저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

- 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건을 명확하게 나타내어야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.
Master’s Thesis of Public Health

Predicting *Aldehyde Dehydrogenase 2 (ALDH2)* Polymorphism:
ALDH2-genotype and Facial-Flushing-Reaction Mismatching Cases

February 2019

Graduate School of Public Health
Seoul National University
Public Health Science Major
Eun Jin Woo
Predicting *Aldehyde Dehydrogenase 2 (ALDH2)* Polymorphism:

ALDH2-genotype and Facial-Flushing-Reaction Mismatching Cases

도교수 성주현

이 논문을 보건학 석사학위논문으로 제출함

2018년 11월

서울대학교 보건대학원

보건학과 보건학전공

우은진

우은진의 석사학위논문을 인준함

2018년 12월

위원장 조성일 (인)

부위원장 정효지 (인)

위원 성주현 (인)
Abstract

Backgrounds: *Aldehyde dehydrogenase 2 (ALDH2)* gene encodes a critical metabolic enzyme which plays an important role in breakdown of acetaldehyde. In addition, the risk of various alcohol-related diseases and cancers can be altered according to the *ALDH2* genotype. Currently *ALDH2* genotype is predicted by facial flushing reaction questionnaire since it is not possible to genotype every individual. However, some individuals, who consume relatively large amount of alcohol than average, tend to be adapted to facial flushing reaction and hence express opposite phenotype from their *ALDH2* genotype.

Objectives: This study aims to develop *ALDH2* polymorphism prediction model with alcohol related variables to increase predictive performance with current screening method, facial flushing questionnaire and also to explore genes associated with facial flushing reaction others than *ALDH2* and score polygenic effect of associated SNPs.

Methods: 1807 study participants from Korean Healthy Twin study cohort were involved in prediction modelling of *ALDH2* genotype. 2/3 of study participants were included in training dataset and significant alcohol related variables were selected as predictors with no multicollinearity by backward stepwise regression. Candidate prediction models were validated with 1/3 of study participants and predictive performance of models were measured with AUC with ROC curve, Hosmer-Lemeshow test, reclassification. In addition, *ALDH2*(rs671) conditional GWAS was
performed using family-based score test for association (FASTA) from ‘GenABEL’ in R software and GWAS summary statistics were used to calculate polygenic score.

Results: Selected predictors apart from facial flushing reaction were 1) amount of alcohol consumption (g/week), Hazard domain of AUDIT, AUDIT question No.8. With these variables 5 candidate models were generated and Models with facial flushing reaction, Hazard domain of AUDIT and AUDIT question No.8 as predictors were selected as the best prediction model to discriminate active and inactive *ALDH2* carriers with AUC of 0.93 which is 0.013 higher than facial flushing reaction questionnaire alone. Results from *ALDH2*(rs671) conditional GWAS had no significant SNPs yet clumped 17 SNPs at suggestive significant level including rs6480460 in *PRF1* were used to generate polygenic score. Regardless of *ALDH2* genotype, individuals with no flushing reaction expressed stronger polygenic effect on metabolic ability to breakdown alcohol.

Conclusion: Facial flushing questionnaire is an excellent screening tool for *ALDH2* polymorphism. However, prediction model with additional alcohol related variables as predictors can improve the predictive performance. Also, inactive *ALDH2* carriers with no facial flushing reaction had stronger polygenic effect of SNPs related to metabolic ability for alcohol intake.

Key words: *Aldehyde dehydrogenase 2 (ALDH2)*, Facial flushing reaction, prediction model, polygenic score, family-based genome wide association study, conditional genome wide association study

Student number: 2017-27710
CONTENTS

Abstract .. i
List of Tables .. v
List of Figures .. vi

I. Introduction
 1. Background .. 1
 2. Objectives .. 3

II. Methods
 1. Study participants ... 5
 2. Data measurement
 2.1 Alcohol Use Disorders Identification Test (AUDIT) .. 5
 2.2 Average amount of alcohol Intake .. 6
 2.3 The Facial flushing reaction questionnaire ... 6
 2.4 Genotype data ... 7
 3. Statistical analysis ... 7
 3.1 Descriptive analysis ... 7
 3.2 Development and Validation of Prediction model ... 7
 3.3 Polygenic score for Facial flushing reaction .. 8

III. Results
 Part.1
 1. Descriptive statistical analysis
 1.1 Study participants by sex ... 9
 1.2 Study participants by matching and mismatching case ... 9
 2. Prediction of $ALDH2$ polymorphism
2.1 Development of prediction model .. 13
2.2 Validation of prediction model ... 14

Part 2

1. ALDH2 Conditional Genome-wide association study of Facial Flushing Reaction.. 18
2. Polygenic score for facial flushing reaction ... 23

IV. Discussion ... 24

V. References .. 27

VI. 국문 초록 (Abstract in Korean) ... 30
List of Tables

Table.1 General Characteristics of study participants .. 11
Table.2 General Characteristics of study participants by ALDH2 genotype and facial flushing reaction ... 12
Table.3 Sensitivity and Specificity of Facial Flushing Questionnaire in Korean Healthy Twin Study ... 13
Table.4-1 Explanatory models .. 14
Table.4-2 Coefficient of Explanatory models ... 14
Table.5 Comparison of Models' predictive performance 17
Table.6 Characteristics of Top 10 SNPs from ALDH2(rs671) conditional GWAS for facial flushing reaction used to generate the PS .. 22
Table.7 Average polygenic score by different groups ... 23
List of Figures

Figure.1 Diagram of objectives of Part 1 and Part 2 .. 4
Figure.2 ROC Curves of Model.1 and Model.5 ... 15
Figure.3 Discrimination Slope of Model.1 and Model.5 ... 16
Figure.4 Manhattan Plot of SNPs from GWAS for facial flushing reaction 19
Figure.5 Q-Q Plot of GWAS p-value for facial flushing reaction 19
Figure.6 Manhattan Plot of SNPs from ALDH2(rs671) conditional GWAS for facial flushing reaction ... 20
Figure.7 Q-Q Plot of ALDH2(rs671) conditional GWAS p-value for facial flushing reaction ... 20
Figure.8 Regional Plot of ALDH2(rs671) conditional GWAS for facial flushing reaction with rs6480460 ... 21
1. INTRODUCTION

1. Background

The Aldehyde dehydrogenase 2 (ALDH2) enzyme mostly governs the metabolic breakdown of acetaldehyde from alcohol consumption [1]. Aldehyde dehydrogenase 2 are classified into active and inactive forms by having single nucleotide substitution in the gene encoding Aldehyde dehydrogenase 2, *Aldehyde dehydrogenase 2(ALDH2)* [2]. The genetic substitution of adenine to guanine on rs671 of *ALDH2* causes inactive *ALDH2* (*1/*2 or *2/*2) by altering amino acid 487 of mature protein, with lysine substituted for glutamic acid (504 of the gene when the mitochondrial leader sequence is included) [3]. This genetic polymorphism of *ALDH2* however only appears to be prevalent in East Asian population with an incidence of approximately 30% *ALDH2* (*1/*2) heterozygosity and 5–10% *ALDH2* (*2/*2) homozygosity [11,13] including Korean, Japanese and Chinese as Caucasian, Southeast Asian and African population mostly possess active form of *ALDH2* (*1/*1) [4,5]. Inactive *ALDH2* results in reduced enzymatic activity which leads to prolonged accumulation of toxic acetaldehyde in the blood. Inactive-*ALDH2* carriers therefore express physiological response such as facial flushing reaction and other unpleasant feelings after alcohol consumption [10]. In addition, alcohol drinking behavior and alcohol-related diseases and cancers can be strongly influenced by *ALDH2* genotype [7]. Physiological responses caused by inactive *ALDH2* causes
alcohol consumption to be aversive and therefore less prone to alcoholism or alcohol dependence. As such, inactive *ALDH2* carriers are highly protective against alcohol related problems. [5]. Also, In Korean population, susceptibility to the development of gastric cancer associated with alcohol intake was modified by *ALDH2* polymorphism in Korean population especially in case of inactive *ALDH2* genotype and inactive *ALDH2* carriers are reported to have increased risk of esophageal cancer even with moderate drinking as well [9,12]. Other cancers such as oral cancer, breast cancer and colon cancer showed a moderate level of association and still remained as a matter of debate [11,13].

However, *ALDH2* and other genotypes linked to alcohol metabolism are not considered in alcohol drinking guideline in Korea and most study results regarding correlation of alcohol consumption and alcohol-related diseases and cancers have been concluded with non-East Asian population. Therefore, considering inactive *ALDH2* genotype in the study with East Asian population could result more precise association of *ALDH2* genotype and diseases as well as cancers.

At present genotyping *ALDH2* is the most accurate way to identify individual’s *ALDH2* polymorphism. However, it is not possible to test *ALDH2* genotype for every individual and therefore facial flushing reaction, the physiological response of inactive *ALDH2*, serves as a predictor of inactive *ALDH2* for both genotype of *ALDH2* *1/*2 and *ALDH2* *2/*2 with two questionnaires [14]. The facial flushing reaction questionnaire was originally developed and validated by Japanese group with the questionnaire's sensitivity and specificity for identifying inactive ALDH2
were 96.1 and 79.0%, respectively [14] while sensitivity and specificity from validation of facial flushing reaction questionnaire with Korean population was 95.1% and 76.5%, respectively [15]. This results from East Asian population allowed the utility of facial flushing reaction questionnaire as a screening tool for ALDH2 genotype in clinical practice as well as large scale studies to investigate the association of ALDH2 genotype and other diseases or cancers [16]. However, from the study of comparison between facial flushing reaction questionnaire and ALDH2 polymorphism for risk of upper aerodigestive tract cancer in a Japanese population showed misclassification between facial flushing and ALDH2 genotype that facial flushing had no significant association with upper aerodigestive tract cancer, although inactive ALDH2 showed significant association with upper aerodigestive tract cancer [17]. The discrepancy of the results was assumed to be due to misclassification of facial flushing and ALDH2 polymorphism which was particularly obvious among heavy drinkers with inactive ALDH2.

2. Objectives

This study aims to provide evidence for the utility of more precise screening tool of ALDH2 polymorphism without genotyping as illustrated in Figure 1. Part.1 of this study develops and validates the prediction model for ALDH2 genotype with facial flushing reaction and additional alcohol related phenotype data such as absolute amount of alcohol consumption(g/week) and Alcohol Use Disorders Identification Test (AUDIT) score, and Part.2 of the study explores genes affecting facial flushing reaction with genotype data and measure polygenic score for facial flushing reaction.
Figure 1. Diagram of objectives of Part 1 and Part 2

Part 1

- Facial Flushing Reaction
- Additional Predictors
 - AUDIT* Alcohol Use Disorders Identification Test
 - Alcohol Drinking Duration
- Improved *ALDH2* genotype predictive performance

Part 2

- *ALDH2* (Glutaryl-2,2-oxoacyl-CoA) Polyamide
- Other genes Related to co-enzyme Pathway
- Other genes Related to MAO* Pathway
- Facial Flushing Reaction

*MAO: Monoamine Oxidase

AUDIT - Alcohol Use Disorders Identification Test
II. METHODS

1. Study participants

The Healthy Twin Study is a cohort study of Korean twin-family including adult monozygotic and dizygotic twin pairs and their first-degree family members. Detailed information of The Healthy Twin Study was previously described [18]. Total 3500 participants were recruited since 2005 and went through general health examinations and completed a comprehensive questionnaires survey. Among total 3500 participants, lifetime abstainer and individuals who had not completed alcohol drinking related questionnaire including facial flushing reaction were excluded.

2. Data measurement

2.1 Alcohol Use Disorders Identification Test (AUDIT)

Participants were asked to complete 10 questions from Alcohol Use Disorders Identification Test (AUDIT) regarding (1) alcohol consumption (2) drinking behaviour and dependence and (3) the consequences or problems related to drinking. Questions from 1 to 3 were for screening hazardous drinking, questions from 4 to 6 were for alcohol dependence and questions 7 to 10 for harmful use. Each question was scored on three or five-point scale and added up for total AUDIT score [19].
2.2 Average amount of alcohol Intake

Average amount of pure ethanol was calculated based on the average frequency of drinking occasions and the amount of alcohol consumed for an occasion by different alcoholic beverages in Korea and denoted as gram per week (g/week).

2.3 The Facial flushing reaction questionnaire

The Facial flushing reaction questionnaire was developed and validated from Japanese studies [14] and participants completed Korean version of facial flushing reaction questionnaire. The questionnaire included two questions (i) Do you flush in the face immediately after drinking as little as a glass of beer?: “never”, “sometimes”, “often”, “always”, “unknown”; Current flushing (ii) Did you flush in the face immediately after drinking as little as a glass of beer during the first to second year you started drinking?: yes, no, or unknown; Former flushing. Participants were classified as “never” if answered “no” to question (i) and “unknown” to question (ii) or “unknown” for both questions. Current flushing status was applied to classify participants who answered “sometimes”, “often” or “always” to question (i). The remaining participants were classified “never”.

Active $ALDH2(*1/*1)$ carriers who answered “sometimes”, “often” or “always” to question (i) and participants with inactive $ALDH2(*1/*2$ or $*2/*2$) who never experienced facial flushing reaction were defined as a facial flushing reaction mismatch case.
2.3 Genotype data

DNA was extracted from blood samples collected during health examination and genotyped using Affymetrix Genome-wide Human SNP array 6.0. The genotype data was imputed by using 1000 Genome haplotypes phase I integrated variant set release GRCh37/hg19 in Asian population and The Korean Reference Genome.

3. Statistical analysis

3.1 Descriptive analysis

Descriptive analysis was performed by different sex and ALDH2 genotype-Facial Flushing Reaction matching and mismatching group with R software version 3.4.3 for general demographic features and alcohol related questionnaire. Mean ± standard deviation and counts with proportion were measured for continuous variables and categorical variables, respectively. The sensitivity and specificity of facial flushing reaction questionnaire was measured as follow: (i) % of inactive ALDH2(*1/*2 or *2/*2) carrier with facial flushing response for sensitivity (ii) % of active ALDH2(*1/*1) with never experienced facial flushing response for specificity.

3.2 Development and Validation of Prediction model

To generate ALDH2 polymorphism prediction model study participants were randomly divided into training dataset (2/3 of study participants) and validation dataset (1/3 of study participants). To select appropriate predictors, variable
screening was firstly done to find how the variables are correlated with \textit{ALDH2} and how variables are correlated with each other to check multicollinearity. Backward stepwise regression was performed including all possible variables related alcohol questionnaires including facial flushing reaction. The response variable \textit{ALDH2} was set as ‘event’ for inactive \textit{ALDH2} (*1/*2 or *2/*2) and ‘no event’ for active \textit{ALDH2} (*1/*1) and considered as a binary outcome for logistic regression. Regression coefficient from the explanatory model was used to develop prediction model which brings the probability of event. To validate the performance of prediction model, several evaluation aspects were measured including overall performance, Hosmer-Lemeshow test, Integrated Discrimination Improvement (IDI) and C statistics (=AUC) with ROC curves [20,21]. Next the evaluation aspects of the prediction model were compared with predictive performance of facial flushing reaction questionnaire.

\textbf{3.3 Polygenic score for Facial flushing reaction}

Polygenic score was calculated as the sum of weighted risk alleles. Genetic loci associated with facial flushing reaction were explored by using Genome-wide association study which was done by using family-based score test for association (FASTA) from ‘GenABEL’ package in R software. However, since \textit{ALDH2} exerts strong effect on facial flushing reaction, rs671 of \textit{ALDH2} was adjusted for conditional analysis GWAS. Resulted SNPs from rs671 of \textit{ALDH2} conditional analysis GWAS were used to construct polygenic score with polygenic scoring software written in R, called PRSice [22].
III. RESULTS – Part.1

1. Descriptive statistical analysis

1.1 Study participants by sex

Among 3500 participants from The Healthy Twin Study, 893 men and 914 women who satisfied inclusion criteria were involved in the study. Baseline characteristics, AUDIT and other alcohol related characteristics are shown in Table 1.1. The average score for all three domains were significantly higher in men than women and the total score of AUDIT was almost twice higher in men than women. The proportion of each category of facial flushing reaction was relatively similar in both sexes which implies that biological mechanism related to facial flushing reaction or metabolic ability dealing with alcohol intake does not differ by sex while the average amount of alcohol consumption was three times higher in men than women. The most prevalent range of drinking duration was 11-20 year for both men and women and 22% of men were carrying inactive ALDH2 while 16% of women were inactive ALDH2 carriers.

1.2 Study participants by matching and mismatching case

Among 1807 study participants 19.4% of individuals were inactive ALDH2 carriers which was slightly higher % than previously reported in international study
which was around 17% in Korean population [1] but less than studies conducted in Korea which was about 25-35% [2] as shown in Table 1.2. In active ALDH2 carrier group, 25% of individuals were belonging to mismatch group. The average score for Hazard category of AUDIT only showed significantly lower score in mismatch group than matching group. However, the average amount of alcohol consumption by mismatch group was not significantly less than in matching group. Also, the proportion of alcohol drinking duration was not different in active ALDH2 matching and mismatch group.

In heterozygote-inactive ALDH2 carrier group (ALDH2(*1/*2)), 5.3% of individuals showed mismatched facial flushing reaction from their ALDH2 genotype. The average AUDIT scores between matching group and mismatching group were significantly different that scores from all three domains of AUDIT and the average total AUDIT score were significantly higher in mismatching group. Although there were few individuals who seemed to drink alcohol extensively in inactive ALDH2 mismatch group, it was obvious that inactive ALDH2 mismatching group drink far more than that of inactive ALDH2 matching group. However, the most prevalent drinking duration range was the same as all other groups.

There were only 8 homozygote-inactive ALDH2 carriers (ALDH2(*1/*1)) and they all expressed facial flushing when drinking alcohol and hence no mismatching individual. As expected, they consume obviously less amount of alcohol than any other groups in the study dataset.
<table>
<thead>
<tr>
<th></th>
<th>Men (n=893)</th>
<th>Women (n=914)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>52.9 ± 14.1</td>
<td>50.3 ± 12.0</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Current smoker</td>
<td>402 (45.1)</td>
<td>70 (7.7)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>BMI</td>
<td>24.6 ± 3.0</td>
<td>22.7 ± 2.2</td>
<td>< 0.001</td>
</tr>
<tr>
<td>AUDIT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazard</td>
<td>6.7 ± 2.8</td>
<td>3.8 ± 2.2</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Dependence</td>
<td>1.9 ± 1.7</td>
<td>1.0 ± 1.1</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Harm</td>
<td>3.0 ± 3.0</td>
<td>1.3 ± 1.9</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Total</td>
<td>11.6 ± 6.6</td>
<td>6.1 ± 4.6</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Facial flushing reaction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>592 (66.3)</td>
<td>618 (67.6)</td>
<td>0.232</td>
</tr>
<tr>
<td>Sometimes</td>
<td>107 (12.0)</td>
<td>125 (13.7)</td>
<td></td>
</tr>
<tr>
<td>Often</td>
<td>47 (5.3)</td>
<td>53 (5.8)</td>
<td></td>
</tr>
<tr>
<td>Always</td>
<td>147 (16.5)</td>
<td>118 (13.0)</td>
<td></td>
</tr>
<tr>
<td>Drinking duration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-5 year</td>
<td>80 (9.0)</td>
<td>151 (16.5)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>6-10 year</td>
<td>105 (11.8)</td>
<td>270 (29.5)</td>
<td></td>
</tr>
<tr>
<td>11-20 year</td>
<td>298 (33.4)</td>
<td>351 (38.4)</td>
<td></td>
</tr>
<tr>
<td>21-30 year</td>
<td>196 (22.0)</td>
<td>108 (11.8)</td>
<td></td>
</tr>
<tr>
<td>31-40 year</td>
<td>139 (15.6)</td>
<td>21 (2.3)</td>
<td></td>
</tr>
<tr>
<td>41 year +</td>
<td>75 (8.4)</td>
<td>13 (1.4)</td>
<td></td>
</tr>
<tr>
<td>Alcohol consumption(g/week)</td>
<td>171.6 ± 214.0</td>
<td>47.18 ± 76.0</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Inactive ALDH2 (*1/*2 or *2/*2)</td>
<td>200 (22.4)</td>
<td>150 (16.4)</td>
<td>0.003</td>
</tr>
</tbody>
</table>

*Note: AUDIT, Alcohol Use Disorder Identification Test; Continuous data in mean ± standard deviation and p-values were calculated on t-test. Categorical data in counts and tested and p-values were calculated on Pearson's Chi-square test.
Table 2: General Characteristics of study participants by ALDH2 genotype and facial flushing reaction

<table>
<thead>
<tr>
<th>Facial flushing reaction</th>
<th>Active ALDH2(*1/*1) (n=1457)</th>
<th>Inactive ALDH2(*1/*2) (n=342)</th>
<th>Inactive ALDH2 (*2/*2) (n=8)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Negative Match(n=1093)</td>
<td>Mismatch(n=364)</td>
<td>Positive Match(n=324)</td>
</tr>
<tr>
<td>sex (male)</td>
<td>544 (49.8) 149 (40.9) 0.066</td>
<td>183 (60.0)</td>
<td>11 (61.1) 0.917</td>
</tr>
<tr>
<td>Age</td>
<td>51.1 ± 13.0 54.8 ± 13.5 <0.001</td>
<td>50.0 ± 12.4</td>
<td>47.7 ± 12.4 0.505</td>
</tr>
<tr>
<td>Current smoker</td>
<td>288 (26.3) 87 (24.0) 0.987</td>
<td>86 (26.0)</td>
<td>11 (64.7) 0.002</td>
</tr>
<tr>
<td>BMI</td>
<td>23.7 ± 3.1 23.8 ± 3.3 0.485</td>
<td>23.4 ± 3.1</td>
<td>22.7 ± 3.2 0.338</td>
</tr>
<tr>
<td>AUDIT</td>
<td>Hazard</td>
<td>5.7 ± 2.9 5.0 ± 2.8 <0.001</td>
<td>3.6 ± 2.3</td>
</tr>
<tr>
<td></td>
<td>Dependence</td>
<td>1.6 ± 1.5 1.7 ± 1.7 0.187</td>
<td>0.7 ± 1.0</td>
</tr>
<tr>
<td></td>
<td>Harm</td>
<td>2.5 ± 2.7 2.4 ± 2.7 0.914</td>
<td>0.8 ± 1.5</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>9.8 ± 6.3 9.2 ± 6.6 0.191</td>
<td>5.2 ± 4.0</td>
</tr>
<tr>
<td>Facial flushing reaction</td>
<td>Never</td>
<td>1093 (75.0) - <0.001</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Sometimes</td>
<td>-</td>
<td>285 (19.6) 42 (12.0)</td>
</tr>
<tr>
<td></td>
<td>Often</td>
<td>-</td>
<td>35 (2.4) 65 (18.6)</td>
</tr>
<tr>
<td></td>
<td>Always</td>
<td>-</td>
<td>44 (3.0) 225 (64.3)</td>
</tr>
<tr>
<td>Drinking duration</td>
<td>1-5 year</td>
<td>124 (11.3) 40 (11.0) 0.735</td>
<td>60 (18.5)</td>
</tr>
<tr>
<td></td>
<td>6-10 year</td>
<td>218 (20.0) 72 (19.8)</td>
<td>57 (17.6) 0.002</td>
</tr>
<tr>
<td></td>
<td>11-20 year</td>
<td>405 (37.1) 129 (35.4)</td>
<td>108 (33.3) 0.445</td>
</tr>
<tr>
<td></td>
<td>21-30 year</td>
<td>185 (16.9) 69 (19.0)</td>
<td>63 (19.4)</td>
</tr>
<tr>
<td></td>
<td>31-40 year</td>
<td>108 (9.9) 28 (7.7)</td>
<td>24 (7.4)</td>
</tr>
<tr>
<td></td>
<td>41 year +</td>
<td>53 (4.8) 26 (7.1)</td>
<td>12 (3.7)</td>
</tr>
<tr>
<td>Alcohol consumption(g/week)</td>
<td>126.8 ± 177.0 105.1 ± 191.6 0.057</td>
<td>47.3 ± 83.4</td>
<td>229.9 ± 291.9 0.016</td>
</tr>
</tbody>
</table>

Note: AUDIT, Alcohol Use Disorder Identification Test; Continuous data in mean ± standard deviation and p-values were calculated on t-test. Categorical data in counts and tested and p-values were calculated on Pearson's Chi-square test.
2. Prediction of \(ALDH2 \) polymorphism

2.1 Development of prediction model

Table 3. Sensitivity and Specificity of Facial Flushing Questionnaire in Korean Healthy Twin Study

<table>
<thead>
<tr>
<th>(ALDH2) genotype</th>
<th>Facial Flushing Reaction Questionnaire</th>
<th>Negative (n=1111)</th>
<th>Positive (n=696)</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active(n=1457) (*1/*1)</td>
<td></td>
<td>1093</td>
<td>364</td>
<td>94.9</td>
<td>75.0</td>
</tr>
<tr>
<td>Inactive(n=350) (*1/*2 or *2/*2)</td>
<td></td>
<td>18</td>
<td>332</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Note: Sensitivity = % of Inactive \(ALDH2 \) with flushing response, Specificity = % of active \(ALDH2 \) with never flushing

Before developing a new prediction model, the sensitivity and specificity were measured with study dataset. As shown in Table 3, among 350 inactive \(ALDH2 \) carriers, 332 responded as positive for facial flushing reaction and 1093 active \(ALDH2 \) carriers answered as negative for facial flushing reaction out of 1457 active \(ALDH2 \) carriers. Therefore, sensitivity and specificity for detecting \(ALDH2 \) with facial flushing reaction questionnaire were 94.9% and 75.0% for sensitivity and specificity respectively.

In developing step, 1024 randomly selected individuals were included in training dataset. By conducting backward stepwise logistic regression, significant predictors were selected which were obviously facial flushing reaction questionnaire, amount of alcohol consumption, hazard domain (AUDIT questions of 1,2 and 3) and AUDIT
question No.8 asking “How often during the last year have you been unable to remember what happened the night before because you had been drinking?”.

As shown in Table 4-1 and Table 4-2, regression coefficients of each explanatory model were obtained to be used to construct the prediction model of *ALDH2* genotype.

Table 4-1. Explanatory models

<table>
<thead>
<tr>
<th>Model</th>
<th>Inactive ALDH2 (Y/N) = $\beta_0 + \beta_1$*Facial flushing reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model.1</td>
<td>$\beta_0 + \beta_1$*Facial flushing reaction</td>
</tr>
<tr>
<td>Model.2</td>
<td>$\beta_0 + \beta_1$*Facial flushing reaction + β_2*Amount of alcohol consumption</td>
</tr>
<tr>
<td>Model.3</td>
<td>$\beta_0 + \beta_1$*Facial flushing reaction + β_2*Hazard of AUDIT (Q1-3)</td>
</tr>
<tr>
<td>Model.4</td>
<td>$\beta_0 + \beta_1$*Facial flushing reaction + β_2*Amount of alcohol consumption + β_3*AUDIT question no.8</td>
</tr>
<tr>
<td>Model.5</td>
<td>$\beta_0 + \beta_1$*Facial flushing reaction + β_2*Hazard of AUDIT (Q1-3) + β_3*AUDIT question no.8</td>
</tr>
</tbody>
</table>

Table 4-2. Coefficient of Explanatory models

<table>
<thead>
<tr>
<th></th>
<th>Model.1</th>
<th>Model.2</th>
<th>Model.3</th>
<th>Model.4</th>
<th>Model.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-5.9977</td>
<td>-5.790951</td>
<td>-5.71113</td>
<td>-5.580218</td>
<td>-6.07425</td>
</tr>
<tr>
<td>Facial Flushing Reaction</td>
<td>1.9934</td>
<td>1.961977</td>
<td>1.96335</td>
<td>1.96652</td>
<td>2.01498</td>
</tr>
<tr>
<td>Amount of Alcohol</td>
<td>-0.001555</td>
<td>-0.001555</td>
<td>-0.001555</td>
<td>-0.001555</td>
<td>-0.001555</td>
</tr>
<tr>
<td>Hazard of AUDIT (Q1-3)</td>
<td>-0.04451</td>
<td>-0.04451</td>
<td>-0.04451</td>
<td>-0.04451</td>
<td>-0.04451</td>
</tr>
<tr>
<td>AUDIT question No.8</td>
<td>-1.119428</td>
<td>-1.119428</td>
<td>-1.119428</td>
<td>-1.119428</td>
<td>-1.119428</td>
</tr>
</tbody>
</table>

\[\hat{p} = \frac{e^{\beta_0 + \beta_1 x_1}}{1 + e^{\beta_0 + \beta_1 x_1}} \]

2.2 Validation of prediction model

To validate and select the final model with the best predictive performance, 5 candidate models were compared by measuring different aspects of model performance as shown in Table 5. The overall performance was measure by PseudoR². The overall performance of prediction model with facial flushing reaction questionnaire (Model.1) showed PseudoR² of 0.569 and model 2,3 also had almost
the same value of PsudoR² as Model.1. The highest PsudoR² was observed from Model.5 as shown in Table 5. Aspect of calibration was measure with Hosmer-Lemeshow statistics which examines whether the observed proportion of events are similar to the predicted probabilities of occurrences. the p-value of Hosmer-Lemeshow statistics from all five models were not significant which support the null hypothesis that model fits the data. Discrimination ability of each model was compared by measuring AUC from ROC curve. All 5 candidate models showed excellent discriminating ability by having above 0.9 of AUC. However, Model.5 had the highest AUC among 5 candidate models which was 0.930 while AUC of Model.1 was 0.917. As displayed in Figure 2, the ROC curve of Model.5(red line) is slightly more on left hand side than Model.1. Also, sensitivity and specificity from model 1 and model 5 was compared with their optimal cutoff from ROC curve. The sensitivity and specificity from model 1 were 0.83 and 0.90 respectively while sensitivity and specificity obtained from model 5 were 0.87 and 0.88 respectively.

Figure 2. ROC Curves of Model.1 and Model.5

![ROC Curves of Model.1 and Model.5](image_url)
To test for improvement of predicting ALDH2 polymorphism by adding more predictors traditional Net Reclassification Improvement (NRI) and an alternative measure, Integrated Discrimination Improvement (IDI) were both measured. Overall 21.9% of study participants were reclassified, but this difference was not statistically significant. However, IDI was 0.019 ($p<1e-05$).

Figure 3. Discrimination Slope of Model.1 and Model.5
<table>
<thead>
<tr>
<th>Model</th>
<th>Model Details</th>
<th>Overall-performance</th>
<th>Calibration</th>
<th>Discrimination</th>
<th>Reclassification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model.1</td>
<td>Y~ Facial flushing reaction only</td>
<td>0.583</td>
<td>0.997</td>
<td>0.917</td>
<td>0.632</td>
</tr>
<tr>
<td>Model.2</td>
<td>Y~ Facial flushing reaction + Amount of alcohol consumption</td>
<td>0.584</td>
<td>0.064</td>
<td>0.927</td>
<td>0.635</td>
</tr>
<tr>
<td>Model.3</td>
<td>Y~ Facial flushing reaction + Hazard of AUDIT (Question 1-3)</td>
<td>0.583</td>
<td>0.469</td>
<td>0.921</td>
<td>0.633</td>
</tr>
<tr>
<td>Model.4</td>
<td>Y~ Facial flushing reaction + Amount of alcohol consumption + AUDIT question no.8</td>
<td>0.601</td>
<td>0.138</td>
<td>0.931</td>
<td>0.649</td>
</tr>
<tr>
<td>Model.5</td>
<td>Y~ Facial flushing reaction + Hazard of AUDIT only(Question1-3) + AUDIT question no.8</td>
<td>0.604</td>
<td>0.151</td>
<td>0.930</td>
<td>0.651</td>
</tr>
</tbody>
</table>

*Note: P-value of Hosmer-Lemeshow Goodness of Fit (Hoslem GOF), Discrimination Slope from IDI (Discrim-Slope)
III. RESULTS – Part.2

1. ALDH2 (rs671) Conditional Genome-wide association study of Facial Flushing Reaction

Genome-wide association study of for Facial Flushing Reaction without conditioning ALDH2(rs671) resulted strong association signal in chromosome 12, where ALDH2 is located, with p-value of 10^{-74} as shown in Manhattan plot (Figure 4) and Q-Q plot (Figure 5). However, since ALDH2 exerts strong mediating effect on facial flushing reaction, conditional GWAS was conducted to explore SNPs affecting facial flushing reaction other than rs671 of ALDH2. Results from rs671 conditional GWAS for facial flushing reaction is shown in Manhattan plot and Q-Q plot in figure 6 and Figure 7. As shown in the figures, there was no SNPs with genome-wide significance level ($p=10^{-08}$) after adjusting for ALDH2(rs671). However, 117 SNPs with suggestive significant level of association($p=10^{-05}$) were detected. The base positions of those SNPs were close to each other and displayed almost the same effect and p-value suggesting that clumping was required to sort out the representative SNP based on empirical estimates of linkage disequilibrium between correlated SNPs. After clumping of SNPs, 17 SNPs were left to be used in polygenic scoring as shown in Table 5. Top SNP from rs671 conditional GWAS for facial flushing reaction was rs6480460 (p-value=2.28e-06) and the regional plot with this SNP is displayed in Figure 8.
Figure 4. Manhattan Plot of SNPs from GWAS for facial flushing reaction

Figure 5. Q-Q Plot of GWAS p-value for facial flushing reaction
Figure 6. Manhattan Plot of SNPs from \textit{ALDH2}(rs671) conditional GWAS for facial flushing reaction

![Manhattan Plot](image1)

Figure 7. Q-Q Plot of \textit{ALDH2}(rs671) conditional GWAS p-value for facial flushing reaction

![Q-Q Plot](image2)
Figure 8. Regional Plot of *ALDH2*(rs671) conditional GWAS for facial flushing reaction with rs6480460
Table 6: Characteristics of Top 10 SNPs from *ALDH2*(rs671) conditional GWAS for facial flushing reaction used to generate the RPS

<table>
<thead>
<tr>
<th>Chromosome</th>
<th>SNP</th>
<th>Location</th>
<th>Closest gene</th>
<th>A1</th>
<th>(P^*)</th>
<th>Effect ± SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>rs6480460</td>
<td>72361596</td>
<td>PRF1</td>
<td>A</td>
<td>2.28E-06</td>
<td>0.115 ± 0.01</td>
</tr>
<tr>
<td>4</td>
<td>rs118059800</td>
<td>186770441</td>
<td>SORBS2</td>
<td>A</td>
<td>2.43E-06</td>
<td>0.573 ± 0.06</td>
</tr>
<tr>
<td>6</td>
<td>rs72987679</td>
<td>132944051</td>
<td>TAAR2</td>
<td>A</td>
<td>3.50E-06</td>
<td>0.194 ± 0.02</td>
</tr>
<tr>
<td>13</td>
<td>rs10507455</td>
<td>38098734</td>
<td>Unknown</td>
<td>G</td>
<td>4.10E-06</td>
<td>0.348 ± 0.04</td>
</tr>
<tr>
<td>9</td>
<td>rs189869942</td>
<td>35761900</td>
<td>NPR2</td>
<td>T</td>
<td>5.03E-06</td>
<td>0.355 ± 0.04</td>
</tr>
<tr>
<td>10</td>
<td>rs2001681</td>
<td>29287771</td>
<td>C10orf126</td>
<td>T</td>
<td>5.08E-06</td>
<td>0.147 ± 0.02</td>
</tr>
<tr>
<td>17</td>
<td>rs11570508</td>
<td>45228560</td>
<td>CDC27</td>
<td>A</td>
<td>5.38E-06</td>
<td>0.248 ± 0.03</td>
</tr>
<tr>
<td>7</td>
<td>rs145165905</td>
<td>48330903</td>
<td>ABCA1</td>
<td>C</td>
<td>5.60E-06</td>
<td>0.556 ± 0.06</td>
</tr>
<tr>
<td>18</td>
<td>rs150421202</td>
<td>47543922</td>
<td>MYO5B</td>
<td>G</td>
<td>5.91E-06</td>
<td>0.647 ± 0.07</td>
</tr>
<tr>
<td>3</td>
<td>rs983739</td>
<td>56823366</td>
<td>ARHG</td>
<td>A</td>
<td>6.23E-06</td>
<td>0.141 ± 0.02</td>
</tr>
</tbody>
</table>

\(P^\)-value was corrected for genomic inflation
2. Polygenic score for facial flushing reaction

As shown in Table 6, the effect of each risk allele was obtained from GWAS discovery and polygenic score was calculated as the sum of those weighted risk alleles with the threshold of suggestive significance (p-value < 1e-05) for each individual with their genotype data. The top SNP, rs6480460, was located in gene called PRF1 in chromosome 10.

The average polygenic score of 4 different groups by $ALDH2$ genotype and facial flushing reaction is displayed in Table 7. In active $ALDH2$ group, the average polygenic score for mismatching group, active $ALDH2$ carriers with facial flushing reaction, was 4.76 which was significantly lower than that of matching group. In contrast, inactive $ALDH2$ carriers without facial flushing reaction had a higher average polygenic score than inactive $ALDH2$ carriers with facial flushing reaction.

Table 7 Average polygenic score by different groups

<table>
<thead>
<tr>
<th>$ALDH2$</th>
<th>Active $ALDH2$</th>
<th>Active $ALDH2$</th>
<th>Inactive $ALDH2$</th>
<th>Inactive $ALDH2$</th>
<th>Facial flushing Reaction</th>
<th>Positive</th>
<th>Negative</th>
<th>95% CI</th>
<th>P</th>
<th>Positive</th>
<th>Negative</th>
<th>95% CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average PRS</td>
<td>4.76</td>
<td>4.97</td>
<td>0.17 - 0.26</td>
<td><0.001</td>
<td>4.92</td>
<td>5.08</td>
<td>-0.25 - 0.07</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
VI. DISCUSSION

This study conducted a new prediction modelling for ALDH2 polymorphism, which had been screened by facial flushing reaction questionnaire [14], as because individuals with genotype (ALDH2)-phenotype (facial flushing reaction) discordance were reported. The frequency of facial flushing reaction between male and female was not differ which implies that the biological mechanism of facial flushing reaction does not act differently by sex even though the amount of alcohol consumption was much greater in men than women. Also, regardless of the ALDH2 genotype, it was found that the amount of alcohol consumption or Hazard domain of AUDIT, which is related to alcohol consumption, were higher in the group of positive facial flushing reaction. This suggests that applying alcohol consumption related variables as an additional predictor for screening ALDH2 polymorphism would perform better when discriminating between active and inactive ALDH2. In this study, 5 explanatory models were generated with significant variables: Facial flushing reaction, Amount of Alcohol consumption, Hazard domain of AUDIT, AUDIT question No.8. Regression coefficients from explanatory models were used to generate prediction model and the final model with the best predictive performance was Model 5 which had a 0.13 higher AUC value and better reclassification than Model 1[20]. In terms of sensitivity and specificity of each model, the sensitivity of Model 5 was 0.04 higher than Model 1, but the specificity was reduced by 0.02 which implies that it is better to use Model 5 to discriminate
more inactive ALDH2 carriers yet the predictive performance gets slightly weaker on active ALDH2 side. In order to apply developed models in the actual prediction, the equation and coefficients on Table 4-2 can be used with the results from facial flushing reaction questionnaire and AUDIT questionnaire to get the probability of having inactive ALDH2.

In the second part of this study, ALDH2 conditional genome-wide association study for facial flushing reaction was performed to find out any genes related to alcohol metabolism such as genes related to monoamine oxidase as its activity is known to be disturbed by alcohol consumption and hence triggers chronic alcohol consumption and alcohol dependence or other co-enzyme of metabolic pathway for alcohol intake [25]. In this conditional GWAS analysis, facial flushing reaction was regarded as an adapted phenotype of ability to metabolize alcohol as individuals who consume more alcohol tend to express negative facial flushing reaction. Even though there was no SNPs satisfying GWAS significance level, SNPs at suggestive significant level had a small effect on facial flushing reaction and polygenic effect of those SNPs were calculated. As found in the average polygenic score of each group, individuals with no facial flushing reaction had a stronger polygenic effect which means they genetically have greater metabolic ability for alcohol intake. There is no reported mechanism to explain ALDH2 genotype mismatching with its physiological phenotype especially for those who carry inactive ALDH2 and do not express facial flushing reaction. However, according to their response on facial flushing reaction, 5 out of 18 mismatching cases first had facial flushing reaction when they started drinking alcohol in the past but no longer express facial flushing
reaction at present. These answers may suggest that drinking alcohol may have affected genes related to facial flushing reaction or metabolic ability to breakdown alcohol through the epigenetic effect.

Facial flushing reaction questionnaire is still an excellent tool for ALDH2 polymorphism screening however ALDH2 does not always correspond with Facial flushing reaction and therefore it is more efficient and precise to screen ALDH2 polymorphism with additional simple alcohol related questionnaire without genotyping. Also, study dataset with Facial flushing questionnaire and AUDIT questionnaire can impute ALDH2 genotype of study participants when conducting study related to ALDH2. In terms of efficiency for adding extra predictors in the model, the new model with additional predictors showed minimal improvement in AUC and therefore predicted risks generally showed minimal changes as well. However, new developed model still improved the predictive performance which better discriminated inactive ALDH2. However, the prediction model developed in this study has to be validated with other study with larger sample size to be used generally to determine the efficiency of adding new predictors when screening for ALDH2 genotype.
V. REFERENCES

VI. 국문 초록

알데하이드 디하이드로즈네이즈 2 다형성 예측 모형:

ALDH2 유전형-음주 후 안면 홍조 반응 불일치 케이스

서울대학교 보건대학원
보건학과 보건학전공
우은진

연구 배경: 알데하이드 디하이드로즈네이즈 2 (ALDH2) 유전자는 알코올의 독성 대사산물인 아세트알데하이드를 분해하는 효소의 유전자로서, ALDH2 유전형에 따라 개인의 알코올 분해능력의 차이를 보인다. ALDH2의 rs671 변이가 있는 경우 아세트 알데하이드는 분해되지 못하고 체내에 축적되며, 이에 따른 대표적인 생리적 현상으로 음주 후 안면 홍조 반응이 있다. 또한 ALDH2 rs671 변이에 따라 음주 섭취와 연관된 질병이나 암에 대한 위험도가 달라질 수 있다는 결과들이 보고되었다. 따라서 ALDH2 유전형을 파악하고 그에 맞는 음주 형태를 취하는 것은 관련 질병을 예방하는데 도움이 될 수 있다. 현재 음주 후 안면 홍조 반응에 대한 설문을 통해 ALDH2 유전형을 예측할 수 있으나, ALDH2 유전형과 반대되는 안면 홍조 반응을 보이는 경우가 발견되었다.
연구 목적: 1) 음주 후 안면홍조 설문 문항과 더불어 음주관련 정보를 바탕으로 정확한 본인의 알코올 분해 능력을 평가할 수 있는 예측 모형을 개발하고 검증한다. 2) ALDH2 유전자 이외의 음주 후 안면홍조와 연관성이 있는 알코올 분해 능력에 영향을 끼치는 다른 유전자를 탐색해본다.

연구 방법: 한국 쌍둥이 가족 코호트에서 얻은 1807명의 음주 후 안면홍조 설문과 더불어 음주 관련 데이터를 포함한 ALDH2 유전형 예측 모형 개발을 시행하였다. AUDIT을 포함한 음주관련 변수들 중에서 유의한 변수들로 로지스틱 예측 모형을 개발하고 예측 모형의 성능을 평가하였다. 또한 ALDH2를 공변량으로 포함하여 보정한 가족 기반 전장유전체 연관 분석을 통해 알코올 분해 능력에 영향을 끼치는 다른 유전자를 탐색하였다.

연구 결과: 음주 후 안면홍조 반응과 더불어 채택된 유의한 예측 변수는 다음과 같다. 1) 알코올 섭취량 2) AUDIT 설문 중 Hazard domain 3) AUDIT 설문 문항 8. 유의한 예측 변수들을 이용하여 개발된 예측 모형 중 가장 뛰어난 예측 성능을 보인 모델은 음주 후 안면홍조 반응, AUDIT 설문 중 Hazard domain, AUDIT 설문 문항 8을 포함한 모델이며, 기존 음주 후 안면홍조 반응만을 포함한 예측모형보다 0.13높은 AUC값을 나타냈다. ALDH2 (rs671)을 공변량으로 보정한 전장유전체 연관 분석에서는 음주 후 안면홍조 반응과 유의수준 p=10^-8에서 연관성을 보이는 단일 유전자 변이 없었으나, 유의수준 p=10^-5를 기준으로 117개의 단일 유전자 변이들이 연관성을 보였다. 그 중 클러스피지를 통해 얻은 17개의 단일 유전자 변이들의 효과크기를 활용하여 개인의 다유전자 성 점수를 계산하였다. 그 결과 음주 후 안면홍조 반응을 보이지 않는 그룹에서 더 높은 다유전자성 점수가 나타났다.

결론: 음주 후 안면홍조 반응은 ALDH2 유전형 예측에 유용한 설문 문항
이다. 하지만 추가적인 음주 관련 변수를 예측변수에 포함시킴으로 예측 모형의 성능이 높아지는 것으로 나타났다. 본 연구에서 개발된 예측모형을 통해 유전자검사 없이 ALDH2 유전형을 파악하는데 도움이 될 수 있으나 본 연구의 표본 크기에 대한 한계점을 고려하여 다른 인구집단에서의 검증이 필요하다. 또한 음주 후 안면홍조 반응을 이용한 알코올 분해능 전장유전체 연관분석 결과는 ALDH2 외에 알코올 분해능력에 대한 다른 유전적 감수성의 차이가 있음을 시사한다.

주요어: 알데하이즈 디하이드로즈네이즈, 음주 후 안면 홍조, 예측 모형, 전장유전체 연관분석, 조건부 전장유전체 연관분석, 가족 기반 전장 유전체 연관분석, 다유전자성 스코어

학번: 2017-27710