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Abstract

Background: Discovering reliable protein biomarkers is one of the most important issues in biomedical research.
The ELISA is a traditional technique for accurate quantitation of well-known proteins. Recently, the multiple
reaction-monitoring (MRM) mass spectrometry has been proposed for quantifying newly discovered protein
and has become a popular alternative to ELISA. For the MRM data analysis, linear mixed modeling (LMM) has
been used to analyze MRM data. MSstats is one of the most widely used tools for MRM data analysis that is
based on the LMMs. However, LMMs often provide various significance results, depending on model specification.
Sometimes it would be difficult to specify a correct LMM method for the analysis of MRM data. Here, we propose a
new logistic regression-based method for Significance Analysis of Multiple Reaction Monitoring (LR-SAM).

Results: Through simulation studies, we demonstrate that LMM methods may not preserve type I error, thus yielding
high false- positive errors, depending on how random effects are specified. Our simulation study also shows that the
LR-SAM approach performs similarly well as LMM approaches, in most cases. However, LR-SAM performs better than
the LMMs, particularly when the effects sizes of peptides from the same protein are heterogeneous. Our proposed
method was applied to MRM data for identification of proteins associated with clinical responses of treatment of 115
hepatocellular carcinoma (HCC) patients with the tyrosine kinase inhibitor sorafenib. Of 124 candidate proteins, LMM
approaches provided 6 results varying in significance, while LR-SAM, by contrast, yielded 18 significant results that were
quite reproducibly consistent.

Conclusion: As exemplified by an application to HCC data set, LR-SAM more effectively identified proteins associated
with clinical responses of treatment than LMM did.

Keywords: Multiple reaction-monitoring (MRM), Protein, Logistic regression-based method for significance analysis of
multiple reaction monitoring (LR-SAM), Hepatocellular carcinoma (HCC), Sorafenib response

Background
Discovering protein disease biomarkers is an urgently
pressing issue in biomedical research [1]. Historically,
the enzyme-linked immunosorbent assay (ELISA) is a
highly accurate protein quantitation technique [2],
representing the “gold standard” for measuring levels of

specific proteins [3]. However, recent discoveries of
many novel proteins, having no available antibodies,
now limits the use of the ELISA method [4]. Moreover,
for newly discovered proteins, development of high
quality ELISA assays requires considerable time and re-
sources [5]. Together, these shortcomings have created a
need for a different technique of targeted protein quanti-
tation [6]. One such technique, quantitative mass spec-
trometry of proteins has advanced significantly over the
last decade, and several methods have been developed
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for relative quantification of targeted proteins, using this
technique [7].
In recent years, multiple reaction monitoring (MRM)

mass spectrometry has been developed as an attractive
tool for targeted proteins and now represents a promising
alternative to ELISA for quantification of proteins. To that
end, MRM uses sequence-specific tandem mass spectrom-
eter fragmentations of peptides that can provide highly
selective measurements for peptide-containing proteins
[8]. Thus, without enrichment or fractionation ap-
proaches, MRM assays allow for the quantitation of
protein ions within ranges of low (μg/mL) to high
(ng/mL) levels [5, 9]. Additionally, development time
for MRM assays is relatively shorter and less expen-
sive than that for ELISA, with no requirements (and
thus no costs) for antibody development.
Due to these many advantages, MRM assays are being

increasingly used in systems biology and clinical investiga-
tions [10–13]. There are some analysis tools to analyze
MRM data. Skyline is representative tool to create and
analyze MRM dataset [14]. ProteoSign gives some simple
statistical analysis results to find differentially expressed
proteins [15]. roHits-viz is a web-based tool for visualizing
interaction of protein data [16]. However, the develop-
ment of statistical methods to determine significantly
abundant proteins by the MRM assay has not received
enough attention, compared to improvement of the MRM
assay technology itself [17]. For MRM data analysis,
two-sample t-tests or paired t-tests have been applied to
identify proteins that change in abundance between two
groups [18–20]. To test for multiple groups, one-way ana-
lysis of variance (ANOVA) has been employed [21, 22].
Recently, a linear mixed model (LMM) approach was

proposed for MRM data analysis, and was implemented in
MSstats (v3.7.1) [17], resulting in its widespread adoption
[23]. LMM approaches include a single parameter for a
group effect, peptide effects, and group and peptide inter-
action effects, along with subject and run effects. LMMs
include both subject and run effects that can be desig-
nated as either random or fixed, to identify significantly
evident proteins by testing the group effect. Recently, we
observed that the LMM approach often provides different
p-values for the group effect, from the same data, depend-
ing on which effects are treated as random or fixed. In
particularly, the LMM test results vary considerably when
there is an interaction effect between group and peptide.
In this report, we propose a new logistic regression-

based method for Significance Analysis of Multiple Re-
action Monitoring (LR-SAM). Unlike LMMs, our
LR-SAM approach uses a much smaller number of pa-
rameters. Moreover, our LR-SAM does not require in-
clusion of all the effects related to the run. Accordingly,
our model does not need to specify run effects as ran-
dom or fixed.

Since LR-SAM uses log2-transformed relative intensity
values, it does not need to include run effects. We con-
sider two separate cases when the effects of peptides in a
protein are homogeneous or heterogeneous. For the sig-
nificance test for proteins, we consider Wald type tests,
likelihood ratio tests (LRTs), and score tests [24].
Through various simulation studies, we compared the

performance of LMMs to our approach. We first ob-
served cases in which an LMM approach did not pre-
serve type I error, and we also examined cases in which
LR-SAM methods performed better. Some tests, based
on the LR-SAM method, were more powerful when the
expression pattern of peptide between groups was
heterogeneous.
To further establish the translational relevance of our

method, we compared LMMs to our approaches in a
clinical study to identify candidate serum biomarkers of
sorafenib response and prognosis in patients with hepa-
tocellular carcinoma (HCC). Sorafenib is a multikinase
inhibitor mainly used for the treatment of various solid
tumors including HCC [25]. However, the response rate
of sorafenib is about 8% for HCC patients. Due to its
high cost, it would be more economical and more bene-
ficial to patients if Sorafenib is applied only to the pa-
tients with high chance of response. Moreover, there are
no good markers to predict the patients’ response to so-
rafenib [26]. From May 2013 to August 2014, 115 HCC
patient serum samples were collected from Seoul Na-
tional University Hospital as part of an ongoing HCC
study. One hundred twenty-four candidate protein bio-
markers, and hepatic disease-associated proteins, were
chosen from 50,265 proteins, based on the LiverAtlas
database [27]. Sorafenib responses were measured ac-
cording to the modified response evaluation criteria in
solid tumors (mRECIST) guidelines [28]. Patients with
complete responses, partial responses, or stable disease
were categorized as responders, while those with pro-
gressive disease were categorized non-responders. Both
LMM approaches and LR-SAM methods were employed
to analyze the MRM data.

Methods
MRM dataset structure
Table 1 shows the structure of MRM dataset. Sample ID
indicates individual, Run the shared run membership of
the endogenous, and Area Ratio the expression of

Table 1 MRM dataset structure

Sample ID Group Run Protein Peptide Area Ratio

1 1 1 X1 1 y11(1)11

1 1 1 X1 2 y11(1)21

2 2 1 X1 1 y22(2)11

2 2 1 X1 2 y22(2)21
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peptide detected. The MRM data has a hierarchical struc-
ture such that one protein contains several peptides. Since
our goal is to identify proteins that are significantly differ-
ent between the group, we need to combine the summa-
rized expression of peptides from the same protein
efficiently. Also, the batch effect would occur when MRM
experiments were performed in different batches separ-
ately. These characteristics of MRM make it difficult to
use the standard analyses such as two sample t-test.

Review of LMM approach
For a given protein, suppose it is comprised of K pep-
tides. Let yi, j(i), k, l denote the log2(intensity) value of
the j-th subject, nested in the i-th group of the k-th pep-
tide and the l-th run. Then, the LMM used in MSstats is
given as follows:

yi; j ið Þ;k;l ¼ μþ Gi þ S Gð Þ j ið Þ þ Pk þ Rl

þ G� Pð Þi;k þ P � Rð Þk;l þ ϵi; j ið Þ;k;l; ð1Þ

where μ is the global mean; Gi is the i-th group effect;
S(G)j(i) representing the j-th subject effect nested in the
i-th group; Pk stands for the k-th peptide effect; Rl stands
for the l-th run effect, (G × P)ik stands for the interaction
effect between the i-th group and the k-the peptide; and
(P × R)kl signifies the interaction effect between the k-th
peptide and the l-th run. When all the effects are treated
as fixed, these parameters have the following restrictions:P2

i¼0 Gi ¼ 0,
P JðiÞ

jðiÞ¼1 SðGÞ jðiÞ ¼ 0,
PK

k¼1 Pk ¼ 0,
PL

l¼1 Rl

¼ 0 ,
P2

i¼0 ðG � PÞi;k ¼ 0 ,
PK

k¼1 ðG � PÞi;k ¼ 0 ,
PK

k¼1

ðP � RÞk;l ¼ 0;
PL

l¼1 ðP � RÞk;l ¼ 0 , and ϵi; jðiÞ;k;l � Nð0;
σ2ϵÞ . Here, G0 stands for the effect of a reference group
of MRM data. When the subject and run effects are
treated as random, the restrictions on S(G)j(i), Rl, and
(P × R)kl are replaced by SðGÞ jðiÞ � Nð0; σ2SÞ , Rl � Nð0;
σ2RÞ and ðP � RÞkl � Nð0; σ2

P�RÞ, respectively.
For most MRM data analyses, the investigator’s inter-

est lies in determining which proteins differ in abun-
dance between two groups. Thus, the hypothesis of
interest is given below for comparing two groups:

H0 : G1 ¼ G2;H1 : G1≠G2 ð2Þ

The MSstats uses the t-test for this hypothesis.

LR-SAM approach
Our proposed LR-SAM approach uses a log2-trans-
formed relative intensity value instead of the original
log2-transformed intensity value itself. A
log2-transformed relative intensity value was derived as
yi, j(i), k, l − y0, 0(0), k, l. In that scenario, Pk, Rl and (P ×
R)kl effects that share the same k and l values are re-
moved. If we denote yj, k as a log2-transformed relative

intensity value of the j-th subject and the k-th peptide,
where j = 1,J(1),J(1) + 1,…,J(1) + J(2). Then, the log2-
transformed relative intensity value yj, k stands for the
y1, j(1), k, l − y0, 0(0), k, l for j = 1,…,J(1), and it stands for
the y2, j(2), k, l − y0, 0(0), k, l for j = J(1) + 1,…,J(1) + J(2).

LR-SAM with fixed effect
Consider a logistic regression model using log2-trans-
formed relative intensity value, as follows:

logit P Z j ¼ 1
� �� � ¼ αþ β1y j;1 þ…þ βKy j;K ; ð3Þ

where Zj is a group indicator of the j-th subject that is
assumed to follow a Bernoulli distribution; α is an inter-
cept; and βk is the coefficient of the k-th peptide. Note
that the βk values are related to G1 −G2 + (G × P)1, k

− (G × P)2, k of model (1). Therefore, if we treat all βk’s as
fixed, the hypothesis for comparing the two groups is:

H0 : β1 ¼ ⋯ ¼ βK ¼ 0 ð4Þ
To test (4), we consider the likelihood ratio test (L)

with K degrees of freedom, as follows:

L ¼ −2 l0 α̂0ð Þ−l α̂; β̂1;…; β̂K
� �� �

ð5Þ

Here, α̂0 is the maximum likelihood estimate (MLE) of
α under the null hypothesis (see above). l0ðα̂0Þ is the
maximum likelihood value under the null hypothesis,

and α̂; β̂1;…; β̂K are the MLEs of α, β1, …, βK, respect-
ively. It is also known that L asymptotically follows a
chi-square distribution, with K degrees of freedom.
A Wald type test (W) statistic for analysis, is given

below:

W ¼
β̂1
⋮
β̂K

0
@

1
A

0

Var β̂1;…; β̂K
� �−1 β̂1

⋮
β̂K

0
@

1
A ð6Þ

Here, W also asymptotically follows a chi-square dis-
tribution, with K degrees of freedom under the null hy-
pothesis. If we assume that the βk values are
homogeneous, a Wald test with 1 degree of freedom
(W1) can be considered as follows:

W 1 ¼ β̂pA
−1β̂p; ð7Þ

in which β̂p is the weighted average of β̂k as
PK

k¼1 tk β̂k ,

where tk is a weight given as
1=Varðβ̂k ÞPK

k¼1
1=Varðβ̂k Þ

, and A is the

variance of β̂p , given as
t1
⋮
tK

0
@

1
A

0

Varðβ̂1;…; β̂K Þ
t1
⋮
tK

0
@

1
A .

Thus, W1 asymptotically follows a chi-square distribu-
tion, with 1 degree of freedom, under the null
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hypothesis. Moreover, if the βkvalues are homogeneous,
Eq. (3) (shown above) can be reduced to the following
model:

logit P Z j ¼ 1
� �� � ¼ αþ β�

XK
k¼1

y j;k ð8Þ

The hypothesis of interest from this model (8) is
H0 : β

∗ = 0, and a Wald test (WS) is given by:

WS ¼ β̂
�
Var β̂

�� �−1
β̂
� ð9Þ

Here, β̂
�

is the maximum likelihood estimate of β∗

from the model (8), and WS asymptotically follows a
chi-square distribution, with 1 degree of freedom.

LR-SAM with random effects
When effects of peptides were heterogeneous, we could
detect significant heterogenous effect by assuming ran-
dom effects on coefficients βk. This assumption is com-
monly used in meta-analysis or rare variant analysis of
genetic study [24, 29]. If we assume that βk follows a
normal distribution, with mean 0 and variance wkτ
(where wk is a known prior weight), then the logistic re-
gression model (3) is expanded to a mixed effect model,
and the hypothesis (4) is equivalent to:

H0 : τ ¼ 0;H1 : τ≠0 ð10Þ
Since the hypothesis H0 : τ = 0 is on the boundary of

the parameter space, the variance-component score test
can be considered. The score test statistic of the
variance-component for (10) is:

SVC ¼ Z−μ̂0ð Þ0K Z−μ̂0ð Þ ð11Þ
Here, μ̂0 is the estimated probability under H0; K =

YWY′, where Y = [Y1,…,YK] and Yk = (y1k,…, ynk)
′; Z

means the group indicator vector, and W is a diagonal
matrix with the k-th element as wk.
It is known that SVC follows a mixture of chi-square

distributions
PK

k¼1λkχ1;k
2, where χ1, k

2’s are independent
chi-square distributions with 1 degree of freedom, and

λk is the k-th eigenvalue of P1/2KP1/2 [24]. Here, P

¼ V̂
−1
−V̂

−1
1ð10V̂−1

1Þ10V̂−1
, where V̂ is a diagonal

matrix with the k-th element as μ̂0kð1−μ̂0kÞ . For simpli-
city, we assume a flat prior weight given by wk = 1 for k
= 1, …, K.

Simulation design
We next performed simulation studies to investigate the
power of the LMM and LR-SAM approaches for com-
paring two groups, and whether they preserve type I
error. For analysis, there were four LMMs available,

depending on how the random or fixed effects were spe-
cified: (i) LMM(FF), with fixed subject and run effects,
(ii) LMM(FR), with fixed subject effect and random run
effects, (iii) LMM(RF), with random subject and fixed
run effects, and (iv) LMM(RR), with random subject and
run effects. For each simulated dataset, the best LMM,
LMM(best), was selected among four LMMs with the
smallest Akaike information criterion (AIC) value [30].
Thus, there were five LR-SAM test statistics, L, W, W1,
WS, and SVC, for comparison.
Simulation data was generated from the model, using

1000 repetitions. The global mean, μ, was arbitrarily set
to 15, while the reference effects, G0, S(G)0, (0), and (G ×
P)0, k, for k = 1, …, K, were set to 0. The normal distribu-
tion, with mean 0 and variance 0.5, was set as the error
distribution, and the number of peptides was set to 4.
For the random subject effect, we generated S(G)j(i) from
the identical normal distribution independently, with
mean 0 and variance 0.25 for i = 1, 2. For the fixed sub-
ject effect, we set S(G)j(i) as follows:

S Gð Þ j ið Þ ¼ −eS þ 2 j ið Þ−1ð Þ
J ið Þ−1 eS for j ið Þ

¼ 1;…; J ið Þ and i ¼ 1; 2;where eS

> 0 and eS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

J ið Þ−1
J ið Þ þ 1

s
σS; with σ2S

¼ 0:25:

The peptide effect, Pk, was considered as a fixed effect,
and was set as follows:

Pk ¼ −eP þ 2 k−1ð Þ
K−1

eP for k ¼ 1;…;K ; where eP

> 0 and eP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
K−1
K þ 1

r
σP with σ2

P ¼ 0:1

For the random run effect, we generated Rl from the
identical normal distribution, independently, with mean
0 and variance 0.25. For the fixed run effect, we set Rl as
follows:

Rl ¼ −eR þ 2ðm−1Þ
M−1 eR for m ¼ 1;…;M; where eR > 0

and eR ¼
ffiffiffiffiffiffiffiffiffiffiffi
3 M−1
Mþ1

q
σR; with σ2

R ¼ 0:25

We then considered the peptide×run interaction effect
as either random or fixed, followed by the type of run ef-
fect. For the random peptide by run interaction effect,
we generated (P × R)k, l from the identical normal distri-
bution independently, with mean 0 and variance 0.1. For
the fixed peptide×run interaction effect, we set (P × R)k, l
as follows:
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P � Rð Þk;l ¼ ePR−
2 k−1ð Þ
K−1

ePR

� �
−1ð Þl for l

¼ 1;…; L and k ¼ 1;…;K ; where ePR

> 0 and ePR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
K−1
K þ 1

r
σPR; with σ2PR

¼ 0:1

Provided those parameters, we further considered four
group effect scenarios (GSs), as follows:

GS 0 : Gi ¼ 0 for all i and GS 1 : G2−G1 ¼ 1=3

For detecting the group×peptide interaction effect, we
set (G × P)i, k, as follows:

G � Pð Þi;k ¼ eGP−
2 k−1ð Þ
K−1

eGP

� �
−1ð Þi for i

¼ 1; 2 and k ¼ 1;…;K ; where eGP

> 0 and eGP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
K−1
K þ 1

r
σGP:

Here, using σGP values determined from the squared
average of the interaction effect, we considered three
interaction effect scenarios (ISs) for σGP, as follows:

IS 1 : σ2GP ¼ 0:05 and IS 2 : σ2GP ¼ 0:1

Materials
To identify candidate serum hepatocellular carcinoma
(HCC) biomarkers for prognosis and response to the
tyrosine kinase inhibitor sorafenib, data from 115 HCC
patients who had undergone continuous administration
of sorafenib for more than 6 weeks, were collected from
Seoul National University Hospital, as part of an on-
going study between May 2013 and August 2014. HCC
was diagnosed by histological or radiological evaluation,
with reference to the American Association for the
Study of Liver Diseases (AASLD) [31] or the European
Association for the Study of the Liver (EASL) [32] guide-
lines. All procedures/analyses were approved by the
Seoul National University Hospital Institutional Review
Board (IRB protocol No. 0506–150-005). Sorafenib re-
sponse was evaluated using the modified response evalu-
ation criteria in solid tumors (mRECIST) [28], using
independent radiologic assessments. Patients with
complete response, partial response, and stable disease
were categorized as responders, while those with pro-
gressive disease were categorized as non-responders.
Toward these objectives, a total of 115 serum samples

were randomly separated into two batches: the 1st batch
consisted of 65 samples and the 2nd batch consisted of
50 samples. Of those, the total number of responders
was 40, and the number of non-responders was 75. One
hundred twenty-four candidate protein biomarkers,
known hepatic disease-associated proteins, were chosen

from 50,265 proteins, based on the LiverAtlas database
[27]. One to seven peptides, comprised within each pro-
tein, were measured, and counted (Table 2).
Since there were some cases in which LMM(FF),

LMM(FR), and L did not preserve type I error in our
simulation studies, we applied LMM(RF), LMM(RR), W,
W1, WS and SVC to analyze the MRM data. Quantile
normalization, provided within the MSstats package
[20], was employed for preprocessing. To adjust the
mean differences between the two batches, batch indica-
tors were included in models (1), (3), and (8) for MRM
data analysis.

Results
Simulation results
The type I error and the empirical power were estimated
as the proportion of p-values under 0.05, out of 1000
repetitions. The type I error rates of LMMs and
LR-SAM are summarized in Table 3. The true type of
subject effect more strongly affected the type I error rate
of LMMs, as compared to the run effect. Analogously,
when the true subject effect was fixed, the four LMMs
controlled the type I errors. Among the five LR-SAM
tests, L could not control the type I error rate when the
sample size was 20, while the other four LR-SAM tests
could. When the sample sizes were 50 and 100, all
LR-SAM tests controlled type I error. When the true
subject effect was random, LMM(FF) and LMM(FR)
could not control type I error, whereas LMM(RF) and
LMM(RR) could. L did not control the type I error rate
when the sample sizes were 20 and 50, while the other
four LR-SAM tests did. The AIC value of LMM(FF)
tended to be the smallest among the four LMMs, under
any conditions. Thus, LMM(FF) was most frequently se-
lected as the best LMM.
Some LR-SAM tests showed increased power as the

interaction effects became large. When there was only
an interaction effect, without group effects, the power of
the LMMs W1, and WS did not increase, as shown in
Table 4. As the sample size and the interaction effect be-
came large, W and SVC showed increased power. More-
over, SVC provided higher power than W, when the
sample size was 50, while W provided higher power than
SVC, when the sample size was 100.
The size of the group effect showed large effects on all

LMMs and LR-SAM methods. The estimated powers of
the five LMMs, and the LR-SAM methods for GS 1, are
shown in Table 5. The powers of L, W, W1, and SVC
were all affected by the size of the interaction effect,

Table 2 The number of proteins of each number of peptides

The number of peptides 1 2 3 4 5 6 7

The number of proteins 48 57 12 5 0 1 1
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Table 3 Estimated type I error of LMMs and LR-SAM methods

True subject type True run type Sample size Model

LMM LR-SAM

Best (FF) (FR) (RF) (RR) L W W1 WS SVC

Fixed Fixed 20 0.053 0.054 0.037 0.006 0.002 0.093 0 0.002 0.002 0.019

50 0.038 0.038 0.033 0.006 0.001 0.044 0.002 0 0.004 0.012

100 0.048 0.048 0.03 0.003 0 0.035 0.014 0.001 0.001 0.012

Random 20 0.052 0.052 0.055 0.004 0.002 0.082 0 0.002 0.001 0.014

50 0.054 0.054 0.049 0.01 0.005 0.055 0.007 0.008 0.006 0.017

100 0.032 0.032 0.033 0.003 0.001 0.043 0.025 0.003 0.003 0.024

Random Fixed 20 0.152 0.153 0.211 0.029 0.031 0.107 0 0.008 0.015 0.039

50 0.178 0.179 0.26 0.06 0.055 0.065 0.014 0.042 0.053 0.05

100 0.148 0.148 0.204 0.041 0.029 0.06 0.033 0.033 0.039 0.04

Random 20 0.157 0.159 0.184 0.046 0.053 0.114 0 0.008 0.027 0.053

50 0.168 0.168 0.195 0.055 0.06 0.068 0.019 0.039 0.047 0.049

100 0.16 0.16 0.17 0.045 0.04 0.06 0.031 0.034 0.039 0.054

Table 4 Estimated power of LMMs and LR-SAM methods for GS 0. Bolded number indicates power of methods were more than 0.8

Interaction
scenario

True subject type True run type Sample
size

Model

LMM LR-SAM

Best (FF) (FR) (RF) (RR) L W W1 WS SVC

IS1 Fixed Fixed 20 0.049 0.05 0.03 0.002 0.001 0.344 0 0 0.001 0.135

50 0.048 0.048 0.029 0.002 0 0.692 0.385 0.008 0.002 0.506

100 0.053 0.053 0.041 0.007 0.001 0.953 0.926 0.007 0.007 0.911

Random 20 0.051 0.052 0.066 0.004 0.002 0.339 0.001 0.002 0.002 0.14

50 0.047 0.047 0.042 0.002 0.001 0.691 0.397 0.007 0.002 0.538

100 0.045 0.045 0.043 0.003 0.003 0.953 0.93 0.008 0.003 0.914

Random Fixed 20 0.147 0.149 0.198 0.051 0.046 0.402 0.001 0.009 0.027 0.213

50 0.177 0.177 0.234 0.048 0.042 0.745 0.415 0.025 0.04 0.593

100 0.157 0.157 0.201 0.054 0.049 0.95 0.923 0.037 0.051 0.917

Random 20 0.158 0.159 0.19 0.052 0.06 0.415 0 0.003 0.026 0.216

50 0.148 0.15 0.168 0.04 0.046 0.726 0.455 0.027 0.034 0.602

100 0.164 0.165 0.171 0.04 0.043 0.975 0.948 0.026 0.037 0.932

IS2 Fixed Fixed 20 0.054 0.055 0.04 0.005 0 0.611 0.001 0.001 0.001 0.353

50 0.051 0.051 0.034 0.009 0.002 0.945 0.787 0.018 0.004 0.896

100 0.045 0.045 0.036 0.007 0.001 1 1 0.016 0.006 1

Random 20 0.044 0.046 0.058 0.004 0.006 0.606 0 0.002 0.001 0.354

50 0.045 0.046 0.046 0.001 0.001 0.953 0.8 0.014 0.001 0.907

100 0.056 0.056 0.062 0.01 0.009 0.999 0.998 0.012 0.009 0.998

Random Fixed 20 0.145 0.147 0.2 0.055 0.046 0.592 0 0.005 0.033 0.44

50 0.143 0.145 0.2 0.034 0.028 0.957 0.801 0.029 0.026 0.91

100 0.166 0.166 0.223 0.049 0.04 1 1 0.043 0.045 1

Random 20 0.162 0.164 0.188 0.048 0.057 0.639 0 0.001 0.021 0.443

50 0.144 0.145 0.177 0.04 0.044 0.949 0.801 0.02 0.031 0.901

100 0.17 0.17 0.206 0.053 0.06 0.999 0.999 0.032 0.048 0.999
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when the group effect scenario was GS 1, while those of
the five LMMs did not. As the interaction effect in-
creased, the powers of L, W, and SVC increased, while
the powers of four of the LMMs, and WS, did not, and
the power of the W1 method even decreased. When the
interaction scenario was IS 1, the powers of the L and
SVC methods were higher than those of the LMMs, for a
sample size of 100. For the IS 2 scenario, once the sam-
ple size exceeded 50, the L and SVC methods provided
higher powers than those of the LMMs.
Collectively, as the size of group effects became large,

all methods provided increased power. As the inter-
action effect became large, only the L, W, and SVC
methods provided increased power.

HCC data analysis
Using the approaches described above, the maximum
–log10-transformed p-values of the linear mixed
models (LMMs) were higher than those of the

LR-SAM methods. However, the correlation of the
transformed p-values of LMM(RF) and LMM(RR) was
lower than that of LR-SAM methods, as shown in
Fig. 1. The correlation between LMM(RF) and
LMM(RR) was 0.6558, while the minimum correlation
among the LR-SAM methods was 0.784. The correl-
ation between WS and SVC was the highest (0.9627),
among the LR-SAM methods.
The lowest p-values of LMM(RF) and LMM(RR) were

lower than those of the LR-SAM methods, valued at
1.87 × 10−18 and 1.09 × 10−30, respectively. The lowest
p-value of W, W1, and WS was 2 × 10−7, and the lowest
p-value of SVC was 3.49 × 10−14 (Table 6). Although the
lowest p-values of the LR-SAM methods were less sig-
nificant than those of the LMMs, and for many proteins,
LR-SAM methods provided higher significance results
(Fig. 1).
The LMM(RF) and LMM(RR) methods identified 11

and 37 proteins, respectively. There were six (14.29%)
proteins simultaneously identified by LMM(RF) and

Table 5 Estimated power of LMMs and LR-SAM methods for GS 1. Bolded number indicates power of methods were more than 0.8

Interaction
scenario

True subject
type

True run
type

Sample
size

Model

LMM LR-SAM

Best (FF) (FR) (RF) (RR) L W W1 WS SVC

IS1 Fixed Fixed 20 0.296 0.301 0.459 0.077 0.044 0.417 0 0.01 0.042 0.258

50 0.627 0.63 0.85 0.333 0.216 0.798 0.548 0.14 0.291 0.756

100 0.916 0.917 0.994 0.709 0.632 0.996 0.984 0.424 0.694 0.995

Random 20 0.302 0.303 0.39 0.085 0.093 0.42 0 0.007 0.034 0.253

50 0.642 0.646 0.715 0.321 0.336 0.805 0.534 0.154 0.288 0.775

100 0.921 0.923 0.958 0.681 0.753 0.99 0.981 0.405 0.668 0.99

Random Fixed 20 0.351 0.35 0.472 0.152 0.159 0.472 0.001 0.016 0.095 0.304

50 0.626 0.628 0.782 0.384 0.403 0.825 0.574 0.218 0.359 0.782

100 0.85 0.851 0.928 0.659 0.705 0.985 0.976 0.457 0.652 0.983

Random 20 0.379 0.381 0.43 0.176 0.186 0.488 0 0.024 0.106 0.348

50 0.613 0.615 0.674 0.366 0.389 0.812 0.552 0.19 0.342 0.775

100 0.834 0.835 0.873 0.655 0.679 0.989 0.981 0.447 0.639 0.98

IS2 Fixed Fixed 20 0.328 0.331 0.482 0.083 0.039 0.662 0 0.005 0.042 0.503

50 0.619 0.62 0.865 0.298 0.199 0.978 0.87 0.095 0.268 0.966

100 0.889 0.889 0.996 0.696 0.621 1 1 0.279 0.676 1

Random 20 0.288 0.29 0.382 0.067 0.074 0.649 0 0.006 0.023 0.466

50 0.648 0.652 0.735 0.339 0.363 0.979 0.888 0.112 0.305 0.97

100 0.921 0.921 0.96 0.703 0.748 1 1 0.288 0.685 1

Random Fixed 20 0.36 0.363 0.493 0.148 0.152 0.683 0.001 0.009 0.093 0.524

50 0.599 0.602 0.76 0.363 0.377 0.982 0.878 0.137 0.334 0.961

100 0.861 0.861 0.93 0.674 0.715 1 1 0.321 0.66 1

Random 20 0.384 0.386 0.462 0.175 0.191 0.682 0 0.007 0.113 0.523

50 0.583 0.586 0.637 0.357 0.384 0.968 0.869 0.123 0.323 0.952

100 0.836 0.836 0.874 0.655 0.698 1 1 0.33 0.644 1
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LMM(RR). For LR-SAM methods, W, W1, WS, and SVC
identified 28, 19, 22, and 29 proteins, respectively.
Among these proteins 18 (52.94%) were simultaneously
identified by four methods. Finally, there were four
(7.84%) proteins identified by all six methods of LMM
and LR-SAM (Fig. 2).
All LMMs and LR-SAM methods simultaneously pro-

vided significance results for the presence of the proteins
GPX3, IGHG1, IGHG3 and IGJ. Among these, IGJ (im-
munoglobulin J chain, linker protein for immunoglobu-
lin alpha and mu) was previously reported as having a
significant difference of expression in HCC tumors [33],
while GPX3 (glutathione peroxidase 3) was reported as a
tumor suppressor in HCC [34].
There were 14 proteins that the LR-SAM methods,

but not the LMMs, simultaneously provided signifi-
cance results of expression (Table 6). Among those 14,
seven were previously reported, including FBLN1
(Fibulin-1), a tumor suppressor gene in HCC [35],
SHBG (sex hormone-binding globulin), a prediagnos-
tic risk marker for HCC [36], and LG3BP (galectin-3-

binding protein), a potential marker in six cancer
types, including HCC, lymphoma, NPC (nasopharyn-
geal carcinoma), CRC (colorectal carcinoma), and oral
cancers [37]. Additionally, CATB (Cathepsin B) was
previously reported as a potential candidate cancer
biomarker in HCC [38], HPT (haptoglobin) was re-
ported to associate with tumor progression in HCC
[39], while POSTN (periostin) was reported as a
marker for malignant transformation of hepatocytes
[40]. Similarly, 14–3-3S (14–3-3 protein sigma) was
reported as downregulated in HCC [41].
There were two proteins that LMMs simultaneously

provided a significance result, while LR-SAM methods
did not. Resultant p-values for the simultaneously
identified 20 proteins are shown in Table 6. Two pro-
teins that demonstrated significance by LMM(RF) and
LMM(RR) were also previously reported: CD5L (CD5
antigen-like), reported as differentially expressed in
hepatitis C patients [42]: and APOA4, (apolipoprotein
A-IV), reported as misexpressed in liver metabolic
disorders [43].

Fig. 1 Pairwise scatter plot of –log10-transformed p-values from the LMM(RF), LMM(RR), W, W1, WS and SVC models based on multiple reaction
monitoring (MRM) data. Vertical and horizontal dashed red lines represent Bonferroni-corrected significance levels, −log10(0.05/124). Diagonally
dashed gray line represents one to one slope
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Discussion
We examined the performance of LMMs and LR-SAM
methods, through extensive simulation studies. When
the true subject effect was random, LMM(FF) and
LMM(FR) did not preserve type I error (Table 3). We
also applied Akaike information criterion (AIC), for
model selection, to check whether or not the
best-performing LMM preserved type I error. However,
our empirical study showed that LMM(FF) had the
smallest AIC value for most simulation settings, which
made it difficult to use AIC as a model selection criter-
ion. On the other hand, LR-SAM methods, except L,
well preserved type I error under any type of subject and
run effects.
Since the hypothesis (2) did not consider the inter-

action effect, the power of the LMM approach was
not affected under any size of the interaction effect.
However, when the interaction effect (without the
group effect) was considered, hypothesis (2) could not
perform well, as we observed through our simulation
studies. On the other hand, testing hypotheses (8)
with W and (10) with SVC, changes under any size
group effect and interaction effect were detectable.
Additionally, LR-SAM methods did not provide higher
power than LMMs, when there were no or only weak
interaction effects.

Table 6 List of proteins and their p-values simultaneously identified by LMM or LR-SAM methods

Protein Models # of peptide Simultaneously
Identified modelLMM(RF) LMM(RR) W W1 WS SVC

IGJ 2.E-18 3.E-21 1.E-05 1.E-04 2.E-07 3.E-14 3 All

IGHG3 2.E-10 3.E-18 2.E-07 2.E-07 2.E-07 9.E-11 1 All

IGHG1 3.E-09 8.E-17 3.E-07 3.E-07 3.E-07 3.E-10 1 All

GPX3 5.E-06 5.E-09 9.E-05 9.E-05 9.E-05 1.E-05 1 All

FBLN1 1.E-01 7.E-11 3.E-05 1.E-05 5.E-06 2.E-07 2 LR-SAM

C163A 3.E-03 2.E-08 7.E-07 7.E-07 7.E-07 4.E-10 1 LR-SAM

ISLR 2.E-01 6.E-04 4.E-07 4.E-07 4.E-07 1.E-09 1 LR-SAM

FCG3A 8.E-02 8.E-04 6.E-07 6.E-07 6.E-07 3.E-09 1 LR-SAM

QSOX1 2.E-01 2.E-03 8.E-07 8.E-07 8.E-07 3.E-09 1 LR-SAM

FBLN3 2.E-02 2.E-06 4.E-07 4.E-07 4.E-07 3.E-09 1 LR-SAM

SHBG 4.E-03 1.E-04 1.E-05 5.E-05 2.E-06 9.E-08 2 LR-SAM

LG3BP 1.E-02 4.E-06 3.E-05 5.E-06 5.E-06 2.E-07 2 LR-SAM

CATB 2.E-01 2.E-03 7.E-06 7.E-06 7.E-06 3.E-07 1 LR-SAM

HPT 6.E-06 3.E-03 1.E-04 2.E-05 3.E-05 7.E-06 2 LR-SAM

POSTN 9.E-02 3.E-04 1.E-04 1.E-04 1.E-04 1.E-05 1 LR-SAM

SODE 4.E-02 7.E-05 2.E-04 2.E-04 2.E-04 2.E-05 1 LR-SAM

1433S 1.E-01 8.E-04 1.E-04 1.E-04 1.E-04 2.E-05 1 LR-SAM

FSTL1 2.E-01 2.E-03 5.E-05 5.E-05 5.E-05 7.E-05 1 LR-SAM

CD5L 3.E-15 1.E-30 8.E-05 4.E-01 2.E-06 9.E-13 3 LMM

APOA4 3.E-04 1.E-07 1.E-03 1.E-01 7.E-04 2.E-04 2 LMM

Fig. 2 Venn diagram of proteins identified from LMM (RF, RR) and
LR-SAM (W, W1, WS and SVC), under a Bonferroni correction significance
level of −log10(0.05/124)

Jun et al. BMC Systems Biology 2018, 12(Suppl 9):123 Page 109 of 134



Although LMM provided more protein significance re-
sults than LR-SAM methods, the proteins identified by
the LMM(RF) and LMM(RR) approaches were very dif-
ferent from each other. On the other hand, LR-SAM
methods provided more consistent significance results
than those of the LMMs. Moreover, LR-SAM methods
provided greater significance results than those identi-
fied by LMM(RF), for most proteins, and several pro-
teins were identified only by LR-SAM methods.
However, there was a still performance difference be-
tween the choices of fixed and random effect models in
LR-SAM methods, as was in the LMM. This difference
was caused by different testing hypotheses between W
and SVC in LR-SAM. In addition, note that SVC allows
the heterogenous effects of peptides, while W does not.

Conclusion
LMMs have been widely used to identify proteins with
significantly altered abundance, in distinct disease states,
based on MRM assays [39]. However, we found that
LMM approaches provide inconsistent significance re-
sults for the same MRM data, depending on which ef-
fects are treated as random or fixed by simulation
results. It is a well-known property of LMMs that the
variance of model parameters are underestimated, when
the fixed effect model is fitted but the true effects are
random, and vice versa [44]. As a result, the protein sig-
nificance results of LMMs may vary, depending on
whether the true effect is random or fixed, and we also
observed this phenomenon, as shown in Fig. 1 and Table
6. Thus, it is highly important to correctly specify the ef-
fect as random or fixed.
In this paper, we propose a new logistic regression-based

method for Significance Analysis of Multiple Reaction
Monitoring (LR-SAM). Unlike LMMs, our LR-SAM ap-
proach uses a much smaller number of parameters. More-
over, our LR-SAM does not require inclusion of all the
effects related to the run. Accordingly, our model does
not need to specify run effects as random or fixed.
In simulation study, our LR-SAM preserved type I

error when the true subject effect was random, while
LMM(FF) and LMM(FR) did not. In real data analysis,
although LMM provided more protein significance re-
sults than LR-SAM methods, LR-SAM methods pro-
vided more consistent significance results than those of
the LMMs. Thus, our proposed method, LR-SAM could
give more reliable results than previous protein studies.
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