

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

M.S. THESIS

Local Navigation Approach by Learning
Collision

충돌학습을통한지역경로계획방법

BY

Howoong Jun

February 2019

DEPARTMENT OF ELECTRICAL AND
COMPUTER ENGINEERING

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Abstract

This thesis proposes a reinforcement learning based collision avoidance method.

The problem can be defined as an ability of a robot to reach its goal point without col-

liding with other robots and obstacles. There are two kinds of collision avoidance prob-

lem, single robot and multi-robot collision avoidance. Single robot collision avoidance

problem contains multiple dynamic obstacles and one agent robot. The objective of

the agent robot is to reach its goal point and avoid obstacles with random dynamics.

Multi-robot collision avoidance problem contains multiple agent robots. It is also pos-

sible to include unknown dynamic obstacles to the problem. The agents should reach

their own goal points without colliding with each other. If the environment contains

unknown obstacles, the agents should avoid them also.

To solve the problems, Collision Avoidance by Learning Collision (CALC) is pro-

posed. CALC adopts the concept of reinforcement learning. The method is divided

into two environments, training and planning. The training environment consists of

one agent, one obstacle, and a training range. In the training environment, the agent

learns how to collide with the obstacle and generates a colliding policy. In other words,

when the agent collides with the obstacle, it receives positive reward. On the other

hand, when the agent escapes the training range without collision, it receives negative

reward. The planning environment contains multiple obstacles or robots and a single

goal point. With the trained policy, the agent can solve the collision avoidance prob-

lem in the planning environment regardless of its dimension. Since the method learned

collision, the generated policy should be inverted in the planning environment to avoid

obstacles or robots. However, the policy should be applied directly for the goal point

i

so that the agent can ‘collide’ with the goal. With the combination of both policies,

the agent can avoid the obstacles or robots and reach to the goal point simultaneously.

In the training algorithm, the robot is assumed to be a holonomic robot. Even though

the trained policy is generated from the holonomic robot, the method can be applied to

both holonomic and non-holonomic robots by holonomic to non-holonomic converting

method.

CALC is applied to three problems, single holonomic robot, single non-holonomic

robot, and multiple non-holonomic robot collision avoidance. The proposed method

is validated both in the robot simulation and real-world experiment. For simulation,

Robot Operating System (ROS) based simulator called Gazebo and simple game li-

brary PyGame are used. The method is tested with both holonomic and non-holonomic

robots in the simulation experiment. For real-world planning experiment, non-holonomic

mobile robot named e-puck is used. The learned policy from the simulation can be di-

rectly applied to the real-world robot without any calibration or retraining. The result

shows that the proposed method outperforms the existing methods such as Reciprocal

Velocity Obstacle (RVO), PrEference Appraisal Reinforcement Learning (PEARL),

and Optimal Reciprocal Collision Avoidance (ORCA). In addition, it is shown that the

proposed method is more efficient in terms of learning than existing learning-based

method.

keywords: collision avoidance, path planning, mobile robot, multi-robot system,

reinforcement learning

student number: 2017-28406

ii

Contents

Abstract i

Contents iii

List of Tables vi

List of Figures vii

1 Introduction 1

1.1 Motivations . 1

1.2 Contributions . 6

1.3 Organizations . 7

2 Related Work 8

2.1 Reinforcement Learning . 8

2.2 Classical Navigation Methods . 11

2.3 Learning-Based Navigation Methods 13

3 Learning Collision 17

3.1 Introduction . 17

iii

3.2 Learning Collision . 18

3.2.1 Markov Decision Process Setup 18

3.2.2 Training Algorithm . 19

3.2.3 Experimental Results . 22

4 Single Robot Collision Avoidance 25

4.1 Introduction . 25

4.2 Holonomic Robot Obstacle Avoidance 26

4.2.1 Approach . 26

4.2.2 Experimental Results . 29

4.3 Non-Holonomic Robot Obstacle Avoidance 31

4.3.1 Approach . 31

4.3.2 Experimental Results . 33

5 Multi-Robot Collision Avoidance 36

5.1 Introduction . 36

5.2 Approach . 37

5.3 Experimental Results . 40

5.3.1 Simulated Experiment . 40

5.3.2 Real-World Experiment . 44

5.3.3 Holonomic to Non-Holonomic Conversion Experiment 49

6 Conclusion 52

Bibliography 55

초록 62

iv

감사의글 64

v

List of Tables

3.1 Convergence rate of CALC and PEARL 22

4.1 Success rate comparison with different obstacle number 31

4.2 Discretization . 33

4.3 Comparison with different obstacle number 34

5.1 Comparison of Success Rate of CALC and ORCA 43

5.2 Consuming Time for One Successful Episode 49

vi

List of Figures

1.1 Collision Avoidance Problem . 2

1.2 A concept of proposed approach . 5

2.1 Training Environment of PEARL. 15

3.1 Training Environment. 20

3.2 Reward plots for CALC and PEARL. 24

4.1 Local goal . 27

4.2 Experiment environment . 29

4.3 Discretization Process . 32

4.4 Gazebo Simulation . 35

5.1 Multi-robot collision avoidance . 39

5.2 Five scenarios for the experiments with Gazebo simulator 41

5.3 An overview image of the intelligent space 44

5.4 Tags for tracking system . 44

5.5 e-puck mobile robot . 45

5.6 Real-world planning experiment environment setting. 47

5.7 Resulting paths. 48

vii

5.8 Holonomic to Non-holonomic Conversion Approach 51

viii

Chapter 1

Introduction

1.1 Motivations

Collision avoidance problem has been key issue in the field of robotics such as hu-

manoid [1], robot arm [2], and mobile robots [3] for many years. In the problem,

robots have to achieve their objectives without colliding with other objects such as

obstacles and other robots. The concept of the problem is described in Fig. 1.1. Es-

pecially, with the rise of autonomous self-driving car, safe navigation for wheel-based

mobile robots became critical [4]. The autonomous self-driving robot has two key ob-

jectives: reaching a goal location and avoiding collision. It is possible that the goal

location and a global path can be given by a central server. However, avoiding colli-

sion with unexpected obstacles or other robots cannot be done by a central server since

the most worlds are unstructured environments. Therefore, goal-driven decentralized

local navigation approach is mandatory for autonomous self-driving robots.

Classical goal-driven decentralized local navigation approaches use hand-crafted

rules to derive the solution. They re-plan the optimal path on every iteration based

1

Figure 1.1: An overview of collision avoidance problem. An agent (green) has to avoid

obstacles (red) and reach a goal point (blue). The obstacles can be both movable or

static.

on the rule to cope with unknown circumstances. However, adjusting paths on every

iteration imposes heavy computational burden since the methods should consider ev-

ery dynamics of obstacles. Some learning-based navigation methods adopt supervised

learning to overcome the limitation. With an image of a camera, the agent can learn the

circumstances of collision and how to avoid it. However, supervised learning has the

issue of collecting large data-set. In other words, to achieve the objective, large amount

of image should be collected. Other learning-based navigation methods use reinforce-

ment learning to solve the problem. By training the agent to avoid collision and reach

to a goal point simultaneously, it can reach its objective. However, the methods are

still inefficient in terms of learning and lacks reproducibility [5] since the agent has to

learn two tasks.

To overcome those limitations, reinforcement learning-based local navigation ap-

proach named Collision Avoidance by Learning Collision (CALC) is proposed in this

thesis. The overall concept of CALC is described in Fig. 1.2. CALC learns collision

2

instead of avoiding an obstacle. An agent robot learns how to collide with a single

obstacle in a small and restricted training environment. In the training environment,

the agent can derive a colliding policy based on the reinforcement learning. With the

colliding policy, CALC transfers it into high dimensional problems called planning

environment which comprise multiple robots and obstacles. Since the method learns

collision rather than avoidance, the actions generated from the policy should be in-

verted to avoid obstacles. Likewise, the agent should reach the goal point so the actions

should be directly applied to the goal point. Therefore, the proposed method can solve

two problems simultaneously, avoiding obstacles and reaching a goal point, by learn-

ing only one objective: collision. Also, it can achieve the improved ability in terms

of learning efficiency and reproducibility. In addition, the method only requires local

information around the agent robot. Since the method is a local path planner, it only

needs relative position vectors of the obstacles inside the fixed range around the agent.

The planning environment can be categorized into two, single robot and multi-

robot collision avoidance. Single robot collision avoidance problem includes one agent

and multiple dynamic obstacles. The agent robot should reach its goal point without

colliding with obstacles of random dynamics. The agent and obstacle robots can be

both holonomic and non-holonomic robot. Multi-robot collision avoidance problem

includes multiple agents. The agent robots should reach its own goal points without

colliding with each other. Moreover, dynamic obstacle can be included in the environ-

ment. If there are obstacle robots in the environment, the agents should also avoid those

robots. Additionally, the agent robot is assumed to be holonomic robot in the training

environment. Holonomic robot has advantages compared with non-holonomic robot

due to its simple locomotion control. For example, it is easy for the holonomic robot

3

to go east without considering current orientation of itself. However, non-holonomic

robot has to consider its current orientation and its dynamics to move east. It is more

complicated to move the non-holonomic robot than the holonomic robot. Therefore,

holonomic robot is considered in the training algorithm for efficient training. Also, to

apply the learned policy from the holonomic robot into non-holonomic robot, a new

method for holonomic to non-holonomic conversion is also suggested in this thesis.

The ultimate purpose of the proposed method is to apply the algorithm into real-

world scenarios. In the real world, holonomic robot is less common than non-holonomic

robot. Therefore, multiple non-holonomic robot collision avoidance problem is the

key target to the proposed method. In order to achieve the objective, single holonomic

robot collision avoidance problem should be considered first. CALC for single robot

collision avoidance problem is demonstrated in the simulated robot experiment and

compared with other methods. Also, experiments for the single robot collision avoid-

ance problem with non-holonomic robot is conducted. Finally, Multi-robot collision

avoidance problem is demonstrated in the both simulated and real-robot experiments.

It is also compared with other multi-robot collision avoidance methods. In the ex-

periment, non-holonomic robot, which is more closer to the real-world vehicles than

holonomic robot, is used. The training process is only done in the simulation. How-

ever, the learned policy from the simulation is applied successfully to the real-world

experiments without additional re-training.

4

angle(deg)
0 36018090 270

p
ro

b
a
b
ili

ty

Agent

Obstacles

Goal

Local Goal

Desired Action for Learning Collision

Actual Action

Figure 1.2: The overview of the proposed method. An agent learns how to collide with

a static obstacle in a small training environment (left). In the training environment, the

obstacle rotates its position based on the angle φ. The red arrow indicates the colliding

action for the agent. The learned policy from the training environment is utilized in a

planning environment (right). The policy can be expressed as a probability distribution

of a direction for avoiding obstacles. The agent has to avoid collision with moving

obstacles and reach its goal point. Based on the trained policy, the agent can take

action that can pursue the goal point without colliding with the obstacles.

5

1.2 Contributions

The main contributions are listed below.

First, a new small training environment for collision avoidance problem is sug-

gested in Chapter 3. The new environment consists of three elements: one agent robot,

one obstacle, and a training range. With those elements, the agent robot can learn how

to collide with the obstacle. This enables the proposed algorithm to be converged fast

and efficient since the robot has to learn only one task.

Second, the expansion from the small training environment to high-dimensional

planning environment is presented in Chapter 4 and Chapter 5. The method utilizes

the pre-trained data in the training environment into high-dimensional problems with

multiple obstacles. To cope with the obstacles, the method reverses the pre-trained

policy. Also, to reach the goal point, the method directly apply the policy. With the

combination of the policies, the method can successfully solve the collision avoidance

problem.

Thirdly, the applicability of the method is presented. The proposed approach can be

applied on both holonomic and non-holonomic robots. Holonomic and non-holonomic

robot experiment is presented on Chapter 4.2 and 4.3 respectively. Additionally, it

is applied to goal-driven non-holonomic multi-robot collision avoidance problem in

Chapter 5.

Lastly, to apply learned policy from the holonomic robot to non-holonomic robot,

holonomic to non-holonomic conversion approach is suggested in Chapter 5. This

method consists of two parts: angular and linear motion planning. Angular velocity

is derived based on the current robot heading and desired action. In the linear motion

planning part, three velocity models are suggested: constant, linear, and quadratic.

6

The suggested models are compared with the experiments. Also, statistical analysis of

consuming time for three models are conducted to find the appropriate model for the

proposed method.

1.3 Organizations

The rest of this thesis is organized as follows. Chapter 2 reviews key ideas about rein-

forcement learning. Also, it covers related works about navigation methods including

hand-crafted methods and deep learning-based methods. Chapter 3 presents the train-

ing process of the proposed method. Chapter 4 addresses the problem of the single

robot collision avoidance for both holonomic and non-holonomic robot and shows

simulated experiments. Chapter 5 modifies the approach of Chapter 4 into multi-robot

collision avoidance problem for non-holonomic robots. In the Chapter 5, both simu-

lated and real-world experiments are presented. Both Chapter 4 and Chapter 5 utilize

the result of Chapter 3. Finally, Chapter 6 concludes the thesis with suggestions for

future work.

7

Chapter 2

Related Work

This work is mainly based on the concepts of reinforcement learning and navigation.

This chapter introduces background of reinforcement learning and previous works

about navigation. Additionally, existing works about navigation using deep learning

are introduced in the last section.

2.1 Reinforcement Learning

Reinforcement learning is one category of machine learning field. The concept can be

roughly defined as an ability of an agent to learn the objective by trial and error. As the

agent experiences diverse circumstances, it can enhance its ability to achieve the goal.

Recently, with a combination of deep learning technique, reinforcement learning has

improved significantly by defining the field of Deep Reinforcement Learning (DRL).

This provoked many researchers to apply deep reinforcement learning into many fields

[6] such as video game [7], game of Go [8] [9], navigation [10], and robotic grasping

[11].

8

To understand reinforcement learning, Markov Decision Process (MDP) should be

defined first [12]. MDP contains three main concepts, a set of states st ∈ S, a set

of actions at ∈ A, and a reward function R(s, a). In each time-step t ∈ [0, T], the

agent interacts with the environment through the states, actions, and reward function.

A state st describes the environment. The agent takes an action at and transits to the

next state st+1. The action can be derived from a function called policy at = π(st).

In other words, a policy is a mapping from perceived states of the environment to

actions. In the stochastic environment, a probability of going from state st to st+1 is

called transition probability P (st+1|st,at). Upon taking action at, the agent receives

a rewardR(st,at). The aim of the agent is to maximize the cumulative expected future

reward until it reaches the horizon if the problem is a finite horizon MDP as described

in equation below.

R(s0,a0) + γR(s1,a1) + γ2R(s2,a2) +· · · . (2.1)

Here, γ is a discount factor which is typically strictly less than one. This discounts the

effect of future rewards that are far from the current state.

In the reinforcement learning algorithms, value function indicates how good it is

for the agent to be in a given state st and policy π(st). In other words, high value

function means high expected future rewards. The value function can be defined as

follows:

V (s|π) = E[R(s0,a0) + γR(s1,a1) + γ2R(s2,a2) +· · · |s0 = s]. (2.2)

Also, with set of state-action pairs, action-value function Q(st,at|π) can be derived

as follows:

Q(s,a|π) = E[R(s0,a0)+γR(s1,a1)+γ2R(s2,a2)+· · · |s0 = s,a0 = a]. (2.3)

9

The equation (2.3) is also known as Q-function. These functions can be also expressed

as Bellman equation form.

V (s|π) = R(s, π(s)) + γ
∑
s′∈S

Psπ(s)(s
′)V (s′|π) (2.4)

Q(s,a|π) = R(s,a) + γ
∑
s′∈S

Psa(s′)Q(s′, π(s′)|π) (2.5)

The optimal value function and Q-function can be defined as optimal expected sum

of rewards as follows:

V ∗(s|π) = max
π

V (s|π) (2.6)

Q∗(s,a|π) = max
π

Q(s,a|π) (2.7)

Therefore, the optimal policy π∗ can be defined as follows:

π∗(s) = argmax
a∈A

Q∗(s,a|π). (2.8)

These equations can be solved by dynamic programming-based algorithm. In other

words, the solution can be derived by iterative update.

V (s) := max
a

R(s,a) + γ
∑
s′∈S

Psa(s′)V (s′) (2.9)

π(s) := argmax
a∈A

R(s,a) + γ
∑
s′∈S

Psa(s′)V (s′) (2.10)

The equation (2.9) is called value iteration and the equation (2.10) is called policy

iteration [13]. The principles can be combined with function approximators such as

deep neural networks.

In this work, actor-critic method [33] is used to train and perform the agent. The

approaches include two approximators, actor and critic. The actor updates parameters

for policy π and the critic updates value function parameters. Specifically, the actor

observes a new state st+1 from the environments and selects an action at+1. The critic

10

also receives the state st+1 and additionally, gets reward R(st,at) from the previous

iteration and derives a value function. With the value function, the critic evaluates the

policy and gives the direction to the actor. This method can reduce the variance of

policy gradient because of the critic.

2.2 Classical Navigation Methods

Classical navigation methods are categorized into two, centralized and decentralized.

The centralized approaches assume the comprehensive knowledge about all robots and

their environment [14]. In the approaches, each robot is controlled by a central server.

These methods focus on getting an optimal solution for path planning and timing for

robots simultaneously. However, since these methods depend heavily on the central

server, reliable communication network between all robots and the server is mandatory.

Additionally, the system fails to solve the problem if unknown obstacles, which are

not in the prior knowledge, appear in the environment. This is a serious problem in the

real-world scenarios. Moreover, centralized approaches are inapplicable in the high-

dimensional problems, which include large number of robots, because considering

every dynamics of robots imposes heavy computational burden.

On the other hand, in the decentralized approaches, each robot independently de-

rives its own solution that can avoid collision. Rapidly-exploring random tree (RRT)

based methods generate random tree on each iteration to cope with multiple unknown

obstacles [15], [16]. From starting position to goal position, the method formulates

a tree-like network randomly and finds the branches that guarantee the collision-free

path for the robot. The random tree is updated periodically to handle the changing

environment.

11

Velocity obstacle (VO) [17] based methods use the current velocity information

of obstacle robots to avoid collision. In the VO, the obstacles and other robots are

represented with the main robot’s velocity space. With this information, VO region can

be calculated. The main robot can avoid collision with the obstacles and other robots

if it chooses the velocity outside of the region. However, the method has a problem of

generating oscillatory motions in the chicken scenario.

To overcome the limitation, [18] suggests reciprocal velocity obstacle (RVO). When

the two robots are facing each other, each robot takes the half of the responsibility for

collision avoidance. With the method, two robots can avoid collision without explicit

communication. However, the approach fails in some cases when the two robots fail to

agree on which side to pass each other which is known as a reciprocal dance.

To remedy the problem, [19] presented the concept of hybrid reciprocal velocity

avoidance (HRVO). In the method, a robot that tries to graze on the other robot has

the full responsibility for collision avoidance. However, the HRVO does not guarantee

the optimal solution in the multiple robot scenarios. This is because two robots can be

influenced by other robots while selecting the velocity. [20] tries to solve the drawback

of HRVO by providing additional condition for handling multi-robot collision avoid-

ance. The method is called optimal reciprocal collision avoidance (ORCA) and it is

the state-of-the-art method for collision avoidance problem. However, these VO-based

methods should also dynamically re-plan the path to handle the moving obstacles.

Artificial potential field (APF) based methods require a set of information to gen-

erate a potential field: a starting position, a goal position, attractive potential, and re-

pulsive potential [21]. With the generated field, an agent robot can find an optimal path

for avoiding collision. In addition, if the unknown obstacles appeared in the environ-

12

ment, the methods re-generate the potential field and re-plan the path. However, the

methods have the assumption that the agent robot has the prior knowledge about the

entire environment such as positions and velocities of all obstacles. This assumption

runs contrary with the real-world scenarios.

2.3 Learning-Based Navigation Methods

Deep learning-based collision avoidance methods have been frequently studied re-

cently.

Several approaches adopt supervised learning to solve the problem. [22] collects

image data of crashing trajectories from a drone and trains how to avoid the circum-

stances. The collected data are distributed manually into two, positive and negative,

based on how far the data were collected from the time of collision. However, the

method has the issue of collecting large trajectories since supervised learning depends

heavily on the large data set. Also, it is dependent on the hand-crafted label. [23] also

uses supervised learning with low resolution images. With the images collected by a

human driver, the vehicle robot can avoid obstacles. However, this method also has the

problem of collecting large data set and additionally, it depends on the skilled human

driver. Further, the method can only solve static obstacles. [24] uses depth image to

control a mobile robot. However, their commands are empirically chosen discrete ac-

tions which is not suitable for elaborate safe driving. [25] applied end-to-end learning

with 2D laser scanner. The approach trained the robot by an expert demonstration in a

supervised manner. Even though it can handle unforeseen obstacles, the method is still

dependent on the data collected by an expert. [26] adopt imitation learning techniques

to solve the problem. With a single camera, the UAV can avoid immobile obstacles.

13

However, the approach can only control left and right discrete movements with fixed

forward velocity. Therefore, it can be vulnerable if obstacles are movable. To over-

come the limitation, [27] adds forward and spin commands from [26] in the learning

process. Although the method can control the UAV more flexibly, it only focuses on

avoiding collision with walls on a corridor, not with unknown obstacles. [28] presented

a deep auto-encoder based method for the problem. The approach utilize deep auto-

encoder to learn actions that can avoid collision with walls and obstacles. However,

this method does not have the ability to reach target position since it has never learned

the objective.

Several other approaches adopt reinforcement learning to solve the problem. [29]

trains an agent robot in a small environment and transfer the learned policy into high-

dimensional environments. The small training environment include one agent and one

obstacle. If the agent escapes the training range without collision, it receives positive

reward and if the agent collides with the obstacle, it receives negative reward. The

trained policy can be utilized into high-dimensional environments with multiple ob-

stacles. However, even though the method can avoid collision with multiple obstacles,

it requires extra policy for reaching a goal point thus, it is inefficient. Also, the solution

for avoiding obstacle is not unique. Therefore, the solution can be easily converged to

the local minima.

PrEference Appraisal Reinforcement Learning (PEARL) [30] also trains a robot

in a small and restricted environment which includes four obstacles and one goal as

described in Fig. 2.1. In the environment, the robot learns how to avoid obstacles and

reach a goal. With the trained policy, robot can solve the dynamic obstacle avoidance

problem in high dimensional problems. This method does not require whole infor-

14

G S

Figure 2.1: Training environment of PEARL. Four red circles are obstacles and S

represents the starting position. The agent robot starts from the starting position and

should reach the goal point G without colliding with four obstacles (red circles). Only

the closest obstacle is considered for the collision avoidance.

mation of the environment since the agent robot generates optimal action only with

one closest obstacle robot. Even though the method does not need large data and con-

sumes less computational burden, the inefficiency lies in the process of training the

agent since it has to learn two tasks: 1) how to avoid obstacles and 2) how to reach a

goal point. Therefore, the challenge posed by reproducibility [5] exists in the method.

Moreover, PEARL only considers the closest obstacle from the agent so it can be vul-

nerable in the crowded environment.

[31] is another example of reinforcement learning-based collision avoidance. The

method divides the system into two, target-driven system and collision avoidance sys-

tem to make learning process efficient. The target-driven system is designed manually.

The only thing that the agent learns is avoiding dynamic obstacles with laser scanner

15

data. Since the agent learns only one task, how to avoid obstacles, the method can

reduce the training difficulty of the model. However, the approach does not restrict

the number of obstacles. Therefore, there exists myriad of states exponentially propor-

tional to the number of obstacles and this requires large data for learning. Also, the

method has the dependency on the manually tuned parameters when combining two

sub-systems. Finally, experiments of both [30] and [31] are conducted only on the sim-

ulated environments. Therefore, it does not guarantee the applicability of real-world

robots.

16

Chapter 3

Learning Collision

3.1 Introduction

The purpose of the proposed method is to make an agent robot reach a goal point

without colliding with multiple obstacles. Since the method adopts the concept of re-

inforcement learning, the training process for the agent robot is necessary. This chapter

introduces how to train the agent robot to achieve its objective by using reinforcement

learning. The learned policy from the training process can be applied to both single

robot and multi-robot collision avoidance problem which will be covered in Chapter

4 and 5. For training the agent, actor-critic algorithm is used. In the training process,

the agent robot is assumed to be a holonomic robot which has more advantages on lo-

comotion control than non-holonomic robots. In addition, the training process is only

conducted on a simulation. Even though the trained policy is generated from the holo-

nomic robot, it can be applied to both holonomic and non-holonomic robots. Also, the

simulation data can be utilized to both simulation and real world experiment without

any re-training.

17

3.2 Learning Collision

In the training process, an agent robot learns how to collide with a single obstacle

robot. The training environment is composed of three objects, an agent, an obstacle,

and a training range. When the agent successfully collide with the obstacle, it receives

positive reward. However, when the agent escapes the training range without colliding

with the obstacle, it receives negative reward. By this process, the agent robot can learn

how to collide with the obstacle.

Learning to collide with an obstacle is efficient in terms of learning since the

trained policy can be generated only by an attractor. The previous methods with re-

inforcement learning train the agent to distinguish attractor and repellent. In the meth-

ods, the agent has to learn how to avoid repellent and pursue the attractors. However, in

the proposed method, only attractor is considered during the training process. There-

fore, it is less complicated than the training processes with both attractor and repellent.

Also, the trained policy can be utilized for both attractors and repellents. For attractors

such as a goal point, the learned policy can be directly applied to the agent so that it

can ‘collide’ with the goal. Simultaneously, for repellents such as obstacles, the policy

can be implemented reversely to avoid them. To sum up, with a single set of learned

policy, the agent robot can handle both attractors and repellents at once.

3.2.1 Markov Decision Process Setup

Reinforcement learning is based on the Markov Decision Process (MDP). Therefore,

MDP should be defined for the algorithm. The MDP state space S can be defined as

st = lo − la, ∀st ∈ S (3.1)

18

where lo and la are location vectors of an obstacle and an agent robot, respectively.

Therefore, state st indicated on equation (3.1) is a relative vector between the obstacle

and the agent robot. Action space A can be defined as 9 dimensions which include

eight cardinal points and one static. The agent receives positive reward +δ when it

collides with the obstacle and negative reward −δ when it escapes the training range

T without the collision.

3.2.2 Training Algorithm

In the training algorithm circular shaped training range T with radius rT is assumed.

An obstacle is located on the boundary of T and changes its location on every training

episode with respect to the following equation:

loi+1 =

cosφ −sinφ

sinφ cosφ

(loi − cT
)

+ cT (3.2)

where cT indicates the center of T , i represents the current episode (1 ≤ i ≤ ne), and

φ implies unit angle for rotation. ne is the maximum number of episode. The agent

robot is assumed to be holonomic robot since it is more efficient in terms of learning

than non-holonomic robot which has restrictions on changing the direction. The agent

robot is initially located on the center of the training range cT . In addition, margin m

is applied on the size of the obstacle robot to improve the performance. The margin

acts as a safety zone. Even though the actual radius of the obstacle, ro, is same as

that of agent robot, ra, the agent perceive the size of the obstacle as ro(1 + m) in

the learning process. When the agent robot collides with the obstacle robot including

margin, it receives positive rewardR(st, at) = δ+F (s). F (s) is a heuristic calibration

parameter to avoid the graze collision. In the proposed method, calibration factor is

19

angle(deg)
0-180 18090-90

p
ro
b
a
b
ili
ty

angle(deg)
0-180 18090-90

p
ro
b
a
b
ili
ty

angle(deg)
0-180 18090-90

p
ro
b
a
b
ili
ty

angle(deg)
0-180 18090-90

p
ro
b
a
b
ili
ty

Figure 3.1: Training environment overview. An agent (White robot) can learn how to

collide with an obstacle robot (Red robot). The obstacle robot rotates its position based

on the unit angle φ. The expected position of the obstacle robot with respect to φ is

described as blurred robot. The radius of the training environment is rT

determined as follows.

F (s) = re − ‖ce − ca‖ (3.3)

The purpose of equation (3.3) is to lead frontal collision between the agent and the

obstacle since learning non-frontal collision can decrease the performance. In other

words, the agent can get higher reward for frontal collision than graze collision. On

the contrary, when the agent escapes the range T without collision, it receives neg-

ative reward R(st, at) = −δ. Finally, to prevent local minima, the agent receives

R(st, at) = −0.1 on every iteration. The overall process is descried on Algorithm 1

and Fig. 3.1.

For training the agent, actor-critic algorithm is used [33]. The two networks, actor

and critic, are composed of simple structure, one hidden layer with 128 nodes. For op-

timizer, Adam [34] is used with 0.00002 actor learning rate and 0.00005 critic learning

20

rate. Even though the network is simple, it can solve the high dimensional problems.

Also, it is easy for the training algorithm to be converged fast due to the light network.

The training process is only done on simulation. The trained policy from the simula-

tion can be applied to both simulated and real-world experiments. The neural network

is implemented and executed by Keras 2.1.2.

Algorithm 1 Training Algorithm
Require: MDP (S,A,D,R), training range E

1: take action at ∈ A

2: if
∥∥ca − cT

∥∥ ≥ rT then

3: R(st,at) = -δ

4: else if ‖ca − co‖ ≤ ra + (1 +m)ro then

5: R(st,at) = δ + F (s)

6: else

7: R(st,at) = -0.1

8: end if

9: update parameters

21

3.2.3 Experimental Results

To validate the reproducibility and convergence of CALC, the convergence rate of

CALC is compared with that of PEARL [30]. The training environment of PEARL

includes one agent, one goal, and four obstacles. The agent has to avoid static obstacles

and reach the goal point. The agent receives 2000 rewards when it reaches its goal point

and -30 rewards when it collides with one of the obstacles. Also, it receives negative

rewards for every iteration based on the following equation:

R(s,a) =

√
(x−Gx)2 + (y −Gy)2

100000.0
(3.4)

where (x, y) is the current location of the agent and (Gx, Gy) indicates the position of

the goal.

The overall convergence rate for CALC and PEARL are shown in Table 3.1. The

proposed method has shown the perfect convergence rate whereas PEARL performs

poorly. Fig. 3.2 shows reward plots for three cases, convergence, divergence, and local

minima. As described in Fig. 3.2b, PEARL converges to 0 reward even though the

agent has experienced 2000 rewards in the early episodes. In Fig. 3.2d, PEARL oscil-

lates its reward values. This describes the situation where the agent performs collision

and reaching the goal in turn. However, CALC converges safely into the optimal solu-

Table 3.1: Convergence rate of CALC and PEARL

Methods Convergence Divergence Local Minima

CALC 100% 0% 0%

PEARL 22.22% 29.63% 48.15%

22

tion which can make the agent get maximum rewards (Fig. 3.2a) Additionally, CALC

converges at the earlier episodes (Fig. 3.2a) compared with PEARL (Fig. 3.2c), which

indicates the efficiency of the algorithm. To be specific, PEARL converges at about

1500 episodes whereas CALC converges at 600 episodes.

23

0 500 1000 1500 2000 2500 3000

0

500

1000

-500

-1000

-1500

re
w

a
rd

number of episodes

a

0 500 1000 1500 2000 2500 3000

2000

1500

1000

500

0

-500

re
w

a
rd

number of episodes

b

0 500 1000 1500 2000 2500 3000

0

500

1000

1500

2000

re
w

a
rd

number of episodes

c

2000

1500

1000

500

0

-500

0 200 400 600 800 1000

re
w

a
rd

number of episodes

d

Figure 3.2: Reward plots for CALC and PEARL. x-axis indicates number of episodes

and y-axis is received reward of the agent. CALC converges at around 600 episodes

and PEARL converges at around 1500 episodes.

a. A reward plot for CALC. The algorithm converges to the optimal solution.

b. A reward plot for PEARL - local minima case

c. A reward plot for PEARL - convergence case

d. A reward plot for PEARL - divergence case

24

Chapter 4

Single Robot Collision Avoidance

4.1 Introduction

In this section, the learned policy from Chapter 3 is applied on the single robot collision

avoidance problem. Single robot collision avoidance problem is defined as an ability of

one agent robot to reach its goal without colliding with multiple moving obstacles. At

first, the problem with holonomic robot is considered in Chapter 4.2 since it has to be

proved before applying the method into the problem with non-holonomic constraints.

After that, the method is applied on the single non-holonomic robot collision avoidance

problem in Chapter 4.3.

In the problem, the agent and the obstacle are assumed as a circular shaped robot.

When the agent and obstacle collide with each other, one episode is counted as fail. If

the agent reach the goal point without colliding with obstacles, the episode is counted

as success. Collision is defined as follows:

||co − ca|| ≤ ra + ro (4.1)

where co and ca are the center of the obstacle and the agent respectively. Reaching to

25

the goal is also defined as follows:

||cg − ca|| ≤ ra (4.2)

where cg indicate the location of the goal point.

The proposed method can be applied to both holonomic and non-holonomic robots.

The experiments are conducted only with the simulation. For single holonomic robot

collision avoidance problem, game library called PyGame [32] is used. For non-holonomic

robot problem, Gazebo simulator with Robot Operating System (ROS) [35] is used.

ROS is an open source operating system for robots. It provides functions such as com-

munication and controlling robots. Gazebo is a ROS-based 3D simulator. It provides

3D environments and many models for robots.

4.2 Holonomic Robot Obstacle Avoidance

4.2.1 Approach

In the single holonomic robot collision avoidance problem, the agent and obstacles

are assumed as holonomic robots. The only information that the agent can notice is

positions of the obstacles inside its sight and ultimate goal point. The algorithm that

can solve the problem is defined as “planning algorithm”. The planning algorithm is

composed of four steps. First, the agent checks the number of obstacles no included in

its sight range which has the same size and shape as the training range. By using the

same size and shape with the training range, the agent can easily utilize the policies

from the training environment into the planning environment. Second, the agent sets

a local goal, which is also called a virtual goal, inside the sight range that directs the

ultimate goal. Therefore, even though the actual goal is positioned outside of the sight

26

range, the policy learned from the training environment can be applied to the local

goal to pursue the ultimate goal. Third, the agent infers colliding action vectors with

every no obstacles (a1
t ...a

no

t) inside the sight range. Also, the agent generates an action

vector ag from the local goal. Finally, to avoid obstacles, the developed action vectors

from the obstacles should be reversed. However, since the agent should not avoid the

goal, the action vector for the goal ag does not need to be reversed. Since all collisions

are independent, the overall action vector can be generated as follows:

ao = ag � f
(
(1− a1

t)� ...� (1− an
o

t)
)

(4.3)

a∗ =
ao

(ao)T 1
(4.4)

where ait (1 ≤ i ≤ no) indicates the action vector generated from the ith obstacle at

time t, � implies element-wise multiplication and f(v) of equation (4.3) is a quanti-

Agent Robot

Actual Goal

Local Goal

Sight Range

Figure 4.1: Local goal is a virtual goal inside the sight range which directs the global

goal. Since the agent robot is trained only inside its sight range, it cannot pursue the

global goal outside the range. Therefore, by setting local goal from the direction of the

global goal, the agent can easily follow the goal point.

27

zation function that can be expressed as the following.

{f(v)}i =

0, if vi ≤ µ

1, else

. (4.5)

{f(v)}i is the ith element of vector v and µ is a constant that can regulate the ratio of

1 and 0 in the vector. Finally, ao in equation (4.3) can be formulated into multinoulli

distribution by equation (4.4). The overall process is described in Algorithm 2.

Algorithm 2 Planning Algorithm
Require: MDP (S, A, D, R), no

Ensure: desired action a∗

1: for i = 1, ... ,no do

2: ao = ao � (1− ait)

3: end for

4: ao = f(ao) � ag

5: a∗ = ao ·
(
(ao)T1

)−1
6: return a∗

28

4.2.2 Experimental Results

Figure 4.2: An example image of a PyGame simulator. The agent (blue circle) should

reach a goal point (green empty circle) without colliding with the obstacles (red circle).

The figure is an example of the experiment with 200 obstacles.

The proposed method is implemented with a Python-based game library called

PyGame simulator [32] on Ubuntu 16.04 with Intel(R) Core(TM) i7-4790 3.60GHz

CPU, 16GB RAM, and NVIDIA GeForce GTX 980. The overall simulation environ-

ment is described in Fig. 4.2. In the simulator, the agent and the obstacles are assumed

to be circular-shaped holonomic robots with same radius. In the experiment, the agent

must travel from a starting position to a goal. Between the starting position and the

goal position, moving obstacles are distributed with random dynamics. The agent can

29

only observe the current position of obstacles inside the sight range and the local goal.

An episode is terminated when the agent collides with the obstacles or the goal. The

experiment is conducted with multiple obstacles such as 50, 100, 150, and 200.

The proposed method is compared with other conventional algorithms. The com-

parison experiment is conducted with arbitrary reinforcement learning-based method

[29], reciprocal velocity obstacle (RVO) [18], and PEARL [30]. For the arbitrary

learning-based method which is called forward reinforcement learning (FRL), the

agent is trained to avoid collision in the training environment, which is opposite of

the proposed approach. FRL is tested on the planning environment to justify the ef-

ficiency of the reverse training. Specifically, the agent gets a positive reward when it

escapes the training range without collision and a negative reward when it collides with

the obstacle in FRL. RVO algorithm is modified to consider 5 closest obstacles from

the agent since applying RVO with all obstacles imposes heavy computational bur-

den. Without the modification, the algorithm with 200 obstacles runs in 0.0895 frame

per second (fps) whereas fps for 5 closest obstacles is 51.8659. Likewise, the proposed

method, CALC, runs in 56.9745 fps with 200 obstacles. PEARL is trained with the en-

vironment described in Fig 2.1 and it is trained with 3600 episodes. The overall results

are shown in Table 4.1 and they are tested by 250 episodes. The proposed method has

the highest success rate among four methods. Also, CALC shows almost consistent

performance regardless of obstacles’ numbers.

30

Table 4.1: Success rate comparison with different obstacle number

of obstacles RVO [18] PEARL [30] FRL CALC (Proposed)

50 87.6% 95.2% 98.8% 99.6%

100 77.2% 92.8% 70.0% 95.2%

150 74.8% 70.8% 85.4% 97.0%

200 73.6% 66.8% 21.0% 74.4%

4.3 Non-Holonomic Robot Obstacle Avoidance

4.3.1 Approach

The main planning algorithm for single non-holonomic robot collision avoidance prob-

lem is as same as single holonomic robot collision avoidance in Chapter 4.2.1. Since

the agent robot was assumed to be holonomic robot in the training algorithm, con-

version from holonomic to non-holonomic is necessary to apply the algorithm into

non-holonomic robots. There are three steps for this. First, discrete the angle of robot

heading into action space without static (the eight cardinal points) with respect to Ta-

ble 4.2. Second, find the difference between discrete robot heading and desired action

which is derived from trained policy. Finally, apply angular velocity proportional to the

difference above. Also, the linear velocity is applied inversely proportional to angular

velocity so that it can rotate its heading safely. If the difference of the robot heading

and the direction of desired action exceeds 90 degrees, it moves back linearly without

angular velocity. The overall arrangement is described in Fig. 4.3.

31

Robot Heading

Angular Velocity = 1
Linear Velocity = 1.5

Angular Velocity = 2
Linear Velocity = 1

Angular Velocity = 2
Linear Velocity = 1

Angular Velocity = 1
Linear Velocity = 1.5

Angular Velocity = 0
Linear Velocity = -1

Angular Velocity = 0
Linear Velocity = -2

Angular Velocity = 0
Linear Velocity = -1

Angular Velocity = 0
Linear Velocity = 2

Figure 4.3: An overview of conversion from holonomic to non-holonomic model. Red

arrow indicates the heading of a robot. Red arrow and blue arrows represents eight

cardinal points which are action vectors.

32

Table 4.2: Discretization

Robot Heading Action Space

−π/8 ≤ θ ≤ π/8 0

−3π/8 ≤ θ ≤ −π/8 7

−5π/8 ≤ θ ≤ −3π/8 6

−7π/8 ≤ θ ≤ −5π/8 5

θ ≤ −7π/8 or 7π/8 ≤ θ 4

5π/8 ≤ θ ≤ 7π/8 3

3π/8 ≤ θ ≤ 5π/8 2

π/8 ≤ θ ≤ 3π/8 1

4.3.2 Experimental Results

CALC for single non-holonomic collision avoidance is implemented on a Gazebo sim-

ulator with Robot Operating System (ROS) [35] and RosPy. The overall simulation

environment is described in Fig. 4.4. For the agent and obstacles, iRobot Create mo-

bile robot [38], whose radius equals to 0.18m is used. The only thing that the agent can

perceive is the current position of obstacles inside the sight range and the local goal as

described in Fig. 4.1.

On the planning algorithm, the agent must travel from starting position [0m 0m]

to the goal point [10m 10m]. Between the start position and the goal point, moving

obstacles are distributed with random dynamics. The experiments are proceeded with

different number of obstacles from 5 to 10. When the agent collides with both obstacles

or goal point, the current episode is terminated. The overall experimental result is listed

on the Table 4.3. In every experiments, there exists 2 to 3 collision cases that the agent

33

cannot handle. For example, if the agent is surrounded completely by obstacles, the

agent cannot do anything but waiting. These cases do not indicate algorithmic flaw so

it can be neglected. Thus, the success rate of Table 4.3 can increase if those cases are

excluded. The experimental result proved that the performance of CALC is consistent

regardless of obstacle numbers. For the experiments, 200 episodes are used to check

the success rate.

Table 4.3: Comparison with different obstacle number

Number of obstacles Success Rate

5 100.0 %

6 95.52 %

7 89.05 %

8 87.56 %

9 87.87 %

10 90.05 %

34

Goal
GoalAgent

Obstacles

Figure 4.4: Gazebo simulation image of planning environment. Both agent and ob-

stacles are iRobot Create model and goal point is expressed as a cylinder. The image

describes the situation when the agent reaches the goal point.

35

Chapter 5

Multi-Robot Collision Avoidance

5.1 Introduction

In a multi-robot collision avoidance problem, multiple agent robots are included. The

purpose of agent robots is to reach their own goal points without colliding with each

other. In the point of one agent robot, other robots are regarded as obstacles. In some

circumstances, there exists unknown obstacles with random dynamics. If there are ob-

stacles inside the environment, the agent robots should avoid them also. The collision

can be defined as illustrated in Chapter 4.1. Each robot derives its own action based on

the learned policy of Chapter 3 which is expressed as a probability distribution. Also, to

apply the learned policy into non-holonomic robots, holonomic to non-holonomic con-

version method is proposed in this chapter. The experiments are conducted with both

simulation and real-world experiment. For simulation, Gazebo simulator with Robot

Operating System (ROS) is used. For real-world experiment, e-puck mobile robot is

used.

36

5.2 Approach

The main planning algorithm for multi-robot collision avoidance problem is described

in Algorithm 3. First, the agent robot detects the local obstacles and a local goal. Goal

information is given for the local goal. In the point of one agent robot, other robots are

perceived as obstacles. Second, the agent robot derives the colliding policy for each

obstacle and reverse the policy. Colliding policy for the local goal is also calculated.

After that, the policies are converged with element-wise multiplication and the optimal

action vector is derived. The process is proceeded in each agent robot.

Since the agent robot of the training algorithm from Chapter 3 is assumed to be a

holonomic robot, conversion from holonomic to non-holonomic is necessary to apply

the algorithm into non-holonomic robots. The optimal action derived from the plan-

ning algorithm gives information about the direction that the robot should move which

is called a desired direction. Therefore, the robot should simultaneously change its

Algorithm 3 Planning Algorithm for Multi-Robot Collision Avoidance
Require: MDP (S, A, D, R), no, na

Ensure: action vector a∗

1: for j = 1, ... ,na do

2: for i = 1, ... ,no do

3: ao = ao � (1− ait)

4: end for

5: ao = f(ao) � ag

6: (a∗)j = ao ·
(
(ao)T1

)−1
7: end for

8: return a∗

37

heading by angular velocity and move toward the direction by linear velocity. First,

the angular velocity is set as proportional to the difference between the heading of

agent robot, θh, and the desired direction, θ∗, derived from the policy. The angular

velocity can be expressed as follows:

vang = k(θh − θ∗) (5.1)

where vang stands for angular velocity and k indicates the empirical proportional fac-

tor. The linear velocity can be calculated based on the following equation:

vlin = −2vmax
π2

(θh − θ∗)2 + vmax (5.2)

where vmax and vlin stands for maximum and linear velocity respectively. With the

equation (5.2), the robot can move forward when the difference between θh and θ∗ is

from−π/
√

2 to π/
√

2. This can make the robot pursue forward movement rather than

backward which is more reasonable in the real-world scenario.

The overall concept is described in Fig. 5.1. Each robot has its own goal point and

they are described as same color. For example, red robot which is in the lower left part

of Fig. 5.1 should reach to the dotted red circle which is located in the upper right part.

Each robot derives its own probability distribution and chooses the action that has the

highest probability of avoiding other robots and obstacles.

38

angle(deg)
0-180 18090-90

p
ro
b
a
b
ili
ty

angle(deg)
0-180 18090-90

p
ro
b
a
b
ili
ty

angle(deg)
0-180 18090-90

p
ro
b
a
b
ili
ty

angle(deg)
0-180 18090-90

p
ro
b
a
b
ili
ty

Figure 5.1: An overview of the Multi-robot collision avoidance. The robots should

reach their goals separately without colliding with other robots. Each robot has its own

probability distribution that indicates the optimal direction for achieving two tasks: to

avoid collision and to reach a goal. The red arrows indicate the desired actions for

each robot and dotted circles are goal points. The goal points are illustrated with same

colors of the agent robots.

39

5.3 Experimental Results

5.3.1 Simulated Experiment

In the simulated training experiments, CALC is implemented on a Gazebo simulator

with Robot Operating System (ROS) [35] and RosPy. For the agent and obstacles,

round shaped robot model, iRobot Create mobile robot [38], whose radius equals to

0.18m is used. The iRobot Create mobile robot is a non-holonomic robot which can

move by two velocities, linear and angular. Even though the robot is a non-holonomic

model, holonomic motion is assumed during the training process. That is, iRobot Cre-

ate mobile robot is not controlled by linear and angular velocity in the training algo-

rithm. The purpose of the agents is to travel from their initial points to goal points

without colliding with other agent robots. All agent robots are initially located on the

edge of a rectangle shaped boundary and their goal points are diagonal vertices of the

rectangle. Some scenarios include interfering robots with random dynamics inside the

environment. The overall scenarios are described in Fig 5.2. The only thing that the

agent robot can observe is the current position of other robots inside the sight range

and the local goal. An episode is terminated at the time when all agent robots reached

their goal points or one of the agent collide with other robots including interfering

robots and other agent robots.

The proposed algorithm is compared with the state-of-the-art collision avoidance

method, Optimal Reciprocal Collision Avoidance (ORCA) [20], that can perform on

the planning environment. ORCA is implemented in Python by adapting the RVO2

library [39]. Since ORCA is for holonomic robots, holonomic to non-holonomic con-

version approach is applied to the algorithm. Also, additional information about the

velocity of other agent robots is provided to ORCA. In other words, communication

40

Figure 5.2: Three scenarios are conducted only with agent robots which are white

iRobot Create model. Other two scenarios are conducted with agent robots and inter-

fering robots with random dynamics which are described as red robots. The goal points

of each agent robot are the initial point of the counter robots. For example, on the 4

robots scenario (Left), the robot on the upper left should go to the lower right position

which is the initial point for counter robot. Simultaneously, the counter robot on the

lower right should move to the upper left position.

41

between the agent robots is assumed in ORCA. When all agent robots reached their

own goal points, the episode is counted as a successful episode. If one of the agent

robots collides with the other robots including the interfering robots, the episode is

regarded as fail. The overall results are demonstrated in Table 5.1. The result indicates

that CALC shows similar or higher performance than ORCA even though ORCA uses

the whole information about the environment. Additionally, there are two environ-

ments that contain interfering robots, one with two interfering robots and the other

with four interfering robots. The only information about the interfering robots that the

agent robots can receive is their position. The agent robots of both CALC and ORCA

cannot know the velocity data of the interfering robots. Even though the dynamics of

the interfering robots are unknown, CALC performed well compared with ORCA. The

success rates of the experiments are shown in Table 5.1.

42

Table 5.1: Comparison of Success Rate of CALC and ORCA

Method # of Robots
Success Rate

Constant Linear Quadratic

CALC
(Proposed)

4(0) 97.0% 100% 100%

8(0) 89.1% 98.0% 98.5%

12(0) 63.2% 91.0% 87.6%

4(2) 97.0% 95.0% 95.5%

4(4) 91.0% 86.6% 87.1%

ORCA
[20]

4(0) 100% 100% 100%

8(0) 90.1% 98.5% 92.5%

12(0) 56.7% 86.6% 86.5%

4(2) 92.5% 91.0% 86.6%

4(4) 88.6% 83.6% 77.6%

43

Mobile Robots

Monitoring System

Bluetooth
Communication

Multi-agent Tracking
System

Figure 5.3: An overview image of the intelligent space. Positions and orientations

of mobile robots can be tracked and monitored by multi-agent tracking system. The

robots can be controlled via bluetooth communication.

5.3.2 Real-World Experiment

To show the applicability of the proposed method to the real-world scenarios, addi-

tional experiments are conducted by using a real robot, e-puck [36]. E-puck is a 7cm

sized mobile robot with 2 wheels, 10 Light-Emitting Diodes (LED), 8 infrared sensors,

3 microphones, and 1 speaker. Fig. 5.5 is the picture of e-puck robot that is used in the

Figure 5.4: Five tags used for catching position and orientation information of the

robots.

44

Figure 5.5: An image of e-puck mobile robot used for the real world experiment. The

robot is two wheel-based mobile robot with 2 wheels, 10 light-emitting diodes, 8 in-

frared sensors, 3 microphones, and 1 speaker.

experiments. The experiments are done under the intelligent space (iSpace) [37] as

described in Fig. 5.3. In the iSpace, positions of the robots can be tracked by overhead

cameras and sensors. In the proposed method, one overhead camera is used for track-

ing e-puck robot. All e-puck robots have different tags on its head for identification as

described in Fig. 5.4. With the tags, iSpace can catch the position and orientation of

the robots.

The agent robot is trained from a simulation based training environment with sim-

ple game library named PyGame. Since PyGame is a pixel-based library, it is easy to

generate any shape of the robots. Circular shaped agent and obstacle which is the same

as e-puck robot is considered in the PyGame environment. Except for the shape and

the radius, other processes and parameters are as same as Chapter 3. The learning pro-

45

cess only took about 475 seconds with 3600 episodes. The trained policy of simulated

environment is well applied to the real-world environment without any re-training or

calibration. Since the method does not require learning process in the real world, the

robot does not need to be damaged during the trial and error. Also, it is independent

from any physical constraints such as battery level.

In the planning experiment, perfect sensing for local information is assumed. The

positions of each robot are collected by overhead video camera with matrox imag-

ing library (MIL). Each robot has independent tag on its head. MIL camera system

detects the tag and finds the position and orientation of the robots. Even though all

positions of the robots are collected, the restricted information, which are positions of

the other robots within limited sight range, are provided to each robot. The collected

data are transmitted to main computer via Transmission Control Protocol/Internet Pro-

tocol (TCP/IP) communication. With the data, the main computer derives the action

for each robot. The robots are controlled separately with linear and angular velocity

instructions via Bluetooth communication. Additionally, reliability scores, which in-

dicate whether the perceived positions are reliable or not, are conveyed to the main

computer. If the reliability score of a robot does not exceed 80%, the main computer

refuses to move the robot. The overall settings of the experiments are expressed in Fig.

5.6.

46

LAN
Mil CameraMonitoring PC

TCP/IP

Obstacle Robot

Position

Agent Robot

Position
Q-Value

Critic

Actor

Output

Holonomic to

Nonholonomic

Conversion

Linear

Velocity

Angular

Velocity

Bluetooth

Figure 5.6: Real-world planning experiment environment setting with e-puck mobile

robot. The obstacle and agent robot positions are collected from mil camera. With the

collected data, the actor-critic network generates linear and angular velocity. Lastly,

generated velocities are conveyed to the each e-puck robot via Bluetooth communica-

tion.

47

The experiment is conducted with different number of agents, 2, 3, 4, and 5. The

resulting paths of real-world experiment are described in Fig. 5.7. Since the method is

a decentralized local planner, the agent robot changes its direction only when the other

robots are detected in the sight range. The resulting paths show that the agents have

safely reached their goal points without any collision.

Figure 5.7: The resulting paths for 2, 3, 4, and 5 agent robots experiment. With the

trained policy from the simulated environment, real e-puck robots can successfully

avoid other robots and reach to the goal without any re-training.

48

Table 5.2: Consuming Time for One Successful Episode

Velocity Model Constant Linear Quadratic

Average 54.14s 113.71s 37.12s

Median 54.01s 96.49s 35.88s

Standard Deviation 20.52 75.44 8.90

5.3.3 Holonomic to Non-Holonomic Conversion Experiment

For holonomic to non-holonomic conversion approach, three different linear velocity

(vlin) models are tested. The overall system is described in Fig. 5.8. First model is a

constant model as follows:

vlin =

vmax, if |(θh − θ∗)| ≤ π

2

−vmax, else

(5.3)

Second model is a linear model as described as follows:

vlin =

−2vmax

π (θh − θ∗) + vmax, if 0 ≤ θh − θ∗

2vmax
π (θh − θ∗) + vmax, else

(5.4)

Final model is a quadratic model as demonstrated in equation (5.2). All equations are

designed to drive a robot with vmax when θh − θ∗ = 0 and −vmax in |θh − θ∗| = 2π.

The success rates of three models are listed on Table 5.1. Even though the constant

model results in the highest success rate in some scenarios, it is not appropriate for

both CALC and ORCA since it does not guarantee the steady performance.

In the quadratic model, forward movement covers bigger range (|θh−θ∗| ≤ π/
√

2)

than backward movement (|θh − θ∗| ≥ π/
√

2) whereas in the other two models, for-

ward and backward movement covers equally (|θh− θ∗| ≤ π/2 and |θh− θ∗| ≥ π/2).

49

Therefore, with linear and constant models, the robot used to oscillate back and forth

a lot and this increases consuming time per one episode. However, since quadratic

model prefers forward moving, the model did not show the oscillating movement and

this results in less consuming time. Data about consuming time are listed in Table 5.2.

It is obvious that the quadratic model consumes less time than other two models and it

has less standard deviation. This indicates that the quadratic model is appropriate for

CALC even though the success rate of the linear and the quadratic model are similar.

The experiment was conducted by 8 multi-robot system scenario with no interfering

robots.

50

Robot
Heading

Desired
Direction

Figure 5.8: The angular velocity is decided proportional to the difference between

robot heading and desired direction (∆θ). Also, linear velocity is arranged with respect

to three models: constant, linear, and quadratic.

51

Chapter 6

Conclusion

In this thesis, a method for single robot and multi-robot collision avoidance problem by

using the concept of reinforcement learning is suggested. First, a new idea of learning

collision is suggested in the thesis. The method learns collision instead of avoiding an

obstacle in the training environment which comprise of one agent robot, one obstacle,

and training range. In the training environment, the agent robot learns how to collide

with the obstacle and derives the colliding policy. The experimental result shows the

efficiency of the collision-learning method.

Second, a method for expanding the pre-trained policy into high-dimensional prob-

lem is proposed. The pre-trained policy from the restricted and small-sized environ-

ment can be applied to the problems with multiple obstacles and robots such as sin-

gle robot collision avoidance and multi-robot collision avoidance. In other words, by

learning collision with only one obstacle, the agent can successfully solve the prob-

lems with multiple dynamic obstacle or multiple agent robots. To avoid obstacles and

other robots, the actions derived from the policy should be reversed. Simultaneously, to

pursue a goal point, the actions for the goal should be applied directly. By this process,

52

the agent robot can successfully reach the goal point without collision.

Third, the method is successfully applied to both holonomic and non-holonomic

robots. The simulated experiments with PyGame and Gazebo simulator with ROS are

conducted to prove the performance of the proposed algorithm. Holonomic robot ex-

periments are conducted with PyGame simulator. Non-holonomic robot experiments

are conducted with Gazebo simulator with iRobot Create mobile robot. The experi-

mental results show that the proposed method can guarantee higher performance in

avoiding collision compared with other methods such as RVO, PEARL and ORCA.

Finally, the experiment with real e-puck mobile robot shows the applicability of

the proposed method into real-world robots such as Unmanned Ground Vehicle (UGV)

and car. It also shows that the learned policy from the simulation can be directly applied

to the real robots without re-training. This enables the system to avoid damaging of

robots during the trial and error in the reinforcement learning process. Furthermore,

the method is successfully implemented into two different non-holonomic robot types:

iRobot Create and e-puck. This shows the scalability of the proposed method that the

algorithm can be applied to any robot regardless of its type.

In future work, the proposed method can be applied to the robots with high degree

of freedom (DOF) such as quadrotors and UAVs. Mobile robots used in the experi-

ments of the proposed method move on the 2D plane. However, quadrotors and UAVs

should move in 3D space which needs additional actions compared with the mobile

robots. Therefore, expansion of the action space should be required. Also, current ac-

tion covers 8 cardinal directions and one static. This can be specified into more detailed

action space such as 16 directions or more. With the expansion, the robot can move

more accurately and smoothly.

53

Additionally, more real-world experiments should be conducted in order to prove

the applicability of the proposed method. In the thesis, only one real-world robot, e-

puck, is used for the experiment. However, additional experiments with other mobile

robots such as Turtlebot and Pioneer robot can be proceeded. Also, not only two-

wheeled mobile robot, but also other type of non-holonomic robots such as car-like

robot or bicycle-like robot can be used for the experiment.

Moreover, it is possible to improve the holonomic to non-holonomic conversion

method with more precise and detailed function. In this thesis, only three functions,

constant, linear and quadratic, are used for the conversion. However, other functions

such as logarithmic function can make an improved performance. It should be proved

with more precise experiments. Therefore, detailed analysis for the conversion method

should be proceeded. Also, comparison between existing holonomic to non-holonomic

conversion method such as Non-holonomic ORCA (NH-ORCA) [40] and the proposed

method should be conducted.

54

Bibliography

[1] E. Yoshida, C. Esteves, T. Sakaguchi, J. P. Laumond, and K. Yokoi, “Smooth

collision avoidance: Practical issues in dynamic humanoid motion,” in Proceed-

ings of IEEE/RSJ International Conference on Intelligent Robots and Systems,

Beijing, China, October 2006, pp. 827-832.

[2] D. Gandhi and E. Cervera, “Sensor covering of a robot arm for collision avoid-

ance,” in Proceedings of IEEE International Conference on Systems, Man and

Cybernetics, Washington D.C., USA, October 2003, pp. 4951-4955.

[3] M. Hoy, A. S. Matveev, and A. V. Savkin, “Algorithms for collision-free navi-

gation of mobile robots in complex cluttered environments: a survey,” Robotica,

vol. 33, no. 3, pp. 463-497, 2015.

[4] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of motion

planning and control techniques for self-driving urban vehicles,” IEEE Transac-

tions on intelligent vehicles, vol. 1, no. 1, pp. 33-55, 2016.

[5] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger, “Deep

reinforcement learning that matters,” arXiv preprint arXiv:1809.06560, 2017.

55

[6] Y. Li, “Deep reinforcement learning: An overview” arXiv preprint arXiv:

1701.07274, 2017.

[7] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,

A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D.

Hassabis, “Human-level control through deep reinforcement learning,” Nature,

vol. 518, no. 7540, pp. 529-533, 2015.

[8] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche,

J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman,

D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K.

Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of Go with

deep neural networks and tree search,” Nature, vol. 529, no. 7587, pp. 484-489,

2016.

[9] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T.

Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van

den Driessche, T. Grapel, and D. Hassabis, “Mastering the game of Go without

human knowledge,” Nature, vol. 550, no. 7676, pp. 354-359, 2017.

[10] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, F. -F. Li, and A. Farhadi,

“Target-driven visual navigation in indoor scenes using deep reinforcement learn-

ing,” in Proceedings of IEEE International Conference on Robotics and Automa-

tion, Singapore, May 2017, pp. 3357-3364.

[11] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning hand-

eye coordination for robotic grasping with deep learning and large-scale data

56

collection,” The International Journal of Robotics Research, vol. 37, no. 4-5, pp.

421-436, 2018.

[12] R. S. Sutton, A. G. Barto, and F. Bach, Reinforcement learning: An introduction,

MIT press, 1998.

[13] A. Y. Ng, “Shaping and policy search in reinforcement learning,” Ph. D. Disser-

tation, CS Department, Univ. of California, Berkeley, 2003.

[14] D. Mellinger, A. Kushleyev, and V. Kumar, “Mixed-integer quadratic program

trajectory generation for heterogeneous quadrotor teams,” in Proceedings of

IEEE International Conference on Robotics and Automation, St. Paul, MN, USA,

May 2012, pp. 477-483.

[15] D. Connel and H. Manh La, “Extended rapidly exploring random tree-based dy-

namic path planning and replanning for mobile robots,” International Journal of

Advanced Robotic Systems, vol. 15, no. 3, p. 1729881418773874, 2018.

[16] M. Otte and E. Frazzoli, “Rrtx: Asymptotically optimal single-query sampling-

based motion planning with quick replanning,” The International Journal of

Robotics Research, vol. 35, no. 7, pp. 797-822, 2016.

[17] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments using ve-

locity obstacles,” The International Journal of Robotics Research, vol. 17, no. 7,

pp. 760-772, 1998.

[18] J. Van Den Berg, M. Lin, and D. Manocha, “Reciprocal velocity obstacle for real-

time multi-agent navigation,” in Proceedings of IEEE International Conference

57

on Robotics and Automation, Pasadena, California, USA, May 2008, pp. 1928-

1935.

[19] J. Snape, J. Van Den Berg, S. J. Guy, and D. Manocha, “The hybrid reciprocal

velocity obstacle,” IEEE Transactions on Robotics, vol. 27, no. 4, pp. 696-706,

2011.

[20] J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal n-body colli-

sion avoidance,” in Robotics research, ser. Springer Tracts in Advanced Robotics,

C. Pradalier, R. Siegwart, and G. Hirzinger, Eds. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2011, vol. 70, no. STAR, pp. 3–19.

[21] O. Montiel, U. Orozco-Rosas, and R. Sepúlveda, “Path planning for mobile

robots using bacterial potential field for avoiding static and dynamic obstacles,”

Expert Systems with Applications, vol. 42, no. 12, pp. 5177-5191, 2015.

[22] D. Gandhi, L. Pinto, and A. Gupta, “Learning to fly by crashing,” in Proceed-

ings of IEEE/RSJ International Conference on Intelligent Robots and Systems,

Vancouver, Canada, September 2017, pp. 3948-3955.

[23] U. Muller, J. Ben, E. Cosatto, B. Flepp, and Y. L. Cun, “Off-road obstacle avoid-

ance through end-to-end learning,” in Advanced in neural information processing

systems, pp. 739-746, 2006.

[24] L. Tai, S. Li, and M. Liu, “A deep-network solution towards model-less obstacle

avoidance,” in Proceedings of IEEE/RSJ International Conference on Intelligent

Robots and Systems, Daejeon, Korea, October 2016, pp. 2759-2764.

58

[25] M. Pfeiffer, M. Schaeuble, J. Nieto, R. Siegwart, and C. Cadena, “From per-

ception to decision: A data-driven approach to end-to-end motion planning for

autonomous ground robots,” in Proceedings of IEEE International Conference

on Robotics and Automation, Singapore, May 2017, pp. 1527-1533.

[26] S. Ross, N. Melik-Barkhudarov, K. S. Shankar, A. Wendel, D. Dey, J. A. Bagnell,

and M. Hebert, “Learning monocular reactive uav control in cluttered natural

environments,” in Proceedings of IEEE International Conference on Robotics

and Automation, Karlsruhe, Germany, May 2013, pp. 1765–1772.

[27] D. K. Kim and T. Chen, “Deep neural network for real-time autonomous indoor

navigation,” arXiv preprint arXiv:1511.04668, 2015.

[28] J. Sergeant, N. Sünderhauf, M. Milford, and B. Upcroft, “Multimodal deep au-

toencoders for control of a mobile robot,” in Proceedings of Australasian Con-

ference for Robotics and Automation, Canberra, Australia, Dec. 2015.

[29] 전호웅,이범희, “저차원학습환경을이용한고차원환경의동적장애물회피

방법,” 제어로봇시스템학회 2018년 제33회 학술대회, 2018년 05월. pp. 214-

215.

[30] A. Faust, H. T. Chiang, N. Rackley, and L. Tapia, “Avoiding moving obstacles

with stochastic hybrid dynamics using PEARL: PrEference Appraisal Reinforce-

ment Learning,” in Proceedings of IEEE International Conference on Robotics

and Automation, Stockholm, Sweden, May 2016, pp. 484-490.

[31] W. Ding, S. Li, and H. Qian, “Hierarchical reinforcement learning framework

towards multi-agent navigation,” arXiv preprint arXiv:1807.05424, 2018.

59

[32] P. Shinners, “Pygame,” 2011.

[33] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Advances in Neural

Information Processing Systems, 2000, pp. 1008–1014.

[34] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Interna-

tional Conference on Learning Representations, vol. 5, 2015.

[35] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,R. Wheeler, and

A. Y. Ng, “Ros: an open-source robot operating system,” in IEEE International

Conference on Robotics and Automation Workshop on open source software, vol.

3, no. 3.2, Kobe, Japan, 2009, p. 5.

[36] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz, S. Magnenat,

J.-C. Zufferey, D. Floreano, and A. Martinoli, “The e-puck, a robot designed for

education in engineering,” in Proceedings of the 9th Conference on Autonomous

Robot Systems and Competitions, vol. 1, no. LIS-CONF-2009-004. IPCB: Insti-

tuto Polite cnico de Castelo Branco, 2009, pp. 59–65.

[37] Doojin Kim, “Operation of an intelligent space with heterogeneous sensors,” Ph.

D. Dissertation, EECS Department, Seoul National University, 2014.

[38] M. Dekan, F. Duchon, et al., “irobot create used in education,” Journal of Me-

chanics Engineering and Automation, vol. 3, no. 4, pp. 197-202, 2013.

[39] J. Van Den Berg, S. J. Guy, J. Snape, M. C. Lin, and D. Manocha, “Rvo2

library: Reciprocal collision avoidance for real-time multi-agent simulation,”

http://gamma.cs.unc.edu/RVO2/, 2011

60

[40] J. Alonso-Mora, A. Breitenmoser, M. Rufli, P. Beardsley, and R. Siegwart,

“Optimal reciprocal collision avoidance for multiple non-holonomic robots,”

in Distributed Autonomous Robotic Systems, ser. Springer Tracts in Advanced

Robotics, vol.83, 2013, pp. 203-216.

61

초록

본논문에서는강화학습기반의충돌회피방법을제안한다.충돌회피란로봇

이 다른 로봇 또는 장애물과 충돌 없이 목표 지점에 도달하는 것을 목적으로 한다.

이문제는단일로봇충돌회피와다개체로봇충돌회피,이렇게두가지로나눌수

있다.단일로봇충돌회피문제는하나의중심로봇과여러개의움직이는장애물로

구성되어 있다. 중심 로봇은 랜덤하게 움직이는 장애물을 피해 목표 지점에 도달

하는 것을 목적으로 한다. 다개체 로봇 충돌 회피 문제는 여러 대의 중심 로봇으로

구성되어 있다. 이 문제에도 역시 장애물을 포함시킬 수 있다. 중심 로봇들은 서로

충돌을회피하면서각자의목표지점에도달하는것을목적으로한다.만약환경에

예상치못한장애물이등장하더라도,로봇들은그것들을피해야한다.

이 문제를 해결하기 위하여 본 논문에서는 충돌 회피를 위한 충돌 학습 방법

(CALC) 을 제안한다. CALC는 강화 학습 개념을 이용해 문제를 해결한다. 제안하

는방법은학습그리고계획이렇게두가지환경으로구성된다.학습환경은하나의

중심로봇과하나의장애물그리고학습영역으로구성되어있다.학습환경에서중

심로봇은장애물과충돌하는법을학습하고그에대한정책을도출해낸다.즉,중심

로봇이장애물과충돌하게되면그것은양의보상을받는다.그리고만약중심로봇

이 장애물과 충돌 하지 않고 학습 영역을 빠져나가면, 그것은 음의 보상을 받는다.

계획환경은여러개의장애물또는로봇들과하나의목표지점으로구성되어있다.

62

학습환경에서학습한정책을통해중심로봇은여러대의장애물또는로봇들과의

충돌을피할수있다.본방법은충돌을학습했기때문에,충돌을회피하기위해서는

도출된정책을뒤집어야한다.하지만,목표지점과는일종의 ‘충돌’을해야하기때

문에,목표지점에대해서는도출된정책을그대로적용해야한다.이두가지종류의

정책들을 융합하게 되면, 중심 로봇은 장애물 또는 로봇들과의 충돌을 회피하면서

동시에목표지점에도달할수있다.학습환경에서로봇은홀로노믹로봇을가정한

다.학습된정책이홀로노믹로봇을기반으로하더라도,제안하는방법은홀로노믹

로봇과비홀로노믹로봇모두에적용이가능하다.

CALC는 다음의 세 가지 문제에 적용할 수 있다. 1) 홀로노믹 단일 로봇의 충

돌 회피. 2) 비홀로노믹 단일 로봇의 충돌 회피. 3) 비홀로노믹 다개체 로봇의 충돌

회피.제안된방법은시뮬레이션과실제로봇환경에서실험되었다.시뮬레이션은

로봇운영체제 (ROS)기반의시뮬레이터인가제보와게임라이브러리의한종류인

PyGame을 사용하였다. 시뮬레이션에서는 홀로노믹과 비홀로노믹 로봇을 모두 사

용하여실험을진행하였다.실제로봇환경실험에서는비홀로노믹로봇의한종류

인 e-puck로봇을사용하였다.또한,시뮬레이션에서학습된정책은실제로봇환경

실험에서재학습또는별도의수정과정없이바로적용이가능하였다.이러한실험

들의 결과를 통해 제안된 방법은 Reciprocal Velocity Obstacle (RVO) 또는 Optimal

Reciprocal Collision Avoidance (ORCA)와같은기존의방법들과비교하였을때향

상된성능을보였다.게다가,학습의효율성또한기존의학습기반의방법들에비해

높은결과를보였다.

주요어:충돌회피,경로계획,모바일로봇,다개체시스템,강화학습

학번: 2017-28406

63

감사의글

졸업논문을마무리하고마지막감사의글만을남겨두고있을때,어떻게하면

이부분을좀더인상깊게,진정성있게쓸수있을까고민을하다가연구실에비치

되어 있는 선배들의 먼지 쌓인 학위 논문을 하나 하나 펼쳐보았습니다. 80년대 말

역사의수레바퀴한중간을걸어오신선배님,직장을다니시다늦은나이에학문의

길로 다시 돌아오신 선배님, 오랜 시간 몸 담아온 서울대학교를 떠나는 아쉬움을

담은 글 등 다양하고, 또 공감가는 발자취들이 논문 위의 먼지 만큼이나 소복히 쌓

여있었습니다.이렇게깊이있고유구한역사를지닌연구실의마지막입학생이자,

마지막석사로서함께할수있었던것은저에게는너무나큰행운이자영광이었습

니다.그러기에이런자랑스러운연구실을만들고 30년간이끌어주신이범희교수

님께 가장 먼저 감사드립니다. 제가 어떤 선택을 하건 항상 격려해 주시고, 지원해

주시는교수님의모습에용기를얻고많은일을도전할수있었습니다.특히마지막

학기를교수님과더욱가깝게보낼수있던것은석사과정으로서는흔치않은일이

었다고생각합니다.자동화연구소와 301동을오가며나눈대화를통해교수님이저

뿐만아니라제자들을얼마나신경쓰시고,걱정하시는지직접느낄수있었습니다.

그리고부족한석사학위논문의심사를맡아귀한시간을내주신조동일교수님

께 감사드립니다. 2015년도에 교수님의 제어공학개론 수업을 통해 이쪽 분야에 처

음관심을갖게되었고,그것이지금이자리까지이어지게되었습니다.또한바쁘신

64

와중에도심사를맡아주신심형보교수님께도감사드립니다.지금까지도학생들과

함께 후배 교수의 수업을 청강하시며 새로운 학문을 배우려는 교수님의 열정적인

모습을보고정말많은것을느낄수있었습니다.

어떻게보면짧은시간이지만다른누구보다도짙게지냈던연구실선배님들께

도 감사 말씀 드립니다. 먼저 제가 입학함과 동시에 졸업을 해서 같이 지낸 시간은

길지 않지만 배려심이 느껴지는 재도형께 감사드립니다. 제가 이 석사학위 논문을

작성할 때에 가장 많이 참고한 논문이 형의 박사학위 논문입니다. 다행히 분야가

비슷해서제게많은도움이되었습니다.가끔연구실의경조사가있을때종종만났

는데, 앞으로는 더욱 자주 만날 수 있으면 좋겠습니다. 회사와 학위를 동시에 진행

하시느라 자주 마주치지 못했던 훈수형께도 감사드립니다. 끊임 없이 새로운 것에

관심을가지시는모습을보고많은자극을받았습니다.조금더길게함께했으면좋

았을텐데 아쉽습니다. 항상 유머를 잃지 않으시는 정현이형께도 감사드립니다. 형

이졸업하시고썰렁한농담을하는사람이없어서심심할때가많았습니다.그리고

저의진로에대해많이조언해주시고,좋은자료도제공해주셔서정말많은도움이

되었습니다. 젠틀하고 멋지신 원석이형께도 감사드립니다. 처음에 키와 외모를 보

고깜짝놀랐는데,연구도열심히하시는모습을보고너무불공평한거아닌가하는

생각을했습니다.최근에결혼하셨는데,형수님과앞으로행복한가정꾸리시길기

원하겠습니다.연구실의어머니와같았던현기형께도감사드립니다.너무세심하게

모든걸잘챙겨주시고,봐주시는모습에도움을정말많이받았습니다.바쁘신와중

에도제논문들을꼼꼼히봐주셔서제가많이발전할수있었습니다.마지막학기에

다행히 자동화연구소에서 함께 지낼 수 있어서 다행이라고 생각합니다. 저에게 선

생님과 같았던 현우형께도 감사드립니다. 연구실 기간동안 저에게 많은 Insight를

주었고,많은것을가르쳐준점정말감사드립니다.석사학위논문도형이조언해준

것으로부터 출발했다고 해도 과언이 아닐정도로 많은 도움을 받았습니다. 지금 그

65

열정과능력으로앞으로하고자하는것을꼭이루시길바랍니다.연구실에서가장

오랜시간함께보낸한준이형께도감사드립니다. 301동시절부터마지막학기자동

화연구소까지,연구실사람들중에가장긴시간을형과보냈습니다.마지막학기에

Intelligent Space를 사용할 때 많은 도움을 주셔서 연구를 잘 마무리할 수 있었습

니다. 교수님의 신뢰만큼 좋은 성과 내셔서 잘 졸업 하실거라 믿습니다. 항상 밝은

모습의지윤누나에게도감사드립니다.사실같은나이면서누나이기도한지라무언

가호칭이어색해서그런지선뜻친해지지못한것같습니다.돌이켜보면그게조금

아쉽긴 합니다. 올해 논문 성과를 잘 내셨는데, 이 추세대로 졸업까지 잘 마무리하

시길 바랍니다. 그리고 부지런한 원영이에게도 감사드립니다. 매일 새벽에 학교에

와서아침수영을하고가장먼저연구실문을여는부지런한모습을보고정말대단

하다는생각을많이했습니다.학문과건강모두열정적으로관리하는모습을보고

많이 반성했습니다. 연구실의 마지막 문을 아름답게 장식해줄 것이라고 믿습니다.

연구실에서는짧게스쳐갔지만학부시절부터저를잘챙겨주신진원이형께도감사

드립니다.형이연구실신입생일당시,셔틀버스에서저에게여기연구실을소개해

주신 기억이 있습니다. 덕분에 제가 이쪽 분야에 흥미를 가질 수 있었고, 여기까지

오게되었습니다.비록연구실에서는함께있지못했지만,앞으로자주볼수있으면

좋겠습니다. 또 같은 석사과정이었던 현일이에게도 감사의 인사를 전합니다. 입학

초창기에 저에게 스스럼 없이 말을 걸어주어서 편하게 금방 연구실에 적응할 수

있었습니다. 앞으로 깊은 신앙의 힘으로 많은 것을 이뤄낼 것이라고 믿습니다. 마

지막으로 준혁이에게도 고맙다는 말을 전합니다. 워낙 박학다식하여 제가 자극도

많이받았고,또모르는게있을때많은도움을받았습니다. 301동의마지막학기에

둘이서같이가깝게지낼수있어서다행이었다고생각이듭니다.뛰어난능력만큼

앞으로어느진로를가더라도잘할것이라믿습니다.

그리고매일같이운동하고,술도자주마신전기·정보공학부 R반 10학번동기

66

들에게도감사의인사를전합니다.덕분에학부생활도,대학원생활도지루할틈이

없었습니다.그리고저의대학생활을아름답게채워준김경래밴드형,누나들에게

감사드립니다. 음악 뿐만 아니라 다양한 분야에서 각자 최선을 다하고 또 성취하

시는모습을보고많이배웠습니다.더불어저를많이응원해주고무엇을하든박수

쳐주던분당대진고등학교친구들에게도감사드립니다.응원덕분에자신감을갖고

많은것을도전해볼수있었습니다.

마지막으로누구보다도저를제일지지해주시고응원해주신부모님께감사드

립니다.제가큰부담없이제앞길을자유롭게선택할수있었던이유는항상저의

선택을 믿고 지지해주시는 부모님이 계셨기 때문입니다. 아직까지 제대로 된 효도

한번못해드려서항상죄송한마음뿐입니다.저의앞길이어디로흘러갈지완전히

정해지지 않았지만, 어디를 가든 열심히 노력해서 하루라도 빨리 효도하는 아들이

되도록하겠습니다.

석사 졸업하는 2019년은 제가 서울대학교에 입학한지 10년째 되는 해입니다.

그만큼 ‘서울대학교’라는글씨만봐도여러개의추억의구슬이기억의실에하나,

하나씩 연결됩니다. 수업 프로젝트를 위해 밤새 301동 전산실에서 치열하게 컴퓨

터와 씨름했던적도 있었고, 샤 모양의 정문 밑을 지나는 것이 너무 설레고 좋아서

한동안 일부러 정문쪽으로 돌아서 학교를 올라갔던 시절도 있었습니다. 또 첫 오

리엔테이션을마치고학관에서토큰같은 1700원짜리식권으로학식을처음먹은

때도 생각납니다. 이렇게 추억의 구슬을 하나 하나씩 짚어 올라가다 보면 가장 첫

구슬에는 제가 프린트 한 서울대 합격증을 보시며 기뻐하시던 할머니의 모습이 있

습니다.지금저의모습을보셨다면그때보다더기뻐해주셨을것이라고믿습니다.

67

	1. Introduction
	1.1 Motivations
	1.2 Contributions
	1.3 Organizations

	2 Related Work
	2.1 Reinforcement Learning
	2.2 Classical Navigation Methods
	2.3 Learning-Based Navigation Methods

	3. Learning Collision
	3.1 Introduction
	3.2 Learning Collision
	3.2.1 Markov Decision Process Setup
	3.2.2 Training Algorithm
	3.2.3 Experimental Results

	4. Single Robot Collision Avoidance
	4.1 Introduction
	4.2 Holonomic Robot Obstacle Avoidance
	4.2.1 Approach
	4.2.2 Experimental Results

	4.3 Non-Holonomic Robot Obstacle Avoidance
	4.3.1 Approach
	4.3.2 Experimental Results

	5. Multi-Robot Collision Avoidance
	5.1 Introduction
	5.2 Approach
	5.3 Experimental Results
	5.3.1 Simulated Experiment
	5.3.2 Real-World Experiment
	5.3.3 Holonomic to Non-Holonomic Conversion Experiment

	6. Conclusion
	Bibliography
	초록
	감사의 글

<startpage>12
1. Introduction 1
 1.1 Motivations 1
 1.2 Contributions 6
 1.3 Organizations 7
2 Related Work 8
 2.1 Reinforcement Learning 8
 2.2 Classical Navigation Methods 11
 2.3 Learning-Based Navigation Methods 13
3. Learning Collision 17
 3.1 Introduction 17
 3.2 Learning Collision 18
 3.2.1 Markov Decision Process Setup 18
 3.2.2 Training Algorithm 19
 3.2.3 Experimental Results 22
4. Single Robot Collision Avoidance 25
 4.1 Introduction 25
 4.2 Holonomic Robot Obstacle Avoidance 26
 4.2.1 Approach 26
 4.2.2 Experimental Results 29
 4.3 Non-Holonomic Robot Obstacle Avoidance 31
 4.3.1 Approach 31
 4.3.2 Experimental Results 33
5. Multi-Robot Collision Avoidance 36
 5.1 Introduction 36
 5.2 Approach 37
 5.3 Experimental Results 40
 5.3.1 Simulated Experiment 40
 5.3.2 Real-World Experiment 44
 5.3.3 Holonomic to Non-Holonomic Conversion Experiment 49
6. Conclusion 52
Bibliography 55
초록 62
감사의 글 64
</body>

