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I 

 

Abstract 

 

The acquisition of laser range measurements (i.e. Light Detection and 

Ranging sensor (LiDAR)) can be a time-consuming process if a high spatial 

resolution is required. Hence, designing an effective sampling algorithm is 

essential for many laser range applications. Previous approaches, such as two-

step sampling, can be useful in general situations involving indoor and less 

complex scenes. However, they show a deficiency in the outdoor complex 

environment, especially in the condition of a very low sampling rate. To 

address this problem, this paper proposes an ROI-based sampling algorithm 

in the road environment, the typical environment for ADAS (advanced driver-

assistance systems). Taking the merit of existing road and object detection 

algorithms, i.e. YOLO, the proposed method utilizes the semantic 

information and effectively distribute the sample budget to maximize the 

reconstruction quality, especially in the objects area. Experimental results 

show that the proposed method significantly reduces the mean-absolute-error 

(MAE) in the objects area and in the overall ROI by 44.9% and 15.1% 

compared to the two-step sampling. In addition, it achieves robust 

reconstruction quality with a very low sampling rate (i.e. 1% in experiments). 
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CHAPTER 1 - INTRODUCTION 

1.1. Overview 

The development of advanced driver-assistance systems, or ADAS, is 

considered the next logical step of the car industry. It is seen as the new 

revolution that changes the way people live and transport. Not only granting 

more personal freedom, allow people to free their hands and mind while 

driving, self-driving cars are also expected to vastly reduce road accidents, 

congestion, pollution; and eliminate the huge cost of owning personal 

vehicles when integrating with blooming share-driving services [1]. There are 

five self-driving levels, starting with level 0 of no automation to level 5 of 

complete automation where drivers simply just enter the destination and let 

the systems do the rest of work. While the ultimate goal is a safe and fully 

autonomous driving system, current commercial systems now can constantly 

sense the surrounding environments and immediately alert the drivers of 

danger, traffic situations, and road conditions. Being considered a key to the 

future, ADAS have been actively developed in recent year [2] [3]  not just in 

academia but many companies are competing to release the first commercial 

system.  

In the stream of those developments, object detection algorithms have 

been experiencing rapid developments. Their accuracy and speed have been 
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improved significantly over time. Among them, YOLO is a real-time model 

which is fast, efficient, optimized end-to-end and thus provides better 

efficiency with respect to the computational cost [4]. YOLOv3, which could 

have the frame rate up to 40-50fps, is much faster than the typical frame rate 

of LiDAR systems. Besides, the road detection, which could be considered as 

an easier problem has also been solved effectively. Many road detection 

approaches submitted to the KITTI road detection benchmark have the 

precision of more than 96% while the runtime is just about 0.06s [5]. 

1.2. LiDAR and LiDAR sampling 

In ADAS, the sensor system is the critical part which let the car monitor 

the surrounding environment. For the task of detecting obstacles on the road, 

cameras and light detection and ranging sensors (LiDAR), such as Velodyne 

LiDAR, have been proved to be valuable in these systems. LiDAR is the range 

sensing sensor that uses laser pulses to estimate distances to surrounding 

objects by measuring the time of flight of the laser beams. The quality of the 

measurements is affected by the reflection property and the angle of the 

reflecting surface. Many measurements are missing because laser beams do 

not return. It is common for a LiDAR system to have more than 1 laser unit, 

ie. the Velodyne HDL-64E has 64 lasers that can measure up to more than 2.2 

million points per second [6]. In our lab, a LiDAR model has also been 
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developed [7]. Having the same problem with other systems, that LiDAR is 

limited to 100.000 measurements per second. However, equipped with two-

mirror deflection scanners, it has the flexibility and capability to sample any 

position in the field of view in any given order. This improvement opens an 

opportunity for developing a sampling algorithm that could exploit the 

sampling budget in a non-uniform scanning pattern to enhance the 

reconstruction results. 

While being able to produce high-quality depth information, the scanning 

rate of LiDAR system is relatively slow, typically 10fps [6]. In other words, 

the sampling budget for a given duration is limited. An efficient sampling 

technique could help to overcome this limitation. Reducing the requirement 

for spatial resolution could increase the scanning rate or lower the cost of the 

system. This thesis focuses on developing an effective LiDAR sampling 

algorithm for real-world situation using semantic cues. 

1.3. Thesis outline 

The rest of this thesis is organized as follows. The background and related 

works are described in Chapter 2. Workflow of the proposed system and the 

sampling algorithm are presented in Chapter 3. The evaluation method and 

the experimental results are presented in Chapter 4. Chapter 5 summarizes 

and concludes the thesis.  
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CHAPTER 2 - BACKGROUND AND 

RELATED WORKS 

In this thesis, various terms related to my work are presented. This section 

gives a brief introduction to them along with previous works of this research. 

In the first part, sensor systems in ADAS are introduced including camera and 

LiDAR used in the proposed system, then methods to calibrate data from 

these two sensors together are described. After that, the current status of 

object and road detection algorithms is summarized. The second part shows 

previous researches which consist of depth-gradient-guided sampling and 

color-image-guided sampling approaches. 

2.1.  Background 

2.1.1 Sensor systems in ADAS 

A car is a highly complex system with hundreds of processors and a 

variety of types of sensors. These sensor systems give the car the ability to 

monitor its internal conditions to detect malfunctions. They are also used to 

sense the external environment, which is the key component to the success of 

an ADAS system. Active sensors like light detection and ranging (LiDAR) 

and radio detection and ranging (radar) or passive sensors like cameras are 

used in experimental and commercial systems.  
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Figure 1. A test system with a LiDAR and a camera in my lab 

For object detection, camera and LiDAR are well supplementary to each 

other. The LiDAR has advantages of high-precision range measurement; 

which is independent of the distance, immunity to the night condition and 

light intensity change. However, its resolution is very limited. While cameras 

are cheap, capable of much higher resolution and frame rate but have the 

drawbacks of the sensitivity to intensity shift and inability to work during 

night time. Therefore, fusion techniques to combine them together are 

developed. Calibration is necessary to fuse these data together, which 
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specifies how to convert measurements from the LiDAR coordinate to the 

image coordinate. The next part describes in detail about this calibration step. 

2.1.2 Calibration between LiDAR and camera 

Many calibration algorithms use checkerboards as the target. However, 

checkerboards are often observed with range discrepancies in the LiDAR [8] 

and that may affect the final estimated outputs [9]. To tackle this problem, in 

[9], the author uses a circular target. While it is straightforward to detect the 

circle’s center in the image, finding its 3D correspondence point becomes less 

reliable in sparse data. In [8], the author uses a monochromatic polygonal 

board, and estimates its edges and intersects them to find the board’s vertices. 

This method improves the accuracy for a low-resolution LiDAR. However, 

with the monochromatic board, specifying the correct board segment is more 

challenging in both 2D and 3D range domain. In [8], this task requires manual 

interventions. 

Therefore, I propose to apply the background subtraction technique to 

automate that work. First, two samples with and without the board are taken. 

Then, the background subtraction is performed on both 2D and 3D data while 

the board area is the largest segment of the subtraction output.  

The background image and board image are processed as follows. First, 

these two are converted to grayscale and then subtracted to generate a binary 
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image by comparing absolute subtraction value and a threshold. Second, the 

board area is detected as the largest region in the subtraction image. Third, 

that area is grown to the full board segment using the region growing 

technique. Finally, its edges are estimated and their intersections are 

determined as the board’s vertices. 

For 3D data, both scans are first converted to a range image. Then, the 

subtraction and board segment detection are carried out as in normal images. 

The final set of 3D measurements belong to the board is that consists of points 

corresponding to the board segment on the range image. 

 

Figure 2. Calibration result. Color indicates the distance. Occlusion is 

observed due to a different viewpoint. 
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Finally, after extracting corner points on the 2D image and board data 

from LiDAR, the calibration process is performed as described in [8]. In my 

work, the perpendicularity property between two adjacent edges of the 

rectangle is also enforced. That improves the estimation results when there 

are little points on edges. 

 

Figure 3. Mean projection error according to the number of samples  

used for optimization 

The experiment is conducted by using a Velodyne VLP16 and a camera. 

The target is a rectangle slanted to the ground and placed 3-5 meter away from 

the LiDAR to ensure there are about 10 data lines. The mean projection error 

in a pixel is provided in Figure 3, which gradually declines when increasing 

the number of samples used for optimization. Figure 2 depicts the calibration 

result. Color indicates distance. Occlusion is observed due to a different 

viewpoint between the camera and LiDAR. 
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2.1.3 Object detection algorithms 

Object detection algorithms have been experiencing rapid developments. 

In 2012, the first CNN network outperforms human in ImageNet challenge, 

since then it has become the gold standard in object recognition. Their 

accuracy and speed have been improved significantly over time. Among them, 

YOLO is a real-time model which is fast, efficient and optimized end-to-end 

and thus provides better efficiency with respect to the computational cost [4]. 

YOLOv3, which could have frame rate up to 40-50fps, is much faster than 

the typical frame rate of a LiDAR system. Besides, the road detection, which 

could be considered as an easier problem has also been solved effectively. 

Many road detection approaches submitted to KITTI road detection 

benchmarks have the precision of more than 96% while runtime is just about 

0.06s [5]. CNN networks are also the gold standard in this area. 

2.1.4 Iterative Closest Point algorithm 

In this section, the definition of Iterative Closest Point (ICP) algorithm 

will be given. In the proposed system, ICP is used to register data between 

two successive LiDAR scans, the result indicates the 6D movement of the 

LiDAR sensor, which could be converted to the movement and velocity of 

the car.  
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Given two sets of corresponding point X1 and X2, ICP algorithm finds 

the translation vector t and rotation matrix R that minimize the sum of squared 

error between these two sets: 

𝐸(𝑅, 𝑡) =  
1

𝑁
∑(𝑋1𝑖 − 𝑅 ∗ 𝑋2𝑖 − 𝑡)2

𝑁

𝑖=1

 

Where X1i and X2i are the corresponding points from two sets. This 

minimization problem is solved in an iterative manner, the gradient of error 

from the previous iteration is used to set up variables for the next iteration. 

Above term is called point-to-point error. This term is effective for the cases 

when the number of samples is dense enough. However, with LiDAR the 

sample density is very sparse, hence, the point-to-plane error is much more 

effective and stable. 

In more complex systems, visual cues are used to increase the odometry 

performance and avoiding the ICP to fall to a local minimum. (V-LOAM) 

[10], which is the top performer in KITTI odometry dataset at the moment of 

my thesis, is one of those follow this direction. Visual odometry is used for 

ego-motion estimation then refinement step is carried out using lidar 

odometry (LOAM) [11], which itself stands at the second position on the 

KITTI odometry benchmark. This proves that LiDAR measurements are very 

important for the odometry problem. 
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2.2. Related works 

This section begins with an introduction to the sampling problem. Then, 

previous approaches and their limitations are subsequently discussed. 

Considering the problem of measuring a scene consists of WxH sampling 

location with a total budget of N points per scan. A sampling algorithm 

defines a sampling mask that consists of binary value 0 and 1, where a 

location with the value of 1 indicates the location would be sampled and a 

location with the value of 0 would not. Depend on each objective, the above 

sampling mask is optimized with different criteria. In this work, the goal is to 

minimize the reconstruction error inside the ROI area. There are some 

sampling techniques can carry out this task. Uniform or grid sampling is the 

most straightforward and widely used in real systems. However, they could 

not exploit additional information to build a better sampling strategy. Several 

non-uniform sampling strategies [12] [13] [14] [15] have been proposed. 

Non-uniform sampling techniques for LiDAR can be divided into two 

following categories. 

2.2.1 Depth-gradient-guided sampling 

The first category uses properties of the depth images by assuming that 

the depth images are already available or performing sampling to acquire a 



12 

 

part of it. In [12], the author proposes that sampling along the depth gradient 

could give the optimal result. The paper is able to recover the depth map in 

Middlebury dataset with only 5% of the samples. However, this approach is 

not practical since the depth gradient is not available prior to sampling. 

Therefore, two-step sampling [13] is designed to apply gradient-based 

sampling in a more practical manner. At the first step, uniform sampling is 

carried out with a half of budget. Then the author reconstructs depth from 

these samples to find the gradient of the reconstructed map. At the second 

step, the sampling is performed along the gradient of the reconstructed map 

from the first step. Drawbacks of this method is a delay between two steps for 

the reconstruction of the depth image, which requires very heavy computation. 

Second, when the sampling rate becomes too low, there are not enough 

samples to conduct a good reconstruction from the first step so this affects the 

overall results. 

 

Figure 4. Workflow of two-step sampling 
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2.2.2 Color-image-guided sampling 

The second category uses images to guide the sampling process. In [9], 

the author uses stereo images to compute a depth disparity map, then samples 

along the edge of this raw estimation. However, the depth computation from 

stereo images is complex and time-consuming, and large occlusion is usually 

found in the estimated depth. A sampling method which uses saliency 

information from the color image to select sampling position is proposed in 

[15]. This method has an advantage that the computation of saliency map is 

cheaper compared to methods mentioned above, however, it is noisier with 

many outliers remaining in the saliency map. 

Despite different types and categories, all previous methods were 

introduced and tested in the indoor scenarios where the gradient and details 

of both color image and depth image are much simpler than the outdoor 

situation. Targeting the real-world environment of ADAS system, the 

proposed method is not only designed for outdoor scenes but also for a very 

low sampling rate with a budget about 2000 samples per scan (equivalent to 

about 1% sampling rate). To achieve this, semantic information detected from 

cameras is used.  

Although this also requires complex computation, I argue that in most 

existing ADAS systems, object detection is a must-be-done task and some 
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algorithms such as YOLO is real-time and very efficient. Therefore, the target 

is to inherit results from this step to improve the LiDAR sampling efficiency 

based on the observation that the road area is much more simpler and can be 

constructed with very few samples and the object area is more semantically 

important. Hence, sampling at the objects area is conducted denser while the 

sampling rate of road area is kept just enough to a decent reconstruction result. 

A portion of samples is also moved from the background to ROI area while 

preserving the localization result acceptable. Practically, to enforce this 

system, a synchronization method between camera and lidar needs to be 

developed. However, this task is left for a future work and not included in this 

thesis. 
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CHAPTER 3 - SAMPLING ALGORITHM 

In this section, the system architecture and configuration are first 

described then the thesis will analyze each area inside ROI and finally explain 

the algorithm to distribute sampling budget between areas. 

3.1  System Workflow 

The workflow of the proposed system is described as in figure 5. First, an 

image is captured using a camera. Then, the object and road detection are 

carried out simultaneously. The result of this step is used to guide the 

proposed sampling algorithm. At this step, the camera can take the next image 

immediately instead of waiting for the sampling process to be finished. That 

way, there will be no delay time in the system. The reconstruction and 

evaluation step are used for evaluating the sampling algorithm only. They 

could be performed offline at any time if the samples are stored. The steps 

require most computing power in this system is road and object detection. 

They are usually implemented by a neuron network. The state-of-the-art 

 

Figure 5. Workflow of the proposed system 
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algorithms can run at about 40-50fps as mentioned at the background part. 

This frame rate is already much higher than LiDAR frame rate, hence, the 

possible delay from this part is also not too long. 

3.2  System configuration 

As described in figure 5, the proposed system includes road and object 

detection step. However, this thesis only proposes and evaluates the sampling 

phase so ground truth data is used for those steps from KITTI. The KITTI 

object detection dataset also contains unrelated objects and cars are not on the 

road so they must be filtered out manually. On the road, KITTI road dataset 

only includes the road in the current direction. The road in the opposite 

 

 

Figure 6. Road and objects mask generated from KITTI dataset 
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direction and the pavement are not included. In the two-way streets, all lanes 

are included [16]. This is a very reasonable setup since it is the part of the 

road where most of the traffic situations related to current car happen. There 

are many available methods for reconstruction step. Recently, while some 

conventional image processing methods still have good performance [17], 

there is a domination of the CNN-based methods in this area. However, in 

this application, linear interpolation is used for evaluation, in details it is the 

griddata function in MATLAB. That is because I believe that it is a classical 

method, not specifically modeled for any sampling method, so it is able to 

give a fair comparison. The evaluation method used is the KITTI provided 

evaluation code. In this study, mean absolute error (MAE) is used as the 

criteria for all comparisons. 

 

3.3  Distribution of budget inside ROI 

3.3.1 Reconstruction characteristics of each area in ROI 

Given the total budget of N samples in ROI area, the problem is to specify 

the budget for road area Nr and budget for object areas No (Nr  

+ No = N), which minimizes the reconstruction error in ROI area. Inside each 

area, random sampling is used with a minor modification that the closer area 
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is sampled sparser than further area. The reconstruction error can only be 

calculated after sampling. Therefore, the MAE result has to be predicted prior 

to sampling to be able to optimize final output. Which model has better 

prediction will result in better performance.  

 

Figure 7. Reconstruction characteristics of the road area 

Figure 7 examines the MAE output of road area based on the sampling 

rate. Three lines are demonstrated: AVG as the mean MAE results of all 

images, AVG-STD is the mean results minus the standard deviation and 

AVG+STD is the mean result plus standard deviation. It is clear that the road 

has much smaller errors and it converges very fast, starting at 0.11%. At this 

point, the small standard deviation indicates that results among images 
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Figure 8. MAE from 10 random scans 
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Figure 9. Reconstruction characteristics of objects area 
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are consistent. This is demonstrated again in figure 8, where MAE of the 

reconstruction map of 10 random scans is shown. The same result holds  and 

 

 

 

Figure 10. Error images after reconstruction. Blue indicates smaller error. 

More red means higher error. 
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they start to converge at a sampling rate of 0.11%. 

The reconstruction characteristics of objects area are shown in figure 9. 

As can be seen, the MAE of objects is worse and no convergence was found. 

The standard deviation stays high along the sampling rate axis. This means 

that the sampling rate of the objects area must be kept as high as possible. 

Fortunately, the decrease in MAE of this area starts to slow down at 4.33% 

mean that they begin to become more stable at this point. In figure 10, a 

comparison of these differences is shown. In all three images, the error in 

objects area is much higher than in road area. The second image also shows 

that in road area, the error in the further area is higher than closer area. In the 

third image, although the object is close, its error is still high. In this particular 

image, object area is larger than it is in the other two images. 

As mention before, to distribute sample budget, the MAE result of road 

and objects area are predicted. Base on above observation, the MAE of road 

and objects area are modeled into a ration function with three parameters to 

control its behavior as follows:  

                                  F(𝑥) = a +
𝑏

𝑥−𝑐
 (1) 

Where a = 0.1627, b = 0.0074, c = 0.0255 for road and a = 1.831, b = 2.011, 

c = 0.03956 for objects. The SSE of these fittings are 0.0000057 and 0.002, 



22 

 

respectively. The results of these fittings are shown in figure 11. As analyzed 

as above, the fitting of road area is reliable since MAE results of all images 

converge. While the MAE results vary across scenes, hence, it is fitted with 

 

 

Figure 11. Fitting results of MAE of road and objects area 
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mean results of all images, so it may not be good when considering a single 

case. However, for all test images, this method still gives a good result. 

3.3.2 Distribution budget between road and objects area 

Based on the model achieved from above section, the proposed algorithm 

is stated as follow: Given budget N, the area of road Sr and objects area So in 

pixels, the problem is to find the budget for the road Nr and budget for objects 

area No (Nr + No = N). It is solved by optimizing following criteria: 

                           Minimize 
S

r
 × F

1
(N

r
/Sr)+ γ × So

 
×F

2
(N

o
/So) 

S
r
 + γ × So 

  (2) 

With F1 and F2 are the fitted function for road and objects area in (1), 

respectively. γ is the weighting parameter between the road and the objects 

area. When γ equals to 1, the criteria become the predicted MAE of the entire 

ROI area. if γ increases, the budget for objects area also increases. This 

equation is a compromise between enhancing reconstruction result of entire 

ROI and improving reconstruction result of objects area only. Sampling 

budget is finite and an integer, so this minimization could be solved 

numerically effectively.  

In KITTI dataset, the road area is about 4-5 times larger than object area. 

So, when sampling budget is set at 1000 points per scan, the criteria usually 

converges with about 300-400 samples for road area, the rest of the budget 
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for objects area. When the objects area/road area ratio increases this number 

decrease to reserve more samples for objects area. There are some cases 

where there are no valid objects, hence all samples are used for the road. 

3.4  Distribution budget between ROI and background area 

Ideally, when the objective is increasing the reconstruction results as 

much as possible, then if all budget is distrusted to the ROI area, the 

reconstruction results inside ROI will be best. In real ADAS system, although 

it can be argued that only samples insides ROI will give the semantic meaning 

and be helpful for tasks like obstacle detection, distance measurement from 

the car to objects. However, samples in non-ROI area (also called background 

area) are also helpful for tasks like odometry, detecting motion and movement 

of the car. When testing odometry using LiDAR samples by Iterative Closest 

Point (ICP) algorithm, a huge decrease in performance is detected when 

sampling is performed inside ROI region only. The localization results after 

moving β percent of the budget from the background area to the ROI are 

presented in figure 12. 

Figure 12 demonstrates translation errors and bad localization rate (the 

ratio of cases when the translation error is higher than 50cm) of random 

sampling in the entire image with a budget of 2000 results after moving β 

percent of the budget from the background area to the ROI. As β decreases, 
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the translation error and bad localization rate increase. When β is smaller than 

50%, they start to rise sharply. When using the proposed algorithm inside the 

ROI area only, the odometry result is very bad. With the same budget of 

random sampling, the output is 5 time worse compared to the case β equals to 

 

(a) Translation error 

 
(b) Bad localization rate 

Figure 12. Localization results on dependence of β 
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1. This shows that to get better odometry result, it is necessary to have 

samples outside ROI area. The main objective is getting better reconstruction 

result; therefore, the sampling density inside ROI area is kept denser than that 

in non-ROI area. The budget for non-ROI will be set only to make its 

odometry results keep up with that of random sampling. 

Given N total budget for the entire field of view, call NROI and NnROI are 

budget for ROI and non-ROI area (NROI+NnROI=N), then NROI and NnROI are 

determined as follow: 

NROI = min (
α∗N∗SROI

SnROI+α∗SROI
,  N −  

β∗N∗SnROI

SnROI+ SROI
)    (3) 

With SROI and SnROI are the area of ROI and background area. α is the 

weighting parameter, the increase of α indicates that more samples are 

expected to be moved from the background area to the ROI. 𝛽 indicates the 

minimum of sampling budget must be kept in the background area to preserve 

the localization result. In this experiment, α and 𝛽 are set to 1.5 and 0.65, 

respectively. In equation (1), which term is chosen depends on the ratio 

SROI/SnROI. If this ratio is small, the first term is chosen. In reverse, if this ratio 

is large, the second term is chosen to preserve the localization result.  
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CHAPTER 4 - EXPERIMENTAL RESULTS 

This section explains the experimental methodology and results. First, the 

KITTI dataset is introduced with some adjustments made. Then the objective 

and quantitative results are shown and explained in detail. 

5.1. Dataset 

 

Figure 13. Raw scan and ground truth depth from KITTI 

KITTI dataset is used for experiments, the raw depth map as input and 

ground truth data for evaluation. Figure 13 shows an example of the raw and 

ground truth depth data in KITTI after mapping to its corresponding color 

image. The raw depth data is taken using Velodyne HDE64 sensor [18]. The 

 

Raw scan

Ground truth
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ground truth is generated by combining 11 raw scans together and discarding 

measurements that are not consistent among those scans [19]. One drawback 

of this method is that the measurements on moving objects are usually not 

consistent and being removed, leading to a sparser ground truth on these 

important areas, whereas the static object areas have denser sample density.  

This can be seen in figure 14, the cyclist even has more samples in raw depth 

than in ground truth while technically the ground truth is combined with 11 

raw depth images. In some other areas, the ground truth is very dense, some 

other areas do not have any ground truth data. Therefore, in this experiment, 

even the ground truth has much more data than the raw depth image, the raw 

depth images give better reconstruction result than ground truth after 

sampling. 

This thesis also applied the ground truth of both object detection and road 

detection benchmarks in this experiment. Therefore, images that could be 

used in these tests must exist in three benchmarks: depth completion, road 

 

Figure 14. Raw depth and ground truth in moving object area 
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detection, and object detection.  Only a few images, exactly 106 images, 

match these requirements. For this sampling problem, it is believed this is 

enough to develop the proposed algorithm and give a comprehensive 

evaluation. Inside ROI, raw depth has the sampling rate of about 7-8%.  In 

table 1, in the dataset, the minimum sampling rate of raw depth data is 3.65%, 

the maximum is 8%, while the average number is 7.19%. Between road and 

objects area, on average the road is 4 times larger than the objects area. 

However, in some exceptional cases, the objects area is 2-3 times larger than 

road area. In these cases, the objects are very close to the sensors. About the 

number of samples inside each area, on average the road areas have 6.75 times 

more samples than the objects area. These number shows that the current 

sampling strategy is not efficient. ^he road need smaller sampling rate than 

objects area, while in current systems, the opposite number is found. 

Table 1. Sampling rate inside ROI and ratio between road and objects area 
 

Area 

Object/Road 

N. sample 

Object/Road 

Sampling rate  

inside ROI 

Min 0.00344115 0.000524109 0.036568 

Max 2.703898226 1.728091529 0.0807 

Mean 0.232687667 0.148326604 0.071916 
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A sampling with the budget of 1000 samples per scan for ROI and 2000 

samples for the entire frame is used in the experiment. In table 2, the average 

number of samples inside ROI is 7202, this means that about 13.89% of 

available samples are used. The reconstruction with all samples in raw depth 

is used as upper-bound performance because that is all measurements 

available. The random sampling is used as base performance and two-step 

sampling for comparison. Grid sampling is not possible in these experiments, 

because the raw depth does not have regular sample grid. 

Table 2. Number of samples inside road and objects area 
 

Number of samples 
 

Total Road Objects 

Min 3527 3348 3 

Max 12722 10806 7099 

Mean 7202.388 6397.369 805.0194 

5.2. Evaluation inside ROI 

This section shows evaluation results correspond to the method in section 

3.3 with the budget of 1000 samples inside the ROI. 

5.2.1 Objective evaluation 
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Figure 15. From top to bottom: masks of raw depth and sampling mask of 

random sampling, two-step sampling and proposed algorithm 
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Figure 15 shows sampling mask of raw depth, random sampling, two-step 

sampling and the proposed algorithm. There is no specific pattern for random 

sampling. While two-step sampling is a little denser at object area, the 

proposed algorithm yields a very significant difference between two areas. 

The final reconstructed image is shown in figure 16 and crop out of objects 

area is depicted in figure 17. As being demonstrated, the road area is well 

reconstructed in all for all three methods. Objectively, no differences between 

these images can be seen. However, when considering the objects area, there 

are significant differences. In the reconstructed image of raw depth, the shape 

of the car and pedestrian recognizable. In the reconstructed image of random 

sampling, the cars could not be recognized. They start looming in the 

reconstructed image of two-step sampling and in the reconstructed image of 

the proposed method, it becomes recognizable. Hence, the proposed 

algorithm has the closest output compared to upper-bound  

 

Figure 16. Depth ground truth and the reconstruction result from raw depth, 

random sampling, two-step sampling and proposed algorithm 
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Figure 17. Zoomed out of objects area in depth ground truth and the 

reconstruction result from raw depth, random sampling, two-step sampling 

and proposed algorithm 
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performance and the random sampling does worst. Above analysis shows the 

superiority of proposed method, the differences between these three 

 

 

 

 

Figure 18. Error images from reconstruction result from raw depth, random 

sampling, two-step sampling and proposed algorithm 
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algorithms are significant in both sampling masks and reconstructed images. 

From error images, the same conclusion is drawn. Random sampling has 

greater errors than any other, while proposed methods are most close to raw 

depth in term of reconstruction result. 

5.2.2 Quantitative evaluation 

Table 3. Mean Absolute Error comparison between methods 

 

N 

 

Method 

MAE (m) 

Road Object Overall 

Maximum 

 

0.16696 2.1082 0.23508 

 

1000 

Random 0.16985 3.4527 0.30366 

Two-step 0.16528 2.9457 0.27984 

Proposed 0.18114 2.2286 0.26508 

The quantitative result is illustrated in table 3. The same result still holds 

as above objective evaluations. In road area, Two-step sampling does best, 

following by random sampling and proposed algorithm has the largest 

difference compared to the upper-bound performance. However, this gap is 

only less than 2cm. This is in range of Velodyne LiDAR accuracy and 

therefore the sacrifice is acceptable. In objects area, the random sampling 

does worst and the proposed algorithm has a very good result with the 

difference in reconstructed depth from the upper-bound performance is only 



37 

 

about 10cm while two-step sampling yield more than 80cm difference. 

Objects area is semantically more important than road area, so this is an 

important improvement. 

5.3. Evaluation in the entire frame 

This section shows the evaluation of final results when both distribution 

of budget inside ROI and between ROI and background are applied. The 

sampling budget for the entire frame is set as 2000 samples per scan. To 

perform this evaluation, KITTI depth reconstruction benchmark as above 

tests and the KITTI odometry benchmark is used. The benchmark consists of 

22 sequences, 11 sequences for training and 11 sequences for testing.  The 

top performer of this benchmark is currently being the Visual-lidar odometry 

and mapping (V-LOAM) that uses visual data to make an estimate and then 

uses LiDAR data to refine the result. The purpose of this test is to evaluate 

the effect of different sampling algorithm to odometry result so only LiDAR 

data is used as input to the ICP algorithm. Because the LiDAR data is very 

sparse, point-to-plane metrics is used and performs significantly better than 

the point-to-point metrics. 

To evaluate proposed algorithm, object detection and road detection 

results are annotated manually. There are 20 images prepared for the tests. 

The results of the various methods are shown in the following table: 
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Table 4. Odometry results of various setups 
 

translation drift 

(m) 

rotation drift (degree) 

raw depth 0.0385 0.004 

random 0.14607 0.01421 

two-step 0.09205 0.01275 

Proposed (β=0) 0.71255 0.03817 

Proposed (β=1) 0.10723 0.01455 

Proposed (β=0.65) 0.13511 0.01752 

 

In table 4, the first result is from raw depth with all available samples. The 

rest of them is taken when sampling budget is set to 2000. The second row 

shows the result of random sampling, the next row is from two-step sampling. 

The last three rows demonstrate results from the proposed algorithm with 

three different setups. First, the result when sampling is performed inside ROI 

region only is shown, the second result is archived when the same sampling 

rate is set inside and outside ROI area. The last result is archived when the 

sampling inside ROI area is denser than non-ROI area, in equation 4, the 

parameter α is set to 1.5 and β to 0.65. 

 As demonstrated in the table, the output of raw depth is very good with 

the translation drift only about 4 centimeters. Proposed algorithm when being 

performed in inside ROI region only performs worst, the error is much higher  
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Image of the scene 

 

Sampling mask of random sampling 

 

Sampling mask of two-step sampling 

 

Sampling mask of proposed algorithm 

Figure 19. Sampling maps comparison of different methods 
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than any other methods. However, when being performed on the entire field 

of view, the result of the proposed method is satisfactory with the translation 

drift only about 10 centimeters, this is approximately the same as the accuracy 

of the odometry dataset. When increasing the sampling rate inside ROI area 

in order to achieve higher reconstruction result, the odometry result gets 

worse. At this setup, the proposed algorithm still gets a better result than 

random sampling. Two-step sampling performs best with odometry, about 1.5 

centimeters better than the proposed algorithm at the best setup. 

The sampling masks of different methods are shown in figure 19, where 

proposed method shows significantly denser sampling rate in the objects area. 

Considering the reconstruction result of above setups, their result is imprinted 

in the following table: 

Table 5. Reconstruction results of various setups by MAE 
 

road object ROI background overall 

raw depth 0.131448 0.94143 0.239427 0.46965 0.339022 

random 0.142748 1.97609 0.366456 0.98562 0.636075 

Two-step 0.139731 2.08233 0.378107 0.90666 0.619105 

Proposed (β=0) 0.170837 1.02971 0.287913 
  

Proposed (β=1) 0.196628 1.26516 0.340591 0.97286 0.627206 

Proposed (β=0.65) 0.197792 1.16840 0.328167 1.04832 0.675041 
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Comparing the reconstruction results of the ROI area, the proposed 

algorithm performs best. All three setups obtain better results than both 

random sampling and two-step sampling. The result when doing sampling 

inside the ROI area only obviously gives the best result, followed by the result 

when setting the sampling rate inside ROI higher than non-ROI area. When 

the sampling rate of ROI area is equal to that of non-ROI, which is the same 

as random and two-step sampling, the proposed algorithm also performs 

better. Comparing to the reconstruction result in the background area and the 

overall result, two-step, and random sampling are better. However, ROI is the 

priority so the results are reasonable. 
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CHAPTER 5 - CONCLUSION 

This thesis introduces an idea of using results from object and road 

detection step in ADAS systems to better guide the LiDAR sampling process, 

specifically sampling on the ROI. The focus is on distributing the sampling 

budget between the ROI and background area and between objects and road 

area inside the ROI. A portion of the budget of the background area is moved 

to ROI are with the constraint of preserving the localization result. In the other 

hand, by the observation that road area is simpler and easier to construct, the 

proposed algorithm distributes to this area just enough points to keep a decent 

result, while the rest of sample budget is reserved to objects area.  In 

comparison, two-step sampling is more general than the proposed approach 

and when being applied to the road environment, its gradient-based approach 

also results in sparser sampling in road area and denser sampling in objects 

area. However, the proposed algorithm is highly optimized for this typical 

ADAS application, therefore, it yields better results in both objective and 

quantitative evaluation. Consequently, the experiment shows the proposed 

method significantly improves reconstruction result in objects area by 44.9% 

and entire frame by 15.1% while just sacrificing little in road area. 
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