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I 

Abstract 

 

Indole-3-acetic acid (IAA), the major form of the plant hormone auxin, regulates 

almost every aspect of plant growth and development. Therefore, auxin homeostasis 

is an essential issue in plants. Various pathways of synthesis, transport, conjugation, 

and catabolism are involved in auxin homeostasis, but its catabolic pathway has 

remained elusive until recent studies elucidated the presence of DIOXYGENASE 

FOR AUXIN OXIDATION (DAO) from Oryza sativa and Arabidopsis thaliana. 

DAO, a member of the 2-oxoglutarate/Fe(II)-dependent oxygenase family, 

constitutes a major enzyme for IAA catabolism. It catalyzes, with the cosubstrate 2-

oxoglutarate, the conversion of IAA into 2-oxoindole-3-acetic acid, a functionally 

inactive oxidative product of IAA. Here, I report a crystal structure of the unliganded 

DAO1 from A. thaliana (AtDAO1) and its complex with 2-oxoglutarate. AtDAO1 

is structurally homologous with members of the 2-oxoglutarate/Fe(II)-dependent 

oxygenase family but exhibits unique features in the prime substrate-binding site. 

Using liquid chromatography-tandem mass spectrometry analyses of the reaction 

products from various mutant enzymes, I provide structural insights into a putative 

binding site for the prime substrate IAA, thereby suggesting possible structural 

determinants for the substrate specificity of AtDAO1 toward IAA.  

 

Key words: Arabidopsis thaliana, AtDAO1, dioxygenase for auxin oxidation, 

indole-3-acetic acid, 2-oxoglutarate, 2-oxoglutarate/Fe(II)-dependent oxygenase 
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Introduction 

 

Auxin is one of the essential hormones in plants. It has been involved in almost all 

steps for plant growth and development (reviewed in Abel & Theologis, 2011; 

Estelle et al., 2011). Naturally abundant indole-3-acetic acid (IAA) is a 

representative of auxin molecules bearing a chemical skeleton similar with IAA. 

Given the crucial physiological role of auxin throughout the life stages of plant, an 

optimal auxin concentration should be maintained to exert its biological effects in a 

spatial and temporal manner, in response to changes in endo- or exo-geneous signals, 

environmental stress etc. Therefore, maintaining auxin homeostasis is one of the 

central metabolic events in plants. 

Auxin homeostasis is regulated in an intricate and redundant manner by 

different fates of IAA via synthesis, transport, conjugation, and catabolism (reviewed 

in Ljung, 2013; Zhang & Peer, 2017). Among those metabolic routes, IAA-

inactivating catabolism that involves IAA oxidation is an emerging pathway in the 

regulation of IAA level. In Arabidopsis seedlings, an oxidative product of IAA has 

long been characterized at a concentration much higher than major IAA conjugates 

with amino acid(s) (Kowalczyk & Sandberg, 2001), suggesting that IAA oxidation 

is a major metabolic pathway but a gene(s) responsible for the conversion has been 

remained elusive. Recently, a gene named DIOXYGENASE FOR AUXIN 

OXIDATION (DAO) was first identified in rice (Zhao et al., 2013). DAO from rice 

Oryza sativa (OsDAO) catalyzes a conversion of IAA into 2-oxindole-3-acetic acid 

(oxIAA) (Fig 1A), an oxidative product no longer bearing biological functions IAA 

exhibits. Subsequently, sequence comparisons revealed the presence of two DAO-
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like genes in Arabidopsis thaliana, and their products (i.e., AtDAO1 and AtDAO2) 

exhibited a proposed activity for oxIAA formation by in vivo and in vitro assays 

(Porco et al., 2016; Zhang et al., 2016). Together with further metabolic profiling 

and phenotypic studies using AtDAO1 loss and gain of function mutant lines (Mellor 

et al., 2016; Porco et al., 2016; Zhang et al., 2016), all these results unanimously 

concluded that in A. thaliana AtDAO1 is a major oxygenase responsible for oxIAA 

formation in vivo, and the DAO-dependent IAA oxidation constitutes a primary 

catabolic pathway of IAA. 

DAOs, including AtDAO1 (At1g14130), AtDAO2 (At1g14120), and OsDAO 

(Os04g0475600), belong to a member of the 2-oxoglutarate (2OG)/Fe(II)-dependent 

oxygenase (2ODO) family (Fig. 1B), but are classified to be a sub-group of the 

family (Porco et al., 2016; Zhang et al., 2016). All members of the 2ODO family 

catalyze their reactions towards a prime substrate(s), with 2OG and dioxygen as co-

substrates and ferrous iron as a cofactor, and operate reactions in a conserved way 

involving a hi-valent iron intermediate (Herr & Hausinger, 2018). The 2ODO family 

continues to grow in the diversity of reaction types and substrates including proteins, 

DNA, RNA, lipids, amino acids, natural products, and signaling molecules. 

Therefore, there have been intensive efforts in understanding structural diversity of 

the 2ODO family accommodating a wide range of substrates, even with homologous 

structures (Aik et al., 2012). Recent survey also added more than two hundreds 

2ODOs in plants (Hagel & Facchini, 2018), but many of those putative enzymes 

need further investigation for their functional assignment. 

In this study, I report a crystal structure of AtDAO1 and its complex with 

2OG. Structural information thus obtained, along with liquid chromatography-

tandem mass spectrometry (LC-MS/MS) analysis of the reaction product from 
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various mutant enzymes, provide structural insights into AtDAO1 and a putative 

binding site of the prime substrate IAA, thereby suggesting possible structural 

determinants for the substrate specificity of AtDAO1 towards IAA.  
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Figure 1. The overall reaction scheme and sequence alignment of AtDAO1. 

(A) Under aerobic condition, AtDAO1 catalyzes in a 2ODO-dependent manner a 

conversion of IAA into oxIAA, with 2OG as a co-substrate and Fe(II) as a cofactor. 

Succinate and CO2 are liberated as products from the co-substrate 2OG. (B) The 

amino acid sequence of AtDAO1 (At1g14130) is compared to other DAO homologs 

with the validated function, including AtDAO2 (At1g14120), and OsDAO 

(Os04g0475600). Highly conserved residues are shown in red and boxed in blue, 

while strictly conserved residues are shown with a red background. Secondary 

structural elements defined in an unliganded AtDAO1* are shown for the 

corresponding sequences. Thymine-7-hydroxylase (T7H) (PDB id 5C3Q; Li et al., 

2015) and anthocyanidin synthase (ANS) (PDB id 2BRT; Welford et al., 2005), a 

member of the 2ODO family with high structural similarity to AtDAO1 (Z-score > 

28), were also included in this alignment. Residues or secondary structural elements 

are indicated in a following color code: metal-binding ones, an open black circle; 

2OG-binding ones, a filled black circle; DSBH-forming ones, orange. This figure 

was prepared using ESPript (Robert & Gouet, 2014). 
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Materials and Methods 

 

Cloning and purification of AtDAO1 and its mutants  

Crystallization of AtDAO1 was successful only after some of N- and C-

terminal residues had been removed. Sequence alignment of a full-length, 312 

residues AtDAO1 with other members of the 2ODO superfamily suggested that the 

N- and C-terminal regions are relatively diverse in sequences and, furthermore, the 

N-terminal region is disordered. Based on these comparisons, I successively 

truncated residues at both N- and C-termini; Ile9-Pro255, Ile9-Pro277 (Table 1). A 

full-length AtDAO1, along with truncated ones, were subjected to expression (Fig. 

2), purification (Fig. 3), and crystallization (Fig. 4). A crystal of full-length AtDAO1 

was not reproduced and AtDAO1 spanning from Il9 to Pro255 was insoluble. Finally, 

AtDAO1 spanning from Ile9 to Pro277, which is referred AtDAO1* in this study, 

produced a crystal yielding a high-resolution structure. Later, I validated using in 

vitro assay that AtDAO1* is catalytically equivalent to the full-length AtDAO1 (see 

below). 

Gene for AtDAO1* was amplified by PCR using a codon-optimized 

synthetic full-length gene (Bioneer, Korea) as a template. The PCR product was 

cloned into a pET41 expression vector (Merck) with the C-terminal His-tag, and 

Escherichia coli BL21 (DE3) (Novagen) was then transformed with the resulting 

plasmid. E coli cells harboring a gene for AtDAO1* were incubated in LB medium 

at 37°C with 50 µg/ml kanamycin until absorbance at 600 m became about 0.8. 

Expression of AtDAO1* was induced with 0.5 mM IPTG and cells were further 

cultured at 20°C for overnight. Cells were collected, sonicated, and centrifuged in 
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buffer A (50 mM Tris, pH 8.0, 100 mM NaCl, and 2 mM MgCl2). The C-terminal 

His-tagged AtDAO1* was purified by affinity chromatography using HisTrap HP 

column (GE Healthcare) with buffer A and eluted using buffer B (buffer A plus 500 

mM imidazole). The protein was further purified by size-exclusion chromatography 

using Superdex-200 (GE Healthcare) with buffer A. 
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Table 1. Primers for AtDAO1 and its mutants. 

Forward AGTCCATATGGGCGAGCTGAACG 

Reverse AGTCCTCGAGTTTATCCAGGCCGGCGTGA 
 

Primers for truncation 

I9_F GGAGATATACATATGATCCCGACCATTGACCTTGA 

P255_R GTGGTGGTGCTCGAGCGGGCCCAGCAGGAAAGACG 

P277_R GTGGTGGTGCTCGAGAGGTTTATACAGACGCGGAT 
 

Primers for activity assay 

G75P_F ACCGATGTGCTGCTGCCTTCCGGTTACCGTGCA 

G75A_F ACCGATGTGCTGCTGGCTTCCGGTTACCGTGCA 

S76A_F GATGTGCTGCTGGGTGCCGGTTACCGTGCACCT 

R79K_F CTGGGTTCCGGTTACAAGGCACCTAACGAAATT 

R79A_F CTGGGTTCCGGTTACGCTGCACCTAACGAAATT 

Y88F_F GAAATTAACCCTTACTTTGAAGCGCTGGGCCTG 

Y88A_F GAAATTAACCCTTACGCTGAAGCGCTGGGCCTG 

Q155N_F AAAGAGTGGCCAAGCAATTTCCGTATTAATAAA 

Q155A_F AAAGAGTGGCCAAGCGCGTTCCGTATTAATAAA 

R157K_F TGGCCAAGCCAGTTCAAGATTAATAAATACCAT 

R157A_F TGGCCAAGCCAGTTCGCTATTAATAAATACCAT 

Y161A_F TTCCGTATTAATAAAGCCCATTTTAAACCTGAA 

H176A_F CTGGGCGTGCAACTGGCCACGGATTCGGGCTTC 

D178A_F GTGCAACTGCACACGGCTTCGGGCTTCCTGACT 

S179A_F CAACTGCACACGGATGCGGGCTTCCTGACTATC 

H235A_F CTGTGCAACGTAAAAGCCCGCGTCCAGTGCAAG 

R245K_F AAGGAAGCAACCATGAAGTACTCTATCGCGTCT 

R245A_F AAGGAAGCAACCATGGCTTACTCTATCGCGTCT 

S247A_F GCAACCATGCGTTACGCTATCGCGTCTTTCCTG 

F251A_F TACTCTATCGCGTCTGCCCTGCTGGGCCCGATG 

L253A_F ATCGCGTCTTTCCTGGCGGGCCCGATGGACACC 
 

 

Sequence are described from 5’ to 3’. For mutagenic primers, only forward versions are listed. 

Underlined sequences indicate restriction sites, and bold-underlined sequences indicate 

mutated sequences.  
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Figure 2. The SDS-PAGE analysis of AtDAO1 and its mutants. 

Total cell lysates of Escherichia coli with or without IPTG induction state on each 

lane: lane M, protein molecular weight marker, 97, 66, 45, 30, 20, 14 kDa; lane C, 

control, E. coli uninduced; lane T, total, IPTG induction; lane S, soluble fraction. 

The lysis buffer consists of 50 mM Tris, pH 8.0, 100 mM NaCl, and 2 mM MgCl2. 

(A) Full-length AtDAO1 is soluble. (B) AtDOA1* is soluble. (C) AtDAO1 spanning 

from Ile9 to Pro255 is insoluble. 
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Figure 3. The purification profiles of AtDAO1 and AtDAO1*. 

(A) With line of absorbance recording at 280nm (blue) and concentration of buffer 

B (green), AtDAO1 was eluted on HisTrap HP column (GE Healthcare) using the 

buffer A (50 mM Tris, pH 8.0, 100 mM NaCl, and 2 mM MgCl2) and buffer B (buffer 

A plus 500 mM imidazole). (B) AtDAO1* was also eluted identically to AtDAO1. 

(C) For analysis of AtDAO1* (black; 269 residues) and the full-length AtDAO1 (red; 

312 residues), each protein was eluted on Superdex 200 column (GE Healthcare) 

using the buffer of 50 mM Tris, pH 8.0, 100 mM NaCl, and 2 mM MgCl2. In an 

insert, molecular weight measurement of elution profiles was compared to 12 ~ 200 

kDa molecular mass markers (Sigma Chemical). Note that a void volume 

corresponds to 45.4 mL, and the eluted peak corresponds to a monomer. 
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Figure 4. The crystal of AtDAO1 and AtDAO1*. 

(A) Crystals of AtDAO1 were obtained under a crystallization solution of 0.1 M 

imidazole, pH 8.0, 0.2 M NaCl and 1.0 M (NH4)2HPO4. These crystals were not 

reproduced. (B) Crystals of AtDAO1* were obtained under a crystallization solution 

of 30 mM KH2PO4, 16 % PEG8000 and 20 % glycerol. 
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Crystallization and data collection 

Purified AtDAO1* was concentrated to 10 mg/ml and then subject to crystallization 

using the sitting drop vapor diffusion method at 22°C. Crystals of an unliganded 

AtDAO1* and a co-crystal of AtDAO1* with 1 mM 2OG were produced in a 

crystallization solution containing 30 mM KH2PO4, 16 % PEG8000 and 20 % 

glycerol. X-ray diffraction data were collected at 100K on beamline 7A at the Pohang 

Accelerator Laboratory (Korea) with a 0.5° oscillation angle (Fig. 5). Collected date 

were processed by HKL2000 (Otwinowski & Minor, 1997), and the high-resolution 

cutoff was based on a CC1/2 statistical value (Winn et al., 2011; Karplus & Diederichs, 

2012; Diederichs & Karplus, 2013). Subsequently, I noticed a crystal twining of 

AtDAO1* using the PHENIX Xtriage utility (Zwart et al., 2005), and determined a 

twin law for the pseudo-merohedrally twinned crystals in the space group P212121. 

In particular, the twin operator (k, h, -l) was applied for refinement, and the refined 

twin fraction was found to be 0.05. All crystals belong to the space group P212121, 

with three monomers in the asymmetric unit.  
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Figure 5. The diffraction pattern of AtDAO1*. 

Diffraction image of AtDAO1* at 0°. The data are used to determine the crystal's 

atomic structure. An exposure time was 20 min. During the exposure time, the crystal 

rotates about 0.5 degrees. 
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Structure determination and refinement 

Structure of an unliganded AtDAO1* was solved by using the PHENIX AutoMR 

program (Adams et al., 2010). In particular, the Sculptor (Bunkóczi & Reed, 2011) 

and Ensembler (Terwilliger et al, 2007) utilities in PHENIX were used to generate a 

search model using a structure of thymine-7-hydroxylase (PDB id 5C3Q; Li et al., 

2015) and anthocyanidin synthase (PDB id 2BRT; Welford et al., 2005). Rounds of 

manual fitting and refinement were conducted with the program COOT (Emsley et 

al., 2010) and PHENIX twin refinement. Structure of AtDAO1* complexed with 

2OG was subsequently refined using a structure of unliganded AtDAO1* as a 

starting model. The details for data collection and the refinement statistics are in 

Table 2.  
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Table 2. Data collection and refinement statistics. 

Data set 

 

PDB ID 

AtDAO1* 

 

6A7R 

AtDAO1* complex 

with 2OG 

6A7Q 

Data collection 

Wavelength (Å) 

Resolution (Å) 

Unique reflections 

Multiplicity 

Completeness (%) 

Mean I/sigma(I) 

Wilson B-factors (Å2) 

R-merge 

CC1/2
b 

 

0.97933 

50.0 - 2.08 (2.16-2.08)a 

56,807 (3,898) 

7.2 (7.1) 

96.4 (67.1) 

11.7 (1.2) 

45.8 

0.101 (1.67) 

0.998 (0.472) 

 

0.97933 

50.0 - 2.48 (2.57-2.48) 

34,716 (3,206) 

7.1 (7.3) 

98.8 (92.4) 

11.6 (0.8) 

64.5 

0.126 (3.77) 

0.996 (0.500) 

Space group 

Unit cell a, b, c (Å) 

α, β , γ (º) 

P212121 

75.5, 76.6, 165.3 

90, 90, 90 

P212121 

75.9 76.8, 166.3 

90, 90, 90 

Refinement 

R-workc 

R-freed 

No. of atoms 

Macromolecules 

Ligands 

Water 

RMS(bonds) (Å) 

RMS(angles) (º) 

Ramachandran favored (%) 

Ramachandran outliers (%) 

Average B-factors (Å2) 

Macromolecules 

Ligands 

Water 

 

0.258 

0.281 

 

5909 

3 

144 

0.005 

1.12 

97.7 

0.4 

 

67.1 

71.3 

57.7 

 

0.258 

0.274 

 

6063 

13 

49 

0.005 

1.16 

94.4 

0.5 

 

84.4 

82.5 

66.9 

 

aNumbers in parentheses refer to data in the highest resolution shell. 

bThe CC1/2 is the Pearson correlation coefficient (CC) calculated from each subset containing 

a random half of the measurements of unique reflection 

cRwork = Σ ||Fobs|-|Fcal||/ Σ|Fobs| 

dRfree is the same as Robs for a selected subset (5%) of the reflections that was not included in 

prior refinement calculations. 
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In vitro activity assay using LC-MS/MS 

In order to identify residues involved in the substrate specificity of AtDAO1 towards 

a prime substrate IAA, I carried out LC-MS/MS analyses of oxIAA produced by 

each variant of AtDAO1. In brief, an enzyme-dependent oxIAA production was 

performed according to the procedures previously described (Zhang et al., 2016), 

and quantification of oxIAA was performed relative to an indole-3-propionic acid 

included in the reaction mixture as an internal standard. 

For enzyme assay, various AtDAO1s with the C-terminal His-tag were 

purified. Gene for each enzyme was amplified by PCR using the full-length AtDAO1 

as a template, with respective mutagenic primers (Table 1). Each AtDAO1 variant 

was then expressed as described above, and purification was carried out by affinity 

chromatography using HisTrap HP followed by a desalting procedure using HiPrep 

26/10 (GE Healthcare) column with buffer of 40 mM PBS (pH 7.4). 

Enzyme reaction was carried out according to the procedures described 

(Zhang et al, 2016). Specifically, a 500 µL reaction mixture includes 40 mM PBS, 

pH 7.4, 0.5 mM Fe(SO4)2, 5 mM 2OG, 0.002 mg/ml (i.e., 11.4 µM) IAA in methanol, 

and 0.35 µM AtDAO1 variant of interest. After 1 hr incubation at 30°C, the reaction 

was stopped by adding to the mixture 1 ml acetone containing 0.001 mg/mL (i.e., 

5.3 µM) indole-3-propionic acid. Subsequently, the resulting reaction mixture was 

stored at – 20°C for overnight and then subjected to centrifugation at 12,300 × g for 

10 min. The supernatant was dried with speed vacuum and resuspended with 50 µL 

10 % (v/v) methanol and 0.3 % (v/v) acetic acid. 

LC-MS/MS analyses were carried out by pesticide chemistry and toxicology 

laboratory of Jeong-Han Kim and Yongho Shin.    
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Results 

 

Overall structure of an unliganded AtDAO1* 

Under my crystallization conditions with AtDAO1* lacking eight and thirty-five 

residues at N- and C-terminal region, respectively, three monomers are arranged in 

a three-fold symmetric manner in the asymmetric unit (Fig. 6). Size-exclusion 

chromatographic analysis however indicated that AtDAO1* as well as the full-length 

(i.e., 312 residues) AtDAO1 remain in solution as a monomeric protein (Fig. 3C), 

suggesting that trimerization of AtDAO1* is a possible crystallographic artifact. 

Those three monomers are essentially identical in structure, with a root-mean 

standard deviation (RMSD) of 0.61–0.98 Å for 259–266 Cα atoms. In this study, I 

describe the structure of one particular monomeric AtDAO1* with a higher quality 

of electron density among three monomers. 

 A 2.09 Å-resolution structure of AtDAO1* includes Ile9 to Leu274, with 

additional methionine residue at the N-terminus but absence of highly disordered C-

terminal three residues and the His-tag. Its overall structure resembles a typical 

architecture for 2ODOs (Aik et al, 2102; McDonough et al., 2010), in that a double-

stranded β-helix (DSBH) or jelly-roll fold is a central structural motif, with α-helical 

and β-strand extensions around the core DSBH domain (Fig. 7A). AtDAO1* is 

composed of 6 α-helices and 11 β-strands (Fig. 1B), with eight β-strands (β4–β11) 

being as DSBH. Specifically, the core DSBH consists of two layers of four-stranded 

antiparallel β-sheet in a face-to-face orientation, generating cavity in the interior of 

motif. In AtDAO1*, four antiparallel β-strands form one β-sheet in a β4-11-6-9 order, 

while antiparallel β-strands in a β5-10-7-8 order represent the other β-sheet. In 
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structures of 2ODOs, one particular β-sheet in DSBH has further structural 

extensions by β-strands and is therefore referred to as the major β-sheet, with another 

DSBH β-sheet being called a minor (Aik et al, 2102; McDonough et al., 2010). In 

AtDAO1*, three additional β-strands involving β1, β2, and β3 are provided by the 

N-terminal region (Fig. 1B), and those are associated with both ends of one particular 

DSBH β-sheet, resulting in the major DSBH β-sheet, with seven β-strands in a β3-

4-11-6-9-2-1 order, and all in an antiparallel orientation, except for β1 (Fig. 7A). It 

is notable that the major DSBH β-sheet in most 2ODOs consists of eight β-strands 

and the missing eighth β-strand in AtDAO1* corresponds to the loop between α3 

and β3. 

In addition to these three β-strands, the N-terminal region preceding the 

DSBH motif also contains five α-helical elements mainly wrapping the major DSBH 

β-sheet (Fig. 1B and 7A). In particular, those N-terminal α-helices are clustered on 

the exposed facet of the major β-sheet, the side across from minor one, contributing 

to stabilization of the overall structure by mediating extensive interactions, mainly 

hydrophobic interactions, with the major β-sheet. Specifically, two α-helices such as 

α2 and α5, almost antiparallel to each other, are main elements, while the remaining 

α1, α3, and α4 locally stabilize β1 and β3, respectively. A 15-residues-long α2 runs 

almost horizontally from one (i.e., β2) to the other (i.e., β3) end of the major DSBH 

β-sheet, and a 28-residues-long α5 again transverses in a reverse direction of α2 

across the entire facet of a major DSBH β-sheet. In this study, my structural 

description on the C-terminal region is limited, given that the C-terminal thirty-five 

residues after Pro277 were removed for crystal formation, but catalytic activity of 

AtDAO1* is measured to be almost equal to that of the full-length AtDAO1 (see 

below), suggesting that the C-terminal region is not directly involved in catalysis. It 
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is also notable that a segment of the C-terminal residues from Pro263 to Arg273 was 

assigned as a DAO motif unique to the DAO family (Zhang et al., 2016). In 

AtDAO1*, the motif is associated with a high quality of electron density, and is 

located on the surface of the minor DSBH β-sheet. Currently, I could not suggest any 

functional role of the DAO motif.  

In summary, an overall architecture of AtDAO1* could be described in a 

following conceptual way; three layers of structural elements constitute AtDAO1*, 

in which the major DSBH β-sheet is sandwiched between an N-terminal α-helical 

layer and a minor DSBH β-sheet. In particular, there are two possible openings of 

DSBH, each at two ends of DSBH β-sheets near β4 and β9, respectively, but presence 

of N-terminal extension β1 and β2 seals off effectively a possible opening near β9 in 

the major β-sheet. Therefore, AtDAO1* exhibits an opening near a major β4 in 

DSBH that is accessible from solvent and should serve as an entrance to the cavity 

in DSBH. 
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Figure 6. The asymmetric unit of AtDAO1*. 

Under my crystallization conditions with AtDAO1*, three monomers are arranged 

in a three-fold symmetric manner in the asymmetric unit. Because of similarity 

among monomers, different colors were applied to distinguish monomers (magenta, 

green, cyan). 
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Figure 7. The overall structure of AtDAO1* and 2OG-binding site. 

(A) The overall structure of an unliganded AtDAO1* is shown. Different color codes 

are used for presentation: the major DSBH β-sheet, orange; the minor DSBH β-sheet, 

green; α-helix, magenta; metal, a black sphere. In this view, an opening to the active 

site in the DSBH cavity is orientated towards readers. (B) Zoomed-in view for the 

2OG-binding site is shown in a structure of AtDAO1* in complex with 2OG. An 

opening to the DSBH cavity is also displayed, with 2OG (green) and metal (black 

sphere). The 2OG-binding site is located in the DSBH cavity. The metal-binding 

residues (His176, Asp178, His235) and the 2OG C-5 carboxylate-binding residues 

(Tyr161, Asp187, Arg245, Ser247) are presented. Note that an orientation is similar 

with that in Fig. 7A, and therefore the side chains for the metal-binding site project 

from a ceiling of the cavity. (C) Bound 2OG shown in Fig. 7B is overlaid with a 2Fo-

Fc electron density map contoured at 1.0 σ.  
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Active site of AtDOA1* 

In AtDAO1*, I identified a binding site of metal ion in the active site (Fig. 8), based 

on its coordinating distance and geometry, as well as its positional resemblance with 

those of other 2ODOs (Aik et al, 2102; McDonough et al., 2010). Currently, 

magnesium ion is assigned as a possible cation at the iron-binding site, given that 

under my aerobic experimental conditions Mg(II) ion is included in buffer for protein 

purification or crystal formation to avoid an encountered oxidation problem of Fe(II) 

ion. It is located just on the border region for an entrance to the DSBH cavity (Fig. 

7A). In particular, a major β4 and a minor β5 in DSBH are an entrance to the active 

site, and an extension β3 and its preceding loop apparently serve as a part of platform 

for a prime substrate binding. Magnesium ion is coordinated within 2.4 Å with 

residues highly conserved in the 2ODO family (Fig. 1B): His176, Asp178, and 

His235. These metal-binding residues, called as the Hx(D/E)…H motif, represent a 

hallmark for the 2ODO family, and are located at a loop between a minor β5 and a 

major β6, and at an edge of a minor β10, a ceiling of the cavity, with their side chains 

projecting inward to cavity. 

 I further carried out co-crystal formation of AtDAO1* with the co-substrate 

2OG under aerobic environment. Crystallization conditions and all other 

crystallographic features are identical with those of the unliganded AtDAO1*. 

Among three monomers, only one exhibits a binding of 2OG (Fig. 7B and C). The 

binding mode of 2OG is similar with those in other 2ODOs utilizing 2OG as co-

substrate (Aik et al, 2102; McDonough et al., 2010). The 2OG C-1 carboxylate 

anchors at the metal-binding site and the C-5 carboxylate is swung in and bound to 

further inside of the cavity. Specifically, the 2OG C-1 carboxylate and 2-oxo mediate 

bidentate coordination within 2.4 Å with the bound metal, while its C-5 carboxylate 
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group points towards the interior of DSBH cavity and forms several electrostatic or 

hydrogen bonds in a distance of 3.4 Å with Tyr161, Asp187, Arg245, and Ser247, 

residues conserved among the 2ODO family (Fig. 1B and 7B). Therefore, binding 

of a metal ion and a co-substrate 2OG is mediated by the highly conserved residues 

among the 2ODO family that are located at an entrance or in a deeper inside of DSBH 

cavity. Under these structural circumstances, the binding of a prime substrate IAA 

should occur at the region anterior to the metal-binding site. 
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Figure 8. The structure of metal-binding site in the active site of the unliganded.  

This orientation is almost identical with that in Fig. 7B. The metal ion in a black 

sphere, and the metal-binding residues His176, Asp178, and His235 are presented, 

with a 2Fo-Fc electron density map contoured at 1.0 σ. 
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Putative binding site for IAA in AtDOA1 

It is not unexpected that given high sequence homologies of the essential residues, 

general structural features for the active site and the binding environments of a co-

substrate 2OG in AtDAO1* are well conserved among members of the 2ODO family. 

Rather, critical issues for AtDAO1 are structural determinants for the substrate 

specificity towards a prime substrate IAA. Further trial to form a ternary complex of 

AtDAO1* with 2OG and substrate IAA, or soaking experiments with IAA has been 

unsuccessful. Therefore, I analyzed a putative site for IAA-binding in AtDAO1* by 

comparing AtDAO1* structure with other 2ODOs in complex with 2OG and its 

prime substrate. 

 Structural homology search program DALI (Holm & Rosenstrom, 2010) 

suggested that AtDAO1* is most similar with thymine-7-hydroxylase (PDB id 5C3Q; 

Li et al., 2015) and anthocyanidin synthase (PDB id 2BRT; Welford et al., 2005), 

with Z-score of more than 28. Those three structures, all in the 2ODO family, are 

aligned, with a RMSD of 1.8–1.9 Å for 242–243 Cα atoms. Further comparisons 

indicate that the binding mode of 2OG is conserved in these structures, but there are 

notable variations in structure and sequence for the binding site of a prime substrate 

(Fig. 1B and 9). In general, a prime substrate, thymine in thymine-7-hydroxylase and 

naringenin in anthocyanidin synthase, is bound to a groove that is in position anterior 

to an entrance to the DSBH cavity, and is surrounded by several structural elements 

including major β3, β4, β11, and their associated loop regions. Specifically, many 

residues emanated from β3 and β4 on the edge of a major DSBH β-sheet remain 

relatively well exposed and thus provide a platform for various interactions. In 

addition to this platform, three different loops and their associated regions apparently 

project towards the anterior area, thereby resulting in a groove for the substrate-
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binding site (Fig. 9). Those loops contain the N- or C-terminal regions, and are ones 

following α3 (i.e., Loop-I), preceding β3 (Loop-II), and following β11 (Loop-III), 

respectively. It is noteworthy that the length and/or sequence of those loops are 

specific to each member of the 2ODO family (Fig. 1B), suggesting that dimension 

and geometry of the groove is unique to each member and thus plays a role in 

dictating a specificity towards the prime substrate. 

My structural comparisons exhibit following major features for the prime 

substrate-binding site; (i) the platform-forming residues, mainly in a major β3, β4, 

and β11, are relatively conserved for their hydrophobic or hydrophilic features in the 

2ODO superfamily, (ii) the length and sequence of three loops in the site is diverse 

among members of the 2ODO family but well conserved in the DAO-family, and (iii) 

loop conformations are different, but apparently influenced by the size or shape of a 

prime substrate. Therefore, in the prime substrate-binding site, loops showing 

variations in sequence or in conformation, compared with other 2ODOs, could 

account for characteristic of AtDAO1. I recognized in AtDAO1* that loop-I and –II 

show diversities in conformation and sequence, respectively (Fig. 9). Specifically, 

AtDAO1* loop-I adopts a conformation similar to that of thymine-7-hydroxylase in 

the presence of small-size prime substrate (i.e., thymine), but is completely different 

from that with a relatively larger one (i.e., naringenin) in anthocyanidin synthase (Fig. 

8). Loop-II in AtDAO1* is relatively short about 8 residues, compared with 27- and 

13-residues-long loop in thymine-7-hydroxylase and anthocyanidin synthase, 

respectively. This region has been recognized to be characteristic of each member of 

the 2ODO family (Aik et al., 2012). Unlike loop-I and –II, conformation of loop-III 

is relatively conserved. 
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Figure 9. The superimposed structure of AtDAO1* with the 2ODO family.  

The prime substrate-binding site is presented with a stereo view. In this presentation, 

three structures are superimposed including AtDAO1* (red), thymine-7-hydroxylase 

(blue; PDB id 5C3Q) and anthocyanidin synthase (green; PDB id 2BRT), with the 

metal-site (black sphere) of AtDAO1* and a respective prime substrate, thymine 

(purple) for thymine-7-hydroxylase and naringenin (yellow) for anthocyanidin 

synthase. The side chains of AtDAO1* are indicated for their possible involvements 

in an IAA-binding and further subject to mutagenesis for functional analyses. These 

structures are well aligned in the DSBH motif, including a metal site, but show 

noticeable variations in conformations of the loops regions proximal to a prime 

substrate-binding site. 
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In vitro activity assay of AtDAO1 and its mutants 

I selected a total of fifteen residues for site-directed mutagenesis, and twenty-one 

mutants were designed to validate or characterize their functional roles: His176, 

Asp178, His235 for the metal-coordinating residues (Fig. 7B); Tyr161, Asp187, 

Arg245, Ser247 for 2OG C-5 carboxylate-interacting residues (Fig. 7B); Gly75, 

Ser76, Arg79 for Loop-I region; Tyr88 for Loop-II region; Gln155, Arg157 from β4; 

Ser179 from β5; Phe251, Leu253 from β11 (Fig. 9). Specifically, the loop-I and -II 

residues with their side chains projecting towards a groove are selected, mainly due 

to their possible proximity to a prime substrate IAA. Except for Ser179 from β5, 

other residues from major β-strands are at the bottom of platform, on which a prime 

substrate could sit on (Fig. 9). The residues mediating interactions with a metal ion 

and 2OG C-5 carboxylate group are strictly conserved among the 2ODO family, but 

many residues for a prime substrate-binding site are specific for AtDAO1 or DAO 

subfamily (Fig. 1B). 

 In vitro activity of each mutant was assayed by measuring production of 

oxIAA using LC-MS/MS analysis, and the resulting activity was compared with the 

wild-type AtDAO1 (Fig. 9). First, I noticed that AtDAO1* used for structure 

determination in this study exhibits activity almost equal to the full-length enzyme, 

suggesting that the C-terminal region beyond Pro277 is not critical for AtDAO1 

activity. Mutation of the Fe(II)-coordinating and 2OG C-5 carboxylate-interacting 

residues impaired their catalytic activities, consistent with their functional roles. 

Specifically, except for H235A mutant showing 43% activity of the wild-type 

AtDAO1, mutants for the metal-coordinating residues, H176A and D178A, show 10% 

and 28% activity, respectively, while 10–20% activity was measured for Y161A, 

R245K, and R245A mutant, with about 67% activity for S247A. 
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Mutation for a prime substrate-binding site exhibits some interesting features. 

In general, mutants for the platform region are generally tolerant to mutation and do 

not cause significant influences on activity, relative to those for the loop regions. 

About 41–114% of activity was observed for mutants of the platform residues, but 

those activities for mutants of the loop residues are reduced to 24–66% of the wild-

type AtDAO1. It is notable that mutation of the DAO-specific residues (Fig. 1B), 

including Gly75, Tyr88, Ser179, causes detrimental effects on activity, except for 

Phe251 also conserved in other 2ODO members. Specifically, in the loop-I region, 

the chemical identity of Gly75 and Arg79 appears to be important for enzyme 

function. Unlike a similar activity for G75P (27%; percentage in parenthesis 

corresponds to a relative activity of AtDAO1) and G75A (24%) mutant, R79A (31%) 

lost its efficacy considerably relative to R79K (66%) (Fig. 10A), suggesting the 

functional role of the positively charged residue at that location. A possible hydrogen 

bond at Tyr88 in the loop-II region likely plays an important role in enzyme function, 

with Y88F(37%) and Y88A(41%), indicating that mutational effects caused by 

removing the side chain hydroxyl group from tyrosine are almost equal to those of 

alanine replacement. 

Mutants in the platform region also deliver some clues to their functional 

roles. Residues such as Gln155, Arg157, and Phe251 form a bottom layer for 

interactions with a prime substrate (Fig. 8). However, I could not propose any 

functional role of Gln155 and Phe251, with Q155N (55%), Q155A (102%), and 

F251A (115%) mutant. The positive charge on Arg157 rather plays an important role, 

based on observation that R157K (101%) restores its activity relative to R157A 

(50%). The chemical identity of these three residues are highly conserved in the 

2ODO family, as well as in the DAO family (Fig. 1B), suggesting their general roles 
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in a dioxygenase reaction. Ser179 and Leu253 are unique to the DAO family, and 

chemical nature of the structurally equivalent residues in other enzymes is quite 

different as indicated in sequence alignment (Fig. 1B): tyrosine and asparagine in 

thymine-7-hydroxylase, and valine and glutamate in anthocyanidin synthase, 

respectively. Mutation caused moderate effects on the enzyme activity, with S179A 

(47%) and L253A (41%). 

In a previous study of thymine-7-hydroxylase, mutagenesis and a binding 

assay using an isothermal calorimeter indicated that Phe292, Tyr217, and Arg190 

corresponding in structure to Phe251, Ser179, and Arg157 in AtDAO1 are important 

in substrate biding and catalysis (Li et al., 2015). Mutation of those three residues in 

thymine-7-hydroxylase impaired significantly enzyme activity, but those mutational 

effects were not observed in my mutational analyses of the corresponding residue 

(Fig. 10A), suggesting that the binding mode of a prime substrate in thymine-7-

hydroxylase could differ from that of IAA in AtDAO1. In the absence of structural 

information for AtDAO1* complexed with IAA, I could not assign a specific 

functional role of each residue tested for in vitro activity assay. However, mapping 

mutational effects on residues displays that residues in the loop-I and loop-II region 

play an important role in enzyme function (Fig.10B and C), leading me to propose 

that structural determinants in AtDAO1 for the IAA specificity are originated from 

sequences and conformation of the loop and their nearby regions in the prime 

substrate-binding site. In particular, those loop residues are thought to be proximal 

to IAA, and relatively well conserved among the DAO family but not in the 2ODO 

family, consistent with their possible roles for IAA recognition. 
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Figure 10. The putative binding site of IAA and LC-MS/MS analysis of oxIAA. 

(A) In vitro activity of AtDAO1 and its mutants. In the assay, production of oxIAA 

was measured using LC-MS/MS and quantified relative to an indole-3-propionic 

acid included in the assay as an internal standard. Those values are compared to that 

of the wild-type AtDAO1. Different color codes are indicated: green, the wild-type 

AtDAO1 and AtDAO1*; red, the metal-binding residues; blue, the 2OG C-5 

carboxylate-binding residues; yellow, the putative prime substrate-binding residues. 

Each measurement was carried out in triplicate, with an error bar. (B) Surface 

representation is shown for the overall structure of AtDAO1*. This structure is 

almost identical with Fig. 10C. (C) Surface representation is shown for the prime 

substrate IAA-binding site in AtDAO1*. This orientation is almost identical with Fig. 

9. The surface of residues is indicated in a different color, depending on its resulting 

activity by mutation: magenta, residues with less than 40% activity; cyan, 40–60% 

activity; white, more than 60% activity. Note that residue with two independent 

mutants (see Fig. 10A) is based on a mutant with a lower activity. 
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Discussion 

 

In this study, I determined a crystal structure of AtDAO1 and its complex with co-

substrate 2OG. The metal- and 2OG-binding site in AtDAO1, as well as its overall 

structure, is highly homologous with those of the 2ODO family, consistent with high 

sequence identity of those binding residues. However, variations in both sequence 

and structure are localized in the loop regions proximal to the prime substrate-

binding site. LC-MS/MS analyses of various mutants suggest that structural 

determinants for the IAA specificity in AtDAO1 emerge from sequences of the loop 

regions in the prime substrate-binding site. These results provide structural basis of 

how a plant hormone IAA could be oxidized by AtDAO1, a key enzyme in auxin 

catabolism. 
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Abstract in Korean 

서울대학교 대학원 

농생명공학부 응용생명화학전공 

진소희 

Indole-3-acetic acid (IAA) 는 식물 호르몬 옥신 (auxin) 의 주요 형태로 

식물의 성장과 발달의 거의 모든 부분을 조절한다. 따라서 옥신의 

항상성은 식물에서 필수적 주제이다. 옥신의 항상성에는 합성, 수송, 

접합 및 이화작용의 다양한 경로가 관여하지만, 최근의 연구에서 벼 

Oryza sativa 와 애기장대 Arabidopsis thaliana 로부터의 AUXIN 

OXIDATION FOR DIOXYGEANSE (DAO) 의 존재가 밝혀질 때까지는 그 

대사 경로를 파악하기 어려웠다. 2-oxoglutarate/Fe(II)-dependent 

oxygenase family 에 속하는 DAO 는 IAA 이화 과정에 주요한 효소이다. 

AtDAO1 은 2-oxoglutarate 를 보조 기질로 이용하여, IAA 를 기능적으로 

비활성이고 산화된 생성물인 2-oxoindole-3-acetic acid 로 전환시킨다. 본 

학위논문에서, 기질이 붙지 않은 A. thaliana 에서 유래한 DAO1 (AtDAO1) 

과 2-oxoglutarate 와 복합체의 결정 구조를 밝히고자 한다. AtDAO1 은 

2-oxoglutarate/Fe(II)-dependent oxygenase family 와 구조적으로 

유사하지만, 주요 기질 결합 부위에는 독특한 특징을 가진다. 다양한 

돌연변이 효소의 반응 생성물인 2-oxoindole-3-acetic acid 를 이용하여 

액체 크로마토그래피-이중 질량 분석기로 분석을 함으로써, 가능한 

구조적 측면에서 AtDAO1 의 IAA 에 대한 기질 특이성에 대해 제안하고, 
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주요 기질 IAA 의 추정되는 결합 부위에 대한 구조적 통찰력을 

제공한다.  

 

주요어: 애기장대, AtDAO1, dioxygenase for auxin oxidation, indole-3-

acetic acid, 2-oxoglutarate, 2-oxoglutarate/Fe(II)-dependent oxygenase 

family, 2-oxoindole-3-acetic acid 
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