30
=

1

9
. 10−10(𝑠) 

Therefore, the total running time is: 

𝑡 =  𝑡𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ∗ #𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 

=
1

9
. 10−10 ∗ 36866979840 = 0.4096(𝑠) 

 

 The number of accessing Bit Transpose Unit is: 

3677967 ∗ 1 + 124557 ∗ 65 = 11774172 

 

 The power for reading and writing operations of Bit Transpose Unit is: 

𝑃𝐵𝑇𝑈 = 32 ∗ 11774172 ∗ 10−12 ∗
16

0.4096
= 14.72(𝑚𝑊) 
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 Next, the area of Bit Transpose Unit is estimated. Estimated gate count of Bit Transpose Unit 

is implemented in TSMC 65nm library. I coded a simple version of Transposed Unit by Verilog 

then do synthesis. The result shows that Bit Transpose Unit requires 16384bits plus 512𝑥32 MUX. 

Hence, it need 243K gates.  

  When comparing the power of Bit Transpose Unit with average power of 3D_CNN or VGG 

network in section 4.4, 4.5, 4.6, it is clear that power of Bit Transpose Unit only increases less than 

1% total power. It is a worth prize when comparing with the reducing of refresh power of DRAM.  
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Chapter 5: Conclusion and Future Work 

 

 This paper present the implementation of the Bit Transpose Unit and the modification in DRAM 

architecture to work with both the precise and approximate data. It also proposed a solution with 

two Bit Transpose Unit to overcome these problems which is met when using only one Bit 

Transpose Unit. The combination between the two Bit Transpose Unit and the truncated data have 

proved the advantage of saving the power and the other operating aspects of the DRAM. The 

additional power using by Bit Transpose Unit and its area also estimated in this paper.  

 In the future, we will modify the operation of the DRAM with the Half Page Row Accessing 

method to improve the quality of DRAM.  
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딥러닝은 인공 지능 분야에서 가장 성공적인 방법 중 하나이다. 머신러닝 알고리즘의 발달과 GPU의 개발은 모

두 다양한 딥러닝 응용 프로그램의 성공에 기여 해 왔다. 딥러닝 응용 프로그램이 점점 커지게 되면 DRAM으

로의 접근도 많아진다. 현대의 DRAM은 DRAM의 전체 전력 소비에서 리프레시 전력의 영향을 조절해야 하는 

문제가 있다. [8]은 컨볼루션 신경망에서 약간의 정확도를 희생하는 대신 리프레시 전력의 70 % 이상을 절약

하는 방법을 제안했다. 그러나 이 논문은 실제로 리프레시 전력을 측정하지 않고 예측된 전력의 감소만을 

보여준다. 본 연구에서는 근사 데이터를 이용하기 위한 중요한 부분인 Bit Transpose Unit을 실제로 측정한다. 

DRAM 아키텍처의 변경 사항 또한 실제 시뮬레이션에서 표시되고 측정된다. 또한 Bit Transpose Unit의 문제를 

해결하기 위한 방안을 제안한다.  [8]의 방식을 실제로 구현 했을 때의 결과를 McSimA +와 DRAMSim2 시뮬

레이션 결과로부터 구할 수 있다. 

Keyword: Deep Learning, Power Saving, Refresh Rate, Convolutional Neural Network 

Student Number: 2015-22136 
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