creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86t AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Metok ELIChH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aeles 212 LWS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

M.S. THESIS

Local Navigation Approach by Learning

Collision
= S5S 53t A9 FAE A9 iy
BY

Howoong Jun

February 2019

DEPARTMENT OF ELECTRICAL AND
COMPUTER ENGINEERING
COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Local Navigation Approach by Learning
Collision

A9 H =AY Y

5
Ae=rgl2 AlE

el
=1

el
of

2018 11¥

ol

or

20184 12

Abstract

This thesis proposes a reinforcement learning based collision avoidance method.
The problem can be defined as an ability of a robot to reach its goal point without col-
liding with other robots and obstacles. There are two kinds of collision avoidance prob-
lem, single robot and multi-robot collision avoidance. Single robot collision avoidance
problem contains multiple dynamic obstacles and one agent robot. The objective of
the agent robot is to reach its goal point and avoid obstacles with random dynamics.
Multi-robot collision avoidance problem contains multiple agent robots. It is also pos-
sible to include unknown dynamic obstacles to the problem. The agents should reach
their own goal points without colliding with each other. If the environment contains
unknown obstacles, the agents should avoid them also.

To solve the problems, Collision Avoidance by Learning Collision (CALC) is pro-
posed. CALC adopts the concept of reinforcement learning. The method is divided
into two environments, training and planning. The training environment consists of
one agent, one obstacle, and a training range. In the training environment, the agent
learns how to collide with the obstacle and generates a colliding policy. In other words,
when the agent collides with the obstacle, it receives positive reward. On the other
hand, when the agent escapes the training range without collision, it receives negative
reward. The planning environment contains multiple obstacles or robots and a single
goal point. With the trained policy, the agent can solve the collision avoidance prob-
lem in the planning environment regardless of its dimension. Since the method learned
collision, the generated policy should be inverted in the planning environment to avoid

obstacles or robots. However, the policy should be applied directly for the goal point

so that the agent can ‘collide’ with the goal. With the combination of both policies,
the agent can avoid the obstacles or robots and reach to the goal point simultaneously.
In the training algorithm, the robot is assumed to be a holonomic robot. Even though
the trained policy is generated from the holonomic robot, the method can be applied to
both holonomic and non-holonomic robots by holonomic to non-holonomic converting
method.

CALC is applied to three problems, single holonomic robot, single non-holonomic
robot, and multiple non-holonomic robot collision avoidance. The proposed method
is validated both in the robot simulation and real-world experiment. For simulation,
Robot Operating System (ROS) based simulator called Gazebo and simple game li-
brary PyGame are used. The method is tested with both holonomic and non-holonomic
robots in the simulation experiment. For real-world planning experiment, non-holonomic
mobile robot named e-puck is used. The learned policy from the simulation can be di-
rectly applied to the real-world robot without any calibration or retraining. The result
shows that the proposed method outperforms the existing methods such as Reciprocal
Velocity Obstacle (RVO), PrEference Appraisal Reinforcement Learning (PEARL),
and Optimal Reciprocal Collision Avoidance (ORCA). In addition, it is shown that the
proposed method is more efficient in terms of learning than existing learning-based

method.

keywords: collision avoidance, path planning, mobile robot, multi-robot system,
reinforcement learning

student number: 2017-28406

ii

Contents

Abstract
Contents

List of Tables
List of Figures

1 Introduction
1.1 Motivations e e e e e
1.2 Contributions e

1.3 Organizations

2 Related Work

2.1 Reinforcement Learning
2.2 Classical Navigation Methods

2.3 Learning-Based Navigation Methods

3 Learning Collision

3.1 Introduction e

iii

iii

vi

vii

11

13

17

3.2 Learning Collision
3.2.1 Markov Decision Process Setup
3.2.2 Training Algorithm

3.23 Experimental Results

4 Single Robot Collision Avoidance
4.1 Introduction
4.2 Holonomic Robot Obstacle Avoidance
42.1 Approach
4.2.2 Experimental Results,
4.3 Non-Holonomic Robot Obstacle Avoidance
43.1 Approach

4.3.2 Experimental Results,

5 Multi-Robot Collision Avoidance
5.1 Introduction
5.2 Approach
5.3 Experimental Results, .
5.3.1 Simulated Experiment
5.3.2 Real-World Experiment

5.3.3 Holonomic to Non-Holonomic Conversion Experiment

6 Conclusion

Bibliography

e

=
=

v

25

25

26

26

29

31

31

33

36

36

37

40

40

44

49

52

55

62

ARl 2 64

19

Rl AT

v ; 4 e

3.1

4.1

4.2

4.3

5.1

5.2

List of Tables

Convergence rate of CALCand PEARL 22
Success rate comparison with different obstacle number 31
Discretization 33
Comparison with different obstacle number 34
Comparison of Success Rate of CALCand ORCA 43
Consuming Time for One Successful Episode 49

vi

1.1

1.2

2.1

3.1

32

4.1

4.2

4.3

4.4

5.1

52

53

54

5.5

5.6

5.7

List of Figures

Collision Avoidance Problem 2
A concept of proposed approach 5
Training Environment of PEARL. 15
Training Environment. 20
Reward plots for CALC and PEARL. 24
Localgoal e 27
Experiment environment L. 29
Discretization Process Lo oo 32
Gazebo Simulation o 35
Multi-robot collision avoidance 39
Five scenarios for the experiments with Gazebo simulator 41
An overview image of the intelligent space 44
Tags for tracking system 44
e-puck mobilerobot 45
Real-world planning experiment environment setting. 47
Resultingpaths. 48

vii

5.8 Holonomic to Non-holonomic Conversion Approach 51

2 A2ty

viii s

Chapter 1

Introduction

1.1 Motivations

Collision avoidance problem has been key issue in the field of robotics such as hu-
manoid [1], robot arm [2], and mobile robots [3] for many years. In the problem,
robots have to achieve their objectives without colliding with other objects such as
obstacles and other robots. The concept of the problem is described in Fig. 1.1. Es-
pecially, with the rise of autonomous self-driving car, safe navigation for wheel-based
mobile robots became critical [4]. The autonomous self-driving robot has two key ob-
jectives: reaching a goal location and avoiding collision. It is possible that the goal
location and a global path can be given by a central server. However, avoiding colli-
sion with unexpected obstacles or other robots cannot be done by a central server since
the most worlds are unstructured environments. Therefore, goal-driven decentralized
local navigation approach is mandatory for autonomous self-driving robots.

Classical goal-driven decentralized local navigation approaches use hand-crafted

rules to derive the solution. They re-plan the optimal path on every iteration based

Figure 1.1: An overview of collision avoidance problem. An agent (green) has to avoid
obstacles (red) and reach a goal point (blue). The obstacles can be both movable or

static.

on the rule to cope with unknown circumstances. However, adjusting paths on every
iteration imposes heavy computational burden since the methods should consider ev-
ery dynamics of obstacles. Some learning-based navigation methods adopt supervised
learning to overcome the limitation. With an image of a camera, the agent can learn the
circumstances of collision and how to avoid it. However, supervised learning has the
issue of collecting large data-set. In other words, to achieve the objective, large amount
of image should be collected. Other learning-based navigation methods use reinforce-
ment learning to solve the problem. By training the agent to avoid collision and reach
to a goal point simultaneously, it can reach its objective. However, the methods are
still inefficient in terms of learning and lacks reproducibility [5] since the agent has to
learn two tasks.

To overcome those limitations, reinforcement learning-based local navigation ap-
proach named Collision Avoidance by Learning Collision (CALC) is proposed in this

thesis. The overall concept of CALC is described in Fig. 1.2. CALC learns collision

] 2-t) &) 3

'||

instead of avoiding an obstacle. An agent robot learns how to collide with a single
obstacle in a small and restricted training environment. In the training environment,
the agent can derive a colliding policy based on the reinforcement learning. With the
colliding policy, CALC transfers it into high dimensional problems called planning
environment which comprise multiple robots and obstacles. Since the method learns
collision rather than avoidance, the actions generated from the policy should be in-
verted to avoid obstacles. Likewise, the agent should reach the goal point so the actions
should be directly applied to the goal point. Therefore, the proposed method can solve
two problems simultaneously, avoiding obstacles and reaching a goal point, by learn-
ing only one objective: collision. Also, it can achieve the improved ability in terms
of learning efficiency and reproducibility. In addition, the method only requires local
information around the agent robot. Since the method is a local path planner, it only
needs relative position vectors of the obstacles inside the fixed range around the agent.

The planning environment can be categorized into two, single robot and multi-
robot collision avoidance. Single robot collision avoidance problem includes one agent
and multiple dynamic obstacles. The agent robot should reach its goal point without
colliding with obstacles of random dynamics. The agent and obstacle robots can be
both holonomic and non-holonomic robot. Multi-robot collision avoidance problem
includes multiple agents. The agent robots should reach its own goal points without
colliding with each other. Moreover, dynamic obstacle can be included in the environ-
ment. If there are obstacle robots in the environment, the agents should also avoid those
robots. Additionally, the agent robot is assumed to be holonomic robot in the training
environment. Holonomic robot has advantages compared with non-holonomic robot

due to its simple locomotion control. For example, it is easy for the holonomic robot

to go east without considering current orientation of itself. However, non-holonomic
robot has to consider its current orientation and its dynamics to move east. It is more
complicated to move the non-holonomic robot than the holonomic robot. Therefore,
holonomic robot is considered in the training algorithm for efficient training. Also, to
apply the learned policy from the holonomic robot into non-holonomic robot, a new
method for holonomic to non-holonomic conversion is also suggested in this thesis.
The ultimate purpose of the proposed method is to apply the algorithm into real-
world scenarios. In the real world, holonomic robot is less common than non-holonomic
robot. Therefore, multiple non-holonomic robot collision avoidance problem is the
key target to the proposed method. In order to achieve the objective, single holonomic
robot collision avoidance problem should be considered first. CALC for single robot
collision avoidance problem is demonstrated in the simulated robot experiment and
compared with other methods. Also, experiments for the single robot collision avoid-
ance problem with non-holonomic robot is conducted. Finally, Multi-robot collision
avoidance problem is demonstrated in the both simulated and real-robot experiments.
It is also compared with other multi-robot collision avoidance methods. In the ex-
periment, non-holonomic robot, which is more closer to the real-world vehicles than
holonomic robot, is used. The training process is only done in the simulation. How-
ever, the learned policy from the simulation is applied successfully to the real-world

experiments without additional re-training.

/ \ »
/ \ L L
v L =
') - » ®
\ < o I
\) A
) -
~ A o
-
~ @ - . ; ® »
-
» Agent @ Goal

® Obstacles © Local Goal

—» Desired Action for Learning Collision

—» Actual Action

0 50 1éo 2;0 360
angle(deq)
Figure 1.2: The overview of the proposed method. An agent learns how to collide with
a static obstacle in a small training environment (left). In the training environment, the
obstacle rotates its position based on the angle ¢. The red arrow indicates the colliding
action for the agent. The learned policy from the training environment is utilized in a
planning environment (right). The policy can be expressed as a probability distribution
of a direction for avoiding obstacles. The agent has to avoid collision with moving
obstacles and reach its goal point. Based on the trained policy, the agent can take

action that can pursue the goal point without colliding with the obstacles.

1.2 Contributions

The main contributions are listed below.

First, a new small training environment for collision avoidance problem is sug-
gested in Chapter 3. The new environment consists of three elements: one agent robot,
one obstacle, and a training range. With those elements, the agent robot can learn how
to collide with the obstacle. This enables the proposed algorithm to be converged fast
and efficient since the robot has to learn only one task.

Second, the expansion from the small training environment to high-dimensional
planning environment is presented in Chapter 4 and Chapter 5. The method utilizes
the pre-trained data in the training environment into high-dimensional problems with
multiple obstacles. To cope with the obstacles, the method reverses the pre-trained
policy. Also, to reach the goal point, the method directly apply the policy. With the
combination of the policies, the method can successfully solve the collision avoidance
problem.

Thirdly, the applicability of the method is presented. The proposed approach can be
applied on both holonomic and non-holonomic robots. Holonomic and non-holonomic
robot experiment is presented on Chapter 4.2 and 4.3 respectively. Additionally, it
is applied to goal-driven non-holonomic multi-robot collision avoidance problem in
Chapter 5.

Lastly, to apply learned policy from the holonomic robot to non-holonomic robot,
holonomic to non-holonomic conversion approach is suggested in Chapter 5. This
method consists of two parts: angular and linear motion planning. Angular velocity
is derived based on the current robot heading and desired action. In the linear motion

planning part, three velocity models are suggested: constant, linear, and quadratic.

The suggested models are compared with the experiments. Also, statistical analysis of
consuming time for three models are conducted to find the appropriate model for the

proposed method.

1.3 Organizations

The rest of this thesis is organized as follows. Chapter 2 reviews key ideas about rein-
forcement learning. Also, it covers related works about navigation methods including
hand-crafted methods and deep learning-based methods. Chapter 3 presents the train-
ing process of the proposed method. Chapter 4 addresses the problem of the single
robot collision avoidance for both holonomic and non-holonomic robot and shows
simulated experiments. Chapter 5 modifies the approach of Chapter 4 into multi-robot
collision avoidance problem for non-holonomic robots. In the Chapter 5, both simu-
lated and real-world experiments are presented. Both Chapter 4 and Chapter 5 utilize
the result of Chapter 3. Finally, Chapter 6 concludes the thesis with suggestions for

future work.

Chapter 2

Related Work

This work is mainly based on the concepts of reinforcement learning and navigation.
This chapter introduces background of reinforcement learning and previous works
about navigation. Additionally, existing works about navigation using deep learning

are introduced in the last section.

2.1 Reinforcement Learning

Reinforcement learning is one category of machine learning field. The concept can be
roughly defined as an ability of an agent to learn the objective by trial and error. As the
agent experiences diverse circumstances, it can enhance its ability to achieve the goal.
Recently, with a combination of deep learning technique, reinforcement learning has
improved significantly by defining the field of Deep Reinforcement Learning (DRL).
This provoked many researchers to apply deep reinforcement learning into many fields
[6] such as video game [7], game of Go [8] [9], navigation [10], and robotic grasping

[11].

To understand reinforcement learning, Markov Decision Process (MDP) should be
defined first [12]. MDP contains three main concepts, a set of states s; € .5, a set
of actions a; € A, and a reward function R(s,a). In each time-step ¢t € [0, T, the
agent interacts with the environment through the states, actions, and reward function.
A state s; describes the environment. The agent takes an action a; and transits to the
next state s;41. The action can be derived from a function called policy a; = w(s;).
In other words, a policy is a mapping from perceived states of the environment to
actions. In the stochastic environment, a probability of going from state s; to sy is
called rransition probability P(s;;+1|s¢, a;). Upon taking action a;, the agent receives
areward R(s;, a;). The aim of the agent is to maximize the cumulative expected future
reward until it reaches the horizon if the problem is a finite horizon MDP as described

in equation below.
R(s0,a0) +YR(s1,a1) + 7’ R(s2,a2) +- - (2.1)

Here, v is a discount factor which is typically strictly less than one. This discounts the
effect of future rewards that are far from the current state.

In the reinforcement learning algorithms, value function indicates how good it is
for the agent to be in a given state s; and policy 7(s;). In other words, high value
function means high expected future rewards. The value function can be defined as

follows:
V(s|m) = E[R(s0,a0) + yR(s1,a1) + v*R(s2,a3) +-- - |sg = s]. (2.2)

Also, with set of state-action pairs, action-value function (s, a;|7) can be derived

as follows:

Q(s,alr) = E[R(so, a0) +VR(s1,a1) +7°R(s2,a2) + - |sg = s, a0 = a]. (2.3)

":l"\-_i _'-;.': ok 11

The equation (2.3) is also known as Q-function. These functions can be also expressed

as Bellman equation form.

V(s|t) = R(s,7(s)) +7 Y Pan(s)(s)V(s|7) 24
s’'esS
Q(s,alr) = R(s,a) +7 Y Puals)Q(s,m(s")|7) (2.5)
s'eS

The optimal value function and Q-function can be defined as optimal expected sum
of rewards as follows:

V*(slm) = max V(s|n) 2.6)
Q" (s. alr) = max Q(s, alr) @7

Therefore, the optimal policy 7* can be defined as follows:

7 (8) = argmax Q* (s, a|). (2.8)
acA

These equations can be solved by dynamic programming-based algorithm. In other

words, the solution can be derived by iterative update.

V(s) := max R(s,a) + D Pea(s)V(s) (2.9)
s'eS
m(s) := argmax R(s,a) + Z Psa(sV(8) (2.10)
acA s'eS

The equation (2.9) is called value iteration and the equation (2.10) is called policy
iteration [13]. The principles can be combined with function approximators such as
deep neural networks.

In this work, actor-critic method [33] is used to train and perform the agent. The
approaches include two approximators, actor and critic. The actor updates parameters
for policy 7 and the critic updates value function parameters. Specifically, the actor

observes a new state s, from the environments and selects an action a;1. The critic

10

also receives the state s;;1 and additionally, gets reward R(s;, a;) from the previous
iteration and derives a value function. With the value function, the critic evaluates the
policy and gives the direction to the actor. This method can reduce the variance of

policy gradient because of the critic.

2.2 Classical Navigation Methods

Classical navigation methods are categorized into two, centralized and decentralized.
The centralized approaches assume the comprehensive knowledge about all robots and
their environment [14]. In the approaches, each robot is controlled by a central server.
These methods focus on getting an optimal solution for path planning and timing for
robots simultaneously. However, since these methods depend heavily on the central
server, reliable communication network between all robots and the server is mandatory.
Additionally, the system fails to solve the problem if unknown obstacles, which are
not in the prior knowledge, appear in the environment. This is a serious problem in the
real-world scenarios. Moreover, centralized approaches are inapplicable in the high-
dimensional problems, which include large number of robots, because considering
every dynamics of robots imposes heavy computational burden.

On the other hand, in the decentralized approaches, each robot independently de-
rives its own solution that can avoid collision. Rapidly-exploring random tree (RRT)
based methods generate random tree on each iteration to cope with multiple unknown
obstacles [15], [16]. From starting position to goal position, the method formulates
a tree-like network randomly and finds the branches that guarantee the collision-free
path for the robot. The random tree is updated periodically to handle the changing

environment.

11

Velocity obstacle (VO) [17] based methods use the current velocity information
of obstacle robots to avoid collision. In the VO, the obstacles and other robots are
represented with the main robot’s velocity space. With this information, VO region can
be calculated. The main robot can avoid collision with the obstacles and other robots
if it chooses the velocity outside of the region. However, the method has a problem of
generating oscillatory motions in the chicken scenario.

To overcome the limitation, [18] suggests reciprocal velocity obstacle (RVO). When
the two robots are facing each other, each robot takes the half of the responsibility for
collision avoidance. With the method, two robots can avoid collision without explicit
communication. However, the approach fails in some cases when the two robots fail to
agree on which side to pass each other which is known as a reciprocal dance.

To remedy the problem, [19] presented the concept of hybrid reciprocal velocity
avoidance (HRVO). In the method, a robot that tries to graze on the other robot has
the full responsibility for collision avoidance. However, the HRVO does not guarantee
the optimal solution in the multiple robot scenarios. This is because two robots can be
influenced by other robots while selecting the velocity. [20] tries to solve the drawback
of HRVO by providing additional condition for handling multi-robot collision avoid-
ance. The method is called optimal reciprocal collision avoidance (ORCA) and it is
the state-of-the-art method for collision avoidance problem. However, these VO-based
methods should also dynamically re-plan the path to handle the moving obstacles.

Artificial potential field (APF) based methods require a set of information to gen-
erate a potential field: a starting position, a goal position, attractive potential, and re-
pulsive potential [21]. With the generated field, an agent robot can find an optimal path

for avoiding collision. In addition, if the unknown obstacles appeared in the environ-

12

ment, the methods re-generate the potential field and re-plan the path. However, the
methods have the assumption that the agent robot has the prior knowledge about the
entire environment such as positions and velocities of all obstacles. This assumption

runs contrary with the real-world scenarios.

2.3 Learning-Based Navigation Methods

Deep learning-based collision avoidance methods have been frequently studied re-
cently.

Several approaches adopt supervised learning to solve the problem. [22] collects
image data of crashing trajectories from a drone and trains how to avoid the circum-
stances. The collected data are distributed manually into two, positive and negative,
based on how far the data were collected from the time of collision. However, the
method has the issue of collecting large trajectories since supervised learning depends
heavily on the large data set. Also, it is dependent on the hand-crafted label. [23] also
uses supervised learning with low resolution images. With the images collected by a
human driver, the vehicle robot can avoid obstacles. However, this method also has the
problem of collecting large data set and additionally, it depends on the skilled human
driver. Further, the method can only solve static obstacles. [24] uses depth image to
control a mobile robot. However, their commands are empirically chosen discrete ac-
tions which is not suitable for elaborate safe driving. [25] applied end-to-end learning
with 2D laser scanner. The approach trained the robot by an expert demonstration in a
supervised manner. Even though it can handle unforeseen obstacles, the method is still
dependent on the data collected by an expert. [26] adopt imitation learning techniques

to solve the problem. With a single camera, the UAV can avoid immobile obstacles.

13

However, the approach can only control left and right discrete movements with fixed
forward velocity. Therefore, it can be vulnerable if obstacles are movable. To over-
come the limitation, [27] adds forward and spin commands from [26] in the learning
process. Although the method can control the UAV more flexibly, it only focuses on
avoiding collision with walls on a corridor, not with unknown obstacles. [28] presented
a deep auto-encoder based method for the problem. The approach utilize deep auto-
encoder to learn actions that can avoid collision with walls and obstacles. However,
this method does not have the ability to reach target position since it has never learned
the objective.

Several other approaches adopt reinforcement learning to solve the problem. [29]
trains an agent robot in a small environment and transfer the learned policy into high-
dimensional environments. The small training environment include one agent and one
obstacle. If the agent escapes the training range without collision, it receives positive
reward and if the agent collides with the obstacle, it receives negative reward. The
trained policy can be utilized into high-dimensional environments with multiple ob-
stacles. However, even though the method can avoid collision with multiple obstacles,
it requires extra policy for reaching a goal point thus, it is inefficient. Also, the solution
for avoiding obstacle is not unique. Therefore, the solution can be easily converged to
the local minima.

PrEference Appraisal Reinforcement Learning (PEARL) [30] also trains a robot
in a small and restricted environment which includes four obstacles and one goal as
described in Fig. 2.1. In the environment, the robot learns how to avoid obstacles and
reach a goal. With the trained policy, robot can solve the dynamic obstacle avoidance

problem in high dimensional problems. This method does not require whole infor-

14

O GH ® o

Figure 2.1: Training environment of PEARL. Four red circles are obstacles and S
represents the starting position. The agent robot starts from the starting position and
should reach the goal point G without colliding with four obstacles (red circles). Only

the closest obstacle is considered for the collision avoidance.

mation of the environment since the agent robot generates optimal action only with
one closest obstacle robot. Even though the method does not need large data and con-
sumes less computational burden, the inefficiency lies in the process of training the
agent since it has to learn two tasks: 1) how to avoid obstacles and 2) how to reach a
goal point. Therefore, the challenge posed by reproducibility [5] exists in the method.
Moreover, PEARL only considers the closest obstacle from the agent so it can be vul-
nerable in the crowded environment.

[31] is another example of reinforcement learning-based collision avoidance. The
method divides the system into two, target-driven system and collision avoidance sys-
tem to make learning process efficient. The target-driven system is designed manually.

The only thing that the agent learns is avoiding dynamic obstacles with laser scanner

15

data. Since the agent learns only one task, how to avoid obstacles, the method can
reduce the training difficulty of the model. However, the approach does not restrict
the number of obstacles. Therefore, there exists myriad of states exponentially propor-
tional to the number of obstacles and this requires large data for learning. Also, the
method has the dependency on the manually tuned parameters when combining two
sub-systems. Finally, experiments of both [30] and [31] are conducted only on the sim-
ulated environments. Therefore, it does not guarantee the applicability of real-world

robots.

16

Chapter 3

Learning Collision

3.1 Introduction

The purpose of the proposed method is to make an agent robot reach a goal point
without colliding with multiple obstacles. Since the method adopts the concept of re-
inforcement learning, the training process for the agent robot is necessary. This chapter
introduces how to train the agent robot to achieve its objective by using reinforcement
learning. The learned policy from the training process can be applied to both single
robot and multi-robot collision avoidance problem which will be covered in Chapter
4 and 5. For training the agent, actor-critic algorithm is used. In the training process,
the agent robot is assumed to be a holonomic robot which has more advantages on lo-
comotion control than non-holonomic robots. In addition, the training process is only
conducted on a simulation. Even though the trained policy is generated from the holo-
nomic robot, it can be applied to both holonomic and non-holonomic robots. Also, the
simulation data can be utilized to both simulation and real world experiment without

any re-training.

17

3.2 Learning Collision

In the training process, an agent robot learns how to collide with a single obstacle
robot. The training environment is composed of three objects, an agent, an obstacle,
and a training range. When the agent successfully collide with the obstacle, it receives
positive reward. However, when the agent escapes the training range without colliding
with the obstacle, it receives negative reward. By this process, the agent robot can learn
how to collide with the obstacle.

Learning to collide with an obstacle is efficient in terms of learning since the
trained policy can be generated only by an attractor. The previous methods with re-
inforcement learning train the agent to distinguish attractor and repellent. In the meth-
ods, the agent has to learn how to avoid repellent and pursue the attractors. However, in
the proposed method, only attractor is considered during the training process. There-
fore, it is less complicated than the training processes with both attractor and repellent.
Also, the trained policy can be utilized for both attractors and repellents. For attractors
such as a goal point, the learned policy can be directly applied to the agent so that it
can ‘collide’ with the goal. Simultaneously, for repellents such as obstacles, the policy
can be implemented reversely to avoid them. To sum up, with a single set of learned

policy, the agent robot can handle both attractors and repellents at once.

3.2.1 Markov Decision Process Setup

Reinforcement learning is based on the Markov Decision Process (MDP). Therefore,

MDP should be defined for the algorithm. The MDP state space .S can be defined as

s, =1°—1°Vs, €8 3.1)

18

where [and [* are location vectors of an obstacle and an agent robot, respectively.
Therefore, state s; indicated on equation (3.1) is a relative vector between the obstacle
and the agent robot. Action space A can be defined as 9 dimensions which include
eight cardinal points and one static. The agent receives positive reward +¢§ when it
collides with the obstacle and negative reward —§ when it escapes the training range

T without the collision.

3.2.2 Training Algorithm

Tis assumed.

In the training algorithm circular shaped training range 7' with radius r
An obstacle is located on the boundary of 7" and changes its location on every training

episode with respect to the following equation:

cosp —sing
= (¥ —c) +ct (3.2)
sing cos¢

where ¢! indicates the center of T, i represents the current episode (1 < ¢ < n®), and
¢ implies unit angle for rotation. n® is the maximum number of episode. The agent
robot is assumed to be holonomic robot since it is more efficient in terms of learning
than non-holonomic robot which has restrictions on changing the direction. The agent
robot is initially located on the center of the training range ¢’ . In addition, margin m
is applied on the size of the obstacle robot to improve the performance. The margin
acts as a safety zone. Even though the actual radius of the obstacle, r°, is same as
that of agent robot, r%, the agent perceive the size of the obstacle as 7°(1 + m) in
the learning process. When the agent robot collides with the obstacle robot including
margin, it receives positive reward R(s¢, a;) = 0+ F(s). F'(s) is a heuristic calibration

parameter to avoid the graze collision. In the proposed method, calibration factor is

19

Figure 3.1: Training environment overview. An agent (White robot) can learn how to
collide with an obstacle robot (Red robot). The obstacle robot rotates its position based
on the unit angle ¢. The expected position of the obstacle robot with respect to ¢ is

described as blurred robot. The radius of the training environment is -’

determined as follows.

F(s) =71 —[lc” — ¢ (3.3)

The purpose of equation (3.3) is to lead frontal collision between the agent and the
obstacle since learning non-frontal collision can decrease the performance. In other
words, the agent can get higher reward for frontal collision than graze collision. On

the contrary, when the agent escapes the range 1" without collision, it receives neg-

ative reward R(s¢,a;) = —9. Finally, to prevent local minima, the agent receives
R(s¢,a;) = —0.1 on every iteration. The overall process is descried on Algorithm 1
and Fig. 3.1.

For training the agent, actor-critic algorithm is used [33]. The two networks, actor
and critic, are composed of simple structure, one hidden layer with 128 nodes. For op-

timizer, Adam [34] is used with 0.00002 actor learning rate and 0.00005 critic learning

20

rate. Even though the network is simple, it can solve the high dimensional problems.
Also, it is easy for the training algorithm to be converged fast due to the light network.
The training process is only done on simulation. The trained policy from the simula-
tion can be applied to both simulated and real-world experiments. The neural network

is implemented and executed by Keras 2.1.2.

Algorithm 1 Training Algorithm
Require: MDP (S, A, D, R), training range E

1: take actiona; € A

2: if ||¢® — c*'|| = rT then

3: R(s¢,a) =-0

4: elseif ||[c* — c°|| < 7%+ (1 + m)r° then
5: R(st,at) =0+ F(s)

6: else

7: R(st,at) =-0.1

8: end if

9: update parameters

21

3.2.3 Experimental Results

To validate the reproducibility and convergence of CALC, the convergence rate of
CALC is compared with that of PEARL [30]. The training environment of PEARL
includes one agent, one goal, and four obstacles. The agent has to avoid static obstacles
and reach the goal point. The agent receives 2000 rewards when it reaches its goal point
and -30 rewards when it collides with one of the obstacles. Also, it receives negative

rewards for every iteration based on the following equation:

V(@ —Ga)?+ (y — Gy)?
100000.0

R(s,a) = (3.4)

where (z,y) is the current location of the agent and (G, G,) indicates the position of
the goal.

The overall convergence rate for CALC and PEARL are shown in Table 3.1. The
proposed method has shown the perfect convergence rate whereas PEARL performs
poorly. Fig. 3.2 shows reward plots for three cases, convergence, divergence, and local
minima. As described in Fig. 3.2b, PEARL converges to 0 reward even though the
agent has experienced 2000 rewards in the early episodes. In Fig. 3.2d, PEARL oscil-
lates its reward values. This describes the situation where the agent performs collision

and reaching the goal in turn. However, CALC converges safely into the optimal solu-

Table 3.1: Convergence rate of CALC and PEARL

Methods | Convergence | Divergence | Local Minima

CALC 100% 0% 0%

PEARL 22.22% 29.63% 48.15%

22

tion which can make the agent get maximum rewards (Fig. 3.2a) Additionally, CALC
converges at the earlier episodes (Fig. 3.2a) compared with PEARL (Fig. 3.2c), which
indicates the efficiency of the algorithm. To be specific, PEARL converges at about

1500 episodes whereas CALC converges at 600 episodes.

23

1000 2000
500 1500
s 0 - 1000
g g
5 -s00 3 500
0 T TT T Ul T
-1000
-500
-1500{
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
number of episodes number of episodes
a b
2000 2000 ‘
1500 M'I' | [
1500
- -5 1000
S 1000 S
2 2 500
g g \
500 0 ‘ Il
|
0 -500
0 500 1000 1500 2000 2500 3000 0 200 400 600 800 1000
number of episodes number of episodes
c d

Figure 3.2: Reward plots for CALC and PEARL. x-axis indicates number of episodes
and y-axis is received reward of the agent. CALC converges at around 600 episodes
and PEARL converges at around 1500 episodes.

a. A reward plot for CALC. The algorithm converges to the optimal solution.

b. A reward plot for PEARL - local minima case

c. A reward plot for PEARL - convergence case

d. A reward plot for PEARL - divergence case

LR e
24 o

Chapter 4

Single Robot Collision Avoidance

4.1 Introduction

In this section, the learned policy from Chapter 3 is applied on the single robot collision
avoidance problem. Single robot collision avoidance problem is defined as an ability of
one agent robot to reach its goal without colliding with multiple moving obstacles. At
first, the problem with holonomic robot is considered in Chapter 4.2 since it has to be
proved before applying the method into the problem with non-holonomic constraints.
After that, the method is applied on the single non-holonomic robot collision avoidance
problem in Chapter 4.3.

In the problem, the agent and the obstacle are assumed as a circular shaped robot.
When the agent and obstacle collide with each other, one episode is counted as fail. If
the agent reach the goal point without colliding with obstacles, the episode is counted

as success. Collision is defined as follows:
l|lc® — || < r® 47 4.1)

where ¢ and ¢ are the center of the obstacle and the agent respectively. Reaching to

25

the goal is also defined as follows:

l|c? — || < r® 4.2)

where ¢Y indicate the location of the goal point.

The proposed method can be applied to both holonomic and non-holonomic robots.
The experiments are conducted only with the simulation. For single holonomic robot
collision avoidance problem, game library called PyGame [32] is used. For non-holonomic
robot problem, Gazebo simulator with Robot Operating System (ROS) [35] is used.
ROS is an open source operating system for robots. It provides functions such as com-
munication and controlling robots. Gazebo is a ROS-based 3D simulator. It provides

3D environments and many models for robots.

4.2 Holonomic Robot Obstacle Avoidance

4.2.1 Approach

In the single holonomic robot collision avoidance problem, the agent and obstacles
are assumed as holonomic robots. The only information that the agent can notice is
positions of the obstacles inside its sight and ultimate goal point. The algorithm that
can solve the problem is defined as “planning algorithm”. The planning algorithm is
composed of four steps. First, the agent checks the number of obstacles n° included in
its sight range which has the same size and shape as the training range. By using the
same size and shape with the training range, the agent can easily utilize the policies
from the training environment into the planning environment. Second, the agent sets
a local goal, which is also called a virtual goal, inside the sight range that directs the

ultimate goal. Therefore, even though the actual goal is positioned outside of the sight

26

range, the policy learned from the training environment can be applied to the local
goal to pursue the ultimate goal. Third, the agent infers colliding action vectors with
every n° obstacles (a;...a}’") inside the sight range. Also, the agent generates an action
vector a¥ from the local goal. Finally, to avoid obstacles, the developed action vectors
from the obstacles should be reversed. However, since the agent should not avoid the
goal, the action vector for the goal a9 does not need to be reversed. Since all collisions

are independent, the overall action vector can be generated as follows:

a’=a’o f(1-a;)©..0(1-af") 4.3)
aO

* = 4.4

@ = 1 (4.4)

where af; (1 <7 < n,) indicates the action vector generated from the ith obstacle at

time ¢, ©® implies element-wise multiplication and f(v) of equation (4.3) is a quanti-

Sight Ra nge Actual Goib

-
—
—

_-~7" Local Goal

—

P -

Agent Robot

Figure 4.1: Local goal is a virtual goal inside the sight range which directs the global
goal. Since the agent robot is trained only inside its sight range, it cannot pursue the
global goal outside the range. Therefore, by setting local goal from the direction of the

global goal, the agent can easily follow the goal point.

27

zation function that can be expressed as the following.

0, ifv; <p
{flv)}i = . 4.5)
1, else
{f(v)}; is the i*" element of vector v and y is a constant that can regulate the ratio of

1 and O in the vector. Finally, a® in equation (4.3) can be formulated into multinoulli

distribution by equation (4.4). The overall process is described in Algorithm 2.

Algorithm 2 Planning Algorithm
Require: MDP (S, A, D, R), n°

Ensure: desired action a*
1: fori=1, ... n°do
2: a’=a’® (1 —al)
3: end for
4 a®=fla®) © af
5:a*=a’- ((a")Tl)f1

6: return a*

28

4.2.2 Experimental Results

Figure 4.2: An example image of a PyGame simulator. The agent (blue circle) should
reach a goal point (green empty circle) without colliding with the obstacles (red circle).

The figure is an example of the experiment with 200 obstacles.

The proposed method is implemented with a Python-based game library called
PyGame simulator [32] on Ubuntu 16.04 with Intel(R) Core(TM) i7-4790 3.60GHz
CPU, 16GB RAM, and NVIDIA GeForce GTX 980. The overall simulation environ-
ment is described in Fig. 4.2. In the simulator, the agent and the obstacles are assumed
to be circular-shaped holonomic robots with same radius. In the experiment, the agent
must travel from a starting position to a goal. Between the starting position and the

goal position, moving obstacles are distributed with random dynamics. The agent can

A&t 8t
29 e

only observe the current position of obstacles inside the sight range and the local goal.
An episode is terminated when the agent collides with the obstacles or the goal. The
experiment is conducted with multiple obstacles such as 50, 100, 150, and 200.

The proposed method is compared with other conventional algorithms. The com-
parison experiment is conducted with arbitrary reinforcement learning-based method
[29], reciprocal velocity obstacle (RVO) [18], and PEARL [30]. For the arbitrary
learning-based method which is called forward reinforcement learning (FRL), the
agent is trained to avoid collision in the training environment, which is opposite of
the proposed approach. FRL is tested on the planning environment to justify the ef-
ficiency of the reverse training. Specifically, the agent gets a positive reward when it
escapes the training range without collision and a negative reward when it collides with
the obstacle in FRL. RVO algorithm is modified to consider 5 closest obstacles from
the agent since applying RVO with all obstacles imposes heavy computational bur-
den. Without the modification, the algorithm with 200 obstacles runs in 0.0895 frame
per second (fps) whereas fps for 5 closest obstacles is 51.8659. Likewise, the proposed
method, CALC, runs in 56.9745 fps with 200 obstacles. PEARL is trained with the en-
vironment described in Fig 2.1 and it is trained with 3600 episodes. The overall results
are shown in Table 4.1 and they are tested by 250 episodes. The proposed method has
the highest success rate among four methods. Also, CALC shows almost consistent

performance regardless of obstacles’ numbers.

30

Table 4.1: Success rate comparison with different obstacle number

of obstacles || RVO [18] | PEARL [30] | FRL | CALC (Proposed)
50 87.6% 95.2% 98.8% 99.6%
100 77.2% 92.8% 70.0% 95.2%
150 74.8% 70.8% 85.4% 97.0%
200 73.6% 66.8% 21.0% 74.4%

4.3 Non-Holonomic Robot Obstacle Avoidance

4.3.1 Approach

The main planning algorithm for single non-holonomic robot collision avoidance prob-
lem is as same as single holonomic robot collision avoidance in Chapter 4.2.1. Since
the agent robot was assumed to be holonomic robot in the training algorithm, con-
version from holonomic to non-holonomic is necessary to apply the algorithm into
non-holonomic robots. There are three steps for this. First, discrete the angle of robot
heading into action space without static (the eight cardinal points) with respect to Ta-
ble 4.2. Second, find the difference between discrete robot heading and desired action
which is derived from trained policy. Finally, apply angular velocity proportional to the
difference above. Also, the linear velocity is applied inversely proportional to angular
velocity so that it can rotate its heading safely. If the difference of the robot heading
and the direction of desired action exceeds 90 degrees, it moves back linearly without

angular velocity. The overall arrangement is described in Fig. 4.3.

31

Angular Velocity = 0
Linear Velocity = 2

Angular Velocity = 1 Angular Velocity = 1
Linear Velocity = 1.5 Linear Velocity = 1.5
Robot HeadV

——
Angular Velocity = 2
Linear Velocity = 1

c:m.

Angular Velocity = 2
Linear Velocity = 1

Angular Velocity = 0
Linear Velocity = -1

Angular Velocity = 0
Linear Velocity = -1

Angular Velocity = 0
Linear Velocity = -2

Figure 4.3: An overview of conversion from holonomic to non-holonomic model. Red
arrow indicates the heading of a robot. Red arrow and blue arrows represents eight

cardinal points which are action vectors.

; i':"’]”ij-lr' -|]|

32 e

Table 4.2: Discretization

Robot Heading Action Space

—m/8<6<m/8 0
—371/8<60< —7/8 7
—5m/8 <6 < —3m/8 6
—Tr/8 <60 < —b51/8 5
0 < —Tr/8orTm/8 <6 4
/8 <0 < Tm/8 3
37/8 <6 <57/8 2
/8 <6 <3m/8 1

4.3.2 Experimental Results

CALC for single non-holonomic collision avoidance is implemented on a Gazebo sim-
ulator with Robot Operating System (ROS) [35] and RosPy. The overall simulation
environment is described in Fig. 4.4. For the agent and obstacles, iRobot Create mo-
bile robot [38], whose radius equals to 0.18m is used. The only thing that the agent can
perceive is the current position of obstacles inside the sight range and the local goal as
described in Fig. 4.1.

On the planning algorithm, the agent must travel from starting position [Om Om]
to the goal point [10m 10m]. Between the start position and the goal point, moving
obstacles are distributed with random dynamics. The experiments are proceeded with
different number of obstacles from 5 to 10. When the agent collides with both obstacles
or goal point, the current episode is terminated. The overall experimental result is listed

on the Table 4.3. In every experiments, there exists 2 to 3 collision cases that the agent

33

cannot handle. For example, if the agent is surrounded completely by obstacles, the
agent cannot do anything but waiting. These cases do not indicate algorithmic flaw so
it can be neglected. Thus, the success rate of Table 4.3 can increase if those cases are
excluded. The experimental result proved that the performance of CALC is consistent
regardless of obstacle numbers. For the experiments, 200 episodes are used to check

the success rate.

Table 4.3: Comparison with different obstacle number

Number of obstacles | Success Rate
5 100.0 %
6 95.52 %
7 89.05 %
8 87.56 %
9 87.87 %
10 90.05 %

34

Figure 4.4: Gazebo simulation image of planning environment. Both agent and ob-
stacles are iRobot Create model and goal point is expressed as a cylinder. The image

describes the situation when the agent reaches the goal point.

35 W sEOuL NATON

Chapter 5

Multi-Robot Collision Avoidance

5.1 Introduction

In a multi-robot collision avoidance problem, multiple agent robots are included. The
purpose of agent robots is to reach their own goal points without colliding with each
other. In the point of one agent robot, other robots are regarded as obstacles. In some
circumstances, there exists unknown obstacles with random dynamics. If there are ob-
stacles inside the environment, the agent robots should avoid them also. The collision
can be defined as illustrated in Chapter 4.1. Each robot derives its own action based on
the learned policy of Chapter 3 which is expressed as a probability distribution. Also, to
apply the learned policy into non-holonomic robots, holonomic to non-holonomic con-
version method is proposed in this chapter. The experiments are conducted with both
simulation and real-world experiment. For simulation, Gazebo simulator with Robot
Operating System (ROS) is used. For real-world experiment, e-puck mobile robot is

used.

36

5.2 Approach

The main planning algorithm for multi-robot collision avoidance problem is described
in Algorithm 3. First, the agent robot detects the local obstacles and a local goal. Goal
information is given for the local goal. In the point of one agent robot, other robots are
perceived as obstacles. Second, the agent robot derives the colliding policy for each
obstacle and reverse the policy. Colliding policy for the local goal is also calculated.
After that, the policies are converged with element-wise multiplication and the optimal
action vector is derived. The process is proceeded in each agent robot.

Since the agent robot of the training algorithm from Chapter 3 is assumed to be a
holonomic robot, conversion from holonomic to non-holonomic is necessary to apply
the algorithm into non-holonomic robots. The optimal action derived from the plan-
ning algorithm gives information about the direction that the robot should move which

is called a desired direction. Therefore, the robot should simultaneously change its

Algorithm 3 Planning Algorithm for Multi-Robot Collision Avoidance
Require: MDP (S, A, D, R), n°, n®

Ensure: action vector a*

1: forj=1,.. n%do

2: fori=1,..,n°do
3: a’=a’0 (1—-al)
4: end for

5: a’ =fa’) © a’y
6 (a*);j=a°-((@)T1)""
7: end for

8: return a*

37

heading by angular velocity and move toward the direction by linear velocity. First,
the angular velocity is set as proportional to the difference between the heading of
agent robot, 0, and the desired direction, 6., derived from the policy. The angular

velocity can be expressed as follows:
Vang = k(0 — 6) 5.1

where v, stands for angular velocity and & indicates the empirical proportional fac-

tor. The linear velocity can be calculated based on the following equation:

2Vmaz

Viin = — 2 (9h - H*)z + Vmaz (5.2)

where V4, and vy, stands for maximum and linear velocity respectively. With the
equation (5.2), the robot can move forward when the difference between 8, and 6, is
from —7/+/2 to 7 /+/2. This can make the robot pursue forward movement rather than
backward which is more reasonable in the real-world scenario.

The overall concept is described in Fig. 5.1. Each robot has its own goal point and
they are described as same color. For example, red robot which is in the lower left part
of Fig. 5.1 should reach to the dotted red circle which is located in the upper right part.
Each robot derives its own probability distribution and chooses the action that has the

highest probability of avoiding other robots and obstacles.

38

Fn Fn

5 5

© ©

QO QO

9 : H ; 9 E E E

a 1 8 | y, <& o s
180 -90 0 90 180 -180 -90 0 90 180
™. angle(deg ' i angle(deg)

R P

S "" L SSEEEE A
. ; 5 .
3 3
© ©
QO e}
[¢) i ; o (. i ’
o : S Ll ! s,
-180 -90 0 90 180 -180 -90 0 90 180
angle(deg) angle(deg)

Figure 5.1: An overview of the Multi-robot collision avoidance. The robots should

reach their goals separately without colliding with other robots. Each robot has its own

probability distribution that indicates the optimal direction for achieving two tasks: to

avoid collision and to reach a goal. The red arrows indicate the desired actions for

each robot and dotted circles are goal points. The goal points are illustrated with same

colors of the agent robots.

39

5.3 Experimental Results

5.3.1 Simulated Experiment

In the simulated training experiments, CALC is implemented on a Gazebo simulator
with Robot Operating System (ROS) [35] and RosPy. For the agent and obstacles,
round shaped robot model, iRobot Create mobile robot [38], whose radius equals to
0.18m is used. The iRobot Create mobile robot is a non-holonomic robot which can
move by two velocities, linear and angular. Even though the robot is a non-holonomic
model, holonomic motion is assumed during the training process. That is, iRobot Cre-
ate mobile robot is not controlled by linear and angular velocity in the training algo-
rithm. The purpose of the agents is to travel from their initial points to goal points
without colliding with other agent robots. All agent robots are initially located on the
edge of a rectangle shaped boundary and their goal points are diagonal vertices of the
rectangle. Some scenarios include interfering robots with random dynamics inside the
environment. The overall scenarios are described in Fig 5.2. The only thing that the
agent robot can observe is the current position of other robots inside the sight range
and the local goal. An episode is terminated at the time when all agent robots reached
their goal points or one of the agent collide with other robots including interfering
robots and other agent robots.

The proposed algorithm is compared with the state-of-the-art collision avoidance
method, Optimal Reciprocal Collision Avoidance (ORCA) [20], that can perform on
the planning environment. ORCA is implemented in Python by adapting the RVO2
library [39]. Since ORCA is for holonomic robots, holonomic to non-holonomic con-
version approach is applied to the algorithm. Also, additional information about the

velocity of other agent robots is provided to ORCA. In other words, communication

40

Figure 5.2: Three scenarios are conducted only with agent robots which are white
iRobot Create model. Other two scenarios are conducted with agent robots and inter-
fering robots with random dynamics which are described as red robots. The goal points
of each agent robot are the initial point of the counter robots. For example, on the 4
robots scenario (Left), the robot on the upper left should go to the lower right position
which is the initial point for counter robot. Simultaneously, the counter robot on the

lower right should move to the upper left position.

between the agent robots is assumed in ORCA. When all agent robots reached their
own goal points, the episode is counted as a successful episode. If one of the agent
robots collides with the other robots including the interfering robots, the episode is
regarded as fail. The overall results are demonstrated in Table 5.1. The result indicates
that CALC shows similar or higher performance than ORCA even though ORCA uses
the whole information about the environment. Additionally, there are two environ-
ments that contain interfering robots, one with two interfering robots and the other
with four interfering robots. The only information about the interfering robots that the
agent robots can receive is their position. The agent robots of both CALC and ORCA
cannot know the velocity data of the interfering robots. Even though the dynamics of
the interfering robots are unknown, CALC performed well compared with ORCA. The

success rates of the experiments are shown in Table 5.1.

42

Table 5.1: Comparison of Success Rate of CALC and ORCA

Success Rate

Method # of Robots
Constant | Linear | Quadratic

4(0) 97.0% 100% 100%
8(0) 89.1% | 98.0% 98.5%

CALC
(Proposed) 12(0) 63.2% | 91.0% 87.6%
4(2) 97.0% | 95.0% 95.5%
4(4) 91.0% | 86.6% 87.1%
4(0) 100% 100% 100%
8(0) 90.1% | 98.5% 92.5%

ORCA
[20] 12(0) 56.7% | 86.6% 86.5%
4(2) 92.5% | 91.0% 86.6%
4(4) 88.6% | 83.6% 77.6%

43

Multi-agent Tracking
System

) 8 . R
g b e s Bluetooth N
Mobile Robots Communication

Monitoring System

Figure 5.3: An overview image of the intelligent space. Positions and orientations
of mobile robots can be tracked and monitored by multi-agent tracking system. The

robots can be controlled via bluetooth communication.

5.3.2 Real-World Experiment

To show the applicability of the proposed method to the real-world scenarios, addi-
tional experiments are conducted by using a real robot, e-puck [36]. E-puck is a 7cm
sized mobile robot with 2 wheels, 10 Light-Emitting Diodes (LED), 8 infrared sensors,

3 microphones, and 1 speaker. Fig. 5.5 is the picture of e-puck robot that is used in the

Figure 5.4: Five tags used for catching position and orientation information of the
robots.

A & Tl 8} 3

44 o

Figure 5.5: An image of e-puck mobile robot used for the real world experiment. The
robot is two wheel-based mobile robot with 2 wheels, 10 light-emitting diodes, 8 in-

frared sensors, 3 microphones, and 1 speaker.

experiments. The experiments are done under the intelligent space (iSpace) [37] as
described in Fig. 5.3. In the iSpace, positions of the robots can be tracked by overhead
cameras and sensors. In the proposed method, one overhead camera is used for track-
ing e-puck robot. All e-puck robots have different tags on its head for identification as
described in Fig. 5.4. With the tags, iSpace can catch the position and orientation of
the robots.

The agent robot is trained from a simulation based training environment with sim-
ple game library named PyGame. Since PyGame is a pixel-based library, it is easy to
generate any shape of the robots. Circular shaped agent and obstacle which is the same
as e-puck robot is considered in the PyGame environment. Except for the shape and

the radius, other processes and parameters are as same as Chapter 3. The learning pro-

R L
45 i

cess only took about 475 seconds with 3600 episodes. The trained policy of simulated
environment is well applied to the real-world environment without any re-training or
calibration. Since the method does not require learning process in the real world, the
robot does not need to be damaged during the trial and error. Also, it is independent
from any physical constraints such as battery level.

In the planning experiment, perfect sensing for local information is assumed. The
positions of each robot are collected by overhead video camera with matrox imag-
ing library (MIL). Each robot has independent tag on its head. MIL camera system
detects the tag and finds the position and orientation of the robots. Even though all
positions of the robots are collected, the restricted information, which are positions of
the other robots within limited sight range, are provided to each robot. The collected
data are transmitted to main computer via Transmission Control Protocol/Internet Pro-
tocol (TCP/IP) communication. With the data, the main computer derives the action
for each robot. The robots are controlled separately with linear and angular velocity
instructions via Bluetooth communication. Additionally, reliability scores, which in-
dicate whether the perceived positions are reliable or not, are conveyed to the main
computer. If the reliability score of a robot does not exceed 80%, the main computer
refuses to move the robot. The overall settings of the experiments are expressed in Fig.

5.6.

46

Monitoring PC

Mil Camera

LAN] I
o
(t‘ £
TCP/IP A
Bluetooth
Holonomic to Linea}r
Nonholonomic Velocity
Conversion
Obslgz(;liiioRr? ! Angular
Velocity
Agent Robot
Position
Q-Value

Figure 5.6: Real-world planning experiment environment setting with e-puck mobile

robot. The obstacle and agent robot positions are collected from mil camera. With the

collected data, the actor-critic network generates linear and angular velocity. Lastly,

generated velocities are conveyed to the each e-puck robot via Bluetooth communica-

tion.

47

Ralks L

The experiment is conducted with different number of agents, 2, 3, 4, and 5. The
resulting paths of real-world experiment are described in Fig. 5.7. Since the method is
a decentralized local planner, the agent robot changes its direction only when the other
robots are detected in the sight range. The resulting paths show that the agents have

safely reached their goal points without any collision.

Figure 5.7: The resulting paths for 2, 3, 4, and 5 agent robots experiment. With the
trained policy from the simulated environment, real e-puck robots can successfully

avoid other robots and reach to the goal without any re-training.

2 A e

48 SECHIL MATIOMAL | NIVERSTY

Table 5.2: Consuming Time for One Successful Episode

Velocity Model Constant | Linear | Quadratic

Average 54.14s | 113.71s | 37.12s

Median 54.01s 96.49s 35.88s

Standard Deviation 20.52 75.44 8.90

5.3.3 Holonomic to Non-Holonomic Conversion Experiment

For holonomic to non-holonomic conversion approach, three different linear velocity
(v13,) models are tested. The overall system is described in Fig. 5.8. First model is a

constant model as follows:

Umaz, i |(0h — 0.)] < T
Vi = (5.3)

—Umaz, e€lse

Second model is a linear model as described as follows:

_@(Qh — 04) + Vmaz, if0 <60, —0,
Vi = 5.4

%%(Oh —0.) + Vmaz, else

Final model is a quadratic model as demonstrated in equation (5.2). All equations are
designed to drive a robot with v,,,4, When 6, — 6, = 0 and —vy,4, in |0, — 0, = 27.
The success rates of three models are listed on Table 5.1. Even though the constant
model results in the highest success rate in some scenarios, it is not appropriate for
both CALC and ORCA since it does not guarantee the steady performance.

In the quadratic model, forward movement covers bigger range (|0, —0.| < 7/v/2)
than backward movement (|6, — 0,| > 7/+/2) whereas in the other two models, for-

ward and backward movement covers equally (|0, — 0| < 7/2 and |0, — 6. > 7/2).

49

Therefore, with linear and constant models, the robot used to oscillate back and forth
a lot and this increases consuming time per one episode. However, since quadratic
model prefers forward moving, the model did not show the oscillating movement and
this results in less consuming time. Data about consuming time are listed in Table 5.2.
It is obvious that the quadratic model consumes less time than other two models and it
has less standard deviation. This indicates that the quadratic model is appropriate for
CALC even though the success rate of the linear and the quadratic model are similar.
The experiment was conducted by 8 multi-robot system scenario with no interfering

robots.

50

Robot

Heading
Desired
Direction
v
AVlin AVlin AVlin
Umax Umax Vmax
™ s m TZ‘ w
T3 3 m A9) 2 m 48 /2 AN

_Vmax _VTYIH.X _Vmax

Figure 5.8: The angular velocity is decided proportional to the difference between
robot heading and desired direction (Af). Also, linear velocity is arranged with respect

to three models: constant, linear, and quadratic.

Ralks L
51 e

Chapter 6

Conclusion

In this thesis, a method for single robot and multi-robot collision avoidance problem by
using the concept of reinforcement learning is suggested. First, a new idea of learning
collision is suggested in the thesis. The method learns collision instead of avoiding an
obstacle in the training environment which comprise of one agent robot, one obstacle,
and training range. In the training environment, the agent robot learns how to collide
with the obstacle and derives the colliding policy. The experimental result shows the
efficiency of the collision-learning method.

Second, a method for expanding the pre-trained policy into high-dimensional prob-
lem is proposed. The pre-trained policy from the restricted and small-sized environ-
ment can be applied to the problems with multiple obstacles and robots such as sin-
gle robot collision avoidance and multi-robot collision avoidance. In other words, by
learning collision with only one obstacle, the agent can successfully solve the prob-
lems with multiple dynamic obstacle or multiple agent robots. To avoid obstacles and
other robots, the actions derived from the policy should be reversed. Simultaneously, to

pursue a goal point, the actions for the goal should be applied directly. By this process,

52

the agent robot can successfully reach the goal point without collision.

Third, the method is successfully applied to both holonomic and non-holonomic
robots. The simulated experiments with PyGame and Gazebo simulator with ROS are
conducted to prove the performance of the proposed algorithm. Holonomic robot ex-
periments are conducted with PyGame simulator. Non-holonomic robot experiments
are conducted with Gazebo simulator with iRobot Create mobile robot. The experi-
mental results show that the proposed method can guarantee higher performance in
avoiding collision compared with other methods such as RVO, PEARL and ORCA.

Finally, the experiment with real e-puck mobile robot shows the applicability of
the proposed method into real-world robots such as Unmanned Ground Vehicle (UGV)
and car. It also shows that the learned policy from the simulation can be directly applied
to the real robots without re-training. This enables the system to avoid damaging of
robots during the trial and error in the reinforcement learning process. Furthermore,
the method is successfully implemented into two different non-holonomic robot types:
iRobot Create and e-puck. This shows the scalability of the proposed method that the
algorithm can be applied to any robot regardless of its type.

In future work, the proposed method can be applied to the robots with high degree
of freedom (DOF) such as quadrotors and UAVs. Mobile robots used in the experi-
ments of the proposed method move on the 2D plane. However, quadrotors and UAV's
should move in 3D space which needs additional actions compared with the mobile
robots. Therefore, expansion of the action space should be required. Also, current ac-
tion covers 8 cardinal directions and one static. This can be specified into more detailed
action space such as 16 directions or more. With the expansion, the robot can move

more accurately and smoothly.

53

Additionally, more real-world experiments should be conducted in order to prove
the applicability of the proposed method. In the thesis, only one real-world robot, e-
puck, is used for the experiment. However, additional experiments with other mobile
robots such as Turtlebot and Pioneer robot can be proceeded. Also, not only two-
wheeled mobile robot, but also other type of non-holonomic robots such as car-like
robot or bicycle-like robot can be used for the experiment.

Moreover, it is possible to improve the holonomic to non-holonomic conversion
method with more precise and detailed function. In this thesis, only three functions,
constant, linear and quadratic, are used for the conversion. However, other functions
such as logarithmic function can make an improved performance. It should be proved
with more precise experiments. Therefore, detailed analysis for the conversion method
should be proceeded. Also, comparison between existing holonomic to non-holonomic
conversion method such as Non-holonomic ORCA (NH-ORCA) [40] and the proposed

method should be conducted.

54

[1]

(2]

(3]

[4]

[5]

Bibliography

E. Yoshida, C. Esteves, T. Sakaguchi, J. P. Laumond, and K. Yokoi, “Smooth
collision avoidance: Practical issues in dynamic humanoid motion,” in Proceed-

ings of IEEE/RSJ International Conference on Intelligent Robots and Systems,

Beijing, China, October 2006, pp. 827-832.

D. Gandhi and E. Cervera, “Sensor covering of a robot arm for collision avoid-
ance,” in Proceedings of IEEE International Conference on Systems, Man and

Cybernetics, Washington D.C., USA, October 2003, pp. 4951-4955.

M. Hoy, A. S. Matveev, and A. V. Savkin, “Algorithms for collision-free navi-
gation of mobile robots in complex cluttered environments: a survey,” Robotica,

vol. 33, no. 3, pp. 463-497, 2015.

B. Paden, M. Cép, S.Z. Yong, D. Yershov, and E. Frazzoli, “A survey of motion
planning and control techniques for self-driving urban vehicles,” IEEE Transac-

tions on intelligent vehicles, vol. 1, no. 1, pp. 33-55, 2016.

P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger, “Deep

reinforcement learning that matters,” arXiv preprint arXiv:1809.06560, 2017.

55

[6]

[7]

[8]

[9]

[10]

[11]

Y. Li, “Deep reinforcement learning: An overview” arXiv preprint arXiv:

1701.07274, 2017.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,
A. Sadik, 1. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D.
Hassabis, “Human-level control through deep reinforcement learning,” Nature,

vol. 518, no. 7540, pp. 529-533, 2015.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman,
D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K.
Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of Go with
deep neural networks and tree search,” Nature, vol. 529, no. 7587, pp. 484-489,

2016.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T.
Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van
den Driessche, T. Grapel, and D. Hassabis, “Mastering the game of Go without

human knowledge,” Nature, vol. 550, no. 7676, pp. 354-359, 2017.

Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, F. -F. Li, and A. Farhadi,
“Target-driven visual navigation in indoor scenes using deep reinforcement learn-
ing,” in Proceedings of IEEE International Conference on Robotics and Automa-

tion, Singapore, May 2017, pp. 3357-3364.

S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning hand-

eye coordination for robotic grasping with deep learning and large-scale data

56

[12]

[13]

[14]

[15]

[16]

[17]

[18]

collection,” The International Journal of Robotics Research, vol. 37, no. 4-5, pp.

421-436, 2018.

R. S. Sutton, A. G. Barto, and F. Bach, Reinforcement learning: An introduction,

MIT press, 1998.

A. Y. Ng, “Shaping and policy search in reinforcement learning,” Ph. D. Disser-

tation, CS Department, Univ. of California, Berkeley, 2003.

D. Mellinger, A. Kushleyev, and V. Kumar, “Mixed-integer quadratic program
trajectory generation for heterogeneous quadrotor teams,” in Proceedings of
IEEE International Conference on Robotics and Automation, St. Paul, MN, USA,

May 2012, pp. 477-483.

D. Connel and H. Manh La, “Extended rapidly exploring random tree-based dy-
namic path planning and replanning for mobile robots,” International Journal of

Advanced Robotic Systems, vol. 15, no. 3, p. 1729881418773874, 2018.

M. Otte and E. Frazzoli, “Rrtx: Asymptotically optimal single-query sampling-
based motion planning with quick replanning,” The International Journal of

Robotics Research, vol. 35, no. 7, pp. 797-822, 2016.

P. Fiorini and Z. Shiller, “Motion planning in dynamic environments using ve-
locity obstacles,” The International Journal of Robotics Research, vol. 17, no. 7,

pp. 760-772, 1998.

J. Van Den Berg, M. Lin, and D. Manocha, “Reciprocal velocity obstacle for real-

time multi-agent navigation,” in Proceedings of IEEE International Conference

57

[19]

[20]

[21]

[22]

(23]

[24]

on Robotics and Automation, Pasadena, California, USA, May 2008, pp. 1928-

1935.

J. Snape, J. Van Den Berg, S. J. Guy, and D. Manocha, “The hybrid reciprocal
velocity obstacle,” IEEE Transactions on Robotics, vol. 27, no. 4, pp. 696-706,

2011.

J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal n-body colli-
sion avoidance,” in Robotics research, ser. Springer Tracts in Advanced Robotics,
C. Pradalier, R. Siegwart, and G. Hirzinger, Eds. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2011, vol. 70, no. STAR, pp. 3—-19.

O. Montiel, U. Orozco-Rosas, and R. Sepilveda, “Path planning for mobile
robots using bacterial potential field for avoiding static and dynamic obstacles,”

Expert Systems with Applications, vol. 42, no. 12, pp. 5177-5191, 2015.

D. Gandhi, L. Pinto, and A. Gupta, “Learning to fly by crashing,” in Proceed-
ings of IEEE/RSJ International Conference on Intelligent Robots and Systems,

Vancouver, Canada, September 2017, pp. 3948-3955.

U. Muller, J. Ben, E. Cosatto, B. Flepp, and Y. L. Cun, “Off-road obstacle avoid-
ance through end-to-end learning,” in Advanced in neural information processing

systems, pp. 739-746, 2006.

L. Tai, S. Li, and M. Liu, “A deep-network solution towards model-less obstacle
avoidance,” in Proceedings of IEEE/RSJ International Conference on Intelligent

Robots and Systems, Daejeon, Korea, October 2016, pp. 2759-2764.

58

[25]

[26]

[27]

(28]

[29] %

(30]

(31]

M. Pfeiffer, M. Schaeuble, J. Nieto, R. Siegwart, and C. Cadena, “From per-
ception to decision: A data-driven approach to end-to-end motion planning for
autonomous ground robots,” in Proceedings of IEEE International Conference

on Robotics and Automation, Singapore, May 2017, pp. 1527-1533.

S. Ross, N. Melik-Barkhudarov, K. S. Shankar, A. Wendel, D. Dey, J. A. Bagnell,
and M. Hebert, “Learning monocular reactive uav control in cluttered natural
environments,” in Proceedings of IEEE International Conference on Robotics

and Automation, Karlsruhe, Germany, May 2013, pp. 1765-1772.

D. K. Kim and T. Chen, “Deep neural network for real-time autonomous indoor

navigation,” arXiv preprint arXiv:1511.04668, 2015.

J. Sergeant, N. Siinderhauf, M. Milford, and B. Upcroft, “Multimodal deep au-
toencoders for control of a mobile robot,” in Proceedings of Australasian Con-

ference for Robotics and Automation, Canberra, Australia, Dec. 2015.

Lol8], A2 B 3

2

7

filo
?

ol g5 1Akl 7o) 54 Aol 2 3]

452
W Aol 2 A 2 eks] 2018 A332] of=rj 2], 20180 05¢. pp. 214-

! |

21

e

A. Faust, H. T. Chiang, N. Rackley, and L. Tapia, “Avoiding moving obstacles
with stochastic hybrid dynamics using PEARL: PrEference Appraisal Reinforce-
ment Learning,” in Proceedings of IEEE International Conference on Robotics

and Automation, Stockholm, Sweden, May 2016, pp. 484-490.

W. Ding, S. Li, and H. Qian, “Hierarchical reinforcement learning framework

towards multi-agent navigation,” arXiv preprint arXiv:1807.05424, 2018.

59

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

P. Shinners, “Pygame,” 2011.

V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Advances in Neural

Information Processing Systems, 2000, pp. 1008-1014.

D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Interna-

tional Conference on Learning Representations, vol. 5, 2015.

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,R. Wheeler, and
A. Y. Ng, “Ros: an open-source robot operating system,” in I[EEE International
Conference on Robotics and Automation Workshop on open source software, vol.

3, no. 3.2, Kobe, Japan, 2009, p. 5.

F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz, S. Magnenat,
J.-C. Zufferey, D. Floreano, and A. Martinoli, “The e-puck, a robot designed for
education in engineering,” in Proceedings of the 9th Conference on Autonomous
Robot Systems and Competitions, vol. 1, no. LIS-CONF-2009-004. IPCB: Insti-

tuto Polite cnico de Castelo Branco, 2009, pp. 59-65.

Doojin Kim, “Operation of an intelligent space with heterogeneous sensors,” Ph.

D. Dissertation, EECS Department, Seoul National University, 2014.

M. Dekan, F. Duchon, et al., “irobot create used in education,” Journal of Me-

chanics Engineering and Automation, vol. 3, no. 4, pp. 197-202, 2013.

J. Van Den Berg, S. J. Guy, J. Snape, M. C. Lin, and D. Manocha, “Rvo2
library: Reciprocal collision avoidance for real-time multi-agent simulation,”

http://gamma.cs.unc.edu/RVO2/, 2011

60

[40] J. Alonso-Mora, A. Breitenmoser, M. Rufli, P. Beardsley, and R. Siegwart,
“Optimal reciprocal collision avoidance for multiple non-holonomic robots,”
in Distributed Autonomous Robotic Systems, ser. Springer Tracts in Advanced

Robotics, vol.83, 2013, pp. 203-216.

61

ol

]_

187 F 7P 2 Ys

o

stuto] 4l 253t of 2 72

[e)
A

1 25 = 21 24

1

1

= 3 ujo} thA 25 SE 39,

5] 274
o}. T

h i

SF

S

BERSE

3

[e)

o
o
Lg BRog

o}

3

S

o

A

P A ZHate] B8 2] =g

S

= 9|7

TE

il
jang

o
Tor
i
Ko
oA
oF
|

ol

5t

sjAg) Aok

=
=

<
—~

5

t}. CALC

T

__O,._
ol

o

Al

o
=

(CALC)

B!

HA =]

=0

2 Ho] Ao =7t

62

A" g2 o= A o] Aol

FE2 ot

b

Ife]

=3
o}
el

FE 2, Al

o)

BEESRe R

—

a
=

Tor

o 2 go] 7Fsshtt.

r

Al

jmj
T

o] A 717

O
=]

o}
= 99 2) HEREY ©Y 2RO FE 35, 3) HER L] oY 259 FE

o]m. A

-
g

CALC

ol
IA

A 25 oA A9 = AT Aol

Tl

A

o]

mh

= Al

Gt
T

o

o

‘l_

o

j—

=
(9]

o

EEE
2l 2588 BT A}

H

22 A ROS) 7IRES] AlE ol e)l ZFA| 2ok A 2fo]

e
=

3} v

Fodeh. Al g dol ol A By

23

A

O
=

PyGame

1 e-puck 2R AHES

o
ju

| AlQFE ®H-2 Reciprocal Velocity Obstacle (RVO) TE+= Optimal

9

Reciprocal Collision Avoidance (ORCA)2} 22 7]

Bl

F90]: 35 85, A2 A2, 2ot 23, A A

S}
o}

H: 2017-28406

63

=13
=

Stttz Aol HlA]

[¢)

A HE5 U 80

ht =

o

S shy

=1

A =B

#ALe] 2

SH
ol

il

=

o] W] &+

=

=

Eo] = Al

o o X ,
mrt olp M]_o A S
- = > R I T W o K
—_ = o % o 1 F X ,mue X ai S
T 0 = , B X " o o I "
Q 1__.._ n_l0_| s HA IS ‘w Of ! ‘H ,,W W_
o B = & K o= L U~ o5 ol i
E =y co I <~ ™ o o o
1;1% UG CY %_.L N = W lo} pn_f% < N W H
o o~ o g Mo Moo oy
nmxm;owyig%%g@ww
qm@%%ﬂa%gﬂi o b
T oo T B TR %o % ol W oo &
w X o Ny R S I
) B ~+ 3T W
RO of) o & o mor X N T
A A ko oW X B nox —
. —_— E_E _ 1 _|T_ in — ﬂw‘_ E._‘_ X
m | e = o P T e X T N)
= Hn i ‘WA_u M o o oju o|J o] m_mv o Tor o
Ca = X oo o %o 0 —
N ~ ol O#E _E g =] _r.._o X
- o~ ~a ol -~) ol o o N il T _—
~ 3) 1! o ,AE B e s . 0 R
o = F < i3 E & 3 o pox R
° o P moE R g S SR
W N 11_ T ooy U A or X <8 o
- N % 0 F & T o
ly T o T A M R oo o< W Aﬁ_n_. ie
N jeut — N Sl X
%ﬁgyﬁg%%%mﬁﬂu‘%ﬂﬂ
= — . TKO= =~ —_ ,__lmﬂ 1m_l oF T
o < = o W X i T N Ho W T ,__.._nl 5
= o B 9 X Jpoof W = T
) o L. X = o Mmoo wm zr I el
A I - % I ™) L S o
#ﬂ:_o%wrmmmguu@w;wﬁﬂ
o BB s - or ow N T T
< o TR H A X R
‘m._u ml Of ,m ‘UI . N 1__ .Ao ‘Ul _.L ZA
éunﬂﬁﬂuﬂhgaﬂﬁac}_o_e
T 5 R _NAT N T R <A
CHEE N
= op

64

3= 11}

S}A

.E_ _ﬁ]_/\
27
= A= A

- A T—ZILW]—X]
=

=
E_.c%_/_luo__.:}
Dl%bﬁn
m,_nuA%%wJ_boﬂ
@ 2 & o D o B0
1EZ1r__O iy ,WE_.L‘I
A,l]mhﬂmo_ﬁo‘ﬂlo_-LO_‘nDl,alOH._
%mﬂw@ugguqv_@ TS
oo X 3 o = m oo =
,._ljl] 1E_E‘|ﬂ,aa1_ub D._llﬂallz*o]
ELUHO,.DIO oﬂnc_ otﬂl7,|._loﬂ;qﬂ@
m]Mofrulﬂumﬂmmm]Nrulmw HW%JWH%%
< o =3 o1 X ol om M_ N M_a T ,.m_lﬂ o B ﬂ_AIM B £ ®
m@%zmﬂmvrlw@yﬂqwawmm%
mEz,_EW%ﬁoWEﬂmrHlWﬂuMBIWZIE
qiﬂ%qgwg%WHﬁ%wqqquq
,HLE,MEM@LE]%+ML%X%%QMWMUM§
:EEO&M%QEﬂ,‘@%ﬂq;uﬁ%uq}aﬂg
%%Qﬂﬂ%ﬂ@%t%ﬂaﬁﬂiWW:%%H%
ATE;;;on%Emuxngm%mngg
1jugqqgﬂfwmufém;f;
zwﬂﬂﬁf o_oo_a% z%gaﬂw@g%a}
1:]11 H]@;]] uuaozo__%lx
VAL%QOAT%XOSEQ = @qyﬁ
@mAm}g%#%zg%%ﬂg%wwagigq
NM@%@HHWWM%H1%%ﬂ9%ﬂ$%u
oL : _X]D_M 1_lfA|J- ..r,|U_1 s
D;O‘._qﬁl]o _070__0 ,A_lq_l‘.__onm,q‘LIOM.
mamauuwmmrumw%u]._*}voemw%%ﬁﬂeﬁwﬂfﬂumr
% a2 = X %0 qm o ﬁmarﬂnlxmauuu
NOE X o) © oo o % B A Hlaa L
= E B X G i <z ° o VIS BN o o= < +
Eﬂwnmﬂmﬂ%gq}aﬂwgaﬂﬂafﬂw@m
oamoﬁmﬂwtMTLLM@&H:.%M%&Q%W
o N of Hlo_x]ﬁa_/ B W ,ﬂaél,_ovc._zt
Eﬂqomu%fﬂﬁmu%mjﬂm@ﬂﬂlzvﬂmuﬂﬂﬁ
R Ko 1] = T o A BN g w
amuﬂm:_@%;qﬂﬂqqﬂg%%ﬂ
Ty <H T o o Hu A ujy 7 ®
TN m._e N T < o s iy = mH = w__.a
oﬂmﬁ@o_a%gg%ma
&) ﬂﬁ,ﬂmﬁaﬂl,.rot
lﬂo__o x]ém_w
A%__fg_n_mﬂ,
E«W__oo,uﬂi
ﬂﬂmo%
N

65

| &= 1Folo] of

O!

=5

ol 2412 Hhgh k. A7Ale] A Fhat

317) 215

o}
-

Ao FA = AAIEH U 3015 A2 5 E vhA]

o

L

o

Intelligent SpaceE AR

U

sha17et

=
&4

2 A7 A A

= =
==y

W4 9] Al

o}

s
N

o|AKMH 1A

Atz Ed7HA] & mte

3t

=
T

=, °l
oloAE HAEH YT tld A

|

ul |

k|

el
ol

a9

ks

=

A

Al aF Yo T8 al A

s
=l
,._Zlo
=

oy
{|m

o
i

m

il
il

o
alg

N
A
—~

Suith A7A9 ok

w3

I

tLgo

o)

= 27

B 2o A Ao A 7] A7+

A HAEU T HE A7

EREEN

ol

=014 Zo] 7PA A

WU

Zolet

ZF G}
=2 =2

2oL AR E 7t

oFo
oFo.

66

o < M Bl 9T K T© o oo HE X of 9l
Wom K X OT e R T o5 W o o B
g o N o OF O o= T Mo " o
H o N T o© g < T ow o H R
zm@M wbﬁm%ﬁ By BEE
T F T W o XX X
,__qu o e a1_: s oy = mﬂ T o B o
o < m s Mo m oo T T %y
il nr K+ Eogom 2 2 R
T X2 G = S @ ¥ o|
w & o B o5 oo -
e B G Bow ooy X
- iy ~ N n- L Ho X
N T SRR o mﬁ =z on ox
_ L - IS ' o0 S K
% L i _NA_I T %E M X = o nQ_W o (G o
2w bl = 7 B Ao X om B8
TG TS T B e o =
T " e o ox B BT o= =
I = O W 2L = F E B ow g
Eha TEtrem §grcdd
%W T X i~ B X X g o QT mJ
i S R ooy o4y oop B o W
i L R\ S R N g o oM oS
T e L v 2 H L R T o o= 5 X
= N G3 o o) mu g . 5
R - R
o < R Tor
T I A O SN - B
A~ 1r__m H._E _l__l ,.Duﬂ —_— ﬂwo oo N . DT_ il
of H = o | = T
o g T Hfﬂﬂuﬂww_mﬂoﬁqﬁ R
s FRMPR TG TR T g
Toopowe Moo R o UG g B om oo g
R S L
o Hom w' oo EL = mﬁ m = X % T
% A NE ol T W T ® T T e B
MR R [B B T H o T © o

al

gl

[e])]
RX

o]

25
1=

B o] o

=

s}

S

Rk

°

1

b gol geriet we Ahg

BA|H 7|

et
SUTh A Ao R4S HATHH JujHEc o 7]

°

20
==
67

A Fofe] 7

	1. Introduction
	1.1 Motivations
	1.2 Contributions
	1.3 Organizations

	2 Related Work
	2.1 Reinforcement Learning
	2.2 Classical Navigation Methods
	2.3 Learning-Based Navigation Methods

	3. Learning Collision
	3.1 Introduction
	3.2 Learning Collision
	3.2.1 Markov Decision Process Setup
	3.2.2 Training Algorithm
	3.2.3 Experimental Results

	4. Single Robot Collision Avoidance
	4.1 Introduction
	4.2 Holonomic Robot Obstacle Avoidance
	4.2.1 Approach
	4.2.2 Experimental Results

	4.3 Non-Holonomic Robot Obstacle Avoidance
	4.3.1 Approach
	4.3.2 Experimental Results

	5. Multi-Robot Collision Avoidance
	5.1 Introduction
	5.2 Approach
	5.3 Experimental Results
	5.3.1 Simulated Experiment
	5.3.2 Real-World Experiment
	5.3.3 Holonomic to Non-Holonomic Conversion Experiment

	6. Conclusion
	Bibliography
	초록
	감사의 글

<startpage>12
1. Introduction 1
 1.1 Motivations 1
 1.2 Contributions 6
 1.3 Organizations 7
2 Related Work 8
 2.1 Reinforcement Learning 8
 2.2 Classical Navigation Methods 11
 2.3 Learning-Based Navigation Methods 13
3. Learning Collision 17
 3.1 Introduction 17
 3.2 Learning Collision 18
 3.2.1 Markov Decision Process Setup 18
 3.2.2 Training Algorithm 19
 3.2.3 Experimental Results 22
4. Single Robot Collision Avoidance 25
 4.1 Introduction 25
 4.2 Holonomic Robot Obstacle Avoidance 26
 4.2.1 Approach 26
 4.2.2 Experimental Results 29
 4.3 Non-Holonomic Robot Obstacle Avoidance 31
 4.3.1 Approach 31
 4.3.2 Experimental Results 33
5. Multi-Robot Collision Avoidance 36
 5.1 Introduction 36
 5.2 Approach 37
 5.3 Experimental Results 40
 5.3.1 Simulated Experiment 40
 5.3.2 Real-World Experiment 44
 5.3.3 Holonomic to Non-Holonomic Conversion Experiment 49
6. Conclusion 52
Bibliography 55
초록 62
감사의 글 64
</body>

