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Abstract

Screening and Evaluation of Lactobacillus paracasei

M9-1 against Biofilm Formation by Streptococcus 

mutans

Heesung Shin

Major of International Agricultural Technology

Department of International Agricultural Technology

The Graduate School

Seoul National University

Dental caries is a disease caused by demineralization of enamel 

layer in tooth. Acidic condition in oral cavity results in destruction of 

hydroxyapatite, which is a major component of enamel layer. 

Cariogenic microorganisms in oral microbiota are one of the reasons 

that causes acidic condition in oral cavity. They utilize 

carbohydrates as their energy source and produce organic acids and 

glucans by using glucosyltransferases to form biofilm. In normal oral 

cavity, acidic condition is usually neutralized by human saliva. 

However, when biofilm is formed, it blocks human saliva and keeps
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organic acids around the enamel layer. As a result, acidic condition 

is maintained within biofilm. Streptococcus mutans is well known for 

acceleration of biofilm formation by providing glucosyltransferases 

(Gtfs) to other microbiota which can’t produce Gtfs, thereby 

accelerating biofilm formation. The aim of this study is to screen and 

evaluate lactic acid bacteria (LAB) which has inhibitory effects 

against biofilm formation of S. mutans. 21 LAB, which have been 

proven for their antimicrobial activity against pathogenic bacteria in 

previous study were used in this study, The results of safety 

assessment showed all of tested LAB satisfied criteria from EFSA,

which suggests that all of tested LAB are safe when consumed by 

mouth. Lactobacillus paracasei M9-1 showed highest antimicrobial

activity (> 14mm), higher co-aggregation ability than that of 

reference strain, Lactobacillus rhamnosus GG and highest inhibition 

ability in biofilm formation against S. mutans among tested LAB. 

Therefore, L. paracasei M9-1 was selected as a promising probiotic

strain which has inhibitory effects against biofilm formation of S. 

mutans. The effects of L. paracasei M9-1 on the caries-inducing 

related gene expression in S. mutans caused the reduction of 

adhesion related gene expression. In conclusion, L. paracasei M9-1 

is the promising probiotic strain which can reduce dental caries by

their antimicrobial ability to reduce cell concentration of S. mutans, 

co-aggregation ability to prevent S. mutans from binding to tooth 



iii

surface, and inhibition ability to reduce adhesion related gene 

expression of S. mutans, thereby reducing biofilm formation of S. 

mutans.

Keyword : Dental caries, Streptococcus mutans, biofilm, lactic acid 

bacteria, probiotics

Student Number : 2017-28580
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Chapter 1. Introduction

Dental caries is the most prevalent multifactorial disease in the 

world, affecting almost 44 % of the world population (FDI, 2015). 

Among the multifactorial factors which cause dental caries, oral 

microbiota take a significant role in the process of dental caries and 

formation of dental plaque. There are more than 700 bacteria in the 

oral cavity, and some of bacteria which cause dental caries are 

called cariogenic bacteria. These bacteria form biofilm on surface of 

tooth under sucrose present condition, which is also known as dental 

plaque, and keep acidification of oral cavity by producing and 

trapping organic acids inside the biofilm as their end product of 

fermentation. This process results in degradation of hydroxyapatite, 

which is a main constituent of enamel layer in tooth surfaces. 

Streptococcus mutans, the most significant cariogenic bacteria, 

accelerates the tooth decay by secreting enzymes responsible for 

formation of biofilm to others that can’t synthesize those enzymes. 

As a result, other bacteria use glucosyltransferases (Gtfs) to form 

biofilm, thereby enhancing accumulation of biofilm (Forssten et al., 

2010).

Probiotics are defined as live organisms which give beneficial 
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effects on the host when administered in adequate amounts (Hill et 

al., 2014). Most of studies have reported beneficial role of probiotics 

in prevention or treatment of dental caries caused by S. mutans,

although a few studies have reported negative effects of probiotics 

in dental caries due to their high acidogenic and aciduric properties 

(Soderling, 2012). According to those studies, probiotics inhibit the 

growth of S. mutans or reduce the virulence factors in S. mutans

which cause dental caries.

In this study, we screened the lactic acid bacteria (LAB) which 

has biofilm inhibition ability against S. mutans to reduce dental 

caries by measuring the antimicrobial, co-aggregation, and biofilm 

formation inhibition ability. Then we examined the potential 

cariogenicity of our selected probiotic strains and the effects of the 

selected probiotic strain supernatant on the caries-inducing related 

gene expression of the S. mutans. 
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Chapter 2. Review of Literature

2.1. Dental caries in oral cavity

2.1.1. Dental caries

Dental caries is a disease, caused by with continuous, phase shift 

of demineralization and remineralization in tooth, thereby resulting 

tooth decay. Sugars and other fermentable carbohydrates can be 

used as energy source for oral bacteria which cause dental caries. 

Therefore, dental caries is significantly affected by the sugar 

consumption. It has been considered as one of the important global 

oral disease with periodontal disease and the major problem in most 

of developed countries. In most of developing countries, the 

prevalence rates of dental caries were low when compared to 

developed countries. However, since 2005, dental caries is tending 

to increase due to large consumption of sugars in developing 

countries (Petersen et al., 2005). Moreover, dental caries is also the

most prevalent disease occurring in children (Figure 1). It is more 

likely to develop into the inflammation because deciduous tooth is 

smaller than permanent tooth. 



4

Figure 1. The global prevalence of dental caries in 12 years-old children (The challenge of oral disease, World

Dental Federation, 2015).
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A tooth consists of enamel, dentin, and pulp layers (Figure 2). 

The outer structure exposed to oral cavity is dental crown while 

inner one is known as tooth root. More than 95 % of enamel layer is

composed of mineral complex such as carbonated hydroxyapatite 

(Ca10(PO4)6(OH)2). The unit cell of carbonated hydroxyapatite (HAP)

is in hexagonal shape and with repetition of cells, they form crystal 

structure (Abou Neel et al., 2016). The crystal formation of 

carbonated HAP makes the tooth hard and gives physical force to 

tooth (Sun et al., 2017). In progress of dental caries, organic acids

are produced by oral microbiota attached on enamel layer and 

dissolves carbonated HAP (Featherstone, 2000).
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Figure 2. Structure of normal tooth (Pitts et al., 2017).
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2.1.2. Demineralization of hydroxyapatite

When HAP is exposed to water, a small amount of HAP dissolves, 

releasing its component such as calcium, phosphate, and hydroxyl 

ions. This process stops when water reaches the equilibrium state. 

At this equilibrium state, the rate of mineral dissolution is equal to 

rate of mineral precipitation (Fejerskov, 2009). 

If pH decreases by one unit, the solubility of HAP increases up to 

about 10-fold. Under low pH condition, hydroxyl ions from HAP are 

removed to form water with hydrogen ions. As a result, HAP can’t 

maintain its crystal form and release calcium and phosphate ions 

(Dawes, 2003). This process is called demineralization of HAP

(Figure 3). 

In healthy oral cavity, tooth is always covered by saliva fluid. The 

role of saliva fluid is to remove remaining food debris and bacteria 

by swallowing. Also, saliva fluid contains calcium and phosphate, 

which are component of HAP, and thereby decreases solubility of 

HAP. HCO3
-, known as saliva bicarbonate, increases pH and buffer 

capacity in saliva fluid (Bardow et al., 2000; Bardow et al., 2001). 

The buffering capacity of saliva prevents degradation of HAP. The 

pH of saliva is reported as approximately 7.0.

The penetration of saliva can be blocked by biofilms and organic 

acids produced by bacteria are trapped inside biofilm. Therefore, 
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environment in biofilm causes the tooth to maintain acidic condition 

by losing its neutralizing capacity. The demineralization of HAP

starts when pH decreases to its critical pH, 5.5 (Barron et al., 2003). 
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Figure 3. The demineralization of tooth under low pH condition.
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2.1.3. Acidic condition is maintained by cariogenic oral 

microbiota

Even though the mouth is not ideally homogenous for its resident  

microbiota, it provides several different habitats for oral microbiota 

(Dewhirst et al., 2010). More than 700 species have been reported 

as oral microbiota, but less than half of them are cultivatable (Paster

et al., 2001). The oral microbiota in healthy oral cavity has high 

diversity and is subject specific (Aas et al., 2005). Streptococcus

has been reported as the most dominant genus in healthy oral 

microbiota (Costalonga et al., 2014; Zaura et al., 2009). It is also the 

most dominant genus in dental plaque, which is a cause of dental 

caries (Peterson et al., 2014). Due to highly personal and structural 

difference variability, species enumeration is generally very difficult 

to achieve (Griffen et al., 2011). The early colonizers on the enamel 

layer include Streptococcus, Actinomyces, Haemophilus, Neisseria

and Veillonella (Marsh, 1994).

Dental caries is in close relationship with oral microbiota. The 

oral microbiota which causes dental caries is classified as cariogenic 

oral microbiota. The cariogenic oral microbiota utilizes the remaining 

ingredients such as sugars in saliva to produce organic acid, which 

results in decrease of pH in the oral environment and degradation of 

enamel layer (Takahashi et al., 2011). Another feature of cariogenic 

oral microbiota is to produce the biofilm. Biofilm is a 3 dimensional 
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complex of exopolysaccharides (EPS) which enables 

microorganisms to be attached on tooth surface. At initial stage, few 

early colonizers are attached on tooth surface, especially on 

acquired enamel pellicle, and produce biofilm to make the attachment 

irreversible (Whittaker, 1996). As first colonizers are multiplied, 

their metabolites change the surrounding environment, such as use 

of O2 to produce CO2, making anaerobic condition. The consequence 

of this process is favorable for secondary colonizers such as 

facultative anaerobes and they bind to receptors of already colonized 

bacteria. The diversity of microbial community in biofilm increases 

and the attached bacteria also begin to produce EPS. When biofilm 

gets matured and highly densified, it blocks penetration of extra 

cellular compounds such as antimicrobial factors or antibiotic factors 

and traps metabolites from microorganism inside biofilm (Figure 4).

As a result, the organic acid is produced during carbohydrate 

metabolism of microbiota inside the biofilm and gets trapped inside, 

lowering pH condition in biofilm (Kolenbrander et al., 2000; Vu et al., 

2009; Marsh, 2010). Another function of biofilm is the 

communication between microbiota called ‘quorum-sensing’. The 

quorum sensing is the regulation of specific gene expression which 

is triggered by signal peptides from different bacteria, depending on 

concentration of cells. In low cell density, signal peptides are lower 
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than threshold level. As bacteria are multiplied, signal peptides are 

accumulated and when it reach its threshold level, gene expression 

is activated for adaption to environment. A good example of 

quorum-sensing is an increase in antibiotic resistance of embedded 

microbiota in biofilm. Specific bacteria in biofilm may transfer its 

antibiotic resistance gene to one another (Socransky et al., 2002).              
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Figure 4. The biofilm formation by cariogenic oral microbiota (Modified 

from Lof et al., 2017). The primary colonizers attach to acquired enamel 

pellicle. The growth of first colonizers begins to produce biofilms and 

makes the surrounding environment favorable for secondary colonizers. 

When secondary colonizers co-aggregate with first colonizers, they also 

produce biofilm. The matured biofilm blocks extracellular compounds 

penetrating into biofilm and traps intracellular compounds such as organic 

acids inside the biofilm.
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2.1.4. Streptococcus mutans

Streptococcus mutans is a facultative anaerobes, gram-positive 

in cocci form. It has been reported as the most common species 

found in dental caries and a key contributor in the formation of 

biofilm (Gross et al., 2012; Koo et al., 2010; Beighton, 2005). S. 

mutans utilizes sucrose to produce EPS, organic acid, adheres to 

enamel pellicles, and has acid tolerance ability. 

Regarding to its genome data, carbohydrate metabolism of S. 

mutans has been reported that it can utilize various carbohydrates 

than any other gram-positive bacteria. S. mutans can utilize glucose, 

fructose, sucrose, lactose, galactose, mannose, cellobiose, β-

glucosides, trehalose, maltose/maltodextrin, raffinose, ribulose, 

melibiose starch and other carbohydrates (Ajdic et al., 2002). The 

uptake of sugars from the environment is processed by its 

phosphoenolpyruvate: sugar phosphotransferase, which can be 

commonly used in sugar transport system of gram-positive bacteria. 

In addition, S. mutans also has at least five sugar ABC transport 

system (Russell et al., 1992).    



15

2.2. The caries-inducing factors of S. mutans

2.2.1. Biofilm formation

Several groups of Streptococcus spp., including S. mutans, 

secrete enzyme such as Gtfs and fructosyltransferase (Ftf). The 

function of these enzymes is to synthesize EPS from sucrose, which 

is only substrate that glucan can be made from. Among Gtfs, GtfB

catalyzes the cleavage of the glycosidic bond in sucrose thereby 

forming covalent glucosyl-enzyme intermediate and fructose. Then 

growing α-glucan chains are synthesized from covalent glucosyl-

enzyme intermediate. When α-1.3-glucan is formed, it is water-

insoluble (Figure 5). This prevents the constructed biofilm from 

dissolving or washing out by saliva (Krzysciak et al., 2014: Raj et al., 

2017).
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Figure 5. Synthesis of water-insoluble glucan by glucosyltransferase B in 

S. mutans (Pleszczynska et al., 2015) 
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In addition, due to its structure, biofilm can also bind to metal 

ions, which makes biofilm stronger attachment (Sutherland, 2001). S. 

mutans produces various kinds of Gtfs, but well known for its 

functions are GtfB, GtfC, GtfD and Ftf. GtfD synthesizes water 

soluble, α-1,6-glucan. Determining structure of glucans 

synthesized by Gtfs has not been fully understood, but there is a 

study that decrease of carboxyl-terminal repeats increases water 

solubility of glucan product (Monchois et al., 1999). GtfC has similar 

homology to that of AgI/II family of proteins although it’s binding 

domain has not been fully identified. This indicates that GtfC is a cell 

wall bound protein and may acts as a receptor in cell surface for 

adhesion of S. mutans to enamel pellicle (Banas et al., 2003). GtfB 

may has this function too (Hanada et al., 1988). Ftf produces β-

2,1-fructan by hydrolyzing fructose (Bergeron et al., 2001). 

Another significant feature of S. mutans is that it excretes Gtfs in 

active form to other bacteria which can’t synthesize Gtfs (Figure 6). 

As a result, other bacteria can utilize sucrose to make water-

insoluble glucan and accelerates accumulation of glucan (Vacca-

Smith et al, 1998).
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Figure 6. Model of glucan-mediated bacterial adherence (Modified from 

Bowen et al., 2011).  
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GtfB, GtfC, and GtfD are encoded by gtfB, gtfC, and gtfD. The 

gtfB (4.4 kbp) and gtfC (4.3 kbp) are in an arrangement, however, 

gtfD (5.3 kbp) is not linked to the gtfBC locus (Bowen et al., 2011). 

GtfB and GtfC share about 75 % of homologous amino acid sequence, 

but GtfD only shares about less than 50 % of homologous amino acid 

sequence. The homologous sequence region is related in signal 

sequence. The closeness of gtfB and gtfC locus suggests that two 

gtf genes could be regulated by same signal (Ueda et al., 1988).  

Two component signal transduction systems are control systems 

which regulate gene expression for bacterial adaptation, survival and 

virulence in harsh condition. The function of these system is to 

regulate gene expression in response to changes in surrounding 

environment. When S. mutans is exposed to environmental changes, 

signal transduction is processed through two regulatory elements, 

which are histidine kinase and response regulator (Gao et al., 2009;

Stock et al., 2000). In the beginning, the signal gets 

autophosphorylation by using ATP at histidine residue in histidine 

kinase, transferring phosphate group to an aspartate residue in 

response regulator, resulting in conformational changes. Then 

response regulator regulates gene expression by binding to their 

promoter region, thereby initiating transcription. The VicKR system 

is one of the two component signal transduction system in S. mutans

(Figure 7). A study has reported that only vicR gene is essential for 
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survival of S. mutans and vicK knockout mutant of S. mutans

resulted in abnormal formation of biofilm or reduction in biofilm. 

(Senadheera et al., 2005). This study indicates that VicKR system 

regulates expression of gtfs and ftf. Another study has reported that 

VicKR system induce cell division, production of EPS under sucrose 

present condition (Stipp et al., 2013).  
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Figure 7. Schematic representation of two component signal transduction 

system VicKR (Modified from Mattos-Graner et al., 2017). 
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2.2.2. Acid tolerance response

comCDE system is another two component signaling transduction 

system in S. mutans. The comC encodes a competence-stimulating 

peptide and comDE does histidine kinase and regulatory receptor. 

When competence-stimulating peptide reaches its threshold level, it 

is detected by histidine kinase ComD which is encoded by comD, and 

promotes autophosphorylation. Then ComD transfers phosphate 

group to regulatory receptor, ComE which initiates transcription of 

genes necessary for genetic competence and cell separation (Figure 

8). The comCD defected mutants shows reduction in acid tolerance 

response (Li et al., 2001; Li et al., 2002; Matsui et al., 2010). 

The aguD in S. mutans is acid tolerance related gene which 

directly regulates acid tolerance response (Figure 9). It encodes an 

agmatine-putrescine antiporter which functions as a transporter for 

agmatine uptake. In acidic condition, acid-sensitive bacteria in the 

biofilm produce agmatine. When S. mutans uptakes agmatine, it 

converts agmatine into putrescine, ammonia and ATP. The 

production of ammonia neutralizes pH in acidic condition (Griswold 

et al., 2006).

Another study has reported that F1-Fo-ATPase, a proton pump 

encoded by atpD gene, removes intracellular protons to maintain 

intracellular pH in S. mutans (Nguyen et al., 2014).
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Figure 8. Competence stimulating peptide and role of comCDE system 

(Modified from Li et al., 2002).

Figure 9. Proposed role of acid tolerance system in S. mutans (Modified 

from Grisworld et al., 2006).
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2.2.3. Adhesion factors

One of the caries-inducing factors in S. mutans is its ability to 

attach on tooth surface and form a biofilm. The mechanism of 

adhesion by S. mutans has two pathways. One is sucrose dependent 

pathway, usually catalyzed by Gtfs, and other is sucrose independent 

pathway. Wall-associated protein A has been reported as its 

function for attachment although the exact mechanism is not clear. 

Several studies have reported that deletion of wapA gene resulted in 

reduction of bacterial attachment (Zhu et al., 2006; Russell et al.. 

1995).

S. mutans also expresses several adhesion molecules, such as 

streptococcal protein antigen P (SpaP) encoded by spaP. This 

protein has ability in binding to a salivary agglutinin glycoproteins 

with association of sortase A (SrtA) enzyme. When SpaP is detected 

by SrtA, it functions as a signal. The surface proteins are 

synthesized as precursors which have signal peptide in N-terminal, 

and LPXTG motif in C-terminal. Then SrtA cleaves the site between 

threonine and the glycine in LPXTG motif. Then the intermediate is 

formed between cysteine residue in SrtA and carboxyl-group of 

threonine at cleaved LPXTG motif (Figure 10). After the formation 

of intermediate, the amino acid group of cell wall performs a 

nucleophilic attack at intermediate. The breakdown of intermediate 

frees remaining LPXTG motif and forms amide bond between the 
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threonine site in LPXTG and cell wall lipid II (Schneewind and 

Missiakas, 2012, Mitchell, 2003).

Figure 10. The role of srtA in Gram-positive bacteria (Schneewind and 

Missiakas, 2012).
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2.3 Probiotics and their anti-cariogenic role

2.3.1 Probiotics

Probiotics are defined as living microorganisms which give host 

beneficial health effects when consumed in adequate concentration 

by WHO at 2012. The most well-known probiotics are LAB. In 

particular, lactobacilli and bifidobacteria are generally used genus in 

probiotics (Ouwehand et al., 2002). However, the exact answer to 

how probiotics work on their beneficial effects to host is not a single 

answer. Their beneficial actions vary through each strains. 

There are several reports that propose mechanisms in action of 

probiotics. Probiotics may compete the adhesion site with pathogens 

for their receptor site and thereby block pathogen from entering into 

intracellular space (Ingrassia et al., 2005; Wu et al., 2008), or they 

compete nutrition with pathogens (Markowiak et al., 2017). Also 

they induce secretion of mucin to enhance epithelial barrier for 

colonization resistance of pathogens (Schroeder et al., 2018) or 

enhance expression of tight junction proteins (Ukena et al, 2007;

Ashida et al., 2011). Furthermore, probiotics produce antimicrobial 

factors such as lactic acid or bacteriocin (Dasari et al., 2014; Avonts 

et al., 2004). In particular, bacteriocin can be categorized into three 

groups. Class I prevents normal cell wall synthesis or creates pore 

to membrane of pathogens. Class II is inserted into the membrane 

and enhances e-polarization. Class III induces the membrane lysis 

(Jozefiak and Sip, 2013). Another function of probiotics is enhancing 
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immunological defense of the host by regulating inflammation. 

Several studies have reported that probiotics reduce inflammation by 

decreasing expression level of pro-inflammatory cytokines (Plaza-

Diaz et al., 2017). Also, probiotics regulate inflammation by 

increasing expression of regulatory cytokine, IL-6 (Lescheid, 2014). 

Lastly they produce short-chain fatty acid for energy source for 

intestinal cells (LeBlanc et al., 2017).

Traditionally, researches on probiotics have been usually focused 

on health of gut and most of clinical studies proved that probiotics 

can prevent or alleviate gastrointestinal diseases. However, in recent 

years, several researches have reported that probiotics also can be 

used for maintaining oral health as well (Haukioja, 2010). 

2.3.2 Beneficial effects of probiotics in oral cavity

Due to increasing use of antibiotics and emergence of antibiotic 

resistant pathogens, the attention to living therapeutics is rising 

quickly in nowadays. Probiotic strains including lactobaciili have the 

ability of colonizing not only in gastrointestinal tract, but also in 

other part of body such as vagina and oral cavity (Selle and 

Klaenhammer, 2013). The proposed role of probiotics in oral cavity 

is to restore microbial homeostasis balance between healthy 

microbiota and pathogens. The mechanism of probiotic action as a 

living therapeutics is in direct interactions with pathogenic bacteria, 

or modulation of immune system, In direct interactions with 
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pathogenic bacteria which cause oral disease, probiotics compete for 

nutrition or receptor binding sties, produce antimicrobial factors such 

as bacteriocin to inhibit growth of oral pathogens, and reduce biofilm 

formation (Meurman and Stamatova, 2007; Mahasneh and Mahasneh, 

2017; Allaker and Stephen; 2017). Modulation of immune system by 

probiotics will cause alteration in production of inflammatory 

cytokines, or enhance epithelial barrier function. In addition, 

probiotics are reported to have ability in maintaining healthy state of 

oral cavity without significant alteration of microbial community in 

salivary ecosystem (Toiviainen, 2015). The summary of probiotics 

and their actions in oral cavity are listed on Table 1.
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Table 1. The summary of probiotics and their actions in oral cavity.

Probiotics Mode of action Reference

L. rhamnosus Inhibits growth of S. mutans Allaker and Stephen, 2017

L. reuteri Co-aggregates with pathogenic bacteria Jorgensen et al., 2017

L. salivariusi Reduces biofilm formation of S. mutans Wu et al., 2015

L. acidophilus Inhibits growth of S. mutans Schwendicke et al., 2017

L. casei Reduces biofilm formation of S. mutans Schwendicke et al., 2017

L. paracasei Inhibits growth of oral pathogens Chuang et al., 2011

L. plantarum Reduces inflammation in gingivitis Montero et al., 2017

L. reuteri Reduces pregnancy gigivitis Schlagenhauf et al., 2016

L. salivarius
Reduces pocket depth in chronic 

periodontitis
Penala et al., 2016

L. rhamnosus Improvements in chronic periodontitis Morales et al., 2016

L. brevis Delays gingivitis development Lee et al., 2015

W. cibaria Co-aggregates with pathogenic bacteria Kang et al., 2005

W. cibaria
Reduces volatile Sulphur compounds in 

halitosis
Kang et al., 2006

L. plantarum
Reduces pocket depth in chronic 

periodontitis
Iwasaki et al., 2016

Bifidobacteria Manages gingivitis or periodontitis Gruner et al., 2016

S. salivarius Antimicrobial activity in halitosis Masdea et al., 2012

S. salivarius Blocks pneumococcal binding sites Manning et al., 2016

S. salivarius
Reduces volatile Sulphur compounds in 

halitosis
Burton et al., 2006
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2.3.3 Potential cariogenicity of probiotics

Although there are many reports that proved beneficial role of 

probiotics in dental caries, the efficacy of probiotics is limited and 

the potential cariogenicity of probiotics is still need to be concerned 

(Cagetti et al., 2013). Lactoabacilli was the first microoraganism to 

be indicated as a cariogenic agent in dental caries due to their high 

acid tolerance and acidogenecity in 1990’s (Houte, 1994). A study 

has reported that some LAB have ability to form biofilm and high 

resistance to environmental stress (Kubota et al., 2008).  In 

particular, few studies have reported genes responsible in adhesion 

and formation of biofilm in LAB (Lebeer et al., 2007). However it is 

not still clear whether LAB in raw ingredients from foods can form 

biofilm or not. Several studies have reported the cariogenicity of 

LAB in early childhood (Houte et al., 1982, Becker et al., 2002). 

These findings suggest that lactobacilli may play a role as a 

cariogenic agent even though it is less significant factor than S. 

mutans. Also, a recent study reported that L. rhamnosus didn’t have 

ability to reduce cariogenicity of S. mutans in in vitro biofilm model 

(Fernandez et al., 2015). 



31

Chapter 3. Materials and methods

3.1. Screening of potential probiotics with inhibition 

ability against biofilm formation by S. mutans

3.1.1. Bacterial strains and growth condition

Two S. mutans strains namely ATCC25175 and ATCC700610 

were selected in this study. S. mutans were cultured in Brain-Heart 

Infusion (BHI) media (Oxoid, USA) at 37 °C under aerobic condition. 

The LAB listed in Table 2, were cultured in deMan, Rogosa and 

Shape (MRS) media (Difco, USA) and M17 media (Difco, USA) 

supplemented with 10 % lactose (Difco, USA) at 37 °C and 30 °C in 

aerobic condition, respectively. For biofilm inhibition assay, RNA 

extraction, degradation of HAP, all of tested LAB were cultured in 

BHI broth. 



32

Table 2. List of bacterial strains used in this study.

Species Strains Growth media
Temperature

(°C)
Origin

S. mutans ATCC25175 BHI broth 37 KCTC

S. mutans ATCC700610 BHI broth 37 ATCC

L. rhamnosus GG MRS broth 37 
Human

intestine

L. fermentum KM6-5 MRS broth 37 
Human 

intestine

L. fermentum LM15-1 MRS broth 37 
Human 

intestine

L. fermentum LM16-10 MRS broth 37 
Human 

intestine

L. gasseri LM8-5 MRS broth 37 
Human 

intestine

L. paracasei LM1-1 MRS broth 37
Human 

intestine

L. paracasei LM1-3 MRS broth 37
Human 

intestine

L. paracasei LM3-5 MRS broth 37 
Human 

intestine

L. paracasei M9-1 MRS broth 37 Raw milk

L. plantarum KM14-5 MRS broth 37 
Human 

intestine

L. reuteri LDTM7503 MRS broth 37 Pig intestine

L. reuteri LDTM7504 MRS broth 37 Pig intestine

L. reuteri LDTM7505 MRS broth 37 Pig intestine

L. rhamnosus HM15-5 MRS broth 37 
Human 

intestine

L. rhamnosus HM26-1 MRS broth 37 
Human 

intestine

L. rhamnosus LM11-1 MRS broth 37 
Human 

intestine

L. rhamnosus LM14-3 MRS broth 37 
Human 

intestine

L. lactis LDTM6801 M17 broth 30 Cheese

L. lactis LDTM6804 M17 broth 30 Raw milk

P. acidilactici LDTM5201 MRS broth 37 

Korean 

traditional 

food

W. cibaria LDTM8901 MRS broth 37 

Korean 

traditional 

food
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3.1.2. Preparation of culture supernatant

The preparation of culture supernatant was followed by Lin et al., 

2015 with slight modification. One ml (1.5 x 106 CFU/ml) of LAB 

was incubated aerobically for 24 hours in 4 ml of BHI broth at 37 °C

or MRS broth at 37 °C or M17 at 30 °C. The overnight cultured 

bacteria were centrifuged at 4,000 rpm, 10 minutes, 4 °C to remove 

all bacterial cells. After removing bacterial cells, supernatant was

filtered through a 0.22-um filter and stored at 4 °C until further use.

3.1.3. Safety assessment

Hemolytic activity The overnight cultured LAB were streaked on 

sheep blood agar plates (7 % v/v sheep blood). Plates were 

incubated at 37 °C and L. lactis at 30 °C for 48 hours in aerobic 

condition (Yadav et al., 2016). The zone around colonies was 

observed.

Biogenic amine production assay The medium was prepared, 

based on Bover-Cid et al., 1999. Its composition is presented in 

Table 3. The overnight cultured strains were streaked in 

decarboxylase medium plates and zone around colonies was

observed.
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Table 3. Composition (%) of decarboxylase medium.

Component Modified medium (%)

Trpytone 0.5

Yeast extract 0.5

Meat extract 0.5

Sodium chloride 0.25

Glucose 0.05

Tween 80 0.1

MgSO4 0.02

MnSO4 0.005

FeSO4 0.004

Ammonium citrate 0.2

Thiamine 0.001

K2PO4 0.2

CaCO3 0.01

Pyridoxal-5-phosphate 0.005

Histidine monohydrochloride 0.25

Tyrosine free base 0.25

Ornithine monohydrochloride 0.25

Lysine monohydrochloride 0.25

Bromocresol purple 0.006

Agar 2

pH 5.3
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Antibiotic susceptibility Antibiotic susceptibility of LAB was 

measured by minimum inhibitory concentration (MIC). 

Microbiological cut-off values (mg/L) were measured based on 

European Food Safety Authority guidelines (EFSA, 2012). The 

antibiotics used in this study were ampicillin, vancomycin, 

gentamycin, kanamycin, streptomycin, erythromycin, clindamycin, 

tetracycline, and chloramphenicol. A sterilized cotton swab was 

dipped into the overnight cultured LAB and then streaked over 

whole LSM agar surface. LSM agar is composed of 90 % 

Isosensitext broth (Oxoid, USA), 10 % MRS broth (Difco, USA), and 

1.5 % Bacto agar (Difco, USA). After streaking, each antibiotic’s E-

test strips was loaded on the center of plates and incubated at each 

strain’s optimum temperature for 24 hours, aerobically. MIC was 

calculated as at the start of clear zone.
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Figure 11. The schematic diagram of safety assessment.
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3.1.4. Antimicrobial activity test

Agar well diffusion assay The overnight cultured S. mutans were 

centrifuged at 4,000 rpm, 10 minutes, 4 °C. After centrifuge, the 

supernatant was discarded and pellets were washed twice with 1X 

PBS. S. mutans were adjusted to optical density 1.0 (1.5x108

CFU/ml) at 600 nm with 1X PBS. Adjusted S. mutans suspension 

were inoculated at melted BHI agar held at 45 °C. After pouring 

melted BHI agar onto top of BHI agar, 7 mm diameter well were 

made by the end of sterile pipet tip. The 100 ul overnight cultured

LAB and supernatant of LAB were inoculated into each wells. The 

plates were incubated for 48 hours at their optimum growth 

temperature in aerobic condition. The inhibition activity was 

measured by measuring the diameters of inhibition zones (Balouiri et 

al., 2016)  

3.1.5. Co-aggregation assay

The interactions among cells were determined by modifying 

assay from Xu et al., 2009. Overnight cultured bacteria were 

harvested at 4,000 rpm for 10 minutes at 4 °C, washed twice with 

1X PBS and adjusted to 1.0x108 CFU/ml. For auto aggregation assay, 

3 ml of each bacterial cells was vortexed for 5 seconds and 

incubated at room temperature for 2 hours. The absorbance of upper 

supernatant was measured at 600 nm using SpectraMax3 
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spectrophotometer (Molecular Devices, USA). The auto-

aggregation assay was calculated with the following equation. 

Auto-aggregation (%) = (1-A2h) X 100

For co-aggregation assay, 2 ml of S. mutans ATCC25175 and 

ATCC700610 and same volume of LAB were mixed, then vortexed 

for 5 seconds and incubated at room temperature for 2 hours. The 

absorbance of upper supernatant was measured at 600 nm using 

SpectraMax3 spectrophotometer. The co-aggregation value was 

calculated as following

Co-aggregation (%) = [1-Amix/(ALAB auto-aggregation+AS.mutans auto-

aggregation)/2] X 100

3.1.6. Biofilm inhibition assay by LAB against S. mutans

Reduction of biofilm was measured by modifying method from 

Wasfi et al., 2018. The overnight cultured S. mutans were 

centrifuged at 4,000 rpm, 10 minutes, at 4 °C. The cell supernatant

was discarded and pellets were resuspended in BHI broth with 

addition of 0.2 % sucrose and adjusted to O. D 1.0 (1.5x108 CFU/ml). 

Then adjusted S. mutans 100 ul and LAB filtered supernatant were

added into each well of 96-well microplate. The plates were 

incubated at 37 °C, aerobically for 24 hours. After incubation, the 

supernatant of each well was removed and reduction in biofilm was 

measured by crystal violet staining, which was modified a method 
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from O’Toole et al., 1999. In brief, each well was washed with 1X 

PBS three times after removal of supernatant. Then, 0.1 % (w/v) 

crystal violet solution was added to each well and incubated for 30 

minutes at room temperature. The crystal violet was removed and 

each well was washed with deionized water until remaining crystal 

violet was completely removed. The plates were air-dried in 70 °C

dry-oven for 10 minutes. Then, 95 % ethanol 200 ul was added to 

each well for dissolving biofilm and incubated for 15 minutes at room 

temperature. The 150 ul of dissolved biofilm in 95 % ethanol was 

moved to new 96-well microplate. The optical density at 545 nm 

was measured by using SpectraMax3. 

For effects of supernatant on preformed biofilm, S. mutans were

added into 96-well microplate and incubated for 24 hours. After 

incubation, the supernatant was removed and LAB filtered 

supernatant was added to each well and incubated for 24 hours

(Figure 12). Reduction of biofilm was measured as previously 

described.
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Figure 12. Time schedule for the (a) prevention, and (b) inhibition assays 

of biofilm formation by S. mutans.
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3.1.7. Carbohydrate fermentative pattern and enzymatic 

profiling

Carbohydrate fermentative pattern and profiling enzymes were 

tested by using API 50 CHL and API zym kit (Bio-Merieux, France). 

The overnight cultured probiotic strains were harvested and washed 

twice with sterile PBS and adjusted to optical density 1.0 at 600 nm. 

Each protocol of the test was performed as manufacturer’s 

instructions.

3.2. Potential cariogenic ability of selected probiotic 

strains

3.2.1. Biofilm formation of selected probiotic strains

To estimate the cariogenic potential of selected probiotic strains, 

the following assay was performed. The overnight cultured probiotic 

strains were centrifuged at 4,000 rpm, 10 minutes at 4 °C to remove 

residual media. The supernatant was discarded and pellets were 

adjusted to optical density 1.0 at 600 nm with 0.2 % sucrose added 

BHI broth. Each of adjusted probiotic strains were added into each 

well of 96-well microplate and incubated for 24 hours. After 

incubation, supernatant was removed and crystal violet assay was 

performed as previously described.
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3.2.2. The hydroxyapatite degradation

To estimate the cariogenic properties of selected probiotic 

strains and S. mutans in degradation of HAP, we modified a method 

from Nikawa et al., 2004. The 25 mg of HAP powder (Sigma, USA) 

was added to each well of 24-multiwell cell culture plates (Falcon, 

USA) and 1.5 ml of 0.2 % sucrose added BHI broth was also added 

to each well. The overnight cultured bacteria were centrifuged at 

4,000 rpm, 10 minutes, at 4 °C. The cell pellets were harvested and 

washed twice with 1X PBS and adjusted to optical density 1.0 at 600 

nm in BHI broth with 0.2 % sucrose. 50 ul of adjusted bacteria were 

added to each well. For co-inoculation, 50 ul of adjusted S. mutans

and 50 ul of adjusted probiotic strains were added to each well. The 

amount of calcium ion release was measured by using calcium 

colorimetric assay kit (Biovision, USA) as following manufacturer’s 

instruction.

3.3. Inhibitory effects of selected probiotic strains on 

the gene expression in S. mutans

3.3.1. Extraction of total RNA

We studied the effects of LAB filtered supernatant on S. mutans
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gene expression in planktonic form, and biofilm formation state by 

modifying method from Wasfi et al., 2018. The overnight cultured S. 

mutans were centrifuged at 4,000 rpm, 10 minutes, at 4 °C. The 

supernatant of cell suspension was discarded and pellets were 

harvested in 0.2 % sucrose added BHI broth. Optical density of S. 

mutans were adjusted to 1.0 at 600 nm and 250 ul of adjusted S. 

mutans and same volume of LAB filtered supernatant were added to 

each well of 24-multiwell cell culture plates. Then 1.5 ml of 0.2 % 

sucrose added BHI broth was also added to each well and incubated 

for 24 hours at 37 °C. After incubation, cells in suspension were 

collected as planktonic group and cells in biofilm were washed twice 

with 1X PBS and 1 ml of Accuzol (Invitrogen, USA) was added to 

each well. Cell scrapper was used to collect cells in biofilm group 

and suspensions were moved to new 2.0 ml e-tube. The total RNA 

ware extracted by slightly modifying manufacturer’s instruction. In 

brief, 0.2 ml of chloroform was added to each sample and incubated 

for 3 minutes at room temperature. Then cell suspensions were 

centrifuged at 15,000 rpm, 10 minutes at 4 ℃. After centrifuge, 

aqueous phase of each sample was collected into new 1.7 ml e-tube. 

Same volume of isopropanol was added to each sample and inverted 

15 times and incubated at room temperature for 10 minutes. Then, 

samples were centrifuged at 15,000 rpm, 10 minutes, at 4 °C. The 
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supernatant was discarded as carefully as possible, and 1 ml of 70 % 

ethanol was added to each sample and vortexed for 5 minutes. Then 

samples were centrifuged at 8,000 rpm, 5 minutes at 4 °C again and 

supernatant was discarded. The pellets were air-dried in 70 °C dry 

oven for removal of remaining ethanol. Pellets were suspended with 

30 ul of RNase-free water, and RNA concentration and purity were 

determined by Nanodrop (SPECTROSTAR nano, BGM Labtech, 

Germany). Finally, the ReverTra AceR qPCR RT Master Mix with 

gDNA remover kit (Toyobo, Japan) was used to synthesize cDNA 

from 600 ng of extracted RNA, according to manufacturer’s 

instruction. 

3.3.2. Quantitative real-time polymerase chain reaction (qRT-

PCR) and data analysis

By using qRT-PCR, we measured the alterationd in gene 

expressions of S. mutans, under association with selected probiotic 

strains. We used gtfB, gtfC, gtfD, which are involved in glucan 

synthesis, and sacB, vicK, vicR, which are involved in fructan 

synthesis and regulation of gtfs. Secondary, we used aguD, atpD, 

comC, and comD, which are involved in acid tolerance response. 

Lastly, we used srtA, spaP, and wapA, which are involved in cell 

adhesion to enamel layer and other bacteria under sucrose absent 
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condition. The primers used in this study were designed according 

to Wasfi et al., 2018; Levesque et al., 2005; Li et al., 2013 and 

synthesized by Bioneer, South Korea (Table 4). qRT-PCR was 

performed by Biorad CFX 96 (Biorad, USA), using TOPrealTM qPCR 

SYBR Hi-ROX master kit (Biorad, USA). All reactions (25 ul) were 

performed using five technical replicates. Each reaction mixture 

contained 100 ng of cDNA and 10 pmole of primers. The RT-PCR 

cycling condition were as follows: one cycle with 95 °C for 10 

minutes, then 55 cycles of denaturation at 95 °C for 10 seconds, 

annealing at 52-62 °C (depending on primers used), and elongation 

and fluorescent data was collect at 72 °C for 30 seconds according 

to a method from Wasfi et al., 2018. A melting curve was generated 

at the end of each reaction at 65-95 ℃. The 16s rRNA gene was 

used as a housekeeping gene. The relative mRNA expression levels 

were normalized to the expression of the housekeeping gene using 

ΔΔCt value analysis. The qRT-PCR data were expressed as in fold 

change of their levels to control group (BHI broth treated).     
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Table 4. List of primers used in this study.

Related

function

Target 

gene

Primer 

name
Oligonucleotide sequence 5’-3’

TM 

(°C )

Product

size (bp)
References

Biofilm 

formation

gtfB
Gtfb-F ACGAACTTTGCCGTTATTGTCA 58.2

96
Lee and Kim, et 

al., 2014Gtfb-R AGCAATGCAGCCAATCTACAA 57.6

gtfC
Gtfc-F CTCAACCAACCGCCACTGTT 60.1

91
Lee and Kim, et 

al., 2014Gtfc-R GTTTAACGTCAAAATTAGCTGTATTAG 56.9

gtfD
Gtfd-F TGTCTTGGTGGCCAGATAAAC 57.2

132
Lee and Kim et al., 

2014Gtfd-R GAACGGTTTGTGCAGCAAGG 59.7

sacB
Sacb-F CCTGCGACTTCATTACGATTGGTC 61

103 Wasfi et al., 2018
Sacb-R ATTGGCGAACGGCGACTTACTC 62.5

vicK
Vick-F CACTTTACGCATTCGTTTTGCC 58.7

102
Senadheera et al., 

2005Vick-R CGTTCTTCTTTTTCCTGTTCGGTC 59.6

vicR
Vicr-F CGCAGTGGCTGAGGAAAATG 58.9

157
Senadheera et al., 

2005Vicr-R ACCTGTGTGTGTCGCTAAGTGATG 62.1

Acid tolerance

aguD
Agud-F ATCCCGTGAGTGATAGTATTTG 54.5

80 Jeon et al., 2009
Augd-R CAAGCCACCAACAAGTAAGG 56

atpD
Atpd-F CGTGCTCTCTCGCCTGAAATAG 60.2

85 Jeon et al., 2009
Atpd-R ACTCACGATAACGCTGCAAGAC 60.3

comC
Comc-F TATCATTGGCGGAAGCGGAA 58.8

71 Wasfi et al., 2018
Comc-R TCCCCAAAGCTTGTGTAAAACT 57.4

omD
Comd-F CGCGATTGGAGCCTTTAG 55.1

133 Wasfi et al., 2018
Comd-R CCTGAAATTCAGTTAGCCTTT 53.1
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Adhesion srtA
Srta-F GAAGCTTCCTGTAATTGGCG 56.9

108
Levesque et al., 

2005Srta-R TATGGTGCTGGAACGATGAA 58

spaP
Spap-F GGATCTGGCTGGGATAGTTCAG 61.6

70 Li et al., 2013
Spap-R GACCAGACATGCGGATAGCA 62.3

wapA
Wapa-F TCAAACGAATGTTCCGACAA 55.1

109 Zhu et al., 2006
Wapa-R GACCAGACATGCGGATAGCA 57.3

Housekeeping
16s 

rRNA

16s-F CCTACGGGAGGCAGCAGTAG 60.8
101 Salehi et al., 2014

16s-R CAACAGAGCTTTACGATCCGAAA 58.4
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Chapter 4. Results

4.1 Screening of potential probiotics with inhibition 

ability against biofilm formation by S. mutans

4.1.1. Safety assessment

Antibiotic susceptibility of the tested LAB was determined by 

Minimum Inhibitory Concentration (MIC) of each type of antibiotics 

recommended by microbiological breakpoints of EFSA, 2012. We 

confirmed that all of tested LAB satisfied cut off values from EFSA 

(Table 5). 

Production of hemolytic substances and biogenic amines by LAB 

was measured by observing zone around colonies using streaking. 

None of tested LAB showed hemolytic and biogenic amine production 

activity. 
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Table 5. Minimum inhibitory concentrations (ug/ml) of antibiotics to LAB.

Species Strain
Antibiotics susceptibility

AMP VAN GEN KAN STR ERY CLI TET CHL

L. rhamnosus GG 0.5 >256 2 24 6 <0.015 0.06 0.12 2

L. fermentum KM6-5 0.12 >256 1 16 8 0.12 <0.015 2 4

L. fermentum LM15-1 0.12 32 0.25 16 8 <0.015 <0.015 2 1.5

L. fermentum LM16-10 0.12 >256 0.5 16 4 0.015 <0.015 2 2

L. gasseri LM8-5 0.25 2 8 2 8 0.25 <0.015 2 2

L. paracasei LM1-1 0.5 >256 4 16 32 0.015 0.12 1 0.12

L. paracasei LM1-3 1 >256 2 24 16 0.06 0.12 1 0.12

L. paracasei LM3-5 1 >256 2 24 64 0.015 0.12 2 4

L. paracasei M9-1 0.25 >256 8 8 64 <0.015 <0.015 0.5 2

L. plantarum KM14-5 1 >256 2 24 16 0.5 0.12 8 4

L. reuteri
LDTM

7503
4 64 4 8 32 0.25 0.5 1 2

L. reuteri
LDTM 

7504
2 >256 8 8 32 0.25 0.25 4 2
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L. reuteri
LDTM 

7505
1 >256 2 24 16 0.015 0.5 2 1

L. rhamnosus HM15-5 2 >256 8 24 8 0.015 1 4 1

L. rhamnosus HM26-1 1 >256 2 12 8 0.015 1 2 4

L. rhamnosus LM11-1 1 >256 2 24 8 0.03 0.06 1 4

L. rhamnosus LM14-3 1 >256 2 12 16 0.03 0.06 2 4

L. lactis
LDTM 

6801
0.12 1 4 4 12 0.06 0.12 1 2

L. lactis
LDTM 

6804
0.12 0.5 4 4 24 0.06 0.12 0.06 1

P. acidilactici
LDTM 

5201
1 >256 4 64 32 0.25 <0.015 8 0.06

W. cibaria
LDTM 

8901
0.25 >256 4 4 24 0.06 0.12 0.06 1

Suggested breakpoint in accordance to the European Food Safety Authority (EFSA)

L. obligate 

homofermentative
1 2 16 16 16 1 1 4 4
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L. obligate 

heterofermentative
2 n.r

a
. 16 32 64 1 1 8 4

L. paracasei 4 n.r. 32 64 64 1 1 4 4

L. plantarum 2 n.r. 16 64 n.r 1 2 32 8

L. reuteri 2 n.r. 8 64 64 1 1 16 4

L. rhamnosus 4 n.r. 16 64 32 1 1 8 4

L. lactis 2 4 32 64 32 1 1 4 8

Pediococcus 4 n.r. 16 64 64 1 1 8 4

Other gram 

positive
1 2 4 16 8 0.5 0.25 2 2

Susceptibility of Lactobacillus, Pediococcus, Weissela and Lactococcus subsp. lactis was determined according to European Food Safety Authority (EFSA 2012).

AMP, VAN, GEN, KAN, STR, ERY, CLI, TET, CHL refer to ampicillin, vancomycin, gentamycin, kanamycin, streptomycin, erythromycin, clindamycin, tetracyclin, 

and chloramphenicol.

a
n.r: not required.
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4.1.2. Antimicrobial activity

To measure antimicrobial activity of LAB, we used agar well 

diffusion assay. It showed that inhibition zone of LAB by cell 

suspension varied among different species. L. fermentum, L. reuteri, 

and W. cibaria didn’t have antimicrobial activity against S. mutans

ATCC 25175. L. paracasei, L. gasseri, L rhamnosus, L. lactis, and P. 

acidilactici showed inhibition zone against S. mutans ATCC25175. 

Among those, L. paracasei M9-1 showed highest antimicrobial 

activity (14.45333 mm) followed by L. paracasei LM1-3 (12.884 

mm), L. plantarum KM14-5 (12.78267 mm), and L. rhamnosus

LM11-1 (12.70667 mm) which were higher than L. rhamnosus GG

(12.61667 mm), a reference strain (Table 6). However, 

antimicrobial activity of LAB supernatant was not detected against S. 

mutans ATCC25175. This result indicates that tested LAB can only 

inhibit growth of S. mutans when inoculated as in cell suspension. 

Agar well diffusion assay was not able to be used on S. mutans

ATCC700610 because it was un-cultivatable on agar plates.
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Table 6. The antimicrobial activity of LAB against S. mutans ATCC25175.

Species Strain
Diameter of the inhibition zone (mm)

a

Cell suspension Cell supernatant

L. rhamnosus GG ++ -

L. fermentum KM6-5 - -

L. fermentum LM15-1 - -

L. fermentum LM16-10 - -

L. gasseri LM8-5 ++ -

L. paracasei LM1-1 + -

L. paracasei LM1-3 ++ -

L. paracasei LM3-5 + -

L. paracasei M9-1 +++ -

L. plantarum KM14-5 ++ -

L. reuteri LDTM7503 - -

L. reuteri LDTM7504 - -

L. reuteri LDTM7505 - -

L. rhamnosus HM15-5 + -

L. rhamnosus HM26-1 + -

L. rhamnosus LM11-1 ++ -

L. rhamnosus LM14-3 + -

L. lactis LDTM6801 + -

L. lactis LDTM6804 + -

P. acidilactici LDTM5201 + -

W. cibaria LDTM8901 - -

a
+++, >14 mm; ++, >12 mm; -, no clear zone. 
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4.1.3. Co-aggregation ability with S. mutans

The LAB were co-inoculated with S. mutans ATCC25175 and 

700610 to evaluate co-aggregation ability. Most of tested LAB 

showed higher co-aggregation ability than L. rhamnosus GG. L.

plantarum KM14-5 and L. rhamnosus HM15-5 showed lower co-

aggregation ability than L. rhamnosus GG with S. mutans strains 

(Figure 13a,b). The co-aggregation ability of LAB with S. mutans

ATCC700610 was lower than those on S. mutans ATCC25175. L. 

gasseri LM8-5 and L. reuteri LDTM7503, 7504 and 7505 were 

highly aggregated with both of S. mutans strains. These result

suggested that co-aggregation ability of LAB was species specific.  
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Figure 13. Co-aggregation ability of LAB with S. mutans (a) ATCC25175, 

and (b) ATCC700610. Data are mean values ± standard deviation (S.D.). 

Significant differences were determined by using Student’s t-test, *P ≤

0.05, **P ≤ 0.01, ***P ≤ 0.001 compared with L. rhamnosus GG group.
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4.1.4. Biofilm inhibition ability against S. mutans

Biofilm inhibition ability of LAB filtered supernatant was 

measured by using crystal violet assay. To evaluate the preventive 

effect of the LAB filtered supernatant on biofilm formation of S. 

mutans, S. mutans and LAB filtered supernatant were inoculated to 

BHI broth with addition of 0.2 % sucrose at same time. Also, to 

evaluate the inhibitory effect of LAB filtered supernatant on the 

biofilm, S. mutans were inoculated to BHI broth with 0.2 % sucrose 

and incubated for 24 hours at 37 °C. After incubation, LAB filtered 

supernatant was treated to the preformed biofilm and incubated 

another 24 hours at 37 °C. In biofilm prevention assay, L. fermentum

KM6-5, L. paracasei LM1-1, LM1-3, LM3-5, and M9-1, L. 

plantarum KM14-5, L. rhamnosus HM15-5, LM11-1, and LM14-3

showed higher prevention ability against S. mutans ATCC25175 

compared to that of L. rhamnosus GG (Figure 14a). L. fermentum

KM6-5, LM15-1, and LM16-10, L. paracasei M9-1, L. rhamnosus

HM26-1 and LM11-1 showed higher inhibition ability against 

biofilm formation of S. mutans ATCC700610 than L. rhamnosus GG 

(Figure 14b). When inoculated after preformed biofilm, L. paracasei

M9-1 showed higher inhibition ability than L. rhamnosus GG against 

S. mutans ATCC 25175 among tested LAB (Figure 15a). L. 

fermentum LM15-1, L. gasseri LM8-5, L. paracasei M9-1, L. 

rhamnosus LM14-3 showed higher inhibition ability against S. 

mutans ATCC700610 when inoculated after preformed biofilm 



５８

(Figure 15b).

Among tested LAB, L. paracasei M9-1 showed the highest 

reduction in prevention and inhibition of biofilm formation against S. 

mutans ATCC25175 and ATCC700610.
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Figure 14. Inhibitory effects of LAB on biofilm-forming S. mutans (a) 

ATCC25175, and (b) ATCC700610. Data are mean values ± standard 

deviation (S.D.). Significant differences were determined by using Student’s 

t-test, *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001 compared with control 

group.
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Figure 15. Inhibitory effects of LAB on preformed biofilm of S. mutans (a) 

ATCC25175, and (b) ATCC700610. Data are mean values ± standard 

deviation (S.D.). Significant differences were determined by using Student’s 

t-test, *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001 compared with control 

group.
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4.1.5. Selection of potential probiotics

Our data concluded that L. paracasei M9-1 was the most 

promising anti-cariogenic LAB, which has higher abilities than L. 

rhamnosus GG and satisfied criteria from EFSA to be classified as 

probiotics. Therefore, L. paracasei M9-1 was selected as our 

probiotic strains and applied to next step. In addition, P. acidilactici

LDTM5201, W. cibaria LDTM 8901, L. subsp. lactis LDTM6804 

were also used for genus diversity and L. rhamnosus GG as a 

reference strain.  

4.1.6. Carbohydrate fermentative pattern and enzymatic 

profiling

We analyzed carbohydrate fermentative pattern and enzymatic 

profiling for analyzing biochemical characteristic of the selected 

probiotic strains. These results showed that S. mutans strains can 

utilize more kinds of carbohydrates than our selected probiotic 

strains. L. paracasei M9-1 showed similar carbohydrate pattern to 

S. mutans strains while others showed differences (Figure 16a).

The clear differences were observed in enzymatic profiling between 

each bacteria (Figure 16b).
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Figure 16. Heatmap of carbohydrates fermentative pattern and enzymatic profiling of selected probiotic strains and S. mutans

strains. (a) Carbohydrate fermentative pattern, and (b) enzymatic profiling. The colorimetric intensity is indicated by color

gradients: black represents high activity, while white represents no reaction.
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4.2 Potential cariogenic ability of selected probiotic 

strains

4.2.1. Biofilm formation of selected probiotic strains 

Some studies reported that probiotics may be the potential 

cariogenic agent due to production of organic acids and high acid 

tolerance. Therefore, we examined potential cariogenic ability of 

selected probiotic strains by inducing biofilm formation without S. 

mutans. All of tested strains except L. lactis LDTM6804 exhibited 

no biofilm formation (Figure 17). 
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Figure 17. Biofilm formation ability of selected probiotic strains. Each 

strains were cultured in BHI broth with 0.2 % sucrose to induce biofilm 

formation. Data are mean values ± standard deviation (S.D.). Significant 

differences were determined by using Student’s t-test, ***P ≤ 0.001

compared with L. rhamnosus GG group.
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4.2.2. Degradation of hydroxyapatite

Dental caries is directly related to degradation of hydroxyapatite 

(HAP) due to low pH condition. We examined HAP degradation 

ability of the selected probiotic strains and S. mutans by measuring 

the amount of the calcium release. The selected probiotic strains 

except L. lastis LDTM6804 showed lower calcium release than that 

of S. mutans ATCC25175 and ATCC700610 although the difference 

between ATCC700610 and selected probiotic strains were relatively 

small. After 24 hours incubation, all of the selected probiotic strains 

showed similar calcium release compared to S. mutans strains. L. 

lactis LDTM6804 showed higher calcium release than S. mutans

strains until 12 hours of incubation (Figure 18a). In addition, we also 

assessed the HAP degradation when the selected probiotic strains 

were co-cultured with S. mutans. The selected probiotic strains 

treated group showed similar amount of the calcium release 

compared to untreated group in S. mutans ATCC25175. After 24 

hours incubation, L. paracasei M9-1 treated group showed lower 

amount of the calcium release compared to untreated group (Figure 

18b). In S. mutans ATCC700610, all of the selected probiotic strains 

treated group showed higher calcium release until 12 hours of 

incubation except L. paracasei M9-1 showed similar to S. mutans

ATCC700610. However, after 24 hours of incubation, all of the 

selected probiotic strains treated groups showed lower calcium 
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release compared to untreated group. These data indicated that L. 

paracasei M9-1 didn’t aggravate calcium release when co-cultured 

with S. mutans (Figure 18c).
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Figure 18. The calcium releasing ability of S. mutans and selected probiotic 

strains. (a) Calcium release by individual strains from HAP, Selected 

probiotic strains with S. mutans (b) ATCC 25175, and (c) ATCC700610.
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4.3 Inhibitory effects of probiotic strains on the gene 

expression in S. mutans

4.3.1. Alteration in biofilm formation associated gene 

expression

To determine the effects of L. paracasei M9-1 supernatant on 

caries-inducing related gene expression in S. mutans, we measured 

biofilm-formation, acid tolerance, and adhesion associated mRNA 

expression by qRT-PCR. 

gtfs are known to be major contributor genes in biofilm formation 

of S. mutans. vicKR, two component signal system encoding genes, 

have been reported for their function in regulating gtfs. vicKR

defected mutants showed abnormal or reduced biofilm formation 

(Senadheera et al., 2005). 

In biofilm-forming S. mutans, L. rhamnosus GG and L. paracasei

M9-1 significantly reduced gtfC, vicK and vicR expression level in 

both of S. mutans strains. However, L. paracasei M9-1 didn’t 

significantly reduced gtfB in S. mutans ATCC25175 while L. 

rhamnosus GG significantly reduced gtfB in both of S. mutans strains. 

Both of selected probiotic strains significantly increased expression 

level of gtfD in S. mutans ATCC25175 but L. paracasei M9-1 

significantly increased gtfD in S. mutans ATCC700610 while L. 

rhamnosus GG significantly decreased gtfD expression level in S. 
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mutans ATCC700610 (Figure 19a,b). L. paracasei M9-1 

significantly reduced sacB expression level in S. mutans

ATCC25175 and L. rhamnosus GG and L. paracasei M9-1 

significantly increased sacB expression level in S. mutans

ATCC700610 (Figure 20a,b).
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Figure 19. Effects of probiotics on expression of biofilm-associated genes 

in biofilm-forming S. mutans. gtfs in biofilm-forming S. mutans (a) 

ATCC25175, and (b) ATCC700610. In each panel, data are expressed as 

fold change, calculated by using 2-△△Ct method relative to untreated 

probiotics as a control. Significant differences were determined by using 

Student’s t-test, *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001 compared with 

control group.
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Figure 20. Effects of probiotics on expression of sacB, vicK, and vicR

genes in biofilm-forming S. mutans (a) ATCC25175, and (b) ATCC700610. 

In each panel, data are expressed as fold change, calculated by using 2-

△△Ct method relative to untreated probiotics as a control. Significant 

differences were determined by using Student’s t-test, *P ≤ 0.05, **P ≤

0.01, ***P ≤ 0.001 compared with control group.
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In planktonic S. mutans. L. rhamnosus GG significantly decreased 

gtfB expression level and L. paracasei M9-1 increased gtfB

expression level significantly in S. mutans ATCC25175. On the 

contrary, L. rhamnosus GG increased gtfB expression level and L. 

paracasei M9-1 significantly decreased expression level of gtfB and 

gtfC in S. mutans ATCC700610. In gtfD expression level, L. 

paracasei M9-1 significantly decreased (Figure 21a,b). L. 

rhamnosus GG and L. paracasei M9-1 significantly decreased sacB

expression level in S. mutans ATCC25175 and sacB expression 

level in S. mutans ATCC700610 (Figure 22a,b). L. rhamnosus GG 

decreased vicK and vicR expression level in both of S. mutans

strains significantly.
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Figure 21. Effects of probiotics on expression of biofilm-associated genes 

in planktonic S. mutans. gtfs in planktonic S. mutans (a) ATCC25175, and 

(b) ATCC700610. In each panel, data are expressed as fold change, 

calculated by using 2
-△△Ct

method relative to untreated probiotics as a 

control. Significant differences were determined by using Student’s t-test, 

*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001 compared with control group.
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Figure 22. Effects of probiotics on expression of sacB, vicK, and vicR

genes in planktonic S. mutans (a) ATCC25175, and (b) ATCC700610. In 

each panel, data are expressed as fold change, calculated by using 2-△△Ct

method relative to untreated probiotics as a control. Significant differences 

were determined by using Student’s t-test, *P ≤ 0.05, **P ≤ 0.01, ***P

≤ 0.001 compared with control group.
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4.3.2. Alteration in acid tolerance associated gene expression 

According to Li et al., 2001, comCDE, which is one of two 

component signal system, is involved in acid tolerance of S. mutans. 

When comC, comD, or comE genes was defective in constructed 

mutants, they all showed decreased in the log phase acid tolerance 

response. Also, Griswold et al., 2006, reported that S. mutans 

converts arginine into agmatine to produce ammonia, thereby 

neutralizing acidic condition and use F-ATpase to pump out 

intracellular hydrogen ion. 

In biofilm formation S. mutans, L. rhamnosus GG significantly 

increased comC expression level. Both of Lactobacillus strains 

significantly decreased comD expression level in S. mutans ATCC 

25175. However, in S. mutans ATCC700610, both strains showed 

the exact opposite results from ATCC25175. They significantly 

decreased comC expression level. L. rhmanosus GG and significantly 

decreased aguD expression level in S. mutans ATCC 25175 and both 

of the selected probiotic strains significantly decreased aguD

expression level in S. mutans ATCC700610. In atpD expression 

level, L. rhamnosus GG significantly increased atpD expression in S. 

mutans ATCC25175 and decreased atpD expression in S. mutans

ATCC700610, significantly. L. paracasei M9-1 significantly 

increased atpD expression level only in S. mutans ATCC700610

(Figure 23a,b). 
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Figure 23. Effects of probiotics on expression of acid tolerance genes in 

biofilm-forming S. mutans (a) ATCC 25175, and (b) ATCC700610. In each 

panel, data are expressed as fold change, calculated by using 2-△△Ct

method relative to untreated probiotics as a control, BHI group. Error bars 

indicates standard deviation. Significant differences were determined by 

using Student’s t-test, *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001 compared 

with control group.
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In planktonic S. mutans, L. rhamnosus GG decreased comC and 

comD expression level significantly and L. paracasei M9-1 

increased comC and comD expression level significantly in S. mutans

ATCC 25175. In S. mutans ATCC700610, L. rhmanosus GG 

significantly increased comD expression level and L. paracasei M9-

1 significantly decreased comD expression level. In aguD expression 

level, both strains increased aguD expression in S. mutans

ATCC25175 and decreased aguD expression in S. mutans

ATCC700610, significantly. L. rhamnosus GG and L. paracasei M9-

1 both significantly decreased atpD expression level in S. mutans

ATCC25175, but L. rhamnosus GG increased atpD expression while 

L. paracasei M9-1 decreased atpD expression level significantly

(Figure 24a,b). 
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Figure 24. Effects of probiotics on expression of acid tolerance genes in 

planktonic S. mutans (a) ATCC25175, and (b) ATCC700610. In each panel, 

data are expressed as fold change, calculated by using 2-△△Ct method 

relative to untreated probiotics as a control, BHI group. Error bars 

indicates standard deviation. Significant differences were determined by 

using Student’s t-test, *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001 compared 

with control group.
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4.3.3. Alteration in adhesion associated gene expression 

Lastly, we examined the alteration of adhesion associated gene in 

S. mutans when treated with the selected probiotic strains filtered 

supernatant. In biofilm formation S. mutans, both selected probiotic 

strains significantly decreased srtA expression level in both of S. 

mutans strains. Also, selected probiotic strains significantly 

increased spaP and wapA expression level in S. mutans ATCC25175 

and decreased wapA expression level in S. mutans ATCC700610

(Figure 25a,b). 
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Figure 25. Effects of probiotics on expression of adhesion genes in 

biofilm-forming S. mutans (a) ATCC25175, and (b) ATCC700610. In each 

panel, data are expressed as fold change, calculated by using 2-△△Ct

method relative to untreated probiotics as a control, BHI group. Error bars 

indicates standard deviation. Significant differences were determined by 

using Student’s t-test, *P ≤ 0.05, ** P ≤ 0.01, ***P ≤ 0.001 compared 

with control group.
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In planktonic S. mutans, L. rhamnosus GG and L. paracasei M9-1 

significantly decreased srtA expression level in both of S. mutans

strains. Both of lactobacillus strains significantly increased spaP 

expression level in S. mutans strains. L. rhamnosus GG decreased 

wapA expression level in both of S. mutans ATCC 25175 while L. 

paracasei M9-1 increased wapA expression level in S. mutans

ATCC 25175 and decreased wapA expression level in S. mutans

ATCC 700610 significantly (Figure 26a,b). 
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Figure 26. Effects of probiotics on expression of adhesion genes in 

planktonic S. mutans (a) ATCC25175, and (b) ATCC700610. In each panel, 

data are expressed as fold change, calculated by using 2-△△Ct method 

relative to untreated probiotics as a control, BHI group. Error bars 

indicates standard deviation. Significant differences were determined by 

using Student’s t-test, *P ≤ 0.05, ** P≤ 0.01, ***P ≤ 0.001 compared 

with control group.
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Chapter 5. Discussion

The cariogenic microbiota in oral cavity produces organic acids 

derived from fermentation using dietary carbohydrates. In addition, 

it produces EPS such as glucans to form biofilm which is known as 

dental plaque. The function of biofilm is not only to block harmful 

materials entering into biofilm from outside, but also to trap 

nutrients and end products such as organic acids produced by 

bacteria (Huang et al., 2011). These results in degradation of 

enamel layer in tooth surface, which is composed of HAP. In past, 

treatment of dental caries almost exclusively relied on physical 

cleansing of tooth surface by tooth brushing. However, it was 

unsuccessful in reducing dental caries. The interesting fact is that 

dental caries was the major reason of rejection from military service 

during 1940s (Loesche, 1996). 

Among the oral microbiota, S. mutans is one of the normal 

microbiota in oral cavity and recognized as a major cariogenic agent 

(Shukla et al., 2016). A study reported that it can persist without 

detection of hydroxyapatite degradation, which means that S. mutans

is one of the normal microbiota in healthy oral cavity and can survive 

without biofilm formation (Marsh, 2003). The major reason why S. 

mutans is known as the most significant contributor in development 
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of the dental caries comes along with their specific enzyme, called 

glucosyltransferase. The major function of glucosyltransferase is to 

produce extracellular polysaccharide named glucan via degrading 

sucrose (Balakrishnan et al., 2000). 

Phenotypic variations such as serotype polysaccharide, 

carbohydrate fermentation, binding to tooth surface, and formation of 

biofilm are strain dependent on S. mutans (Waterhouse et al., 2007). 

These phenotypic variations may result in different cariogenicity in 

each strain of S. mutans. Therefore, we used S. mutans ATCC25175 

and ATCC700610 strains as indicator strains for screening and 

evaluation of anti-cariogenic LAB. S. mutans ATCC700610 was the 

first S. mutans strain to have their genome sequence identified. 

These findings provided not only uncharacterized genes involved in 

pathogenesis of S. mutans but also a future insight to identification 

of different strains in S. mutans (Ajdic et al., 2002).

A study reported that genetic difference in comC gene among 

different S. mutans strains and others revealed ATCC25175 has 

unique comC residue of “LGKIR” at end of its C-terminal while 

ATCC 700610 has “LGK” residue at end of its C-terminal (Petersen 

and Scheie, 2000; Song et al., 2013). 

For treatment of the dental caries, tooth extraction method was 

widely used when there was little information about caries 
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prevention. However, as dental caries forms quickly, and 

progression rate is high, there were several limitations in tooth 

extraction. In clinical practices, caries management are focused on 

restoration or retention of teeth. Still, the restoration without a 

prevention are such a short-term effects and if the causes of 

disease were not removed, the recurrence of dental caries are 

another limitation in restoration. In nowadays, many clinical 

practices are focusing on prevention of dental caries by removal of 

the biofilm, or using fluoride (Selwitz et al., 2007). However 

sometimes fluoride alone is not enough for prevention of dental 

caries. Even with fluoride, the carious lesion still develops when 

there are more than 6 dietary sugar uptake (Philip et al., 2018).

Probiotics have been emerged as an alternative therapy for the 

prevention or treatment of dental caries. The role of probiotics in 

dental caries reduction is to reduce biofilm formation or to reduce 

the concentration of S. mutans.

Therefore, the aim of this study is to screen LAB which has 

biofilm formation reducing ability against different S. mutans strains 

and to evaluate effects of selected probiotic strain on alteration of 

caries-inducing related mRNA expressions in S. mutans. 

We used 21 LAB, whose antimicrobial activity against several 

pathogens including psychrotrophic bacteria, IBD-related pathogens, 

and food-spoilage pathogens were already qualified in previous 
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study, (data not published) because a numerous kinds of LAB are 

proposed as probiotics or used as probiotics (Ljungh and Wadstrom, 

2006). To be classified as probiotics, the safety assessment of 

probiotics must be evaluated under criteria of reliable organization 

such as EFSA. Although each strains of LAB which are not 

pathogenic, does not need to be treated with antibiotics, however as 

they are living organism when consumed in high number, they must 

not possess antibiotic resistance gene that can be transferred to 

other microorganism, especially to pathogens (Broaders et al., 

2013). Biogenic amines are formed through undesirable 

decarboxylation of amino acids. When accumulated in high 

concentration, Biogenic amines may have toxicological effects on 

human. Most of LAB do not produce biogenic amine, but some 

species of LAB have been reported for its production of biogenic 

amine (Spano et al., 2010). The hemolysis is considered as one of

the major virulence factors in pathogens and hemolytic activity in 

lactobacilli is evaluated in many of current probiotic studies (Halder

et al., 2017). We evaluated each of selected 21 LAB on their 

antibiotics susceptibility, biogenic amine production, and hemolytic 

ability. None of those LAB showed such harmful effects and all of 

the LAB satisfied criteria from EFSA. This result indicates that our 

21 LAB can be considered as safe when ingested and accepted as 

probiotics, 
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The agar diffusion assay is widely used antimicrobial activity 

assay because it is a simple, inexpensive assay which has 

advantages in easy to reproduce (Magaldi et al., 2004). Due to 

variation of probiotic capacity among different strains and species 

(Guantario et al., 2018), there is no exact reference strain in 

functional study of probiotics. However, even though L. rhamnosus 

GG does not always show the highest functionality, it is the most 

widely used and studied commercial probiotics, Thus, L. rhamnosus

GG, is used as reference strain in many studies (Segers et al., 2014). 

In this study, we also used L. rhamnosus GG as a reference strain to 

give convenience in re-verification and for commercial values. The 

antimicrobial activity of 21 LAB was determined by measuring 

diameter of clear zone. Our results differed among strains, however 

it showed similar tendency among species. In S. mutans ATCC25175, 

the highest antimicrobial activity was detected in L. paracasei M9-1 

cell suspension among tested LAB. In the meanwhile, the 

antimicrobial activity from filtered supernatant of each LAB were not 

detected. This result indicates that the antimicrobial activity of our 

tested LAB were available only in the presence of living cell which 

may produce antimicrobial substances response to presence of other 

bacteria in same environment. This result was correspondent to 

result reported by Oldak et al., 2017. In S. mutans ATCC700610, we 

couldn’t use the agar well diffusion assay due to uncultivatable 
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feature of S. mutans ATCC700610 in solid culture.

Co-aggregation takes a significant role in formation of dental 

plaque. One of proposed mechanism in probiotic action against dental 

caries is their competition for binding site with pathogens or 

aggregation to binding receptors of oral pathogens, thereby blocking 

the adhesion of oral pathogens, otherwise which will bind to salivary 

pellicle (Haukioja et al., 2008). To compare co-aggregation ability 

between LAB, we first examined their auto-aggregation ability and 

then examined co-aggregation ability by the calculation described in 

Materials and Methods. Interestingly L. rhamnosus GG showed lower 

co-aggregation ability than most of other strains. This result was 

correspond to findings from Keller et al., 2011 which reports that L. 

rhamnosus strains have low co-aggregation abilities. In the contrast, 

L. reuteri and L. gasseri showed remarkable co-aggregation ability 

in our result. L. reuteri are reported to have higher auto-

aggregation rate than L. gasseri and L. rhamnosus (Leccese et al., 

2014), but in this study, L. gasseri showed higher co-aggregation 

ability than L. reuteri. This result suggests that L. gasseri LM8-5 

may expresses highest apf gene among tested LAB. Also, several 

studies reported about positive correlation between auto-

aggregation and co-aggregation ratio (Xu et al., 2009; Collado et al., 

2007). On the contrast, with regard to Twetman et al., 2009, co-

aggregation abilities vary through different strains of LAB. However, 
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our result showed similar tendency between each species, which 

indicates that auto-aggregation and co-aggregation depends on 

each species rather than strains.

Biofilm formation is recognized as the most significant factor in 

virulence of S. mutans (Pitts et al., 2017). Therefore, measuring 

quantification of biofilm is necessary for screening probiotics which 

has anti-cariogenic function against S. mutans. Crystal violet 

staining assay was first designed by Christensen et al., 1985 and

Stepanovic et al., 2000 modified the crystal violet assay to decrease 

technical errors in quantifying biofilm production. Crystal violet 

primarily binds to compounds in bacterial cell such as RNA or DNA 

or proteins. When dissolved in ethanol, it shows blue violet colors 

and thereby the absorbance is directly related to bacteria with 

crystal violet binding. In nowadays, it is used as a simple, 

inexpensive, and effective assay in many biofilm quantification 

assays. However, according to Monteiro et al., 2015, there are clear 

disadvantages in using crystal violet assay. The crystal violet assay 

can’t distinguish alive or dead cells because crystal violet stains 

whole bacterial cell, despite alive or dead, and even the matrix. This 

result also indicates that when LAB are used as in their cell 

suspension form, the crystal violet assay can’t distinguish LAB from 

S. mutans cell thereby lowering accuracy of quantification in 
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reduction of biofilm production by S. mutans. To overcome this 

disadvantages, many studies used cell-free supernatant of LAB to 

measure inhibitory effects against biofilm formation of S. mutans. In 

this study, for prevention assay in inhibiting initial colonization of S. 

mutans, we inoculated S. mutans with LAB filtered supernatant at 

same time. For therapeutic assay, the biofilm of S. mutans were 

induced for 24 hour and subsequently the filtered LAB supernatant 

were treated to those preformed biofilm. All of LAB filtered 

supernatant showed inhibition in biofilm formation of both S. mutans

strains regardless of treatment time and inhibition ability of LAB 

filtered supernatant varied among with different strains. This result 

is quite different from Wasfi et al., 2018. In their result, all of the 

tested LAB supernatant showed antimicrobial activity against S. 

mutans ATCC25175 which indicates that reduction in biofilm 

formation may have been caused by inhibition of growth in S. mutans

ATCC25175. However in our data, even if LAB supernatant has no 

antimicrobial activity against S. mutans strains, all of tested LAB 

supernatant still showed reduction in biofilm formation. Therefore, 

specific metabolites in LAB supernatant seems to have inhibitory 

effects against biofilm formation of S. mutans. For example, Ahn et 

al., 2018 reported lipoteichoic acid from L. plantarum, which is a 

major component of cell wall in Gram-positive bacteria, showed 

reduction of biofilm formation without influencing growth of S. 
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mutans. Among tested LAB, L. paracasei M9-1 showed highest 

biofilm inhibition ability in both of S. mutans strains for their biofilm 

colonization, and preformed biofilm, which was higher than reference 

strain, L. rhamnosus GG.

Considering our results from antimicrobial activity, co-

aggregation ability, biofilm inhibition activity, L. paracasei M9-1 was

selected as a promising probiotics which has inhibition abilities 

against biofilm formation by S. mutans. To give genus diversity, we 

also selected P. acidilactici LDTM5201, W. cibaria LDTM8901, L. 

lactis LDTM6804, and L. rhamnosus GG as reference strain for 

further characterizing and evaluation.

To analyze selected probiotic’s carbohydrate fermentative 

pattern and enzymatic profiling, we used API assay. Two different 

strains of S. mutans showed clear difference in carbohydrate pattern 

and enzymatic profiling. This indicates the ability to utilize carbon 

source varies among strains and it may explain why cariogenic 

ability varies among different strains of S. mutans. Furthermore, L. 

paracasei M9-1 had most similar carbohydrate fermentation pattern 

to S. mutans ATCC25175. This result supports the possibility that L. 

paracasei M9-1 may compete for nutrition with S. mutans in oral 

cavity, thereby inhibiting growth of S. mutans.

Probiotics have been also reported for their ability in biofilm 
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formation. By forming biofilm, probiotics can enhance resistance to 

environmental conditions, and colonization to intestinal epithelial 

cells (Salas-Jara et al., 2016). In gastrointestinal tract, the ability to 

produce biofilm may benefit the host for enhancing colonization rate 

and survival of probiotics. This function can be harmful to host when 

biofilm formation process takes place in oral cavity due to probiotic’s 

high acid production and high acid tolerance. To test cariogenicity of 

selected probiotic strains, we induced biofilm formation of selected 

probiotic strains with same methods used in inducing biofilm 

formation of S. mutans. Our result showed that selected probiotics 

can’t produce biofilm under sucrose added condition except L. lactis

LDTM6804 showed possibility of biofilm formation compared to that 

of L. rhamnosus GG.

As mentioned in literature review, about 95 % of enamel is HAP. 

HAP is made up of hydroxyl ions, phosphate ions, and calcium ions. 

Due to positive charges from calcium ions, HAP also contains 

positive charge, and this provides bondage to S. mutans. The 

biofilms of S. mutans with calcium ions trapped in their covalent 

bond, increase the degradation of HAP (Lin and Pan, 2014). 

Therefore, the formation of biofilm induces the demineralization of 

HAP and release the calcium ions from HAP (Venegas et al., 2006). 

By examining the amount of released calcium ions from HAP, we can 
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also measure cariogenecity of selected probiotic strains and S. 

mutans. Furthermore, we evaluated degradation of HAP when S. 

mutans co-cultured with selected probiotics. Our results showed 

that when cultured individually, all of selected probiotics showed the 

degradation of HAP, although which were lower than those of S. 

mutans strains and even S. mutans strains showed difference in 

calcium release. This result can also support that cariogenicity of S. 

mutans strains are different among strains. After 24 hours of 

incubation, all of selected probiotic strains showed lower calcium 

release than that of S. mutans strains, although the difference was 

relatively small. This result is clearly different from Nikawa et al., 

2004. In their study, they reported calcium release by S. mutans

begins after 24 hours of incubation, and L. reuteri showed no release 

of S. mutans. The modification of HAP degradation assay from 

Nikawa et al., 2004 might explain this difference. They used highly 

compressed HAP beads but in this study, we used HAP as in powder 

form. In powder form, the binding force might be lower than 

compressed bead form, thereby the degradation rate in powder form 

may be faster than the compressed bead form. Furthermore, we 

added sucrose to induce biofilm. The addition of sugar may have 

affected the degradation rate of HAP due to faster growth of S. 

mutans and the selected probiotic strains. A study from Lin and Pan, 

2014, also reports that L. paracasei showed the release of calcium 
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from HAP, which were lower than that of S. mutans. This result 

corresponds with our result. However, we must consider that in this 

method, we couldn’t check the influence of selected probiotics when 

trapped within the S. mutans biofilm. Therefore, we co-cultured 

selected probiotics with S. mutans and examined release of calcium 

amount in the same way. Our result showed clear difference 

between each strain of S. mutans. In S. mutans ATCC25175, all of 

the selected probiotic strains showed similar calcium release 

compared to control group. Among those, L. paracasei M9-1 

showed lower calcium release compared to control group. In S. 

mutans ATCC700610, all of selected probiotic strains showed higher 

calcium release compared to control group at initial stage except L. 

paracasei M9-1. L. paracasei M9-1showed similar calcium release 

compared to S. mutans ATCC700610. However after 24 hours of 

incubation, all of the selected probiotic strains showed lower calcium 

release compared to control group. Therefore, P. acidilactici LDTM 

5201, W. cibaria LDTM8901, and L. lactis LDTM6804 were 

disqualified for further assays due to enhancing the degradation of 

HAP in S. mutans ATCC25175 and ATCC700610. 

In line with previous results in this study, we selected L. 

paracasei M9-1 as promising probiotics which has inhibitory effects 

against biofilm formation by S. mutans ability. To evaluate the 
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effects of L. paracasei M9-1 supernatant on S. mutans caries-

inducing factors, we examined alteration of caries-inducing related 

gene expression in S. mutans by qRT-PCR. The genes examined in 

this study were biofilm associated gene, such as gtfB, gtfC, gtfD, and 

sacB, and the two component signal system which can regulate 

biofilm-associated gene, vicK, and vicR. Our study also included the 

acid tolerance related gene aguD, and atpD, and the two component 

signal system comC and comD. In addition, the adhesion related gene

srtA, spaP, and wapA were included. In biofilm-forming group, L. 

paracasei M9-1 decreased gtfC, vicK, and vicR expression level in 

both of S. mutans strains, while other biofilm associated genes 

showed different tendency. According to Wasfi et al., 2018, the 

decrease in vicK and vicR level resulted in decrease of gtfs and ftf

because biofilm formation are regulated by VicKR system. However,

in our study, L. paracasei M9-1 didn’t significantly decreased gtfB

in S. mutans ATCC25175 and the expression of gtfD and sacB

varied along with different strains of S. mutans. In planktonic group, 

L. paracasei M9-1 increased gtfB expression level in S. mutans

ATCC 25175 despite reduction in VicKR system. These data 

suggest that gtfc may be directly regulated by VicKR system, and 

other biofilm associated genes are not. S. mutans are reported to 

have at least 13 kinds of two component signal system, and other 



96

two component signal system rather than VicKR system may have 

caused the difference between expression levels of each biofilm 

associated genes. Also, increases in gtfD expression level would 

increase the production of water-soluble glucans. As a result, the 

solubility of biofilm by saliva increases and cause the biofilm to be 

easily removed. We assume that the high level of gtfD and low level 

of gtfB might cause the conversion of water-insoluble glucan into 

water-soluble glucan although more evidence are needed to prove 

the theory. In acid tolerance gene expression, our result showed 

that L. paracasei M9-1 didn’t have much influence on the acid 

tolerance response as in correlation with our agar well diffusion 

assay. L. paracasei M9-1 showed negligible effect on expression of 

acid tolerance gene in S. mutans ATCC25175 or increased atpD

gene expression level in S. mutans ATCC700610 despite the 

reduction of comC and comD expression level. This result indicates 

that ComCD signal transduction system regulates the acid tolerance 

related gene rather than aguD and atpD. Instead, a study reported 

that ComCD also regulates the gtfs and glucan binding sites such as 

gbpB (Li et al., 2002). Therefore, different alteration in expression 

of gtfs might be caused by different alteration in expression of 

comCD system. In biofilm-forming S. mutans, reduction in comC

expression level might have caused the reduction in gtfB expression 
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level. However, in planktonic S. mutans, the reduction in comD

expression level seemed to have caused the reduction in all of 

tested biofilm associated gene expression level, which suggest that 

ComCD system regulation depends on presence of biofilm. Also 

ComCD system is regulated by cell density in biofilms (Jarosz et al., 

2009). In our result, comC and comD was expressed higher in 

planktonic group, which indicates that the cell density became lower 

in biofilm group due to the decreased expression level of gtfC. In 

adhesion related gene, L. paracasei M9-1 decreased srtA

expression level in biofilm group in both of S. mutans strains. This 

suggest that L. paracasei M9-1 might inhibits biofilm formation in 

the absence of sucrose. In total, L. paracasei M9-1 inhibits 

attachment of S. mutans to tooth surface rather than inhibiting 

production of the biofilm even without presence of sucrose.  

Although our result showed biofilm formation reducing effects of 

L. paracasei M9-1 against S. mutans, there are limitations before 

applying L. paracasei M9-1 to clinical study. We showed L. 

paracasei M9-1 as a new probiotics for its biofilm forming reducing 

ability against S. mutans, but we couldn’t confirm that L. paracasei 

M9-1 would show its anti-caries activity when treated as live cell 

due to limitation in crystal violet assay. Indeed, when probiotics are 

used as live cell form to examine the reduction in biofilm formation,
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the crystal violet may also bind to probiotic strains and result in the 

increase of biofilm formation which will cause misleading in analysis. 

Moreover, if probiotics is trapped inside biofilm without inhibitory 

activity, it can aggravate the dental caries. However, according to 

our results, L. paracasei M9-1 couldn’t produce biofilm and showed 

anti-microbial activity against S. mutans when treated as live cell 

form. Therefore, we assume that when L. paracasei M9-1 are 

treated as live cell form, the reduction ability against biofilm 

formation of S. mutans would be enhanced rather than aggravated.

A weakness in our study is that we used HAP degradation 

without presence of human saliva. Human saliva is one of the critical 

components in oral ecological environment. It plays a significant role 

in maintaining neutral pH in oral cavity by possessing several 

buffering peptides such as phosphate or bicarbonate (Kumar et al., 

2017). We believe that the increase in the calcium release of 

selected probiotic strains treated group is related to the absence of 

human saliva because selected probiotic strains can’t produce biofilm 

and thereby human saliva might wash out the organic acid produced 

from the selected probiotic strains. Also, the temporal persistence of 

probiotics may be another concern in evaluating the efficacy of 

probiotics against dental caries. A study has reported that the effect 

of probiotics on dental caries disappeared after stop consuming 
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probiotics (Petti et al., 2001). Therefore, more precise study such 

as in vivo evaluation of L. paracasei M9-1 in caries induced rats or 

extraction of specific metabolite which can reduce biofilm formation 

of S. mutans by using chromatography are needed before applying to 

clinical studies.

In conclusion, our study found a noble probiotics which has 

preventive effects on reducing dental caries caused by S. mutans

through biofilm inhibition against two different S. mutans strains 

even though there are some limitations. Our result indicates that L. 

paracasei M9-1 can prevent and inhibit biofilm formation of S. 

mutans by antimicrobial, co-aggregation and the reduction of 

adhesion related gene expression in S. mutans despite the presence 

of sucrose. In vivo study is needed to confirm safety in alive cell 

form and efficacy in long term use. However, our study also 

provides possibility of using L. paracasei M9-1 as in supernatant 

form. According to Tanzer et al., 2010, even heat-killed L. 

paracasei can reduce the number of S. mutans and caries lesion 

score in caries induced rat model by co-aggregation. In addition, 

Holz et al., 2013 used sugar-free candies as a delivery substance. 

Therefore, if we can extract the metabolites which can reduce 

biofilm formation, we may add those to gum or gargling solution. 

Also, it will help us to understand exact mechanism of biofilm 

reducing ability of L. paracasei M9-1.
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Abstract in Korean

충치는 치아 표면에 존재하는 enamel의 demineralization에 의하여

발생한다. 구강 내의 높은 산성도는 enamel 층의 주요 구성 성분인

수산화인회석의 분해를 일으키게 된다. 구강 미생물 중에서도 충치를

유발하는 미생물 들은 구강 내에서 산성도를 높이는 여러 요인 중 하나

이다. 충치 유발 미생물들은 구강 내 잔여 탄수화물을 에너지원으로

사용하고, glucosyltransferase 라는 효소를 이용하여 바이오필름을

형성하며, 유기산들을 생성한다. 건강한 구강 내에서는 일반적으로

인간의 침에 의해 낮은 pH 환경이 중화된다. 그러나 바이오필름이 형성

될 시, 바이오필름은 인간의 침이 바이오필름 내부로 들어오는 것을

방지하고, 내부의 유기산들이 밖으로 방출되는 것을 억제한다.

결과적으로 바이오필름 내부에서는 유기산들이 갇혀 높은 산성 환경이

유지되게 된다. Streptococcus mutans는 glucosyltransferase를

생성하지 못하는 타 미생물에게 glucosyltransferase를 전달하여 해당

미생물 또한 glucan 형성이 가능하게 되어 바이오필름 형성을

가속화시키기 때문에 충치 유발 주요 원인 균으로 잘 알려져 있다.

따라서 본 연구의 목적은 충치의 주요 원인 균인 S. mutans의

바이오필름 형성을 감소시켜 충치 발생을 억제 할 수 있는 유산균 주의

스크리닝 및 평가이다. 본 연구에서는 기존에 타 미생물에 대하여

항균활성 능력이 검증 된 유산균 21 종류를 사용하였다. 안전성 검사를

실시한 결과 EFSA가 제시하는 기준에 21가지 유산균이 모두 부합한
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것을 확인하였고, 이는 구강으로 섭취하였을 때, 건강에 이상이 없음을

의미한다. Lactobacillus paracaei M9-1은 실험에 사용된 유산균 중에서

가장 높은 항균 활성 능력을 보였으며 (> 14mm), reference strain인

Lactobacillus rhamnosus GG보다 더 높은 co-aggregation 능력과

가장 높은 biofilm 형성을 억제 능력을 보였다. 따라서 L. paracasei

M9-1이 S. mutans의 biofilm 형성을 억제할 수 있는 잠재적인

프로바이오틱스 후보로 선발 되었다. L. paracasei M9-1이 S. mutans의

충치 유발 관련 유전자들에 미치는 영향을 평가해 본 결과, 부착 기능과

관련된 유전자들의 발현을 감소시키는 것을 확인하였다. 그러므로 본

논문은 L. paracasei M9-1이 항균활성 능력, co-aggregation 능력, S. 

mutans의 부착 단백질들을 발현하는 유전자들의 발현을 억제하여 S. 

mutans의 바이오필름 생성을 억제할 수 있기 때문에 충치를 감소시킬

수 있는 프로바이오틱스임을 확인하였다.

주요어 : 충치, Streptococcus mutans, 바이오필름, 유산균,

프로바이오틱스

학 번 : 2017-28580 
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질문이 생길 때마다 매번 자세히 조언해주시고, 건강에는 이상이 없는지

걱정해주시며, 실험이 잘 진행되지 않을 때는 직접 실험을 지도해주셨던

김인선 박사님, 입학한지 얼마 안되고 기초 지식과 실험 능력이 부족한

저를 지도해주시고 가르쳐 주셨던 여소영 연구원님, 비록 주제는

바뀌었지만 바뀌기 전 주제에서 실험이 막혀있을 때, 본인 과제가

아님에도 불구하고 지도해주셨던 두은희 박사님, 논문 리뷰 시 발생한

의문점들을 질문할 때마다 밤늦게 까지 함께 남아서 조언해주신 류리
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싶습니다. 처음 왔을 때, 졸업 학기 임에도 불구하고 첫 오리엔테이션

대상자인 저에게 다양한 실험을 알려주었던 도선이 형, 승일 선배, 혜원
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실험실의 맏형으로서 저희 생활에 어려움이나 불편함이 없는지 세세히

체크해주시고 어려울 때 기댈 수 있는 범주 형, 실험 기법이나 논문
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다르지만 거의 비슷한 시기에 와서 항상 챙겨주고 도와주었던 원준이,

옆자리에서 있으면서 걱정해주고 도와주었던 은솔이, 본인도 바쁘지만
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