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Abstract 

 
Recognizing and classifying paralinguistic signals, with its 

various applications, is an important problem. In general, this 

task is considered challenging because the sound information 

from the signals is difficult to distinguish even by humans. Thus, 

analyzing signals with machine learning techniques is a 

reasonable approach to understanding signals. Audio features 

extracted from paralinguistic signals usually consist of high-

dimensional vectors such as prosody, energy, cepstrum, and 

other speech-related information. Therefore, when the size of 

a training corpus is not sufficiently large, it is extremely 

difficult to apply machine learning methods to analyze these 

signals due to their high feature dimensions. This paper 

addresses these limitations by using neural networks' feature 

learning abilities. First, we use a neural network-based 

autoencoder to compress the signal to eliminate redundancy 

within the signal feature, and we show than the compressed 

signal features are competitive in distinguishing the signal 

compared to the original methods such as logistic regression, 

support vector machine, decision trees, and boosted trees. 
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Chapter 1. Introduction 
 

 

Neural network-based models have achieved state-of-the-

art performances in diverse applications, such as computer visio

n, neural machine translation, recommendation systems, and oth

er task-oriented areas [1]-[3]. Along with such impressive ad

vancements, statistical speech processing has also demonstrated

 many advantages when adopting a neural network-based archit

ecture. For instance, Amodei et al. [4] demonstrated that a con

volutional architecture with a recurrent architecture can achieve

 great performance in speech recognition due to its abilities to l

earn more salient features in the time domain and temporal dep

endencies within the utterance. Synthesizing speech with a neur

al network architecture has also been successful [5] by utilizin

g the neural network's feature learning ability to incorporate ea

ch text-to-speech module to reduce extensive domain expertis

e and complexity. 

In addition, diverse areas exist in the area of paralinguistic si

gnals, such as analyzing the tone/pitch of the voice, nuance, an

d speech with upper respiratory symptoms [6]. Including these,

 all paralinguistic studies are receiving growing attention providi

ng considerable assistance in medical science, psychology, and 

general engineering fields. 

However, one of the biggest difficulties in analyzing paralinguis

tic signals lies in its ambiguity that is indistinguishable even

 by humans. Thus, researchers have adopted various aspects of

 a signal, such as prosody, energy, and cepstrum, to analyze th

e signal. In addition, only a small number of paralinguistic signal

s in a dataset is usually acquired in real situations for training t

he model, implying that the model is not able to sufficiently lea

rn the feature representations. To address this issue, Sahu et al.

 [7] used adversarial autoencoders for dimension reduction and

 showed that compressed signal representations do not significa
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ntly harm overall emotion recognition performance by comparing

 classification accuracy in original/compressed feature settings. 

In this paper, we suggest using various machine learning tec

hniques, such as autoencoders (AE), principal component analy

sis (PCA), and linear discriminant analysis (LDA), for feature 

dimension reduction on two different feature sets extending th

e research in [7]. With the compressed features, we adopt ma

chine learning models such as multilayer perceptron (MLP), su

pport vector machine (SVM), logistic regression (LR), decision

 tree (DT), and boosted tree (XGB) for classifying the paralin

guistic signals. 

Experimental results show that most of the models trained w

ith the compressed features provide competitive classification a

ccuracy compared to that of the models trained with original fe

atures. In particular, the accuracy with AE-compressed feature

s reached the highest, even overwhelming the original features

 in some cases. We strongly believe that our approach lessens

 the insufficient training corpus problem by reducing the redun

dancy in the high-dimensional features. For the classifier mod

el, the MLP almost always outperforms other models in classif

ying the signal in the compressed/original feature setup. Hence,

 we suggest utilizing MLP based on AE-compressed features f

or efficient signal classification. 
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Chapter 2. Related Work 
 

 

     One of the most prominent problems in paralinguistic sign

al processing studies is speech emotion recognition, as it is a 

crucial factor in optimal human-computer interaction, including

 dialog systems [8]. The challenge that speech emotion recogn

ition poses is predicting the emotion behind the speech and cla

ssifying it into one of the following categories: happy, sad, neu

tral, and angry. To achieve this goal, classic machine learning a

lgorithms, such as the hidden Markov model (HMM), support v

ector machines (SVM), and decision trees, have been adopted 

[9]–[11]. Later, several studies started utilizing deep learning

 architectures for speech emotion recognition. A feedforward 

neural network has been used to extract window-level feature

s, summarize them into a single utterance-level feature with s

ome statistical functions, and generate an output prediction wit

h an extreme learning machine (ELM) [12]. Since the deep ne

ural network with ELM model estimates the probability for eac

h frame of small window length, Lee et al. [13] suggested a d

eep bidirectional long short-term memory (LSTM) architecture

 on a low-level acoustic feature set to incorporate long contex

tual effect and to avoid the vanishing gradient problem. As an 

effort to consider regionally salient information within a signal,

 Aldeneh et al. [14] extracted 40-dimensional log Mel filterba

nk features (MFBs) from the raw signal and applied convolutio

n layers, max-pooling layers, and dense layers followed by a 

softmax layer to categorize each utterance into emotion label

s. 
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Chapter 3. Task Description 
 

 

This paper concentrates on two paralinguistic tasks that inv

olve classification problems using a small amount of data (i.e., 5

02, 3342 training instances) with high-dimensional features. Ou

r objective in each task is to build a model that achieves the b

est classification accuracy. To evaluate the performance of the 

model, we use weight accuracy recall (WAR), the ratio of corre

ct predictions to the whole test samples, which is widely used

 in this study. 

The heartbeat classification task: This task focuses on distinguis

hing anomalies of heartbeat sounds. The given types of heartbea

t sounds are “normal”, “mild”, and “moderate” and “seve

re” (heart disease). For this task, the Heart Sounds Shenzhen 

(HSS) corpus is gathered from 170 subjects (115 male/55 fem

ale, ages ranging from 21 to 88). The data set includes 502, 1

80 and 163 utterances for training, validation, and testing, respe

ctively. 

The atypical affect classification task: An emotion of disabled sp

eakers is recognized. The emotion classes are defined as “ang

ry”, “happy”, “sad” and “neutral”. To gather the Emotion

al Sensitivity Assistance System for People with Disabilities (E

motAsS) dataset, 15 mentally, neurologically, or physically disa

bled individuals (7 male / 8 female, ages ranging from 20 to 5

8) were recorded spontaneously in a familiar room in their wor

kplace. Under the supervision of a psychologist, five different ta

sks were performed to generate emotional utterances: describin

g images, talking about specific topics, telling a story of a pictu

red book, introducing their everyday business, and playing toget

her games. The corpus contains 3342 and 4186 utterances for 

training and testing, respectively [15], [16]. 
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Chapter 4. Proposed Framework 
 

 

4.1. Feature sets 
 

To explore feature reduction effects on various feature sett

ings, we use the Interspeech 2018 ComParE [17] and emobase 

features extracted using the openSMILE toolkit [18] on all task 

corpora. These features include signal processed features such 

as mel-frequency cepstral coefficients (MFCC), F0, and log me

l frequency. In addition, they contain statistical functional featur

es within certain time frames. The dimensions of the features 

within each utterance is fixed to 6,373 and 1,582 in ComParE 

and emobase, respectively. 

 

 

4.2. Compression methods 
 

   In this study, various machine learning techniques are sugg

ested for feature dimension reduction to investigate its efficac

y on two different feature sets. These techniques include not 

only classical approaches such as PCA and LDA but also recen

t neural network-based AEs. 

 

Principal component analysis (PCA): PCA is an unsupervised le

arning technique that aims to identify the principal components 

that maximize the variance of transformed data points. Compres

sed test features are obtained by transforming original test fea

tures with pretrained PCA parameters. We use PCA for compr

essing features into 2- and 200-dimensional spaces (PCA-2 

and PCA-200, respectively). 

 

Linear discriminant analysis (LDA): Unlike PCA, the LDA uses 

the label information of the training set so that it minimizes th
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e distance between the same labels and separates data points 

belonging to different labels as much as possible. To perform t

his, we find a linear transformation that maximizes the ratio of 

“between class scatter” and “within class scatter”. Unlike 

PCA and AE, we set the dimension of the latent code vector a

s N−1, where N is the number of classes in the training corp

us. 

 

Autoencoder (AE): This is basically a neural network encoding

 the original feature vector into a latent vector of small dimens

ions and decoding the latent vector into the reconstruction vecto

r of the original dimension. We use the mean square error (MS

E) between the original feature vector and the reconstruction 

vector as a loss function, which aims to efficiently contain info

rmation on the original features in the latent vector. For the im

plementation, we use three dense layers with a Selu activation

 function [19] and batch normalization to stabilize the training 

procedure. To avoid overfitting, we adopt early stop criteria w

hen the validation MSE loss starts to increase. With the traine

d model, we extract latent vectors by encoding the original fea

tures of the training and testing dataset. In all tasks, ComParE 

and emobase features of the training set are encoded into 400

- and 200-dimensional Euclidean space, respectively. 

 

4.3. Classification methods 
 

   Four classical classifiers and neural network-based model 

are used for our tasks. 

 

Logistic regression (LR): As a basic classification model, it use

s a logistic function with trainable parameters to assign a prob

ability for each label given each feature. The parameters are u

pdated through gradient descent. 
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Support vector machine (SVM): The goal of the support vector 

machine is to find a decision boundary that maximizes the classi

fication margin between the data points in different classes given 

all the label information. Based on these pre-trained parameter

s for the decision boundary, new instances are predicted to 

belong to the label of the highest probability. We implemented 

linear SVM in our experiments. 

 

Decision tree (DT): A decision tree comprises three types of n

odes: the root node, internal nodes, and terminal nodes. The ro

ot node and the internal nodes contain features that determine 

the path of the training example. The construction of the tree s

tructure starts with the root node, and the iterative dichotomise

r 3 (ID3) algorithm selects the feature of each node. The algorit

hm chooses the attribute with the maximum information gain wi

thin each iteration. 

 

Gradient Boosting tree (XGB): The boosting tree is essentially 

a weighted ensemble of weaker decision trees that optimizes a 

multiclass objective function [20]. We achieve this by recurrent

ly adding a new decision tree function at every round. To mak

e the model properly learn the structures of trees and the data, 

the loss function in each iteration is defined as the error betwe

en the model's prediction at each round and true value. The re

gularization term of each additive tree is added to alleviate ove

rfitting on the training set and to promote a better generalizatio

n of the whole model. 

 

Multilayer perceptron (MLP): Multilayer perceptron is part of an

 artificial neural network, which comprises input nodes, hidden 

nodes, and output nodes. In our experiments, two hidden layers

 followed by a softmax layer with the Selu activation function 
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[19] were used for nonlinear transformation. We also applied b

atch normalization and dropout with probability 0.2. All backpro

pagated parameters were updated to minimize the loss function

 at each epoch. 
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Chapter 5. Performance Evaluation 
 

TABLE I 
MODEL PERFORMANCE COMPARISONS FOR THE HEARTBEAT TASK.  

The TOP-2 PERFORMANCES ARE MARKED IN BOLD. 
 

Feature Compression LR SVM DT XGB MLP 

 
ComParE 

- 50.92 42.33 41.10 53.99 55.83 

AE 50.92 54.60 41.72 53.37 55.83 

PCA-2 30.06 37.68 33.74 49.08 54.60 

PCA-200 38.65 49.08 38.65 53.37 53.99 

LDA 49.69 50.31 52.15 52.76 51.53 

 
Emobase 

- 50.92 53.37 39.26 57.06 55.83 

AE 57.67 37.42 38.65 57.67 57.06 

PCA-2 55.83 55.21 40.49 49.08 55.21 

PCA-200 44.79 57.06 45.40 53.37 57.67 

LDA 42.94 44.17 41.72 41.10 44.79 

 

TABLE II 
MODEL PERFORMANCE COMPARISONS FOR THE ATYPICAL TASK. 

The TOP-2 PERFORMANCES ARE MARKED IN BOLD. 
 

Feature Compression LR SVM DT XGB MLP 

 
ComParE 

- 67.13 43.38 51.12 66.67 67.80 

AE 67.82 59.99 50.38 66.15 67.87 

PCA-2 33.85 22.62 49.93 66.20 67.56 

PCA-200 38.13 45.99 49.57 67.30 67.80 

LDA 42.33 45.48 45.39 38.70 39.94 

 
Emobase 

- 64.14 66.60 51.82 66.29 66.67 

AE 64.19 64.02 49.73 66.32 64.43 

PCA-2 68.01 36.19 49.07 67.49 67.96 

PCA-200 65.50 36.62 52.20 67.56 65.86 

LDA 55.02 55.02 48.78 50.00 54.95 

 

 

5.1. Heartbeat classification task 
 

Table I demonstrates the results of the heartbeat classificatio

n task. Overall, the best performance (57.67%) was obtained u

sing MLP with PCA-200 compressed emobase features and LR

/XGB with AE-compressed emobase features. In general, the M

LP classifier outperformed the other four classification models i

n both the original/compressed feature setups. Additionally, DT 

is worse than XGB in most cases, as it is a simplified version

 of XGB. For the experiments with MLP, we stopped training 

when the validation loss started increasing to avoid overfitting. 
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5.2. Atypical affect classification task 
 

As shown in Table II, using LR and MLP with PCA-2 emob

ase features achieved 68.01% and 67.96%, respectively. Howev

er, when considering all five training models, we observed that

 the AE-compressed features result in the highest average acc

uracy. Furthermore, the MLP classifier performed better than 

other models in most feature/compression settings. For the im

plementation, we divided the training corpus into an 8:2 ratio f

or the training/validation set. 
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Chapter 6. Discussion 
 

 

   
Fig. 1. Visualization of PCA compression. 

 

 

 

Fig. 2. Visualization of AE compression. 

 

 

6.1. Compression ability of AE 
 

In two tasks, it was clearly observed that the combination of 

AE compression and the MLP classifier had very competitive p

erformance in all tasks, even better than that of using the orig

inal emobase feature set. This shows the efficacy of the appro

ach to training small amounts of data and high dimensions. To i

nterpret these phenomena, we first compressed the ComParE f

eatures of the heartbeat training set into the 200-dimensional 

Euclidean space by PCA and selected 2 dominant principal com

ponents of each data for visualization, which were plotted in Fi

g. 1. With these trained parameters of PCA, we compressed th

e ComParE features in a testing set into 2-dimensional space. 

For visualization of AE compression, we selected two compone

nts of the first and second largest absolute values among each 

400-dimension train/test compressed vector because their acti
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vations are the most influential for the classification process. 

As shown in Fig. 2, the AE-compressed data points belongin

g to the same classes in the train/test set are comparatively w

ell clustered together, whereas data in different classes are se

parated. Furthermore, they are aligned linearly with an almost 

identical gradient, which makes the distribution of the test set 

features close to the training set's feature distribution. Howeve

r, the distinction of PCA-compressed data points in different c

lasses is apparently harder than the AE compression case. We

 consider all these factors to make AE better than the PCA co

mpression method. 

 

 

6.2. Classification with MLP 
 

As described above, our experimental results reveal that MLP

 almost always outperforms other classifiers both in original an

d compressed feature settings, overcoming data insufficiency. T

his demonstrates that neural network architecture can still learn b

etter representations with the compressed feature. In addition, 

we expect to see continual improvements with neural architectu

re variants in future works in general paralinguistic signal classi

fication tasks. 
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Chapter 7. Conclusion 
 
 

In this paper, we propose the implementation of compression 

frameworks for paralinguistic signal classification tasks. We extr

act two sets of features (ComParE, emobase2010) for training 

our models and explore how they vary in the aspect of classific

ation accuracy among the heartbeat and atypical affect classifica

tion tasks. We train our models with our original features and t

he features autonomously compressed by PCA, LDA, and AE. 

From the experiments, we observe that AE compression feat

ures and the MLP classifier are two key factors for achieving s

uperior classification accuracy. Furthermore, they show even be

tter performances than that of the combination with non-compr

essed features, which contain more information on the signal. T

hese results demonstrate that the AE-compressed features can 

practically alternate original features that suffer from high dime

nsions when the size of the training corpus is limited. 

Finally, we show by comparison that the MLP generally achie

ves a better ability to learn feature representations than classic

al models in two paralinguistic tasks. 
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초  록 

  

 

   준언어적 신호를 분류를 인식하고 분류하는 일은 그의 다양한 응용성 

측면에서 매우 중요한 문제이다. 일반적으로 이 문제가 어려운 이유는 

소리 정보가 인간에게도 구별되기 힘들다는 애매모호한 특성 때문이다. 

이에 신호를 더 잘 이해하기 위해 기계학습 기법이 고안되는데, 이 때 

분석에 사용되는 신호 특징 벡터는 운율, 에너지, 주파수 등 신호에 관

련된 정보로 이루어진 고차원 벡터이다. 즉 훈련에 사용되는 데이터의 

크기가 작은 경우에는, 특징 벡터의 높은 차원 때문에 적절히 기계학습 

모델을 잘 훈련시키기가 어렵게 된다. 이 논문에서는 심층 신경망 모델

을 이용하여 이와 같은 문제를 해결하고자 한다. 우선 다양한 압축 기법

을 이용하여 특징 벡터 내의 불필요한 정보를 제거하고, 이 압축된 특징

들이 전통적 기계학습 분류방법들보다 심층 신경망에 의해 더 잘 분류됨

을 실험적으로 보인다.  

 

주요어 : 준언어학, 심층 신경망 

학번 : 2017-22921 
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